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Abstract

Background: Both serotonergic signalling disruption and systemic inflammation have been associated with the
pathogenesis of Alzheimer's disease (AD). The common denominator linking the two is the catabolism of the
essential amino acid, tryptophan. Metabolism via tryptophan hydroxylase results in serotonin synthesis, whilst
metabolism via indoleamine 2,3-dioxygenase (IDO) results in kynurenine and its downstream derivatives. IDO is
reported to be activated in times of host systemic inflammation and therefore is thought to influence both
pathways. To investigate metabolic alterations in AD, a large-scale metabolic phenotyping study was conducted on
both urine and serum samples collected from a multi-centre clinical cohort, consisting of individuals clinically
diagnosed with AD, mild cognitive impairment (MCl) and age-matched controls.

Methods: Metabolic phenotyping was applied to both urine (n = 560) and serum (n = 354) from the European-
wide AddNeuroMed/Dementia Case Register (DCR) biobank repositories. Metabolite data were subsequently
interrogated for inter-group differences; influence of gender and age; comparisons between two subgroups of MCl -
versus those who remained cognitively stable at follow-up visits (sMCl); and those who underwent further cognitive
decline (cMCl); and the impact of selective serotonin reuptake inhibitor (SSRI) medication on metabolite
concentrations.
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serum, but not urine.

serotonin bioavailability and signalling in AD patients.

Systemic inflammation, Serotonergic signalling

Results: Results revealed significantly lower metabolite concentrations of tryptophan pathway metabolites in the AD
group: serotonin (urine, serum), 5-hydroxyindoleacetic acid (urine), kynurenine (serum), kynurenic acid (urine),
tryptophan (urine, serum), xanthurenic acid (urine, serum), and kynurenine/tryptophan ratio (urine). For each listed
metabolite, a decreasing trend in concentrations was observed in-line with clinical diagnosis: control > MCl > AD. There
were no significant differences in the two MCI subgroups whilst SSRI medication status influenced observations in

Conclusions: Urine and serum serotonin concentrations were found to be significantly lower in AD compared with
controls, suggesting the bioavailability of the neurotransmitter may be altered in the disease. A significant increase in
the kynurenine/tryptophan ratio suggests that this may be a result of a shift to the kynurenine metabolic route due to
increased IDO activity, potentially as a result of systemic inflammation. Modulation of the pathways could help improve

Keywords: Alzheimer's disease, Kynurenine, Tryptophan, Serotonin, Metabolic phenotyping, Mass spectrometry,

Background

The pathogenesis of Alzheimer’s disease (AD) has previ-
ously been associated with both systemic inflammation
[1, 2] and disruption of the serotonergic signalling sys-
tem [3-5]. Metabolically, a common link between the
two biological processes is the catabolism of the essential
amino acid tryptophan. Despite its primarily use in pro-
tein synthesis [6], tryptophan also undergoes enzymatic
conversion via two distinct metabolic pathways. The ma-
jority of free tryptophan is metabolised via the enzymes
tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-
dioxygenase (IDO) in the kynurenine pathway. This re-
sults in both neuroactive (kynurenic acid, 3-
hydroxykynurenine [7]) and neurotoxic (quinolinic acid
[8]) molecules that can influence the central nervous
system. Metabolites originating from this metabolic
route have been reported to associate with both AD dis-
ease status [9] and levels of the AD-affiliated proteins,
amyloid- and neurofilament light chain [10-12].

A secondary metabolic pathway occurs in the enzymes
tryptophan hydroxylase and 5-hydroxytryptophan de-
carboxylase leading to the production of the key neuro-
transmitter serotonin [13]. Serotonin homeostasis has
been linked to AD, and disruptions in serotonergic sig-
nalling are reported to enhance amyloid-p pathology
in vitro [5], in vivo [4] and in human clinical studies [3,
4]. Previous literature suggests the mechanistic route for
this influence is a result of serotonin receptor activation
upregulating o-secretase activity, shifting the cleavage of
amyloid precursor protein away from the (- and y-
secretase route and reducing amyloid-f production [5].
Indeed, serotonin signalling has been a research target of
therapeutic intervention in the disease, with the ongoing
evaluation of selective serotonin reuptake inhibitor
(SSRI) useage to increase the bioavailability of serotonin
at nerve terminals, and therefore to attempt to control
AD symptoms and cognitive decline [14, 15].

The metabolic balance between both pathways, and
therefore the subsequent bioavailability of downstream
metabolites, is reported to be influenced by the homeo-
static control of the IDO enzyme [13]. In times of host
systemic inflammation, IDO is upregulated by circulat-
ing cytokines, thereby increasing the metabolic turnover
of tryptophan to kynurenine. As such, the kynurenine/
tryptophan ratio has been reported to be a biomarker
for detecting systemic inflammation in disease [16, 17].

Due to the links between AD pathogenesis, systemic
inflammation and serotonergic signalling, the two path-
ways have previously been investigated in the disease,
with changes in the concentration of circulating metabo-
lites from both pathways reported in individuals clinic-
ally diagnosed with AD compared with controls.
However, such investigations have been typically limited
to small pilot studies and have not covered the full range
of metabolites involved in the two pathways [9, 10, 18,
19].

