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Abstract

Investigating the Characteristics of Exoplanetary Atmospheres and Interiors
Matthew Conor Nixon

The characterisation of exoplanets has made rapid progress in recent years, with observations
of bulk properties such as mass and radius combining with detailed atmospheric spectroscopy
to provide unprecedented insight into the nature of these remote worlds. However, these
high-quality observations also require sophisticated modelling and analysis tools in order to
maximise the scientific output from the data. In this thesis I present a number of advances in
atmospheric modelling and retrieval, as well as internal structure models, which have been
used to investigate the properties of a wide range of planets, from hot Jupiters to temperate
mini-Neptunes.

I conduct an assessment of the feasibility of supervised machine learning as a tool
to carry out atmospheric retrievals of exoplanets. Retrieval methods commonly conduct
Bayesian parameter estimation and statistical inference using sampling algorithms such
as Markov Chain Monte Carlo or Nested Sampling. Recently several attempts have been
made to use machine learning algorithms either to complement or replace fully Bayesian
methods in order to improve computational efficiency. However, results from these algorithms
sometimes disagree with contemporary Bayesian retrievals. To investigate this, I use the
Random Forest supervised machine learning algorithm which has been applied previously for
atmospheric retrieval. I extend the machine learning approach to develop a new algorithm,
and demonstrate excellent agreement with a Bayesian retrieval of the transmission spectrum
of the hot Jupiter HD 209458b. Despite this success, and achieving high computational
efficiency, I still find that this machine learning approach is computationally prohibitive for
high-dimensional parameter spaces that are routinely explored with Bayesian retrievals with
modest computational resources. I discuss the trade offs and potential avenues for the future.

I present Aura-3D, a three-dimensional atmospheric retrieval framework for exoplanet
transmission spectra. Aura-3D includes a forward model that enables rapid computation of
transmission spectra in 3D geometry for a given atmospheric structure and can, therefore, be
used for atmospheric retrievals as well as for computing spectra from General Circulation
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Models (GCMs). In order to efficiently explore the space of possible 3D temperature structures
in retrievals, I develop a parametric 3D pressure-temperature profile which can accurately
represent azimuthally-averaged temperature structures of a range of hot Jupiter GCMs. I apply
this retrieval framework to simulated JWST observations of hot Jupiter transmission spectra,
obtaining accurate estimates of the day-night temperature variation across the terminator as
well as the abundances of chemical species. I demonstrate an example of a model hot Jupiter
transmission spectrum for which a traditional 1D retrieval of JWST-quality data returns biased
abundance estimates, whereas a retrieval including a day-night temperature gradient can
accurately retrieve the true abundances. The forward model also has the capability to include
inhomogeneous chemistry as well as variable clouds/hazes. This new retrieval framework
opens the field to detailed multidimensional atmospheric characterisation using transmission
spectra of exoplanets in the JWST era.

I also present a new internal structure model for super-Earths and mini-Neptunes that
enables detailed characterisation of a planet’s water component. I use my model to determine
how the bulk properties and surface conditions of a water world affect its ocean depth, finding
that oceans can be up to hundreds of times deeper than on Earth. I explore the region of
mass–radius space in which planets with H-rich envelopes could host liquid H2O. Such
envelopes could contribute significantly to the planet radius while retaining liquid water at the
surface, highlighting the exciting potential for habitable conditions to be present on planets
much larger than Earth.

I contribute to internal structure models of a number of sub-Neptunes whose atmospheres
are set to be observed using JWST. Before such observations take place, it is vitally important
to understand the interior structures of these planets, which strongly affects their possible
atmospheric compositions. We use the bulk parameters and retrieved atmospheric properties
to constrain the internal structure and thermodynamic conditions in the habitable-zone
mini-Neptune K2-18b, for which I contribute the H2O EOS. The constraints on the interior
allow multiple scenarios between rocky worlds with massive H/He envelopes and water
worlds with thin envelopes. We constrain the mass fraction of the H/He envelope to be
≲6%; spanning ≲10−5 for a predominantly water world to ∼6% for a pure iron interior. The
thermodynamic conditions at the surface of the H2O layer range from the supercritical to
liquid phases, with a range of solutions allowing for habitable conditions. We also investigate
the possible compositions of the pair of planets orbiting the star TOI-776. The bulk densities
of TOI-776b and c allow for a wide range of possible interior and atmospheric compositions.
However, the models indicate that both planets must have retained a significant atmosphere.
Upcoming observations will revolutionise our understanding of these planets, helping to
uncover the mysteries of the sub-Neptune population.
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Finally, I discuss the latest developments in exoplanet observations, and consider how
these advances may further our understanding of worlds beyond our own.
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Chapter 1

Introduction

“. . . there is an infinite number of worlds, some like this world, others unlike it.”
– Epicurus, c. 300 BCE

1.1 Discovery of Exoplanets

Astronomers have studied the behaviour of worlds beyond our own since ancient times.
Our knowledge of other planets in the solar system can be traced back to at least the 2nd

millennium BCE, with the motions of the “naked eye” planets (Mercury, Venus, Mars, Jupiter
and Saturn) recorded by ancient Babylonian astronomers (Evans, 1998). The earliest planets
with well-defined dates of discovery are the two ice giants of the solar system, Uranus
(Herschel & Watson, 1781) and Neptune (Galle, 1846).

The discovery of all currently known solar system planets had therefore concluded in
the mid-19th century1, and even at that time, some astronomers were making (ultimately
refuted) claims to have detected planets orbiting other stars (e.g. Jacob, 1855). However, we
would have to wait almost 150 years for the first unambiguous identification of extrasolar
planets, or exoplanets. There is some debate over which exoplanet discovery can be labelled
the “first”, but two key milestones were the identification of a planetary system orbiting the
pulsar PSR1257+12 (Wolszczan & Frail, 1992) and the detection of a Jupiter-sized planet
closely orbiting the Sun-like star 51 Pegasi (Mayor & Queloz, 1995). These initial discoveries
already hinted at a surprising diversity of planetary systems, both in terms of the nature of
host stars and the sizes and positions of the planets themselves.

After these initial discoveries, planetary systems continued to be discovered at an ever-
increasing rate throughout the following three decades, as shown in Figure 1.1. The variety of

1We don’t talk about Pluto . . .
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Fig. 1.1 Cumulative exoplanet detections per year, sorted by detection method. Figure taken
from the NASA Exoplanet Archive.

methods used to detect new planets also increased (see Section 1.1.1). While many different
ground- and space-based telescopes have been employed in the search for distant worlds, one
telescope in particular has been responsible for the notable jump in the number of detected
planets beginning in 2014. The Kepler Space Telescope (Borucki et al., 2010) has been
responsible for the detection of over half of all currently-known exoplanets, with astounding
yields of 715 detections in 2014 and a further 1 284 detections in 2016. While the Kepler
mission ended in 2018, other facilities such as the Transiting Exoplanet Survey Satellite
(TESS, Ricker et al., 2015) have continued to monitor the skies in search of planets, with the
total number of confirmed planets in the NASA Exoplanet Archive surpassing 5 000 on 21st

March 2022.

1.1.1 Exoplanet Detection Methods

As indicated in Figure 1.1, a wide range of methods have been successfully employed in the
search for extrasolar worlds. Here we2 summarize five of the most fruitful approaches: radial

2The remainder of this thesis uses the first person plural for stylistic consistency.
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velocity, transits, microlensing, direct imaging, and transit timing variations. For a more
detailed discussion, see Wright & Gaudi (2013).

1.1.1.1 Radial Velocity

The radial velocity method was used to detect 51 Pegasi b (Mayor & Queloz, 1995), the
first exoplanet orbiting a Sun-like star, and was responsible for the majority of exoplanet
discoveries until 2009. This method is based on the fact that when a planet orbits a star,
the gravitational pull of the planet causes the star to “wobble” around the centre of mass
of the star-planet system. We can monitor this wobble by looking for periodic shifts in the
absorption lines of the stellar spectrum (see Figure 1.2). The change in wavelength due to
redshifted or blueshifted spectral lines is related to the radial velocity of the system through
the relativistic Doppler effect:

_ obs =

√︄
1 +𝑉𝑟/𝑐
1 −𝑉𝑟/𝑐

_ em, (1.1)

where _ obs and _ em are the observed and emitted wavelengths, 𝑉𝑟 is the radial velocity of
the star, and 𝑐 is the speed of light. It can be shown that the stellar radial velocity 𝑉𝑟 can be
written in terms of the following orbital components (see e.g. Murray & Correia, 2010):

𝑉𝑟 = 𝐾 [cos(a + 𝜔) + 𝑒 cos𝜔] + 𝛾, (1.2)

where 𝐾 is the semi-amplitude of the radial velocity signal, a is the true anomaly, 𝜔 is the
argument of pericentre, 𝑒 is the orbital eccentricity, and 𝛾 is the bulk velocity of the centre of
mass of the system. The observable quantities 𝐾 and 𝑒 can then be related to the masses of
the star (𝑀∗) and planet (𝑀𝑝) using Kepler’s laws:

𝐾 =

(
2𝜋𝐺

𝑃
√

1 − 𝑒2

)1/3 𝑀𝑝 sin 𝑖
(𝑀𝑝 + 𝑀∗)2/3 , (1.3)

where 𝑃 is the orbital period and 𝑖 is the orbital inclination. Radial velocity observations can
therefore be used to constrain the mass of a planet. Since the orbital inclination is typically
unknown, the observed planet mass is typically reported assuming an edge-on orbit (sin 𝑖 = 1),
which gives the minimum possible mass. The true planet mass will be higher by a factor of
1/sin 𝑖. For randomly aligned orbits, the median value of 1/sin 𝑖 is approximately 1.15.
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planet

star

observer

Fig. 1.2 Schematic diagram depicting the radial velocity method. The planet and star orbit a
common center of mass. As the star moves away from the observer, stellar absorption lines
are redshifted, while as the star moves towards the observer the lines are blueshifted.

It is evident from equation 1.3 that the radial velocity method is best suited to the detection
of high-mass planets on short-period orbits. It is therefore unsurprising that the earliest
planets detected using this method were hot Jupiters, large planets orbiting in close proximity
to their host stars. The observed radial velocity signal of 51 Pegasi b, 𝐾 = 59 m s−1, was
measured with a precision of 13 m s−1 (Mayor & Queloz, 1995). More recent advances
have led to measurements as precise as 1 m s−1 (Fischer et al., 2016), which has enabled the
detection of terrestrial planets in short-period orbits around low-mass stars, such as Proxima
Centauri b (Anglada-Escudé et al., 2016). However, current techniques still fall short of
detecting Earth-mass planets orbiting nearby stars at habitable-zone distances, which would
require a precision of ∼0.1 m s−1.

1.1.1.2 Transits

The transit method has now overtaken radial velocity as the most successful method for
detecting exoplanets. As a planet orbits its host star, it may pass in front of a portion of
the stellar surface, depending on the inclination of the system. This occurrence is called a
transit, or primary eclipse. An observer would therefore notice a periodic decrease in the
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star’s brightness, which can therefore be used to infer the presence of an exoplanet. We can
measure the transit depth, 𝛿, by comparing the fluxes observed outside (𝐹out) and inside (𝐹in)
the transit (see Chapter 2). Since the flux received is proportional to the observed area of
the emitting object, the transit depth is approximately equal to the square of the ratio of the
planetary and stellar radii (𝑅𝑝 and 𝑅∗):

𝛿 =
𝐹out − 𝐹in
𝐹out

≈
(
𝑅𝑝

𝑅∗

)2
. (1.4)

For a more detailed derivation see e.g. Winn (2010). Note that this expression assumes that
the planet is entirely opaque, an assumption that will be relaxed when we come to discuss
observations of exoplanet atmospheres in Section 1.3.2.

Figure 1.3 shows the transit light curve of HD 209458b, the first exoplanet to be observed
transiting its host star (Charbonneau et al., 2000). The transit method has since been used
to detect thousands of planets, and was the principal detection method employed by the
Kepler Space Telescope (Borucki et al., 2010). Like the radial velocity method, the transit
method favours giant planets, in this case those with large radii relative to their host star. This
method is also more likely to detect planets with short orbital periods, since the probability
of a transit event is higher for planets which are closer to their host star (Winn, 2010). A
Jupiter-sized planet orbiting a Sun-like star leads to a transit depth 𝛿 ∼ 0.01. An Earth-sized
planet orbiting the same star will yield a much smaller 𝛿 ∼ 10−4, making these planets much
more difficult to detect with this method. However, it is more feasible to detect such planets
around smaller host stars, since the fractional change in flux will be larger. This has led to the
discovery of terrestrial planets orbiting small stars such as TRAPPIST-1 (Gillon et al., 2017)
and LHS 1140 (Dittmann et al., 2017).

1.1.1.3 Microlensing

When a foreground object such as a star or stellar remnant passes very close along our
line-of-sight to a more distant star, light from the distant star is split into two different images
in a process known as gravitational lensing (Einstein, 1936). These images will be magnified
by an amount that varies as the angular separation between the foreground and background
objects changes over time. The variation of the magnification over time is known as a
microlensing event. In the case where the foreground object is a star with an orbiting planet,
it is possible that the gravity of the planet will further distort the light from the background
star, allowing the planet to be detected. A detailed description of the mathematics underlying
this detection method can be found in Gaudi (2012).
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Fig. 1.3 Transit light curve of the planet HD 209458b, taken from Charbonneau et al. (2000).
Data are plotted as the relative flux (normalised by 𝐹out) as a function of the time from the
middle of the transit, 𝑇𝑐.

The microlensing method for detecting exoplanets was first proposed by Mao & Paczynski
(1991) and first demonstrated by Bond et al. (2004), with microlensing surveys such as the
Optical Gravitational Lensing Experiment (OGLE, Udalski et al., 1992) typically contributing
a handful of planetary detections per year since then. Unlike the radial velocity and transit
methods, which favour planets on close-in orbits, microlensing is effective at detecting planets
on wide orbits, or even free-floating planets (e.g. Mróz et al., 2018). While it is challenging
to derive physical properties of a planet or its host star using this method, useful information
can be derived from higher-order effects in microlensing light curves, or via follow-up high
resolution imaging (Bennett et al., 2007).

1.1.1.4 Direct Imaging

While the above methods involve indirect inference of the presence of a planet through its
effect on a host star or background object, the direct imaging method aims to directly detect
reflected light or thermal emission from a planet. Direct imaging of an exoplanet is extremely
challenging, due partly to the fact that planets are faint objects, but also to the difficulty
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in spatially resolving the planet from its (much brighter) host star. Detections via direct
imaging have therefore been mostly limited to young planets on wide orbits, which emit in
the near-infrared due to escaped internal heat energy (Bowler & Nielsen, 2018).

The first directly-imaged exoplanet was presented by Chauvin et al. (2004), and direct
imaging has also been used to detect multiplanet systems (e.g. Marois et al., 2008). As of
January 2022, direct imaging has led to the detection of 59 exoplanets according to the NASA
Exoplanet Archive. While the planetary radius can be inferred from the observed flux from
the planet, it is not possible to measure a planet’s mass via direct imaging.

1.1.1.5 Transit Timing Variations

Transit timing variations (TTVs, Agol et al., 2005) are a means of detecting additional planets
in a system in which one tranisiting planet has already been observed. If the transiting planet
is the only planet orbiting its host star, then transit events should occur at evenly-spaced
time intervals which can be determined using Kepler’s laws. However, if a second planet is
also orbiting the host star, the transiting planet will be gravitationally perturbed, leading to
variations in the timing of individual transits. By measuring these variations it is possible to
infer the mass and orbital properties of the perturbing planet (Nesvorný & Morbidelli, 2008).
This method has been successfully employed using Kepler, with the earliest planet detected
via TTVs presented by Ford et al. (2012). According to the NASA Exoplanet Archive, TTVs
have led to the discovery of 22 exoplanets as of January 2022.

1.2 Planet Formation and Demographics

1.2.1 Diversity of Exoplanets

Figures 1.4 and 1.5 show the radius-period and mass-period distributions of known planets.
It is evident from this diagram that the exoplanet population is extremely diverse, with
discovered planets ranging from Jupiter-sized objects in close orbits around their host stars to
planets with sizes between those of Earth and Neptune, which have no solar system analogue.
It is important to note that the sample of planets which have been detected is biased by our
observational capabilities; it is much easier detect larger planets with small orbital radii,
and so these planets are likely overrepresented in our observed sample relative to their true
occurrence rate.

The observed radius distribution of exoplanets does not appear to have any complete gaps,
meaning that drawing clear distinctions between different varieties of planet based on size is
challenging. However, it can still be informative to group exoplanets into a few broad classes:
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Fig. 1.4 Radius-period distribution of known exoplanets. Figure from the NASA Exoplanet
Archive.

• Gas giants. These objects have masses and radii comparable to Jupiter and Saturn,
with the largest examples having radii up to ∼2𝑅𝐽 and masses up to ∼13𝑀𝐽 . Higher
mass objects are capable of deuterium fusion, and are known as brown dwarfs. Gas
giants can be further subdivided based on the level of irradiation they recieve from
their host star. Highly-irradiated giant planets are much closer to their host star than
solar system gas giants (𝑃 ≲ 10 days) and therefore have much higher temperatures
(𝑇 ∼ 800–4000 K). These planets are often referred to as hot Jupiters (or hot Saturns).
In contrast, less irradiated giant planets have longer orbital periods (𝑃 ≳ 100 days)
making them in some sense closer analogues to the giant planets in our solar system.
Young, hot giant planets on wider orbits are amenable to detection via direct imaging.

• Ice giants. These planets have masses and radii comparable to Uranus (𝑀 =

14.54𝑀⊕, 𝑅 = 4.01 𝑅⊕) and Neptune (𝑀 = 17.15𝑀⊕, 𝑅 = 3.88 𝑅⊕). The ma-
jority of detected planets in this size range have short orbital periods (𝑃 ≲ 100 days);
sub-giants on longer orbital periods are beyond the capabilities of current detection
missions, but may be detectable in the future with the advent of facilities such as the
Nancy Grace Roman Space Telescope (Spergel et al., 2015).
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Fig. 1.5 Mass-period distribution of known exoplanets. Figure from the NASA Exoplanet
Archive.

• Sub-Neptunes. Planets with radii between that of Earth and Neptune (∼1–4𝑅⊕) are
typically referred to as sub-Neptunes. The sub-Neptune population can be further
divided into super-Earths and mini-Neptunes, with the cutoff between the two classes
typically located around 1.5–2𝑅⊕ based on inferred bulk composition (see Section
1.2.2). Like ice giants, sub-Neptunes have mostly been detected at short orbital periods.

• Rocky planets. These planets have comparable masses and radii to the terrestrial
planets of the solar system. Due to their small size, these planets are generally the most
difficult to detect and characterise, and so the extent to which rocky exoplanets have
similar properties to small solar system planets remains to be seen.

When detection biases are accounted for, it is believed that the average number of planets
orbiting a given star in the galaxy is close to 1, if not higher (Youdin, 2011, Cassan et al.,
2012). This does not mean that every star hosts a planet, since many stars are known to host
multiple planets. Sub-Neptunes appear to be common, and are estimated to orbit ∼50% of
Sun-like stars (Mulders, 2018). Cold giant planets have a lower occurrence rate of ∼10% (Zhu
& Dong, 2021), while hot Jupiters are rarer still, with an occurrence rate of ∼1% (Deleuil
et al., 2018).



10 Introduction

Table 1.1 Stellar classification scheme with corresponding effective temperatures (Morgan
et al., 1943, Habets & Heintze, 1981).

Spectral Class Effective Temperature

O ≥30 000 K

B 10 000–30 000 K

A 7 500–10 000 K

F 6 000–7 500 K

G 5 200–6 000 K

K 3 700–5 200 K

M 2 400–3 700 K

Not only are the planets in our galaxy highly diverse, they also orbit a wide range of
stars. Planets have been detected orbiting stars of every spectral class, from massive O and
A stars to smaller, cooler M dwarfs (see Table 1.1). There are believed to be correlations
between stellar properties and the nature of their planets; for example, detection surveys have
suggested that massive, metal-rich stars are more likely to host giant planets (Quirrenbach
et al., 2011).

1.2.2 Planetary Bulk Composition

Figure 1.6 shows a sample of masses and radii of exoplanets and solar system planets. Once
the mass and radius (and therefore the density) of a planet are known, it is possible to compare
these quantities to planetary interior structure models in order to determine possible bulk
compositions (see Section 1.3.1). Several model mass-radius relationships are overlaid on
Figure 1.6 for reference. While the models shown above are very simplistic, they yield some
useful information about the possible compositions of various planets. For example, we can
see that most terrestrial planets are consistent with a rock+iron composition, and that giant
planets must consist largely of hydrogen and helium. Note that a selection of giant planets
have larger radii than predicted for even a pure H/He planet; this is known as the inflated
hot Jupiters problem (Bodenheimer et al., 2001, Guillot & Showman, 2002). A number of
possible mechanisms may explain this anomaly, such as the conversion of wind energy to
heat or dissipation induced by thermal tides (see e.g. Laughlin, 2018, Guillot et al., 2022).

Although the models shown in Figure 1.6 can provide some insight into the composition
of exoplanets, they must be considered with some caution. These models assume uniform



1.2 Planet Formation and Demographics 11

0.3 1 10 100 1 000 10 000
Mass (M⊕)

0.6

1

10

25

R
a

d
iu

s
(R
⊕

)

Iron

Rock

Water

Hydrogen

Solar System Planets

Exoplanets

Fig. 1.6 Masses and radii of exoplanets and solar system planets. The magenta, blue, green
and orange lines show mass-radius relations from Seager et al. (2007) for model planets made
entirely of H, H2O, MgSiO3 and Fe respectively. Data for exoplanets with masses and radii
measured to ≥5𝜎 taken from the NASA Exoplanet Archive (1st July 2022).

compositions, which are very unlikely to occur in reality: for example, we know that the
Earth is made up of a combination of ∼30% iron and and ∼70% rock by mass. When
multi-component models are taken into account, a wide range of possible compositions
can be used to explain the observed mass and radius of most planets. For example, many
sub-Neptunes have masses and radii consistent with a rocky core surrounded by ∼1% of
H/He by mass, or alternatively with a water-rich planet. The models presented here also fail
to take temperature dependence into account, which can strongly affect mass-radius relations,
especially for volatile-rich interiors (see Chapter 5).

The challenge posed by the interpretation of sub-Neptune interiors is particularly interest-
ing given that these planets cannot be readily compared to any object in the solar system, and
a number of hypotheses exist to explain this population. Figure 1.7 shows the observed radius
distribution of sub-Neptunes (Fulton et al., 2017). This distribution is noticeably bimodal,
with peaks around 1.3𝑅⊕ and 2.4𝑅⊕ and a trough near 1.7𝑅⊕, known as the radius valley.
Planets either side of the radius valley are thought to have different interior compositions,
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Fig. 1.7 Completeness-corrected histogram of planet radii for planets with orbital periods
shorter than 100 days, from Fulton et al. (2017). The light grey region of the histogram for
radii smaller than 1.14𝑅⊕ suffers from low completeness.

with the smaller planets possessing mostly rocky compositions akin to scaled-up versions of
Earth (super-Earths) and the larger planets hosting a thick H/He envelope (mini-Neptunes)
(e.g. Rogers, 2015). Planetary evolution models suggest that the radius valley is sculpted by
atmospheric loss processes such as photoevaporation (Owen & Wu, 2013) or core-powered
mass loss (Gupta & Schlichting, 2019) which strip smaller bodies of their gaseous envelopes
while leaving larger atmospheres mostly intact.

Although the hypothesis that the sub-Neptune population consists of rocky planets with
and without thick H/He envelopes is in broad agreement with extant observations, it is
not the only feasible theory that can explain the existence of these objects. Numerous
studies have considered the possibility of water-rich planets (e.g. Léger et al., 2004, Sotin
et al., 2007, Grasset et al., 2009), which would have densities comparable to rocky planets
with small amounts of H/He. This class of planet is explored in more detail in Chapter 5.
While sub-Neptunes with H/He-rich atmospheres have been observed with the Hubble Space
Telescope (HST, e.g. Benneke et al., 2019), a planet with a water-rich envelope has not yet
been identified, although a number of candidate water-worlds do exist (e.g. Luque et al.,
2021). It is possible that the sub-Neptune population consists of a mix of water-rich planets



1.2 Planet Formation and Demographics 13

and rocky planets with H/He envelopes, as well as planets with both a H/He envelope and
a substantial water component (e.g. Pierrehumbert & Gaidos, 2011, Madhusudhan et al.,
2021). The exact distribution of water and rock in a planet’s interior depends on a variety of
formation conditions, including the ice-to-rock ratio of the formation environment, a quantity
which in general is not well constrained from current theory or observations.

1.2.3 Planet Formation

One of the most important goals of planetary and exoplanetary science is to better understand
the underlying mechanisms behind planet formation, enabling us to explain how our own
world and the many exotic worlds surrounding us came into being. This is a highly ambitious
task, and while our knowledge of planet formation processes has progressed rapidly in recent
decades, many unsolved questions remain. Insight into planet formation can be obtained by
directly observing sites of planet formation, as well as by linking the properties of fully-formed
planets to their formation and evolution.

The process of star (and planet) formation begins when material in a giant molecular cloud
is pushed out of equilibrium and begins to collapse under its own gravity. As the collapse
proceeds, a disk structure is formed due to conservation of angular momentum, through
which matter accretes on to the forming star. This structure is known as a protoplanetary
disk, and typically exists for ≲10 million years with an orbital extent of ≳30 au. Some of the
material in the disk goes on to form planets, which remain in orbit of the star after the rest of
the disk material has either accreted on to the star or been driven away by some other process
(see e.g. Williams & Cieza, 2011, Chabrier et al., 2014, Helled et al., 2014, for reviews).

Planets are typically thought to form in disks via one of two mechanisms: core accretion
(Safronov, 1969, Pollack et al., 1996) or gravitational instability (Cameron, 1978, Boss,
1997). In the core accretion process, a solid body is initially built up through an accumulation
of dust grains and pebbles, which are known as planetesimals once they reach a few km in
diameter (Lambrechts & Johansen, 2012, Alibert et al., 2018). This leads to the formation
of a proto-planet, which is usually referred to as a planetary embryo if it is the seed of a
terrestrial or smaller planet, or a planetary core if it will go on to become a giant planet. If a
core develops before the gaseous disk disperses, then gas may be steadily accreted from the
disk, forming an envelope which surrounds the planet. If the mass of the envelope exceeds
the core mass, then the envelope will collapse and exponential gas accretion will occur. A
more detailed description of this process may be found in Helled & Morbidelli (2021).

The resulting types of planet that are produced according to this mechanism depend on
which stages of the formation process are able to take place. Small, rocky planets are formed
if the planetary embryo does not become large enough to initiate gas accretion (Wetherill,
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1980). Neptunes and sub-Neptunes can be created if a large core develops in time to accrete
some gaseous material from the disk, but does not acquire enough gas to trigger runaway
accretion (Venturini & Helled, 2017). Finally, giant planets are the outcome of cores for
which runaway accretion takes place (D’Angelo et al., 2010). Smaller planets are predicted to
form in the inner disk at higher temperatures, with giant planets forming at greater orbital
distances. The environment of the outer disk is more conducive to the formation of massive
cores due to the presence of ices, which provide additional solid material for the proto-planet
(Lecar et al., 2006).

The core accretion theory is consistent with the layout of the solar system, but is challenged
by the existence of exoplanets such as hot Jupiters, which should not be able to form at the short
orbital distances at which they have been observed. However, the idea that planets could form
at large orbital distances and subsequently migrate inwards had already been proposed even
before the discovery of hot Jupiters, having been suggested to explain the architecture of the
solar system (Goldreich & Tremaine, 1980, Tsiganis et al., 2005). While this theory appears
to explain the existence of giant planets with short orbital periods (Lin et al., 1996), other
mechanisms including in situ formation (Batygin et al., 2016) and planet-planet scattering
(Beaugé & Nesvorný, 2012) have also been proposed.

The gravitational instability model provides an alternative pathway for planet formation.
According to this theory, planet formation begins when an overdense region in a protoplanetary
disk collapses under its own gravity into clumps of gas and dust, which accrue material and
contract to form giant planets (Boss, 1997). This process allows for planet formation on a
faster timescale than core accretion (e.g. Lagrange et al., 2010) and may explain the existence
of massive planets at wide orbital separations (e.g. Marois et al., 2010). However, this theory
is unlikely to account for a large number of currently known planets (Kratter & Lodato, 2016).

According to these formation paradigms, the birth and development of a planet should be
reflected in its present-day composition. For example, planets which form in the outer disk
are expected to have a larger internal H2O component (Alessi et al., 2017). Furthermore, the
evolutionary history of a planet will impact its atmospheric properties. Evolutionary models
suggest that planets which form by core accretion should exhibit increasing atmospheric
metallicity (abundance of elements other than H/He) with decreasing mass (Fortney et al.,
2013), a theory which appears to hold for solar system planets (Atreya et al., 2018). As well
as overall metallicity, the relative abundances of different elements should also be affected
by formation and evolution. A particularly useful diagnostic of a planet’s history is its
atmospheric carbon-to-oxygen (C/O) ratio. The gas C/O ratio varies strongly throughout the
disk as various carbon- and oxygen-bearing species such as H2O, CO2 and HCN condense
into ices (Wong et al., 2004), and so the atmospheric C/O ratio of a planet should be indicative
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of where it formed in the disk (Öberg et al., 2011, Madhusudhan, 2012), and may also indicate
whether migration occured before or after the dipersal of the gaseous disk (Madhusudhan et al.,
2014c). Constraining the chemical inventory of a planet’s atmosphere through spectroscopic
observations can therefore provide extremely valuable insight into the origin and growth of
planetary systems.

