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Abstract 24 

We present new insights into the evolution and interactions of stratospheric aerosol using an 25 

updated version of the Whole Atmosphere Community Climate Model (WACCM). Improved 26 

horizontal resolution, dynamics, and chemistry now produce an internally generated quasi-27 

biennial oscillation, and significant improvements to stratospheric temperatures and ozone 28 

compared to observations. We present a validation of WACCM column ozone and climate 29 

calculations against observations. The prognostic treatment of stratospheric sulfate aerosols 30 

accurately represents the evolution of stratospheric aerosol optical depth and perturbations to 31 

solar and longwave radiation following the June 1991 eruption of Mt. Pinatubo. We confirm the 32 

inclusion of interactive OH chemistry as an important factor in the formation and initial 33 

distribution of aerosol following large inputs of sulfur dioxide (SO2) to the stratosphere. We 34 

calculate that depletion of OH levels within the dense SO2 cloud in the first weeks following the 35 

Pinatubo eruption significantly prolonged the average initial e-folding decay time for SO2 36 

oxidation to 47 days. Previous observational and model studies showing a 30-day decay time 37 

have not accounted for the large (30-55%) losses of SO2 on ash and ice within 7-9 days post-38 

eruption, and have not correctly accounted for OH depletion.  We examine the variability of 39 

aerosol evolution in free-running climate simulations due to meteorology, with comparison to 40 

simulations nudged with specified dynamics. We assess calculated impacts of volcanic aerosols 41 

on ozone loss with comparisons to observations. The completeness of the chemistry, dynamics, 42 

and aerosol microphysics in WACCM qualify it for studies of stratospheric sulfate aerosol 43 

geoengineering. 44 
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1 Introduction 45 

In this study, we describe a new version of an earth system model capable of representing the 46 

formation and interactions of stratospheric sulfate aerosol from source gases, and use it to study 47 

the evolution and radiative and chemical impacts of SO2 inputs from large volcanic eruptions. 48 

We use this model in a series of companion papers [Kravitz et al., 2017 submitted; MacMartin et 49 

al., 2017 submitted; Richter et al., 2017 submitted; Tilmes et al., 2017 submitted] to study the 50 

effects of different stratospheric sulfate geoengineering strategies. The detailed comparisons to 51 

observations presented here establish confidence in this model, and provide new insights into the 52 

role of interactive chemistry in the evolution of dense SO2 clouds in the stratosphere. 53 

Geoengineering, also known as climate engineering, describes a set of technologies designed to 54 

offset some of the effects of anthropogenic greenhouse gas emissions [McNutt et al., 2015].  55 

There are many proposed methods of offsetting anthropogenic climate change, and one method 56 

that has arguably received the most attention is stratospheric sulfate aerosol geoengineering 57 

[Budyko and Budyko, 1977; Crutzen, 2006].  This method involves injecting large amounts of 58 

sulfur-bearing precursor gases, often sulfur dioxide (SO2) into the stratosphere.  These gases then 59 

photochemically convert to highly reflective sulfate aerosols, which scatter sunlight back to 60 

space, cooling the Earth's surface and lower atmosphere. 61 

The idea of stratospheric sulfate aerosol geoengineering has gained the most traction of all 62 

proposed methods because of its natural analogue of large volcanic eruptions.  Such volcanic 63 

eruptions similarly enhance the stratospheric sulfate aerosol layer, resulting in a cooling of 64 

Earth’s climate that can last several years [e.g., Robock, 2000].  The 1815 eruption of Mt. 65 

Tambora in what is now Indonesia was followed by the “year without a summer” in 1816 in New 66 
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England and Europe – which extended to several years in China – as well as severe disruptions 67 

to the Indian monsoon and to other global climate patterns [Wood, 2014; Raible et al., 2016].  68 

The 1991 eruption of Mt. Pinatubo (15.1°N, 120.3°E) produced a rapid global-averaged cooling 69 

at the Earth’s surface of several tenths of a degree Celsius over the following year, despite the 70 

significant warming effects of a coincident El Niño event [Hansen et al., 1992; Soden et al., 71 

2002; Bender et al., 2010]. 72 

Accurately simulating the climate effects of large volcanic eruptions, and in turn stratospheric 73 

sulfate aerosol geoengineering, in a climate model requires the model to simulate processes that 74 

represent all the components of sulfate aerosol formation and microphysical growth; interaction 75 

of aerosols with radiation, dynamics, and chemistry; and sedimentation of the aerosols.  Only 76 

recently have climate models included these processes, to allow for the interactive simulation of 77 

stratospheric sulfate aerosol evolution based on emissions of sulfur-bearing precursor gases.  78 

Inclusion of these processes has been shown to greatly improve the treatment of volcanic aerosol 79 

properties and their effects on stratospheric chemistry compared to observations [Timmreck et 80 

al., 1999a; English et al., 2013; Mills et al., 2016; Solomon et al., 2016; Ivy et al., 2017].  In 81 

addition, simulation of the interactions between stratospheric processes and surface climate 82 

requires coupling to an ocean and sea-ice model, which is often lacking in models with 83 

prognostic aerosol capabilities. These processes are essential for studying the atmospheric and 84 

surface climate impacts of stratospheric sulfate aerosol geoengineering. 85 

We describe an updated version of the earth system model described in Mills et al. [2016] with 86 

the above processes and interactions included. Updates include increased horizontal resolution 87 

and a self-generating quasi-biennial oscillation (QBO). We use this model here to study the 88 

chemical, microphysical, and radiative effects of historical volcanic eruptions that have occurred 89 
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during the satellite era (1979-present), with comparison to observations. We demonstrate the 90 

importance of interactive calculations of the abundance of oxidants, such as the hydroxyl radical 91 

(OH), to understanding the observations of SO2 evolution following large volcanic eruptions. 92 

2 Materials and Methods 93 

2.1 WACCM 94 

The Community Earth System Model, version 1 [CESM, Hurrell et al., 2013], is a state-of-the-95 

art global climate model that includes interactive atmosphere, ocean, land, and sea-ice 96 

components. The atmosphere component of CESM1 is the Community Atmosphere Model 97 

(CAM), which includes a high-top version known as the Whole Atmosphere Community 98 

Climate Model [WACCM, Marsh et al., 2013]. Mills et al. [2016] describe the development of a 99 

prognostic treatment of stratospheric sulfate aerosol in CESM1(WACCM) with the more 100 

realistic formulations of radiation, planetary boundary layer turbulence, cloud microphysics, and 101 

aerosols that were introduced in version 5 of CAM [Neale et al., 2010]. Mills et al. [2016] 102 

presented and validated volcanic aerosol properties derived from SO2 emissions over the period 103 

1990-2014, but did not examine radiative forcing. In this paper, we validate radiative forcing 104 

from volcanic aerosol following the 1991 Pinatubo eruption calculated with WACCM. Such 105 

validation is critical for the use of this model in studies of the radiative impacts of stratospheric 106 

sulfate aerosol derived from SO2 emissions. The horizontal resolution of the atmosphere 107 

component in this model, which we call WACCM hereafter, is 0.95° latitude x 1.25° longitude, 108 

which is double the resolution in each horizontal dimension of previous versions of 109 

