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Abstract. We discuss the possibility to learn a data-driven explicit model correction for inverse problems and
whether such a model correction can be used within a variational framework to obtain regularised
reconstructions. This paper discusses the conceptual difficulty to learn such a forward model correc-
tion and proceeds to present a possible solution as forward-adjoint correction that explicitly corrects
in both data and solution spaces. We then derive conditions under which solutions to the variational
problem with a learned correction converge to solutions obtained with the correct operator. The
proposed approach is evaluated on an application to limited view photoacoustic tomography and
compared to the established framework of Bayesian approximation error method.

1. Introduction. In inverse problems it is usually considered imperative to have an ac-
curate forward model of the underlying physics. Nevertheless, such accurate models can be
computationally highly expensive due to possible nonlinearities, large spatial and temporal di-
mensions as well as stochasticity. Thus, in many applications approximate models are used in
order to speed up reconstruction times and to comply with hardware and cost restrictions. As
a consequence the introduced approximation errors need to be taken into account when solving
ill-posed inverse problems or a degradation of the reconstruction quality can be expected.

For instance, in classical computerised tomography with a relatively high dose, models
based on ray transforms are sufficiently accurate for the reconstruction task, whereas the full
physical model would incorporate stochastic X-ray scattering events. Nevertheless, in some
cone beam computerised tomography applications the dose is typically relatively low with a
large field of view and hence scattering becomes more prevalent [38] and simple models based
on the ray transform are not enough to guarantee sufficient image quality. However, as these
scattering events are stochastic, accurate models would be too expensive for practical image
reconstruction. Therefore, the basic model is used as approximation with an appropriate
correction that accounts for the full physical phenomena [47].

In applications where the forward model is given by the solution of a partial differential
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equation, model reduction techniques are often used to reduce computational cost [8, 14, 39].
Such reductions lead to known approximation errors in the model and can be corrected for by
explicit modelling [4, 23]. Recently, with the possibility to combine deep learning techniques
with classical variational methods, approximate models are now also used in the framework
of learned image reconstruction [20]. In this case, the approximate model is embedded in an
iterative scheme and updates are performed by a convolutional neural network (CNN). Here,
model correction is performed implicitly by the network while computing the iterative updates.

In this paper we investigate the possibility to correct such approximation errors explicitly
with data-driven methods, in particular using a CNN. In what follows, we restrict ourselves
to linear inverse problems, with both theory and experiments considering the linear case only.
However, we expect many of the challenges and approaches discussed here to be relevant and
to give insight into the non-linear case as well. Let x ∈ X be the unknown quantity of interest
we aim to reconstruct from measurements y ∈ Y , where X, Y are Hilbert spaces and x and y
fulfil the relation

(1.1) Ax = y,

where A : X → Y is the accurate forward operator modelling the underlying physics sufficiently
accurate for any systematic error to be well below the noise level of the acquisition. We assume
that the evaluation of accurate operator A is computationally expensive and we rather want
to use an approximate model Ã : X → Y to compute x from y. In doing so, we introduce an
inherent approximation error in (1.1) and have

(1.2) Ãx = ỹ.

leading to a systematic model error

(1.3) δy = y − ỹ.

Remark 1.1. In general, the range and domain of Ã might be different to those of A. To
simplify the remainder of this paper we assume, unless otherwise stated, that appropriate
projections between the range and domain of the approximate operator Ã as well as the range
and domain of the accurate operator A are included in the implementation of Ã, so that
expressions such as (1.3) are well defined.

In this work, we consider corrections for this approximation error via a parameterisable,
possibly nonlinear, mapping FΘ : Y → Y , applied as a correction to Ã. This leads to a
corrected operator AΘ of the form

(1.4) AΘ = FΘ ◦ Ã.

We aim to choose the correction FΘ such that ideally AΘ(x) ≈ Ax for some x ∈ X of interest.
Restricting the corrected operator AΘ to be a composition of the approximate operator Ã and
a parameterisable correction yields various advantages compared to fully parameterising the
corrected operator AΘ : X → Y , without utilising the knowledge of Ã. It avoids having to
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model the typically global dependencies of A in the learned correction and allows us to employ
generic network architectures for FΘ, such as the popular U-Net [34].

The primary question that we aim to answer is, whether such corrected models (1.4) can
be subsequently used in variational regularisation approaches that find a reconstruction x∗ as

(1.5) x∗ = arg min
x∈X

1

2
‖AΘ(x)− y‖2Y + λR(x)

with regularisation functional R and associated hyper-parameter λ. Apart from investigating
the practical performance of (1.5), we will discuss conditions on the model correction that
need to be satisfied to guarantee convergence of solutions to (1.5) to the accurate solution as
the corrected operator AΘ approaches the accurate operator A. We provide theoretical results,
which show that variational regularisation strategies can be applied under certain conditions.
In particular, as we will discuss in this study, while it is fairly easy to learn a model correction
that fulfils (1.4), it cannot be readily guaranteed to yield high-quality reconstructions when
used within the variational problem (1.5). This is a conceptual difficulty caused by a possible
discrepancy in the range of the adjoints of A and Ã that can be an inherent part of the
approximate model and hence first order methods to solve (1.5) yield non-desirable results.

To overcome this restriction, we introduce a forward-adjoint correction that combines an
explicit forward model correction with an explicit correction of the adjoint. We will show that
such a forward-adjoint correction -if trained sufficiently well- provides a descent direction for
a gradient scheme to solve (1.5) for which we can guarantee convergence to a neighbourhood
of the solution obtained with the accurate operator A.

This work fits into the wider field of learned image reconstruction techniques that have
sparked large interest in recent years [5, 22, 25]. In particular, we are motivated by model-based
learned iterative reconstruction techniques that have shown to be highly successful in a variety
of application areas [1, 2, 17, 21, 36]. These methods generally mimic iterative gradient descent
schemes and demonstrate impressive reconstruction results with often considerable speed ups
[18], but are mostly empirically motivated and lack convergence guarantees. In contrast,
this paper follows a recent development of understanding how deep learning methods can be
combined with classical reconstruction algorithms, such as variational techniques, and retaining
established theoretical results on convergence. Whereas most studies are concentrated on
learning a regulariser [27, 31, 33, 37], we here concentrate on the operator only and keep a fixed,
analytical form for the regulariser. Further, related works that consider learned corrections
by utilising explicit knowledge of the operator range are [7, 9, 37]. Another line of research
examines the incorporation of imperfectly known forward operators in a fully variational model
[10, 29] as well as perturbations in [13, 32]. We note also the connection to the concept of
calibration in a Bayesian setting [26].

This paper is organised as follows. In Section 2, we introduce the concept of model correc-
tion and compare to previous work in the field. In Section 3, we discuss forward corrections and
demonstrate their limitations. To overcome these limitations, we introduce in the following
the forward-adjoint corrections in Section 4, where we also present convergence results for this
correction. This is followed by a discussion of computational challenges and the experimental
setup in Section 5. Finally, in Section 6, we demonstrate the performance of the discussed
approaches on two data sets for limited-view photoacoustic tomography.
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Glossary. To improve readability throughout the paper we provide a Glossary with the
definition of frequently used notation.

Symbol Description Definition
X Reconstruction space Hilbert Space, Norm ‖ · ‖X , Product 〈·, ·〉X
Y Measurement space Hilbert Space, Norm ‖ · ‖Y , Product 〈·, ·〉Y
A Exact forward operator A : X → Y

Ã Approximate forward operator Ã : X → Y
FΘ Parameterisable correction in Y FΘ : Y → Y
GΦ Parameterisable correction in X GΦ : X → X

AΘ Corrected forward operator AΘ : X → Y , AΘ = FΘ ◦ Ã
A∗Φ Corrected adjoint A∗Φ : Y → X, A∗Φ = GΦ ◦ Ã∗
Df(t) Fréchet derivative of f at t Df(t) : dom(f)→ rng(f)

f(t+ δt) = f(t) +Df(t)δt+O(δt2)
R Regularisation functional R : X → R+

L Variational functional with A L(x) = 1
2‖Ax− y‖

2
Y + λR(x)

LΘ Variational functional with AΘ LΘ(x) = 1
2‖AΘ(x)− y‖2Y + λR(x)

Table 1

2. Learning a model correction. As we have motivated above, we only consider an explicit
model correction (1.4) in this study and leave the regularisation term untouched. Therefore,
we will discuss in the following how a model correction using data driven methods is possible
and what the main challenges are.

Before we turn to the discussion of an explicit correction, it is important to make the
distinction to an implicit correction in the framework of learned iterative reconstructions. In
particular, we concentrate here on learned gradient schemes [1], which can be formulated by
a network ΛΘ, that is designed to mimic a gradient descent step. In particular, we train the
networks to perform an iterative update, such that

(2.1) xk+1 = ΛΘ

(
∇x

1

2
‖Axk − y‖2Y , xk

)
,

where∇x 1
2‖Axk−y‖

2
Y = A∗(Axk−y). Now, one could use an approximate model instead of the

accurate model and compute an approximate gradient given by Ã∗(Ãxk− y) for the update in
(2.1), as proposed in [20]. The network ΛΘ then implicitly corrects the model error to produce
the new iterate. That means, the correction and a prior are hence trained simultaneously with
the update in (2.1). Such approaches are typically trained by using a loss function, like the
L2-loss, to measure the distance between reconstruction and a ground truth phantom.

On the other hand, in the explicit approach that we pursue here, we aim to learn a
correction AΘ that is independent of the regularisation use. It can hence be trained using
knowledge of the accurate and approximate operator alongside training data in either X or Y ,



ON LEARNED OPERATOR CORRECTION 5

without requiring pairs of measurements and their corresponding ground truth phantoms. In
a scenario where the operators cannot been accessed directly, samples of pairs from the two
operators can even be sufficient to fit an explicit operator correction. While implicit methods
have been shown to perform well in practice [20], our approach will yield an explicit correction
and as such can be used in combination with any regularisation functional and builds on the
established variational framework. Furthermore, we note that the study of explicit methods
also allows to uncover and investigate some of the fundamental challenges of model correction
that might easily be left ignored in implicit approaches.