1.2.4 Habitability and Biosignatures

One of the most tantalising prospects in planetary science is the detection of alien life
on another planet. Although no such detection has yet been made, the growing field of
astrobiology has improved our understanding of how life on other worlds might behave, and
how it could be identified. Much of the study of astrobiology is concerned with determining
planetary habitability: the measure of a planet’s potential to support life. Many factors can
affect habitability, including the nature of the host star, orbital distance from the host star,
interactions with moons and other bodies, and galactic phenomena (Meadows & Barnes,
2018). Since all Earth-based life requires liquid water to survive, astrobiologists typically
assume that the presence of liquid water is also a necessary condition for alien life. This led
to the definition of the habitable zone as the range of orbital distances from a star at which
a planet would be at the right temperature to host liquid water (Hart, 1979, Kasting et al.,
1993). It is important to note that a planet being located in the habitable zone does not mean
that it must be habitable, due to the other factors listed above.

Once a potentially habitable exoplanet has been identified, the next step is to search for
substances or patterns that could only be of biological origin, which are collectively referred
to as biosignatures (Des Marais et al., 2008). In the context of atmospheres, biosignatures
are typically combinations of gases that would be impossible to produce through abiotic
processes. Based on studies of the Earth’s atmosphere, a wide range of potential biosignature
gases have been proposed, including O2, O3, CH4 and N2O in various combinations (e.g.
Lederberg, 1965, Léger et al., 1996, Des Marais et al., 2002). However, it is very challenging
to rule out all possible abiotic sources for a particular atmospheric composition, and several
studies have highlighted the possibility of false positives (e.g. Selsis et al., 2002, Wordsworth
& Pierrehumbert, 2014). Therefore, it will be extremely important to assess the reliability of
any biosignature gas that is detected in future.

Despite the large number of exoplanets detected to date, a habitable-zone Earth-like
planet orbiting a Sun-like star has not yet been discovered. This is likely a result of the
limitations of current telescopes, rather than a dearth of such planets (Petigura et al., 2013),
and future observatories are expected to find the first Earth analogues (Rauer et al., 2014).
Habitable-zone terrestrial planets have however been identified orbiting smaller stars such
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as M dwarfs (e.g. Anglada-Escudé et al., 2016, Dittmann et al., 2017, Gillon et al., 2017).
Current facilities have not been able to unambiguously detect an atmosphere on one of these
planets, but it is hoped that upcoming observatories such as JWST and the Extremely Large
Telescopes will be able to probe the atmospheres of habitable-zone terrestrial planets orbiting
M dwarfs (Snellen et al., 2015, Lustig-Yaeger et al., 2019), meaning there is a real possibility
of the first biosignature detection within the next decade.

1.3 Characterisation of Exoplanets

Relating the observations described above to meaningful information about the properties of
an exoplanet requires connecting the observed data to theoretical models. Using measurements
of bulk properties such as the mass and radius of a planet, we can begin to characterise
a planet’s interior using internal structure models. Similarly, spectroscopic and phase
curve observations can be combined with atmospheric modelling techniques to learn about
properties of the atmosphere.

1.3.1 Internal Structure Models

Internal structure modelling has long been used to link a planet’s composition to its observable
bulk properties (mass, radius and equilibrium temperature). These models typically compute
the radius of a planet given its mass, composition and temperature profile by solving the
planetary structure equations of mass continuity,

𝑑𝑅

𝑑𝑀
=

1
4𝜋𝑅2𝜌

, (1.5)

where 𝑀 is the mass of a spherical shell of material internal to a radius 𝑅 and density 𝜌, and
hydrostatic equilibrium (presented here using mass as the dependent variable),

𝑑𝑃

𝑑𝑀
= − 𝐺𝑀

4𝜋𝑅4 , (1.6)

where 𝑃 is the pressure at the shell. Linking these equations requires an equation of state
(EOS) for each component of the interior, 𝜌 = 𝜌(𝑃,𝑇) as well as a pressure-temperature
(𝑃–𝑇) profile 𝑇 = 𝑇 (𝑃), or simply 𝜌 = 𝜌(𝑃) for a temperature-independent EOS.

Some of the earliest examples of such models were developed by Zapolsky & Salpeter
(1969), who found mass–radius (𝑀–𝑅) relations for zero-temperature spheres made from
a range of chemical species. Their methods have subsequently been developed further for
exoplanets. Valencia et al. (2006) modelled Mercury to super-Earth sized planets with
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Fig. 1.8 Transiting planet with different observing modes highlighted. At primary eclipse,
the wavelength-dependent decrease in the amount of stellar light reaching the observer can
be measured (transmission spectroscopy). Just before secondary eclipse, thermal radiation
from the dayside of the planet is observed (emission spectroscopy). By observing the system
for a whole orbit, a phase curve can be acquired.

different core and mantle compositions incorporating thermal effects, finding that the 𝑀–𝑅
relation differed depending on whether these planets are primarily rocky or icy. Seager et al.
(2007) explored models of isothermal planets consisting of iron, silicates, water, and carbon
compounds, as well as H/He, and noted a clear distinction between the radii of planets with
gaseous envelopes and those without. 𝑀–𝑅 relations for planets with sizes varying across
several orders of magnitude were also computed by Fortney et al. (2007), who combined an
ice+rock interior with a H/He envelope and calculated how planetary evolution affects the
interior in order to link the age of a planetary system to the internal structure of its planets.
For more detailed reviews, see e.g. Baraffe et al. (2014), Guillot et al. (2022). A technical
overview of internal structure modelling is presented in Chapter 5.

1.3.2 Atmospheric Observations

The observational techniques discussed in Section 1.1.1 have been fundamental in the path to
exoplanet discovery, with many of these methods providing information about bulk properties
of the observed planets, such as mass and radius. While this information alone is sufficient to
provide some insight into the possible composition of a planet (see Section 1.3.1), in order
to perform detailed characterisation of an exoplanet we must observe its atmosphere. The
observational methods described below and shown in Figure 1.8 enable the study of the
chemical composition of an atmosphere as well as its temperature structure, and can also
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provide information regarding dynamical processes such as winds or the presence of clouds
and hazes. Atmospheric observations are a crucial means of determining a planet’s formation
and evolution history, as well as being one of the most promising avenues in the search for
extraterrestrial life.

1.3.2.1 Transmission Spectroscopy

Transmission spectroscopy is closely related to the transit method for exoplanet detection
(Section 1.1.1.2), and also involves observing a star-planet system during primary eclipse
(while the planet passes in front of the star). Although in the previous discussion, the planet
was assumed to be an opaque disk, in reality the planet’s atmosphere will also block some of
the stellar light passing through it. Consider equation 1.4 for a planet with an atmosphere of
height 𝐻𝑎:

𝛿 ≈
(
𝑅𝑝 + 𝐻𝑎
𝑅∗

)2
≈

(
𝑅𝑝

𝑅∗

)2
+

2𝐻𝑎𝑅𝑝
𝑅2
∗

, (1.7)

where we have neglected the final term (𝐻𝑎/𝑅∗)2 since the atmospheric height is assumed to
be small compared to the stellar and planetary radii.

We can estimate the total height of the atmosphere by considering the equations of
hydrostatic equilibrium, d𝑃/d𝑧 = −𝜌𝑔, which relates pressure 𝑃, density 𝜌 and gravity
𝑔 to the height 𝑧 in the atmosphere. This equation can be combined with the ideal gas
law, `𝑃 = 𝑘𝐵𝜌𝑇 , where 𝑇 is the temperature of the atmosphere, ` is the mean molecular
weight in kg and 𝑘𝐵 is Boltzmann’s constant. Assuming that 𝑇 , 𝜌 and 𝑔 remain constant
throughout the atmosphere, we can solve the combined equations to find that 𝑃 ∝ 𝑒−𝑧/𝐻sc ,
where 𝐻sc = 𝑘𝐵𝑇/`𝑔 is the atmospheric scale height, i.e. the increase in height over which
the pressure decreases by a factor of 𝑒.

The total height of the atmosphere can be approximated as 𝐻𝑎 = 𝑁𝐻sc, where 𝑁 ≈ 5-10
(Madhusudhan et al., 2014a). The atmospheric contribution is small compared to the total
transit depth. For example, consider HD 209458b the first transiting exoplanet to observed
(Charbonneau et al., 2000). The planetary and stellar radii are 1.41 𝑅𝐽 and 1.2 𝑅⊙ respectively
(del Burgo & Allende Prieto, 2016), leading to a transit depth 𝛿 = 0.0146. To estimate
the atmospheric contribution we assume a temperature of 1450 K (Sing et al., 2016), mass
of 0.74𝑀𝐽 (del Burgo & Allende Prieto, 2016), implying a surface gravity of 9.2 m s−2,
and mean molecular weight of 2.3 amu (appropriate for a Hydrogen-rich atmosphere with
solar elemental abundances, Asplund et al., 2009). This yields a scale height 𝐻sc = 564 km,
meaning the additional contribution to the transit depth is approximately 8 × 10−4, assuming
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an atmosphere of 5 scale heights. This highlights the high levels of observational precision
required to detect the atmosphere of an exoplanet. Additionally, the value of 𝐻sc decreases for
planets with lower temperatures and higher mean molecular weights, both of which would be
expected for an Earth-like atmosphere, thus making atmospheric observations of terrestrial
planets even more challenging.

The above calculations assume a uniformly opaque atmosphere. However, in reality
the contribution of an atmosphere to the transit depth is a wavelength-dependent effect,
since various chemical species present in the atmosphere will absorb more light at certain
wavelengths than at others. We can introduce wavelength-dependence into our formulation
of the transit depth by considering an effective atmospheric height 𝐻𝑎 = 𝑁_𝐻sc, where 𝑁_
is the number of scale heights at which the planet is effectively opaque at wavelength _,
which will depend on the composition of the atmosphere. This allows us to construct a
wavelength-dependent transmission spectrum, 𝛿_.

Note that, due to the observations taking place while the planet passes in front of the
host star, the portion of the atmosphere probed in transmission spectroscopy corresponds to
the terminator region between the day- and nightside of the planet. Since planets amenable
to atmospheric characterisation in this way are typically on short orbital periods, they are
also tidally locked with permanent day- and nightsides (Guillot et al., 1996). Therefore the
location of the day-night terminator does not change throughout the planet’s orbit.

The first detection of an exoplanetary atmosphere was achieved using transmission
spectroscopy (Charbonneau et al., 2002), when absorption of atmospheric sodium was
detected on the hot Jupiter HD 209458b using the Space Telescope Imaging Spectrograph
(STIS) on HST, observing at optical wavelengths. Since then, exoplanet transmission spectra
have been obtained for more than 50 exoplanets (Zhang et al., 2020). Observations continue
to be acquired from space using HST, with the installation of a new instrument, Wide
Field Camera 3 (WFC3), enabling observations in the near IR (Deming et al., 2013). IR
transit depths have also been measured using the Spitzer Space Telescope (e.g. Tinetti et al.,
2007, Désert et al., 2011). Furthermore, transmission spectra are regularly observed using
ground-based facilities including the Very Large Telescope (VLT, e.g. Sedaghati et al., 2015,
Wilson et al., 2020, Spyratos et al., 2021), the Gran Telescopio Canarias (GTC, e.g. Sing et al.,
2012, Chen et al., 2017, Murgas et al., 2020) and the Magellan Telescope (e.g. Rackham
et al., 2017, Weaver et al., 2021).

More than a dozen chemical species have been identified in exoplanet atmospheres
using transmission spectroscopy (Guillot et al., 2022). As well as sodium, the alkali metals
potassium and lithium have been observed at optical wavelengths (e.g. Chen et al., 2018).
A host of other metals including iron, magnesium and calcium have been detected with
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Fig. 1.9 Schematic representation of a transmission spectrum for a typical primary atmosphere,
highlighting the wavelengths at which certain features may be observed. Optical wavelengths
generally probe atomic species such as Na and K as well as clouds and hazes, whereas IR
wavelengths are typically sensitive to molecules. Note however that some molecules such as
TiO and VO have features at optical wavelengths.

high-resolution observations from ground-based facilities (e.g. Cabot et al., 2020, Deibert
et al., 2021, Gibson et al., 2022). Infrared observations of transmission spectra have led to
detections of molecules including H2O, CO, and HCN (e.g. Snellen et al., 2010, Deming
et al., 2013, MacDonald & Madhusudhan, 2017). A schematic representation of a model
transmission spectrum is shown in Figure 1.9.

1.3.2.2 Emission Spectroscopy

Unlike transmission spectra, which are obtained as the planet passes in front of the host
star, emission spectra are observed just before secondary eclipse, when the planet passes
behind the star. At this moment, flux from the dayside of the planet will contribute to the
total observed flux from the system. By comparing this to the flux recieved during secondary
eclipse, when only stellar light contributes, we can infer the contribution from the planet. This
is typically presented as the ratio of the planetary flux 𝐹𝑝 to the stellar flux 𝐹∗, known as the
eclipse depth. If we assume that the star and planet both emit as blackbodies at temperatures
𝑇∗ and 𝑇𝑝 respectively, then
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𝐹𝑝

𝐹∗
=
𝑅2
𝑝 𝐵_ (𝑇𝑝)
𝑅2
∗ 𝐵_ (𝑇∗)

, (1.8)

where 𝐵_ (𝑇) is the Planck function:

𝐵_ (𝑇) =
2ℎ𝑐2

_5(exp [ℎ𝑐/_𝑘𝐵𝑇] − 1)
, (1.9)

where ℎ is Planck’s constant and 𝑐 is the speed of light. The signal described in equation 1.8
is maximised for large, hot planets such as hot Jupiters. Emission spectroscopy is typically
conducted at infrared wavelengths, since planetary emission peaks at these wavelengths,
whereas stellar emission peaks at optical wavelengths. At longer wavelengths (known as
the Rayleigh-Jeans limit), the Plank function shown in equation 1.9 can be approximated as
𝐵_ (𝑇) ≈ 2𝑐𝑘𝐵𝑇/_4, meaning equation 1.8 becomes

𝐹𝑝

𝐹∗
≈
𝑅2
𝑝 𝑇𝑝

𝑅2
∗ 𝑇∗

. (1.10)

Considering once again the example of HD 209458b (𝑅𝑝 = 1.41 𝑅𝐽 , 𝑇𝑝 = 1450 K,
𝑅∗ = 1.2 𝑅⊙, 𝑇∗ = 6071 K; del Burgo & Allende Prieto, 2016), we find an approximate
eclipse depth of ∼0.0035, which is somewhat smaller than the transit depth for the same
system.

Despite the smaller signal, emission spectra are capable of providing useful information
about both the composition and temperature structure of a planet’s dayside. Emission
spectroscopy probes different layers of the atmosphere at different wavelengths: at wavelengths
where absorption from chemical species in the upper atmosphere is more prominent, the
emergent flux comes from these higher layers of the atmosphere, meaning observations are
sensitive to the temperature near the top of the atmosphere. Conversely, at wavelengths where
the atmosphere is relatively transparent, the observed flux comes from the deep atmosphere
and is sensitive to the temperature in those regions. Emission spectroscopy can therefore be
used to determine how temperature varies with height in the atmosphere, as well as providing
insight into the atmospheric composition. Observed spectra have led to the identification of
thermal inversions in several hot Jupiters (Haynes et al., 2015, Evans et al., 2017, Sheppard
et al., 2017) as well as detections of chemical species including H2O (e.g. Kreidberg et al.,
2014b, Line et al., 2016, Evans et al., 2017, Arcangeli et al., 2018, Mansfield et al., 2022).
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1.3.2.3 Phase Curves

The two methods discussed above are used to observe specific regions of a planet’s atmosphere:
the day-night terminator in the case of transmission spectroscopy, and the dayside in the
case of emission spectroscopy. In contrast, phase curve observations can be used to obtain
longitudinally-resolved properties of the entire surface of an exoplanet. In order to achieve
this, the planet is observed throughout its whole orbit, with the observed flux at different times
corresponding to different longitudes for tidally-locked planets. Phase curves can then be
used to construct temperature maps of a planet (Cowan & Agol, 2008). Furthermore, if phase
curves can be observed at multiple wavelengths, then emission spectra can be constructed as
described above, but for multiple hemispheres of the planet (Knutson et al., 2009).

While phase curve observations (particularly those taken at multiple wavelengths) would
appear to be the most informative class of atmospheric observations, they are typically much
more challenging to obtain due to the considerable increase in observing time needed to
acquire a full phase curve rather than a transmission or emission spectrum. This can be
further hindered by a telescope’s inability to observe the same target for long periods of time
(e.g. coverage gaps when observing with HST due to the target passing behind the Earth), as
well as other effects such as stellar ellipsoidal variations (see e.g. Parmentier & Crossfield,
2018).

Despite these challenges, successful phase curve observations have uncovered a wealth of
information about a number of target planets, including the measurement of effects such as
the shift of a planet’s hotspot away from the substellar point due to winds (e.g. Knutson et al.,
2007, Zhang et al., 2018), the temperature contrast between the day- and nightsides of a planet
(e.g. Stevenson et al., 2017, Kreidberg et al., 2018, Bell et al., 2021), and inhomogeneities in
the distribution of clouds in the atmosphere (e.g. Demory et al., 2013, Shporer & Hu, 2015).

1.3.2.4 Directly Imaged Spectra

Exoplanets which can be observed by direct imaging (Section 1.1.1.4) may also be amenable
to direct observations of their emission spectra (Barman et al., 2011). In this case, rather than
observing the planet/star flux ratio 𝐹𝑝/𝐹∗, only the planet flux 𝐹𝑝 is measured. Similarly to
emission spectra obtained through secondary eclipse observations, these spectra are highly
sensitive to both the temperature profile and chemical composition of a planet (Biller &
Bonnefoy, 2018). However, directly imaged spectra can currently be obtained for just a
handful of planets due to the challenges described in Section 1.1.1.4. Furthermore, since
direct imaging of an exoplanet does not typically yield a measurement of the planet’s mass,
it can be difficult to explain the observed spectra using atmospheric models, which require
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knowledge of the planet’s surface gravity. Therefore it is challenging to infer properties of
the atmosphere from directly imaged spectra, although a few chemical species have been
detected (e.g. Konopacky et al., 2013, Bonnefoy et al., 2014, Chilcote et al., 2017).

1.3.3 Atmospheric Models

Theoretical models of exoplanet atmospheres used to explain observations typically follow
one of two major paradigms: self-consistent forward modelling or inverse modelling, which
is also referred to as atmospheric retrieval. A technical explanation of the process for
constructing forward models will be presented in subsequent chapters. Here, we briefly
summarise the key details of the two approaches, explaining their relative advantages and
disadvantages.

1.3.3.1 Self-consistent Forward Models

Self-consistent forward models begin with a set of assumptions about the properties of a
planet (such as its surface gravity and orbital semi-major axis) and work forward to create
model observables such as spectra using our understanding of the physics and chemistry of
atmospheres. The complexity of these models can vary widely depending on the desired
application. Some of the earliest self-consistent models of exoplanet atmospheres were adapted
from models for solar system planets (e.g. Marley & McKay, 1999) or stellar atmospheres
(Seager & Sasselov, 1998). These models typically assumed a 1D atmosphere and would
solve for the atmospheric temperature profile using the constraints of radiative-convective
and hydrostatic equilibrium, given the level of stellar flux and heating from the planetary
interior. This temperature profile and the assumption of chemical equilibrium is then used
to determine atomic and molecular abundances, which in turn can alter the temperature
profile by absorbing, emitting, or scattering photons. The model iterates over the coupled
thermal and chemical properties of the atmosphere until converging to a self-consistent
solution. Additional complexity may be added by considering processes such as chemical
disequilibrium (e.g. Moses et al., 2011, Venot et al., 2012) or clouds and hazes (e.g. Piette &
Madhusudhan, 2020b).

While 1D model parameters typically depend on height only, a number of key atmospheric
processes such as dynamics (winds) require models whose properties can vary with latitude
and longitude. General Circulation Models (GCMs) are detailed 3D models that simulate
atmospheric dynamics, some also incorporating chemical processes along with radiative
transport (Showman et al., 2020). Originally developed to simulate the Earth’s atmosphere, a
wide range of GCMs have been adapted for application to exoplanet atmospheres (Showman
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& Guillot, 2002, Cooper & Showman, 2005, Lewis et al., 2010, Rauscher & Menou, 2010,
Thrastarson & Cho, 2010, Wordsworth et al., 2011, Polichtchouk & Cho, 2012, Dobbs-Dixon
& Agol, 2013, Kataria et al., 2013, Amundsen et al., 2016, Mendonça et al., 2016, Way
et al., 2017, Deitrick et al., 2020). These models take various different approaches to
computing atmospheric dynamics. In general, GCMs aim to solve the primitive equations
of atmospheric dynamics in 3D across the entire planet, which are simplifications of the
Navier-Stokes equations that assume hydrostatic equilibrium, a shallow atmosphere compared
to the planetary radius, and constant gravity with height. However, some models instead opt
to solve the full Navier-Stokes equations (e.g. Dobbs-Dixon & Agol, 2013, Mayne et al., 2014,
Amundsen et al., 2016). GCMs have been used to explain phase curve observations, leading
to inferences of day-night temperature contrasts and hotspot offsets (see Section 1.3.2.3).

1.3.3.2 Atmospheric Retrieval

In contrast to self-consistent foward modelling, where assumed atmospheric properties are
used to compute an observed spectrum, atmospheric retrieval begins by considering a set of
observations, and explores the range of model atmospheres that can explain the observed
data. In this approach, atmospheric properties such as temperature structure and chemical
abundances are described by a set of free parameters which are fed into a heavily simplified
forward model. The model is combined with a statistical sampling algorithm which explores
the full range of available combinations of parameter values in order to find those which
yield the best-fitting models to the data. This procedure results in probability distributions
for each model parameter, providing information about the likely properties of the observed
atmosphere.

Atmospheric retrieval has become a ubiquitous tool for many kinds of exoplanetary
atmospheric observations, including transmission spectra (e.g. Madhusudhan & Seager, 2009,
Benneke & Seager, 2012, de Wit & Seager, 2013, Madhusudhan et al., 2014b, Kreidberg
et al., 2014b, Waldmann et al., 2015a, Wakeford et al., 2017, Barstow et al., 2017, MacDonald
& Madhusudhan, 2017, Pinhas et al., 2018, Zhang et al., 2019, Lacy & Burrows, 2020,
Welbanks & Madhusudhan, 2021, Cubillos et al., 2022), emission spectra (e.g. Madhusudhan
& Seager, 2009, Madhusudhan et al., 2011, Lee et al., 2012, Line et al., 2013, Waldmann et al.,
2015b, Evans et al., 2017, Gandhi & Madhusudhan, 2018, Piette et al., 2022, Harrington
et al., 2022), phase curves (e.g. Changeat & Al-Refaie, 2020, Feng et al., 2020, Irwin et al.,
2020, Chubb & Min, 2022) and directly imaged spectra (e.g. Lee et al., 2013, Lupu et al.,
2016, Lavie et al., 2017, Nayak et al., 2017). Retrieval frameworks also exist to analyse the
atmospheres of solar system planets (e.g. Rodgers, 2000, Irwin et al., 2008) and brown dwarfs
(e.g. Line et al., 2014, Burningham et al., 2017, Zalesky et al., 2019, Kitzmann et al., 2020,
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Piette & Madhusudhan, 2020a). A more detailed description of the atmospheric retrieval
algorithm and its application to transmission spectra is presented in Chapter 2.

Atmospheric retrieval requires the computation of a very large number of forward models in
order to fully sample the space of possible atmospheres that could explain a given observation.
One of the key trade-offs required to make atmospheric retrievals computationally feasible is
that the requirement of thermo-chemical equilibrium is relaxed, meaning that the resulting
atmospheric models may not be physically plausible. Atmospheric properties inferred from
retrieval can be compared to self-consistent forward models in order to assess whether they
are reasonable given our knowledge of atmospheric physics and chemistry. Conversely,
retrieval results which disagree with self-consistent models could be an indication that further
refinement of self-consistent models is required. Therefore, the two approaches can be seen
as complementary methods for understanding the atmospheres of distant worlds.

1.3.4 Atmospheric Physics and Chemistry

The observational and modelling techniques described here can be used to infer a wide
range of physical and chemical phenomena which occur in planetary atmospheres. The
specific atmospheric regions and processes that are probed depend on the type of observation.
Here we outline some key components of atmospheres which may be characterised through
observations.

1.3.4.1 Chemical Composition

Planetary atmospheres can be grouped into two broad categories based on their chemical
composition. Primary atmospheres, which are found around giant planets, are mostly inherited
from the planetary nebula in which the planet formed. They consist primarily of hydrogen
and helium, with a typical mean molecular weight of ∼2.3 amu. In contrast, secondary
atmospheres found around terrestrial planets are mostly generated through geological and
surface processes. They consist of heavier elements such as nitrogen and oxygen, and therefore
have a much larger mean molecular weight (e.g. ∼30 amu for the Earth’s atmosphere). As
discussed previously, this makes terrestrial atmospheres more difficult to observe than giant
planet atmospheres due to their smaller scale height.

Beyond their bulk composition, atmospheres also possess trace amounts of a range of other
chemical species. The exact composition is determined by different processes at different
locations in the atmosphere. We typically expect the deeper layers of a planet’s atmosphere
(𝑃 ≳1 bar) to be in or near chemical equilibrium. In this case it is possible to calculate the
abundances of chemical species in the atmosphere by minimising the Gibbs free energy of



26 Introduction

Fig. 1.10 Physical and chemical processes in exoplanetary atmospheres that may be probed
by different regions of the electromagnetic spectrum. Left: Example temperature profiles for
an irradiated planet with a thermal inversion (red), an irradiated planet without a thermal
inversion (blue), and a poorly irradiated planet (grey). Centre: Processes active at various
depths in the atmosphere. Right: Penetration depths of UV, optical and IR light, along with
chemical species whose signatures are present in those wavelength ranges. Figure from
Madhusudhan (2019).

the system given its temperature, pressure, and elemental abundances. This can be shown by
considering the first law of thermodynamics for a generalised system:

𝑑𝑈 = 𝑑𝑄 − 𝑑𝑊 +
∑︁
𝑖

`𝑖𝑑𝑁𝑖, (1.11)

where 𝑑𝑈 is the change in energy of the system, 𝑑𝑄 is the heat supplied to the system, 𝑑𝑊 is
the work done on the system, and `𝑖 and 𝑑𝑁𝑖 are the chemical potential and change in number
of particles, respectively, of species 𝑖. This can be combined with the second law in the form
𝑇𝑑𝑆 ≥ 𝑑𝑄, where 𝑆 is the entropy of the system, to give

𝑑𝑈 ≤ 𝑇𝑑𝑆 − 𝑃𝑑𝑉 +
∑︁
𝑖

`𝑖𝑑𝑁𝑖, (1.12)

noting that 𝑑𝑊 = 𝑃𝑑𝑉 where 𝑃 and 𝑉 are the pressure and volume of the system. We now
define the Gibbs free energy



1.3 Characterisation of Exoplanets 27

𝐺 = 𝑈 + 𝑃𝑉 − 𝑇𝑆
=⇒ 𝑑𝐺 = 𝑑𝑈 + 𝑃𝑑𝑉 +𝑉𝑑𝑃 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇

≤ 𝑉𝑑𝑃 − 𝑆𝑑𝑇 +
∑︁
𝑖

`𝑖𝑑𝑁𝑖, (1.13)

meaning that at fixed 𝑃 and 𝑇 we have 𝑑𝐺 ≤ Σ𝑖`𝑖𝑑𝑁𝑖, and in a steady state where 𝑁𝑖 is
constant, 𝑑𝐺 ≤ 0, meaning 𝐺 is minimised. For a system consisting of multiple chemical
species, 𝐺 can be expressed as

𝐺

𝑅𝑇
=

∑︁
𝑖

𝑁𝑖

(
𝐺𝑖,0

𝑅𝑇
+ ln 𝑃 + ln 𝑋𝑖

)
, (1.14)

where 𝑅 is the ideal gas constant, 𝐺𝑖,0 is the Gibbs free energy per mole at some reference
pressure 𝑃0, and 𝑋𝑖 = 𝑁𝑖/𝑁 is the mixing ratio of species 𝑖. The mixing ratios can therefore
be calculated by minimising 𝐺 along with the assumption that the total number of atoms of
each element in the system remains constant. A more detailed description of this process can
be found in e.g. (Heng et al., 2016).

In primary atmospheres, the most prominent molecules that contribute to observable
effects in spectra are those containing oxygen, carbon and nitrogen. Figure 1.11 shows the
equilibrium mixing ratios at 𝑃 = 1 bar of these molecules assuming abundances of O, C and
N equal to those found in the Sun (Asplund et al., 2009).

In the upper atmosphere, a range of processes can cause chemical abundances to deviate
from their equilibrium values. For example, at pressures lower than 1 bar it is possible that
the timescale for chemical reactions may exceed the timescale for vertical diffusion in the
atmosphere (Allen et al., 1981). The location at which this occurs is called the quench level
(Visscher & Moses, 2011). Above the quench level, chemical abundances remain mostly
constant due to vertical mixing, and so may not follow their equilibrium values. Higher again
in the atmosphere, molecules may be subject to photodissociation due to incoming stellar
photons, leading to new chemical processes which are collectively known as photochemistry.
An example of a photochemical process is the formation of ozone in the Earth’s atmosphere
(Chapman, 1930). Above the photochemistry layer, the kinetic energies of gas particles in the
atmosphere may exceed the potential energy of the planet, allowing for atmospheric escape
to occur (Owen, 2019).