Biological pathways of interest that are implicated in
health and disease can be effectively investigated using a
technique known as metabolic phenotyping. Frequently,
the technique is now being applied to large epidemio-
logical and clinical cohorts to investigate metabolic
changes that influence population health and disease
[20]. Such application of discovery-based metabolic phe-
notyping in clinical cohort studies of AD has previously
reported differences in the metabolism of lipids [21, 22],
fatty acids [23] and amino acids [24], but few studies
have used the technology to annotate and target specific
pathways of interest in the disease.

Here, a multi-stage metabolic phenotyping study
(Fig. 1), was employed to investigate urinary and serum
levels of tryptophan and its metabolites in a cohort of
participants diagnosed with AD, MCI and age-matched
controls. Initially, metabolite profiling was used as an
introductory screening technique to investigate eight
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Fig. 1 Study workflow. An overview of the study design and overall workflow

metabolites in urine (Table 3), before applying a targeted
analysis of the tryptophan pathway in serum to ascertain
if metabolite differences were reflected in the circulatory
system.

Methods

Participants

Study participants were from the European AddNeur-
oMed and the London based Dementia Case Register
(DCR) projects [25—27]. Participants aged between 57 and
97 were recruited either as controls reporting normal cog-
nition or with a clinical diagnosis of Alzheimer’s disease
(AD) or mild cognitive impairment (MCI). The assess-
ment protocol has been previously described [25, 26, 28],

but in brief, the protocol was based on a clinical assess-
ment including a structured clinical interview together
with cognitive assessments including ADAS-COG, MMSE
and CERAD-NB with a final diagnosis being made accord-
ing to NINCDS-ADRDA and DSM-1V criteria.

Within the MCI group, cognition was monitored at
follow-up visits—those who remained cognitively stable
at follow-up visits were classed as stable MCI (sMCI),
whilst the second group experienced cognitive decline
and received a later diagnosis of AD and were classed as
converting MCI (cMCI).

Serum and urine samples were collected and stored
frozen in aliquots at — 80 °C until use. The samples were
from baseline collections only and had not been
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subjected to any freeze-thaw cycles. Mass spectrometry
analysis was completed on 556 urine samples. Where
available, matched serum samples were then analysed,
resulting in the generation of spectra from 354 serum
samples. An overview of study samples can be seen in
Table 1.

Study phase 1—Metabolic phenotyping of tryptophan
pathway metabolites in urine

Urine samples (# =556) underwent metabolite profiling
using an ultra-high-performance liquid chromatography sys-
tem coupled to a high-resolution quadrupole-time-of-flight
mass spectrometer (UHPLC-QTOF-MS) accordig to a pre-
viously published method [29]. Eight metabolic features
were then annotated (xanthurenic acid, kynurenic acid, sero-
tonin,  5-hydroxyindoleacetic ~ acid, tryptophan, 3-
hydroxyanthranilic acid, 3-hydroxykynurenine, kynurenine),
integrated and normalised for dilution using quantitative
creatinine values derived by a previously published proton
nuclear magnetic resonance (*H-NMR) method [30]. All
methods are described in detail in supplementary
information.

Annotated data outputs (exported in comma-separated
value format) were imported into R (v.3.5.2) for statistical
analysis. Samples that were greater than five standard de-
viations above the mean for each metabolite were re-
moved as outliers. Shapiro-Wilk testing demonstrated
that the metabolite data were not normally distributed
(p <0.05). Therefore, non-parametric Kruskal-Wallis tests
were performed. Final p values were adjusted for multiple
testing using the method described by Holm [31]. For me-
tabolites with a Holm-adjusted p value of < 0.1, post hoc
Dunn’s tests were completed on each pair of participant

Table 1 Participant overview
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groups in order to report statistically significant differ-
ences between each of the three participant groups (AD,
MCI and age-matched controls).

Study phase 2—Quantification of tryptophan pathway
metabolites in serum

In phase 2 of the study, 17 metabolites (xanthurenic acid,
kynurenine, serotonin, tryptophan, 3-hydroxyanthranilic
acid, kynurenic acid, 3-hydroxykynurenine, B-nicotinamide
mononucleotide, picolinic acid, 5-hydroxyindoleacetic acid,
nicotinic acid, quinolinic acid, dopamine, neopterin, nico-
tinic riboside, citrulline, indole-3-acetic acid) were fully
quantified, and an additional metabolite (NAD") was
semi-quantified in serum using a previously validated
UHPLC-tandem mass spectrometry (UHPLC-MS/MS)
method [32]. The method is described further in sup-
plementary information.

Statistical analysis was completed in R (v.3.5.2). Again,
samples that were greater than five standard deviations
above the mean for each metabolite were removed as
outliers. Shapiro-Wilk testing demonstrated that the
serum metabolite data were not normally distributed
(p <0.05); therefore, non-parametric Kruskal-Wallis tests
were performed. Final p values were adjusted for mul-
tiple testing using the method described by Holm [31],
and again, metabolites with a Holm-adjusted p value of
< 0.1 underwent post hoc Dunn’s tests to identify statis-
tically significant differences between each of the three
participant groups (AD, MCI and age-matched controls).

