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Abstract

Recognizing the problems of estimation error in computing risk premia via arbi-
trage pricing, this paper provides a Bayesian methodology for estimating factor risk
premia and hence equity risk premia for both traded and non-traded factors. Some
illustrative calculations based on UK equity are also provided.

1 Introduction

The calculation of factor-risk premia is one of the major contributions of Ar-
bitrage Pricing Theory as espoused by Ross (1976) and Ingersoll (1987). In
this literature, two cases are considered; when the factors are traded portfolios
and when they are not (see for example Cambpell, Lo and Mackinlay (1997)).
Whilst practitioner oriented models focus on the former, the academic litera-
ture is more concerned with the latter (see Burmeister and McElroy (1988)).
There are considerable problems in estimating factor-risk premia, as discussed
in Pitsillis and Satchell (2001), Pitsillis (2002), and elsewhere. To alleviate some
of the estimation problems, we consider a Bayesian approach to estimation, so
that prior information can be utilised to improve accuracy. Many authors (see
for example Polson and Tew (2000), Ericsson and Karlsson (2002)) have shown
that Bayesian approaches to linear factor models and portfolio theory have been
successful in reducing some of the excess variability in the data.

Regarding the choice of factors, interest rates, returns on broadbased port-
folios one of which, typically, approximates the market portfolio, growth in
consumption as tabulated for example from inflationary data, production and
other macroeconomic variables that measure the state of the economy are po-
tential risks that are rewarded in the stock market and could be included in a

*We thank Marios Pitsillis for providing us with the data for the empirical application in
the paper.



factor model. Furthermore, variables that signal changes in the future, such as
term premiums, credit spreads, etc. are also reasonable to include (see Eric-
sson and Karlsson (2002). Our focus is on the case of non-traded factors, so
that our factors are macroeconomic ones. Several authors have used macroe-
conomic variables as factors (see for example Jagannathan and Wang (1996),
Reyfman (1997)).Chen et al. (1986) test whether innovations in macroeconomic
variables are risks that are rewarded in the stock market. Included variables
are: the spread between long and short interest rates, expected and unexpected
inflation, industrial production, the spread between high and low-grade bonds,
market portfolio, aggregate consumption and oil prices. Other macro-economic
variables have also been considered.

Fama and French (1992,1993,1996) advocate a model with the market return,
the return of small less big stocks (SMB) and the spread between high and low
book-to-market stocks (HML) as factors. However, although empirically very
successful, the nondiversifiable risk that is proxied by the returns of the HML
and SMB is not clear.

The structure of the paper is as follows. In section 2 we briefly introduce the
general APT framework. Section 2.1 outlines the excess return generating pro-
cess when factors are traded portfolios and suggests how a Bayesian estimation
framework can be utilised in this case. Section 2.2 considers the case of non-
traded or macroeconomic factors and section 3 derives the prior and posterior
estimates for the (non-traded) factor risk-premia. In section 4 we provide an
empirical application to illustrate how the methodology developed in the paper
could be utilised in practice. Concluding comments follow in section 5.

2 The General APT Framework

2.1 The Excess Return Generating Process (when factors
are traded portfolios)

We have N assets. Then for each asset i, its excess return a* is generated by:

K
= Zﬁijfj +ét (1)
j=1
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The f;’s are the factors, K factors in total. The [3;; are the betas or factor
loadings, and the ¢’ ’s are white noise errors. Exact factor pricing implies that in
the case of traded factors the intercept term in the factor model (i.e. equation
1) is zero. In this case the risk premia on the factors Ay can be estimated



directly from the sample means of the excess returns on the traded portfolios
that constitute the factors. Thus

/\k:xk

x) represents expected excess return from the portfolio that mimics perfectly
factor k. Note that as the sample size n increases we expect

o2

Tp ~ N(:ulcv ;k)

via the usual central limit theorems.

N(-) denotes the Normal distribution. p,, and o are the mean and variance
respectively of the factor mimicking portfolio for factor k. For this model, unlike
the case where factors are non-traded, the APT restriction pu* = 3 B;;A; holds
exactly upon taking the expected value of equation (1).