It is possible to infer the presence of various chemical species in an exoplanetary
atmosphere using spectroscopic observations since a given species will preferentially absorb
more light at certain wavelengths than at others. This is related to the intrinsic absorption
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Xi

T (K)
Fig. 1.11 Mixing ratios of key molecules present in hydrogen-dominated atmopsheres in
chemical equilibrium, assuming solar elemental abundances, at a nominal pressure of 1 bar.
Figure adapted from Gandhi & Madhusudhan (2017).

cross-section of the species (see Chapter 2 for further detail). Key absorbers at UV, optical
and IR wavelengths are listed in Figure 1.10.

1.3.4.2 Temperature Structure

The temperature structure of a planet’s atmosphere is strongly affected by processes such
as stellar radiation and the planet’s internal heat flux, and is closely linked to chemical
and dynamical properties (Guillot, 2010). For hot Jupiters, it is possible to probe how the
temperature of a planet’s dayside varies with height using emission spectroscopy (see Section
1.3.2.2). Of particular interest is the presence or absence of a thermal inversion, in which
temperature increases with increasing height. A number of solar system planets exhibit
thermal inversions, caused by the presence of hydrocarbon hazes in giant planets (Moses et al.,
2005) or ozone in the Earth’s atmosphere (Chapman, 1930). Although these species would
not be expected to exist in the atmospheres of hot giant planets, a small number of thermal
inversions have been inferred from emission spectra of hot Jupiters (e.g. Haynes et al., 2015,
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Evans et al., 2017, Sheppard et al., 2017). Prior to these observations, it had been proposed
that UV/visible absorption from species such as TiO and/or VO cause such inversions in
highly irradiated planets (Hubeny et al., 2003), although it has also been suggested that other
absorbers such as the H− ion could be the cause (Arcangeli et al., 2018).

Temperature variations with latitude and longitude also play an important role in
determining the structure of an atmosphere. Early GCMs of hot Jupiters predicted large
temperature gradients between the day- and nightsides of the planet as well as an eastward
equatorial jet, causing the hottest region of the planet to be shifted away from the substellar
point (Showman & Guillot, 2002, Cooper & Showman, 2005). These predictions were
later confirmed using phase curve observations (e.g. Knutson et al., 2007). With upcoming
facilities, it is possible that effects such as day-night temperature constrasts may be detectable
through other kinds of observations such as transmission spectroscopy (see Chapter 4).

1.3.4.3 Clouds and Hazes

The presence of clouds and hazes in an atmosphere, collectively referred to as aerosols, can
strongly impact and often inhibit spectroscopic observations. Clouds are formed when vapour
condenses onto some nucleus under certain thermodynamical conditions, whereas hazes are
formed by non-condensation processes such as photochemistry (Marley et al., 2013). The
exact observational signatures of aerosols depend on the wavelengths being observed as well
as the nature of the observation. At visible wavelengths, clouds and hazes may lead to a
steep downward slope in transmission spectra (Pont et al., 2013) or reflected stellar spectra in
emission spectra (Marley et al., 2013). At IR wavelengths clouds and hazes typically lead
to muted spectral features in both transmission and emission spectra, with the effect being
particularly prominent for transmission spectra (Fortney, 2005).

Clouds and hazes have been proposed to explain atmospheric observations of numerous
exoplanets across the mass range. A study of ten hot Jupiters conducted by Sing et al. (2016)
invoked the presence of clouds to explain muted features of H2O compared to what would
be expected from chemical equilibrium with solar elemental abundances. However, later
studies have suggested that these features may be a result of depleted H2O abundances, with
varied levels of clouds and hazes in the sample (Barstow et al., 2017, Pinhas et al., 2019).
Additionally, the presence of high-altitude clouds and hazes has been used to explain flat
transmission spectra of sub-Neptunes (e.g. Kreidberg et al., 2014a). These muted spectra
have generally been observed for planets with equilbrium temperatures of ∼400–600 K, with
more prominent features being observed in planets both below (e.g. Benneke et al., 2019)
and above (e.g. Guo et al., 2020) this temperature range. This tentative relationship between
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haziness and temperature for sub-Neptunes is in agreement with laboratory experiments of
haze formation (Yu et al., 2021).

1.4 Scope of this Thesis

In this thesis, we present new developments in atmospheric modelling and retrieval of
exoplanet transmission spectra, as well as new internal structure models for water-rich
sub-Neptunes. We present a new atmospheric retrieval framework based on machine learning
techniques, and demonstrate that it can robustly reproduce the results of existing methods,
while improving computational efficiency in some cases. We develop a new atmospheric
forward model that can compute the three-dimensional temperature structure of a planet while
remaining computationally efficient for retrievals. We also present a new internal structure
model for exoplanets with a detailed EOS for H2O, enabling characterisation of water-rich
sub-Neptunes.

1.4.1 Atmospheric Retrieval of Transmission Spectra

In Chapter 2, we introduce a typical atmospheric retrieval framework in detail, focusing on
transmission spectroscopy. We begin by presenting the radiative transfer calculations for the
forward model, describing key components such as opacity from chemical species, clouds
and hazes, and stellar heterogeneity. We subsequently discuss the underlying principles
behind Bayesian sampling algorithms, particularly Nested Sampling, which are used to link
the forward model to an observed data set. We review key results from atmospheric retrieval
analyses and highlight possible limitations.

1.4.2 Supervised Machine Learning for Atmospheric Retrieval of Exo-
planets

Atmospheric retrieval of exoplanets from spectroscopic observations requires an extensive
exploration of a highly degenerate and high-dimensional parameter space to accurately
constrain atmospheric parameters. Retrieval methods commonly conduct Bayesian parameter
estimation and statistical inference using sampling algorithms such as Markov Chain Monte
Carlo (MCMC) or Nested Sampling. Recently several attempts have been made to use
machine learning algorithms either to complement or replace fully Bayesian methods. While
these approaches have found some success, they are still at times unable to accurately
reproduce results from contemporary Bayesian retrievals. The goal of the work presented
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in Chapter 3 is to investigate the efficacy of machine learning for atmospheric retrieval. As
a case study, we use the Random Forest supervised machine learning algorithm which has
been applied previously for atmospheric retrieval of the hot Jupiter WASP-12b using its
near-infrared transmission spectrum. We reproduce previous results using the same approach
and the same semi-analytic models, and highlight its limitations. We subsequently extend
the machine learning approach to develop a new algorithm that results in a better match to
a fully Bayesian retrieval. We combine this new method with a fully numerical model and
demonstrate excellent agreement with a Bayesian retrieval of the transmission spectrum of
another hot Jupiter, HD 209458b. Despite this success, and achieving high computational
efficiency, we still find that the machine learning approach is computationally prohibitive
for high-dimensional parameter spaces that are routinely explored with Bayesian retrievals
with modest computational resources. We discuss the trade offs and potential avenues for the
future.

1.4.3 A Three-Dimensional Retrieval Framework for Exoplanet Trans-
mission Spectra

Atmospheric retrievals of exoplanet transmission spectra allow constraints on the composition
and structure of the day-night terminator region. Such retrievals in the past have typically
assumed one-dimensional temperature structures which were adequate to explain extant
observations. However, the increasing data quality expected from exoplanet spectroscopy
with JWST motivates considerations of multidimensional atmospheric retrievals. In Chapter
4 we present Aura-3D, a three-dimensional atmospheric retrieval framework for exoplanet
transmission spectra. Aura-3D includes a forward model that enables rapid computation of
transmission spectra in 3D geometry for a given atmospheric structure and can, therefore, be
used for atmospheric retrievals as well as for computing spectra from GCMs. In order to
efficiently explore the space of possible 3D temperature structures in retrievals, we develop a
parametric 𝑃–𝑇 profile which can accurately represent azimuthally-averaged temperature
structures of a range of hot Jupiter GCMs. We apply our retrieval framework to simulated
JWST observations of hot Jupiter transmission spectra, obtaining accurate estimates of the
day-night temperature variation across the terminator as well as the abundances of chemical
species. We demonstrate an example of a model hot Jupiter transmission spectrum for
which a traditional 1D retrieval of JWST-quality data returns biased abundance estimates,
whereas a retrieval including a day-night temperature gradient can accurately retrieve the true
abundances. Our forward model also has the capability to include inhomogeneous chemistry
as well as variable clouds/hazes. This new retrieval framework opens the field to detailed
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multidimensional atmospheric characterisation using transmission spectra of exoplanets in
the JWST era.

1.4.4 Exploring the Phase Structure of Water-Rich Sub-Neptunes

Understanding the internal structures of planets with a large H2O component is important
for the characterisation of sub-Neptune planets. The finding that the mini-Neptune K2-18b
could host a liquid water ocean beneath a mostly hydrogen envelope motivates a detailed
examination of the phase structures of water-rich planets. To this end, in Chapter 5 we
present new internal structure models for super-Earths and mini-Neptunes that enable detailed
characterisation of a planet’s water component. We use our models to explore the possible
phase structures of water worlds and find that a diverse range of interiors are possible,
from oceans sandwiched between two layers of ice to supercritical interiors beneath steam
atmospheres. We determine how the bulk properties and surface conditions of a water world
affect its ocean depth, finding that oceans can be up to hundreds of times deeper than on
Earth. For example, a planet with a 300 K surface can possess H2O oceans with depths
from 30–500 km, depending on its mass and composition. We also constrain the region of
mass–radius space in which planets with H/He envelopes could host liquid H2O, noting that
the liquid phase can persist at temperatures up to 647 K at high pressures of 218–7 × 104 bar.
Such H/He envelopes could contribute significantly to the planet radius while retaining liquid
water at the surface, depending on the planet mass and temperature profile. Our findings
highlight the exciting possibility that habitable conditions may be present on planets much
larger than Earth.

1.4.5 Internal Structures of JWST Targets in the sub-Neptune Regime

JWST is set to revolutionise our understanding of exoplanets smaller than Neptune, providing
much higher quality spectra than have so far been accessible. This has been recognised
through the allocation of numerous early JWST observing programs dedicated to observations
of sub-Neptune atmospheres. Before such observations take place, it is vitally important
to understand the interior structures of these planets, which strongly affects their possible
atmospheric compositions. In Chapter 6, we present applications of internal structure
models to a number of upcoming JWST targets. We use the bulk parameters and retrieved
atmospheric properties to constrain the internal structure and thermodynamic conditions in the
habitable-zone mini-Neptune K2-18b. The constraints on the interior allow multiple scenarios
between rocky worlds with massive H/He envelopes and water worlds with thin envelopes.
We constrain the mass fraction of the H/He envelope to be ≲6%; spanning ≲10−5 for a
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predominantly water world to ∼6% for a pure iron interior. The thermodynamic conditions at
the surface of the H2O layer range from the supercritical to liquid phases, with a range of
solutions allowing for habitable conditions. We also investigate the possible compositions of
the pair of planets orbiting the star TOI-776. The bulk densities of TOI-776b and c allow for
a wide range of possible interior and atmospheric compositions. However, we find that both
planets must have retained a significant atmosphere, with slightly different envelope mass
fractions. We discuss how upcoming observations will revolutionise our understanding of
these planets, helping to uncover the mysteries of the sub-Neptune population.

1.4.6 Discussion and Conclusions

Finally, in Chapter 7 we summarise the new developments presented in this thesis and offer
some concluding remarks. We consider some of the key questions that remain open in the
field of exoplanetary characterisation, and consider potential future avenues of research that
may be opened up by upcoming technological developments.





Chapter 2

Atmospheric Retrieval of Transmission
Spectra

“Astronomers, like burglars and jazz musicians, operate best at night.”
– Miles Kington

Atmospheric retrieval has been a relatively recent development in exoplanetary science. Initial
spectroscopic observations of exoplanets were challenging to interpret due to low resolution
and low signal-to-noise (e.g. Tinetti et al., 2007, Grillmair et al., 2008, Swain et al., 2008).
Inferences of molecular features or temperature structures such as thermal inversions were
made by comparing a small number of forward models to the observations that appeared to
provide a good fit. This approach failed to explore broad regions of the parameter space, and
did not account for degeneracies between various atmospheric model parameters. The need
to introduce a more robust means of inferring atmospheric properties from spectra led to the
development of atmospheric retrieval for exoplanets (Madhusudhan & Seager, 2009), inspired
by similar techniques which had been employed to analyse Earth-based (Rodgers, 2000) and
solar system (Irwin et al., 2008) data. As the quality of available data has improved, retrieval
methodologies have evolved in tandem to efficiently find the span of models that can explain
new observations (Madhusudhan, 2018).

In this chapter we provide a technical introduction to the theory of atmospheric retrieval,
as introduced in Section 1.3.3.2. The algorithm combines a forward modelling code with
a parameter estimation method. We largely follow the methodology of the Aura retrieval
code (Pinhas et al., 2018). The forward model from Aura is combined with a new parameter
estimation scheme using machine learning in Chapter 3, while the forward model is extended
to allow for the calculation of three-dimensional model atmospheres in Chapter 4.
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Fig. 2.1 Schematic of atmospheric retrieval. The algorithm combines a parametric model
of an atmosphere with a parameter estimation scheme to derive model parameters given
an observed spectrum. Typical model parameters describe the temperature structure and
chemical composition of the atmosphere as well as other properties such as clouds/hazes.
The parameter estimation scheme usually allows for computation of posterior probability
distributions for each parameter, which can be used to derive quantities such as elemental
abundance ratios from those of molecular abundances.

The process of atmospheric retrieval involves estimating properties of an atmosphere
given some observed spectral data. Typically a large number of models are produced and
compared to observations in order to find those which can most accurately describe the data
(Fortney et al., 2021). The structure of a typical retrieval algorithm is shown in Figure 2.1.
In the remainder of this chapter we describe each of the components of a retrieval in detail.
We also demonstrate a retrieval of the transmission spectrum of the canonical hot Jupiter
HD 209458b, observed using HST (Deming et al., 2013, Sing et al., 2016).

2.1 Model Transmission Spectra

2.1.1 Radiative Transfer

In order to model the spectrum of an astronomical object we must understand how radiation
from that object travels to us. For an object emitting energy, the specific intensity is defined as

𝐼a ≡
𝑑𝐸

𝑑𝐴𝑛𝑑𝑡𝑑a𝑑Ω
erg cm−2 s−1 Hz−1 sr−1. (2.1)
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In other words, it is the energy emitted from the source per unit area, per unit time, per unit
frequency, per unit solid angle. Here 𝑑𝐴𝑛 is the area normal to the beam, which can be
written as 𝑑𝐴 cos 𝜗, where 𝜗 is the angle between the beam and the normal to the emitting
surface. Likewise, the specific intensity received by an observer will be

𝐼′a =
𝑑𝐸′

𝑑𝐴′𝑛𝑑𝑡𝑑a𝑑Ω′ . (2.2)

For the observer, the solid angle subtended by the source is

𝑑Ω′ =
𝑑𝐴 cos 𝜗
𝑑2 , (2.3)

where 𝑑 is the distance to the source. Since we assume all of the energy goes to the observer,
we can also get an expression for the solid angle subtended by the source

𝑑Ω =
𝑑𝐴′ cos 𝜗′

𝑑2 . (2.4)

By conservation of energy, we must have 𝑑𝐸 = 𝑑𝐸′, so we find that

𝐼a𝑑𝐴 cos 𝜗𝑑𝑡𝑑a𝑑𝐴′ cos 𝜗′

𝑑2 =
𝐼′a𝑑𝐴

′ cos 𝜗′𝑑𝑡𝑑a𝑑𝐴 cos 𝜗
𝑑2

=⇒ 𝐼a = 𝐼
′
a, (2.5)

so specific intensity does not vary with distance.
The flux emitted by an object is defined as

𝐹a ≡
∫
Ω

𝐼a𝑑Ω, (2.6)

meaning

𝑑𝐹a =
𝑑𝐸

𝑑𝐴𝑛𝑑𝑡𝑑a
. (2.7)

Strictly speaking, 𝐹a is a vector quantity pointing in the direction n̂ of the beam of radiation, but
this is not always written. Using the area element in spherical coordinates, 𝑑Ω = sin 𝜗𝑑𝜗𝑑𝜙,
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we have

𝐹a =

∫
Ω

𝐼a𝑑Ωn̂.ẑ

=

∫ 2𝜋

0

∫ 𝜋
2

0
𝐼a sin 𝜗 cos 𝜗𝑑𝜗𝑑𝜙

= 2𝜋
∫ 1

0
`𝐼a𝑑`, (2.8)

where we have used the substitution ` = cos 𝜗. In the case where 𝐼a is isotropic we therefore
have

𝐹a = 𝜋𝐼a . (2.9)

The above equations dealt with the surface flux, meaning the flux emitted from the source.
Let us now consider the observed flux. When we observe a distant spherical object such as a
star or planet we see a circle. We want to integrate along the radius of this circle, which is
given by 𝑥 = 𝑅 sin 𝜗. The incremental area is then 𝑑𝐴 = 2𝜋𝑥𝑑𝑥, so the solid angle subtended
by the object on the sky will be

𝑑Ω =
2𝜋𝑥𝑑𝑥
𝑑2

=
2𝜋𝑅 sin 𝜗𝑅 cos 𝜗𝑑𝜗

𝑑2 (2.10)

where 𝑑 is the distance to the object. Substituting this into the definition of flux, we obtain

𝐹a = 2𝜋
∫ 𝜋

2

0
𝐼a
𝑅2 sin 𝜗 cos 𝜗

𝑑2 𝑑𝜗

= 𝜋𝐼a
𝑅2

𝑑2 , (2.11)

so we see that flux is dependent on both the distance to the source and the radius of the
source. We want to know how 𝐼a changes as it passes through a medium. Consider a beam of
light passing through a medium of thickness 𝑑𝑙, cross-sectional area 𝑑𝐴 and density 𝜌. This
medium has mass defined as 𝑑𝑚 = 𝜌𝑑𝐴𝑑𝑠. The specific intensity going into the medium is
𝐼a, and coming out of the medium is 𝐼′a = 𝐼a + 𝑑𝐼a. The three main processes to take into
account are absorption, scattering and emission. The change in energy due to extinction
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(absorption and scattering) is

𝑑𝐸𝑒𝑥 = 𝑘a 𝐼a𝑑Ω𝑑a𝑑𝑡𝑑𝑚, (2.12)

where 𝑘a is the extinction coefficient, defined per unit mass of material in the medium. For
emission we have

𝑑𝐸𝑒𝑚 = 𝑗a 𝐼a𝑑Ω𝑑a𝑑𝑡𝑑𝑚, (2.13)

with emission coefficient 𝑗a. Note that, unlike absorption and scattering, emission does not
depend on 𝐼a (since the light is coming from the medium, not the source) and it adds to the
specific intensity, whereas the other two processes are extinction mechanisms. Putting all
this together we get

𝑑𝐸 = 𝑑𝐸𝑒𝑚 − 𝑑𝐸𝑒𝑥
= [ 𝑗a − 𝑘a 𝐼a]𝑑Ω𝑑a𝑑𝑡𝜌𝑑𝐴𝑑𝑙

=⇒ 𝑑𝐼a = [ 𝑗a − 𝑘a 𝐼a]𝜌𝑑𝑙. (2.14)

This is the equation of radiative transfer. In the case where there is no emitting source
( 𝑗a = 0), the equation reduces to

𝑑𝐼a

𝜌𝑑𝑙
= −𝑘a 𝐼a

=⇒ 𝐼a = 𝐼0𝑒
−

∫
𝑘a𝜌𝑑𝑙

= 𝐼0𝑒
−𝜏a (2.15)

where we have defined the optical depth, 𝜏a =
∫
𝑘a𝜌𝑑𝑙. This can also be expressed as

𝜏a =
∫
𝑛𝜎a𝑑𝑙 where 𝑛 is the number density of particles in the medium and 𝜎a is the

absorption cross-section.

2.1.2 Transmission Spectra

We have already derived an expression for the observed flux from a source, such as a star, of
radius 𝑅 at distance 𝑑:

𝐹_ = 𝜋𝐼_
𝑅2

𝑑2 , (2.16)
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Fig. 2.2 Geometry of an exoplanet atmosphere as observed in transit, from Nixon &
Madhusudhan (2022). A ray passes through the atmosphere along the path 𝑠, travelling
through the day-night terminator region which covers a range of values of the zenith angle \.

where we have now changed from frequency to wavelength dependence using the fact that
𝑐 = a_ for electromagnetic radiation. Now we consider the case where we are observing a
star with a planet in front of it, so that the planet blocks some of the stellar radiation (see
Figure 2.2). We will assume a 90◦ inclination. Our expression for the flux is now

𝐹_ =

∫ 𝑅𝑝𝑙

0
𝐼_,𝑝𝑙

2𝜋𝑥
𝑑2 𝑑𝑥 +

∫ 𝑅∗

𝑅𝑝𝑙

𝐼_,∗
2𝜋𝑥
𝑑2 𝑑𝑥. (2.17)

Since the night side of the planet will be facing us, the first term is negligible, so we can
approximate

𝐹_ ≈ 𝜋𝐼_,∗
𝑅2
∗ − 𝑅2

𝑝𝑙

𝑑2 . (2.18)

We can use this to find the transit depth, i.e. the (normalised) difference between the flux in
and out of transit, as previously seen in Chapter 1:

Δ(_) = 𝐹_,𝑜𝑢𝑡 − 𝐹_,𝑖𝑛
𝐹_,𝑜𝑢𝑡

=
𝑅2
𝑝𝑙

𝑅2
∗
. (2.19)

Now suppose the planet has an atmosphere extending to a height 𝐻 above the surface of
the planet. Unlike the derivation in Chapter 1, we will not assume that the atmosphere is
entirely opaque. The in-transit flux then becomes

𝐹_,𝑖𝑛 ≈
∫ 𝑅𝑝𝑙+𝐻

𝑅𝑝𝑙

𝐼𝑎_,𝑝𝑙
2𝜋𝑥
𝑑2 𝑑𝑥 +

∫ 𝑅∗

𝑅𝑝𝑙+𝐻
𝐼_,∗

2𝜋𝑥
𝑑2 𝑑𝑥, (2.20)
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where 𝐼𝑎
_,𝑝𝑙

is the intensity of light passing through the planetary atmosphere. We have again
assumed that the 𝐼_,𝑝𝑙 term is negligible. Using equation 2.15 we can calculate the difference
between the flux in and out of transit:

𝐹_,𝑜𝑢𝑡 − 𝐹_,𝑖𝑛 =
∫ 𝑅∗

0
𝐼_,∗

2𝜋𝑥
𝑑2 𝑑𝑥 −

∫ 𝑅𝑝𝑙+𝐻

𝑅𝑝𝑙

𝐼_,∗𝑒
−𝜏_ (𝑏) 2𝜋𝑥

𝑑2 𝑑𝑥 −
∫ 𝑅∗

𝑅𝑝𝑙+𝐻
𝐼_,∗

2𝜋𝑥
𝑑2 𝑑𝑥

=

∫ 𝑅𝑝𝑙+𝐻

0
𝐼_,∗

2𝜋𝑥
𝑑2 𝑑𝑥 −

∫ 𝑅𝑝𝑙+𝐻

𝑅𝑝𝑙

𝐼_,∗𝑒
−𝜏_ (𝑏) 2𝜋𝑥

𝑑2 𝑑𝑥

=

∫ 𝑅𝑝𝑙

0
𝐼_,∗

2𝜋𝑥
𝑑2 𝑑𝑥 +

∫ 𝑅𝑝𝑙+𝐻

𝑅𝑝𝑙

𝐼_,∗
(
1 − 𝑒−𝜏_ (𝑏)

) 2𝜋𝑥
𝑑2 𝑑𝑥

= 𝐼_,∗
2𝜋𝑅2

𝑝𝑙

𝑑2 +
∫ 𝐻

0
𝐼_,∗

(
1 − 𝑒−𝜏_ (𝑏)

) 2𝜋(𝑅𝑝𝑙 + 𝑏)
𝑑2 𝑑𝑏, (2.21)

where in the last line we have made the change of variable 𝑥 = 𝑅𝑝𝑙 + 𝑏, meaning 𝑏 is the
impact parameter, or perpendicular height above the planetary surface. Dividing by the
in-transit flux we obtain the transit depth:

Δ_ =
𝑅2
𝑝𝑙
+ 𝐴_
𝑅2
∗

, (2.22)

where 𝐴_ is the atmospheric depth, given by

𝐴_ = 2
∫ 𝐻

0

(
𝑅𝑝𝑙 + 𝑏

) (
1 − 𝑒−𝜏_ (𝑏)

)
𝑑𝑏. (2.23)

A similar derivation, along with the derivation of the form of an emission spectrum, can be
found in Seager & Deming (2010).

2.1.3 Opacity Sources

In order to compute 𝐴_, the optical depth 𝜏_ (𝑏) must be found. This is dependent on the
chemistry and the cloud properties in the atmosphere. The total optical depth at each impact
parameter and wavelength can be written as an integral along a ray path 𝑠:

𝜏_ (𝑏) =
∫

`_ (𝑠, 𝑏)𝑑𝑠, (2.24)



42 Atmospheric Retrieval of Transmission Spectra

where `_ is the attenuation coefficient. The total attenuation coefficient can be computed by
summing contributions from various opacity sources:

`_ =
∑︁
𝑖∈O

`_,𝑖, (2.25)

where O is the set of opacity sources in the model. Here we consider three of the most
important sources of opacity present in most atmospheres: extinction from chemical species,
collision-induced absorption and cloud/haze opacity. Additional effects such as stellar
heterogeneity and refraction can also affect the transit depth, and are discussed in Chapter 4.

2.1.3.1 Trace chemical species

For a given chemical species 𝑖, the attenuation coefficient can be written in terms of the
mass density 𝜌𝑖 and opacity ^𝑖, or equivalently in terms of number density 𝑛𝑖 and absorption
cross-section 𝜎𝑖:

`_,𝑖 (𝑃,𝑇) = 𝜌𝑖^_,𝑖 (𝑃,𝑇) = 𝑛𝑖𝜎_,𝑖 (𝑃,𝑇). (2.26)

The number density of a species is related to its volume mixing ratio, 𝑋𝑖 = 𝑛𝑖/𝑛tot, where 𝑛tot

is the total number density of the gas.
The wavelength-dependent absorption cross-sections of different chemical species are

derived using knowledge of the electronic transitions that can occur when photons are
absorbed by that species. A selection of molecular cross-sections is shown in Figure 2.3.
Cross-sections also vary with temperature and pressure, which contribute to the broadening
of transition lines (Gandhi & Madhusudhan, 2017). In order to find the cross-section for a
given species at some wavelength, temperature and pressure, a list of transition lines and
strengths for that species is required. The model presented in this chapter includes line lists
from the HITEMP database for H2O, CO and CO2 (Rothman et al., 2010) and the Exomol
database for HCN, CH4 and NH3 (Tennyson et al., 2016). Cross-sections for Na and K are
adopted from Welbanks et al. (2019) using line data from Allard et al. (2019) for Na and
Allard et al. (2016) for K. The procedure for calculating cross-sections from line lists is
summarised here; more detailed descriptions can be found in Hedges & Madhusudhan (2016)
and Gandhi & Madhusudhan (2017).