Study phase 3—Further investigation of key metabolites
Metabolites that reported a Holm-adjusted p value of <
0.1 from Kruskal-Wallis tests in study phases 1 and 2

Total cohort Control mcl AD

Urine
Participants 556 171 209 176
Male/female 269/287 83/88 95/114 91/85
Mean age (SD) 76.24 (5.76) 75.85 (5.17) 76.33 (6.03) 76.53 (5.99)
MMSE score 25.67 (4.59) 28.73 (1.92) 26.86 (2.75) 21.17 (4.87)
CDR 0.56 (0.51) 0.07 (0.18) 049 (0.08) 1.10 (0.54)
Reported SSRI medication 43 4 16 23

Serum
Participants 354 86 165 103
Male/female 165/189 44/42 71/94 50/53
Mean age 76.95 (6.13) 7597 (5.67) 77.50 (6.49) 7691 (5.84)
MMSE score 2557 (4.37) 28.80 (1.99) 26.73 (2.24) 21.06 (4.79)
CDR 0.59 (0.54) 0.04 (0.16) 049 (0.11) 1.16 (0.55)
Reported SSRI medication 30 1 11 18

Overview of the sample cohort used in the study. SSR/ selective serotonin reuptake inhibitor, MC/ mild cognitive impairment, AD Alzheimer’s disease, MMSE Mini-

Mental State Examination score, CDR Clinical Dementia Rating
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were selected for further statistical analysis detailed
below.

Metabolite correlation with age
Pearson correlation to investigate associations with age.

Metabolite comparison between MCI subgroups
Mann-Whitney U tests were performed to compare two
subgroups of participants who were clinically diagnosed
with MCI at the baseline visit. One group remained cog-
nitively stable at subsequent follow-up visits (stable MCI
(sMCI)), whilst the second group experienced further
cognitive decline and received a diagnosis of AD at sub-
sequent follow-up visits (converting MCI (cMCI)). De-
tails of the ¢cMCI and sMCI groups are displayed in
Table 2.

Metabolite associations across biofluids

Pearson correlation analysis was performed to investi-
gate the relationship of metabolites across both biofluids
(serum and urine). This was performed where matched
serum/urine samples from the same participant study
visit were available (n = 304).

Impact of selective serotonin reuptake inhibitor (SSRI)
medication

The effect of SSRI medication on the study cohort was
investigated by comparing metabolite levels of two AD
subgroups: those prescribed SSRI medication vs no SSRI
prescribed medication. Data were then re-analysed using

Table 2 Mild cognitive impairment participant overview

Total MCI sMCI cMdcl
Urine
Participants 209 167 42
Male/female 95/114 80/87 15/27
Mean age (SD) 7633 (6.03) 76.17 (560) 7691 (7.38)
MMSE 2686 (2.75) 2693 (294) 2655 (1.76)
CDR 049 (0.08) 048 (0.09) 0.51 (0.08)
Reported SSRI medication 16 12 4
Serum
Participants 165 90 75
Male/female 71/94 42/48 29/46
Mean age 77.50 (649) 7598 (5.95) 7932 (6.67)
MMSE 2673 (224) 2681 (2.38) 2663 (2.07)
CDR 049 (0.11) 048 (0.10) 0.53 (0.12)
Reported SSRI medication 11 8 3

Overview of the two MCI subgroups used in the study. All samples in the
study were taken at baseline; however, one MCI subgroup remained stable
throughout follow-up visits (sMCI), whilst the second converted to a clinical
diagnosis of AD at subsequent follow-up visits (cMCl). SSRI selective serotonin
reuptake inhibitor, MMSE Mini-Mental State Examination score, CDR Clinical
Dementia Rating
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Kruskal-Weallis testing as described above, using only
study participants who did not report a prescription for
SSRI medication.

Results

Study phase 1—Metabolic phenotyping of tryptophan
pathway metabolites in urine

Good reproducibility was obtained throughout the ana-
lysis as determined from the biological QC samples (n =
64) analysed across the run, which reported relative
standard deviation values for each metabolite ranging
from 7.7 to 13.2%.

Kruskal-Wallis testing reported significant inter-group
metabolite differences for tryptophan (p =0.0128, Holm-
adjusted p =0.0514), serotonin (p = 0.0020, Holm-adjusted
p =0.0137), xanthurenic acid (p =0.0002, Holm-adjusted
p =0.0015), 5-hydroxyindoleacetic acid (p =0.0059, Holm-
adjusted p =0.0293), kynurenic acid (p =0.0009, Holm-
adjusted p =0.0071) and the kynurenine/tryptophan ratio
(p =0.0025, Holm-adjusted p = 0.0153) (Table 3).

