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ABSTRACT

Viruses exist within hosts at large population sizes and are subject to high rates of mutation. As such, viral populations exhibit
considerable sequence diversity. A variety of summary statistics have been developed which describe, in a single number, the
extent of diversity in a viral population; such measurements allow for the diversities of different populations to be compared,
and for the effect of evolutionary forces on a population to be assessed. Here we highlight statistical artefacts underlying
some common measures of sequence diversity, whereby variation in the depth of genome sequencing may substantially affect
the extent of diversity measured in a viral population, making comparisons of population diversity invalid. Specifically, naive
estimation of sequence entropy provides a systematically biased metric, a lower read depth being expected to produce a lower
estimate of diversity. The number of polymorphic loci per kilobase of genome is more unpredictably affected by read depth,
giving potentially flawed results at lower sequencing depths. We show that the nucleotide diversity statistic π provides an
unbiased estimate of diversity in the sense that the expected value of the statistic is equal to the correct value of the property
being measured. Our results are of importance for studies interpreting genome sequence data; we describe how diversity may
be assessed in viral populations in a fair and unbiased manner.

Introduction1

Many viruses form large within-host populations, and evolve under the influence of high mutation rates. As a consequence,2

within-host viral populations may contain a large amount of sequence diversity1. Sequence diversity has a close relationship3

with the evolution of viral populations; changes in host-mediated pressure on the virus may cause changes in sequence diversity2,4

while diversity itself may enable more rapid adaptation to new selective pressures3. The extent of within-host diversity has been5

explored in a range of viral diseases4–10.6

7

While sequence diversity is complex property, there exist a range of statistical measures of diversity, each capturing the8

diversity of a population in a single numerical value. Such measures, which include the number of polymorphisms per thousand9

bases, sequence entropy, and the population genetics parameter π , allow for the simple evaluation of changes in population10

diversity. For example, the amount of diversity in one population may be compared to the amount of diversity in another. In an11

evolving population, increases and decreases in diversity may be measured over time11, 12.12

13

Measuring sequence diversity requires an accurate representation of the population under study, acquired through genome14

sequencing. A broad range of publications have acknowledged, measured, or sought to correct noise in genome sequence15

data13–16. Accurate experimental techniques have been highlighted as a necessary first step to measuring viral sequence16

diversity17.17

18

Here we show that an accurate experimental protocol for sequencing is not sufficient to obtain a correct assessment of viral19

diversity; in addition, an unbiased diversity metric needs to be applied. While previous studies have highlighted biases in naive20

estimators of entropy statistics18–22, their importance in the analysis of viral sequence data has not been fully investigated,21

and the use of raw entropy statistics is common in the virological literature. Data may be used to evaluate the within- or22

between-host diversity of populations23. We here consider three measures of sequence diversity, demonstrating that potentially23

serious bias may arise from realistic depths of genome sequencing. We highlight the need to account for the stochastic nature of24

diversity statistics and outline steps via which the diversity of one population may be accurately compared to that of another.25

26
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Results27

Assuming sequencing to have been conducted in an error-free manner, we evaluated the robustness of three statistics: Sequence28

entropy, the number of polymorphic loci per kb, and the nucleotide diversity statistic π . In our calculations we use L to denote29

the length of a hypothetical viral genome, and consider the single locus l in that genome. At this locus, we suppose the30

underlying frequencies of each nucleotide i to be given by pi. Given sequencing of depth N, we suppose that ni copies of each31

nucleotide have been observed.32

Shannon entropy33

The Shannon entropy of a population is derived from information theory, and assesses the level of ‘disorder’ in a population24;
this measure has been used to assess changes in viral sequence diversity over time11. At the locus l, the entropy may be
calculated as

Hl =−
4

∑
i=1

pi log(pi) (1)

where the sum is calculated across the frequencies of the four possible nucleotides. Supposing that full haplotype information
for the virus is not available, a genome-wide measure of entropy may then be calculated, computing the mean of this statistic
across all sites17.