Line list data bases typically give Einstein coefficients with energies and degeneracies for
each state. These can be converted to line strengths at some reference temperature 𝑇ref using
the following formula (Rothman et al., 2013):
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𝑆𝑖, 𝑗 (𝑇ref) =
𝐴𝑖, 𝑗

8𝜋𝑐a2
𝑖, 𝑗
Q(𝑇ref)

𝑔𝑖 exp
[
−
ℎ𝑐𝐸 𝑗

𝑘𝐵𝑇ref

] (
1 − exp

[
−
ℎ𝑐a𝑖, 𝑗

𝑘𝐵𝑇ref

] )
, (2.27)

where 𝐴𝑖, 𝑗 is the Einstein coefficient for spontaneous emission for the transition between
states 𝑖 and 𝑗 , 𝑔𝑖 is the upper state degeneracy, 𝐸 𝑗 is the lower state energy, a𝑖, 𝑗 is the transition
frequency between states 𝑖 and 𝑗 , and ℎ is Planck’s constant. The partition function Q(𝑇) is
given by

Q(𝑇) =
∑︁
𝑗

𝑔 𝑗 exp
[
−
𝐸 𝑗

𝑘𝐵𝑇

]
, (2.28)

where 𝑔 𝑗 is the lower state degeneracy. The line strength at any temperature 𝑇 can be
converted from the strength at 𝑇ref shown in equation 2.27 with the formula

𝑆𝑖, 𝑗 (𝑇) = 𝑆𝑖, 𝑗 (𝑇ref)
Q(𝑇ref)
Q(𝑇)

exp
(
−ℎ𝑐𝐸 𝑗/𝑘𝐵𝑇

)(
−ℎ𝑐𝐸 𝑗/𝑘𝐵𝑇ref

) [
1 − exp

(
−ℎ𝑐a𝑖, 𝑗/𝑘𝐵𝑇

) ][
1 − exp

(
−ℎ𝑐a𝑖, 𝑗/𝑘𝐵𝑇ref

) ] . (2.29)

To obtain cross-sections from line strengths, the effects of thermal and pressure broadening
must be taken into account. Thermal broadening is a result of the different velocities of atoms
or molecules which lead to Doppler shifting of transition lines, ultimately blurring the line
into a Gaussian shape with a profile 𝑓𝐺 , which for a molecule of mass 𝑚 with a line centred
at frequency a0 is expressed as

𝑓𝐺 (a − a0) =
1

𝛾𝐺
√
𝜋

exp

(
− (a − a0)2

𝛾2
𝐺

)
, (2.30)

𝛾𝐺 ≡
√︂

2𝑘𝐵𝑇
𝑚

a0
𝑐
. (2.31)

The line is also broadened due to gas pressure, yielding a Lorentzian profile at pressure 𝑃:

𝑓𝐿 (a − a0) =
1
𝜋

𝛾𝐿

(a − a0)2 + 𝛾2
𝐿

, (2.32)

𝛾𝐿 ≡
(
𝑇ref
𝑇

)𝑛
𝑃

∑︁
𝑏

𝛾𝐿,𝑏𝑝𝑏, (2.33)

where 𝑛 is a temperature scaling factor, 𝑝𝑏 is the partial pressure of a broadening molecule
𝑏 and 𝛾𝐿,𝑏 is the Lorentzian half width half maximum for molecule 𝑏 (see e.g. Rothman
et al., 1998, for further detail). The full broadening is obtained through the convolution of
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the Gaussian and Lorentzian profiles, yielding the Voigt function

𝑓𝑉 (a − a0) =
∫ ∞

−∞
𝑑𝑓𝐺 (a′ − a0) 𝑓𝐿 (a − a′)a′, (2.34)

and the cross-section at frequency a for a particular line is given by

𝜎a = 𝑆(𝑇) 𝑓𝑉 (a). (2.35)

2.1.3.2 Collision-induced absorption

Inelastic collisions between chemical species can induce quantum transitions that also
contribute to the opacity of an atmosphere. This phenomenon is known as collision-induced
absorption (CIA). In the atmospheres of giant planets, the main sources of CIA are H2-H2

and H2-He interactions, which contribute the following attenuation coefficient:

`CIA = 𝑋H2𝑛
2
tot [𝑋H2𝜎H2−H2 (_, 𝑇) + 𝑋He𝜎H2−He(_, 𝑇)] . (2.36)

The relevant cross-sections, 𝜎H2−H2 and 𝜎H2−He, are obtained from the HITRAN database
(Richard et al., 2012). The mixing ratios of H2 and He are not treated as free parameters in
the model; they are instead determined by assuming a solar composition of 𝑋He/𝑋H2 = 0.17
(Asplund et al., 2009) and using the fact that the sum of all mixing ratios must equal unity, so

𝑋H2 =
1 − Σ𝑠𝑋𝑠

1 + 𝑋He/𝑋H2

, (2.37)

where the sum is over all species 𝑠 other than H2 and He.

2.1.3.3 Cloud and haze opacity

As discussed in Section 1.3.4.3, clouds and hazes can have a considerable impact on the
shape of a transmission spectrum. It is therefore important to incorporate a prescription
for clouds and hazes into any retrieval framework. In this chapter, we introduce the
parameterisation from MacDonald & Madhusudhan (2017) following Line & Parmentier
(2016) that enables consideration of inhomogeneous cloud cover across the terminator region.
Later, in Section 4.2.5.1, we present an extension of this parameterisation developed by
Welbanks & Madhusudhan (2021).

We assume that clouds consist of an opaque cloud deck at pressures above some 𝑃cld and
scattering due to hazes pressures below (meaning altitudes above) 𝑃cld. The contribution to
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Fig. 2.3 Cross-sections of prominent molecular species in hydrogen-rich atmospheres at
𝑃 = 1 bar and 𝑇 = 1000 K. Spectral ranges of HST WFC3 are shown for comparison, as well
as the following JWST instruments: the Near Infrared Spectrograph (NIRSpec), the Near
Infrared Imager and Slitless Spectrograph (NIRISS), the Near Infrared Camera (NIRCam)
and the Mid Infrared Instrument (MIRI).

the optical depth for 𝑃 ≥ 𝑃cld is infinity. For 𝑃 < 𝑃cld the attenuation coefficient is given by

`_,haze(_, 𝑃, 𝑇) = 𝑋H2𝑛tot(𝑃,𝑇)𝜎_,haze, (2.38)

𝜎_,haze = 𝑎𝜎0

(
_

_0

)𝛾
, (2.39)

where 𝑎 is the Rayleigh enhancement factor, 𝛾 is the scattering slope, and𝜎0 = 5.31×10−31 m2

is the cross-section due to H2 Rayleigh scattering at a reference wavelength _0 = 3.5× 10−7 m
(Dalgarno & Williams, 1962).

This prescription allows for partial cloud cover as discussed in Line & Parmentier (2016)
by introducing another free parameter 𝜙 that determines the fraction of the atmosphere which
is covered by clouds. This alters the expression for transit depth so that we obtain a linear
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combination of the transit depths computed both with and without clouds:

Δ = 𝜙Δcloudy + (1 − 𝜙)Δclear. (2.40)

The addition of clouds to the atmospheric forward model therefore introduces four free
parameters: 𝑃cld, 𝑎, 𝛾 and 𝜙.

2.1.4 Atmospheric Structure

In order to compute the optical depth at a given height in the atmosphere, the number density
of particles at that height must be known. Additionally, cross-sections of chemical species
are dependent on pressure and temperature, which also varies with height. Therefore, the
temperature, density and pressure of the atmosphere must be computed as a function of height
in order to model a transmission spectrum.

Solving for the structure of an atmosphere requires the equation of hydrostatic equilibrium
and an equation of state, in this case the ideal gas law (see Section 1.3.2.1), which can be
combined to yield

𝑑𝑃

𝑑𝑧
=
`𝑚𝐻𝑔

𝑘𝐵𝑇
𝑃 =

𝑃

𝐻sc
, (2.41)

where 𝐻sc is the atmospheric scale height, as defined in Chapter 1. In order to solve equation
2.41 a reference pressure 𝑃ref must be specified. This is typically given as the pressure at the
planetary radius (𝑧 = 0).

Solving equation 2.41 also requires temperature to be known as a function of pressure.
Forward models such as the self-consistent models described in Section 1.3.3.1 typically
calculate a pressure–temperature (𝑃–𝑇) profile using the constraints of radiative-convective
equilibrium. However, this is too computationally expensive for retrievals, where a very
wide range of models need to be explored to find those which best explain an observed data
set. Therefore, a number of flexible, analytic approaches to calculating 𝑃–𝑇 profiles have
been developed. The simplest prescription is to assume an isothermal atmosphere, a method
which has been adopted in a number of retrieval studies (e.g. Waldmann et al., 2015a, Zhang
et al., 2019). Other retrieval frameworks (e.g. Benneke & Seager, 2012, Line et al., 2013)
have implemented the analytic 𝑃–𝑇 introduced by Guillot (2010), which is a solution to the
equations of radiative transfer under certain assumptions. This takes the form

𝑇4 =
3𝑇4

int
4

[
2
3
+ 𝜏

]
+

3𝑇4
irr

4
𝑓

[
2
3
+ 1
𝛾𝑟
√

3
+

(
𝛾𝑟√

3
− 1
𝛾𝑟
√

3

)
exp

(
−𝛾𝑟𝜏

√
3
)]

(2.42)
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where 𝑇irr is the irradiation temperature, arising due to the irradiation intensity on the planet
from the host star, 𝑇int is the intrinsic temperature which characterises the planet’s internal
heat flux, and 𝛾𝑟 is the ratio of visible to thermal opacities. In this case, the temperature is
linked to pressure through the optical depth 𝜏. Another commonly implemented 𝑃–𝑇 profile
(e.g. Pinhas et al., 2018, Blecic et al., 2021) is the parametric prescription developed by
Madhusudhan & Seager (2009), which takes the form

𝑃 = 𝑃0𝑒
𝛼1

√
𝑇−𝑇0 , 𝑃0 < 𝑃 < 𝑃1,

𝑃 = 𝑃2𝑒
𝛼2

√
𝑇−𝑇2 , 𝑃1 < 𝑃 < 𝑃3, (2.43)

𝑇 = 𝑇3, 𝑃 > 𝑃3,

where 𝑃0 is the pressure at the top of the atmosphere. This profile can also be expressed as:

𝑇 (𝑃) =



𝑇0 +
(

ln(𝑃/𝑃0)
𝛼1

)2

, 𝑃0 < 𝑃 < 𝑃1,

𝑇2 +
(

ln(𝑃/𝑃2)
𝛼2

)2

, 𝑃1 < 𝑃 < 𝑃3,

𝑇2 +
(

ln(𝑃3/𝑃2)
𝛼2

)2

, 𝑃 > 𝑃3.

(2.44)

As well as 𝑃0, this 𝑃–𝑇 profile requires nine further parameters to be specified: 𝛼1, 𝛼2, 𝑇0,
𝑇1, 𝑇2, 𝑇3, 𝑃1, 𝑃2 and 𝑃3. However, the requirement that that the resulting profile should be
continuous allows three of these to be eliminated, leaving a total of six free parameters which
define the shape of the 𝑃–𝑇 profile. It has been demonstrated that this prescription is capable
of matching a wide range of temperature profiles from the solar system and self-consistent
models, and can describe atmospheres both with and without thermal inversions.

Further discussion of 𝑃–𝑇 profiles for atmospheric retrieval, including profiles that vary
with longitude and latitude in the planet as well as height, is presented in Chapter 4.

2.2 Parameter Estimation

Alongside an atmospheric forward model, the other key component of a retrieval framework
is a parameter estimation scheme, which explores the space of combinations of model
parameters in order to find which models (and therefore which parameters) best describe the
data at hand. A wide variety of methods have been used in different retrieval algorithms,
with the most prominent approaches summarised here.



48 Atmospheric Retrieval of Transmission Spectra

Fig. 2.4 Pressure–temperature (𝑃–𝑇) profiles commonly employed in retrievals. Left: Analytic
𝑃–𝑇 profiles from Guillot (2010), calculated for a theoretical hot Jupiter at a range of orbital
distances, shown as red lines. Black dashed lines show self-consistently modelled 𝑃–𝑇
profiles for the same theoretical planet from Fortney et al. (2008). Right: Parametric 𝑃–𝑇
profile from Madhusudhan & Seager (2009). The profile includes a thermal inversion layer
(Layer 2) in cases where 𝑃2 > 𝑃1. The profile is isothermal for 𝑃 > 𝑃3 (Layer 3).

2.2.1 Grid-based Retrievals

The earliest atmospheric retrievals explored the parameter space using a large pre-computed
grid of forward models. Madhusudhan & Seager (2009) produced a grid of 107 forward
models for a 10-dimensional parameter space, with six free parameters describing the
temperature profile and four parameters for molecular abundances (H2O, CO, CH4 and CO2).
The grid did not simply use evenly spaced values for each parameter, since acquiring a
reasonable resolution in 10 dimensions would require many more models to be calculated (≳
1010). The full grid of models instead was created by producing a number of coarse grids in
order to gain some understanding of the parameter space, before producing a more detailed
set of models where a better fit to the data could be expected. For each model in the grid, the
goodness of fit to the data was computed through the following statistic:

b2 =
1
𝑁obs

𝑁obs∑︁
𝑖=1

( �̂�𝑖 − �̄�𝑖)2

𝜎2
𝑖

, (2.45)
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where �̄�𝑖 and 𝜎𝑖 are the mean and standard deviation of the observed data point 𝑖, �̂�𝑖 is the
value of the model data point 𝑖, and 𝑁obs is the number of data points in the spectrum. Models
with the lowest values of b2 provide a better fit to the data, allowing for statistical constraints
to be placed on atmospheric parameters given the data at hand.

While grid-based retrievals were revolutionary when first implemented, they are far from
optimised for searching high-dimensional parameter spaces, and would struggle to achieve
the computational efficiency required to incorporate more complex models that may need
additional free parameters to describe the presence of extra molecules or phenomena such as
clouds and hazes. It has therefore been necessary to adopt more formal parameter estimation
methods, as described below.

2.2.2 Bayesian Inference

Bayesian inference is an application of Bayes’ theorem (Bayes, 1763) to determine the
probability distribution of a set of model parameters \ given some data 𝑑 and a model M:

𝑝(\ |𝑑,M) = 𝑝(𝑑 |\,M)𝑝(\ |M)
𝑝(𝑑 |M) , (2.46)

where 𝑝(\ |𝑑,M) is the probability of the model parameters given the data, known as the
posterior distribution, 𝑝(𝑑 |\,M) is the probability of the data given the model parameters,
known as the likelihood function, 𝑝(\ |M) is the prior probability distribution of the model
parameters independent of the data, and 𝑝(𝑑 |M) is the probability of the data based on the
model independent of the parameters, known as the Bayesian evidence. Note that each of the
other quantities are also conditioned on the choice of model. Often the likelihood function is
denoted by L and the evidence is denoted by Z.

In order to compute the posterior, the prior and likelihood are therefore required. Prior
distributions for each parameter are specified in advance, and are typically chosen so as to be
as uninformative as possible, using uniform or log-uniform priors covering a wide range of
possible values of each parameter. The likelihood function is then evaluated by sampling the
prior space and evaluating how well a model generated with a given set of parameters fits the
observed data. For data with independently distributed Gaussian errors (which is commonly
assumed for atmospheric retrieval), the likelihood function is defined as

L =

𝑁obs∏
𝑖

1
√

2𝜋𝜎𝑖
exp

(
− ( �̂�𝑖 − �̄�𝑖)2

2𝜎2
𝑖

)
. (2.47)



50 Atmospheric Retrieval of Transmission Spectra

The Bayesian evidence Z is a normalising factor in equation 2.46 and is not necessary
when carrying out parameter estimation, since it is independent of the model parameters.
On its own, an evidence is not particularly interpretable, since it is just a single number.
However, by comparing the evidences obtained through parameter estimation using different
models, the relative validity of the models for analysing the data at hand can be assessed,
with a larger evidence indicating that a model is more appropriate for the data set. It is
worth noting however that the evidence also depends strongly on the choice of priors, which
could vary between different model considerations, and so model comparison using Bayesian
evidences should be viewed with some caution (see e.g. Schad et al., 2022, for a more detailed
discussion).

A number of algorithms exist that can be used to sample the model parameter space for
the purposes of Bayesian inference. The key methods which have been applied to atmospheric
retrieval are summarised below.

2.2.2.1 Optimal Estimation

The Optimal Estimation algorithm optimises the likelihood function using a non-linear least
squares minimisation routine (see e.g. Rodgers, 2000). This approach allows priors to be
specified assuming a Gaussian-distributed prior covariance matrix, which is useful for inverse
modelling of Earth and solar system atmospheres, where the prior can be strongly informed by
direct measurements (Irwin et al., 2008). However, the low resolution and low signal-to-noise
common in exoplanetary data is not typically compatible with Optimal Estimation methods
(Line et al., 2013). Furthermore, this approach is less suited to large, multimodal parameter
spaces with strong degeneracies, as is often the case for atmospheric retrievals of exoplanets,
and also assumes that the posterior takes the form of a multimodal Gaussian distribution,
which may not be accurate. Despite these disadvantages, there are a number of studies which
have successfully implemented Optimal Estimation techniques for atmospheric retrieval (e.g.
Lee et al., 2012, Barstow et al., 2017).

2.2.2.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a widely-used sampling algorithm in many areas of
astronomy and other scientific fields (e.g. Everall et al., 2019, Kasim et al., 2019, Valderrama-
Bahamóndez & Fröhlich, 2019). Unlike Optimal Estimation, MCMC does not make any
assumptions about the form of the posterior distribution, but instead explores and evaluates
the posterior by sampling the parameter space. The sampling uses a random walk procedure,
starting from a random location in the parameter space. A new state of parameter values is
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drawn from some proposal distribution, and the likelihoods of the current and new states
are compared to one another. If the new state has a higher likelihood than the current one,
then the new state replaces the current state, and if the new state does not have an improved
likelihood then it is either rejected or accepted with some user-defined probability. This
process constitutes a Markov chain since the decision to change states depends only on the
current state and the new state being considered. The specific proposal distribution used to
find new states varies depending on user preference as well as the specific MCMC algorithm
that is implemented, with common examples being the Metropolis-Hastings algorithm or
Gibbs sampling (see e.g. Trotta, 2017, for a more detailed review). Given enough samples,
this approach will converge to the posterior distribution.

Since MCMC is capable of efficiently computing non-Gaussian posterior distributions,
it is well-suited to atmospheric retrieval and has been implemented in numerous retrieval
frameworks (e.g. Madhusudhan et al., 2011, Line et al., 2013, Wakeford et al., 2017). The
approach does have some drawbacks; for example, properties of the proposal distribution
which must be defined before running the algorithm are often difficult to determine in advance
and can lead to convergence issues, and the algorithm can struggle to compute multimodal
posteriors (Hogg & Foreman-Mackey, 2018). Furthermore, MCMC is not optimised for
calculating the Bayesian evidence, which is not important for parameter estimation but can
be useful for model comparison.

2.2.2.3 Nested Sampling

Nested Sampling (Skilling, 2004, 2006) differs from the other algorithms described above
in that its main goal is to calculate the Bayesian evidence for a model, with the posterior
distributions of model parameters being computed as a by-product. Nested Sampling works
by selecting a number of random locations drawn from the prior, known as live points. For
each live point, the likelihood is calculated, and the points are placed in ascending likelihood
order. The point with the smallest likelihood is discarded, and replaced with a new point
whose likelihood must be higher than that of the discarded point. This process is repeated,
with the set of live points occupying an ever-shrinking region of the parameter space with
increasing likelihoods. The evidence is given by a weighted sum of the likelihoods of
the sampled points, which will converge after a sufficient number of iterations. Since the
likelihood of each point must be calculated in order to compute the evidence, it is trivial to
also obtain the posterior probability distribution. A recent review of the algorithm can be
found in Ashton et al. (2022).

The method for selecting new live points varies between different implementations of
the Nested Sampling algorithm. One of the most commonly used implementations for
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atmospheric retrieval is MultiNest (Feroz et al., 2009, Feroz & Skilling, 2013), which samples
the parameter space using an ellipsoidal rejection sampling scheme. In this approach, the
next live point is found from within a set of ellipsoids defined by the iso-likelihood contour
of the minimum likelihood. These ellipsoids shrink as the minimum likelihood increases
with each iteration. MultiNest has been shown to be effective for models with moderate
numbers of free parameters (≲ 80, Handley et al., 2015) and for evaluating multimodal
posterior distributions (Feroz & Skilling, 2013), making it well-suited to atmospheric retrieval
problems and leading to its incorporation into a large number of retrieval frameworks (e.g.
Benneke & Seager, 2013, Line et al., 2015, Waldmann et al., 2015a, Lavie et al., 2017, Pinhas
et al., 2018). Other variations of Nested Sampling have also been used for retrievals, such
as PolyChord (Handley et al., 2015), which has been shown to give comparable retrieval
results to MultiNest (Welbanks & Madhusudhan, 2021). PolyChord uses a different sampling
method that is more efficient for models with ≳ 80 free parameters (Handley et al., 2015),
which is not required for contemporary atmospheric retrievals but may become necessary in
the future as increasingly complex models are required to explain more detailed data sets.

2.2.3 Machine Learning

The past decade has witnessed a huge increase in the application of machine learning
techniques in many areas of science (Carleo et al., 2019). The goal of a machine learning
algorithm is to automatically perform a task involving inference or prediction using a large
amount of data. These algorithms can be broadly grouped into two varieties:

• Supervised learning algorithms, in which the algorithm learns from a data set that has
been labelled in some way, and then tries to predict the labels for some new, unlabelled
data. Examples of these algorithms include Support Vector Machines, most Neural
Networks and Random Forests.

• Unsupervised learning algorithms, in which the algorithm tries to find patterns in
unlabelled data, and then searches for similar patterns in new data. Examples include
anomaly detection and clustering algorithms.

Since most existing applications of machine learning to the problem of atmospheric retrieval
focus on supervised learning, a more formal description of a general supervised learning
problem is presented: we define a set 𝑋 of samples x and another set 𝑌 of labels y. Each
label y ∈ 𝑌 corresponds to a specific sample x ∈ 𝑋 . The samples are typically vectors whose
components are called features. The labels can take either categorical or numerical forms. 𝑋
and 𝑌 together make up the training data set for the problem.
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The task of the supervised machine learning algorithm is to find the relationship between
the input data 𝑋 and outputs𝑌 . If we assume that in reality, there is some function 𝑓 satisfying
𝑓 (x) = y, then the algorithm should produce a function 𝑓 such that ŷ = 𝑓 (x) is as close to the
true value of y as possible. The goodness-of-fit between ŷ and 𝑓 (x) can be evaluated using
loss functions such as the statistic shown in equation 2.45. Once such a function has been
learned, the algorithm can be used to predict the label of a new sample not in the training
data set for which there is no previously known label.

Machine learning techniques are potentially well-suited to the problem of atmospheric
retrieval, which involves determining the relationship between input data in the form of a
spectrum and outputs in the form of model parameters. It is possible that new approaches
to atmospheric retrieval using machine learning could be more computationally efficient,
and that they could alleviate some of the problems associated with the parameter estimation
methods presented previously. For example, Bayesian sampling algorithms tend to become
exponentially slower as the dimension of the parameter space increases, a phenomenon known
as the curse of dimensionality (see e.g. Robert & Casella, 2004). This could be less of an
issue if a machine learning algorithm is used, allowing for more efficient scaling to higher
dimensions. A selection of machine learning algorithms applied to atmospheric modelling
and retrieval are introduced below.

2.2.3.1 Deep Belief Networks

Deep Belief Networks (DBNs, Hinton et al., 2006) are a class of Neural Network composed
of several unsupervised components known as Restricted Boltzmann Machines (Smolensky,
1986) and a final supervised regression or classification component. Neural Networks are a
subset of machine learning algorithms inspired by the biological networks in the brain. A
Restricted Boltzmann Machine (RBM) is a simple, two-layer network that is able to learn
probability distributions over inputs. It can be visualised as a bipartite graph consisting of a
vector of visible inputs x and a vector of hidden units y. All of the inputs are connected to
all of the hidden units, but there are no connections between units in the same layer. This
means that units in the same layer can be considered as independent and so we can write
the probability of the input units given the hidden units, and the hidden units given the input
units, as

𝑃(x|y) =
∏
𝑖

𝑃(𝑥𝑖 |y), (2.48)

𝑃(y|x) =
∏
𝑗

𝑃(𝑦 𝑗 |x). (2.49)
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The input and hidden layers are connected by defining a matrix W of weights, where element
W𝑖 𝑗 connects input element 𝑥𝑖 to hidden element 𝑦 𝑗 . The input and hidden layers are assigned
bias vectors a and b respectively. The hidden nodes are always binary variables, and the
input nodes can either be binary or continuous. Assuming the input variables are binary, the
probability distribution of each hidden node given the input vector is

𝑃(𝑦 𝑗 = 1|x) = 𝜍
(
𝑏 𝑗 +

∑︁
𝑖

W𝑖 𝑗𝑥𝑖

)
, (2.50)

where 𝜍 is the sigmoid function:
𝜍 (𝑥) = 1

1 + 𝑒−𝑥 . (2.51)

The probability distribution of an input node given a hidden node is

𝑃(𝑥𝑖 = 1|y) = 𝜍
(
𝑎𝑖 +

∑︁
𝑗

W𝑖 𝑗 𝑦 𝑗

)
. (2.52)

We now define the energy of a given pair of input and hidden vectors to be

𝐸 (x, y) = −a · x − b · y − y𝑇Wx, (2.53)

and we define a partition function

𝑍 =
∑︁
x,y
𝑒−𝐸 (x,y) . (2.54)

This allows us to define the joint probability distribution over input and hidden vectors:

𝑃(x, y) = 1
𝑍
𝑒−𝐸 (x,y) . (2.55)

Finally, the distribution of the inputs is given by summing over all possible vectors of hidden
units:

𝑃(x) = 1
𝑍

∑︁
y
𝑒−𝐸 (x,y) . (2.56)
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If the input variables are instead continuous we instead have

𝑃(𝑦 𝑗 = 1|x) = 𝜍

(
𝑏 𝑗 +

∑︁
𝑖

W𝑖 𝑗

𝑥𝑖

𝜎2
𝑖

)
, (2.57)

𝑃(𝑥𝑖 |y) = N
(
𝑥𝑖; 𝑎𝑖 +

∑︁
𝑗

W𝑖 𝑗 𝑦 𝑗 , 𝜎
2
𝑖

)
, (2.58)

𝐸 (x, y) =
∑︁
𝑖

(𝑥𝑖 − 𝑎𝑖)2

2𝜎2
𝑖

−
∑︁
𝑗

𝑏 𝑗 𝑦 𝑗 −
∑︁
𝑖, 𝑗

𝑥𝑖

𝜎𝑖
W𝑖 𝑗 𝑦 𝑗 , (2.59)

where N represents a normal distribution, and 𝜎𝑖 is the (assumed Gaussian) noise on data
point 𝑥𝑖. The RBM is trained by adjusting the weights and biases in order to maximise
the log-likelihood 𝑃(x|W, a, b) using gradient descent (see e.g. Roux & Bengio, 2008, for
further detail).

DBNs were one of the first machine learning algorithms to be applied in the field of
exoplanet atmospheres (Waldmann, 2016). The trained network reads in a spectrum and
outputs the probabilities that one of several different molecules is the dominant absorbing
species in the spectrum. This could provide a useful pre-selection tool, informing which
molecules to include in the forward model. However, the network struggles to deal with
multiple opacity sources in a single spectrum. The algorithm is sometimes able to identify
mixtures of chemical species, but only if the spectral signatures of those molecules are very
different and the abundances of the different species are within about an order of magnitude of
each other. If the algorithm could be generalised to higher numbers of molecules successfully,
this could help to reduce the computational cost of a traditional retrieval by informing which
free parameters to include (and which not to include), keeping the dimension of the parameter
space to a minimum.

2.2.3.2 Random Forest

Random Forest (Breiman, 2001) is an extension of the simpler decision tree algorithm
(Breiman et al., 1984). Decision trees, and hence Random Forest, can be used for either
classification or regression tasks and has been widely applied in astronomy as well as other
areas of science (e.g. Richards et al., 2011, Xiao et al., 2017). Random Forest was the first
machine learning algorithm to be used for a complete atmospheric retrieval (Márquez-Neila
et al., 2018), and has subsequently been applied in a number of studies (Fisher et al., 2020,
Guzmán-Mesa et al., 2020), however the approach does have some limitations. A detailed
description of the algorithm, its applications to atmospheric retrieval, and an assessment of
its efficacy in this domain is presented in Chapter 3.
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2.2.3.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a type of unsupervised generative neural
network invented by Goodfellow et al. (2014). Similarly to DBNs, GANs are able to learn
probability distributions over a given data set. The training process involves the use of two
networks, called a generator and a discriminator. The generator aims to produce new data
such that the discriminator cannot determine whether this data belongs to the original training
set. Once the discriminator can no longer distinguish real data from that produced by the
generator, the network has learned a close approximation to the probability distribution of the
training data set. Now the generator can be used to produce new data that is similar to that
found in the training set, or fill in gaps in incomplete data samples, in a technique known as
inpainting.

Zingales & Waldmann (2018) use inpainting to predict the atmospheric properties of a
spectrum. In order to do this they arrange their training data samples in a two-dimensional
array containing the normalised spectral data, information about the normalisation constants
used, and the values of the model parameters used to generate the spectrum. They use seven
free parameters in their forward model: the mass, temperature and radius of the planet as well
as mixing ratios of H2O, CO, CO2 and CH4. Given only the spectral data and normalisation
information, the generator attempts to reproduce the rest of the array, thus estimating the free
parameters in the model.

Zingales & Waldmann (2018) perform retrievals using both the GAN and Nested Sampling,
and find that the GAN predicts parameter values within the 1𝜎 error bars of the Nested
Sampling predictions. Their Nested Sampling analysis takes approximately 10 hours on
24 CPU cores. By contrast, the trained GAN takes only 2 minutes to predict the model
parameters. However, the training phase of the GAN takes approximately three days per
epoch on 20 CPU cores or about 9 hours per epoch on a GPU. The authors do not report
how many epochs of training were required to fully train the network, or how long it took
to generate the training data set of 107 forward models required for the training. It may be
possible to produce a training data set that is applicable to a range of planetary parameters, so
that a single trained GAN can estimate parameters for several different spectra, however the
training set would need to cover a very large parameter space in order to include all possible
chemical species, cloud models and so on that might be necessary to explain the spectra of a
range of different planets.

Another issue with the GAN method of retrieval is that it is not able to accurately capture
the uncertainties of its estimated parameter values. The prediction step involves repeating
the inpainting process 1000 times and collecting a distribution of the results. This is not
equivalent to producing a posterior distribution through MCMC or Nested Sampling, and
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while the predicted median parameter values compare well between the Nested Sampling
and GAN retrievals, the shapes of the distributions often differ considerably (e.g. Zingales &
Waldmann, 2018, Figure 11).

2.2.3.4 Deep Neural Networks and Monte Carlo Dropout

The class of neural networks employed in Soboczenski et al. (2018) and Cobb et al. (2019)
are similar in structure to the DBNs discussed previously. However, in this case the network
is used to carry out parameter estimation, rather than suggesting which chemical species to
include in a traditional retrieval. The network is provided with a training set of spectra labelled
with their corresponding model parameters, and the training involves learning the relationship
between the spectra and the parameters. This is a multivariate regression task, and here the
neural network can be considered as a large combination of linear regressors combined with
some non-linear functions that enable the network to learn much more complex relationships
than an individual linear regressor.