CESM1(WACCM) [Marsh et al., 2013; Mills et al., 2016].  110 
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WACCM extends from the Earth’s surface to 140 km in altitude. In our configuration, WACCM 111 

includes comprehensive, fully interactive middle-atmosphere chemistry with 95 solution species, 112 

2 invariant species, 91 photolysis reactions, and 207 other reactions. The chemical scheme 113 

includes gas-phase chemical species in the Ox, NOx, HOx, ClOx, and BrOx chemical families, 114 

along with CH4 and its degradation products, and the sulfur-bearing gases dimethyl sulfide 115 

(DMS), OCS, SO2, SO, S, SO3, and H2SO4. Gas-phase and heterogeneous reactions important in 116 

the stratosphere are included, allowing simulation of the impacts of sulfate aerosols on the 117 

chemical composition of the atmosphere, such as the seasonal ozone hole over Antarctica in 118 

austral spring [Mills et al., 2016]. Our model's middle-atmosphere chemistry is a subset of the 119 

chemistry used in Mills et al. [2016], excluding species and reactions that are significant only in 120 

the troposphere. The reduced chemistry produces up to 45% more OH in the troposphere than 121 

Mills et al. [2016], resulting in slightly reduced tropospheric lifetimes for species such as CH4 122 

and SO2. Climate forcings in WACCM include aerosols (tropospheric and stratospheric, 123 

anthropogenic and natural), solar variability, and time-varying mixing ratios of greenhouse gases 124 

(determined by lower boundary conditions and interactive chemistry). 125 

WACCM includes a modal treatment of aerosols that is coupled to cloud microphysics [Liu et 126 

al., 2012], and which has been extended to include stratospheric sulfate [Mills et al., 2016]. To 127 

simulate the formation and evolution of sulfate aerosol prognostically, our chemical mechanism 128 

includes precursor sulfur-bearing gases and oxidation pathways producing H2SO4.  Source gases 129 

include OCS, which is an important source of background stratospheric aerosol, as well as SO2 130 

from anthropogenic sources. The H2SO4 resulting from this oxidation creates new sulfate 131 

aerosols by the microphysical processes of nucleation and condensation. The processes of 132 

coagulation, evaporation, and sedimentation are included in the aerosol microphysical evolution. 133 
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The model that we use includes a number of improvements to CAM5 physics beyond what was 134 

used in Mills et al. [2016]. We use a new surface topography for the CAM finite-volume 135 

dynamical core based on Lauritzen et al. [2015]. We include an improved representation of 136 

atmospheric dust, including refined physical parameterizations of dust and improved soil 137 

erodibility, size distributions, wet deposition and optics [Albani et al., 2014]. The cloud 138 

microphysical scheme has been updated to Morrison-Gettelman version 2 (MG2), which 139 

includes prognostic precipitation [Gettelman and Morrison, 2015]. An error in the energy 140 

formulation has been corrected [Williamson et al., 2015]. The vertical remapping scheme has 141 

been updated to improve energy conservation. In the original implementation, temperature was 142 

retrieved from total energy remapping (minus kinetic energy), which was shown to produce 143 

significant temperature perturbations at high altitude. In the new implementation, temperature is 144 

remapped over a log-pressure coordinate, which preserves the geopotential at the model lid 145 

during remapping. 146 

Ice nucleation has been updated to include effects of pre-existing ice crystals, and to consider in-147 

cloud variability in ice saturation ratio [Shi et al., 2015]. The ice nucleation scheme was 148 

developed for the troposphere, and contains several assumptions that may adversely affect ice 149 

nucleation in the upper troposphere and lower stratosphere in our model. The heterogeneous ice 150 

nucleation code assumes that only dust aerosols nucleate ice, and only those in the larger of the 151 

two dust aerosol modes. In deriving the fraction of dust in this coarse mode, the code considers 152 

only the ratio of dust to sea salt, neglecting the presence of sulfates in the coarse mode. Thus, in 153 

the upper troposphere and stratosphere, where sulfate dominates aerosol composition, the very 154 

small dust fraction is greatly overestimated because the sea salt mass there is small compared to 155 

the dust mass. Hence the code overestimates heterogeneous freezing in the upper troposphere 156 
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and lower stratosphere, but only in model gridpoints where dust is present, and hence is not an 157 

issue in most of the stratosphere. In addition, coarse aerosols that nucleate ice are not moved to 158 

the in-cloud population, and are available to nucleate ice each additional time step, leading to 159 

further overestimates of heterogeneous freezing.  Homogeneous freezing of aerosols is 160 

considered only for sulfates in the Aitken mode. The neglect of sulfates in the larger 161 

accumulation and coarse modes likely underestimates ice production by homogeneous freezing, 162 

particularly under geoengineered conditions. Because the impacts on ice nucleation are 163 

compensating, the sign of model biases introduced is unclear. Heterogeneous reactions on 164 

stratospheric ice account for a small (~1%) proportion of Antarctic ozone loss. These issues may 165 

have more significant impacts on the interaction of aerosols with ice clouds, which can absorb 166 

outgoing longwave radiation. The erroneous treatment of sulfates as heterogeneous ice nuclei 167 

where dust is present may produce unrealistic increases in cirrus clouds in the upper troposphere 168 

under geoengineering conditions, and the resulting longwave absorption would reduce the 169 

cooling efficiency of geoengineering unrealistically. These issues will be addressed in future 170 

versions of CESM. 171 

Our WACCM configuration includes the same 70 vertical layers as described in Mills et al. 172 

[2016]. WACCM uses the Lindzen [1981] gravity wave propagation scheme, using gravity wave 173 

source specifications for orographic, frontal, and convectively generated gravity waves following 174 

Richter et al. [2010]. In this version of WACCM, we have increased the efficiency of 175 

convectively generated gravity waves generated by convection to 0.40, from 0.10 used in Mills et 176 

al. [2016]. This change, together with increased horizontal resolution, allows for an internal 177 

generation of the QBO. This new development allows for the examination of the effects of SO2 178 

injections on the QBO, which are presented in Richter et al. [2017 submitted], motivated in part 179 
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by previous work that has suggested that stratospheric sulfate geoengineering could severely 180 

alter the QBO [Aquila et al., 2014]. Additional tuning of to the gravity wave parameterization in 181 

WACCM has significantly reduced the bias of the temperatures in the Antarctic polar vortex, 182 

which is critical to calculating ozone loss [Garcia et al., 2017]. 183 

WACCM is fully coupled to the Community Land Model version 4.0 [CLM4.0, Lawrence et al., 184 

2011]. The land model includes interactive carbon and nitrogen cycles, as in CESM1(WACCM) 185 

[Marsh et al., 2013] . In addition, biogenic surface emissions into the atmosphere are calculated 186 

in CLM4.0 using the Model of Emissions of Gases and Aerosols from Nature, version 2.1 187 

[MEGAN2.1, Guenther et al., 2012]. WACCM is also coupled to ocean and sea ice components 188 

that may be interactive, or constrained by data representative of observations. The interactive 189 

components are the Parallel Ocean Program, version 2 [POP2, Danabasoglu et al., 2012] and the 190 

Los Alamos National Laboratory sea ice model, version 4 [CICE4, Holland et al., 2012].  191 

2.2 Model simulations 192 

Interactive stratospheric aerosol is a new development common to an increasing number of 193 

climate models participating in the forthcoming Coupled Model Intercomparison Project, phase 6 194 