H =
L

∑
l=1

Hl/L (2)

Where genome sequencing is applied to a population, the resulting observations are stochastic in nature, arising from a random34

sampling process; if sequencing is error-free this can be represented as a multinomial sample collected from the viral population.35

The value of the entropy calculated from the sequence data, which we denote Ĥ, is therefore a random variable, which may by36

chance be higher or lower than the true sequence entropy.37

38

Calculations show that if a naive estimator is used, the expected value of this ‘measured’ sequence entropy, or E(Ĥl), falls
between two limits, such that

−
4

∑
i=1

pi log
(
(N−1)pi +1

N

)
≤ E(Ĥl)≤

4

∑
i=1
−pi log

(
pi

1− (1− pi)N

)
(3)

A full derivation of this relation is given in the Appendix. We note that the right hand side of this inequality is strictly less39

than the true sequence entropy given in Equation 1; this result implies that a measurement of entropy from sequence data is40

likely to underestimate the true entropy of the population. We further note that, as the read depth N increases, both the lower41

and upper bounds in our formula increase, both tending to the correct value. This implies that the expected shortfall in the42

entropy given by the calculation will depend upon the read depth of sequencing. As a consequence entropy, when calculated in43

this way, is not a good measure of sequence diversity. If two different populations are sequenced to different read depths, val-44

ues of the entropy calculated for the two populations may or may not reflect the ordering of the true levels of population diversity.45

46

To investigate the effect of read depth upon the calculated sequence entropy, we performed calculations for simulated data47

describing high and low frequency polymorphisms. For a variant at intermediate frequency, namely 30% of the population,48

the mean calculated sequence entropy falls between the two limits of Equation 3, increasing with increasing read depth49

(Figure 1A). At read depths of 1000 or less, there is a noticeable shortfall in the entropy with respect to the true sequence50

diversity. Variants at lower frequencies lead to more incorrect entropy values at higher depths of sequencing; as shown in51

Figure 1B, the lower bound remains below the true value for much longer. In so far as viral populations contain large numbers52

of low-frequency variants, our result implies that a depth-dependent shortfall in the measurement of entropy will be pervasive53

even at high read depths. The measure of entropy obtained will depend upon the extent to which a population has been sequenced.54

55

Number of polymorphisms per kilobase56

The number of polymorphisms per kilobase of genome is calculated relative to a definition of what constitutes a polymorphism,57

usually a minor allele frequency between 1% and 5%25, 26; given this definition, calculation of the statistic is trivial. This58

statistic has been used to compare the diversity of reported influenza populations, highlighting potential discrepancies in59

the genome sequencing of some datasets27. An alternative measure of viral diversity, the ‘richness’ of a viral population, is60
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Figure 1. Mean sequence entropy values calculated for sets of 1000 loci each of which has a consistent minor variant
frequency. Means of these values calculated across 100 replicates are shown as black dots, with vertical bars, where visible,
showing an interval of ± 2 standard deviations. The correct entropy is shown by a dashed red line. The dashed blue lines,
where not obscured by the correct entropy value, show the upper and lower limits described in Equation 3, with the upper limit
showing the correct sequence entropy value. Data are shown for A. a variant frequency of 30% and B. a variant frequency of
0.03%.

calculated as the total number of polymorphisms in the viral genome17; the two statistics are straightforwardly related.61

62

Calculations show that the measured number of polymorphisms per kilobase is also dependent upon read depth, albeit
that the influence of read depth is more complex than is the case for sequence entropy. To illustrate this, we suppose that a
threshold frequency of 1% is used to define the existence of a polymorphism. Given a binomial sample of depth N, an allele
will be identified as polymorphic if at least n copies of the minority allele are observed, where n/N ≥ 0.01. If the true variant
frequency is given by p, the probability of identifying a polymorphism is given by the cumulative distribution function:

P
( n

N
≥ 0.01

)
=

N

∑
i=k

N!
i!(N− i)!