Additionally, the two studies employ Monte Carlo dropout (Gal & Ghahramani, 2016) in
order to approximate the uncertainties that would be found using traditional retrieval methods.
This involves setting a certain proportion of the weights to zero during the prediction stage and
making multiple predictions so that a distribution is generated for each parameter value. This
method is an improvement over previous attempts to capture the shape of the true posterior
distribution, but is found to underestimate the uncertainty in many cases. This is a known
limitation of neural networks that attempt to mimic Bayesian inference methods (Blei et al.,
2017).

2.3 Retrieval of a Hot Jupiter Transmission Spectrum

To close this chapter, we demonstrate a retrieval of the HST transmission spectrum of the
canonical hot Jupiter HD 209458b using the Aura retrieval code (Pinhas et al., 2018).
HD 209458b has been observed at optical wavelengths using STIS (Sing et al., 2008, 2016)
as well as at IR wavelengths using WFC3 (Deming et al., 2013), enabling extensive study
of its atmosphere (e.g. Madhusudhan et al., 2014b, Barstow et al., 2017, MacDonald &
Madhusudhan, 2017, Welbanks & Madhusudhan, 2019) and making it an ideal test case to
demonstrate the capabilities of atmospheric retrieval.

We retrieve the combined HST STIS+WFC3 transmission spectrum of the planet, covering
a wavelength range of 0.3–1.7 `m. Our model assumes an isothermal atmosphere with
inhomogeneous cloud cover following the prescription of MacDonald & Madhusudhan
(2017). We choose an isothermal atmosphere since no evidence has been found for a strong
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Table 2.1 Description of priors for retrieval of the transmission spectrum of HD 209458b.
The priors have the same form for all chemical abundances 𝑋𝑖.

Parameter Lower Bound Upper Bound Prior

𝑇iso / K 800 2710 uniform

𝑃ref / bar 10−6 102 log-uniform

𝑋𝑖 10−12 10−2 log-uniform

𝑎 10−4 108 log-uniform

𝛾 −20 2 uniform

𝑃cld / bar 10−6 102 log-uniform

𝜙 0 1 uniform

temperature gradient in the terminator in past retrieval studies. The mixing ratios of Na,
K, H2O and HCN are included as free parameters in the model. This choice of chemical
species is motivated by Welbanks & Madhusudhan (2019), who find that absorption due to
Na, K, H2O contributes to the transmission spectrum. The retrieval configuration is similar
to cases 8-12 of that paper. We include HCN in order to demonstrate how the retrieval deals
with a free parameter that cannot be constrained by the data. The model therefore has ten
free parameters: 𝑇iso, 𝑃ref , 𝑋Na, 𝑋K, 𝑋H2O, 𝑋HCN 𝑎, 𝛾, 𝑃cld and 𝜙. The priors for each free
parameter are shown in Table 2.1.

We sample the space of model parameters using MultiNest, specifically its Python
implementation PyMultiNest (Buchner et al., 2014). Each forward model is initially evaluated
at a higher resolution than that of the data, covering 2000 wavelength points between
0.2–1.8 `m. This spectrum is then convolved with the point spread functions of the relevant
instruments and integrated over the instrument functions, so that the model is binned to the
resolution of the observed data so that the likelihood can be computed. For this retrieval we
use 2000 live points, which is found to give a good trade-off between parameter estimation
accuracy and computational cost.

Figure 2.6 shows retrieved marginalised posterior distributions for each parameter. The
retrieved isothermal temperature is consistent with the equilibrium temperature of the planet.
Three chemical species are clearly detected: Na, K and H2O. The detections of Na and K
are driven by the optical (STIS) data, whereas H2O is mostly driven by the IR (WFC3) data.
However, it has been shown that the inclusion of data at optical wavelengths significantly
improves constraints on the H2O abundance (Pinhas et al., 2018). The retrieved H2O
abundance is consistent with previous studies (MacDonald & Madhusudhan, 2017, Welbanks
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Fig. 2.5 Retrieval of the HST STIS+WFC3 transmission spectrum of HD 209458b. Observed
data is indicated by red circles with error bars. The median retrieved spectrum is shown in
dark purple, with lighter shaded regions indicating 1𝜎 and 2𝜎 confidence intervals. Yellow
diamonds show the median retrieved model binned to the resolution of the data.

& Madhusudhan, 2019) and is lower than would be expected for an atmosphere with solar
elemental abundances. This is consistent with a general trend that higher-mass planets tend
to have lower atmospheric metallicity (Welbanks et al., 2019).

We infer a cloud coverage fraction of approximately 50%, with a high-altitude (∼0.01 mbar)
cloud deck on the cloudy fraction of the terminator. The retrieval results point to strongly
enhanced Rayleigh scattering and a negative scattering slope to explain the steep increase in
transit depth at shorter wavelengths. Overall, the results from this retrieval are an indication
of what can be expected from state-of-the-art HST observations of a hot Jupiter that is very
well-suited to atmospheric characterisation via transmission spectroscopy.

2.4 Summary and Discussion

In this chapter we have introduced the atmospheric retrieval framework, describing the theory
of radiative transfer and transmission geometry required to compute model transmission
spectra, as well as introducing a variety of parameter estimation methods that have been
applied in past retrieval studies. We have presented an application of the Aura retrieval
framework to state-of-the-art observations of the transmission spectrum of the hot Jupiter
HD 209458b, demonstrating the capability of retrievals to constrain the abundances of
numerous chemical species.
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While the analysis shown here highlights the strengths of atmospheric retrieval, several
limitations remain that may inhibit our ability to maximise the scientific output of upcoming
observatories. Atmospheric retrieval is computationally intensive, and requires simplified
atmospheric models in order to be feasible. As the quality of observations continues to
increase, particularly with the advent of JWST (Greene et al., 2016), it is possible that more
complex atmospheric models will be required, creating a computational bottleneck which
could prevent us from learning about atmospheric processes that are left out of models, as
well as creating the potential for biased inferences due to missing physics.

The next two chapters of this thesis represent efforts to address some of these issues.
Chapter 3 is an assessment of the feasibility of using machine learning for the purpose
of atmospheric retrieval. Machine learning has been proposed as an alternative to typical
Bayesian retrievals in order to improve computational efficiency. While a number of
machine learning-based retrieval algorithms have been developed with some success (e.g.
Márquez-Neila et al., 2018, Zingales & Waldmann, 2018), they are still at times unable to
accurately reproduce results from contemporary Bayesian retrievals. The goal of Chapter 3
is to determine whether it is possible to robustly reproduce the results of Bayesian retrieval
algorithms with a machine learning approach.

Chapter 4 explores the need to develop more complex forward models for retrievals of
next-generation observations. Atmospheric models of exoplanets used to explain observed
data typically assume a one-dimensional thermally averaged structure. However, three-
dimensional GCMs reveal much more complex temperature profiles that can vary with
longitude and latitude across the terminator region of the atmosphere. When observing a
planet’s atmosphere in transmission, we are probing a region whose temperature profile
may change significantly in the transition from day- to night-side across the terminator (e.g.
Fortney et al., 2010). This is often not considered when creating model transmission spectra
to interpret data, which can potentially lead to biases in atmospheric retrieval, as has been
shown in previous studies (Caldas et al., 2019, Pluriel et al., 2020). The aim of Chapter 4 is
to develop a retrieval framework capable of incorporating three-dimensional variations in a
planet’s temperature structure, and exploring whether such a framework will be sufficient to
overcome some of the biases that have been found to be introduced when a one-dimensional
atmosphere is assumed to interpret JWST-quality data.
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Fig. 2.6 Full posterior probability distribution from retrieval of the transmission spectrum of
HD 209458b. The diagonal panels show histograms of the marginalised posteriors for each
free parameter in the model, while the off-diagonal panels depict correlations between pairs
of parameters. The blue points with lines indicate the median values and 1𝜎 uncertainties.
These results are consistent with Welbanks & Madhusudhan (2019), finding tight constraints
on the abundances of Na, K and H2O. The inset table shows median retrieved values and 1𝜎
uncertainties for each parameter.





Chapter 3

Supervised Machine Learning for
Atmospheric Retrieval of Exoplanets

“It’s fun to obey the machine!”
– Ralph Wiggum

3.1 Introduction

Machine learning and artificial intelligence are becoming increasingly prevalent in many
areas of astrophysics. Many popular machine learning techniques have been applied to
astrophysical problems including galaxy classification (Banerji et al., 2010), characterisation
of supernovae (Lochner et al., 2016), and exoplanet detection (Shallue & Vanderburg, 2018).
Recently a number of attempts have been made to use machine learning to retrieve properties
of exoplanet atmospheres from spectroscopic data. Waldmann (2016) trained a Deep Belief
Neural Network to make qualitative predictions about which molecular and atomic opacity
sources to include in a traditional retrieval framework. Márquez-Neila et al. (2018) employed
a supervised learning algorithm called Random Forest to retrieve atmospheric properties
of the hot giant planet WASP-12b. Zingales & Waldmann (2018) developed a Generative
Adversarial Network which uses unsupervised learning to predict planetary parameters as
well as atomic and molecular abundances. Soboczenski et al. (2018) explored the use of
Deep Neural Networks to make inference from synthetic spectra of terrestrial planets and
incorporated Monte Carlo dropout in order to approximate model uncertainty. This method
was further developed in Cobb et al. (2019), who used an ensemble of Neural Networks and
incorporated domain-specific knowledge to improve performance.
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A limitation of applying machine learning for retrievals has been the statistical interpreta-
tion of parameter predictions given the observed data. Traditionally, atmospheric retrieval
has used Bayesian inference techniques to estimate the central values and uncertainties of the
model parameters which fit an observed spectrum (Madhusudhan, 2018). Such techniques
used for both transmission and emission spectra include MCMC (e.g. Madhusudhan & Seager,
2010, Line et al., 2013, Cubillos et al., 2013) and Nested Sampling (e.g. Benneke & Seager,
2013, Waldmann et al., 2015a, Oreshenko et al., 2017, Gandhi & Madhusudhan, 2018). When
applied to atmospheric spectra, retrievals have often highlighted strong degeneracies between
model parameters (e.g. Benneke & Seager, 2012, Griffith, 2014, Line & Parmentier, 2016,
Welbanks & Madhusudhan, 2019). It is therefore important when carrying out a retrieval to
use a method that is able to find these model degeneracies and accurately capture the inherent
uncertainties in the observed spectra. Previous studies employing machine learning have
produced either a set of predictions similar to running an ensemble of optimal estimation
procedures (Zingales & Waldmann, 2018) or an approximation of the posterior distribution
that is not shown to match the result of a Bayesian inference procedure (Cobb et al., 2019).
In cases where attempts were made to compare a machine learning retrieval with a Bayesian
retrieval (Zingales & Waldmann, 2018, Márquez-Neila et al., 2018), the posterior distributions
between the retrievals reveal some discrepancies, as discussed later in this work.

In this paper we focus on supervised ensemble learning, similar to that employed by
Márquez-Neila et al. (2018), referred to as MN18 hereafter. MN18 use the Random Forest
algorithm, to train multiple estimators (or trees) to predict parameter values which best
describe the transmission spectrum of WASP-12b. The distribution of predictions made by
the estimators is used to find the uncertainties on the estimated parameter values. The results
of their Random Forest retrieval are compared to a Nested Sampling retrieval, and whilst
the two retrievals yield comparable parameter estimates, the uncertainties are not consistent
between the two methods. Our goal in this study is to determine if it is possible to develop a
more statistically sound retrieval framework using the Random Forest algorithm.

In Section 3.2 we first reproduce the retrieval results of MN18 (using both Nested Sampling
and Random Forest), using the WASP-12b transmission spectrum. To this end, we use the
same semi-analytic model used in MN18. We then modify and extend the Random Forest
method to perform a retrieval of the same spectrum that produces results whose uncertainties
are closer to those found in a Nested Sampling retrieval. In Section 3.3 we combine this
extended Random Forest method with the fully numerical forward model described in Pinhas
et al. (2018). We validate our algorithm using synthetic spectra before conducting a case
study of the HST Wide-Field Camera 3 (WFC3) transmission spectrum of HD 209458b, once
again comparing the results of Random Forest and Nested Sampling retrievals. In Section
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Fig. 3.1 Flowchart describing the extended Random Forest retrieval framework. As indicated,
the key differences between this and the MN18 method are the calculation of the posterior
distribution using the predicted parameter values and the iterative process of adding more
trees until the posterior converges.

3.4 we discuss the difficulties of applying these methods to more complex cases which would
require a larger parameter space to be explored than previous machine learning retrievals. We
also examine more generally the possible benefits and drawbacks of incorporating machine
learning, particularly ensemble learning as explored in this paper, into the retrieval process.

3.2 Methods

3.2.1 Reproduction of Previous Results

We begin by reproducing the results of MN18. We consider the same observed data as
that paper, namely the WFC3 transmission spectrum of WASP-12b (Kreidberg et al., 2015).
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Fig. 3.2 Posterior distributions of Nested Sampling retrieval of the WFC3 transmission
spectrum of WASP-12b following the methods of MN18. Inset: retrieved parameter values
and associated 1𝜎 uncertainties.

This spectrum consists of 13 binned data points in the infrared, at wavelengths ranging
from 0.84 − 1.67 `m. In order to retrieve atmospheric properties from the spectrum, two
components are required: a forward model to calculate a transmission spectrum from a given
set of parameters describing the atmospheric structure and composition, and a parameter
estimation algorithm which finds the values of the model parameters that best fit the observed
data. In this section we adopt the forward model of Heng & Kitzmann (2017) for consistency
with the previous study. This semi-analytic model is used to produce a binned spectrum at
the wavelengths of the WFC3 data given the values of five parameters: isotherm temperature
𝑇iso, the abundances of H2O, HCN and NH3, and a parameter to describe cloud opacity,
^0. For the parameter estimation we follow the two approaches considered in MN18, first
using the Nested Sampling algorithm MultiNest (Feroz et al., 2009), specifically its Python
implementation PyMultiNest (Buchner et al., 2014), and then using the implementation of
the Random Forest algorithm (Breiman, 2001) from scikit-learn.
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3.2.1.1 Nested Sampling

In a traditional retrieval, Bayesian inference is used to estimate the values of model parameters
given some observed data. Suppose we want to find the probability distribution of a set
of parameters, denoted \, given some observed data, 𝑑. We can express this using Bayes’
theorem:

𝑝(\ |𝑑) = 𝑝(𝑑 |\)𝑝(\)
𝑝(𝑑) . (3.1)

Typically 𝑝(\ |𝑑) is called the posterior, 𝑝(𝑑 |\) is called the likelihood and is denoted L,
𝑝(\) is called the prior, and 𝑝(𝑑) is called the Bayesian evidence and is denoted Z. Since Z
does not depend on \, it simply acts as a normalisation factor and therefore is not needed for
parameter estimation, however it can be used to compare different models.

Nested Sampling (Skilling, 2004) is a Monte Carlo algorithm designed to efficiently
compute the Bayesian evidence of a model. It is also highly effective at sampling complex
multimodal posterior distributions and is commonly used in many retrieval frameworks (e.g.
Benneke & Seager, 2013, Gandhi & Madhusudhan, 2018). The algorithm initially selects a
number of live points drawn from the defined prior volume, and evaluates the likelihoods
of these points. Assuming Gaussian uncertainty on the measurements of the spectral data
points, the likelihood is defined as

L = L0 exp
(
− 𝜒2

2

)
, (3.2)

with
𝜒2 =

∑︁
𝑖

( �̂�𝑖 − �̄�𝑖)2

𝜎2
𝑖

, (3.3)

where �̄�𝑖 and 𝜎𝑖 are the mean and standard deviation of the observed data point 𝑖, and �̂�𝑖 is
the model prediction for data point 𝑖.

Having calculated L for each live point, the point with the lowest likelihood is discarded
and replaced by a new one with a higher likelihood. This means that the volume contained
within the set of live points continually shrinks, with the minimum likelihood bound by the
volume progressively increasing. This process continues and Z is calculated until converging
to within some pre-defined tolerance. Since the evidence calculation requires a thorough
sampling of the parameter space, the Nested Sampling algorithm can therefore be used to
estimate posterior distributions.

Using MultiNest in conjunction with the forward model described in Heng & Kitzmann
(2017), we reproduce the results from the Nested Sampling retrieval shown in MN18. The
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Table 3.1 Description of priors for retrievals of the transmission spectrum of WASP-12b. The
priors have the same form for all chemical abundances 𝑋𝑖.

Parameter Lower Bound Upper Bound Prior

𝑇iso (K) 500 2900 uniform

𝑋𝑖 10−13 1 log-uniform

^0 (cm2 g−1) 10−13 102 log-uniform

retrieved values and posterior distributions from this retrieval are shown in Figure 3.2. We
obtain some constraints on the H2O abundance while the HCN and NH3 abundances remain
unconstrained. The value of ^0 is constrained to within 2 dex. The retrieved parameter values
and associated uncertainties are consistent with the MN18 Nested Sampling retrieval (see
table 1 of that paper).

3.2.1.2 Random Forest

Random Forest is a supervised machine learning algorithm. Supervised algorithms are
trained on a data set that has been labelled in some way, and then try to predict the labels of
some new, unlabelled data. The Random Forest method stems from the older decision tree
algorithm (Breiman et al., 1984). Decision trees, and hence Random Forest, can be used for
either classification or regression tasks; here we outline its application to a general regression
problem, since this is how the algorithm is applied to atmospheric retrieval.

We define the feature space X to be the vector space containing all possible input samples
(binned spectra). The dimension of X is equal to the number of features in a sample, i.e. the
number of data points in a single spectrum x. Similarly, we can define the space of all possible
output labels y (free parameters in the forward model) as Y. In this context, the supervised
machine learning problem becomes equivalent to finding the best possible partition of X,
where each partition corresponds to a different set of parameter estimates. The decision tree
algorithm works by partitioning X into subspaces and assigning different values from Y to
each subspace. In order to describe this further, we introduce some definitions from graph
theory:

• A graph is a collection of nodes and edges, where a node can be connected to another
node by an edge.
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Fig. 3.3 Results of Random Forest retrieval of the WFC3 transmission spectrum of WASP-12b
following the methods of MN18. While the parameter estimates are consistent to within 1𝜎
with those in Figure 3.2, the posterior distributions have important differences in shape.

• A graph can be either undirected, meaning that if there is an edge from node 𝑎 to node
𝑏 then there is automatically an edge from node 𝑏 to node 𝑎, or directed if this is not
the case.

• If there is an edge from node 𝑎 to node 𝑏 but not from 𝑏 to 𝑎, then 𝑎 is said to be the
parent of 𝑏 and 𝑏 the child of 𝑎.

• A tree is a graph in which there is exactly one path between any two nodes.

• If there exists a node in a tree where all edges are directed away from that node, then
the node is called the root.

• A node in a tree which has no child nodes is called a leaf.

A decision tree can be defined as a directed tree in which any node 𝑛 corresponds to some
subspace X𝑛 of the feature space, with a root node that represents the entire space X. Each
leaf in the tree is assigned a value from the output space Y. The aim of the learning process
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is therefore to determine the tree structure which best captures the relationship between the
spaces X and Y. We can quantify the concept of how well the model captures the relationship
by defining the impurity 𝐼𝑛 of a node 𝑛:

𝐼𝑛 =
1
𝑁𝑛

∑︁
x∈X𝑛

|y(x) − ŷ𝑛 (x) |2, (3.4)

where 𝑁𝑛 is the number of samples in the training data set which are found in the subspace
X𝑛, y(x) is the true value of the label corresponding to the sample x, and ŷ𝑛 (x) is the value
of the label for x currently predicted by the model. The impurity is similar to the 𝜒2 metric
of equation 3.3. The algorithm proceeds by considering existing leaf nodes in the tree and
splitting them into two or more child nodes (thus further partitioning the data set) such that
the decrease in impurity from the parent node to the child nodes is maximised. This continues
until some pre-determined tolerance in the impurity decrease is reached.

The Random Forest algorithm is an ensemble method which uses a large set of decision
trees. Ensemble methods aim to improve the robustness of predictions by training multiple
models that have been randomly perturbed in some way. The ensemble prediction is then
a combination of the individual model predictions. Randomness can be introduced in two
ways: by training each tree on a random subset of the full training data set, which is sampled
with replacement, and by limiting each tree to train using a random subset of features. It can
be shown that an ensemble of randomised decision trees produces a more robust prediction
than using a single tree (see for example Chapter 4 of Louppe, 2014).

In order to reproduce the Random Forest results of MN18, we use the forward model of
Heng & Kitzmann (2017) to generate a training set of 100000 noisy synthetic WFC3 spectra
in the wavelength range 0.8 − 1.7 `m. For each spectrum, the value of each free parameter is
chosen at random from a uniform or log-uniform distribution from within the prior ranges
specified in MN18 (see Table 3.1). The planetary and stellar radii are fixed at 𝑅𝑝 = 1.79𝑅𝐽
and 𝑅∗ = 1.577𝑅⊙. We produce the training set at a higher wavelength resolution and larger
wavelength range than the WFC3 spectrum, opting for 𝑅 = 2000 between 0.2 and 2.0 `m.
This approach allows us to use the same training data set for multiple observation instances
of the planet and would reduce the overall computation time of our method if other spectra of
the same planet were to be analysed.

We train 1000 estimators on the training set with a minimum impurity decrease tolerance
of 0.01. To begin the training phase, we bin each of the spectra in the training set to the
resolution of the WFC3 spectrum, and add random Gaussian noise with a mean of 50 parts
per million to each spectral data point. In order to improve the robustness of the predictions,
each estimator is shown only 4 of the 13 spectral data points in each training sample. Figure
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3.3 shows the distributions of the estimators’ predicted parameter values for the WASP-12b
spectrum, displaying a close match to figure 1 of MN18.

It is important to note that there are some discrepancies between the distributions shown
in Figures 3.2 and 3.3. Most notably, the posterior distributions of H2O abundance and of ^0

have broad tails in the Random Forest retrieval which are not found in the Nested Sampling
retrieval. These differences arise because the the distributions shown in Figure 3.3 are not
true posterior distributions in the Bayesian sense; they are instead the relative densities of
the predictions made by 1000 different estimators, some of which perform better than others
by design. This means that this method does not necessarily capture the true shape of the
posterior distributions and therefore cannot provide a robust estimate of the uncertainties of
the predicted parameter values.

3.2.2 Extension of Random Forest Method

The differences between the shapes of the posterior distributions produced by the two different
retrieval methods motivate the development of a new method, still employing machine
learning in the form of the Random Forest algorithm, but yielding results that capture the
uncertainty in parameter estimates more accurately. A diagram depicting this new approach
is shown in Figure 3.1. We begin by producing a training data set in the same way as before,
but we do not add noise to the model spectra. Before the training phase, we normalise the
parameter values in the training data set so that they all lie between 0 and 1. This ensures that
the loss function does not favour any one parameter over another.

Once the estimators have been trained on this noise-free data set and used to predict
parameter values, the likelihoods of those predictions are calculated by comparing the
observed spectrum to a forward model produced with the predicted parameter values (see
equation 3.2). This set of predictions and associated likelihoods serves as the likelihood
function for the retrieval, allowing the marginalised posterior for each parameter and pair of
parameters to be computed. By calculating the likelihood of each prediction, the algorithm
should no longer produce long tails that are not found in a Nested Sampling retrieval, since
these predictions will have lower likelihoods and will be penalised accordingly. Since
we impose a Gaussian likelihood, this method differs from other machine learning-based
approaches to retrievals, which are typically likelihood-free.

The procedure initially trains a set of 1000 estimators to compute an initial posterior
estimate. However, in order to ensure that enough estimators have been trained to sample the
parameter space thoroughly, more estimators are added in batches of 1000 until the symmetric
Kullback-Leibler divergence (ΔKL) between successive posterior distributions falls below a
certain tolerance. ΔKL is defined as
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ΔKL =
∑︁
𝑥

[
𝑝𝑖 (\ = 𝑥 |𝑑) log

(
𝑝𝑖 (\ = 𝑥 |𝑑)
𝑝𝑖+1(\ = 𝑥 |𝑑)

)
+ 𝑝𝑖+1(\ = 𝑥 |𝑑) log

(
𝑝𝑖+1(\ = 𝑥 |𝑑)
𝑝𝑖 (\ = 𝑥 |𝑑)

)] (3.5)

where 𝑝𝑖 (\ = 𝑥 |𝑑) is the posterior probability that \ = 𝑥 given by a forest of (1000 × 𝑖) trees.
Figure 3.1 shows a flowchart describing our extended Random Forest retrieval method.

Figure 3.4 shows the posterior distribution from a retrieval of the same WASP-12b
spectrum using the extended Random Forest method as described above. The retrieved
parameter values are consistent within 1𝜎 with those obtained in the previous two retrievals.
However, the main difference between the results of this retrieval and those of the previous
Random Forest retrieval is that the shape of the posterior distribution matches the Nested
Sampling posterior more closely. The extended tails found in Figure 3.3 are no longer present.
This is reflected in the reported uncertainties in the parameter estimates. Whereas the Random
Forest retrieval following the approach from MN18 gives lower bounds far below those given
by the Nested Sampling retrieval, the extended approach gives error bounds that are in line
with the Nested Sampling result.

In order to obtain a good sampling of the parameter space for this problem using the
extended Random Forest approach, a much larger number of estimators is required than the
ensemble of 1000 used in the method outlined in MN18. Convergence is reached after 17000
estimators to produce the posterior distributions shown in Figure 3.4, with a mean tree depth
of 39. A reasonable result can be produced using a higher tolerance which converges after
approximately 10000 estimators have been generated. Simply increasing the number of trees
without the likelihood evaluation step is not sufficient to obtain a more accurate retrieval; this
is discussed in more detail in Section 3.3. While this increases the computational cost of the
approach somewhat, the longest step in the retrieval is still the generation of the training data,
since the forward model must be run 100000 times to create the full training set.

We investigated the effect of lowering the amount of training data to reduce computation
time. This would reduce both the time taken for the training set to be produced and the
training time itself, since the Random Forest algorithm trains more quickly on a smaller data
set. Decreasing the amount of training data from 100000 spectra to 50000 yields resulting
posterior distributions that are not well-sampled. We conclude that in this case a significant
reduction in the amount of data used to train the estimators is not feasible.
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Fig. 3.4 Results of extended Random Forest retrieval of the WFC3 transmission spectrum
of WASP-12b, using the same forward model as in MN18. The parameter estimates and
posterior distributions provide a better match to the Nested Sampling retrieval shown in
Figure 3.2, compared to Figure 3.3.

3.3 Applications

Having demonstrated that we can reproduce the results of MN18, and having extended their
method to produce a result closer to that of a Nested Sampling retrieval, we now compare our
new approach to a current state-of-the-art retrieval framework that uses a fully numerical
forward model. We no longer use the forward model from Heng & Kitzmann (2017), instead
adopting the modelling paradigm from AURA (Pinhas et al., 2018), a retrieval framework
that has been validated against synthetic spectra and used to retrieve atmospheric properties,
including H2O abundances, for a range of planets (e.g. Pinhas et al., 2019, Welbanks et al.,
2019).
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Fig. 3.5 True values versus Random Forest predictions for each parameter in the forward
model, for a test set of 2000 synthetic models. The coefficient of determination (𝑅2) indicates
the correlation between the true and predicted values, with 𝑅2 close to 1 implying a strong
correlation.

3.3.1 Validation

We begin by demonstrating our algorithm’s ability to accurately estimate parameter values
from synthetic spectra. The AURA forward model is used to generate synthetic spectra in
the wavelength range of WFC3 for training and testing our algorithm, assuming a cloud-free
atmosphere and an isothermal temperature profile. Since WFC3 transmission spectra only
provide nominal constraints on the temperature structure of the atmosphere (Barstow et al.,
2013), assuming an isothermal temperature profile has little effect on retrievals with present
data and is sufficient for the purposes of this study. Cloud properties are not considered since
they are difficult to constrain without including data from optical wavelengths.

The model atmosphere is divided into 100 pressure layers, which are evenly log-spaced
from 10−6 − 102 bar. The main opacity sources in the model are H2O and collision-induced
absorption (CIA) due to H2-H2 and H2-He. The cross-sections for these opacity sources are
computed by Gandhi & Madhusudhan (2017) using line lists from the HITEMP database
for H2O (Rothman et al., 2010) and the HITRAN database for CIA (Richard et al., 2012).
We fix 𝑅𝑝 to 1.41𝑅𝐽 and leave the reference pressure 𝑃ref as a free parameter to be retrieved.
It was demonstrated by Welbanks & Madhusudhan (2019) that fixing one of the planetary
radius and reference pressure and retrieving the other does not affect the retrieved values of
the other parameters, and so we arbitrarily choose the retrieved radius of HD 209458b from
Case 3 of that paper. The model therefore has 3 free parameters: 𝑇iso, 𝑃ref and the water
abundance 𝑋H2O. This choice of paramaterisation is appropriate for WFC3 spectra of hot
Jupiters, which to date have been found to be most sensitive to planetary radius, temperature
and H2O abundance (Tsiaras et al., 2018, Welbanks & Madhusudhan, 2019). The prior ranges
for each parameter are shown in Table 3.2.
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Fig. 3.6 Difference between true and predicted values of 𝑃ref and 𝑋H2O for synthetic models
with log 𝑋H2O ≥ −6. We find that predictions of 𝑃ref that are above the true value correspond
to predictions of 𝑋H2O below the true value and vice-versa.