Thus, we will concentrate our discussion in the following on how an explicit data correction
can be achieved, how the correction of the model Ã can be parametrised by a neural network,
and how this can be incorporated into a variational framework.

2.1. Approximation error method (AEM). A well-established approach to incorporate
model correction into a reconstruction framework, such as (1.5), is given by Bayesian approx-
imation error modelling [23, 24]. Let us shortly recall, that in Bayesian inversion we want
to determine the posterior distribution of the unknown x given y, and by Bayes’ formula we
obtain

(2.2) p(x|y) = p(y|x)
p(x)

p(y)
.

Thus, the posterior distribution is characterised by the likelihood p(y|x) and the chosen prior
p(x) on the unknown. Typically, the likelihood p(y|x) is modelled using accurate knowledge
of the forward operator A : X → Y as well as the noise model. In the approximation error
method, the purpose is now to adjust the likelihood by examining the difference between the
(accurate) forward operator A and its approximation Ã of the model (1.1)–(1.2) as

(2.3) ε = δy = Ax− Ãx.

Including an additive model for the measurement noise e, this leads to an observation model

(2.4) y = Ãx+ ε+ e.

We model the noise e independent of x as Gaussian e ∼ N (ηe,Γe), where ηe and Γe are the
mean and covariance of the noise. Further, the model error ε is approximated as Gaussian
ε ∼ N (ηε,Γε) and is modelled independent of noise e and unknown parameters x leading to a
Gaussian distributed total error n = ε+ e, n ∼ N (ηn,Γn), where ηε and ηn are means and Γε
and Γn are the covariance matrices of model error and total errors, respectively. This leads to
a so-called enhanced error model [23] with a likelihood distribution of the form

p(y|x) ∼ exp

(
−1

2
‖Ln(Ãx− y + ηn)‖2Y

)
where LT

nLn = Γ−1
n is a matrix square root such as the Cholesky decomposition of the inverse

covariance matrix of the total error. In the case of Gaussian white noise with a zero mean and
a constant standard deviation σ, this can be written as

p(y|x) ∼ exp

(
− 1

2σ
‖Lε(Ãx− y + ηε)‖2Y

)
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where LT
ε Lε = Γ−1

ε . This could be used to motivate writing the variational problem (1.5) in a
form

(2.5) x∗ = arg min
x∈X

1

2
‖Lε(Ãx− y + ηε)‖2Y + λR(x).

In order to utilise the approach, the unknown distribution of the model error needs to
be approximated. That can be obtained for example by simulations [4, 41] as follows. Let
{xi, i = 1, . . . , N} be a set of samples drawn from a training set. The corresponding samples
of the model error are then

(2.6) εi = Axi − Ãxi

and the mean and covariance of the model error can be estimated from the samples as

ηε =
1

N

N∑
i=1

εi(2.7)

Γε =
1

N − 1

N∑
i=1

εi(εi)T − ηεηT
ε .(2.8)

2.2. Learning a general model correction. The classical Bayesian approximation error
method provides an affine linear correction of the likelihood in (2.5) and by construction
is limited to cases where the error between accurate and approximate model (2.3) can be
approximated as normally distributed. As this can be too restrictive in certain cases to describe
more complicated errors, we will now address a more general concept of learning a nonlinear
explicit model correction.

That is, given an accurate underlying forward model A, we aim to find a (partially) learned
operator AΘ which we consider as an explicitly corrected approximate model of the form (1.4).
To do so, we need to set a notion of distance between A and AΘ in order to assess the quality
of the approximation. A seemingly natural notion of distance between two operators would
be the supremum norm over elements in X, that is we consider here

‖A−AΘ‖X→Y := sup
x∈X:‖x‖=1

‖Ax−AΘ(x)‖Y .(2.9)

However, in many relevant applications it is impossible to find a correction of the form AΘ =
FΘ ◦ Ã that achieves low uniform approximation error, making this notion of distance too
restrictive. For instance, if we consider the case of a learned a-posteriori correction of some
approximate model Ã with a parameterisable mapping FΘ : Y → Y that fulfils (1.4), then
the approximate model Ã can exhibit a nullspace kern(Ã) that is different from that of the
accurate operator and, in particular, is potentially much larger. Thus, there may exist a (or
several) v ∈ kern(Ã) with Av 6= 0. Any corrected operator AΘ = FΘ ◦ Ã then exhibits an
error in the sense of (2.9) of at least ‖Av‖Y , as

‖A−AΘ‖X→Y ≥ max{‖Av − FΘ(0)‖Y , ‖A(−v)− FΘ(0)‖Y }
≥ min

y∈Y
max{‖Av − y‖Y , ‖ −Av − y‖Y }

= ‖Av‖Y ,
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where in the last equality we have used that the point minimising the maximum of the distance
to other two points is the centre of the line through those points. In our case, the centre of the
line between Av and −Av is always the origin of the coordinate system 0, independently of
the choice of A and v. In other words, the information in direction v is lost in the approximate
model and would need to be recovered subsequently by the correction FΘ. If there are several
such non-trivial v ∈ kern(Ã), a uniform correction becomes increasingly difficult in the form
of (2.9). We will illustrate this difficulty in the following Section 2.2.1.

While aiming for a uniform correction is unpractical, it can nevertheless be possible to correct
the operator Ã using an a-posteriori correction as in (1.4), provided a weaker notion of opera-
tor distance is employed. Here, we propose an empirical, learned notion of operator correction,
that is optimised for a training set of points {xi, i = 1, . . . , N}, similar to Section 2.1. More
precisely, we examine the average deviation of AΘ from A as

1

N

N∑
i

‖AΘ(xi)−Axi‖Y ,(2.10)

in a suitable norm ‖ · ‖. In this notion, it is sufficient for the operators to be close in the mean
for a given training set and hence we call this a statistical or learned correction with respect
to the chosen training set. For instance, if the kernel direction v ∈ kern(Ã) is orthogonal to
the sample xi, the information lost in direction v is not crucial for representing the data of
interest. Alternatively, the kernel direction v might be highly correlated with another direction
w /∈ kern(Ã) in the sense that 〈xi, v〉 ≈ 〈xi, w〉 for all i. Then the result of Av can be inferred
from Ãw, even though Ãv = 0.
To conclude this section, we note that in many cases we cannot hope to find a uniform model
correction, but that correcting the model error can be still attempted using the notion of
learned correction, quantified by (2.10). This is possible even if the operators A and Ã are ex-
hibiting different kernel spaces, as long as the training set {xi, i = 1, . . . , N} exhibits sufficient
structure to compensate for the loss of information in the approximate model.

Remark 2.1. We consider non-linear corrections AΘ = FΘ ◦ Ã in this paper even when
correcting a linear operator A from a linear approximation Ã, as in our computational exam-
ples. We have three main motivations to do so. Firstly, there are well-established nonlinear
network architectures, such as U-Net [34], that are highly powerful and in fact have consid-
erably fewer parameters than a fully parametrised linear map when the method is applied to
applications in 3D, making the non-linear approach scalable. Secondly, when considering non-
linear corrections, a generalisation to the context of nonlinear operators will be easier. Finally
and most importantly, while the operators A and Ã might be linear, the region of interest in
image and data space where we need a good correction is highly nonlinear, in the sense that
the samples xi in (2.10) are drawn from a distribution with nonlinear support. This makes
nonlinear corrections considerably more powerful in correcting model errors than their linear
counterparts.

2.2.1. A toy case: downsampling. In order to illustrate the challenge of a learned op-
erator correction, we consider a toy case. Here, the accurate forward model A is given by a
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downsampling operator with an averaging filter, while the approximate model Ã simply skips
every other sample. Concretely, we consider x ∈ Rn, y ∈ Rn/2 and Ã, A ∈ Rn/2×n, given by

(2.11) A =


1
2

1
4
1
4

1
2

1
4

. . . . . . . . .
1
4

1
2

1
4

 , and Ã =


1 0

0 1 0
. . . . . . . . .

0 1 0

 .

Clearly, both operators have very different kernel spaces, with A vanishing on inputs of
even magnitude with alternating sign, whereas Ã vanishes for every v with v[j] = 0, with
index j even, and any value for j odd. In other words, the null space is spanned by the unit
vectors with odd index, kern(Ã) = {ej | 0 < j ≤ n, j even}. In fact, by the same argument
as above, these v ∈ kern(Ã) with ‖v‖∞ = 1 are such that the uniform approximation error
for any correction will be ‖Av − FΘ(Ãv)‖∞ ≥ ‖Av‖∞ ≥ 0.25 for all v ∈ kern(Ã).

This example exhibits the two features described in the previous section: Firstly, a uniform
correction in the sense of (2.9) is impossible due to different kernel spaces. However, a learned
correction in the mean (2.10) is possible on some data {xi, i = 1, . . . , N} consisting of piecewise
constant functions: On these samples the two operators Ã and A already coincide everywhere
except near jumps, where a weighted average can be employed to correct the approximation
error.

2.3. Solving the variational problem. We now aim to solve an inverse problem given the
corrected model AΘ by solving the associated variational problem (1.5). In this context it is
natural to require that the solutions of the two minimisation problems, involving the operator
correction AΘ and A, are close, that is

arg min
x∈X

1

2
‖AΘ(x)− y‖2Y + λR(x) ≈ arg min

x∈X

1

2
‖Ax− y‖2Y + λR(x).(2.12)

Note that this formulation is different to the approximation error method (2.5), where the data
fidelity term is given by ‖Lε(Ãx− y+ ηε)‖2Y . Solutions to (1.5) are then usually computed by
an iterative algorithm. Here we consider first order methods to draw connections to learned
iterative schemes [1, 2, 17]. In particular, we consider a classic gradient descent scheme,
assuming differentiable R. Then, given an initial guess x0, we can compute a solution by the
following iterative process

(2.13) xk+1 = xk − γk∇x
(

1

2
‖Axk − y‖2X + λR(xk)

)
,

with appropriately chosen step size γk > 0. When using (2.13) for the corrected operator it
seems natural to ask for a gradient consistency of the approximate gradient

∇x‖AΘ(x)− y‖2X ≈ ∇x‖Ax− y‖2X(2.14)

and hence we can identify
N∑
i=1

∥∥∥∇x ∥∥AΘ(xi)− yi
∥∥2

X
−∇x

∥∥Axi − yi∥∥2

X

∥∥∥(2.15)
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as another relevant measure of quality for model corrections within the variational framework,
if gradient schemes are used to solve (1.5). In the following we will discuss possibilities to
obtain a correction, such that we can guarantee a closeness of solutions in the sense of (2.12).