2.1.1 A Bayesian Framework

When portfolios are factors it is quite straightforward to introduce a Bayesian
framework in the estimation of risk premia. This case strongly resembles the
popular Black-Litterman model used in tackling asset management problems
(see Black and Litterman (1991), (1992)).

We wish to obtain the posterior probability density function (pdf) for wu,
which will then gives us directly a posterior estimate for the risk premium Ag.
We assume that observations on z; are drawn from a normal population with
unknown mean i, and known variance 3. As regards a prior pdf for p, we
assume using standard Bayesian methodology (see for example Zellner (1971),
Bauwens, Lubrano, and Richard (1999) that
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The values of these parameters are assigned by the investigator on the basis of
his/her initial information. Prior values of risk premia are simply in this case

A1 fiq
APrior = : = :
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Then using Bayes’s theorem to combine the likelihood function with the prior
pdf to obtain the posterior pdf for u;, (k =1,..., K) we have that
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Hence a posterior estimate of the risk premium, Ay, for factor k is given by the
mean of Mkl?osterior.

Extensions for the cases of correlated factors and/or factors where the variance-
covariance matrix of the factor mimicking portfolios is unknown and stochastic
are straightforward to derive. For example a diffuse prior (i.e. pdf(u,>) o
\Er(kﬂ)/ ?) or a Normal-Inverted Wishart prior (i.e. pdf(u/Z) ~Normal and
pdf () ~Inverted Wishart) both lead to matrixvariate ¢ distributions for the
posterior (i.e. pdf(u|X) ~matrixvariate t). See for example Satchell and Scowcroft
(2000) for an illustration on incorporating stochastic volatility in Black-Litterman
type models.

2.2 The Excess Return Generating Process (when factors
are macroeconomic variables or non-traded portfolios)

This time for each asset 7, the excess return z? is generated by:

K
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The factors f;’s are now constructed so that they have zero-mean (they are
in fact factor deviations from their mean) and p,; denotes the expected excess
return for asset i.(i.e. y; = E(z')). To generalize the above setting for our N
assets we write:

z! 51,1 51{,1 H1 Jfl el
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where
¢~ NIDy(0,7), 4)

NID : Independent Normal, ¥ is the positive-definite N x N residual variance-
covariance matrix and A is the regression coefficients matrix:
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The matrix version of the above multivariate regression for T observations is:

= H x A + E (6)
TxN Tx(K+1) (K+1)xN TxN

[Fir] [ 5/ } +FE

where E -~ MNpyn(0,¥ ® I7) and X, H, and E are obtained by stacking
the row vectors 2’, b, and &’ respectively. M N denotes a matrixvariate normal
distribution'. F is obtained by stacking together f’and is the factor data matrix.

2.3 Obtaining the (K x 1) Vector of Risk Premia )
The APT pricing relationship is

E(2") = p; = MBiy + . + AxBige = biA (7)

where A = (A1, ..., Ax)’; i.e. a K x 1 vector of factor risk-premia. We write this
as an equality although it is only approximately equal in the case of non-traded
factors. This then implies that

w= B\ (8)

wis a (N x 1) vector of expected excess returns for our N assets and B is a
(K x N) matrix of betas. Then the best (cross-sectional) linear predictor for
the column vector of excess returns p, is obtained when

E[B(p—B'N)]=0 9)
This implies that
E[Bu — E[BB'A = 0
A = [E(BB)] 'E[By] (10)
where ) N N
z; [Var(8, ;) + [E(B:,))?] e z; [Cov(By,4: i) + E(B1,:) E(Br.i)]
E(BB') = : : :
'N [Cov(By 5, Bri) + E(B1L)EBK)] - g: [Var(Bx ;) + [E(Bk )]
= a - N N -
trQy; + ;[E(ﬁl,i)]Q stk + ;E(ﬁl,i)E(ﬁK,i)
E(BB') = :
trix + é_v:lE(/Bl,i)E<ﬁK,i) trQx K + é[E(ﬁKZ)P

1See the appendix for a definition of the Matrixariate Normal distribution. For more
information we refer the reader to Bauwens, Lubrano and Richard (1999).



and

[Cov(By 4 15) + E(By ) E(;)]
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N
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Note that the ’s are N x N matrices obtained from the (K+1)N x (K +1)N
variance-covariance matrix X 4 of the regression coefficients matrix A:

Qi - ik Qg

Y4 = . (12)
Qg1 - Qrr Qxu
Qul Q#K Q##

3 Introducing a Bayesian Framework using a Min-
nesota Prior (Litterman’s Prior)

We start by assuming that the residual variance-covariance matrix ¥ defined in
equation (13) is fixed and diagonal:

Yy 0 -0
0 0

L (13)
O O /(/JNN

This of course implies that the diagonal elements of W, need to be specified. We
shall follow the empirical Bayes approach where the 1,; are replaced by s?, the
sample residual variance estimates.