We use this forward model to produce a training data set of 8000 model spectra and a
validation data set of 2000 spectra. Each data set has randomly generated parameters, and no
spectra from the validation set appear in the training set. The spectra are produced at a high
resolution (𝑅 = 1000) in the wavelength range of WFC3 (1.1 − 1.7 `m). Experimenting with
larger and smaller training data sets suggests that this is the minimum size for the algorithm
to be able to accurately learn the relationship between the input spectrum and the output
parameters. The Random Forest is set up in the same manner as before, using the same
hyperparameters to train on normalised data. The trained Random Forest is then used to
predict the parameter values for the 2000 synthetic spectra in the test set. As described in
Section 3.2, we evaluate the likelihoods of the predictions made by each tree and take the
median of the corresponding posterior distribution to be the predicted parameter value.

Figure 3.5 shows the outcome of our method when applied to these 2000 synthetic spectra.
The 𝑅2 coefficient of determination is close to unity for each parameter, suggesting that the
retrieval is able to recover the input parameters well. For models with log 𝑋H2O ≲ −6 the
correlation is much lower; this is to be expected since these cases correspond to non-detections
and is consistent with the findings of MN18. For models with log 𝑋H2O ≲ −6, the spread in
the results is caused by a degeneracy between 𝑃ref and 𝑋H2O, as shown in Figure 3.6; it is
possible to fit the same spectrum by increasing 𝑃ref and decreasing 𝑋H2O. This degeneracy
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Table 3.2 Description of priors for retrievals of the WFC3 transmission spectrum of
HD 209458b.

Parameter Lower Bound Upper Bound Prior

𝑇iso (K) 700 2810 uniform

𝑃ref (bar) 10−6 102 log-uniform

𝑋H2O 10−12 10−2 log-uniform

has been found previously when analysing WFC3 spectra (e.g. Pinhas et al., 2019, Welbanks
& Madhusudhan, 2019).

3.3.2 Retrieval of WFC3 Transmission Spectrum

Having validated our retrieval method using synthetic data, we now apply the algorithm to a
real data set for direct comparison against an AURA retrieval. We consider the observed
WFC3 transmission spectrum of the hot Jupiter HD 209458b (Deming et al., 2013), which
consists of 29 data points in the spectral range 1.1 − 1.7 `m. We use this planet as a
representative case to validate our method since it is one of the most well-studied planets
in the literature, with high quality spectral data available. Additionally, the transmission
spectrum of this planet has recently been analysed in numerous retrieval studies, (e.g. Barstow
et al., 2017, MacDonald & Madhusudhan, 2017, Welbanks & Madhusudhan, 2019).

We first carry out a Nested Sampling retrieval using the same parameterisation as in
Section 3.3.1. For this retrieval, the model is initially evaluated at a higher resolution,
covering 1000 wavelength points from 1.1 − 1.7 `m. The model spectrum is subsequently
convolved with the WFC3 point spread function, integrated over the instrument function
and binned to the resolution of the observed data. The binned spectrum is used to evaluate
the likelihood function for each model (see equation 3.2). Further detail on this retrieval
approach and validation using synthetic data can be found in Pinhas et al. (2018). We find
that a Nested Sampling retrieval setup using 1000 live points is sufficient to obtain robust
parameter estimates.

The retrieved posterior distributions, abundance estimates and uncertainties are displayed
in Figure 3.7. These compare very closely to the results from Case 3 of Welbanks &
Madhusudhan (2019). The only notable difference between the two retrievals is that our
results show smaller error bars for the estimated reference pressure 𝑃ref. This can be attributed
to fixing 𝑅𝑝 rather than retrieving it. We again find a degeneracy between 𝑃ref and 𝑋H2O, in
agreement with our findings from the model validation.
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Fig. 3.7 Results of Nested Sampling retrieval of the WFC3 transmission spectrum of
HD 209458b.

We attempt to reproduce the results of this Nested Sampling retrieval using the extended
Random Forest method as described in Section 3.2.2. For this case study we use the same
training set of 8000 spectra from Section 3.3.1. The Random Forest is set up in the same
manner as before, using the same hyperparameters to train on normalised data. The likelihood
function for each estimator is evaluated every time 1000 more estimators have been trained,
and we find that the posterior distribution converges once 12000 estimators have been
produced. Marginalised posterior distributions are then created from this likelihood function
to obtain the results, which are displayed in Figure 3.8.

In this case, the extended Random Forest retrieval produces extremely similar results
to the Nested Sampling retrieval. The best-fitting model spectra, along with 1𝜎 and 2𝜎
uncertainties, from the two retrievals are shown in Figure 3.9. The parameter estimates and
uncertainties are directly compared in Table 3.3; both the retrieved median values and the 1𝜎
uncertainties are almost identical. It is also clear from the joint distributions shown in Figure
3.8 that the extended Random Forest retrieval has found the same degeneracies between
parameters as the Nested Sampling retrieval. This result demonstrates for the first time that,
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Fig. 3.8 Results of extended Random Forest retrieval of the WFC3 transmission spectrum of
HD 209458b. The results are in agreement with the Nested Sampling retrieval in Figure 3.7.

for a given observation instance, a machine learning-based approach to atmospheric retrieval
can not only obtain similar parameter estimates to a traditional retrieval, but that it can also
deal with uncertainties and degeneracies in a robust and accurate way.

3.3.3 Addition of Unconstrained Free Parameter

The retrieval analysis of the WASP-12b transmission spectrum from MN18 has also been
reproduced in Cobb et al. (2019). In that paper they find that in certain cases, the Random
Forest retrieval can sometimes return a narrow posterior for a free parameter that should not
be constrained; they demonstrate this by finding a synthetic spectrum following the model
from Heng & Kitzmann (2017) for which the Random Forest confidently predicts H2O, HCN
and NH3 abundances that are not the true values used to generate the model. In the present
paper we investigate this issue further in order to determine whether the MN18 Random
Forest approach might incorrectly infer certain parameter values in cases where a traditional
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Fig. 3.9 Top: Best-fitting model spectrum from the Nested Sampling retrieval of the
HD 209458b WFC3 transmission spectrum. Bottom: Best-fitting model spectrum from the
extended Random Forest retrieval of the same spectrum. The shaded regions represent the
1𝜎 and 2𝜎 contours, produced by drawing 1000 spectra from the posterior distributions from
each retrieval. The best-fitting spectra have been smoothed with a Gaussian filter for clarity.
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retrieval would (correctly) not be able to constrain that value. We also consider whether a
similar problem would occur if our extended Random Forest method was used instead.

In order to highlight this issue, we carry out a second set of retrievals of the WFC3
spectrum of HD 209458b, but this time including CO abundance as a free parameter in the
forward model, with a log-uniform prior ranging from 10−12 − 10−2. We choose to add CO
since this molecule does not have strong features in the spectral range of the data. Previous
studies such as Welbanks & Madhusudhan (2019) have therefore been unable to constrain the
CO abundance from this spectrum. We verify this by first carrying out a Nested Sampling
retrieval of the spectrum, whose results can be seen in Figure 3.10. As expected, the estimated
values of 𝑇iso, 𝑃ref and log 𝑋H2O remain very close to those from the retrieval that did not
include CO (see Figure 3.7), but the CO abundance itself is not unconstrained. This setup
should therefore provide a test of the capabilities of both the MN18 and our Random Forest
retrieval methods to deal with an unconstrained free parameter in the model.

We begin the machine learning approach by generating a training set consisting of 160000
model spectra, which we use for both the MN18 and for the extended Random Forest retrievals.
We use the same training set in both cases to ensure that the only difference between the two
retrievals is the implementation of the algorithm. First we employ the methods of MN18
to perform the retrieval using this data set. We add Gaussian noise to the training set and
train 1000 estimators on the noisy spectra. Histograms of the results along with parameter
estimates are shown in Figure 3.11. The shapes of the temperature and water abundance
distributions differ somewhat from the Nested Sampling posteriors, but what is most notable
is the apparent peak around −8.5 in log CO abundance which is not present at all in the Nested
Sampling case. As in Cobb et al. (2019), the algorithm is overconfident in its prediction of a
parameter value which it should not be able to constrain (but cf. Fisher et al., 2020).

Next we take the same training set and apply our extended method as described in Section
3.2.2. More estimators are required to reach convergence in this case than when CO was not

Table 3.3 Comparison of Nested Sampling (NS) and extended Random Forest (RF+) retrieved
parameter values from the WFC3 transmission spectrum of HD 209458b.

Parameter NS Value +1𝜎
−1𝜎 RF+ Value +1𝜎

−1𝜎

𝑇iso (K) 1017+102
−98 1009+99

−94

log 𝑃ref (bar) −4.45+0.39
−0.44 −4.48+0.37

−0.43

log 𝑋H2O −5.44 ± 0.20 −5.47 ± 0.20
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Fig. 3.10 Results of Nested Sampling retrieval of the WFC3 transmission spectrum of
HD 209458b, including CO abundance as a free parameter. The non-detection of CO is
consistent with expectation, given the weak CO features in the spectral range of the data.

included; in this case convergence is reached after 24000 estimators had been trained. The
results from this analysis are shown in Figure 3.12. The marginalised posterior distributions
of 𝑇iso, 𝑃ref and log 𝑋H2O are once again very similar in shape to their Nested Sampling
counterparts. The extended Random Forest method produces a broad distribution, leaving
the CO abundance unconstrained as in the Nested Sampling case. Since the likelihood
function for each estimator is evaluated directly, this method is able to infer that the value
of CO abundance does not affect how well the model fits the data. This means that our
algorithm does not suffer from the flaws described in Cobb et al. (2019) and is able to deal
with unconstrained free parameters in such a way that a false constraint is avoided. Figure
3.13 shows a direct comparison of the marginal distributions for CO abundance obtained
in each of the retrieval studies. We also show the CO posterior for a retrieval following the
methods of MN18, but using the same number of trees as in our extended method. The
spurious peak around −8.5 is still present, indicating that increasing the number of trees
alone is not enough to solve this problem.
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Fig. 3.11 Results of Random Forest retrieval of the WFC3 transmission spectrum of
HD 209458b, including CO abundance as a free parameter, following the methods of MN18.
The peak in the CO posterior is unphysical given that there is no strong CO feature in the
spectral range of the data.

3.4 Discussion and Conclusions

It has previously been suggested that using machine learning to perform retrievals could
significantly reduce computation time, since a trained machine learning algorithm can make
predictions extremely rapidly. The Generative Adversarial Network presented by Zingales &
Waldmann (2018) can predict model parameters from a spectrum in approximately 2 minutes,
and Cobb et al. (2019) state that their approach can provide predictions in 1.5 seconds. The
prediction time is not reported in MN18, but we find that 1000 estimators take a few seconds
to make predictions for each retrieval considered in this study.

These numbers ostensibly suggest that machine learning retrievals are much faster than
traditional methods, which can often take up to several hours depending on the size of the
parameter space. However, these figures do not include the time taken to produce a training
data set, nor do they incorporate the time taken to train the machine learning algorithm.
According to Zingales & Waldmann (2018) the training phase of their GAN using a forward
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Fig. 3.12 Results of extended Random Forest retrieval of the WFC3 transmission spectrum of
HD 209458b, including CO abundance as a free parameter. The results are consistent with
expectations and the Nested Sampling retrieval shown in Figure 3.10.

model with 7 free parameters takes approximately three days per epoch on 20 CPU cores or
about 9 hours per epoch on a GPU. The authors do not report how many epochs of training
were required to fully train the network, nor do they say how long it took to generate the grid
of 107 models that were used for the training. Cobb et al. (2019) do not produce a unique
data set for their retrievals, but instead use the same training set that was used in MN18. Each
of their models takes approximately 20 minutes to train.

For the present study we compare the full retrieval duration of Nested Sampling and
extended Random Forest retrievals for both the three- and four-parameter cases presented in
Section 3.3. We conduct retrievals on a synthetic data set binned to different resolutions from
𝑅 = 10 to 1000, using the same computational resources for each (parallelisation over 4 CPU
cores). For the Random Forest retrieval we include the time taken to produce the training
data set, the training itself and the prediction step, however we note that in general only one
training set would be needed to retrieve multiple observation instances of the same target.
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Fig. 3.13 Marginal posterior distributions for CO abundance retrieved from the transmission
spectrum of HD 209458b using different methods: (a)(i) Random Forest retrieval following
the methods of MN18; (a)(ii) the same approach as (a)(i) but using 24000 trees instead of
1000; (b) Nested Sampling retrieval; (c) extended Random Forest retrieval. In order to aid
comparison, the histograms have been scaled so that the bin with maximum probability in
each plot has the same height. Given the lack of strong CO features in the spectral range of
the data, a detection of CO is unexpected. Therefore the posterior in (a) is unphysical while
those in (b) and (c) match with expectation.

The results of this investigation are shown in figure 3.14, where we show the relative
speedup of the extended Random Forest retrieval compared to the Nested Sampling retrieval.
In the three parameter case, the Random Forest retrieval always outperforms Nested Sampling
by a factor of ∼4 to 8. At the resolution of the HD 209458b data used in Section 3.2.2,
training time is approximately 4 seconds per 1000 estimators using the extended Random
Forest approach. The biggest improvement over Nested Sampling is found at the lowest and
highest wavelength resolutions, with a minimum at 𝑅 ∼ 250. While the duration of the
Random Forest retrieval increases steadily with wavelength, following an approximate power
law 𝜏RF ∼ 𝑅0.4, the duration of the Nested Sampling retrieval increases more slowly with 𝑅
up to 𝑅 ∼ 250 at which point 𝜏NS increases rapidly.

In the four parameter case, similar patterns are found in both types of retrieval, with both
retrievals being slower overall. However, the addition of another parameter increases 𝜏RF

much more than 𝜏NS, resulting in retrievals of comparable duration. Training a Random
Forest on high-dimensional data is much slower since a larger training set is required; in
this case it takes about 80s to train 1000 estimators on 4 CPU cores. This indicates that
increasing the number of free parameters and the size of the training set slows down the
training significantly.

The applicability of a retrieval algorithm to higher-dimensional parameter spaces is an
important factor to consider when comparing machine learning and traditional retrievals.
As higher quality observed data and new line lists (e.g. Tennyson & Yurchenko, 2012)
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Fig. 3.14 Comparison of the duration of Nested Sampling retrievals (𝜏NS) versus extended
Random Forest retrievals (𝜏RF) as a function of spectral resolution 𝑅. Three-parameter
Random Forest retrievals are faster than their Nested Sampling counterparts, whereas four-
parameter Random Forest retrievals are only faster at low and high spectral resolutions, albeit
only with a factor of two. For higher dimensions, Nested Sampling retrievals tend to be more
efficient.

become available it will be possible to search for an increasingly large number of atomic and
molecular species, which will expand the number of possible free parameters in the forward
model considerably. Additionally, extra parameters must be included to deal with other
phenomena such as clouds (Wakeford & Sing, 2015, Pinhas & Madhusudhan, 2017) and
stellar heterogeneity (Pinhas et al., 2018). We consider the feasibility of using the extended
Random Forest method to perform a retrieval including additional chemical species and
cloud/haze properties, following the prescription of MacDonald & Madhusudhan (2017).
The model in this case requires 10 free parameters, and so we produce a large training
data set consisting of > 106 models. When a Random Forest is trained using this data, it
predicts very few points with high likelihoods, suggesting that the parameter space is not
sampled finely enough in the training set. This approach already requires far more model
evaluations than a Nested Sampling retrieval using the same model, which converges after
approximately 500000 model evaluations. A Random Forest retrieval with 𝑛 free parameters
appears to require ≳ 10𝑛 models for an adequate training set. Full retrievals with optical
and infrared data typically include up to ∼20 free parameters (MacDonald & Madhusudhan,
2019, Madhusudhan et al., 2020), so a sufficient training set to carry out these retrievals using
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this method would be prohibitively large. We therefore conclude that the Random Forest
approach struggles to deal with higher dimensional parameter spaces efficiently. If a different
algorithm can be used that performs more efficiently in high-dimensional parameter spaces
and while still capturing uncertainties and degeneracies accurately, then it is possible that a
machine learning approach could eventually compare to traditional methods for all cases,
regardless of complexity.

At present, each planet being analysed requires its own training data set for our extended
Random Forest retrieval. An alternative approach to address the large computation time
required for Random Forest retrievals in high-dimensional spaces might be to generate a large
training set with many free parameters (including bulk parameters such as surface gravity)
that would be applicable to a range of planets. This training set could then be used to train
a model which could retrieve properties of spectra from different planets. Each retrieval
would therefore only require the prediction step to be carried out after the training has been
completed once. This kind of method has been applied to retrievals using deep learning:
for example, Soboczenski et al. (2018) used a large training set of 107 models of terrestrial
planet spectra which could be applied to numerous planets. Zingales & Waldmann (2018)
took a similar approach, using a training set of 107 hot Jupiter spectra. In the next decade,
with the advent of JWST (Greene et al., 2016) and the Atmospheric Remote-sensing Infrared
Exoplanet Large-survey (ARIEL; Tinetti et al., 2018), we expect the number of planets with
high-quality spectral data suitable for retrieval to increase significantly, so a machine learning
approach that could apply to a range of planets may prove to be the most efficient option for
conducting population studies of exoplanet atmospheres in the future.

Other than attempting to fully reproduce traditional retrievals, there may be other scenarios
in which a machine learning-based approach could prove useful in this field: for example, a
small number of predictions may be able inform the starting points for a MCMC retrieval (e.g.
Hayes et al., 2020), or could inform which molecules should be included in the full retrieval
process, as discussed in Waldmann (2016). Additionally, while not explored in this study, the
Random Forest algorithm provides information about the information content of each data
point in the spectrum, and it was mentioned in MN18 that this could be used to inform which
wavelengths are most useful for future observations. We believe that combining machine
learning algorithms with traditional methods can provide additional insight even when they
are unable to replace existing methods entirely.

In this paper we have investigated the viability of using machine learning for atmospheric
retrievals of exoplanets. We reproduced both the Nested Sampling and Random Forest
results of MN18 and we extended the methods from that paper so that the resulting posterior
distribution from the Random Forest retrieval more closely matches that of the corresponding
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Nested Sampling retrieval. We applied this extended approach to a different planetary
spectrum using a fully numerical forward model and found that once again we could
accurately match the Nested Sampling and Random Forest retrievals. In addition, we found
that our approach does not lead to spurious detections of parameters in cases where the
parameter values should not be well-constrained, a problem found with the previous method.
We have therefore developed a machine learning technique that can accurately and robustly
reproduce the results of Bayesian retrievals. We investigated the potential for using this
method to perform higher-dimensional retrievals and found that the algorithm requires a
finely-sampled grid of training data in order to work well, making it prohibitively expensive
to use this method in more complex cases. We conclude that while it is certainly possible to
use machine learning techniques to reproduce traditional Bayesian retrieval results at least in
low dimensions, the increased computational cost suggests that this approach does not yet
provide a significant improvement on traditional methods. Future improvements in machine
learning methodologies, as well as new strategies for applying these techniques to the present
problem, will be required to surmount this challenge.





Chapter 4

A Three-Dimensional Retrieval
Framework for Exoplanet Transmission
Spectra

“It’s going to be a swell demonstration — and at no time will we be stooping to any cheap 3D
tricks.”

– Kermit the Frog
“Did you say, ‘cheap 3D tricks’?!”

– Fozzie Bear

4.1 Introduction

The study of exoplanet atmospheres has seen immense progress in recent years, with
spectroscopic observations enabling constraints on a range of physical and chemical processes
that occur in exoplanets (Madhusudhan, 2019). One of the most successful observational
techniques used to characterise exoplanet atmospheres has been transmission spectroscopy,
which measures the wavelength-dependent decrease in flux from the host star as the planet
transits in front of it. This approach has led to detections and abundance constraints of
chemical species in numerous exoplanets (e.g. Charbonneau et al., 2002, Snellen et al., 2010,
Deming et al., 2013, Mandell et al., 2013, Kreidberg et al., 2014b, Madhusudhan et al., 2014b,
Wyttenbach et al., 2015, Wakeford et al., 2018, Pinhas et al., 2019) as well as providing
constraints on the properties of clouds and hazes (e.g. Pont et al., 2008, Bean et al., 2010,
Pont et al., 2013, Kreidberg et al., 2014a, Sing et al., 2016, Barstow et al., 2017, Pinhas et al.,
2019, Benneke et al., 2019).
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Fig. 4.1 Schematic of the Aura-3D retrieval framework. The algorithm combines an
atmospheric forward model in 3D geometry with a Bayesian sampling algorithm to conduct
parameter estimation. The forward model is modular in structure, with numerous features
that can be incorporated as needed, such as clouds/hazes, refraction, scattering and stellar
heterogeneity.

One of the most common methods for deriving atmospheric properties from spectroscopic
data of exoplanets is atmospheric retrieval (Madhusudhan & Seager, 2009). An atmospheric
retrieval algorithm involves combining an atmospheric forward model with a statistical
sampling algorithm in order to determine estimates of the atmospheric properties that best
explain the observed data (see e.g. Madhusudhan, 2018, for a recent review). The earliest
retrieval algorithms employed a grid-based search to find best-fitting models (Madhusudhan
& Seager, 2009), with later studies incorporating Bayesian statistical inference schemes
such as Markov Chain Monte Carlo (e.g. Madhusudhan & Seager, 2010, Line et al., 2013,
Cubillos et al., 2013, Zhang et al., 2019, Lacy & Burrows, 2020), and Nested Sampling (e.g.
Benneke & Seager, 2013, Waldmann et al., 2015a, Oreshenko et al., 2017, MacDonald &
Madhusudhan, 2017, Gandhi & Madhusudhan, 2018, Mollière et al., 2019, Zhang et al.,
2020). Other approaches to parameter estimation, such as Optimal Estimation (e.g. Irwin
et al., 2008, Lee et al., 2012, Barstow et al., 2017) and machine learning (e.g. Márquez-Neila
et al., 2018, Zingales & Waldmann, 2018, Cobb et al., 2019, Fisher et al., 2020, Nixon &
Madhusudhan, 2020), have also been implemented.

In order to create an accurate and flexible atmospheric model for use in retrievals, a large
number of parameters are required to capture all possible compositions, thermal structures,
and other properties such as the presence of clouds or hazes. Since statistical sampling
algorithms often require a large number of model evaluations, increasing as the number of
free parameters increases (Fortney et al., 2021), it is necessary to make some simplifying
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assumptions to reduce computation time. Common assumptions include the use of a 1D
temperature profile and uniform chemical abundances in the region of the atmosphere probed
by the observations (Madhusudhan, 2018). It is important to re-examine the assumptions
made in these algorithms as we enter a new era in the study of exoplanet atmospheres,
in which the quality and volume of observational data will improve immensely thanks to
next-generation facilities such as JWST (Greene et al., 2016), ARIEL (Tinetti et al., 2018)
and the Extremely Large Telescopes (ELTs; Snellen et al., 2015).

Despite the successes of the retrieval approach for analysing data from existing obser-
vatories such as the Hubble Space Telescope (HST), several studies have highlighted the
potential for 1D retrieval codes to lead to biased results due to variations in temperature
structure and chemical abundances with latitude and longitude, particularly when considering
high-quality observations of very hot Jupiters from upcoming facilities such as JWST. For
example, assumptions of a 1D atmosphere have been shown to bias retrievals of emission
spectra (e.g. Blecic et al., 2017, Taylor et al., 2020) and can lead to unrealistic model fits to
phase curves (e.g. Irwin et al., 2020, Feng et al., 2020).

This work focuses on retrievals of transmission spectra. Transmission spectroscopy
probes the day-night terminator region of the atmosphere, across which inhomogeneities
may be expected (e.g. Fortney et al., 2010). These effects should be particularly prevalent in
hot and ultra-hot Jupiters, since day-night temperature contrasts are expected to increase as
planetary equilibrium temperature increases (Cowan & Agol, 2011, Komacek & Showman,
2016). Previous studies have already indicated that 1D retrievals can lead to biases when
interpreting transmission spectra of hot giant planets. Caldas et al. (2019) developed a
transmission spectrum model that could incorporate a 3D atmospheric structure, which they
used to investigate the effect of day-night temperature gradients on model spectra. They used
the 1D retrieval code TauREx (Waldmann et al., 2015a) to analyse synthetic JWST spectra
generated with their 3D model for which the temperature could vary significantly between
the day- and nightsides. The retrievals returned terminator temperatures that were biased
towards the dayside temperature, and chemical abundances which were not consistent with
input values. Pluriel et al. (2021) also found day-night induced biases for a range of synthetic
JWST-like spectra of hot and ultra-hot Jupiters, and Pluriel et al. (2020) used the same 3D
model to explore the potential for biases caused by day–night chemical heterogeneities. They
focused on the ultra-hot Jupiter WASP-121b, for which the H2O abundance is expected to
be much higher on the nightside than the dayside due to thermal dissociation (Parmentier
et al., 2018). A 1D retrieval analysis showed that inferred chemical abundances could
be significantly different to the input values. MacDonald et al. (2020) also discussed the
potential for biased temperatures and abundances from 1D retrievals (but cf. Welbanks &
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Madhusudhan, 2022). A generalised retrieval framework should be able to address the above
issues in order to accurately infer atmospheric properties regardless of the presence of thermal
inhomogeneities. This is the goal of the present study.

Unlike the simplified atmospheric models used in retrieval algorithms, General Circulation
Models (GCMs) can be used to capture some of the more complex processes at work in
planetary atmospheres (see Section 1.3.3.1). GCMs simulate the dynamics of 3D atmospheres,
often incorporating chemical processes as well as radiative transport (Showman et al., 2020).
GCMs have predicted a number of important features of hot Jupiter atmospheres. This
includes the finding that hot Jupiters can show large day-night temperature contrasts of up to
serveral hundred K (e.g. Showman & Guillot, 2002, Cooper & Showman, 2005, Amundsen
et al., 2016). GCMs of hot Jupiters have also predicted equatorial superrotation that can
lead to an eastward shift of a planet’s dayside hotspot away from the substellar point (e.g.
Showman & Guillot, 2002, Cooper & Showman, 2005, Rauscher & Menou, 2010, Kataria
et al., 2013). These predictions have subsequently been confirmed through comparison
with observations of infrared phase curves (e.g. Knutson et al., 2007, Komacek et al., 2017,
Stevenson et al., 2017).

Model transmission spectra can be generated using 3D temperature structures. Fortney
et al. (2010) used pre-computed temperature profiles from SPARC/MITgcm simulations of
hot Jupiters (Showman et al., 2009) to examine the differences between 1D and 3D model
atmospheres. A number of more recent works have also developed multidimensional forward
models for transmission spectra. Caldas et al. (2019) used a 3D radiative transfer model
to investigate biases caused by day-night temperature gradients using a simple parametric
temperature profile. Falco et al. (2021) presented transmission spectrum models in 1D,
2D and 3D, and MacDonald & Lewis (2022) described parametric prescriptions for 3D
atmospheric models.

Although GCMs are too computationally expensive to incorporate into retrieval algorithms
directly, a number of studies have aimed to bridge the gap between 1D and 3D models
in the context of retrievals of transmission spectra. Lacy & Burrows (2020) conducted
chemical equilibrium retrievals assuming separate dayside and nightside temperature profiles,
showing that in some cases it is possible to constrain day- and nightside temperatures of
hot Jupiters from their transmission spectra. Espinoza & Jones (2021) demonstrated how
JWST could be used to acquire separate transmission spectra for each of a planet’s limbs, and
also expanded the retrieval framework CHIMERA (Line et al., 2013) to enable retrievals of
a single transmission spectrum with separate temperature profiles for each limb, under the
assumption of chemical equilibrium. Welbanks & Madhusudhan (2022) also presented a
1+1D retrieval framework in which the final transmission spectrum is calculated by a linear
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combination of two separate spectra, one representing the morning terminator and another
representing the evening terminator.

In this work we present Aura-3D, a 3D atmospheric retrieval framework for transmission
spectra of exoplanets. In Section 4.2, we describe our algorithm in detail. We present
a forward model that incorporates a 3D temperature structure and which can be used to
efficiently generate transmission spectra from the output of a GCM, similarly to several
past studies (Fortney et al., 2010, Caldas et al., 2019). We develop a parametric pressure–
temperature (𝑃–𝑇) profile that can match the azimuthally-averaged structure of a GCM while
being very fast to compute, making it suitable for atmospheric retrieval. In Section 4.3.1 we
compare our parametric temperature profile to a number of established GCMs. We explore
the effects of a day-night temperature gradient on resulting transmission spectra in Section
4.3.2 by quantifying the difference in transit depths between 3D models and their 1D-averaged
counterparts. In Section 4.3.3 we discuss the possible effects of chemical inhomogeneity on
transmission spectra. In Section 4.3.4 we demonstrate the capability of Aura-3D to carry
out retrievals with a multidimensional 𝑃–𝑇 profile by conducting a retrieval on a synthetic
hot Jupiter spectrum generated using our new parametric profile. In Section 4.3.5 we retrieve
a spectrum generated using a GCM temperature structure, comparing results from retrievals
both with and without a day-night temperature gradient. We summarise our findings and
discuss avenues for the future in Section 4.4.

4.2 Methods

The retrieval framework developed in this study is shown in Figure 4.1. Similarly to
previous retrieval algorithms, this framework combines an atmospheric forward model with
a Bayesian parameter estimation scheme. The key differences between our methods and
those of previous retrieval algorithms concern the forward model. Our forward model
enables the computation of a transmission spectrum whose temperature structure can vary
in three dimensions throughout the atmosphere, and can therefore take the temperature
structure calculated by a GCM as its input. However, since the calculation of a temperature
structure using a GCM is very computationally expensive, we also describe a number
of parameterisations that allow for rapid computation of a multidimensional temperature
profile, and which can be incorporated directly into a retrieval. Our retrieval framework also
incorporates several components from the existing retrieval code Aura and its subsequent
implementations (Welbanks & Madhusudhan, 2019, Nixon & Madhusudhan, 2020) as well as
Aurora (Welbanks & Madhusudhan, 2021). These features are discussed later in this section.
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Fig. 4.2 Three-dimensional co-ordinate system adopted for our forward model. The zenith
angle \ is defined to be 0 at the substellar point and 𝜋 (180◦) at the antistellar point. The
azimuthal angle 𝜙 varies between 0 and 2𝜋 (360◦), increasing in the direction of the trailing
limb.