3. Forward model correction. We will now present the possibility to correct the forward
model only and discuss resulting shortcomings of this approach. More precisely, in a forward
model correction, the approximate operator Ã : X → Y is corrected using a neural network
FΘ : Y → Y that is trained to remove artefacts in data space for a given training set. This
leads to a corrected operator of the form AΘ = FΘ ◦ Ã.

3.1. The adjoint problem. To solve the minimisation problem (1.5) with the learned
forward operator with an iterative scheme such as (2.13), we need to compute the gradient
of the data fidelity. We recall that the corrected operator AΘ = FΘ ◦ Ã where the correction
FΘ is given by a nonlinear neural network. Following the chain rule we obtain the following
gradient

(3.1)
1

2
∇x‖AΘ(x)− y‖22 = Ã∗

[
DFΘ(Ãx)

]∗ (
FΘ(Ãx)− y

)
.

Here, we denote by DFΘ(y) the Fréchet derivative of FΘ at y, which is a linear operator
Y → Y . Whereas the gradient for the correct data fidelity term is simply given by

1

2
∇x‖Ax− y‖2Y = A∗(Ax− y).

That means, to satisfy the gradient consistency condition (2.14), we would need

(3.2) Ã∗
[
DFΘ(Ãx)

]∗ (
FΘ(Ãx)− y

)
≈ A∗(Ax− y).

On the other hand, if we train the forward model correction, only requiring consistency in data
space by minimising (2.10), we will only ensure consistency of the residuals FΘ(Ãx) − y ≈
Ax− y, but not full gradient consistency as in (2.14). In order to enforce gradient consistency
we need to control the derivative of the network DFΘ(Ãx) and consequently also need to
take the adjoint into consideration when training the forward correction. This could be done
by adding an additional penalty term to (2.10) that penalises the network for exhibiting an
adjoint different from A∗. For that purpose, let us examine the adjoint of the linearisation of
the correction operator AΘ around a point x

(DAΘ(x))∗ [y] = Ã∗
(
DFΘ(Ãx)

)∗
[y].

With this we can consider the following additional penalty term in the training

(3.3)
∥∥∥(A∗ − Ã∗ ◦ [DFΘ(Ãx)

]∗)
(r)
∥∥∥
X
, where r = FΘ(Ãx)− y

and choose r to be the residual in data space FΘ(Ãx) − y that arises when minimising the
data fidelity term as in (3.1).
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However this solution comes with its own drawback. As we can see in (3.1), the range of
the corrected fidelity term’s gradient (3.1) is limited by the range of the approximate adjoint,
rng(Ã∗). Thus, we identify the key difficulty here in the differences of the range of the accurate
and the approximate adjoints rather than the differences in the forward operators themselves,
which links back to the discussion in 2.2.

Indeed, a correction of the forward operator via composition with a parametrised model
FΘ in measurement space is not able to yield gradients close to the gradients of the accurate
data term if rng(Ã∗) and rng(A∗) are too different. This problem is exacerbated if the
dimensions of these two spaces differ and we can not expect to find a correction that satisfies
the gradient consistency (3.2) and, related to Remark 1.1, even suitable projections in Ã would
not be sufficient to compensate for this. This observation can be made precise in the following
theorem.

Theorem 3.1 (Unlearnability of a gradient consistent forward model correction). Let A and
Ã be compact linear operators from X to Y and given the solutions

x̂ ∈ arg min
x

1

2
‖Ax− y‖2Y(3.4)

x̂Θ critical point of
1

2
‖AΘ(x)− y‖2Y .(3.5)

If x̃0 ∈ rng(Ã∗) and x̂ /∈ rng(Ã∗), then a gradient-descent algorithm for the functional in
(3.5), initialised with x̃0, yields a solution such that x̂Θ 6= x̂ for any x̂ solving (3.4).

Proof. This follows directly from the update equations for solving (3.5) by

x̃k+1 = x̃k − λk∆x̃k

with

(3.6) ∆x̃k :=
1

2
∇x̃k‖AΘ(x̃k)− y‖2Y = Ã∗

[
DFΘ(Ãx̃k)

]∗ (
FΘ(Ãx̃k)− y

)
.

If x̃0 ∈ rng(Ã∗) then ∆x̃0 ∈ rng(Ã∗), and hence x̃1 ∈ rng(Ã∗). By induction this is true
for all k > 0, i.e. x̃k ∈ rng(Ã∗), ∀k and thus any limit point x̂Θ ∈ rng(Ã∗) lies in the
closure of the range of Ã∗. Since x̂ /∈ rng(Ã∗) it follows that x̂ 6= x̂Θ for any limit point of a
gradient-descent algorithm for solving (3.5).

Thus, a correction of the forward model by requiring only consistency in data space does not
in fact ensure consistency of the data term, when solving a variational problem. Additionally,
according to Theorem 3.1 even by including an additional penalty term in the form of (3.3)
does not solve this problem.

3.1.1. Illustration with the toy case. Going back to the toy case from Section 2.2.1, where
we considered a downsampling operation. The approximate operator was chosen such that the
null space is spanned by the unit vectors with even index. The range of the adjoint can then be
characterised by the identity rng(Ã∗) = (kern(Ã))⊥ and hence we have rng(Ã∗) = {ej | 0 ≤
j ≤ n, j odd}. It is now clear, that we cannot compute any solution x∗ /∈ rng(Ã∗) by the
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updates in (3.6), if we initialise them with x̃0 ∈ rng(Ã∗), since all updates are restricted to
the range of the adjoint of the approximate operator. This problem is illustrated in Figure 1,
where we consider an imaging problem for illustrative purposes and x is vectorised before the
operators in (2.11) are applied. Whereas the difference in the forward operator is minimal for
this example, the range of the approximate adjoint makes it impossible to recover the phantom
without further adjustments after application of the adjoint, which will be addressed in the
next section.

Phantom x Forward Ax Adjoint A∗Ax

(a) Application of the accurate forward operator and its adjoint

Forward Ãx Adjoint Ã∗Ãx Adjoint Ã∗Ax

(b) Application of the approximate forward operator and its adjoint

Figure 1: Illustration of mapping properties for the toy case. As we can see, the range of the
adjoint and approximate adjoint are essentially different. Even if the approximate adjoint Ã∗

is applied to the ideal data Ax (bottom right), representing a perfect fit of the forward model,
the range of the approximate adjoint rng(Ã∗) makes it impossible to compute a consistent
gradient in (2.14) without further modifications.

4. Forward-Adjoint Correction. As is evident from the last section, a forward model
correction that is computed to minimise (2.10) in data space alone is not sufficient to compute
the actual reconstruction in a variational framework. We additionally require consistency in
the gradients of the data fidelity term (2.15) which in turn boils down to a condition for a
correction on the adjoint of the corrected forward operator in image space, motivated by (3.3).
We will refer to such a correction in data and image space as a forward-adjoint correction,
as we will learn a correction of the forward operator, as well as a correction of the adjoint
(backward).
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4.1. Obtaining a Forward-Adjoint Correction. The goal is now to obtain a gradient
consistent model correction. To achieve this we propose to learn two networks. That is, we
learn a network FΘ that corrects the forward model and another network GΦ that corrects the
adjoint, such that we have

AΘ := FΘ ◦ Ã, A∗Φ := GΦ ◦ Ã∗

These corrections are obtained as follows. Given a set of training samples (xi, Axi), we train
the forward correction FΘ acting in measurement space Y with the loss

min
Θ

∑
i

‖FΘ(Ãxi)−Axi‖Y .(4.1)

In an analogous way, we correct the adjoint with the network GΦ acting on image space X
with the loss

min
φ

∑
i

‖GΦ(Ã∗ri)−A∗ri‖X .(4.2)

Here, we can choose the direction ri = FΘ(Ãxi) − yi as in (3.3) for the adjoint loss. This
ensures that the adjoint correction is in fact trained in directions relevant when solving the
variational problem.

At evaluation time, the corrected operators can then be used to compute approximate
gradients of the data fidelity term ‖Ax− y‖2Y . The gradient then takes the form

A∗(Ax− y) ≈
(
GΦ ◦ Ã∗

)(
FΘ(Ãx)− y

)
.(4.3)

Let us note that the separate correction of the adjoint and the forward operator comes
with a change of philosophy compared to existing methods for forward operator correction as
presented in Section 2.1. Instead of trying to fit a single corrected operator AΘ that is already
parametrised according to its use within the data fidelity term of a variational problem, we fit
a nonlinear corrected operator AΘ whose use within the variational problem requires to fit the
gradient of the data term directly. This gradient fit takes the form as in (4.3). We use the
gradient of the data fidelity term to directly obtain the gradient of the variational functional for
our corrected operator, allowing us to perform minimisation techniques like gradient descent.
We take the obtained critical point of these dynamics as the reconstruction. Note that the
approximate gradient can not be associated to a variational functional for the forward-adjoint
method anymore. Instead, the gradient is parametrised directly, without parametrising the
variational functional first.

Remark 4.1. We note, that such a separate correction in image and data space can be
related to learned primal dual (LPD) methods [2], where the correction is performed implicitly
as described in Section 2. This explains in part why LPD approaches might be especially
suitable for applications with an imperfectly known operator, see also [44].