It is possible to relax the assumption that ¥ is fixed and diagonal and work
with W non-diagonal. This is the approach followed by Chamberlain and Roth-
schild (1983), Ingersoll (1984) and Connor and Korajczyk (1993). These authors
allow for non-diagonality in the variance-covariance matrix which will disap-
pear as N gets large. The strict factor model we assume is more in line with
practitioner factor models where the emphasis is on making clear the distinc-
tion between systematic risk (through common factors) and idiosyncratic risk



(stock-specific risk). In any case we shall outline the appropriate extensions to
our results when W is non-diagonal.

3.1 Prior Estimates of the Risk Premia

In Bayesian statistics, parameters are treated as random variables and are as-
signed probability distributions. We assume that the prior distribution of the
regression parameters is

A~ MN [vecﬁ, i} (14)

where M'N denotes the matrixvariate Normal distribution (see the appendix
for a definition). VecA denotes the prior mean of A and 3 the prior variance-
covariance matrix of the regression parameters. In partitioned form we have

2l 2 )]

where we assume that

01 - Oix
OB =

k1 - Okk

i.e. a (K x K) matrix and

01,
Op, =

Orc,

i..e a (K x 1) column vector and 6, is a scalar. This assumption implies that
equation (12) above is specialised so that Q17 = 0111, Q12 = 0121 N,...etc. To
clarify what this means, we shall consider a simple example. Suppose we have a
classic Fama and French three factor model (i.e. X = 3 : Market portfolio, Size
ranking, and Book to Market ratio. Then for each stock we have betas for each
of these 3 factors. Assuming that Q1; = 011y is tantamount to assuming that
all the betas with respect to the market are drawn from a common population
with variance 01;. Likewise Q12 = 6121 means that the betas from the market
and the size factors have a common covariance 615. Such an assumption is both
helpful for interpretation and also leads to empirical Bayes analysis. Similar
assumptions are made for the means. In particular we assume that the betas of
all assets with respect to each factor k are drawn from a common population
with mean ;. Thus

/
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and finally )
S S T

We stress that the above assumptions are standard in Bayesian finance and
particularly helpful in understanding cross sectional analyses. So changes in 613
would represent a change in the volatility exposure of factor 1.

3.1.1 Standard Bayesian Case: (Prior independence between B and
s i.e. ©p, =0)

Here we assume that ©p,, = 0. This prior assumption would be held by an
investor who was sceptical that the (3,;’s influenced 1t and expresses a disbelief
in linear factor modelling and the APT. Subcases where a subset of Op,, is set
to zero could also be considered.

The prior estimate for the risk premium vector A is then obtained from
equation (10), where

N N
NO11 + ;[E(BM)F o NOig+ ;E(ﬁLi)E(ﬂK,i)
E(BB) = : :
N N
NOix + Y E(B1,)E(Bk,) - NOxx + Y [E(Bg,)?
i=1 i=1
and
N
;E(ﬁLi)E(M)
E[Bp] = :
N
ZE(ﬁK,i)E(/iz)
‘We therefore obtain:
~2 ~ ~ -1 ~
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)‘prior - - (16)
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This can be expanded as
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Thus comparative statics are easy to calculate. We can for example compute

DA _9A ax

Ouy’ 9955’ dVec(B)
For example for the CAPM case where the only factor is the market portfolio,

we have that the prior estimate of the risk premium is

B1ko

A = 0 _
011+ 5,

Blis the prior estimate of the market beta, p is the prior mean of the excess
return assigned by the investigator to be common for all assets, 011 is the prior
variance of ;. Also

B

— =1
Oto 011+ 54

When we have 2 factors we get:

(022"1‘5%)‘(#051)?1(012+B1B{)(fl‘0b2)
A ] (011487) (B22+85)— (61248, )

)\prior = |: )\2 =

(011457) (1gBy) (01248, By) (1108,
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We can proceed similarly for 3 or more factors.