For metabolites that reported a Holm-adjusted p value
of <0.1, post hoc Dunn’s tests were performed to inves-
tigate differences between the individual study groups.
The key urinary metabolites when comparing control to
AD were urinary xanthurenic acid (p =0.0001), kynure-
nic acid (p =0.0005), serotonin (p =0.0016), 5-
hydroxyindoleacetic acid (p =0.0020), tryptophan (p =
0.0050) and the Lkynurenine/tryptophan ratio (p=
0.0021) (Table 3). Urine metabolite concentrations were
also observed to be significantly lower when comparing
MCI to the control groups for xanthurenic acid (p =
0.0016), kynurenic acid (p = 0.0047) and the kynurenine/
tryptophan ratio (p = 0.0073), whilst serotonin was ob-
served to be lower in AD compared with the MCI group
(p =0.0047) (Table 3).

An overall decreasing trend in metabolite cocentra-
tions was also observed in the direction of control >
MCI > AD for each metabolite identified as differentiat-
ing control samples from those from the cognitively im-
paired groups (Fig. 2). This trend was observed
regardless of gender (Fig. 3).

Study phase 2—Quantification of tryptophan pathway
metabolites in serum
Data quality was assessed as described in supplementary
methods, with all metabolite quantification calculated
using a linear calibration dilution set (* >0.990) and
with analytical QCs calculated to be within 15% of the
target concentration (20% for the LLOQ).
Kruskal-Weallis testing reported significant inter-group
metabolite differences for tryptophan (p = 0.0047, Holm-
adjusted p =0.0756), kynurenine (p =0.0019, Holm-
adjusted p =0.0340), xanthurenic acid (p =0.0018,
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Table 3 Summary of Kruskal-Wallis univariate analysis
Metabolite p value (Kruskal- Adjusted Dunn’s post hoc test p value

Wallis test) p value (Holm) CTL-AD cTL-Mal MCI-AD
Urine—xanthurenic acid 0.0002 0.0015 0.0001 0.0016 0.1615
Urine—kynurenic acid 0.0009 0.0071 0.0005 0.0047 0.181
Urine—serotonin 0.0020 0.0137 0.0016 0.2724 0.0047
Urine—5-hydroxyindoleacetic acid 0.0059 0.0293 0.0020 0.0842 0.0517
Urine—tryptophan 0.0128 0.0514 0.0050 0.098 0.0748
Urine—3-hydroxyanthranilic acid 0.0495 0.1484 NA NA NA
Urine—3-hydroxykynurenine 04235 0.8470 NA NA NA
Urine—kynurenine 0.8738 0.8738 NA NA NA
Urine—kynurenine/tryptophan ratio 0.0040 0.0242 0.0021 0.0138 0.1966
Serum—xanthurenic acid 0.0018 0.0339 0.0019 0.0260 0.2796
Serum—kynurenine 0.0019 0.0339 0.0006 0.0429 0.0286
Serum—serotonin 0.0037 0.0625 0.0016 0.0178 0.1035
Serum—tryptophan 0.0047 0.0756 0.0024 0.0150 0.1407
Serum—3-hydroxyanthranilic acid 0.0222 0.3326 NA NA NA
Serum—kynurenic acid 0.0222 0.3326 NA NA NA
Serum—3-hydroxykynurenine 0.0236 0.3326 NA NA NA
Serum—_-nicotinamide mononucleotide 0.0241 0.3326 NA NA NA
Serum—picolinic acid 0.0518 0.5701 NA NA NA
Serum—5-hydroxyindoleacetic acid 0.0991 0.9912 NA NA NA
Serum—nicotinic acid 0.1066 0.9912 NA NA NA
Serum—quinolinic acid 0.1828 1.0000 NA NA NA
Serum—NAD+ 0.2589 1.0000 NA NA NA
Serum—dopamine 0.3926 1.0000 NA NA NA
Serum—neopterin 04934 1.0000 NA NA NA
Serum—nicotinic riboside 0.6746 1.0000 NA NA NA
Serum citrulline 0.8351 1.0000 NA NA NA
Serum—indole-3-acetic acid 08518 1.0000 NA NA NA
Serum—kynurenine/tryptophan ratio 0.2507 1.0000 NA NA NA

p values from Kruskal-Wallis and subsequent post hoc tests using the Holm test to correct for multiple testing. Metabolites with a Holm-adjusted p value of < 0.1
are highlighted in bold and underwent a post hoc Dunn's test to observe differences between subgroups. Metabolites with a Holm-adjusted p value of > 0.1 did

not undergo a post hoc Dunn'’s test and are labelled accordingly with NA

Holm-adjusted p =0.0340) and serotonin (p =0.0037,
Holm-adjusted p = 0.0625) (Table 3).

For metabolites that reported a Holm-adjusted p value
of <0.1, post hoc Dunn’s tests were performed to inves-
tigate differences between the individual study groups.
The key serum metabolites when comparing control to
AD (Table 3) were xanthurenic acid (p = 0.0019), kynur-
enine (p = 0.0006), serotonin (p = 00016) and tryptophan
(p =0.0024). Serum metabolite concentrations were also
reported to be significantly lower when comparing MCI
to the control groups for xanthurenic acid (p =0.0260),
kynurenine (p = 0.0429), serotonin (p = 0.0178) and tryp-
tophan (p =0.0150) whilst kynurenine was observed to
be significantly lower in AD compared to the MCI group
(p = 0.0286).