[CMIP6, Eyring et al., 2016]. Some of these models also include interactive chemistry. Some 195 

include an interactive QBO. Interactive aerosols from volcanic eruptions will disperse and 196 

evolve differently in different ensemble runs, depending on meteorology [Jones et al., 2016] and 197 

the phase of the QBO [Trepte and Hitchman, 1992]. We discuss the impacts of these issues on 198 

chemistry and climate variability by comparing fully coupled free-running (FR) simulations to 199 

those constrained by nudging to specified dynamics (SD). To quantify the importance of 200 

interactive chemistry, we conducted 2 simulations with non-interactive specified chemistry. 201 
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Table 1 presents a list of simulations performed for this work, each of which is described below.  202 

Simulations were carried out on the Yellowstone high-performance computer platform 203 

[Computational and Information Systems Laboratory, 2012].  204 

In order to demonstrate radiative balance in the updated model between incoming solar and 205 

outgoing longwave radiation prior to the rapid introduction of anthropogenic greenhouse gases in 206 

the industrial era, we first conducted a 50-year pre-industrial fully coupled free-running 207 

simulation, FRPI, using constant year 1850 climate forcing conditions. The land, ocean, and sea 208 

ice components were initialized with the pre-industrial equilibrium conditions (1 January, year 209 

402, of the 1850 fully coupled control) used to initialize the CESM1 Large Ensemble simulations 210 

[Kay et al., 2015]. Initial conditions for the atmosphere are consistent with pre-industrial 211 

conditions. 212 

Our FRVOLC experiment was designed to examine the model’s representation of climate 213 

following historical conditions, including volcanic eruptions, from 1975-2016, in an ensemble of 214 

four fully coupled free-running simulations individually named FRVOLC1, FRVOLC2, 215 

FRVOLC3, and FRVOLC4. The land, ocean, and sea ice components are interactive in these 216 

simulations, and were initialized with conditions from January 1, 1975 of four independent 217 

CESM1 transient simulations used for the Large Ensemble simulation, which were picked to 218 

sample contrasting initial ocean states. The atmosphere was initialized from a simulation 219 

conducted for the Chemistry Climate Modeling Initiative for the atmosphere component 220 

[Solomon et al., 2015], regridded to our model's higher horizontal resolution, with the addition of 221 

spun-up initial conditions for aerosols and sulfur gases from a previous run of our model. 222 
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Coupled free-running experiments allow self-consistent representations of stratospheric aerosols, 223 

with interactions between atmospheric chemistry and dynamics, and ocean, sea ice and land. 224 

However, the number of unconstrained variable climate states in such simulations pose 225 

difficulties for comparisons to observations. Meteorology at the time of volcanic eruption can 226 

play an important role in the latitudinal distribution of aerosol, as can the state of the QBO, 227 

which can affect the transport of stratospheric aerosol from the tropics to higher latitudes [Trepte 228 

and Hitchman, 1992]. Ocean states, including the El Niño-Southern Oscillation, strongly affect 229 

observations of the Earth's radiation budget, complicating comparisons to coupled free-running 230 

simulations. We therefore rely on SD simulations, with prescribed historical sea surface 231 

temperatures, and atmospheric winds and temperatures nudged to historical meteorology, to 232 

constrain climate variability in WACCM, allowing more detailed comparisons to observations of 233 

chemistry and climate responses to stratospheric aerosol. 234 

We performed two SD experiments of the years 1990-2015 using initial conditions from the 235 

FRVOLC1 simulation. The SD experiments use meteorological fields from the NASA Global 236 

Modeling and Assimilation Office Modern-Era Retrospective Analysis for Research and 237 

Applications (MERRA) [Rienecker et al., 2011]. Horizontal winds and temperatures are nudged 238 

toward the MERRA reanalysis fields between the surface and 50 km, with a relaxation time of 239 

50 hours. SDVOLC includes SO2 emissions from explosive volcanic eruptions, and SDVC is a 240 

“volcanically clean” run without SO2 emissions from explosive volcanic eruptions.  241 

Using WACCM, we performed two specified chemistry experiments [Smith et al., 2014], for 242 

which chemical oxidants (OH, HO2, O3, and NO3) are prescribed. SCVOLC included SO2 from 243 

volcanic eruptions, and simulates years 1979-1999, with an initial condition for January 1, 1979 244 

from FRVOLC1. SCVC does not include SO2 from eruptions, and simulates years 1990-1999, 245 
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with an initial condition for January 1, 1990 from SCVOLC. These specified chemistry runs used 246 

free-running atmospheric dynamics, and prescribed sea surface temperatures and sea ice. 247 

Our FRVOLC, SDVOLC, and SCVOLC experiments use a database of SO2 emissions from 248 

volcanic eruptions based on version 2 of the Volcanic Emissions for Earth System Models [Neely 249 

and Schmidt, 2016]. The database includes 222 days of eruption for the years 1975-2016, the 250 

dates, spatial coordinates, and SO2 mass of which are described in Table S1 of the supporting 251 

information. As in Mills et al. [2016], eruptive emissions occur over a 6-hour period from 1200 252 

to 1800UT on the date of the eruption. The climatic phase of the 1991 Pinatubo eruption 253 

coincided with the closest pass of Typhoon Yunya (50 km north), which likely affected the initial 254 

transport of SO2 from the eruption, and which also prevented the retrieval of atmospheric wind 255 

profiles during the eruption [Holasek et al., 1996; Guo et al., 2004b]. To account for the 256 

observed initial transport of SO2 from the Pinatubo eruption southward, we spread the emissions 257 

from that eruption evenly between 15.13°N and the equator at 120.3°E, as in previous studies 258 

[Timmreck et al., 1999a; 1999b; Dhomse et al., 2014; Sheng et al., 2015; Mills et al., 2016]. As 259 

discussed in Mills et al. [2016], we emit Pinatubo SO2 evenly between 18 and 20 km, which 260 

allows for self-lofting, giving best agreement with MLS observations of the SO2 cloud [Read et 261 

al., 1992]. 262 

3 Results 263 

3.1 WACCM climate 264 

As we are presenting a new version of WACCM, we begin by validating the radiative balance of 265 

the model in pre-industrial conditions, and the climate and chemistry in present-day conditions 266 
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with respect to observations, before examining volcanic responses. We ignore the first 24 years 267 

of the FRPI simulation, to allow the components to equilibrate. The difference between the 268 

absorbed solar radiation (ASR) and outgoing longwave radiation (OLR) at the model’s top gives 269 

a net radiative flux of -0.027 +/- 0.442 W m
-2

 (1-σ confidence) over the last 26 years, indicating 270 

that the pre-industrial atmosphere is in radiative equilibrium. The Diagnosing Earth's Energy 271 

Pathways in the Climate project, version 2 [Allan et al., 2014; Liu et al., 2015] combines 60°S-272 

60°N Earth Radiation Budget Satellite (ERBS) broadband non-scanner measurements during the 273 

Earth Radiation Budget Experiment [ERBE, Minnis et al., 1993] with additional data to provide 274 

continuous global monthly observations of ASR and OLR from 1985 to present. Our historical 275 