In the following section we will discuss how these dynamics relate to the original variational
problem and we will see that they can in fact take us close to the original reconstruction if
both the forward and adjoint are fit sufficiently well.
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4.2. Convergence Analysis. The purpose of this section is to show that sufficiently small
training losses can ensure that gradient descent over (1.5) converges to a neighbourhood of the
reconstruction x̂, obtained with the accurate operator A. The section relates to the forward-
adjoint correction (4.3) and uses the notation of this approach. In the case of forward-adjoint
correction, these loss functions are given by

‖Ax−AΘ(x)‖Y and ‖ (A∗ −A∗Φ) (AΘ(x)− y)‖X .(4.4)

.
Let us now consider for any y ∈ Y the two functionals

L(x) :=
1

2
‖Ax− y‖2Y + λR(x),

LΘ(x) :=
1

2
‖AΘ(x)− y‖2Y + λR(x)

associated with the variational problem for the reconstruction x from the measurement y.
We will show connections between the reconstruction x̂ := arg minx L(x) using the accurate
operator A and the solutions x̂Θ ∈ arg minx LΘ(x) obtained with our corrected operator AΘ.

When considering the gradient descent dynamics over LΘ, we do not refer to the actual
gradient over LΘ but instead consider the direct fit to the gradient of the form A∗Φ(AΘ(x) −
y) +λ∇R(x) as discussed in the last section. In a slight abuse of notation we will nevertheless
denote this gradient as ∇†LΘ := A∗Φ(AΘ(x)− y) + λ∇R(x) to keep the notation easy to read
in the remainder of this section. If R is merely sub-differentiable, then ∇R(x) denotes an
element in the subgradient of R.

For the remainder of this chapter, we make the following assumption on the regularisation
functional R.

Assumption 4.2 (Strong Convexity). We assume that the regularisation functional R is
strongly convex and denote the strong convexity constant by m.

Remark 4.3. Assumption 4.2 in particular holds for R being the Tikhonov regularisation
functionalR(x) = ‖x‖2X and for the pseudo-Huber lossR(x) =

∫
[0,1]2 δ

[√
1 + 1

δ2
‖∇tx(t)‖2 − 1

]
for a bounded function x : [0, 1]2 7→ R and δ > 0 which we use in the experimental section.
For operators A with bounded inverse it is sufficient for the regularisation functional to be
convex to ensure strong convexity of the resulting variational functional L. In this case, strong
convexity of the regularisation functional is not required.

This allows us to use the following two fundamental lemmas on the behaviour of L near
the minimum of the variational functional. As a direct consequence of 4.2 and the convexity
of the data term for linear forward operators we will from now on assume L to be strongly
convex.

Lemma 4.4 (Proximity to minimiser). Let L be strongly convex. Then for every ε there is a
δ > 0 such that for any y and x with

(4.5) L(x)− L(x̂) ≤ δ =⇒ ‖x− x̂‖X ≤ ε,

where x̂ := arg minx L(x).
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Proof. By the definition of strong convexity we have

L(x) ≥ L(x̂) + 〈sx̂, x− x̂〉X +
m

2
‖x− x̂‖2X ,

where sx̂ ∈ ∂L(x̂) is in the subdifferential of L at x̂. Using 0 ∈ ∂L(x̂) yields

δ ≥ L(x)− L(x̂) ≥ m

2
‖x− x̂‖2X

which proves the claim by setting δ = 2ε
m .

Lemma 4.5 (Lower Gradient Norm Bound). Let L be strongly convex. For every ε there is
a δ > 0 such that for any y and x with

‖x− x̂‖X > ε =⇒ ∀s ∈ ∂L(x) : ‖s‖X > δ,(4.6)

where ∂L(x) denotes the subdifferential of L at x and x̂ := arg minx L(x).

Proof. By the definition of strong convexity

L(x̂) ≥ L(x) + 〈sx, x̂− x〉X +
m

2
‖x− x̂‖2X ,

where again sx denotes an element in the subdifferential of L around x. Then by Cauchy-
Schwarz

L(x̂)− L(x)− m

2
‖x− x̂‖2X ≥ −‖sx‖X‖x̂− x‖X .

Using L(x̂)− L(x) < 0 by assumption shows

m

2
‖x− x̂‖2X ≤ ‖sx‖X‖x̂− x‖X ,

and hence ‖sx‖X ≥ m
2 ‖x− x̂‖X , which proves the result.

Remark 4.6. The assumption of strong convexity is used in the following results via the
lemmas 4.4 and 4.5 only. While it is a sufficient condition for these to hold, it is not necessary.
In particular, if the variational functional is not strongly convex but such that 4.4 and 4.5 hold
true, the following results still apply.

We now turn to show that a minimiser x̂Θ of the approximate functional can in fact be
computed with a gradient descent scheme and that this such a minimiser is in fact to the
accurate reconstruction x̂. We begin by extending Lemma 4.5 to include the regularisation
term. For this purpose, we consider the alignment of the variational gradients including the
regularisation term

cos Φv(x) :=
〈∇L(x),∇†LΘ(x)〉
‖∇L(x)‖2

.(4.7)

We show how the alignment can be used as key quantity to guarantee convergence of the
approximate dynamics to a a neighbourhood of the accurate solution. We remark again the
abuse of notation ∇†LΘ(x) := A∗Φ(AΘ(x)− y) + λ∇R(x).
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Proposition 4.7 (Convergence under alignment constraints). Assume that outside a neigh-
bourhood U of the minimiser x̂ of the exact functional L we have

cos Φ(x) > δ1 > 0,

for some δ1 > 0. Then eventually the gradient descent dynamics over LΘ will reach the
neighbourhood U .

Proof. Denote by xΘ(t) the trajectory of the reconstruction under the gradient flow

∂txΘ(t) = −∇†LΘ(xΘ(t)).

Consider the evaluation of the variational loss L that invokes the correct forward operator A.
Using the bound of the alignment as in Lemma 4.8, we can bound

∂tL(xΘ(t)) = 〈∇L(xΘ(t)), ∂txΘ(t)〉X = −〈∇†L(xΘ(t)),∇LΘ(xΘ(t))〉X
≤ −δ1 · ‖∇L(x)‖2X .

As long as Θ(t) has not reached the neighbourhood U , by (4.6), we have ‖∇L(x)‖X > δ2 for
some δ2 and hence

∂tL(xΘ(t)) ≤ −δ1 · ‖∇L(x)‖2X ≤ −
1

2
δ1δ2 =: −c < 0.

The gradient flow dynamics induced by ∇†LΘ hence induce a decrease of L at a rate that
is globally bounded by c outside neighbourhood U around x̂, concluding the proof by lemma
4.4.

We have shown that even though the corrected operator AΘ is potentially nonlinear, the
gradient dynamics induced by ∇†LΘ can in fact minimise the variational problem with the
accurate operator A, effectively minimising the associated variational functional L and leading
us close to the accurate solution x̂. The proposition is based on an assumption about the
alignment cos Θ. We will directly track this quantity in our experimental section, making
sure the convergence results can be applied to our experimental findings. The training loss,
however, is not based on the alignment directly, but rather minimises a combination of forward
and adjoint loss. We have in fact found that this combination of loss functionals is both more
interpretable and more stable than directly minimising alignment. The following lemma and
theorem show that these loss functions in fact minimise a lower bound on the alignment and
hence a sufficiently well-trained correction can also be guaranteed to yield results close to the
minimiser x̂ of the variational functional involving the exact operator A. In this context, a
well-trained correction is such that it achieves sufficiently low training errors.

Lemma 4.8 (Complete gradient alignment bound). Let L and LΘ be defined as above. We
have the lower bound

cos Φv ≥ 1−
‖A‖X→Y ‖(A−AΘ)(x)‖Y + ‖(A∗ −A∗Φ)(AΘ(x)− y)‖X

‖∇L(x)‖X
,

where cos Φv is defined as in (4.7).
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Proof. A straightforward calculation shows

〈∇L(x),∇†LΘ(x)〉X
‖∇L(x)‖2X

=
〈∇L(x),∇L(x)〉X
‖∇L(x)‖2X

+
〈∇†LΘ(x)−∇L(x),∇L(x)〉X

‖∇L(x)‖2X

≥ 1− ‖∇
†LΘ(x)−∇L(x)‖X
‖∇L(x)‖X

The result follows by using the bound

‖A∗(Ax− y)−A∗Φ(AΘ(x)− y)‖X
≤ ‖A‖X→Y ‖(A−AΘ)(x)‖Y + ‖(A∗ −A∗Φ)(AΘ(x)− y)‖X ,

which itself emerges directly from the triangular inequality applied to the identity

A∗(Ax− y)−A∗Φ(AΘ(x)− y) = A∗(A−AΘ)(x) + (A∗ −A∗Φ)(AΘ(x)− y).

Theorem 4.9 (Convergence to a neighbourhood of x̂). Let ε > 0 and pick δ as in (4.6).
Assume both adjoint and forward operator are fit up to a δ/4-margin, i.e.

‖A‖X→Y ‖(A−AΘ)(xn)‖Y < δ/4, ‖(A∗ −A∗Φ)(AΘ(xn)− y)‖X < δ/4(4.8)

for all y and xn obtained during gradient descent over LΘ. Then eventually the gradient descent
dynamics over LΘ will reach an ε neighbourhood of the accurate solution x̂.

Proof. We apply 4.7, with the neighbourhood U chosen as the ε ball around x̂. Using
Lemma 4.8, we can bound

cos Φ ≥ 1−
‖A‖X→Y ‖(A−AΘ)(x)‖Y + ‖(A∗ −A∗Φ)(AΘ(x)− y)‖X

‖∇L(x)‖X
≥ 1− δ/4 + δ/4

‖∇L(x)‖X

As long as ‖xΘ(t)− x̂‖X ≥ ε, by (4.6), we have ‖∇L(x)‖X > δ and hence

cos Φ ≥ 1− δ/2

δ
> 0

We can hence apply 4.7 to conclude the proof.

Overall, we have thus shown that a sufficiently well-trained non-linear corrected operator
AΘ induces gradient dynamics ∇†LΘ that lead close to the accurate solution x̂.