An overall decreasing trend in serum metabolite concen-
trations was also observed: control > MCI > AD for each
metabolite (Fig. 2). This trend was observed regardless of
gender (Fig. 3).

Study phase 3—Further investigation of key metabolites
Metabolite associations with participant age

Univariate Pearson correlation reported a negative associ-
ation between serum tryptophan concentrations and an in-
crease in participant age (r =-0.1193, p =0.0131, Holm-
adjusted p =0.0915). In contrast, a positive correlation was
observed between serum kynurenine and participant age
(r =0.1858, p =0.0001, Holm-adjusted p = 0.0010). No sig-
nificant age-related associations were observed with the
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Fig. 2 Inter-group metabolite differences. Boxplots highlighting differences between metabolite concentrations in serum and urine when
comparing AD (red), MCl (blue = sMCl, yellow = cMCl) and age-matched controls (CTL—green). Boxplots are shown for metabolites in the
serotonin and kynurenine pathways that reported significant differences following univariate Kruskal-Wallis tests. Figure p values were calculated
using Dunn’s post hoc test for those metabolites that reported a Kruskal-Wallis p value < 0.1 following adjustment for multiple testing using the
Holm method. A decreasing trend was observed: control > MCl > AD for each metabolite. This trend was observed regardless of gender (Fig. 3).

remaining serum metabolites (xanthurenic acid and sero-
tonin) (Holm-adjusted p > 0.1).

A positive association was noted between urinary 5-
hydroxyindoleacetic acid and participant age (r =
0.1075, p =0.0114, Holm-adjusted p =0.0910). The
remaining four urine metabolites that were character-
istically altered in AD (xanthurenic acid, kynurenic
acid, serotonin and tryptophan) were not found to be
significantly associated with age (Holm-adjusted p >
0.1) (Table S1 and Fig. 4).

Metabolite associations with participant MMSE scores
Univariate Pearson correlation reported a significant
negative association between participant MMSE score
and urine kynurenine/tryptophan ratio (r =-0.1266,
p =0.0031, Holm-adjusted p =0.0307). A significant
positive correlation was observed between MMSE
score and xanthurenic acid in both urine (r =0.1427,
p =0.0032, Holm-adjusted p =0.0307) and serum
(r =0.1185, p =0.0055, Holm adjusted (Table S2 and
Fig. 5)).
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Metabolite comparison between MCI subgroups
Univariate Mann-Whitney U tests reported no signifi-
cant differences between participants diagnosed with
MCI at the baseline visit who remained stable (sMCI)
and those who converted to a diagnosis of AD at later
follow-up visits (cMCI) (Table S3 and Fig. 6).

Metabolite associations across biofluids

Pearson correlation analysis comparing the metabolites
across the two biofluids reported a positive correlation
between urine and serum levels of tryptophan (r =

0.2188, p= 0.0006, Holm-adjusted p= 0.0018) and
xanthurenic acid (r =0.4788, p =2.867¢*°, Holm-
adjusted p =1.4336e'*). Kynurenine and serotonin did
not correlate across the biofluids; however, serum con-
centrations were positively correlated with their respect-
ive polar urinary metabolites kynurenic acid and 5-
hydroxyindoleacetic acid (serum kynurenine | urine
kynurenic acid r =0.3019, p =1.631e”®, Holm-adjusted
p =6.5229¢° and serum serotonin | urine 5-
hydroxyindoleacetic acid r =0.1554, p =0.0153, Holm-
adjusted p =0.0306) (Table S4 and Fig. 7).
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Fig. 4 Metabolite associations with participant age. Plots presenting metabolite concentration change in association with participant age. The
plots were fitted with a linear regression model. Plots are shown for the metabolites in the serotonin and kynurenine pathways that reported
significant differences between participant groups (Supplementary Figs. ST and S2). The plots suggest that only serum tryptophan has a negative
correlation with age—a major risk factor of AD (r =—0.1193). The remaining key metabolites all have positive correlation with increased age;
however, only serum kynurenine and urine kynurenic acid have a significant positive correlation (serum kynurenine: r = 0.1858, p = 0.0001 (Holm-
adjusted p =0.0009) and kynurenic acid: r = 0.0865, p =0.0418 (Holm-adjusted p = 0.2089))

Impact of selective serotonin reuptake inhibitor (SSRI)
medication

Study participants diagnosed with AD who were pre-
scribed SSRI medication had significantly lower levels of
serotonin than AD study participants with no reported
SSRI intake (p =6.1e”®, Holm-adjusted p =1.10e™)
(Table S5 and Fig. 8). Kruskal-Wallis analysis of a sub-
cohort of samples consisting only of participants with no
reported SSRI medication is displayed in Table S6. In
urine, xanthurenic acid (p =0.001, Holm-adjusted p =
0.0013), kynurenic acid (p =0.0006, Holm-adjusted p =