We note that Aurora can also be applied to H-poor atmospheres, which are not considered in
the present work.

4.2.1 Transit Geometry

We define a spherical polar coordinate system (𝑟, \, 𝜙) with an origin at the centre of the
planet (see Figure 4.2). The coordinates (𝑅𝑝, 0, 0) correspond to the substellar point. The
zenith angle \ varies between 0 and 𝜋, reaching 𝜋/2 at the day-night terminator and 𝜋 and the
antistellar point. The azimuthal angle 𝜙 varies between 0 and 2𝜋, increasing in the direction
of the trailing hemisphere of the planet. This geometry, based on the star-planet-observer
axis, differs from a traditional latitude-longitude grid based on the rotation axis which is
often used when describing the geometry of a planet. We adopt this approach since it allows
for a straightforward description of day-night variations in atmospheric properties, since the
zenith angle \ moves from the substellar to antistellar point. This geometry has been used in
previous studies involving transmission spectroscopy (e.g. Fortney et al., 2010, Caldas et al.,
2019).

Rays of light traveling from a host star to an observer may pass through the atmosphere
of the transiting planet (see Figure 2.2). A single ray is assumed to have a fixed impact
parameter 𝑏 and a fixed azimuthal angle 𝜙 as it moves through the atmosphere. The ray
travels along the path 𝑠, defined so that 𝑠 = 0 when the ray is directly above the planet’s
terminator (\ = 90◦). As it travels along this path, the zenith angle \ increases (moving from
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the dayside to the nightside of the planet) and the distance between the ray and the centre of
the planet (denoted 𝑟) also varies. The values of \ and 𝑟 are given by

𝑟2 = 𝑠2 + 𝑏2 (4.1)

and
cos \ =

𝑠

𝑟
. (4.2)

4.2.2 Radiative Transfer

The following expression describes the transit depth Δ_ for the generalised atmosphere of a
planet with radius 𝑅𝑝 transiting a star with radius 𝑅∗:

Δ_ =
1

2𝜋

∫ 2𝜋

0
𝛿_ (𝜙) d𝜙, (4.3)

where

𝛿_ (𝜙) =
1
𝑅2
∗

[
𝑅2
𝑝 + 2

∫ 𝑅𝑝+𝐻

𝑅𝑝

𝑏

(
𝑏
(
1 − 𝑒−𝜏_ (𝑏,𝜙)

) )
d𝑏

− 2
∫ 𝑅𝑝

0
𝑏𝑒−𝜏_ (𝑏,𝜙)d𝑏

]
. (4.4)

In this equation, the atmospheric height is denoted by 𝐻, and 𝜏(𝑏, 𝜙) represents the optical
depth at impact parameter 𝑏 and azimuthal angle 𝜙. The total transit depth Δ_ is found by
integrating the transit depth at each value of 𝜙 over all azimuthal angles.

A crucial difference between the 3D transmission spectrum model and a 1D approximation
is that the attenuation coefficient at a given wavelength, `_, depends on 𝑟, \ and 𝜙, as opposed
to only depending on 𝑟. The expression for the optical depth along a ray path 𝑠 at a given
(𝑏, 𝜙) is therefore

𝜏_ (𝑏, 𝜙) =
∫ 𝑠0

−𝑠0

`_ (𝑟, \, 𝜙) d𝑠

=

∫ 𝑠0

−𝑠0

`_ (𝑠, 𝑏, 𝜙) d𝑠. (4.5)

Previous retrieval codes have included forward models with 𝜙-dependence to capture
properties such as inhomogeneous cloud cover (Line & Parmentier, 2016, MacDonald
& Madhusudhan, 2017, Welbanks & Madhusudhan, 2021). Aura-3D also incorporates
𝜙-dependence to model inhomogeneous clouds (see Section 4.2.5.1). By including a
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temperature profile that depends on \ (see 4.2.3.3), our retrieval algorithm is therefore capable
of constraining atmospheric properties in three dimensions.

Our model incorporates absorption from a wide range of chemical species following the
methods described in Gandhi & Madhusudhan (2017, 2018), using cross-sections derived
from line list data from a number of different sources. A Voigt function is used to apply
temperature and pressure broadening. We assume a H/He-dominated atmosphere with solar
abundances of H and He (Asplund et al., 2009). Additional chemical species present in the
model which are used in this work include H2O (Rothman et al., 2010), CH4 (Yurchenko &
Tennyson, 2014), NH3 (Yurchenko et al., 2011), HCN (Barber et al., 2014), CO and CO2

(Rothman et al., 2010). The attenuation coefficient of a given chemical species 𝑖 can be
expressed as

`𝑖 (_, 𝑃, 𝑇) = 𝜌𝑖^𝑖 (_, 𝑃, 𝑇) = 𝑛𝑖𝜎𝑖 (_, 𝑃, 𝑇), (4.6)

where 𝜌𝑖 is the mass density of species 𝑖, ^𝑖 is the opacity of species 𝑖, 𝑛𝑖 is the number density
of species 𝑖 and 𝜎𝑖 is the absorption cross-section of species 𝑖. The number density 𝑛𝑖 of a
given species can be related to its volume mixing ratio, 𝑋𝑖 = 𝑛𝑖/𝑛tot, where 𝑛tot is the total
number density. The volume mixing ratio of each chemical species, apart from H2 and He, is
a free parameter in the model. The volume mixing ratios of H2 and He are given by

𝑋H2 =
1 − ∑

𝑖,𝑖≠H2,He 𝑋𝑖

1 + (𝑋He/𝑋H2)
, (4.7)

𝑋He = 0.17𝑋H2 , (4.8)

where the value of 0.17 is derived from a solar composition (Asplund et al., 2009).
In past implementations of Aura, cross-sections of each species are stored on a three-

dimensional grid of _, 𝑃 and 𝑇 . In order to determine the total attenuation coefficient at a
given height 𝑟 in the atmosphere, the cross-sections of each chemical species are interpolated
using the values of 𝑃 and 𝑇 found at 𝑟 using the equation of hydrostatic equilibrium and the
prescribed 𝑃–𝑇 profile. This yields a two-dimensional array `𝑖 (_, 𝑟) for each species. In the
present work, since each combination of values of 𝜙 and \ may have a different 𝑃–𝑇 profile,
the cross-sections must be interpolated for each (𝜙, \) pair, yielding a four-dimensional array
`𝑖 (_, 𝑟, \, 𝜙). The attenuation coefficient for all chemical species acting as absorbers in the
model is obtained by summing the attenuation coefficients for each individual species.

We also include collision-induced absorption (CIA) due to H2-H2 and H2-He (Richard
et al., 2012). The attenuation coefficient due to CIA is given by the expression

`CIA = 𝑋H2𝑛
2
tot [𝑋H2𝜎H2−H2 (_, 𝑇) + 𝑋He𝜎H2−He(_, 𝑇)] (4.9)



4.2 Methods 97

where 𝜎H2−H2 and 𝜎H2−He are the H2-H2 and H2-He cross-sections respectively. We note that
unlike the cross-sections for chemical species described above, which have units of m2, the
CIA cross-sections have units of m5.

4.2.3 A Multidimensional Parametric Temperature Profile

Our radiative transfer model is capable of taking any 3D temperature structure as its input.
The model can therefore be used for post-processing GCMs to create transmission spectra.
However, given that a single GCM typically takes at least several days to compute, such a model
is not appropriate for atmospheric retrieval, which can require ≳ 106 model computations
in order to analyse a single spectrum (Fortney et al., 2021). The temperature profile must
therefore be simplified to enable rapid computation. The simplest approach is to consider an
entirely isothermal temperature profile when carrying out retrievals (e.g. Waldmann et al.,
2015a, Zhang et al., 2019). The analytic temperature profile described in Guillot (2010) has
been incorporated into retrieval algorithms (e.g. Benneke & Seager, 2012, Line et al., 2013),
and the parametric temperature profile described in Madhusudhan & Seager (2009) has also
been employed in numerous retrieval frameworks (e.g. Pinhas et al., 2018, Blecic et al., 2021).
While the latter two approaches result in a temperature profile that varies with height in the
atmosphere, these profiles do not vary with longitude or latitude.

Aura-3D incorporates several different parametric prescriptions for 𝑃–𝑇 profiles that
include temperature variations in multiple dimensions. This enables fast, flexible model
computation while also allowing for varying levels of complexity in the temperature structure.
We present three possible prescriptions: one in which temperature varies with height in the
atmosphere but not with \, one in which temperature varies with \ but not with height, and
one in which temperature varies with height as well as with \ and 𝜙.

4.2.3.1 Temperature varying with height only

In the case where the temperature profile does not vary with \ or 𝜙, we adopt the 1D
parameteric 𝑃–𝑇 profile from Madhusudhan & Seager (2009). The atmosphere is divided
into three layers, defined by 𝑃1,2,3. The deepest layer is isothermal while the upper layers
have thermal gradients controlled by 𝛼1,2. The full profile is defined as:

𝑃 = 𝑃0𝑒
𝛼1

√
𝑇−𝑇0 , 𝑃0 < 𝑃 < 𝑃1,

𝑃 = 𝑃2𝑒
𝛼2

√
𝑇−𝑇2 , 𝑃1 < 𝑃 < 𝑃3, (4.10)

𝑇 = 𝑇3, 𝑃 > 𝑃3,
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Fig. 4.3 Upper panel: Model transmission spectra of the canonical hot Jupiter HD 209458b
with varying temperatures and transition angles (𝛽). For these models, we adopt the parametric
temperature profile described in Caldas et al. (2019). We obtain the same effects as described
in their paper: namely, that the transit depth decreases as 𝛽 increases, and the divergence
between models increases at larger wavelengths. Lower panels: Difference in ppm between
spectra with the non-uniform temperature profiles described above and uniform spectra with
averaged temperature profiles.
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where (𝑃0, 𝑇0) defines the conditions at the top of the atmosphere. This can be recast to yield
expressions for 𝑇 (𝑃):

𝑇 (𝑃) =



𝑇0 +
(

ln(𝑃/𝑃0)
𝛼1

)2

, 𝑃0 < 𝑃 < 𝑃1,

𝑇2 +
(

ln(𝑃/𝑃2)
𝛼2

)2

, 𝑃1 < 𝑃 < 𝑃3,

𝑇2 +
(

ln(𝑃3/𝑃2)
𝛼2

)2

, 𝑃 > 𝑃3.

(4.11)

This 𝑃–𝑇 profile was developed to be capable of emulating observed temperature profiles
of solar system planets as well as profiles from self-consistent exoplanet atmosphere models.
This flexibility, along with a rapid computation time, makes it an ideal prescription for
retrievals. Our new profile presented in section 4.2.3.3 applies the same philosophy to 3D
models in order to extend our retrieval framework to incorporate multidimensional effects.

4.2.3.2 Temperature varying with \ only

This model provides a simple means of incorporating day-night temperature variations across
the terminator region. It is described by four main parameters. The extent of the terminator
region over which the temperature varies is fixed by an angle 𝛽, similarly to Caldas et al.
(2019). The other three parameters are 𝑇term, the temperature in the middle of the terminator
region (\ = 𝜋/2), 𝑇day, the temperature at the dayside end of the terminator (\ = 𝜋/2 − 𝛽/2),
and 𝑇night, the temperature at the nightside end of the terminator (\ = 𝜋/2 + 𝛽/2). The
temperature at intermediate values of \ is found by linearly interpolating between the two
appropriate temperatures. Outside of the fixed terminator region, the temperature remains
uniform at either 𝑇day or 𝑇night. This approach differs from the formalism described in Lacy &
Burrows (2020) as it uses three different temperatures rather than just two (𝑇day and 𝑇night).
This allows for the temperature gradient between the terminator and the dayside to be different
to the gradient between the terminator and the nightside, which has been shown to be possible
from GCMs, such as the model of HD 209458b presented in Fortney et al. (2010).

4.2.3.3 Temperature varying in three dimensions

Our new temperature parameterisation generalises the 1D parametric 𝑃–𝑇 profile described
in Section 4.2.3.1 to allow for temperature variations in 3D. In order to achieve this, we
compute three separate 𝑃–𝑇 profiles located at three different values of \. We calculate one



100 A Three-Dimensional Retrieval Framework for Exoplanet Transmission Spectra

profile at \ = 𝜋/2, the exact centre of the terminator, as well as profiles at the edges of the
terminator which are closest to the day- and nightsides of the planet. We label the dayside
profile 𝑇𝑑 (𝑃), the nightside profile 𝑇𝑛 (𝑃), and the terminator profile 𝑇𝑡 (𝑃). The terminator
edges are located at \ = 𝜋/2 ± 𝛽/2, where 𝛽 is defined as in the previous section. At a given
(𝑃, \) where \ is intermediate between the two terminator edges, the temperature is obtained
by linear interpolation in \ between the two appropriate profiles:

𝑇 (𝑃, \, 𝜙) = 𝐺 (𝜙)



2\ − (𝜋 − 𝛽)
𝛽

𝑇𝑡 (𝑃)

+𝜋 − 2\
𝛽

𝑇𝑑 (𝑃),
𝜋 − 𝛽

2
< \ < 𝜋/2,

(𝜋 + 𝛽) − 2\
𝛽

𝑇𝑡 (𝑃)

+2\ − 𝜋
𝛽

𝑇𝑛 (𝑃), 𝜋/2 < \ <
𝜋 + 𝛽

2
.

(4.12)

where 𝐺 (𝜙) is a generic function that can be used to describe the 𝜙-dependence of the
temperature profile. For the purposes of this study we are mostly interested in exploring
day-night temperature contrasts, and so we fix 𝐺 (𝜙) = 1, however this can easily be modified
to include 𝜙-dependence using a formalism similar to the patchy cloud approach described in
Section 4.2.5.1.

Assuming that the 𝑃–𝑇 profile is continuous throughout, it can be described using 6
free parameters. This suggests that the above parameterisation should require a total of 18
parameters. However, temperature variations with longitude/latitude are typically negligible
in the deeper atmosphere (e.g. Showman et al., 2008), and so we can assign common values
of 𝑃3 and 𝑇3 for each of the profiles, reducing the total number of free parameters to 14. A
demonstration of the efficacy of this parameterisation is presented in Section 4.3.1.

4.2.4 Inhomogeneous Chemistry

Chemical inhomogeneities are likely to persist in a wide range of planets, and will therefore
be important to consider when analysing upcoming data. Of particular importance will be
day-night variations in chemical abundances. These variations can occur in ultra-hot Jupiters,
planets with equilibrium temperatures in excess of 2000 K on which molecules such as H2

and H2O can be thermally dissociated on the dayside (Lothringer et al., 2018, Parmentier
et al., 2018, Venot et al., 2020). They may also be present on warm to hot Neptunes,
since their atmospheric composition varies strongly as a function of temperature and bulk
atmospheric properties such as metallicity and C/O ratio (Moses et al., 2013). High-metallicity
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Fig. 4.4 Comparison between azimuthally-averaged 𝑃–𝑇 profiles from the terminator regions
of a range of GCMs (Fortney et al., 2010, Blecic et al., 2017, Deitrick et al., 2020) and
parametric profiles as described in Section 4.2.3. The GCM profiles are shown as solid lines,
and parametric fits are shown as dashed lines. In each case the profiles at \ = 70◦, 90◦ and
110◦ are fit using a modified form of the parameterisation from Madhusudhan & Seager
(2009), with the parameters 𝑃3 and 𝑇3 shared between each profile. The profiles at \ = 80◦
and 100◦ are calculated by linear interpolation between the nearest two profiles. For the
Blecic et al. (2017) model, we only show profiles for \ ≤ 90◦ since nightside profiles were
not presented in that paper.
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Fig. 4.5 Parametric fits to the 3D 𝑃–𝑇 profiles presented in Fortney et al. (2010) showing
a slice at 𝜙 = 0 (through the north-south polar plane). As in Figure 4.4, the profiles at
\ = 70◦, 90◦ and 110◦ follow our parametric prescription while the profiles all other values
of \ are calculated by interpolation. For \ < 70◦ and \ > 110◦ the temperature remains
constant, set by the temperatures at \ = 70◦ and \ = 110◦ respectively. Note that the inner
portion of the planet (below 𝑅𝑝) is not to scale with the atmosphere.

atmospheres for these planets are known to exhibit strong day-night temperature contrasts
(Lewis et al., 2010), which could lead to a scenario in which the atmospheric composition
could vary strongly between the day- and nightsides of the planet.

Our model can incorporate chemical compositions which vary in three dimensions. This
extension requires the expansion of the number density of each species 𝑛𝑖, as defined in
equation 4.6 from a single number to a three-dimensional array 𝑛𝑖 (𝑟, \, 𝜙). For the purpose
of this study, we consider a simplified case in which two abundances are specified for each
chemical species: a ’dayside’ abundance (\ < 𝜋/2) and a ’nightside’ abundance (\ > 𝜋/2).
The effect of day-night chemical inhomogeneities on transmission spectra are explored in
Section 4.3.3. Considerations for retrievals with inhomogeneous chemical abundances are
reserved for a future study (see section 4.4.3 for further discussion).

4.2.5 Additional Physical Effects

Our model incorporates a wide range of other atmospheric properties. These are discussed in
more detail in previous works (e.g. Pinhas et al., 2018, Welbanks & Madhusudhan, 2021)
and are briefly described here.
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Fig. 4.6 Differences between simulated hot Jupiter spectra with a 1D thermally averaged
temperature profile and spectra with different day-night temperature gradients. For a range
of terminator temperatures 𝑇𝑡 (the temperature at the top of the atmosphere at \ = 90◦) we
compute spectra with temperature contrasts Δ𝑇 = 0–700 K (Δ𝑇 = 𝑇𝑑 − 𝑇𝑡 = 𝑇𝑡 − 𝑇𝑛). In each
case, the spectra are calculated at 𝑅 = 5000 and a wavelength range of 1–15 `m and the mean
difference between the two transit depths is calculated. The difference in transit depth is
given in parts per million. The dashed red line at 50 ppm is an approximate indication of the
expected precision that can readily be achieved by JWST observations of hot Jupiters.

4.2.5.1 Clouds and hazes

Our model includes a prescription for inhomogeneous cloud cover adapted from Welbanks &
Madhusudhan (2021), which divides the atmosphere into (up to) four azimuthal slices. These
slices can have one of four properties: (1) cloud/haze free, (2) covered by a grey cloud deck,
(3) covered by hazes, or (4) covered by a grey cloud deck with hazes above the deck. The grey
cloud deck is essentially opaque (Fortney, 2005) and is therefore implemented by setting the
optical depth to infinity for all pressures larger than the cloud-top pressure 𝑃cloud. Similarly
to previous studies (Line & Parmentier, 2016, MacDonald & Madhusudhan, 2017, Welbanks
& Madhusudhan, 2021) we adopt the haze model described in Lecavelier Des Etangs et al.
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(2008), which gives a haze cross-section

𝜎_,haze = 𝑎𝜎0

(
_

_0

)𝛾
, (4.13)

where 𝑎 is the Rayleigh enhancement factor, 𝛾 is the scattering slope, and𝜎0 = 5.31×10−31 m2

is the cross-section due to H2 Rayleigh scattering at a reference wavelength _0 = 3.5× 10−7 m
(Dalgarno & Williams, 1962). The attenuation coefficient due to hazes, `_,haze is therefore
given by the following expression:

`_,haze(_, 𝑃, 𝑇) = 𝑋H2𝑛tot(𝑃,𝑇)𝜎_,haze, (4.14)

where 𝑋H2 is the H2 abundance and 𝑛tot(𝑃,𝑇) is the total number density.
The above prescription can easily be simplified to yield the cloud model from MacDonald

& Madhusudhan (2017) as presented in Chapter 2 by considering only slices with properties
(1) and (4) or the model from Line & Parmentier (2016) by considering only properties (1)
and (2).

4.2.5.2 Stellar heterogeneity

In order to account for the effect of star spots and faculae on transmission spectra, we follow
the approach of Pinhas et al. (2018) and incorporate the treatment of stellar heterogeneity
from Rackham et al. (2017) into our atmospheric forward model. In cases where stellar
heterogeneity is considered, the expression for the observed transit depth, Δ_,obs, is

Δ_,obs = Δ_Ehet, (4.15)

where Δ_ is defined in Equation 4.3 and Ehet is a perturbative term describing stellar
contamination. Ehet is defined as

Ehet =

((
1 − S𝑢

S𝑜

)
𝑓het

)−1
, (4.16)

where S𝑢 and S𝑜 are the average spectral energy distributions of the unocculted and occulted
regions of the stellar surface, and 𝑓het is the areal fraction of the projected stellar disk that is
covered with cool spots and/or hot faculae. The spectral components of the star are computed
by interpolating from the PHOENIX grid of stellar atmospheric models (Husser et al., 2013)
for stellar effective temperatures exceeding 2300 K. For stars cooler than 2300 K we instead
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interpolate between the DRIFT-PHOENIX model grid (Witte et al., 2011), which enables
consideration of stars with temperatures down to 1000 K.

4.2.5.3 Forward scattering and refraction

Our forward model incorporates the analytic prescriptions for forward scattering and refraction
presented by Robinson et al. (2017). The optical depth is typically calculated by integrating
along d𝜏_ = `_d𝑠 (see equation 4.5). When forward scattering is included, the optical depth
is modified to become

d𝜏eff = d𝜏_ (1 − 𝑓scat�̃�), (4.17)

where 𝑓scat is the correction factor for forward scattering and �̃� is the forward scattering
albedo. Refraction is implemented by calculating 𝑃max, the pressure at which the effect of
refraction is sufficient to cause a ray of light coming from one end of the planet to bend off
the far limit of the star (Robinson et al., 2017). The optical depth at pressures greater than
𝑃max is set to infinity.

The effects of forward scattering and refraction on transmission spectra were investigated
by Robinson et al. (2017) for Jupiter-like atmospheres and by Welbanks & Madhusudhan
(2021) for mini-Neptunes. In both cases the effects were shown to be small compared to
effects such as Rayleigh scattering and collision-induced absorption.

4.2.6 Synthetic Data and Statistical Inference

For this study we generate synthetic JWST observations and transmission spectra using
PANDEXO (Batalha et al., 2017). For all simulated observations, we assume a noise floor
of 5 ppm, and a saturation limit of 80% full well. For atmospheric retrieval, we follow the
binning strategy of Pinhas et al. (2018) in order to compare the high-resolution forward model
with the synthetic data.

Parameter estimation is carried out using PyMultinest (Buchner et al., 2014), a Python
implementation of the Nested Sampling algorithm (Skilling, 2004, Feroz & Hobson, 2008,
Feroz et al., 2009). For each parameter \ we aim to find the posterior probability distribution
𝑝(\ |𝑑) given the data 𝑑 being analysed:

𝑝(\ |𝑑) = L𝑝(\)
Z , (4.18)

where L = 𝑝(𝑑 |\) is the likelihood, 𝑝(\) is the prior and Z = 𝑝(𝑑) is the Bayesian evidence,
which is not required for parameter estimation but can be used for model comparison. We
assume independently distributed Gaussian errors for each of the spectral data points, meaning
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the likelihood is defined as
L = L0 exp

(
− 𝜒2

2

)
, (4.19)

𝜒2 =
∑︁
𝑖

( �̂�𝑖 − �̄�𝑖)2

𝜎2
𝑖

, (4.20)

where �̄�𝑖 and 𝜎𝑖 are the mean and standard deviation of the observed data point 𝑖, and �̂�𝑖 is
the value of the model data point 𝑖. The Nested Sampling algorithm samples the prior space
in order to calculate the evidence Z, and in the process of doing so computes the likelihood
L which can be used to estimate the posterior distribution.

4.2.7 Model Validation

In order to verify that our 3D forward model is accurate, we reproduce effects reported in
previous works that have incorporated a 3D transmission spectrum model. We consider the
set of model transmission spectra of the hot Jupiter HD 209458b presented in Figure 15 of
Caldas et al. (2019). We adopt the parametric 𝑃–𝑇 profile used in that model, which consists
of a two-layer vertical profile, with a constant temperature in the deep atmosphere and a
variable temperature from day- to nightside in the upper atmosphere. We produce a set of
models with the same temperature structures and transition angles (𝛽) as in Caldas et al.
(2019), as shown in Figure 4.3. Our models show the same dependencies on temperature and
transition angle as the previous work, with higher transit depths found for lower values of 𝛽.

While we have adopted the temperature profile described in Caldas et al. (2019) for the
purposes of validating our model, we note that this prescription is simplified compared to
our parametric 𝑃–𝑇 profile described in Section 4.2.3.3. Unlike our parametric profile, their
parameterisation is not intended to be capable of matching temperature structures from GCMs
(see Section 4.3.1).

4.3 Results

In this section we demonstrate that our 3D parametric 𝑃–𝑇 profile can match azimuthally-
averaged temperature structures from established GCMs. We subsequently explore the extent
to which day-night temperature gradients and chemical inhomogeneity can affect resulting
transmission spectra. We also perform 3D retrievals on a number of synthetic datasets,
demonstrating Aura-3D’s capabilities to constrain temperature profiles which vary across the
terminator and to overcome biases in retrieved abundances that can arise from the assumption
of a 1D temperature profile.
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Fig. 4.7 Comparison of two theoretical transmission spectra for a HD 209458b-like planet
(top right). The orange spectrum uses a parametric temperature structure with a day-night
temperature contrast, shown by the blue (night), green (terminator) and red (day) temperature
profiles in the top left panel, whereas the blue spectrum uses a 1D averaged structure shown
by the dashed grey temperature profile. The bottom panel shows the difference between the
two spectra as a function of wavelength. The spectra differ by 78 ppm on average, enough
that high-quality JWST observations of this planet should require day-night temperature
variations to be considered in retrievals.

4.3.1 Comparison of Parametric Profile with GCM Temperature Profiles

We demonstrate that our 14-parameter prescription for the temperature profile is able to
approximate a range of azimuthally-averaged temperature structures of several GCMs. Figure
4.4 shows temperature profiles from the terminator regions of several published 3D simulations
of hot Jupiter atmospheres. We consider the models of HD 209458b and HD 189733b
presented in Fortney et al. (2010), the model of HD 189733b from Blecic et al. (2017), and
the Deep Hot Jupiter benchmark model from Deitrick et al. (2020). For each model we show
the azimuthally-averaged temperature profiles across the terminator region of the atmosphere.
Since only dayside profiles are presented in Blecic et al. (2017) we only show the temperature
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profiles at \ = 70◦, 80◦ and 90◦ for this case. To fit these models we assume a value of
𝛽 = 40◦. For each model, we therefore fit the temperature profiles at \ = 70◦, 90◦ and 110◦

with our 14-parameter prescription, with 𝑇3 and 𝑃3 shared between the profiles, using a Trust
Region Reflective least-squares algorithm (Sorenson, 1982). The full temperature structure is
subsequently calculated by linear interpolation between the nearest of those three profiles.
Figure 4.4 includes profiles at \ = 80◦ and 100◦ in order to demonstrate the accuracy of the
interpolated profiles. The full distribution of day-night temperature profiles for the models
presented in Fortney et al. (2010) are shown in Figure 4.5.

Our parametric 𝑃–𝑇 prescription is able to fit all of the profiles shown in Figure 4.4 to a
good degree of accuracy. The model of HD 209458b from (Fortney et al., 2010) is a good
demonstration of why interpolation between three temperature profiles is preferred to two. In
this case, the difference between the temperature profile at \ = 70◦ and the profile at \ = 90◦

is much greater than the difference between the profiles at \ = 90◦ and \ = 110◦. If the
parametric model only interpolated between the profiles at \ = 70◦ and \ = 110◦, then the
interpolated \ = 90◦ would be much hotter than the profile from the GCM and would yield a
worse fit.

For the Deep Hot Jupiter case, we did not fit our profile to the deep atmosphere (>10 bar)
since this is below the region of the atmosphere probed in transmission, hence the deviation
between the GCM and parametric profiles at high pressure. For atmospheric retrieval, the
goal is to quickly generate a large number of model spectra which can be compared to
observed data. Current retrievals require the generation of ≳106 forward models (Fortney
et al., 2021). Generating a temperature structure from a GCM typically takes several days,
rendering them unfeasible for retrievals. In contrast, a forward model using our parametric
profile is computed in ∼0.6 seconds on a single core. Our parameterisation therefore enables
the efficient exploration of a wide range of multidimensional temperature structures.