pi(1− p)N−i (4)

where k is the minimum value for which k/N > 0.01; the broad-scale behaviour of this function is shown in Figure 2. While63

this function is non-monotonic in N, it is straightforward to observe that, as N becomes large, the probability of identifying a64

polymorphism tends towards 0 if p < 0.01, tends towards 1 if p > 0.01, and tends towards 0.5 if p = 0.01. (The probability is65

further influenced by discrete-value effects, illustrated in Figure 2B).66

67

In so far as the chances of identifying a single polymorphism are influenced by the read depth, the expected number of68

polymorphisms per thousand bases is also dependent upon N. In a system for which a large number of variants are polymorphic69

at frequencies less than, but close to 1%, the number of identified polymorphisms will decrease at higher read depths, as higher70

precision observations show these variants to be below the polymorphism threshold. Conversely, if a large number of loci are71

polymorphic at frequencies slightly above 1%, an increase in read depth will cause the expected diversity also to increase.72

Since changes in sequencing depth can both increase and decrease the number of polymorphisms identified, this statistic is73

not so affected by read depth as the calculation of entropy. However, it is not an ideal statistic for the comparison of samples;74

statistics calculated for samples with different read depth profiles may not be formally comparable.75

Nucleotide diversity π76

The diversity statistic π was first derived for the comparison of sequences in a phylogenetic tree28, but can be applied to viral
sequence data even where full genomes are not available29. As with other measures, this statistic has been applied to evaluate
both to compare diversity values, and to evaluate changes in diversity in viral populations over time12, 30. At the locus l, where
ni copies of the allele i are observed, the proportion of pairwise differences between alleles may be calculated as

Dl =
∑i 6= j nin j

1
2 N(N−1)

=
N(N−1)−∑i ni(ni−1)

N(N−1)
(5)
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Figure 2. A. Trend in the probability of a variant being identified as a polymorphism at 1% frequency as a function of read
depth. At very high read depth, variants with a frequency greater than 1% will always be identified as polymorphisms, while
variants below this frequency will never be identified as polymorphisms. Details of the function in the region between the
vertical gray dashed lines are shown in B. Detailed probability values. The range of frequencies at which a variant can be
identified is constrained to the set of values i/N where N is the read depth; this constraint leads to a sawtooth pattern in the
probability of identifying a polymorphism.

The statistic π may then be calculated for a genome as

π =
L

∑
l=1

Dl/L (6)

Calculating an expression for the expected value of Dl showed it not to be dependent upon the depth of sequencing, but only
upon the underlying frequencies of the alleles at this locus.

E(Dl) = 1−
4

∑
i=1

p2
i (7)

Derivation of this result is shown in the Appendix. Here we see that, unlike the statistics considered above, this value does77

not depend upon the depth at which the locus is sampled, being a function only of the underlying allele frequencies pi. As78

such, where samples with different read depths are compared, the statistic π should not cause systematic biases in the reported79

results. We note that the variance of the statistic Dl is dependent upon N: Higher read depths are likely to generate more precise80

estimates of diversity.81

82

Application to viral sequence data83

In order to investigate the effect of depth-dependent biases upon diversity statistics when applied to biological sequence data, we84

analysed published data describing within-host HIV and influenza populations26, 31. Data were chosen to represent contrasting85

viral populations when evaluated in terms of sequence diversity; plots of allele frequency spectra for each dataset are shown in86

Figure 3.87

88

Downsampling of data from each population showed substantial changes in the calculated sequence entropy as the number89

of reads was altered (Figure 4). For example, downsampling the influenza dataset to a depth of 100 led to a calculated entropy90

value only 66.1% of the ‘correct’ value, calculated from the original data. Even where data were downsampled to a read depth91

of 5×104, the calculated entropy was still fractionally lower than the value calculated for the dataset as a whole.92

93

With the exception of values measured at the lowest downsampling depths, calculations of the number of polymorphisms94

per kb showed relatively smaller changes with read depth. We note that in the HIV dataset, after an initial fall, this statistic95

increased with read depth, while in the influenza dataset the statistic gradually decreased to the correct value; the precise96

distribution of frequencies affects the manner in which this statistic is biased by sample depth.97

98

Calculations of the nucleotide diversity π showed roughly constant results across downsampled datasets. No clear relation-99

ship between this statistic and the downsampling depth was observed; the diversity calculated from the complete dataset was100
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Figure 3. Allele frequency spectra for the two datasets analysed in this study. The within-host influenza dataset shows a small
number of .