FRVOLC ensemble calculates a net radiative flux for years 1985-1999 of 0.56 +/- 0.63 W/m
2
, 276 

which is in general agreement with 0.35 +/- 0.66 W/m
2
 from the merged ERBS data.Figure 1 277 

compares the global annual surface temperature anomaly for 1979-2015 from the FRVOLC 278 

ensemble to reconstructions from Hadley Centre–Climatic Research Unit Version 4 279 

(HadCRUT4) infilled with kriging [Cowtan and Way, 2014] and  GISS Surface Temperature 280 

Analysis [Hansen et al., 2010; GISTEMP Team, 2017]. Anomalies are calculated with respect to 281 

the 1979-2015 average for each data set. Shading shows the range of the annual global mean 282 

values over the 4 FRVOLC ensemble members, and red asterisks show the mean of the 283 

FRVOLC ensemble.  Lines show 5-year running averages of the annual anomalies for 284 

simulations and observations. WACCM shows similar decadal variability to the observations, 285 

including significant cooling after the major eruptions of El Chichón (1982, 17.4°N, 93.2°W)) 286 

and Pinatubo (1991). Observations lie largely within the range of the FRVOLC ensemble 287 

variability. This gives confidence that the climate response of the model to long-term changes in 288 

greenhouse gases agrees with observations. Least squares linear fit trends for 1975-2016 are 2.45 289 
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± 0.11 K/century for the FRVOLC ensemble, which is slightly larger than those for HadCRUT4 290 

(2.16 ± 0.16) and GISTEMP (1.92 ± 0.12).  291 

WACCM has a very good representation of the mean temperature in the troposphere and middle 292 

atmosphere. As shown in Figure 2, throughout the entire troposphere the temperature bias 293 

relative to ERA-Interim reanalysis [ERAI, Dee et al., 2011] is less than 2 K (Figure 1), with only 294 

the tropical mid-troposphere carrying a bias greater than 1 K throughout the year (not shown). 295 

WACCM has a cold bias near the tropopause of -2 to -4 K in both the extratropics and the tropics 296 

throughout most of the year. This represents an improvement over CESM1(WACCM) [Marsh et 297 

al., 2013], which ran at 1.9° latitude x 2.5° longitude and exhibited extratropical biases ranging 298 

from -6 to -8 K. We attribute this improvement to the improved horizontal resolution. Charlton-299 

Perez et al. [2013] showed that the CMIP5 multi-model average also carries a -4 K bias in the 300 

extratropical tropopause temperatures. 301 

Lower stratospheric (below 10 hPa) mean temperatures in WACCM are in excellent overall 302 

agreement with observations, as shown in Figure 2. In the upper stratosphere (1-10 hPa), 303 

WACCM has a warm bias (< 10 K) between -60°S and 60°N, and a cold bias of up to 16K at the 304 

winter pole. WACCM also has a cold bias (< 12 K) in the south polar stratosphere in autumn 305 

(MAM) and spring (SON). These biases are of the same magnitude or smaller than those in 306 

CESM1(WACCM) [not shown, Marsh et al., 2013]. 307 

The summer mesopause in WACCM is near 87 km (log-pressure height) with temperature in 308 

January of 131 K (at 80°S) and 130 K in July (at 80°N). This in reasonable agreement with 309 

SABER observations [Xu et al., 2007] which show mesopause temperatures of 134 K in January 310 

(at 80°S) and 127 K in July (at 80°N). Zonal mean winds averaged over DJF and JJA for 311 
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WACCM are shown in Figure 3 along with winds from the Upper Atmosphere Research Satellite 312 

Reference Atmosphere Project (URAP) climatology [Swinbank and Ortland, 2003].  The overall 313 

DJF stratospheric and mesospheric wind structure is in good agreement with URAP. The model 314 

climatology is improved over CESM1(WACCM), with a few remaining biases. The stratospheric 315 

NH jet in DJF is ~ 10 m s
-1

 stronger than observed (associated with slightly colder than observed 316 

temperatures) and the summer stratospheric jet is too weak between 60°S and 90°S above 10 317 

hPa. In JJA, the NH summer jet has very good agreement to URAP and is much improved 318 

between 0 and 30°N compared to WACCM3 and CESM1(WACCM), which carried a 30 m s
-1

 319 

bias in this region [Richter et al., 2010; Marsh et al., 2013]. The SH stratospheric westerly jet is 320 

too strong in WACCM, however unlike in WACCM3 and CESM1(WACCM) it is tilting in the 321 

correct direction (towards the equator as height increases). 322 

3.2 QBO and stratospheric chemistry 323 

WACCM has an internally generated QBO as shown in Figure 4. The period of the QBO in the 324 

FRVOLC ensemble varies between 19 and 36 months, with a mean periods for each ensemble 325 

member varying from 23 to 27 months. In observations, the QBO period ranges between 20 and 326 

34 months, with a mean of 28 months. The amplitude of the westerly QBO phase is between 15 327 

and 20 m s
-1

, exactly as in observations. The easterly QBO phase amplitude ranges between 20 328 

and 25 m s
-1

, and is hence weaker than observed by 10 m s
-1

. Further improvements to the 329 

representation of the QBO in WACCM require a substantial increase in the vertical resolution 330 

[Richter et al., 2014]. 331 

The stratospheric water vapor “tape recorder” [Mote et al., 1996] is well represented in 332 

WACCM, consistent with a good representation of tropical tropopause temperatures. A good 333 
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representation of water vapor in the stratosphere is important for climate because of the role of 334 

water vapor as a greenhouse gas. Water vapor also strongly impacts stratospheric chemical 335 

cycles affecting ozone, which is an important radiatively active gas. In comparison to Aura MLS 336 

satellite observations [Livesey et al., 2016] between 2004 and 2014, the magnitude of both dry 337 

and wet phase of the tape recorder follow exactly the observed range (Figure 5). The slope of the 338 

tape recorder in the model is in good agreement with the observations, with a slightly stronger 339 

tropical upwelling in the lower stratosphere. 340 

WACCM zonal mean stratospheric ozone column shows very good agreement with observations, 341 

and excellent agreement in high latitudes (Figure 6). The representation of ozone in WACCM is 342 

improved over previous versions of WACCM. Figure 6 compares the zonal average stratospheric 343 

column ozone with a 10°x10° horizontally gridded product, based on MLS and NASA Ozone 344 

Monitoring Instrument (OMI) observations, averaged between 2005 and 2010 [Ziemke et al., 345 

2011].  This figure shows agreement within 8% in high latitudes for four different seasons of the 346 

mean value of the FRVOLC ensemble with the observations. The observations generally lie 347 

within one standard deviation of ensemble variability at high latitudes, with the exception of 348 

60°S in April. We attribute this improved performance to the improved horizontal resolution and 349 

dynamical improvements associated with modifications to the gravity wave parameterization 350 

[Garcia et al., 2017]. The model slightly underestimates column ozone in the Tropics, which 351 

may be due to overly rapid transport.  352 

3.3 Volcanic aerosol evolution 353 

In order to validate that our model produces a reasonable response to stratospheric SO2 354 

perturbations, we compare the period from January 1, 1990 to January 1, 2000 in our simulations 355 
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to observations. This period includes the eruption of Mt. Pinatubo on June 15, 1991, which 356 

produced the best-observed large (>10 Tg) injection of SO2 into the stratosphere to date. 357 