We note that the main assumption in Theorem 4.9 is that the learned operator AΘ has to
be sufficiently close to the accurate operator A throughout the minimisation trajectory, in the
sense of (4.8). While this corresponds directly to the quantities of the loss functions that the
approximations AΘ and A∗Φ were trained on, it includes any xn occurring during the gradient
descent dynamics. Thus, we will discuss the concept of adding exactly these samples xn to the
training set in the next chapter, effectively making our training loss function minimise exactly
the relevant quantities ‖(A−AΘ)(xn)‖Y and ‖(A∗ −A∗Φ)(AΘ(xn)− y)‖X .
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Remark 4.10. The above Theorem 4.9 makes use of both proximity of the forward operator
as well as of the adjoints. While this is necessary to guarantee convergence of the gradient
descent dynamics to a neighbourhood of the accurate solution, it is not strictly necessary
to guarantee proximity of the minimisers of LΘ and of L. In fact, in Appendix B we show
that under certain assumptions a good forward approximation quality is sufficient to ensure
closeness of minimisers, without considering a specific optimisation scheme. While this result is
interesting from a theoretical viewpoint, Theorem 4.9 is essential for supporting and explaining
the experimental results in this study.

5. Computational considerations. In the following we will first address some details on
the training procedures and then continue to present the design of experiments to evaluate
performance of the discussed approaches. In particular, as we mentioned above, in order to
ensure the convergence in Theorem 4.9, we need to make sure that the forward fit as well as
the backward fit in (4.8) are satisfied throughout the minimisation process, which makes a
special recursive training of the corrections necessary.

5.1. Recursive training. Let us now address how to ideally choose the training sets for the
forward-adjoint correction to ensure a good fit of the forward correction FΘ by minimising (4.1)
and the adjoint correction GΦ with (4.2). To create the training set, there are two possibilities.
Either we are given a set of measurements {yi, i = 1, . . . , N}, or alternatively, if we are given
a set of samples in image space {xi, i = 1, . . . , N}, then we need to create a corresponding set
of measurements by applying the accurate model yi = Axi + ei with the addition of noise ei.
Either way, given the set of measurements yi we need to train FΘ and GΦ on a meaningful
starting point for the gradient descent to solve the variational problem; a natural candidate
would be to choose the backprojection xi0 = Ã∗yi.

Training the corrected operators AΘ and A∗Φ with the samples {(xi0, Axi0)} only yields
operator corrections that approximate A and A∗ well for samples x that are close to backpro-
jections of measurements. However, the purpose of this paper is to learn a correction of Ã
that can be used within the variational problem to obtain a solution close to the one obtained
using the accurate operator A. We observe that training AΘ on the backprojections xi0 = Ã∗yi

only is not sufficient to achieve this goal. While this leads to AΘ being a good approximation
to A for the first iterates in the gradient descent scheme, the approximation quality tends to
deteriorate for later iterates, making AΘ not a good appproximation to A anymore. Such a
behaviour is in fact what one would heuristically expect, as AΘ has never been trained on later
iterates to match the accurate operator.

This connects to the assumptions made in the convergence Theorem 4.9, where we assume
low approximation error for both the forward and the adjoint at all iterates of the gradient
descent scheme. We hence need to ensure a uniformly low approximation error at any iter-
ate to be able to guarantee convergence and it is in particular not sufficient to ensure low
approximation error at the initial point of the minimisation of the variational problem only.

A natural solution to mitigate this problem is to include later iterates of the variational
problem into the training samples for the corrected operator. More precisely, given some
weights Θ of the correction operator, denote by {xin} the iterates obtained following the dy-
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namics

xin+1 = xin − µ
[
A∗Φ(AΘ(xin)− yin) + λ∇R(x)

]
,(5.1)

where µ denotes the step size. We add these samples to the original training set {(xi, Axi)},
i.e. we also train on {(xin, Axin)} for all n < Niter and i. Here Niter is the maximal number of
gradient descent steps we take. This allows us to ensure that the corrections AΘ, as well as
A∗Φ for the forward-adjoint method, are fit consistently well at any iterate xin of the gradient
descent dynamics.

A major drawback of this approach is the additional computational burden it incurs during
training. Obtaining the iterates of the minimisation to solve the variational problem requires
performing the minimisation at training time. To reduce the additional computational burden
one can make use of the fact that the gradient of the data term for the learned operator
correction AΘ has to be computed for two different purposes. Firstly, it is used to perform
minimisation over the variational functional and secondly to further train the AΘ to better
match the accurate operator. One can hence perform this computation only once, using it for
both purposes. This reduces computational costs particularly when training on every iterate of
the minimisation over the variational functional, in which case little overhead costs compared
to regular training is inflicted.

Additionally, the trajectory (5.1) depends on the network weights Θ. The training samples
can hence change during training and convergence is not clear a-priori. Empirically, we find
that training on the full trajectory (xin, Ax

i
n) for n < Niter from the beginning tends to be

unstable, as this will lead to most training samples differing greatly from both the original
training distribution as well as the accurate trajectory we are finally interested in. There
are however two effective solutions to this problem: First, one could alternatively train on the
trajectory obtained when using the accurate operator A, avoiding instabilities in the beginning
of training. This, however, could lead to errors accumulating during training. We found that
the most effective solution is to have Niter increase from 1 to some Nmax during training.
With this approach, we start off by training on the original samples xi0 only and then add in
more samples from the trajectory as training proceeds. We have noticed that once trained
on backprojections, adding later iterates to the training set does not change the behaviour of
the learned correction on backprojections by much. In this sense, one can interpret the latter
approach to recursive training as gradually extending the domain the correction is valid on,
without considerably changing the behaviour of the correction on the part of the image domain
that it is already valid on. This heuristically explains why recursive training can be performed
very stably when gradually increasing Niter.

5.2. Experiment design. For a practical application we consider photoacoustic tomogra-
phy (PAT) in two dimensions; for more details on PAT see [6] and the discussion in Appendix
A. Here, the measurement data is given as a set of time-series in a limited view geometry
measured with a line detector at the surface, which we visualise as a space-time image in
Figure 2. In this limited view scenario, the reconstruction task is already a very challenging
inverse problem in itself even with the accurate operator available, we refer to [30, 45] for de-
tails. Here, the accurate model A is given by a pseudo-spectral time-stepping model [42, 43],
whereas the approximate model Ã is given by a regriding and Fast Fourier Transform which
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Phantom: x Accurate data: Ax Approximate data: Ãx

Figure 2: Illustration of the limited view imaging scenario under consideration. Left: numer-
ical phantom with a line detector (red line). Middle: ideal data from the accurate forward
model. Right: data obtained with an approximate model with clearly visible aliasing artefacts.

neglects the effect of singularities and introduces systematic errors in the forward mapping
[11, 28]. In particular, to avoid singularities in the approximate model we threshold incident
waves with an angle up to θmax = 60◦ from normal incidence, which means that this part of
the data is inevitably lost. Nevertheless, the approximate forward model still exhibits strong
aliasing artefacts, as can be clearly seen in Figure 2 indicating that this application is an
ideal candidate for this study. For more details on the models, we refer to the discussion in
Appendix A. We developed the majority of code in Python using the TensorFlow package and
using the k-Wave MATLAB (R2018b, The MathWorks Inc., Natick, MA) toolbox [42] for some
calculations concerning the accurate operator. We used a single Quadro P6000 to conduct the
experiments.

Model corrections under consideration. We evaluate the forward only method with a gradient
penalty term as described in Section 3 as well as the forward-adjoint approach as outlined in
Section 4 1. For both of these methods, we conduct experiments with a model trained on back-
projected measurements only and with a model that has been trained using recursive training
(Section 5.1). As a baseline method, we compare to the widely used AEM approach as outlined
in Section 2.1, a linear approach to model correction. We finally compare to reconstructions
obtained with the uncorrected operator as well as to the reconstruction the accurate operator
yields. This allows to assess how well various correction approaches are able to correct the
shortcomings of the uncorrected operator.

Measurement setup. We consider a limited view problem in this study, where measurements
are only taken on top of the target with a line detector, as indicated in Figure 2. In particular,
we consider an image size of 64× 64, the measurements are taken with a line detector of the
same width as the target and t = 64 time points, resulting in a measurement space of same
size, i.e. 64× 64. The detector is modelled as a Fabry-Pérot sensor [46] with wide bandwidth
and no directivity. Since both image and data space can be represented as a two-dimensional
image, it is reasonable to use the same network architecture for both spaces.

1Code is available at https://github.com/lunz-s/ModelCorrection

https://github.com/lunz-s/ModelCorrection
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Figure 3: Examples from the vessel set used for training of the model correction. The phan-
toms were obtained from segmented CT scans to provide a realistic ground-truth image for
photoacoustic imaging of vessel structures.

Training samples. For the evaluation of the various model correction methods, we utilise
two different sets of samples. Firstly, a simple synthetic set of ’ball’ images, consisting of
circles of varying intensity in [0.75, 1], with fixed radius, but random location on an empty,
zero intensity background. We employ a total of 4096 ball samples for fitting the correction
and an additional 64 for evaluation. An example of a ‘ball’ image and the corresponding data
are illustrated in Figure 2. Secondly, a realistic vessel set that has been obtained by segmenting
vessels from 3D CT scans to provide realistic phantoms, see [21] for details. For this study,
the 3D volumes have been projected to two dimensions by a maximum intensity projection
and subsequently cropped to the intended target size; we note that all samples are normalised
between [0, 1]. Examples of the obtained vessel phantoms are displayed in Figure 3. We
use 2760 unique vessel phantoms for training, augmented by a rotation by 90◦ for a training
set of 5520 samples in total. We evaluate on a separate test set containing 64 samples. All
phantoms had a resolution of 642 and resolution in data space is the same for both, correct and
approximate model. The phantoms are used to generate synthetic measurements yi := Axi+ei

by applying the accurate operator A and adding Gaussian white noise at 1% of the maximum
value in measurement space.