0.0044), serotonin (p = 0.0009, Holm-adjusted p = 0.0061),
5-hydroxyindoleacetic acid (p =0.0070, Holm-adjusted
p =0.0309), tryptophan (p =0.0051, Holm-adjusted p =
0.0309), 3-hydroxyanthranilic acid (p =0.0083, Holm-
adjusted p =0.0309) and the kynurenine/tryptophan ratio
(p =0.0052, Holm-adjusted p =0.0309) were signifi-
cantly different between the groups. In serum,
xanthurenic acid (p =0.0027, Holm-adjusted p =
0.0440), kynurenine (p =0.0006, Holm-adjusted p =
0.0099) and tryptophan (p =0.0009, Holm-adjusted
p =0.0152) demonstrated significant differences
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Fig. 5 Serum and urine metabolite associations with participant MMSE scores. Plots presenting metabolite concentration change in association
with participant Mini-Mental State Examination (MMSE) score. The plots were fitted with a linear regression model. Plots are shown for the
metabolites in the serotonin and kynurenine pathways that reported significant differences between participant groups (Supplementary Figs. S1
and S2). The plots suggest that only urine xanthurenic acid has a significant negative correlation with participant MMSE (r = —0.1266, p =0.0031
(Holm-adjusted p =0.0307)). A significant positive correlation was observed between MMSE score and both urine kynurenic acid (r =0.1427, p =
0.0032 (Holm-adjusted p = 0.0307)) and serotonin (r =0.1185, p = 0.0055 (Holm adjusted))

between study groups; however, no significant differ-
ence was found in serotonin concentrations (p =
0.1286, Holm-adjusted p =1.0000).

Discussion

The kynurenine pathway in Alzheimer’s disease
Significantly lower serum tryptophan, kynurenine and
xanthurenic acid were found in participants clinically di-
agnosed with AD compared with controls, whilst serum
xanthurenic acid demonstrated a significant positive cor-
relation with participant MMSE cognitive scores.

Previous literature regarding tryptophan pathway meta-
boltes in AD contains conflicting results. Lower levels of
tryptophan, xanthurenic acid, 3-hydroxyanthranilic acid
[18] and tryptophan [33] and tryptophan and kynurenic
acid [9] have been reported in the plasma of AD patients in
agreement with our findings. However, conversely there are
conflicting reports of higher levels of serum 3-
hydroxykynurenine in AD [19], higher levels of serum
kynurenine and anthranilic acid in females with a high neo-
cortical amyloid-p load [10] and positive correlations be-
tween serum kynurenine metabolites with plasma amyloid-
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Fig. 6 Metabolite comparison between mild cognitive impairment subgroups. Boxplots highlighting differences between metabolite
concentrations in serum when comparing two subgroups of participants with a baseline clinical diagnosis of mild cognitive impairment (MCI).
The first group (blue) remained cognitively stable throughout follow-up study visits (stable MCl (sMCI)), whilst the second group (yellow)
experienced a deterioration in cognition and converted to a clinical diagnosis of AD at follow-up (converting MCl (cMCl)). Boxplots are only
presented for the metabolites in the serotonin and kynurenine pathways that reported significant differences between control, MCl and AD
participant groups in phases 1 and 2 of the study (Supplementary Figs. ST and S2). No significant differences were observed between the sMCl

Ba-42) and neurofilament light chain [11]. This reported
discrepancy may be a consequence of the relatively small
sample sizes typically used for analysis, emphasising the
need for further investigation into the association between
AD and tryptophan metabolism using larger cohorts.

In addition, the metabolites kynurenic acid and quino-
linic acid have been reported to be significantly higher in
the cerebrospinal fluid (CSF) of individuals clinically di-
agnosed with AD [33]. The same study reported no sig-
nificant differences in plasma concentrations of these

metabolites collected from the same study participants.
This finding is in agreement with the serum data pre-
sented here, where we report no significant differences
of the two metabolites when comparing between the
three clinical groups. Our data did however demonstrate
a trend that suggested that kynurenic acid was lower in
the individuals diagnosed with AD. Although this finding
was significant in the initial Kruskal-Wallis inter-group
test, it did not pass the correction for multiple testing
threshold for the study. This result may suggest that
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metabolic changes in the kynurenine pathway observed
in CSF may differ to those seen in blood-based biofluids.
A study consisting of 20 AD cases and 18 controls that
analysed the kynurenine pathway in both plasma and
CSF reported significant metabolite correlations across
CSF and plasma for kynurenine, 3-hydroxykynurenine,
anthranilic acid, picolinic acid and neopterin; however,
kynurenic acid was not significantly correlated across
the biofluids [12]. In future, a large cohort study with
matched sample types including CSF, serum/plasma and
urine collected at the same study visit would provide

valuable information on the translation of metabolic bio-
markers in AD across the different biofluid
compartments.