Comparison of simulated surface climate response to the volcanic eruption based on observations 358 

is complicated by climate variability, including a coincident El Niño event that tended to 359 

counteract the reduction in global average temperatures following the eruption, as well as other 360 

underlying climate oscillations [e.g., Canty et al., 2013]. We therefore constrain our calculations 361 

by using SD-WACCM, which incorporates a data ocean model with observed sea surface 362 

temperatures, as well as nudged atmospheric temperatures and winds. 363 

The first step in the production of sulfate aerosol from stratospheric SO2 input is chemical 364 

oxidation by the OH radical, which, via intermediate steps, produces H2SO4 gas. Figure 7 shows 365 

the time evolution of the total burden of volcanic (SDVOLC minus SDVC) SO2 in WACCM, 366 

compared to observations of the stratospheric burden following the eruption. Guo et al. [2004a] 367 

present and evaluate the SO2 observations from the Total Ozone Mapping Spectrometer (TOMS) 368 

and the Television Infrared Observation Satellite Optical Vertical Sounder (TOVS) in the first 15 369 

days after the Pinatubo eruption. That work suggested that much of the initial 14 to 23 Tg of SO2 370 

(7 to 11.5 Tg of sulfur) from Pinatubo was rapidly catalyzed on ash and ice, fast processes that 371 

are not currently included in WACCM. As in Mills et al. [2016], we input 10.0 Tg of SO2 (5.0 372 

Tg of sulfur) from Pinatubo in WACCM on the day of the eruption, matching the burden from 373 

TOMS and TOVS observations 7-9 days after the beginning of the eruption, when more than 374 

99% of the ash and ice particles had been removed [Guo et al., 2004b]. This "climatically 375 

relevant" sulfur input from Pinatubo is consistent with the 3.7 to 6.7 Tg peak sulfur content of 376 

stratospheric aerosol mass following the eruption derived from satellite observations from the 377 

High-resolution Infrared Radation Sounder [HIRS, Baran and Foot, 1994] and the Improved 378 
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Stratospheric and Mesospheric Sounder [Lambert et al., 1993], as discussed in Dhomse et al. 379 

[2014]. The evolution of aerosol mass burden calculated in WACCM following Pinatubo is 380 

consistent with HIRS observations, as shown in Figure 1 of Mills et al. [2016]. 381 

Additional SO2 observations shown in Figure 7, from the Solar Backscatter Ultraviolet 382 

Radiometer-2 (SBUV/2), the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere 383 

Research Satellite, and a high-resolution infrared spectrometer aboard an aircraft [Mankin et al., 384 

1992] are presented as shown in Read et al. [1993]. Our calculations show general agreement 385 

with these observations within their limitations. As indicated in Figure 7, the eruption of Cerro 386 

Hudson (45.9°S, 73.0°W) emitted 1.5 Tg SO2 roughly 2 months after Pinatubo. This additional 387 

input was not observed by MLS, which integrated SO2 above 21 km, well above the height of the 388 

Cerro Hudson plume. The dashed line shows the SO2 burden in WACCM above 50 hPa, for 389 

comparison to the MLS observations. 390 

Read et al. [1993] used these observations to derive a 33-day e-folding decay time with an 391 

extrapolated initial SO2 injection of 17 Tg. Our calculations point to an interpretation of this 392 

apparent steady exponential decay as the superposition of two more variable processes: loss on 393 

ash and ice, and oxidation by OH. We note that the slope of the semi-logarithmic plot of SO2 394 

burden versus time shown for SDVOLC minus SDVC in Figure 7 indicates a much longer initial 395 

lifetime, decreasing to a constant slope by 30 days after the eruption. The reason for this is the 396 

rapid consumption of OH by SO2 oxidation within the initial dense SO2 cloud, which limits the 397 

availability of OH, and hence the SO2 oxidation rate. As Figure 8 shows, OH is reduced by more 398 

than 95% within the cloud as it is transported in the first weeks. Figure 9 shows the daily e-399 

folding decay time of volcanic SO2 as a function of days after the eruption. As the cloud 400 

disperses to larger volumes, OH recovers, and the initial e-folding decay time of more than 400 401 
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days drops over the first month to reach a constant value of 30.9 ± 0.5 days (45 to 59 days after 402 

eruption). In contrast, the volcanic SO2 in our SCVOLC simulation, for which OH is prescribed, 403 

decays with a constant e-folding time of 34.1 ± 1.4 days (2 to 21 days after eruption, figures 7 404 

and 9). The specified chemistry simulations show greater variability, particularly as volcanic 405 

minus clean SO2 burdens approach zero, because they are not nudged as the SD simulations are, 406 

and therefore have unmatched non-volcanic burdens. 407 

Constant e-folding decay times ranging from 23 to 35 days have been derived from observations 408 

for Pinatubo SO2 [Bluth et al., 1992; McPeters, 1993; Read et al., 1993; Guo et al., 2004a]. 409 

These constant e-folding times do not distinguish the rapid initial removal of SO2 on sedimenting 410 

ash and ice in the initial days after the eruption from the variable chemical oxidation rate due to 411 

OH depletion. Our simulations with interactive OH chemistry find a similar constant terminal e-412 

folding time, but we also find the "average initial e-folding time" for oxidation to be 47 days, 413 

calculated as the time for the initial 10 Tg of Pinatubo SO2 to be reduced by 1/e to 3.7 Tg.Pinto 414 

et al. [1989] examined the effects of large stratospheric SO2 injections on the e-folding time for 415 

loss of SO2 by OH. Using a one-dimensional model that accounted for the horizontal dispersion 416 

and expansion of volcanic SO2 clouds, they calculated that an injection of 10 Tg of SO2 should 417 

increase the e-folding time from 1.3 to 1.8 months, which is consistent with our calculations. 418 

Bekki [1995] found the reduction in OH oxidation to be significant for a much larger 200-Tg 419 

injection, but concluded that the effects of Pinatubo’s ~20-Tg SO2 injection on OH “would have 420 

been too modest to have had a noticeable effect on the global SO2 removal rate.” That 421 

assessment, however, relied on a coarse zonally-averaged two-dimensional model with very 422 

large grid cells (~10° latitude x 360° longitude), which could not account for the local OH 423 

depletion within the SO2 cloud in three spatial dimensions.  424 
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Several studies examined the effects of dense SO2 clouds and volcanic aerosols on OH levels due 425 

to absorption and scattering of sunlight, which affects photolysis rates [Pinto et al., 1989; Bekki, 426 

1995; Bândă et al., 2015; Pitari et al., 2016a]. WACCM does not include such effects on 427 

photolysis rates, which these studies indicate are of lesser significance than reductions in OH due 428 

to sulfur chemistry. Bândă et al. [2015] found no significant effect of SO2 absorption on the e-429 

folding time of SO2 from the 1991 Pinatubo eruption. Impacts of stratospheric sulfate 430 

geoengineering on photolysis rates and the oxidation capacity of the troposphere might be more 431 

significant [Pitari et al., 2014; Visioni et al., 2017]. Our studies with WACCM focus on middle 432 

atmosphere chemistry, which would be less affected by such effects than the troposphere. 433 