Training Scheme. For every measurement yi, we compute xi0 := 4 · Ã∗y as an initial re-
construction. We choose to rescale the adjoint Ã∗y by a factor of 4 as in our measurement
setup we typically have ‖Ax‖Y ≈ 1

2‖x‖X and ‖A∗y‖X ≈ 1
2‖y‖Y . This is due to the fact that

we measure along a line on one side of the object only, hence recording only half the energy
emitted on the measurement device. This ensures that the average intensity of the backpro-
jection roughly matches the one of both the ground truth and the minimiser of the variational
functional. It allows to keep the norm of the reconstruction approximately stable throughout
solving the variational problem (5.5) and hence makes operator approximations more robust
throughout the trajectory of minimising (5.5).

Given a set of training samples yi, we then train the forward approximation with the loss
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term ∑
i

∥∥∥FΘ(Ãxi0)−Axi0
∥∥∥
Y︸ ︷︷ ︸

Forward Loss

+
∥∥∥(A∗ − Ã∗ [DFΘ(Ãxio)

]∗)(
FΘ(Ãxi0)− yi

)∥∥∥
X︸ ︷︷ ︸

Adjoint Loss

,(5.2)

weighting the forward and adjoint loss equally. In the case of a forward-adjoint correction, the
forward approximation is trained using the loss∑

i

∥∥∥FΘ(Ãxi0)−Axi0
∥∥∥
Y
,(5.3)

while the adjoint is trained with the loss∑
i

∥∥∥(GΦ ◦ Ã∗ −A∗
)(

FΘ(Ãxi0)− yi
)∥∥∥

X
.(5.4)

Note that the quasi-adjoint of the approximate operator A∗Φ := GΦ ◦ Ã∗ as well as the
adjoint of the forward approximation in (5.2) is evaluated in direction r := FΘ(Ãxi0) − yi.
This loss is chosen to be consistent with the terms arising during a gradient-descent based
optimisation of (5.5), as shown in the previous chapters.

If recursive training is applied, we additionally compute the iterates of a gradient-descent
scheme on the penalty functional

arg min
x

‖AΘ(x)− yi‖+ λR(x).(5.5)

All losses are summed over the later iterates xin with n ≥ 0, instead of taking the initial point
xi0 only. To make recursive training stable, the number of recursive steps considered during
training is gradually increased to the maximal value, instead of beginning by training on the
full trajectory from the start as outlined in Section 5.1.

Network Details. The networks FΘ and GΦ are built with a U-Net [34] architecture, that
has been particularly popular in the image reconstruction community including applications
to PAT [3, 12, 15] and other modalities [16, 19, 22]. We follow the standard architecture with 4
downsampling and the same amount of upsampling blocks, each containing two convolutional
layers with filters of size 5× 5. We employed average pooling for downsampling and transpose
convolutions for upsampling layers. We note, that the proposed framework is agnostic to
the employed architecture, we expect similar results with other sufficiently expressive network
architectures.

Solving the variational problem. We employ gradient descent with a fixed step size of 0.2
for all experiments to solve the variational problem (5.5), which we have seen can lead to a
near-optimal reconstruction given sufficient approximation quality in Section 4.2. We addi-
tionally add a positivity constraint xn ≥ 0 everywhere to the minimisation that we incorporate
using projected gradient descent. This means we cut the negative part of every iterate to 0
everywhere, as negative values are non-physical.

As regularisation functional R we choose the pseudo-Huber varation functional

R(x) :=
∑
i,j

δ

[√
1 +

1

δ2
[(x[i+ 1, j]− x[i, j])2 + (x[i, j + 1]− x[i, j])2]− 1

]
(5.6)
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to reconstruct x ∈ R64×64. Here x[i, j] denotes the pixel of x at location i along the vertical and
j along the horizontal axis. This functional approximates the L2-norm of the gradient of the
reconstruction for small values and the L1-norm of for large values of the gradient, coinciding
with total variation (TV) in the limit δ → 0. The parameter δ specifies the characeristic
length at which the behaviour of the regularisation functional changes from approximating L2

to L1. We chose δ = 0.01 for all experiments. We remark that this functional is strongly
convex on all bounded domains for all δ > 0, with the strong convexity constant depending on
δ and the diameter of the imaging domain. The latter is in our case specified by the constraint
x[i, j] ∈ [0, 1].

The regularisation parameter λ is tuned for every experiment and baseline individually
via a grid search over a logarithmically evenly spaced grid with grid points being a factor of
log(10) apart. The best parameter was chosen in terms of L2 distance to the ground truth
image.

6. Computational results.
Synthetic ball phantoms. To evaluate the proposed approaches we solve the variational

problem employing the various approaches for model correction for a set of samples generated
from a test set that is different from the samples used for fitting the correction. We use the
same Huber regularisation functional and regularisation parameter as discussed in the last
paragraph.

First, we investigate the correction accuracy in terms of the alignment of the gradient of
the data fidelity term with the accurate gradient A∗(Axn− y) throughout the minimisation of
the variational functional in Figure 4. As a notion of alignment we consider

cos Φv(x) =

〈
A∗
(
Axn − y

)
,
(
GΦ ◦ Ã∗

)(
FΘ(Ãx)− y

)〉
X∥∥∥A∗(Axn − y)∥∥∥

X

∥∥∥(GΦ ◦ Ã∗
)(

FΘ(Ãx)− y
)∥∥∥

X

,(6.1)

in the case of the forward-adjoint method. For the forward only and AEM methods, the
expression

(
GΦ ◦ Ã∗

)(
FΘ(Ãx) − y

)
is replaced by the appropriate gradient of the corrected

data fidelity term. Equation (6.1) is a slight deviation from (4.7) used in the theory section.
This is to ensure good comparability with the baseline AEM and better interpretability by
rescaling the alignment with the norm of the approximate gradient. This also makes different
choices of regularisation parameters more comparable. In the theory section we instead rescale
with the norm of the accurate gradient only, making the proofs more straight forward.

We note that all correction methods apart from the AEM approach start at a high align-
ment of > 0.8 at the first iterate. However, only the forward-adjoint based methods are able
to achieve an alignment of > 0.95 at the first iterate. Forward only approaches that rely on
fitting a correction in measurement space only are limited by the range of the adjoint Ã∗ as
discussed in Section 4.

However, the alignment starts decreasing rapidly over the minimisation of the variational
problem, dropping below 0 for the forward-adjoint method before the 200th iterate. The
recursive versions of the forward and forward-adjoint methods, as discussed in Section 5.1, are
able to mitigate some of this shortcoming. While the alignment between accurate gradient
and the correction also declines throughout the minimisation of the variational problem when
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(a) Full trajectory (b) First 500 steps

Figure 4: Alignment (6.1) of approximate gradient to the gradient of the accurate data term
A∗(Axn − y) for each approach on the ball test set of 64 samples. The alignment is recorded
over all minimisation steps for solving the associated variational problem. On the left (a) for
the full trajectory and on the right (b) for the first 500 steps.

employing recursive training, the decline is significantly less steep and occurs at a later stage
of the minimisation. We also note that the alignment never drops under 0.2 for recursively
trained corrections.

The benchmark AEM method is not able to correct the gradient as accurately as any of
the methods we discussed for the first iterates of the variational problem. However, it does
not exhibit a decline of the alignment as drastic as any of the other methods throughout the
minimisation process. This can be explained by the lower expressive power of AEM compared
to the corrections based on neural networks that does not allow the method to fit the accurate
gradient as well for early iterates but prevents overfitting on later iterates, leading to the
method being stable throughout the minimisation of the variational functional.

The different behaviour of forward and forward-adjoint methods as well as their recursive
counterparts is investigated in Figure 5. We note that in terms of the forward approximation
error, applying recursive training makes the key difference in terms of keeping a low error
throughout gradient descent. For the adjoint approximation error we note that methods based
on the forward scheme that fit a single operator are not able to achieve low error, even at the
first iterate due to the fundamental limitations of the method. Forward-adjoint methods on
the other hand are able to fit the accurate adjoint well at the first iterates, but also suffer from
deteriorated approximation quality for later steps.
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(a) Relative approximation error of forward oper-
ator

(b) Relative approximation error of adjoint opera-
tor

Figure 5: Approximation error of the model correction compared to the accurate operator on
the ball test set of 64 samples, tracked throughout the first 300 steps of the gradient descent
scheme. Left (a): relative error of the forward approximation as defined in (5.3). Right (b):
relative error for the adjoint, as defined for the forward only in equation (5.2) and for the
forward-adjoint method in (5.4).

In Figure 6, we see evolution of the data term ‖Axn − y‖Y evaluated using the accurate
operator A in order to test if the corrections minimise the original variational problem. We
note that both recursive methods are able to effectively minimise the data term quickly, with
both converging stably to their respective minimal value. This empirical observation shows
that the learned reconstructions in fact lead to a variational energy that satisfy Lemma 4.4 to
ensure closeness of minimiser. We note that forward-adjoint recursive is able to achieve a lower
data loss than its forward only counterpart, which is consistent with the behaviour observed
in Figure 4. It is interesting to note, that both methods are able to minimise the accurate
data term significantly better than the baseline AEM. When omitting recursive training both
the forward only and the forward-adjoint algorithm are not able to minimise the accurate data
term well.

Finally, we evaluate the model correction in terms of the distance of the reconstruction
to the ground truth image, measured by the relative L2 error shown in Figure 7. We note
that all approximation approaches outperform the uncorrected operator in this metric. Both
corrections, forward and forward-adjoint, without recursive training lead to a decrease in
reconstruction error reconstruction quality for the first 300 optimisation steps, stagnating
or even deteriorating afterwards. This is again consistent with the findings in Figure 4, which
show that the gradient generated by these methods does not align with the accurate gradient
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any more at this point of the minimisation. The recursive counterparts of the forward and
forward-adjoint method produce considerably better results, with the recursive forward-adjoint
method generating reconstructions that are nearly of the same quality as the ones generated
by the accurate operator. The baseline with AEM is converging more slowly than any of the
other methods but is able to produce high-quality results after 4000 gradient descent steps
that are on par with the forward recursive method, but are significantly outperformed by the
recursive forward-adjoint method.