3.1.2 General Case: (Prior dependence between B and y; i.e. Op, #
0)

That there is no cross-sectional dependence, a priori, between a given beta and
the mean excess return seems highly unlikely given the nature of many practi-
tioner processes and their possible knowledge of asset-pricing theory. Typical
processes involve sorting by factor exposure or variable, so fund managers will
believe that high growth leads to high return. Here we generalize the above
setting to allow for the more realistic case of prior dependence between B and
. We therefore assume that ©p, = [01,, ..., GK#}/ # 0. The general formula for
the prior estimate for the factor risk-premium now becomes

1 ~
— — 0L (Vee(B +0
1+ Vec(B)’@E,}BVec(B) 55 (B)ro 2

Aprior =

From this we can now write very easily the analytic formulae for the prior
estimates of the one factor case (i.e. CAPM), two factors etc. For example for
The risk premium for the one factor CAPM case now is

NV B1tto

A —
011+ B4

with 61, being the prior covariance between 51 and ;. Similarly the risk pre-
mium for the 2-factor case with prior dependence between B and p is obtained



from
(022+55) (O +1081) ~ (01248, By) (02 +11055)
A\ (011+87)(022+85)—(012+08,8)?
o =[ 2] -
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Extensions for 3 or more factors are straightforward to obtain.

3.2 Posterior Estimates of the Risk Premia

We now turn to deriving the posterior estimates of the risk-premia. If the
prior distribution of the regression coefficients matrix A is as in (14), then the
posterior distribution of A is (see for example Kadiyala and Karlsson (1997)):

A~ MN [VecA,,%,]

where

y, - [(i—1+<<H'H)—1®\11)—1]_1 (18)

(i—l + (H'H) ® \11—1))71
_ (i—l + §—1)—1
( Note that™ denotes a sample estimate and ~denotes a prior estimate) and
Vecd, = %, ((i—l x VecA) + (H'H)™' © ¥)~! x vec[(H’H)—lH’X}))
= 3, ((ifl x VecA) + (571 x Vecg))

Now to write X, and VecA, in partitioned form note first that

H = [F,Z'T}:>
F'F F’;
/ T
H'H [ HF g }
[ PF 0
=1 0o T

where we have assumed by construction that the factors have zero sample mean
(i.e. F'ip and i/-F = 0). Therefore
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3.2.1 Standard Bayesian Case: (Prior independence between B and
s i.e. ©p, =0)

Turning to the posterior estimates of the mean and variance, with prior inde-
pendence we get the following simplifications (for detailed calculations see the
appendix):

[ [Opp®In+FFeu-it 0
= [ 0 0,1 % Iy + T x w11 (20)
and
VecA, = [ VecB, ]
Hp
(050 Iy + FPFo U=~ x {054 ® Iy)VecB + [F'F © U=|VecB}
B [0 x In + T x U1 {(0) x In)fi+ TV}

The estimates for the risk-premium vector A now follow straightforwardly
from the procedure outlined in section (2.3).

3.2.2 General Case: (Prior dependence between B and y; i.e. Op, #
0)

When there is prior dependence between B and p things get a bit more com-
plicated. We know that

-1
(] ©85 ©s, L [FF 0 .
Zp—(H Ou5 Oy @In| + 0 T ® WU
This can now be written as
_ — _ _ _ ~1
5, = ([ Opp(l tGB“”@JfB@B}B) —O5505,5 ] o In+ { F'F 0 } @@m—l)
_‘:‘QQNB@BB =9 0 T

where
Eo = (QN«N« - GNBGE’}B@BM)_l

From this we have (see the appendix) that the posterior variance-covariance in

partitioned form is:
- [ Yp11 2p12 }
b=

Yp21  2p22
where
Spin = Vi (1 + Yo (Vag — ToVy ' o) 715V
Yoz = —ViiTa(Vag — YoV o)™t
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with

T, ©55I +05,520,5055)] ® Iy
Ty = [~OppOnuEs] @ In
T3 Eo x Iy
and
Vii = Y1+ (FFoU )
Voo = Ys+TU !