always encompassed in the range of values obtained from downsampled data.101

102

Discussion103

Viral sequence diversity is an important property in the evolution of viral populations. While diversity is complex, statistics104

which measure it as a single numerical value provide a useful tool for the comparison of viral datasets, either across genome105

sequencing studies, or within the course of a single infection. Here, assessing three commonly used such statistics, we have106

highlighted potentially severe problems in the use of sequence entropy, with lesser though potentially important issues with107

the number of polymorphisms per kb of genome. Issues arise with these statistics due to the inherent dependence of each108

upon the read depth of sampling. Entropy is dependent upon read depth in a systematic way, with greater sampling giving a109

higher estimate of diversity. The number of polymorphisms per kb is dependent upon depth in a more complex manner; greater110

sampling may increase or decrease the value of this metric.111

112

The depth-dependence of statistics shown here matters in cases where such statistics are used to compare diversity between113

different populations. Differences either in the overall read depth, or in the distribution of read depth across the genome, could114

produce misleading results if poor quality statistics are used for the evaluation of population-level diversity. While technologies115

such as the Illumina HiSeq can be used to achieve very high read depths, the use of appropriate statistics is a more efficient116

approach for the evaluation of sequence diversity. We note that diversity statistics may also be applied to evaluate data at the117

between-host level23. Such analyses may involve lower sequence ‘depths’ than within-host data. Care in the analysis of both118

within- and between-host diversity measurements is required.119

120

We here make two recommendations. Firstly, where a variety of statistics have been used to measure viral diversity, we121

propose that the nucleotide diversity π outperforms other metrics in providing an estimator that is unbiased by factors of122

genome sequencing. Particularly where samples with different read depth profiles are compared, this metric allows the fair123

evaluation and comparison of sequence diversity. While corrections allowing the unbiased estimation of entropy can be made32,124

the simplicity and general acceptance of π by the evolutionary community make this, in our opinion, the favoured solution.125

Secondly, we propose that where diversity statistics are compared, an estimate of the uncertainty of such statistics should126

also be made. In being generated from genome sequence data, which describes the output of a random sampling process,127

diversity statistics are themselves statistical entities. Processes such as bootstrapping, the resampling of datasets from the allele128

frequencies they originally report, can give a straightforward estimate of the uncertainty in a given diversity measurement.129

130
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Figure 4. Diversity statistics calculated for HIV (black) and influenza (red) sequence data following downsampling of the data
to lower read depths. Ten replicate downsampling calculations were performed for each point; dots show mean values, with
vertical bars, where visible, showing an interval of ± 2 standard deviations. Dashed gray lines show the values calculated from
the complete dataset.

Methods131

Sequence data132

Viral sequence data were downloaded from publicly available datasets. The HIV data analysed was that collected after 2639133

days in patient 1 of the dataset described by Zanini et al.31; pre-calculated variant frequencies were used for this analysis. The134

influenza data analysed was from the sample MH5817_20140113_A (SRR6121395) of the dataset described by McCrone et135

al26. Short read data from this dataset were aligned using the BWA algorithm33, with variant frequencies calculated using the136

SAMFIRE software package34.137

Downsampling of data138

Downsampling of data was conducted by a simple multinomial process. Supposing the read depth at the locus l to be Nl , and139

that sequence data reported nl,i copies of each of the alleles i in the set {A,C,G,T} at position l, we calculated the observed140

allele-based probabilities p̂l,i = nl,i/Nl . A downsampled set of data was generated by choosing a depth Nd for downsampling.141

At each locus for which Nl > Nd , a random multinomial draw of depth Nd and with probabilities pl,i was made in order to142

sample allele frequencies. For each locus for which Nl ≤ Nd , the original sequence data were retained. Downsampling was143

conducted to depths for which at least 90% of loci in the genome had Nl > Nd .144
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145

Mathematical Appendix146

We here derive the results stated in the main text. In our calculations we represent the process of sequencing as one of sampling147

with replacement, giving rise to a multinomial formulation; this assumes the within-host viral population to be small. We note148

that the alternate assumption, of sampling without replacement, leads to similar results.149

Expected value of sequence entropy150

The expected entropy, described in Equation 3 of the main text, assuming multinomial sampling, can be written as follows:151

E(Hl) = ∑
{nk|∑nk=N}

[(
4

∑
i=1
−ni

N
log
(ni

N

))( N!
∏i ni!