Figure 6: True data term ‖Axn−y‖Y eval-
uated for all methods on the ball test set
of 64 samples, tracked throughout the gra-
dient descent scheme.

Figure 7: Relative reconstruction error
(L2) for all methods on the ball test set
of 64 samples, tracked throughout the gra-
dient descent scheme.

For a qualitative evaluation, we show obtained reconstructions in Figure 8 for all methods
discussed and two samples with different behaviour. In the first example, where the ball is close
to the line detector, we note that all methods are able to correct the errors introduced by the
approximate operator to some extent. However, both the forward and forward-adjoint method
introduce background artefacts when not trained recursively. These artefacts disappear when
recursive training is applied, leading to near perfect reconstructions. Compared to AEM as
baseline, which is able to correct the approximate operator without introducing background
artefacts, the correction by AEM introduces blurred edges of the ball that are not observed
by any of the neural network based corrections we are investigating. The second sample
is particularly more challenging, with the ball being far from the detector exhibiting stronger
limited-view artefacts and consequently the approximate operator introduces severe artefacts if
uncorrected. For the corrections without recursive training we see again that both approaches,
forward and forward-adjoint, introduce background artefacts. For the forward method, these
artefacts can not be suppressed by applying recursive training, leaving a severe artefact at the
boundary of the domain. Only the recursive forward-adjoint is able to produce a reconstruction
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(a) Reconstructions for phantom close to the line detector

(b) Reconstructions for phantom far from the line detector

Figure 8: Reconstructions for the various model correction algorithms for two samples from
the ball set. We show the results after 4000 steps of gradient descent. Huber regularisation
is used. Top (a): Phantom close to the detector, which corresponds to an easy setting for
limited-view PAT. Bottom (b): Phantom far from the the detector, which corresponds to a
very challenging setting.

that is nearly en par with the reconstruction obtained with the accurate operator and that
does not exhibit any obvious artefacts. The baseline with AEM also introduces background
artefacts leaking from the ball, but those are more structured and less severe than those of all
other methods apart from the forward-adjoint recursive approach which gives the best visual
results in this setting as well. The visual quality of the reconstructions hence coincides with
the quantitative results discussed in Figure 7.

Figure 9 visualises the effect of the forward-adjoint recursive approach on the ball images,
showing Ax0, Ãx0 and AΘ(x0) as well as the gradients of the data term for each of the operators
A, Ã and AΘ. The visualisations are computed for Sample (b) in Figure 8 on the ball samples.
We see that the forward-adjoint approach is in fact able to correct for approximation artefacts
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(a) Measurements computed at the initial reconstruction for the exact, approxi-
mate and corrected Operators. From left to right Ax0, Ãx0, AΘ(x0)

(b) Gradients of the data term, computed at the initial reconstruction for the
exact, approximate and corrected Operators.

Figure 9: Estimated measurements and gradients at initialisation of the gradient descent
scheme for a sample from the ball images.

both in the forward operator as well as in its adjoint, leading to a good approximation of the
accurate gradient of the data term.

Vessel phantoms. The results on the vessel phantoms quantitatively match the overall be-
haviour observed on the ball set. The alignment, as shown in Figure 10, is again initially
higher with forward-adjoint methods achieving higher values as forward only methods. If no
recursive training is applied, alignment declines very quickly. AEM is again generating gradi-
ents of comparatively low initial alignment, that however stays relatively steady throughout
solving the variational problem. We note that the overall alignment is significantly lower than
in the case of the ball samples, reflecting the additional difficulty of the vessel set.

The relative error of the reconstructions compared to the ground truth can be seen in
Figure 11. We again see both the forward and forward-adjoint methods fail to improve recon-
struction quality further early into the minimisation process if recursive training is omitted.
In case recursive training is applied, both methods lead to a clear improvement over the un-
corrected operator, with the forward-adjoint approach again performing considerably better
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than the forward only. On the vessel samples we however note a considerably larger gap be-
tween the forward-adjoint correction and the accurate operator that is caused by the extremely
challenging nature of the vessel set. The AEM baseline converges slowly on the vessels, an
indication that the estimated covariance matrix is fairly ill-conditioned. We hence addition-
ally report the reconstruction quality at convergence, which we observed after 20000 steps of
gradient descent. While this is a competitive reconstruction, it is still outperformed slightly
by the recursive forward-adjoint method. We remark that we have applied early stopping for
all other methods on the vessel samples.

Figure 10: Alignment (6.1) of approximate
gradient to the gradient of the accurate
data term A∗(Axn − y) for each method
on the vessel test set with 64 samples,
recorded over the 250 steps of solving the
associated variational problem.

Figure 11: Relative reconstruction error
(L2) for all methods on the vessel test
set with 64 samples, tracked throughout
the gradient descent scheme. 250 steps
of gradient descent were performed for all
methods but AEM, where 20000 steps were
taken.

We present reconstructions for all discussed methods for two samples in Figure 12. We note
for the first sample that the vessel structure at the right of the image completely disappears
when using the uncorrected approximation. In fact, the corresponding measurement is severely
reduced due to the thresholding of incident waves in the approximate model. Hence, no cor-
rection method is able to fully recover the vessel structure at the right of the first sample, with
AEM, forward method and forward-adjoint method coming closest. For all correction methods
we observe a deterioration in reconstruction quality compared to the accurate operator. We
note that the recursive forward method seems to lead to striping artefacts. Consistent with
the quantitative results in Figure 11 the forward-adjoint recursive reconstructions are of the
highest visual quality compared to the other reconstructions using a model corrections, lead-
ing to sharper results than the AEM baseline and to fewer artefacts than methods based on
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(a) Reconstructions for first vessel phantom

(b) Reconstructions for second vessel phantom

Figure 12: Reconstructions on vessels using the various operator corrections. We show the
results after 250 iterations of gradient descent for all methods but AEM, for which 20000
iteration steps were taken. Huber regularisation is used.

the forward only approach or those omitting recursive training. We remark that, up to some
extent, perceived differences in smoothness can also be caused as the regularisation parame-
ter has been optimised for all methods individually and hence might differ slightly between
reconstructions.

To this end, we note that the training set with a total of 2760 samples (5520 with rotations)
is fairly small when taking into account the complexity of the vessel structures, see for instance
the discussion with respect to AEM in [35]. It is hence possible that the remaining gap
in reconstruction quality to the accurate operator could be closed further by using a more
extensive training set. However, we expect that the gap cannot be closed completely on
samples with a comparable complexity to the vessel phantoms as too much information might
be lost in the thresholding step of the approximate operator that cannot be recovered even when
taking into account the structure of the samples with highly parametrised learned corrections.
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This underlines the necessity of a statistical correction as discussed throughout Section 2 to
compensate for lost kernel directions in the approximate operator.

Model transfer between vessel and ball phantoms. In this paragraph we investigate how well
the operator corrections trained on either the ball or the vessel samples generalise to the other
of the two data sets. In particular, we discuss using models trained on balls to reconstruct
vessels and vice versa. The aim of these experiments is to obtain a first understanding on how
well trained model corrections generalise to new data sets in general, especially if the new set
is very different from the training data in terms of image characteristics.
When using models trained on the ball samples and tested on vessel images, we notice that
the model gives reasonable corrections at initialisation of the variational scheme for the vessel
samples, yielding corrected gradients. Nevertheless, the correction quality deteriorated rapidly
during the gradient descent steps and the final reconstruction was not satisfactory compared
to reconstructions obtained with the uncorrected approximate operator Ã. We hypothesise
that the ball data was too distinct from the vessel samples and that the structure of the ball
data was too simple for the learned model to perform reasonably on the much more compli-
cated vessel data. In particular, the learned corrections were potentially fit very tightly to
data and measurements induced by the ball phantoms that does not contain the same level
of complexity as the vessel phantoms. Heuristically speaking, the data manifold of the ball
samples seems to be too low-dimensional to generalise to other data.
On the other hand, when using the forward-adjoint recursive model trained on the vessel sam-
ples on the ball samples, we obtained results that are clear improvements over reconstructions
obtained with the uncorrected operator and are even comparable to the non-recursively trained
methods on the ball data. We do, however, not match the performance of the forward-adjoint
recursive model trained on the ball samples themselves. Figure 13 shows reconstructions on
a ball sample for various methods trained on the vessel samples. The reconstructions show a
well-localised ball reconstruction with fairly sharp edges even in the challenging case of the ball
sample located far from the detector plate. The results can be compared to results obtained
with methods trained on the ball samples, as shown in Figure 8. The visual assessment of
reconstruction quality matches the quantitative results in terms of L2 error as shown in Table
2.
Finally, we note in both Figure 13 and Table 2 that adopting the regularisation parameter
λ of the forward-adjoint correction trained on vessel samples to a new optimal value for the
ball data yields considerably improvements in performance. This demonstrates one of the
main advantages of explicit corrections over their implicit counterparts, as separating between
model correction and regularisation allows for an adaption of the regularisation parameter to
the task, independently of the model correction learned.

7. Conclusion. In this paper, we have introduced various approaches to learn a data-
driven explicit model correction for inverse problems to be employed within a variational
reconstruction framework. We have investigated several strategies to learn such a correction,
starting with a simple forward correction for which we pointed out some fundamental limita-
tions. In particular, we observed that this approach is limited by the range of the adjoint of
the approximate operator when employed in a gradient descent scheme and is therefore unable
to fully correct all modelling errors. To mitigate this, we have proposed a forward-adjoint
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Figure 13: Models trained on vessel samples, evaluated on ball samples. From left to right:
Ground truth image, reconstruction using the uncorrected operator, reconstruction using a
recursive forward-adjoint correction with the same TV parameter as used on vessel data,
reconstruction using a recursive forward-adjoint correction with new optimal TV parameter.