Our results show that interactive OH chemistry is essential to accurately calculating oxidation 434 

and dispersal following the input of 10 Tg or more of SO2 into the stratosphere. Studies of 435 

interactive stratospheric aerosols in earth system models that use invariant prescribed OH values 436 

calculated constant e-folding times for Pinatubo SO2 of 29-33 days [Niemeier et al., 2009; Aquila 437 

et al., 2012], leading to faster initial oxidation. Bekki and Pyle [1994] used a two-dimension 438 

model that neglected feedbacks between SO2 photochemistry and other chemical species, and 439 

calculated a longer e-folding time of 40 days, which they account for by stating: "Since SO2 is 440 

only significantly removed by OH, this small difference is probably because the modeled OH 441 

levels are low compared to reality in the region of the volcanic cloud." Sekiya et al. [2016] 442 

calculated an e-folding time of 38-40 days, using a general circulation model with interactive 443 

OH.  444 

The University of L’Aquila Composition-Climate Coupled Model (ULAQ-CCM), which also 445 

includes interactive OH, found a 31-day e-folding time for a 20-Tg SO2 Pinatubo eruption based 446 

on exponential decay between days 45 and 165 after the eruption, but did not report on variations 447 
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within the first month [Pitari et al., 2016b]. They also found a much shorter 18-day e-folding 448 

time for a much smaller 1.2-Tg SO2 eruption, which they account to "more abundant OH due to 449 

an inefficient sink by sulfur dioxide" in the smaller volcanic cloud. The 19-day and 43-day e-450 

folding times that they find for eruptions of 7 and 12 Tg SO2, respectively, suggest factors other 451 

than the mass of SO2 erupted also affected their calculations. 452 

Inclusion of interactive OH chemistry in WACCM is key to understanding variable oxidation 453 

and its importance for the subsequent size and latitudinal distribution of stratospheric aerosol. 454 

We found significantly greater self-lofting of volcanic aerosol in our SCVOLC simulation than 455 

in the FRVOLC ensemble for the two largest eruptions simulated (El Chichón 1982 and Pinatubo 456 

1991). This is due to radiative interaction with the dense aerosol clouds that result from rapid 457 

oxidation of the volcanic SO2 before it disperses (not shown).  458 

Mills et al. [2016] presented validations of volcanic aerosol properties in WACCM with CAM5 459 

physics, using half the horizontal resolution used in this study. Here we present similar 460 

validations before examining radiative impacts. In Figure 10, we compare stratospheric aerosol 461 

optical depth (SAOD) at 550 nm for 1990-1998 measured by lidars at 3 locations (black circles) 462 

to 5-day average values calculated at the same locations in our SDVOLC (red dots), FRVOLC 463 

(blue dots, ensemble average), and SCVOLC (orange dots) simulations. The reduced SAOD in 464 

the FRVOLC ensemble compared to SDVOLC reflects a lower stratospheric aerosol burden, and 465 

a shorter aerosol lifetime. This relates to faster circulation and higher (~0.5 km) tropical 466 

tropopause altitudes in FR-WACCM. It also relates to the phase of the QBO at the time of the 467 

eruption, which agrees with observations in SDVOLC (easterlies above 26 km overlying 468 

westerlies below), but which is variable in the FRVOLC ensemble. The easterly shear in 469 

SDVOLC is associated with lofting of the Pinatubo aerosols in the tropics, while the westerly 470 
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shear is associated with descent and transport to higher latitudes [Trepte and Hitchman, 1992], 471 

which we see in our simulations. This difference illustrates a mode of variability affecting 472 

volcanic aerosol evolution in the atmosphere compared to models with interactive QBOs. 473 

Comparison of SAOD in SCVOLC to FRVOLC shows the impact of the enhanced self-lofting of 474 

Pinatubo aerosols when OH depletion is not accounted for. 475 

Figure 10a compares to a newly available lidar record from Tomsk, Siberia [Zuev et al., 2016]. 476 

While the tropopause altitude is generally 11-13 km, the lidar backscatter was integrated between 477 

15-30 km. We have converted the integrated backscatter to aerosol optical depth (AOD) using a 478 

lidar ratio (integrated extinction/backscatter) of 50, which has been found to be appropriate for 479 

the stratosphere within 20% [Jäger and Deshler, 2002; 2003; Ridley et al., 2014]. Our calculated 480 

AOD is integrated above the tropopause, yielding slightly higher values in SDVOLC over the 481 

Pinatubo period than the integrated backscatter, which excludes the lowermost 2-4 km. As in 482 

Mills et al. [2016], our SDVOLC calculations show excellent agreement over the Pinatubo 483 

period with the lidars at Geestacht, Germany [Ansmann et al., 1997] (Figure 10b), and Mauna 484 

Loa, Hawaii [Hofmann et al., 2009; Ridley et al., 2014] (Figure 10c), both of which are 485 

integrated above the tropopause.  486 

3.4 Volcanic aerosol radiative forcing 487 

In Figure 11, we show global mean all-sky net radiative fluxes at the top of the model, compared 488 

to the observed global mean time series from the merged ERBS data  [Allan et al., 2014; Liu et 489 

al., 2015]. Monthly mean net fluxes are shown for January 1991 to December 1995, normalized 490 

and de-seasonalized by subtracting the corresponding flux for each month from the volcanically 491 

quiescent year 1999. Figure 11a shows the de-seasonalized anomaly in the absorbed solar 492 
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radiation (ASR, positive for downward fluxes), measured as incident minus reflected shortwave 493 

radiation. Following the Pinatubo eruption, observations show a dramatic reduction in ASR, due 494 

to increased scattering of sunlight to space from volcanic aerosols, not fully recovering until 495 

mid-1994. Our SDVOLC simulation calculates a remarkably similar reduction and recovery in 496 

ASR. The FRVOLC ensemble average shows a similar reduction in ASR similar, and the 497 

ensemble range shows the role of other unconstrained climate variables, including ocean states. 498 

The SDVC simulation reveals the effects of constrained sea surface and atmospheric 499 

temperatures on ASR variability without volcanic forcing. 500 

Figure 11b shows the de-seasonalized anomaly in the outgoing longwave radiation (OLR, 501 

positive for upward fluxes). Pinatubo aerosols reduced OLR by both direct absorption of 502 

longwave radiation, and by reducing temperatures in the troposphere and at the Earth’s surface. 503 

The SDVC simulation includes the latter effect, as it is nudged and driven by observed 504 

tropospheric and sea surface temperatures, which include this cooling. This cooling reduces OLR 505 

by up to 1.5-2.0 W m
-2

 by August 1992. Inclusion of volcanic aerosols in our SDVOLC 506 

simulation, however, is necessary to match the observed reduction of 2.5-3.0 W m
-2

. The 507 

differences in the OLR between the SDVC and SDVOLC simulations are due to aerosol 508 

longwave absorption, secondary effects of aerosols on clouds, and cooling of land surface 509 

temperatures. 510 

Figure 11c shows net radiative flux (ASR-OLR, positive for downward fluxes), a measure of the 511 

radiative energy imbalance forcing the Earth’s climate. The SDVC case shows natural 512 

variability, with a slight upward trend due to increases in greenhouse gases. The SDVOLC 513 

shows a drop in the net flux following the Pinatubo eruption which generally matches well the 514 

observations. The FRVOLC ensemble shows a similar average reduction, and significant 515 
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variability. In general, the radiative response to Pinatubo in WACCM is a significant 516 

improvement over previous models using prescribed volcanic forcing [Driscoll et al., 2012; 517 