Similarly the posterior estimates for the regression coefficients are given by (see
the appendix)

VecA, = %, (( x VecA) + (51 x Vecﬁ))
- [
where
VecB, = (Zp11Y1+ Sp12Y5)VecB + 3,11 [F'F® \I/_l]Vecﬁ
+(Ep12Y3 — Xp11 Yo)p + Eme\IFlﬁ
and

Hp = (Ep21T1 + Ty Y5)VecB + Ty [F'F 0 \I/_l}VeCE
+(Sp22 Y3 — Sp21 Yo)pt + SpoeTY i

Now that we have obtained the posterior estimates for >, and VecA, in par-
titioned form it is straightforward to obtain the risk premium vector A following
the procedure of section (2.3).

3.2.3 Extensions of the Minnesota prior

The Bayesian framework introduced above used the Minnesota prior. It is
possible to generalize this framework by allowing for a non-diagonal variance-
covariance matrix and/or by taking ¥ to be unknown. Possibilities include using
a Normal-Wishart prior, a Normal-Diffuse prior (introduced by Zellner (1971))
or an extended Natural Conjugate Prior (see Dreze and Richard (1983)). For the
latter two priors no closed form solution for the posterior moments exist, and nu-
merical methods such as importance sampling or Gibbs sampling are required.
(see Kadiyala and Karlsson (1997)). An additional possibility is to maintain
the assumption of a diagonal W matrix while taking the diagonal elements to
be unknown. Independent inverse gamma priors on the diagonal elements then
lead to marginal multivariate ¢ priors and posteriors for the parameters of each
equation.
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4 An Empirical Application

We now present an empirical application of our methodology, using non-traded
factors. Our use of several observed macroeconomic risk factors to explain as-
set returns can be justified by the newest generation of empirical research, as
summarized for example in Cochrane (2001). One of the earliest examples of
applying macroeconomic risks in the APT is the paper by Chen, Roll and Ross
(1986) analyzing the pricing of such factors in the US market. Recognizing the
ability of investors to diversify and the co-movements of asset prices, the authors
suggest the presence of pervasive or systematic influences as the likely source of
investment risk. In particular Chen, Roll and Ross find that 1) unanticipated
changes in the expected level of production, 2) unanticipated shifts in the shape
of the term structure, 3) changes in default premiums and 4) unexpected in-
flation are risks that are significantly priced in the US market. By contrast,
risks stemming from unanticipated changes in the market portfolio, aggregate
consumption and oil prices were found not to be priced by the authors.

4.1 Data

The choice of candidate macroeconomic factors in this paper is largely inspired
by Chen et al.(1986) and is a subset of the factors presented in Antoniou et
al. (1998). All data for measuring the macroeconomic factors are obtained
from Datastream. In addition, data on total monthly logarithmic returns for
UK stocks are also obtained from Datastream. Our sample spans a period of
five years, starting from the end of November 1993 until the end of September
1998. The sample comprises 66 stocks from the FTSE 100 Index on which data
are available throughout the sample period. Thus there is bound to be some
survivorship bias The overall sample mean of excess returns for the 66 stocks
over our sample period is calculated to be 16.7% (annualized).

Apart from spanning the space of returns, the most important property re-
quired of appropriate factor measures is that they cannot be predictable from
their own past. To avoid problems caused by the potential presence of autocor-
relation in the variables, simple ARIMA models were fitted to pre-whiten the
series. It has to be noted, however, that although this procedure is designed
to avoid spurious correlation, it carries a danger of possible misspecification.
Given finite samples, the fitted ARIMA models can only be approximatinos to
the true data generating process. The measurement of the risk factors used in
our empirical application is explained below.

4.1.1 Industrial Production (Ind. Prod.)

In line with Chen, Roll and Ross, we use the monthly growth rate in industrial
production. This is defined as:

MP,=InIP,—InlIP_4
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where I P denotes industrial production. We use the UKINPRODG Datastream
series defined as the ”UK industrial production - total production vol.”. An
AR(1) model was used to derive the innovations in industrial production.