Previous literature has reported associations between
quinolinic acid and Alzheimer’s disease pathology [34,
35] with reports of B-amyloid inducing the production
of quinolinic acid by macrophages and microglia in vitro
[36]. However, our data reported no significant differ-
ences between the concentrations of quinolinic acid in
control and AD participant groups (Table 3). Likewise,
the concentrations of picolinic acid have also been
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previously reported to associate with AD pathology [12].
Again, our data did not show any significant differences
in the serum concentrations of picolinic acid between
the participant groups (Table 3). The reasons behind the
disparity in previous literature reports and our data are
unclear but may be because the previous literature has

typically compared the metabolites with specific features
of AD pathology rather than overall clinical classifica-
tion. Future large-scale studies that are able to collect
pathological data in tandem with the clinical, cognitive
and metabolic data may reveal more valuable informa-
tion about these apparent relationships.
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In urine, we also found significantly lower levels of
tryptophan, xanthurenic acid and kynurenic acid, and
urine xanthurenic acid demonstrated a significant posi-
tive correlation with participant MMSE cognitive scores.
To the best of the authors’ knowledge, comparisons of
urinary kynurenines in clinical cases of AD, MCI and
controls have not been previously reported. The lower
levels observed of the three urinary metabolites are con-
sistent with our findings in serum.

Mechanistically, the rate limiting enzyme in the kynur-
enine metabolic pathway is indoleamine 2,3-dioxygenase
(IDO)—a critical enzyme in systemic inflammation
expressed by key cells of the immune system, including
microglia [37]. The activity of IDO can be monitored
using the circulating kynurenine/tryptophan ratio [16].
Here, we showed a higher urinary kynurenine/trypto-
phan ratio in the AD group and a significant negative
correlation of the ratio with participant MMSE score,
suggesting increased conversion of tryptophan to kynur-
enine prior to renal excretion, perhaps as a result of sys-
temic inflammation and IDO upregulation in cases of
AD and cognitive decline [38].

Our data also found no significant differences when
comparing metabolite concentrations between partici-
pant groups for NAD" and its precursors nicotinic acid,
nicotinic riboside and B-nicotinamide mononucleotide.
NAD is a key functional metabolite in cellular metabol-
ism and has been hypothesised as playing a role in the
disrupted energy metabolism pathways that occur in AD
[39]. To the authors’ knowledge, there are no literature
references that directly compare differences in the con-
centration of blood- or urine-based nicotinamide path-
way metabolites in AD. However, there have been many
examples of in vivo murine model work that has investi-
gated the potential use of nicotinic metabolites as a
treatment to slow AD pathology [40—42]. Our data sug-
gest that these metabolites are not present at different
concentrations in circulatory serum when comparing be-
tween the participant groups; however, further investiga-
tion into alternative biofluids such as CSF or post-
mortem brain would add useful information regarding
the role of the nicotinic pathway in AD.

The serotonin pathway in Alzheimer’s disease

A consequence of lower tryptophan bioavailability and
an increase IDO enzyme activity is a reduced capacity
for serotonin biosynthesis. This is reflected in our re-
sults, with lower levels of serotonin and 5-hydroxyindole
acetic acid reported in the AD group.

Despite reports of lower amounts of serotonin in cere-
brospinal fluid [43] and post-mortem brains [44, 45] in
AD, to the best of the authors’ knowledge, differences in
blood or urine have not been previously published and
are reported here for the first time.
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However, serotonin and serotonergic signalling have
previously been proposed to be disrupted in AD [3], in-
cluding reports of an increase in serotonin-4 receptors
in the brain in response to an increased amyloid burden
[46]. Madsen et al. hypothesised that this may be a con-
sequence of lower serotonin, thereby acting as a com-
pensatory effect to improve cognitive function, to
increase acetylcholine release or to counteract increased
amyloid accumulation [46]. Subsequent studies in mice
have reported that amyloid precursor protein processing
is regulated by the serotonin-4 receptor and activation of
serotonin-4 receptor upregulates a-secretase, resulting in
the formation of soluble amyloid, rather than the insoluble
amyloid-p otherwise produced by cleavage via the - and
y-secretase route [5]. Receptor agonists of serotonin-4 re-
ceptor, serotonin-5 receptor and serotonin-6 receptor
have also been shown to reduce brain interstitial fluid
levels of amyloid-p in the brains of mouse models [47].

In addition, selective serotonin reuptake inhibitors
(SSRIs) are under investigation as therapeutic agents in
AD. SSRIs work by increasing free serotonin at the syn-
apse or neuronal cells resulting in increased levels of free
serotonin available to synaptic receptors [14]. In both
mouse models and humans, SSRIs have been reported to
reduce levels of interstitial brain amyloid-f [48].

SSRIs are currently licenced for use in depression, and
therefore, the study contained samples collected from
participants who reported prescription of SSRI medica-
tion across all of the participant groups (Table 1). The
mechanism of SSRI action is not fully understood, and
there are conflicting reports in the literature regarding
the effect of SSRI medication on blood and urine levels
of serotonin [49-51]. In our data, individuals who were
prescribed SSRI medication had significantly lower levels
of serotonin in their serum; however, this difference was
not observed in urine (Fig. 7). Further longitudinal work
would be required to interpret whether this observation
is a direct result of the SSRI medication, or due to the
underlying pathophysiology of the individual that leads
to treatment for depressive symptoms, a condition fre-
quently linked to lower levels of plasma and serum sero-
tonin [49].