∏
i
(pi)

ni

)]
(8)

Rearranging this equation, we obtain

E(Hl) =
4

∑
i=1

pi ∑
{nk|∑nk=N,ni≥1}

log
(

N
ni

)
(N−1)!

(pi)
ni−1

(ni−1)! ∏
j 6=i

(p j)
n j

n j!
(9)

Next, applying Jensen’s inequality, we obtain

E(Hl)≤
4

∑
i=1

pi log

[
∑

{nk|∑nk=N,ni≥1}

(
N
ni
× (N−1)!

(pi)
ni−1

(ni−1)! ∏
j 6=i

(p j)
n j

n j!

)]

=
4

∑
i=1

pi log

[
1
pi

∑
{nk|∑nk=N,ni≥1}

N!
(pi)

ni

ni!
∏
j 6=i

(p j)
n j

n j!

]

=
4

∑
i=1
−pi log

[
pi

1− (1− pi)N

]
<

4

∑
i=1
−pi log(pi)

(10)

To get the lower bound we again apply Jensen’s inequality to Equation 9.

E(Hl)≥−
4

∑
i=1

pi log

[
∑

{nk|∑nk=N}

(
ni

N
× (N−1)!

pni−1
i

(ni−1)! ∏
j 6=i

p
n j
j

n j!

)]

=−
4

∑
i=1

pi log

[
1
N
+

(N−1)pi

N ∑
{nk|∑nk=N,ni≥2}

(
(N−2)!

pni−2
i

(ni−2)! ∏
j 6=i

p
n j
j

n j!

)]

=
4

∑
i=1
−pi log

[
(N−1)pi +1

N

]
(11)

Examining the two bounds, we note that

lim
N→∞

4

∑
i=1
−pi log

[
(N−1)pi +1

N

]
=

4

∑
i=1
−pi log(pi) (12)

and

lim
N→∞

4

∑
i=1
−pi log

(
pi

1− (1− pi)N

)
=

4

∑
i=1
−pi log(pi). (13)

We therefore have the result

lim
N→∞

E(Hl) =
4

∑
i=1
−pi log(pi) . (14)

7/9



Expected value of π and its variance152

The expected value of the statistic Dl in Equation 5 for a specific locus l can be expressed as follows,

E{Dl} = ∑
{nk|∑nk=N}

N(N−1)−
4
∑

i=1
ni(ni−1)

N(N−1) N!
4
∏
j=1

(p j)
n j

n j!

= 1− 1
N(N−1)

4
∑

i=1
∑

{nk|∑nk=N}
ni(ni−1)N!

4
∏
j=1

(p j)
n j

n j!

= 1−
4
∑

i=1
p2

i ∑
{nk|∑nk=N}

(N−2)! (pi)
ni−2

(ni−2)! ∏
j 6=i

(p j)
n j

n j!

= 1−
4
∑

i=1
p2

i

(15)

Here the value 1−
4
∑

i=1
p2

i is the true proportion of pairwise differences for the locus l; our result is indepdendent of N. Hence153

the statistic Dl , and the linear combination of these values, π , are unbiased with respect to the depth of sequencing.154

We note that the variance of Dl can also be expressed as the function of pi and N,

Var{Dl} = ∑
{nk|∑nk=N}

[
4
∑

i=1
ni(ni−1)

]2

N2(N−1)2 N!
4
∏
j=1

(p j)
n j

n j!
−
[

4
∑

i=1
p2

i

]2

= 2
N(N−1) ∑i p2

i

[
1+(2N−4)pi− (2N−3)∑ j p2

j

]
= 2

N(N−1) ∑i p2
i
[
1−∑i p2

i
]
+ 4(N−2)

N(N−1)

[
∑i p3

i − (∑i p2
i )

2
]
.

(16)

Generalising this result, the variance of π may therefore be said to be proportional to 1
N . It would be expected to tend to zero as155

the read depth becomes large.156
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