Training Data L2 error

Accurate Operator - 0.11
Approximate Operator - 0.55

Forward-Adjoint balls 0.15

For.-Adj. (old TV param.) vessels 0.40
For.-Adj. (new TV param.) vessels 0.35

Table 2: Performance of the recursive forward-adjoint correction on ball samples. We evaluate
the performance of models trained on vessel samples and compare to models trained on ball
samples. Results are reported in terms of the L2 error compared to the ground truth image.

correction as an alternative approach, overcoming these limitations by fitting an independent
adjoint correction.

To ensure a model correction that can be employed throughout the optimisation process
and avoid overfitting to the initial reconstruction, we proposed to augment all methods with a
recursive training scheme. For the recursive forward-adjoint correction we provided a theoret-
ical convergence analysis to show that the method approximates the accurate solution when
trained to a sufficiently low loss. Finally, we have shown the potential of our approach on the
task of limited-view photoacoustic tomography, demonstrating our theoretical considerations
in practice and showing improved results compared to the commonly used AEM.

For the data chosen, the algorithm can be trained very quickly, requiring <2h for non-
recursive experiments and around 16h for their recursive counterparts. For images larger than
the 64×64 format used in the paper, the number of operations scales linearly with the number
of pixels and hence quadratically with resolution in 2D and cubically in 3D. The actual increase
in computational time might scale lower than the increase in operators as a higher amount
of operations per layer increases the potential for parallelisation. The number of network
parameters however does not necessarily change with resolution. Higher resolutions might
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make a more deep architecture appropriate, but the increase in weights caused by this would
typically be strongly sublinear.

This work is orthogonal to previous attempts at using neural networks to learn operator
corrections, that were exclusively focused on the idea of implicit model corrections, learning
the correction operator and a reconstruction prior simultaneously in an end-to-end trained
reconstruction network. While this approach comes with advantages in terms of performance,
our explicit model correction allows to flexibly use any prior model alongside the corrected
operator and can be integrated in the well-established framework of variational regularisation.
Furthermore, our work unveils some of the challenges in model correction that are hidden in
implicit schemes. Our findings can be used to inspire the design of novel implicit algorithms and
allows for an analysis of implicit correction in future studies. In particular, our observations on
the limitations of the range of the adjoint of the approximation motivates the use of corrections
in both reconstruction and data space for implicit model correction, motivating the use of
algorithms such as learned primal-dual [2].

In future work one could apply the proposed method to different fields of application, such
as computed tomography. In this application, the accurate model can be obtained by expensive
photon-level Monte Carlo simulations, whereas a computationally efficient approximation is
given by the widely-used ray transform. In general, applications to inverse problems involving
non-linear operators are an interesting direction deserving further study, we refer to a related
study exploring first ideas in this direction [40]. A class of very challenging applications are
settings where we do not have explicit access to the accurate forward operator, but instead
have access to empirical measurements only. Examples of such problems are tomography with
slightly wrong estimated angles or deconvolution problems with errors in the point-spread
function. These problems differ from the setting considered in this paper, where explicit
access to the accurate operator was given and the approximation was performed to overcome
computational constraints. In particular, the concept of recursive training, as presented here,
requires explicit access to the accurate operator and is thus not readily applicable for problems
where we have access to empirical measurements only, making them particularly challenging.
We believe that in such settings, alternate training regimes that are not fully supervised and
make use of secondary measures will be needed, estimating the approximation error from the
data itself.

Finally, we mention a possible combination of the proposed approach with AEM techniques.
Since the latter, after training, yields a multi-variate Normal distribution as an estimate of
the distribution of model errors it becomes increasingly unreliable as the non-Gaussianity of
the accurate distribution increases. However, after an initial nonlinear correction of the form
AΘ described here, the AEM could be re-estimated using such a model. Commensurately, the
estimated statistics of the model error from the AEM could be used in place of the simple
L2-loss used in the training in (5.2) and (5.3) for example (i.e. the norm implied in the space
Y ). A possible future research direction could therefore be to iterate these approaches with
a view to obtaining a more accurate probabilistic estimate of the eventual remaining model
errors.
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Appendix A. An approximate model for photoacoustic tomography. Here we discuss
the accurate and approximate model as previously used in [20]. In photoacoustic tomography
(PAT) a short pulse of near-infrared light is absorbed by chromophores in biological tissue. For
a sufficiently short pulse, a the quantity of interest will result as a spatially-varying pressure
increase x, which will initiate an ultrasound (US) pulse (photoacoustic effect), that then prop-
agates to the tissue surface. The measurement consists of the detected waves in space-time at
the boundary of the tissue; this set of pressure time series constitutes the measured PA data
y.

For the forward model, this acoustic propagation is commonly modelled by an initial value
problem for the wave equation [11],

(A.1) (∂tt − c2∆)p(x, t) = 0, p(x, t = 0) = x(x), ∂tp(x, t = 0) = 0, with x ∈ R2.

The measurement is then modelled as a linear operatorM acting on the pressure field p(x, t)
restricted to the boundary of the computational domain Ω and a finite time window:

(A.2) y =M p|∂Ω×(0,T ).

Together, equations (A.1) and (A.2) define the linear forward model that we consider in this
study

(A.3) Ax = y,

from initial pressure x to the measured time series y. This accurate forward model can be
simulated by a pseudo-spectral time-stepping model as outlined in [42, 43].

For the approximate model, we can exploit the fact that in our case the measurement
points lie on a line (x2 = 0) outside the support of x, the pressure there can be related to x
by [11, 28]:

p(x1, t) =
1

c2
Fk1 {Cω {B(k1, ω)x̃(k1, ω)}} ,(A.4)
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where x̃(k1, ω) is obtained from x̂(k) via the dispersion relation (ω/c)2 = k2
1 + k2

2 and x̂(k) =
Fx{x(x)} is the 2D Fourier transform of x(x). Cω is a cosine transform from ω to t, Fk1 is the
1D inverse Fourier Transform from k1 to x1 on the detector. The weighting factor,

B(k1, ω) = ω/

(
sgn(ω)

√
(ω/c)2 − k2

1

)
,(A.5)

contains an integrable singularity which means that if (A.4) is evaluated by discretisation
on a rectangular grid and thus enabling the application of FFT for efficient calculation),
then aliasing in the measured data p(x1, t) results. Consequently, evaluating (A.4) using
FFT leads to a fast but approximate forward model. In fact, we can control the degree of
aliasing, by avoiding the singularity, that means in practice all components of B for which
k2

1 > (ω/c)2 sin2 θmax are set to zero. This is equivalent to assuming only waves arriving at
angles up to θmax from normal incidence are detected. We note, that there is a trade-off:
the greater the range of angles included, the greater the aliasing. Finally, this results in a
thresholded weighting factor B̃ and hence the relation (A.4) using B̃ defines the approximate
model for this study: Ãx = y.

Appendix B. Addition to theoretical results.
In this section, we only investigate the question of closeness of minimisers, without inves-

tigating if the minimisers of LΘ - that involves a nonlinear operator in the data term - can
be identified efficiently using a gradient descent based algorithm. To answer this question, we
will assume that the learned corrected operator AΘ approximates the ground truth operator
A sufficiently well, uniformly on some manifold D that contains the minimiser of L. These
assumptions represent the situation of a well-fit forward approximation on the data manifold
D that we assume all relevant reconstructions to lie on.

While it is difficult to check these assumptions in practice, the purpose of this discussion
is to give a more complete theoretical view at the problem at hand, demonstrating that under
sufficient assumptions closeness of forward operators is sufficient to deduce closeness of min-
imisers. However, this does not guarantee that the minimum can be found with a gradient
descent algorithm or that a gradient descent algorithm even stays on the manifold D of good
approximation quality. As a theoretical underpinning for the experiments conducted in this
paper, Theorem 4.9 should hence instead be considered as a the main theorem.

Proposition B.1 (Proximity of minimisers). Denote by D ⊂ X the manifold of possible
reconstructions that the operator approximation was trained on using empirical risk minimi-
sation (4.1). Let L be strongly convex. Assume further that D and the measurement noise
is bounded. Hence for any y = Ax1 + ε for some x1 ∈ D and for any x2 ∈ D we have
‖Ax2 − y‖Y ≤ C (boundedness). Let ε > 0. Denote by δ the corresponding quantity as in
lemma 4.4, without loss of generality let δ ≤ 32C2. Assume further AΘ has been trained such
that supx∈D ‖AΘ(x)−Ax‖Y ≤ δ/4C. Denote by

x̂ := arg min
x

L(x), x̂Θ ∈ arg min
x

LΘ(x)

the reconstructions computed via the variational problem using either the accurate operator A
or the corrected operator AΘ, respectively. Note that the minimiser is unique for the functional
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L by strong convexity, but not necessarily for the functional LΘ. Then for any y ∈ Br(0) that
is such that both x̂, x̂Θ ∈ D, we have

‖x̂− x̂Θ‖X < δ.

Proof. First note that |LΘ(x)− L(x)| ≤ δ/2 for any x ∈ D, as

|LΘ(x)− L(x)| =1

2

∣∣‖AΘ(x)− y‖2Y − ‖Ax− y‖2Y
∣∣

≤‖Ax− y‖Y ‖Ax−AΘ(x)‖Y +
1

2
‖Ax−AΘ(x)‖2Y

≤C · δ
4C

+ δ
1

2

32C2

(8C)2
= δ/2

By taking the minimum, this in particular implies that

|LΘ(x̂Θ)− L(x̂)| ≤ δ/2.

We conclude via

|L(x̂Θ)− L(x̂)| ≤ |L(x̂Θ)− LΘ(x̂Θ)|+ |LΘ(x̂Θ)− L(x̂)| ≤ δ/2 + δ/2 = δ,

which finishes the proof using eq.(4.5).

Remark B.2. The assumption that y is such that x̂, x̂Θ ∈ D can be interpreted as a ne-
cessity for y to have emerged from an underlying image that is close to the manifold of recon-
structions D that the correction AΘ has been trained on. Put differently, we require y to be
an actual realistic measurement, similar to those used to train the model correction AΘ.
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