To assess the impact of SSRI on the overall result of the
study, univariate analysis was repeated only with the par-
ticipants who did not take SSRI medication. In the re-
analysis, serum serotonin no longer reported significant
differences between AD and control groups (Table S5).
However, interestingly, results in urine mirrored the full
cohort, including the continued observation of signifi-
cantly lower levels in the AD group of urinary tryptophan,
serotonin and 5-hydroxyindoleacetic acid suggesting al-
tered tryptophan and serotonin metabolism and renal ex-
cretion in the AD group, regardless of SSRI intake status.
The discrepancy between serum and urine is unexplained,
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nevertheless the results raise important questions about
the serotonergic signalling system in AD. Future longitu-
dinal phenotyping resulting in accurate patient stratifica-
tion may enable greater insight into the impact of
serotonin bioavailability and SSRI medication in AD.

The bioavailability of tryptophan in Alzheimer’s disease
Tryptophan is the parent metabolite in both the sero-
tonin and kynurenine pathways, and therefore, its bio-
availability may have a downstream effect on the
resultant bioavailability of key neuroactive metabolites in
the circulatory system (Fig. 9).

As tryptophan is an essential amino acid that cannot
be synthesised in mammalian systems, the bioavailability
of circulatory free tryptophan is primarily influenced by
the consumption of protein in the diet combined with
the rate of usage in protein synthesis and the ability to
absorb amino acids through the intestinal wall. In AD,
the impact on bioavailability of essential amino acids is
highly complex and multifactorial. Changes in appetite
are well documented in AD with many occurrences of
eating disturbances reported varying between both the
loss and increase of appetite, as well as changes in diet-
ary preference [52]. In addition, faecal calprotectin (a
marker of intestinal inflammation) has been reported to
be negatively associated with serum essential amino
acids in individuals with AD—suggesting a disturbed in-
testinal barrier function leading to the lowering of essen-
tial amino acid blood concentrations [53].

The bioavailability of tryptophan is also known to be
controlled by the population and diversity of an individ-
ual’s gut microbiome [54], with manipulation of the mi-
crobial composition demonstrated to impact plasma
concentrations of tryptophan [55].
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Research investigating alterations in the composition
of the gut microbiome of individuals with AD have sug-
gested that they have differences in the prevalence of
Firmicutes, Bifidobacteria and Bacteroidetes compared
with controls [56], all of which have been reported to
possess tryptophan decarboxylase enzymes [54, 57], sug-
gesting that gut diversity could impact the bioavailability
of tryptophan and its downstream metabolites. However,
in our results, the metabolite indole-3-acetic acid, an in-
dole molecule known to be produced from tryptophan
by gut bacteria [54], remained unchanged between par-
ticipant groups (Kruskal-Wallis p =0.8518, Holm-
adjusted p =1.0000), suggesting that the differences ob-
served here in tryptophan metabolite may not be attrib-
utable to alterations in the gut microciome. Future
studies warrant further investigation of indole containing
metabolites (e.g. indole, tryptamine, indole lactic acid,
indole aldehyde and indole propionic acid), which when
combined with microbiome sequencing in a sample from
AD cohorts will establish if any associations exist be-
tween tryptophan bioavailability, indole metabolites and
gut microbial diversity.

Conclusions

Here, we report significantly lower concentrations of
tryptophan with downstream ramifications for the
kynurenine and serotonin pathways in individuals clinic-
ally diagnosed with AD. Lower concentrations of metab-
olites involved in tryptophan metabolism were observed
in both the urine and serum of participants and, in gen-
eral, showed a declining trend for MCI. The results re-
ported are based on the analysis of the largest cohort
study to date that has investigated tryptophan metabol-
ism in AD. Furthermore, the tryptophan-serotonin

5-hydroxy- Tryptophan
tryptophan hydroxylase Tryptophan dioxygenase or
decarboxylase indoleamine dioxygenase
Kynurenine
. Kynurenine ¥ hydroxylase
Monoamine . b 4
: aminotransferases A 4
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Fig. 9 Tryptophan pathway. Pathway map presenting the key metabolites that reported significant inter-group differences following Kruskal-
Wallis tests. Post hoc Dunn tests revealed that those highlighted with red shading were significantly lower in the AD group in serum, whilst
those highlighted with blue shading were significantly lower in AD in urine. The downstream metabolites are inherently more polar and are
therefore fit with biological and metabolic logic that polar, downstream metabolites would be renally excreted and therefore altered in urine
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pathway may represent an easily modifiable pathway for
influencing and managing the progression of AD and al-
leviating serotonergic signalling disruption in AD.

Future studies that are designed to investigate associa-
tions of tryptophan metabolism pathways with additional
pathological markers of AD and cognitive decline, that
were unavailable for the samples used in this study (e.g.
cerebral amyloid load and/or emerging circulatory blood
biomarkers such as p-tau 181 [58]), would provide valu-
able insight and further understanding of the metabolic
processes that result in the kynurenine and serotonin
pathway perturbations in AD.
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