Neely et al., 2016]. This is due to both the limitations of prescribed stratospheric aerosol 518 

climatologies derived from satellite observations [Ridley et al., 2014; Mills et al., 2016], and to 519 

the neglect of aerosol-cloud interactions. 520 

The efficacy of volcanic forcing in climate models is quantified by normalizing changes in all-521 

sky net radiative fluxes to changes in SAOD. The Fifth Assessment Report of the 522 

Intergovernmental Panel on Climate Change [Myhre et al., 2013] uses the value of -25 W m
-2

 per 523 

unit change in volcanic SAOD, based on fixed sea-surface temperature simulations of the 524 

Pinatubo eruption in GISS Model E with prescribed stratospheric aerosol [Hansen et al., 2005]. 525 

ULAQ-CCM, with prognostic volcanic aerosols, calculates volcanic forcing efficiencies for 526 

Pinatubo of -15.3 W m
-2

 SAOD
-1

 in all-sky conditions [Pitari et al., 2016b]. We calculate the 527 

efficacy of Pinatubo volcanic forcing in WACCM by linearly regressing the differences between 528 

volcanic and clean simulations in annually averaged top-of-model all-sky net fluxes and global 529 

SAOD for the years 1991-1996. For SDVOLC minus SDVC, we calculate -18.3 ± 1.0 W m
-

530 

2
 SAOD

-1
. This indicates a reduced volcanic radiative forcing efficacy in WACCM compared to 531 

Hansen et al. [2005], which neglected the interaction of volcanic aerosol with clouds, and a 532 

greater efficacy compared to Pitari et al. [2016b]. For SCVOLC minus SCVC, we calculate -533 

20.2 ± 4.6 W m
-2

 SAOD
-1

, suggesting that interactive chemistry is not a significant factor in 534 

volcanic radiative forcing efficacy in WACCM.  535 
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3.5 Volcanic impacts on stratospheric ozone 536 

The Antarctic ozone hole, defined as a region where total column ozone measures less than 220 537 

Dobson Units (DU), has developed each austral spring since it first developed in the early 1980s. 538 

The area of the ozone hole is at its largest in October, when total column ozone over Antarctica 539 

reaches minimum annual values. These minimum values depend on the amount of halogen 540 

loading in the stratosphere, as well as meteorology, with greater ozone loss in colder years. In 541 

addition, ozone loss increases when enhanced sulfate aerosol levels from volcanic eruptions 542 

reach the Antarctic stratosphere, due to the effects of heterogeneous chemistry on halogens 543 

[Portmann et al., 1996; Solomon et al., 2016].  544 

Figure 12 shows observations of total column ozone measured from the Solar Backscatter Ultra-545 

Violet satellite (SBUV), averaged over 63-90°S, from 1980 to 2015. The SBUV record has been 546 

carefully calibrated and compared to observations from ground-based, in situ, and other satellite 547 

instruments [McPeters et al., 2013]. The observations show the development of the ozone hole in 548 

the 1980s, with significant interannual variability depending on temperature and volcanic aerosol 549 

loading following the eruptions of El Chichón (1982) and Pinatubo (1991). The FRVOLC 550 

ensemble reproduces the magnitude of the decline in Antarctic ozone in October from 1980 to 551 

the mid-1990s, and indicates significant drops following these two major tropical eruptions. 552 

Ozone loss leveled off after a peak in the late 1990s, and FRVOLC reproduces this general trend 553 

in the observations, although ozone columns are generally biased low throughout this simulation, 554 

consistent with the cold bias in the Antarctic spring stratosphere (see Figure 2).  555 

Comparison of the SDVOLC and SDVC simulations, which were both initialized from FRVOLC 556 

on January 1, 1990, shows ~40 DU of ozone loss attributable to the 1991 eruptions of Pinatubo 557 
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and Cerro Hudson. Both SD simulations match the interannual variability in Antarctic ozone 558 

particularly well in the period of reduced and moderate volcanic aerosols post-2000. Significant 559 

drops in ozone followed the eruptions of Puyehue-Cordón Caulle (2011, 40.6°S, 72.1°W) and 560 

Calbuco (2015, 41.3°S, 72.6°W). While comparison of SDVOLC to SDVC in 2011 and 2015 561 

shows significant effects due to volcanic aerosols, cold temperatures also played a role, as 562 

revealed by significant drops in the SDVC ozone columns in those years. Because ozone heats 563 

the stratosphere, cold stratospheric temperatures are a positive feedback of polar ozone loss, and 564 

thermal and dynamical feedbacks may enhance the loss of polar ozone following volcanic 565 

eruptions [Solomon et al., 2016; Ivy et al., 2017; Pitari et al., 2016a].  566 

4 Conclusions 567 

We have described a new version of WACCM with improved horizontal resolution, updated 568 

physics, and an interactive QBO. We have validated the chemistry and climate of WACCM with 569 

detailed comparisons to observations. We have paid particular attention to the evolution and 570 

impacts of volcanic sulfate aerosol, which WACCM derives from emissions of SO2 gas. The 571 

completeness of the chemistry, dynamics, and aerosol microphysics qualify WACCM for studies 572 

of stratospheric sulfate geoengineering. 573 

Our calculations reveal the importance of interactive chemistry to the development of sulfate 574 

aerosol from large inputs of SO2. Previous findings of a ~30-day e-folding decay time of SO2 575 

from the 1991 eruption of Mt. Pinatubo were based on observations that ignored the rapid initial 576 

losses of SO2 on ice and ash, and on calculations that either did not include interactive OH 577 

chemistry, or did not discuss the impacts of OH depletion in the first month after the eruption. 578 

We show that the dense SO2 cloud oxidized much more slowly in the first 2 weeks after the 579 
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eruption due to the depletion of OH by the SO2 oxidation itself. We calculate a 47-day average 580 

initial e-folding decay time for the Pinatubo SO2 that remained aloft after the initial losses on ice 581 

and ash, and show the calculated evolution of Pinatubo SO2 to be largely consistent with 582 

observations. The evolution of stratospheric AOD following the Pinatubo eruption in WACCM 583 

agrees well with lidar observations from 3 independent locations at mid-latitudes and in the 584 

tropics. The radiative impacts of Pinatubo on ASR and OLR match satellite observations very 585 

well. This is crucial for assessing the impacts of stratospheric SO2 injections on surface climate 586 

and on stratospheric chemistry and dynamics. 587 

We have validated the climate and chemistry in an ensemble of fully coupled WACCM 588 

simulation of the years 1975-2016. The trend in global average surface temperatures over this 589 

period closely matches that derived from observations. Temperatures and winds from the 590 

troposphere through the middle atmosphere agree well with observations. WACCM now 591 

includes an internally generated QBO, which exhibits a period close to that observed. This 592 

feature is important to studies of stratospheric sulfate geoengineering, which has been shown in 593 

other studies to disrupt the QBO. Stratospheric water vapor in WACCM is close to that 594 

observed, as is the seasonal cycle in water vapor mixing ratios entering from the troposphere. 595 