4.1.2 Inflation (Infl.)

We use the difference in the logarithm of the consumer price index (CPI) to
capture the effect of the inflation factor, as follows:

IRt - IHCPIt - 1110PI—,5,1
We use the series UKRP...F defined as the "UK Retail Price Index NADJ”. An
ARMA model was used to derive the unexpected component of this series.
4.1.3 Market risk premium (Market)

To capture the effect of the market risk premium factor, we use the difference in
the returns on the equity market (EM) and the government bond market (BM)
in line with the definition of the risk premium in Datastream:

RP,=[mEM; —In EM; 1] — Iln BM; —In BM;_4

We use the FTALLSH(RI) series defined as the ”FTSE All share - Total Re-
turn Index” and the series FTAGOVT(RI) defined as the "FTA Government
All Stocks - Total return Index”. An AR(1) model was used to derive the
innovations in this series.

4.1.4 Term structure (Term Str.)

To capture the effect of unanticipated shifts in the term structure, in line with
the approach followed in the literature we use the spread between long-term
(LTR) and short-term interest rates (STR):

TS, = LTR, — STR;

We use the first difference in the logarithm of the series BMUK30Y(RI)
defined as the UK Benchmark 30 Years DS Government Index - Total Return
Index” and the series LDNT3BM defined as the "UK Treasury Bill Discount 3
month - Middle Rate”.

4.2 Results
4.2.1 Empirical Bayesian approach as prior

We start by employing an empirical Bayesian approach in specifying our prior
(hyper)parameters of section (3.1). We first estimate equation (2):

K
' = p; + Zﬁijfi +e'

Jj=1
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using OLS regression for each of the 66 stocks in our portfolio. Next, the prior
parameter p is calculated as the mean of the intercepts from our estimated

regressions
N
Ho = NZ,‘A%
i=1
(The symbol denotes an OLS estimate). Similarly the prior parameters [ By -+ Bk

are calculated as the means of the estimated factor 3’s. Thus

N
- 1 &
B = N;ﬁika c(1,..,.K)

Finally ©p3B, 0,,, and Op, are assigned values taken from the cross-sectional
variance-covariance matrix of the estimated p’s (intercepts) and 3’s. (see for ex-
ample Table (2) in the appendix where we report the estimated cross-sectional
correlation matrix of u’s and (’s). Prior and posterior estimates for the risk
premia are next derived using the two subcases presented in sections (3.1) and
(3.2) (see Table 4 in the appendix). Note that for the subcase where by con-
struction we assume prior independence between B and p, (see sections (3.1.1)
and (3.2.1)) ©p, =0.

4.2.2 CAPM as prior

We now make the assumption that we are CAPM advocates and we want to in-
corporate this in our prior information. This effectively means that we construct
our priors so that we now have By, et = 1 and 34, ..., B = 0, V k #Market. For
the remaining hyperperameters we continue to use the empirical Bayes approach
arising from the procedure of estimating unconstrained regressions outlined in
the previous section. However we note that since in this case our prior in-
formation implies the exclusion of certain regressors another possibility would
be to compute the remaining hyperparameters by estimating constrained least
squares regressions.

We estimate risk premia both with and without the assumption of prior in-
dependence between p and B. Our results are exhibited in the appendix. In
particular Table 1 reveals the correlation structure between our factors; notable
are the high correlation between Industrial Production and Inflation (positive)
and Industrial Production and the Term Structure (negative). Table 2 reports
the pattern of cross-sectional OLS beta’s and mean excess returns for our 66
stocks. Table 3 reports our beta results. Imposing the restriction ©,,5 = 0 has
little impact on the results. Using the Empirical Bayes prior leads to very little
Bayesian updating; our prior and posterior estimates are essentially equal. How-
ever imposition of the CAPM prior leads to posterior estimates of betas that are
smaller in magnitude for inflation than before, whilst (unsurprisingly) increasing
substantially the role of the market. Industrial Production has changed little
whilst term structure has more or less disappeared. Turning to Table 4, the
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market risk premia with a CAPM prior are now positive except for industrial
production and are dominated by the market risk premium. Finally in Table 5
we compute the mean overall prior and posterior return premium arising from
the APT relationship p = B’\. Purists might make a case for transforming the
posterior joint distributions to derive the distribution of the posterior risk pre-
mium and then calculating our mean. However, since our results are essentially
the same whether we impose the prior that ©,5 = 0 or ©,p # 0, we thought
this would add unnecessary complications. Our final result of a CAPM poste-
rior of 16.6% (©,p # 0) or 16.9% (©,p = 0) can be compared with the overall
annualized sample mean excess return of stocks in the period of 16.7%. This
compares favorably with the empirical Bayes posterior estimates of about 8%
and also with the CAPM estimate of about 18%.