Stratospheric ozone columns in WACCM agree well with global satellite observations, and with 596 

ground-based observations in Antarctica showing the development of the ozone hole over this 597 

period. 598 
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Tables 618 

Table 1: WACCM simulations conducted for this work. 619 

Simulation 

name 

Dynamics Chemistry Ocean/ 

Sea Ice 

# of 

runs 

Years 

per run 

Conditions SO2 from 

eruptions 

FRPI Free-

running 

Interactive Coupled 1 50 Pre-

industrial 

(1850) 

No 

http://esrl.noaa.gov/gmd/)
mailto:mmills@ucar.edu)
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FRVOLC Free-

running 

Interactive Coupled 4 42 1975-2016  Yes 

SDVOLC Nudged Interactive Data 1 27 1990-2016 Yes 

SDVC Nudged Interactive Data 1 27 1990-2016 No 

SCVOLC Free-

running 

Prescribed Data 1 21 1979-1999 Yes 

SCVC Free-

running 

Prescribed Data 1 10 1990-1999 No 

  620 
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Figure captions 621 

Figure 1: Global annual surface temperature anomalies for 1979-2015 from the WACCM 622 

FRVOLC ensemble are compared to HadCRUT4 and GISTEMP reconstructions of observations. 623 

Anomalies are calculated with respect to the 1979-2015 average for each data set. Least squares 624 

linear fit trends are listed and plotted. 625 

Figure 2: WACCM temperature differences from ERA-Interim reanalysis for DJF, MAM, JJA, 626 

and SON. Differences are plotted for the 1979-2014 time period from the FRVOLC ensemble 627 

average. The contour interval is 1K. 628 

Figure 3: WACCM (top panels) and URAP (bottom panels) zonal mean wind for DJF (left 629 

panels) and for JJA (right panels). WACCM winds are averaged over the years 1980-1999 from 630 

the FRVOLC ensemble average. Contour interval is 10 m s
-1

. 631 

Figure 4: Tropical zonal winds (2°S-2°N) from 1980 to 2000 for ERA-Interim reanalysis (a) and 632 

WACCM FRVOLC ensemble members (b, c, d, and e). Contours are plotted in intervals of 5 m 633 

s
-1

. 634 

Figure 5: (a) Height-time seasonal variations of H2O mixing ratios (ppmv) averaged between 635 

latitudes 10°N-10°S and years 2004-2014 for (a) the WACCM FRVOLC ensemble average 636 

(color filled white contours) and MLS satellite observations (black contours); (b) percent 637 

difference between the ensemble average and observations, 100*(FRVOLC-MLS)/MLS; (c) 638 

2004-2014 mean vertical profiles of H2O mixing ratios (ppmv) from MLS (black) and FRVOLC 639 

(red). 640 
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Figure 6: Monthly and zonally averaged stratospheric ozone column (in DU) comparison 641 

between OMI/MLS observations between 2004 and 2010 (black) and the WACCM FRVOLC 642 

ensemble (red) between 2004 and 2010 (for ozone < 150 ppb in the model), for four months. 643 

OMI/MLS error bars show the zonally averaged 2-σ six-year root mean square standard error of 644 

the mean at a given grid point, derived from the gridded product [Ziemke et al., 2011]. Model 645 

results are interpolated to the same latitude grid as the observations. Shading indicates the 646 

standard deviation (1-σ) of the interannual variability per latitude interval for the FRVOLC 647 

ensemble.  648 

Figure 7: Calculated global volcanic SO2 burden following the June 15, 1991 eruption of Mt. 649 

Pinatubo is compared to observations. The solid line shows the daily average global burden of 650 

SO2 calculated in the SDVOLC simulation minus the non-volcanic SO2 burden calculated in the 651 

SDVC simulation. The dashed red line shows the same for SCVOLC minus SCVC. The SO2 652 

burden is less than 10 Tg in the day 0 average because the eruption occurred mid-day. The 653 

additional input of 1.5 Tg SO2 from the August 12 eruption of Cerro Hudson is noted 60 days 654 

after the Pinatubo eruption. Observations from TOVS (blue circles) and TOMS (red asterisks) 655 

show an initial burden of 13-18 Tg SO2, of which 10 Tg remained after loss to sedimenting ice 656 

and ash in the first 7-9 days [Guo et al., 2004a]. Observations from SBUV, aircraft, and MLS are 657 

shown as presented in Read et al. [1993]. Because MLS column is integrated above 21 km, the 658 

WACCM column integrated above 50 hPa (dashed black line) is shown for comparison.  659 

Figure 8: Maps of calculated daily averaged SO2 (left column) and OH (right column) volume 660 

mixing ratios (moles/mole air) at 61 hPa on days 3 (top row), 7 (middle row), and 13 (bottom 661 

row) after the June 15, 1991 eruption of Mt. Pinatubo. Calculations are shown from the 662 

SDVOLC simulation. 663 



 - 32 - 

Figure 9: Volcanic SO2 e-folding time (days) shown as a function of days following the June 15, 664 

1991 eruption of Mt. Pinatubo in the SCVOLC (solid black line) and SCVOLC (dashed red line) 665 

simulations. The e-folding time is derived from the daily change in the global volcanic SO2 666 

burden. Volcanic SO2 is calculated by subtracting the global burdens from volcanically clean 667 

simulations (SDVC and SCVC, respectively). 668 

Figure 10: Aerosol optical depth (AOD) measured by lidars at 3 locations (black circles) are 669 

compared to calculated 5-day average AOD above the tropopause in corresponding model 670 

columns from our SDVOLC (red dots), FRVOLC (ensemble average, blue dots), and SCVOLC 671 

(orange dots) simulations. Observations are (a) integrated backscatter from 15-30 km measured 672 

in Tomsk, Siberia [Zuev et al., 2016], converted to AOD using a lidar ratio of 50; (b) AOD above 673 

the tropopause measured in Geestacht, Germany [Ansmann et al., 1997]; and (c) AOD above the 674 

tropopause measured in Mauna Loa, Hawaii [Hofmann et al., 2009; Ridley et al., 2014]. 675 

Figure 11: Top-of-model all-sky radiative fluxes from our SDVOLC (solid red) and SDVC (solid 676 

blue) simulations are compared to top-of-atmosphere ERBS observations (black) merged with 677 

additional data to provide a global dataset [Allan et al., 2014; Liu et al., 2015]. Monthly mean net 678 

fluxes are shown for January 1991 to December 1995, normalized and de-seasonalized by 679 

subtracting the corresponding flux for each month from 1999, a volcanically quiescent year. 680 

Fluxes from our FRVOLC ensemble average (dashed orange line) and range (yellow shading) 681 

are also shown. (a) Absorbed solar radiation (positive for downward fluxes); (b) outgoing 682 

longwave radiation (positive for upward fluxes); (c) net radiatve flux (positive for downward 683 

fluxes). 684 
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Figure 12: October monthly average column ozone over the South Polar cap (63-90°S) for years 685 

1980-2016 from SBUV satellite observations (black solid line and circles), and in WACCM 686 

SDVOLC (red solid line and diamonds), SDVC (blue dashed line and diamonds), and FRVOLC 687 

experiments. The orange dashed line shows the ensemble average, and yellow shading shows the 688 

ensemble range. Grey dots show monthly averages for individual FRVOLC ensemble members. 689 

  690 
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Figure 3.
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Figure 5.
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