5 Conclusion

Our paper has set out to illustrate how to use Bayesian methods to compute
factor risk premia in an APT framework for both cases of traded and non-traded
factors. Using a sample of UK stocks from 1993 to 1998 we found evidence that a
CAPM prior seemed to produce more data consistent results than an empirical
Bayes approach. However since our CAPM prior still retains some empirical
Bayes hyperparameters based on the APT, a role of importance for the CAPM
versus the APT, is by no means conclusive. In fact, our results suggest that a
Bayesian mixture of CAPM as prior and APT as the data generating process
outperforms both classical cases of CAPM or APT alone.

One case not considered in this paper, or indeed elsewhere in the literature,
is the important hybrid case where some factors are traded whilst some are not.
We hope to address this problem in a later paper.
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6 Appendix

6.1 Definition of the Matrixvariate Normal Distribution

Let X and VecX denote a p X ¢ random matrix and its pg—dimensional column
expansion respectively. X is said to have a matrixvariate normal distribution
with parameters M € #P*9, P € C),, and Q € C, (C,, denotes the set of n x n,
positive definite symmetric matrices)

X ~ MNpyq(VecM,Q ® P)

if and only if
VecX ~ Npg(VecM,Q ® P)

(this denotes a multivariate normal distribution).
Therefore its density function is given by

PRUXIM, Q0 P) = Oy (P, @) x exp{ ~ (@ (X M) P (X~ M)}

where

Cun(P,Q;p.q) = [(2m) | P|*|Q[")"/?

6.2 Posterior risk premia calculations

6.2.1 Prior independence (i.e ©,5 =0)

5 _ Ok @Iy + FF@¥! 0 o
P 0 O X In+T x U1
=
s o [Zn 0 ]_ O35 @ In + F/'F o ¥~1]~! 0
P 0 oo 0 [0 x In + T x &1~
and

VecA,

[ VecB, } _ [ Yo11{ (035 (X)IN)IVecE —E[F’F(X)\II:I}VBCE} }
Ip Sp22{ (0, X In)E+TO i}
_ [ @55 @Iy + F'FoU = x {(05) @ Iy)VecB + [F'F 0 U~'|VecB}
[0 X In+T x U715 {(6,,) x In)fi+ TU~ i}

6.2.2 Prior dependence (i.e. O, # 0)

- O35 +O05,520,5055) ® Iy [-O5EO0p,E2] ® In F'Fou!
Yp = _= -1 = + 0
[—220,8055] ® Iy Zo x Iy
[N+ (FPFeU T, -
o TIQ Tg + Ty !
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where

Now let

Ty
T
T3

=
=

Via
Vao

o

L (I +05,520,5055)] ® Iy
05L05,5) @ Iy
o X In

Y, + (FFFoU )
Y5+ 70!

The posterior variance-covariance in partitioned form is therefore:

¥, =

Similarly

VecA,

Vit Yo
Y, Vi

Yp11 =

E}012 -

-1

o /
Yp21 = p12

Yp22 =

[V (T + Ta(Vag — YaVi ") 715V )
I —(Vag — YoV ' o) 105V

[ Yo Ypi2

| Yp21 2o

Vi (I + Yo(Vag — YoVig ' Ya) P15V )
Vi1 Yo (Vaa — YoVi7 ' Tp) ™!

(Va2 — Yo Vi1 X)) ™!

> ((gfl x VecA) + (f]fl X Vec;l\))

T
S

Ty |
Ts |

X

[ VecB n F'Feu-! 0
i 0 T x U1

YiVeeB — Tou } N { [F'F® U VecB ])

Z( [ TyVecB + Tap

Yipi1
E;()21

[ VecB,
Hp

Yp12
Yp22 |

|

X

TV 15
[ T1VecB — You + [F'F @ U~ |VecB

TyVecB + Yapu + TU '
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where

VecB, = Spn x {T1VecB — You + [F'F @ U~ !|VecB}
+3p12 X {ThVecB + Yau+ T ' 1i}
= SpuTiVeeB — Sy Top + Spn [F'F 0 U VecB
+5p12 Y5 VeeB + Sy Yap + Spio TV 1

=
VecBy, = (SpnY1+ Sp12Yy)VeeB + Sp11[F'F © U~ |VecB
+(Zp12Ys — Spii To)p + Zp12TU i
and
y = Zpo1 x {T1VeeB — YTopu+ [F'F @ ¥~ VecB}

+5p22 X {ThVecB + Yapu+ TV 1}
= Yp1T1VecB — ZleTQE + Zpgl[F/F ® \Il_l]Vecé
+Zp22T/2V€CB + Zpgngﬁ + EPQQT\I/_lﬁ

ty = (Sp2i Y1+ S Yh)VeeB + Sy [F'F 0 U Y VecB
+(Zp22T3 - ZleTQ)ﬁ + EPQQTlllilﬁ
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6.3 Tables

Tablel: Correlation structure of macroeconomic factors

Correlation Ind.Prod. Infl. Market. Term Str.

Ind.Prod. 1.000 0.275 0.075 -0.207
Infl. 0.275 1.000 0.090 -0.066
Market 0.075 0.075 1.000 -0.067
TermStr. -0.207 -0.066  -0.067 1.000

Table 2: Cross-sectional correlation of means and beta’s

Correlation H BindProd B, OMarket  Orerm.Str
i 1.000 -0.247 -0.124 0.054 -0.027
Biapd <0247 1000 -0.355 0.050  0.297
Bun 0124 -0.355 1000 -0.178  0.008
Btarket 0.054 0050 -0.178 1.000  -0.264

Bremmse 0027 0.297  0.008 -0.264  1.000

Table 3: Mean Prior and Posterior Values of regression coefficients

Emp.Bayes prior Emp.Bayes prior CAPM prior CAPM prior

(©up #0) (©us =0) ©up#0) (O =0)
Prior Values
1 (intercept) 19.2% 19.2% 19.2% 19.2%
Brod.Prod 0.079 0.079 0 0
B -2.295 -2.295 0 0
B farket 0.030 0.030 1 1
Brrerm.Ste -0.185 -0.185 0 0
Posterior Estimates (Means)
T, (intercept) 18.8% 18.8% 18.3% 18.8%
B ind.prod 0.095 0.094 -0.101 -0.101
B, 2,217 -2.221 -0.563 -0.563
B rtrket 0.033 0.033 0.664 0.664
B erm. St -0.189 -0.189 -0.005 -0.005
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Table 4: Prior and Posterior estimates of the Risk Premia (annualised)

Emp.Bayes prior Emp.Bayes prior CAPM prior CAPM prior

(Q,uB 76 0) (@}LB = 0) (9#3 76 0) (9#3 = 0)
Prior Estimates
XInd.Prod -0.022 +0.005 -0.002 -0.002
Xlnﬂ. -0.017 -0.011 +0.001 +0.001
XMkt,risk,prem -0.032 -0.060 +0.182 0.180
XTerm.str -0.182 -0.228 +0.043 +0.042
Posterior Estimates
ApInd.Prod -0.016 +0.002 -0.008 -0.008
ApInfl. -0.017 -0.013 +0.0005 +0.0005
ApMkt.risk.prem -0.033 -0.053 +0.249 +0.253
ApTerm.str -0.236 -0.268 +0.049 +0.049

Table 5: Overall Prior and Posterior excess return premiums (u=5'x) (annualised)

w=B'X\ Prior Posterior
Emp. Bayes prior (0,5 #0) 6.9% 8.1%
Emp. Bayes prior (0,5 =0) 6.5% 7.9%
CAPM prior (0,5 # 0) 18.2% 16.9%
CAPM prior (0,5 =0) 18.0% 16.6%

Overall annualised SAMPLE mean excess return of stocks over the period 11/93-9/98:
16.7%
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