In order to confirm that our parametric 𝑃–𝑇 profile can be used to generate transmission
spectra closely matching those generated with a full 3D temperature structure, we produce
a model spectrum from 0.5–5.5`m using the Deep Hot Jupiter temperature structure from
Deitrick et al. (2020), assuming a H/He-rich atmosphere with H2O as the sole absorbing
species. We compare this to a spectrum generated using our parametric fit shown in Figure
4.4. The mean difference between the transit depths in the two spectra is 12.1 ppm, which
is likely below the noise floor of most JWST instruments (Greene et al., 2016). In contrast,
comparison between the full 3D model and a 1D best-fit to the globally-averaged temperature
profile yields a difference of 65.5 ppm, indicating that our parameterisation provides a better
match to the 3D spectrum than a 1D model. The differences between the spectra are more
pronounced at longer wavelengths (see Figure 4.6).
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4.3.2 Effects of a Day-night Temperature Gradient on Atmospheric
Spectra

We use our parametric temperature structure to explore how a day-night temperature gradient
can lead to differences in resulting transmission spectra from 1D averaged models. The
benefit of using the parametric model to investigate this is that a large number of spectra
can be generated quickly for comparison, without the need to run a separate GCM for
each temperature structure. In order to explore this effect we generate a grid of model hot
Jupiter transmission spectra. We take the planetary and stellar parameters of the hot Jupiter
HD 209458b (Stassun et al., 2017), and create models with a variety of temperature structures
assuming solar H2O abundance. In the middle of the terminator region (\ = 90◦), we vary the
temperature at the top of the atmosphere in steps of 100 K from 1000 K to 1800 K, covering
the range of typical hot Jupiters. We also vary the temperature contrast, Δ𝑇 , in steps of 5 K,
from 0 K to 700 K. This temperature contrast is applied to both the day- and nightsides, so
that 𝑇𝑑 = 𝑇𝑡 + Δ𝑇 and 𝑇𝑛 = 𝑇𝑡 − Δ𝑇 . We assume 𝛽 = 40◦, meaning the temperature varies
between \ = 70◦ and \ = 110◦. The other parameters describing the temperature structure
are held constant: the common temperature in the deepest layer of the atmosphere, set by 𝑇3,
remains at 𝑇𝑡 + 800 K in all cases. The values of log 𝑃1, log 𝑃2 and log 𝑃3 are fixed to -0.9,
-1.0 and 1.4 respectively. This means that none of the temperature profiles have a thermal
inversion, since 𝑃1 > 𝑃2.

We generate transmission spectra over a wavelength range of 0.5–15`m. This covers the
wavelength range of several JWST instruments, including NIRSPEC FSS & BOTS, NIRISS
SOSS, NIRCAM GRISM and MIRI LRS. Each spectrum is computed at a moderately high
resolution (𝑅 = 5000). For each combination of 𝑇𝑡 and Δ𝑇 , we calculate the mean difference
with the 1D spectrum and present our full results in Figure 4.6. An example with 𝑇𝑡 = 1500 K,
Δ𝑇 = 500 K is shown in Figure 4.7. These tables show that for a wide range of temperature
contrasts, the difference between a spectrum with a temperature gradient and one without
is non-trivial. In general, the difference is more pronounced at higher temperatures and at
higher temperature contrasts. For all models except 𝑇𝑡 = 1000 K, the difference between the
spectra is >50 ppm for a temperature contrast of 500 K or more. This level of precision would
be expected for many JWST transmission spectra of hot Jupiters, depending on factors such as
observing time and the brightness of the host star. However, the difference between the spectra
is not uniform with wavelength, with less of a noticeable difference at short wavelengths (see
Figure 4.7. This suggests that for some instruments, such as NIRISS SOSS, the temperature
gradient will have less of an impact on the observed spectrum, while the effect will be more
important to consider when observing with instruments such as MIRI MRS and LRS. It is
also important to note that while some HST Wide Field Camera 3 (WFC3) transmission
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Fig. 4.8 Synthetic spectra of the hot Neptune HAT-P-11b. Four different chemical compositions
are considered: (1) ‘dayside’ chemistry everywhere, (2) ‘nightside’ chemistry everywhere, (3)
variable chemistry between the day- and nightsides, and (4) averaged chemistry everywhere
(see Table 4.1). Model 2 generally has a higher transit depth than model 1 due to higher
abundances of H2O, CH4 and NH3 which are all prominent at these wavelengths. Model 3
generally lies between models 1 and 2, whereas model 4 lies closer to model 2, since the
‘nightside’ molecules are also found on the dayside of the planet, where the scale height is
larger due to the higher temperatures.

spectra have also attained a level of precision of 50 ppm or better, these models indicate that
WFC3 spectra will not be substantially affected by day-night temperature gradients since the
difference between the spectra is small at the wavelengths probed by WFC3 (1.1–1.7 `m).

4.3.3 Effect of Chemical Inhomogeneity on Transmission Spectra

Since Aura-3D is capable of modelling atmospheres with inhomoegeneous chemistry, we
explore the possibility for chemical variability between the day- and nightsides of a planet to
affect resulting transmission spectra. Past studies have demonstrated that thermal dissociaton
of molecules such as H2O on the daysides of ultra-hot Jupiters can substantially affect
transmission spectra (Lothringer et al., 2018, Parmentier et al., 2018, Pluriel et al., 2020,
2021). In this section we consider a different chemical transition, namely the transition from
a CH4-dominated to CO-dominated atmosphere. In chemical equilibrium, the abundances of
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Fig. 4.9 Retrieval of a synthetic JWST spectrum of the hot Jupiter HAT-P-1b. The red points
represent the simulated data, and the purple line shows the best-fit model spectrum, with
1𝜎 and 2𝜎 confidence intervals shown by the dark and light shaded regions. The input and
retrieved models both incorporate a multidimensional parametric 𝑃–𝑇 profile. We find good
agreement between the input data and the retrieved spectrum.

key atmospheric species in a H2-rich atmosphere can vary strongly with temperature. At
temperatures below ∼1200 K, CH4 is expected to be a highly abundant molecule, whereas
at higher temperatures CO is expected to dominate (Lodders & Fegley, 2002, Moses et al.,
2011, Madhusudhan et al., 2012). If a planet’s day- and nightsides are above and below this
temperature respectively, this could lead to substantially different chemical abundances on
either side of the planet.

In order to investigate this effect, we generate models of the hot Neptune HAT-P-11b
(Bakos et al., 2010). Given this planet’s equilibrium temperature of 878 K, it is possible
that the day- and nightsides of the planet are above and below the transition temperature
between CH4-dominated and CO-dominated chemistry, making the planet a useful test case
to examine the effects of chemical inhomogeneity on transmission spectra. We consider
two different sets of equilibrium chemical abundances: a CO-dominated regime, which we
may expect to see on the dayside of the planet, and a CH4-dominated regime which may
be expected on the nightside. The abundances for each regime are shown in Table 4.1. We
choose a model 𝑃–𝑇 profile with a similar structure to the profiles used in Section 4.3.2. We
take 𝑇𝑡 = 878 K, the equilibrium temperature of the planet, with Δ𝑇 = 500 K. The values of
log 𝑃1, log 𝑃2 and log 𝑃3 are again fixed to -0.9, -1.0 and 1.4 respectively. For the chemistry
we consider four different scenarios: (1) dayside abundances across the whole terminator
region, (2) nightside abundances across the whole terminator, (3) inhomogeneous chemistry
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Fig. 4.10 Input and retrieved multidimensional parametric temperature profiles of a hot
Jupiter. The solid lines show the input dayside, nightside, and terminator temperature profiles
used to generate the synthetic data. The dashed lines correspond to the median retrieved
dayside, nightside and terminator temperature profiles respectively, with shaded regions
corresponding to 1𝜎 and 2𝜎 confidence intervals. The retrieved temperature profiles are
consistent with the input profiles, with almost all of the input temperature profiles contained
within the retrieved 1𝜎 confidence intervals.

with dayside abundances for \ < 90◦ and nightside abundances for \ > 90◦, and (4) averaged
abundances across the whole terminator (the mean of the dayside and nightside abundances).
We generate models from 0.5-15 `m, which covers the wavelength ranges of several JWST
instruments, including NIRSpec, NIRISS NIRCam, and MIRI LRS, and also covers many of
the prominent spectral features of the molecules considered (Madhusudhan, 2019).

The resulting spectra are shown in Figure 4.8. We see that the model with nightside
chemistry across the entire terminator has a higher transit depth overall than the model with
dayside chemistry across the entire terminator. This is a result of the high abundances of
H2O, CH4 and NH3 expected in chemical equilibrium at low temperatures, each of which
has prominent absorption features at the wavelengths considered here. The model with
averaged chemistry also differs substantially from the model with chemical abundances
varying between the day- and nightsides of the planet across the wavelength range considered.
The model with averaged chemistry has larger transit depths, since this model has large
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Fig. 4.11 Two-dimensional representations of the input and median retrieved parametric 𝑃–𝑇
profiles for HAT-P-1b. The temperature structure is computed by interpolating between the
temperature profiles shown in Figure 4.10. Note that the inner portion of the planet (below
𝑅𝑝) is not to scale with the atmosphere.

amounts of H2O, CH4 and NH3 on the dayside as well as the nightside, and the dayside has a
larger scale height since it is at a higher temperature. In the model with variable chemistry,
these molecules (particularly CH4 and NH3) are mostly present on the cooler side of the
planet, leading to smaller features overall.

Whether such chemical inhomogeneities can be detected with JWST will need to be
determined in future studies. For the remainder of this work we will focus on the possibility
of constraining temperature inhomogeneities using JWST-quality observations.

4.3.4 Retrieval of a Multidimensional Temperature Structure

Here we demonstrate the capability of our new retrieval framework to recover a multidi-
mensional temperature structure. We create a parametric temperature profile using the
prescription described in Section 4.2.3.3. We use this temperature structure to produce a
synthetic transmission spectrum, and carry out a retrieval of this spectrum using the same
parameterisation. Our goal is to determine the extent to which the retrieval can constrain the
input multi-dimensional temperature structure using JWST-quality data.

The input parameters used to generate the temperature structure are shown in the table
embedded in Figure 4.13. The model interpolates between temperature profiles defined for
the dayside (\ ≤ 70◦), nightside (\ ≥ 110◦) and the middle of the terminator (\ = 90◦). We
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Fig. 4.12 Input and retrieved multidimensional parametric temperature profiles of a hot Jupiter
with no day-night temperature contrast. The solid line shows the input temperature profile
used to generate the synthetic data. The dashed lines correspond to the median retrieved
dayside, nightside and terminator temperature profiles respectively, with shaded regions
corresponding to 1𝜎 and 2𝜎 confidence intervals. The retrieved temperature profiles overlap
significantly with each other and are broadly consistent with the input profile, suggesting that
a multidimensional retrieval approach is not required in this case.

consider a cloud-free, solar composition atmosphere with uniform abundances of H2O, CH4,
NH3, HCN, CO and CO2. Input chemical abundances are also shown in the table embedded
in Figure 4.13.

To generate our synthetic data set we assume planetary and stellar properties that are
similar to the hot Jupiter HAT-P-1b (Bakos et al., 2010). We choose this planet as an
intermediate case that is representative of the majority of hot Jupiters that may be observed
with JWST. HAT-P-1b has similar bulk properties to HD 209458b, and we find day-night
temperature gradients to produce similar differences in the transmission spectrum to those
shown in Figure 4.7. The forward model is first computed at a moderately high resolution
(𝑅 = 3000, 0.5 − 5.5`m). Synthetic observations are then generated using PANDEXO
(Batalha et al., 2017), assuming a single transit observed with NIRISS SOSS and another
single transit observed with NIRSpec G395H. This provides a broad wavelength coverage
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Parameter Input Retrieved

𝑇0,𝑡 / K 1400 1406.16+75.94
−74.96

log (𝑃1,𝑡 /bar) -0.9 -0.53+1.07
−1.15

log (𝑃2,𝑡 /bar) -1.0 -3.37+1.61
−1.50

𝑇2,𝑡 / K 1560 1405.43+174.14
−191.34

log (𝑃3/bar) 1.4 1.51+0.32
−0.46

𝑇3 / K 2200 2149.36+170.29
−167.32

𝑇0,𝑑 / K 2000 1789.07+191.59
−201.78

log (𝑃1,𝑑 /bar) -0.9 -2.62+2.90
−2.37

log (𝑃2,𝑑 /bar) -1.0 -3.08+1.95
−1.92

𝑇2,𝑑 / K 2040 1953.74+140.69
−163.64

𝑇0,𝑛 / K 800 731.31+302.82
−218.67

log (𝑃1,𝑛 /bar) -0.9 -0.98+1.60
−2.58

log (𝑃2,𝑛 /bar) -1.0 -2.75+1.79
−1.80

𝑇2,𝑛 / K 1080 950.89+286.15
−267.43

𝑅𝑝 / 𝑅𝐽 1.36 1.3566+0.0113
−0.0082

log 𝑋H2O -3.3 -3.23+0.17
−0.14

log 𝑋CH4 -6.3 -6.41+0.22
−0.23

log 𝑋NH3 -6.3 -8.80+1.96
−2.01

log 𝑋HCN -8.0 -9.23+1.74
−1.77

log 𝑋CO -3.3 -3.24+0.29
−0.26

log 𝑋CO2 -7.0 -7.19+0.20
−0.18

Fig. 4.13 Marginalised posterior probability distributions for the retrieval of a synthetic
JWST transmission spectrum of the hot Jupiter HAT-P-1b. Blue vertical lines indicate true
parameter values. Inset: Input and retrieved parameter values with 1𝜎 uncertainties.
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Fig. 4.14 Atmospheric retrieval of a synthetic hot Jupiter transmission spectrum generated
using a 3D temperature structure. Top: Observations (blue) and retrieved model spectra
(green and orange) for the two different model considerations. Shaded regions represent
1𝜎 and 2𝜎 confidence intervals. Bottom: Posterior distributions for the retrieved volume
mixing ratios of each molecular species in the model. Input (equilibrium solar) values are
shown by solid black lines. The model which does not include a day-night temperature
contrast finds abundances that are not consistent with the input values. The model that does
include a day-night temperature contrast is capable of inferring accurate abundances. The
grey posterior distributions represent a retrieval of the HST WFC3 spectrum of the same
model planet for comparison, using a 1D forward model.
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Table 4.1 Chemical abundances used for the day- and nightsides of our HAT-P-11b models.
The values shown are the logarithm of the volume mixing ratios.

Species Dayside abundance Nightside abundance

H2O -3.3 -3.0

CH4 -6.3 -3.3

NH3 -6.3 -3.6

HCN -8.0 -20.0

CO -3.3 -16.0

CO2 -7.0 -17.0

with JWST that contains multiple spectral features of the chemical species (Madhusudhan,
2019) included in the forward model. The Nested Sampling retrieval uses 2000 live points.

The input data and retrieved spectrum are shown in Figure 4.9. We find excellent
agreement between the input and retrieved spectra across the full wavelength range considered.
Marginalised posterior distributions for each model parameter, as well as the retrieved median
values with associated 1𝜎 uncertainties, are shown in Figure 4.13. The estimates of most
free parameters are consistent with input values to within 1𝜎 uncertainty, and all retrieved
parameters are consistent with input values to within 2𝜎.

Our input and retrieved temperature profiles are shown in Figure 4.10. Each of the
dayside, nightside and terminator input temperature profiles almost entirely remain within the
retrieved 1𝜎 confidence intervals of the retrieved profiles, and lie completely within the 2𝜎
confidence intervals. The uncertainty estimates for the temperature profiles in the model range
from ∼100–300 K. We also compare 2D representations of the input and median retrieved
temperature structures in Figure 4.11. We see that the temperature structures are very similar,
highlighting the retrieval’s ability to recover a detailed multidimensional temperature profile
using high-quality data.

The retrieved abundances of all chemical species are shown in Figure 4.13. The
abundances of H2O, CH4, CO and CO2 are all constrained to within 0.5 dex and are consistent
with input values to 1𝜎. We obtain upper limits on the abundances of NH3 and HCN which
are also consistent with input values, noting that these species have low abundances in the
input model (log 𝑋NH3 = −6.3, log 𝑋HCN = −8.0).

This result demonstrates that using JWST observations of a nominal hot Jupiter, it is
possible to obtain accurate constraints on a multidimensional temperature profile across the
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Fig. 4.15 Left: Temperature structure at a pressure of 0.1 bar of the forward model used to
generate the synthetic spectrum. Right: Azimuthally-averaged temperature profiles from the
forward model (solid lines), along with retrieved temperature profiles from the two retrievals.
The retrieved 1D 𝑃–𝑇 profile is shown as a purple dotted line, with shaded 1𝜎 and 2𝜎
confidence intervals. The retrieved terminator (green), dayside (red) and nightside (light blue)
temperatures from the retrieval incorporating day-night temperature variations are shown as
dashed lines, also with shaded 1𝜎 and 2𝜎 confidence intervals.

terminator region with reasonable precision. Furthermore, these observations can be used to
obtain very precise abundance estimates for a number of chemical species.

As an additional validation test for our retrieval pipeline, we also conduct a retrieval of
a synthetic spectrum for a planet with no day-night temperature gradient (i.e. a 1D 𝑃–𝑇
profile) using our 3D framework. The retrieved dayside, nightside and terminator temperature
profiles are shown in Figure 4.12. We find that there is considerable overlap between each of
the retrieved profiles, as would be expected for a planet with no temperature contrast. In this
case, the lack of strong distinction between the three profiles suggests that this spectrum is
better suited to a 1D retrieval (see Section 4.4.1).

4.3.5 Retrieval of a Synthetic Spectrum from a GCM

In this section we present retrievals of a simulated JWST transmission spectrum of a hot
Jupiter generated with a 3D temperature structure. We conduct retrievals using two different
modelling paradigms: one using a 1D parametric 𝑃–𝑇 profile, and one using a temperature
profile that is allowed to vary between the day- and nightsides of the planet.

The temperature structure of our input forward model is adapted from the open-source
GCM THOR (Mendonça et al., 2016, Deitrick et al., 2020). We use THOR to reproduce
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the "Deep Hot Jupiter" scenario described in Deitrick et al. (2020). In order to create a
temperature structure suitable for our forward model, we subsequently extrapolate the output
temperature profiles from the GCM to lower pressures. In order to do this, we fit a parabolic
𝑃–𝑇 curve to each temperature profile in the longitude/latitude grid of outputs. The resulting
3D 𝑃–𝑇 structure is shown in Figure 4.15.

Having adapted the GCM temperature structure to be appropriate for our retrieval case
study, we now use it to create a model JWST transmission spectrum. Our forward model
in this instance is cloud-free and assumes chemical abundances of a 1×solar composition
H2-dominated atmosphere (see Gandhi & Madhusudhan, 2017), including H2O, CH4, NH3,
HCN, CO and CO2. We assume the same planetary and stellar properties for the planet
HAT-P-1b as in Section 4.3.4.

We carry out two retrievals of our simulated JWST spectrum. The first such retrieval uses
the 1D parametric 𝑃–𝑇 prescription as described in Madhusudhan & Seager (2009), while
the second uses a temperature profile that varies across the terminator, but not with height
(see Section 4.2.3.2). We fix 𝛽 to 40◦, which is representative of the extent of the terminator
region which affects a transmission spectrum (Fortney et al., 2010). We do not allow cases
in which the dayside temperature is colder than the terminator temperature, or where the
nightside temperature is hotter than the terminator.

A comparison of the two retrieval results is shown in Figure 4.14. We find that the retrieval
assuming a 1D parametric 𝑃–𝑇 profile leads to some inaccuracies in the retrieved abundances
using JWST-quality data. None of the retrieved abundances found using the 1D model are
consistent with the input values to within 1𝜎. The only abundance retrieved accurately to
≤2𝜎 is that of HCN, while the input abundance of NH3 is within 3𝜎 of the retrieved posterior.
Note that these abundances are also the least well-constrained of the species considered. All
other abundances fall more than 3𝜎 away from the retrieved posteriors.

This finding is similar to that of Caldas et al. (2019), who found that when applying a 1D
retrieval framework to a high-quality spectrum generated with a 3D input model, the true
abundance would often be outside the error bars of the retrieval. They also find that the
magnitude and direction of the error depends on the specific case; in this particular example,
the retrieved abundances of most species are lower than the true values.

In contrast, for the retrieval in which the temperature is allowed to vary across the
terminator, each of the retrieved chemical abundances is consistent within 1𝜎 of the true
values. Furthermore, the uncertainties on the parameter estimates in this case are generally
larger than in the 1D retrieval. This suggests that the additional flexibility introduced by
incorporation of a day-night temperature gradient allows the model to explore a wider range
of models that can explain the data at hand. This demonstrates that our prescription is able
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to mitigate against biases that can arise when only a 1D temperature profile is allowed in a
retrieval of JWST-quality data.

We also carry out a retrieval of a simulated HST WFC3 spectrum of the same planet for
comparison, using a 1D atmospheric model. In this case, the only well-constrained abundance
is that of H2O, with a precision of 0.8 dex. The retrieved abundance of H2O is consistent with
the input value, albeit with a larger uncertainty. This suggests that the constraints obtained
from retrievals of HST data are not sufficiently precise to necessitate a multidimensional
retrieval algorithm.

The retrieved temperature profiles acquired from each retrieval are shown on the right-hand
panel of Figure 4.15. The retrieved 1D temperature profile exhibits a strong temperature
gradient with pressure that is not found at the terminator of the input model. For the model
including a day-night temperature gradient, the retrieved temperatures are broadly consistent
with the dayside, nightside and terminator temperatures in the upper atmosphere. We note
that both of these prescriptions are heavily simplified in comparison to a full 3D temperature
structure. Therefore, it is difficult to gain complete information about the temperature structure
of the planet’s atmosphere from these retrievals alone, beyond the fact that a strong day-night
temperature gradient appears to exist. However, this example demonstrates importance of
having the capability to include a day-night temperature gradient in retrievals in order to
ensure that we can obtain accurate abundance estimates when working with high-quality
spectra of hot Jupiters.

4.4 Summary and Discussion

We introduce Aura-3D, a 3D modeling and retrieval framework for transmission spectra of
exoplanetary atmospheres. The high data quality expected from upcoming JWST observations
of exoplanet transmission spectra motivated the development of this new framework. Our
new forward model enables calculation of transmission spectra with any 3D temperature
structure, including GCM outputs, as well as computation of model spectra using parametric
temperature profiles that include day-night inhomogeneities. Here we summarize the key
functionalities of Aura-3D retrieval framework.

• The framework includes a 3D parametric temperature profile for use in atmospheric
retrieval that can fit a wide range of GCM temperature structures. This parameterisa-
tion enables the computation of transmission spectrum models with highly flexible,
physically realistic temperature structures incorporating thermal inhomogeneities.
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Table 4.2 Description of priors for retrievals of simulated JWST transmission spectra of
HAT-P-1b generated using a GCM. The temperature profile for the 1D retrieval uses the
first six parameters (𝑇0, 𝛼1, 𝛼2, 𝑃1, 𝑃2, 𝑃3) while the retrieval with a day-night temperature
gradient uses the parameters 𝑇0, 𝑇0,d, 𝑇0,n.

Parameter Lower Bound Upper Bound Prior

𝑇0 (K) 600 2200 uniform

𝛼1 0.02 1.0 uniform

𝛼2 0.02 1.0 uniform

𝑃1 (bar) 10−6 102 log-uniform

𝑃2 (bar) 10−6 102 log-uniform

𝑃3 (bar) 10−2 102 log-uniform

𝑇0,d (K) 1200 2600 uniform

𝑇0,n (K) 400 1800 uniform

𝑋𝑖 10−12 10−2 log-uniform

Table 4.3 Input and retrieved abundances for the simulated JWST transmission spectrum of
HAT-P-1b. The abundances are shown as the logarithm of the volume mixing ratios.

Species True value No 𝑇 gradient 𝑇 gradient

H2O -3.3 -3.78+0.09
−0.08 -3.18+0.15

−0.16

CH4 -6.3 -6.78+0.13
−0.14 -6.38+0.23

−0.28

NH3 -6.3 -8.72+1.89
−2.16 -6.95+1.24

−3.33

HCN -8.0 -8.10+1.34
−2.57 -9.21+1.93

−1.86

CO -3.3 -4.18+0.30
−0.32 -3.39+0.43

−0.50

CO2 -7.0 -7.60+0.20
−0.22 -6.98+0.25

−0.28
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• The radiative transfer in 3D geometry is computationally efficient for retrievals,
with computation time for a single model spectrum in 3D geometry ≲1s. We have
demonstrated retrievals using a 3D geometry requiring over 106 model evaluations.
This is easily scalable to higher order depending on the requirement.

• When applied to synthetic JWST data of hot Jupiters, Aura-3D is able to accurately
constrain separate dayside, nightside and terminator temperature profiles probed in
transmission geometry, yielding meaningful information on day-night temperature
contrasts.

• Aura-3D can be used to accurately retrieve chemical abundances from transmission
spectra whose temperature structures are calculated with 3D GCMs, even with JWST-
quality data of hot Jupiters where 1D retrievals may lead to biased estimates.

We use Aura-3D to investigate constraints that can be placed on hot giant exoplanets using
JWST-quality spectra, finding the following results:

• For hot Jupiters with photospheric terminator temperatures ≳1100 K and tempera-
ture contrasts ≳500 K, the day-night temperature gradient can cause differences in
transmission spectra that could be detectable with JWST.

• We demonstrate that it is possible to constrain a multidimensional temperature profile
across the day-night terminator of a nominal hot Jupiter to a precision of ∼100-300 K
using nominal JWST-quality data.

• We demonstrate that for JWST spectra of some hot Jupiters, a 1D retrieval can lead to
biased abundance estimates, in agreement with previous studies. However, we find that
in the case presented in this work, the introduction of a multidimensional temperature
profile can overcome these biases and retrieve accurate abundances.

• For atmospheres where the terminator may transition between CO/CH4 dominated com-
position, models with inhomogeneous composition may cause an observable difference
to transmission spectra compared to those with globally-averaged compositions.

4.4.1 Applicability of 1D vs 3D Retrievals

The developments presented in this work allow for retrievals with a much more complex
forward model than has previously been possible. Our new framework will be extremely
useful for analysing JWST-quality spectra of hot Jupiters with inhomogeneous terminators.
While it is tempting to apply the most complex forward model available to all retrievals,
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care needs to be taken in ascertaining whether a 3D framework is necessary to explain a
given observed spectrum. Furthermore, simply starting from the most complex possible
model may not be computationally feasible. Although we have shown that retrievals with a
3D geometry can be carried out with high computational efficiency, the combination of 3D
modelling alongside inhomogeneous clouds/hazes, stellar heterogeneity, large numbers of
chemical species and other possible features such as inhomogeneous chemistry would lead
to incredibly computationally expensive retrievals with an extremely high number of free
parameters. It is therefore prudent to asses a priori what degree of complexity is required for
a given spectrum, finding an optimal parameter set for analysing the data at hand.

While we have demonstrated that thermal inhomogeneities will lead to substantial
deviations between 1D and 3D models for hot giant planets with large day-night temperature
contrasts, we also find that for cooler planets the effect of thermal inhomogeneities is smaller
and, therefore, may not be detectable even with JWST-quality data. When analysing future
observations, several properties of the planet should be taken into account when considering
the best 𝑃–𝑇 profile prescription, including the planetary radius, gravity and equilibrium
temperature, all of which affect the amplitude of spectral features and therefore the degree to
which effects such as day-night temperature gradients will be detectable. The extent of the
terminator region being probed in transmission is also important to consider. Hotter planets
tend to have larger opening angles, allowing for a greater variation in atmospheric conditions
across the region probed in transmission (Wardenier et al., 2022). When considering retrievals
of real observed data it will be important to determine whether the opening angle is sufficiently
large to justify the inclusion of a 3D model.

As well as the planet being targeted, it is important to consider the quality of the observed
data when determining the appropriate retrieval paradigm. This study has largely focused on
high-quality JWST observations with a broad infrared wavelength coverage. We have found
that deviations between 1D and 3D models are less significant when considering HST-quality
data. Furthermore, other studies have demonstrated that the assumption of a 1D temperature
profile will generally not lead to biases when analysing HST transmission spectra (Welbanks
& Madhusudhan, 2022) of most hot Jupiters. For future observations, the optimal retrieval
paradigm will need to be chosen taking into account the wavelength range being probed as
well as the resolution and precision of the spectrum.
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4.4.2 Complementary Observations using Emission Spectra and Phase
Curves

In an ideal scenario, in order to obtain complete information about the structure and properties
of an exoplanet’s atmosphere, we would acquire its transmission and emission spectra as well
as its phase curve. This combination of observations would allow for detailed characterisation
of a planet’s terminator region through transmission spectroscopy and of its dayside through
emission spectroscopy, as well as providing insight into spatially-resolved properties through
phase curve analysis. However, undertaking such an extensive observing campaign for a
single planet would require very large amounts of telescope time, and if the planet does not
exhibit strong spatial inhomogeneities, then time-consuming phase curve observations are
unlikely to yield additional insights into the nature of its atmosphere.

The results from this work indicate that it should be possible to detect thermal inho-
mogeneities in certain exoplanet atmospheres using only transmission spectroscopy. We
therefore suggest that an optimal observing strategy would be to first observe a planet’s
transmission spectrum to look for hints of day-night variability, possibly complementing
this observation with an emission spectrum to constrain dayside properties and break certain
degeneracies (see Section 4.4.3). Using these observations it will be possible to ascertain
the degree to which spatial variations in temperature and chemistry permeate the planet’s
atmospheric structure, thus determining whether observations of the full phase-curve will
lead to further meaningful results.

4.4.3 Future Developments

The retrieval framework presented here enables 3D atmospheric characterisation using
transmission spectra, a crucial step towards robust analysis of JWST data. However, there
are additional atmospheric properties that will be important to consider when interpreting
upcoming observations. For example, while inhomogeneous cloud/haze coverage has been
considered in past works (e.g. Line & Parmentier, 2016, MacDonald & Madhusudhan,
2017, Welbanks & Madhusudhan, 2021), the combined effect of patchy clouds/hazes and
inhomogeneous temperature profiles is yet to be fully explored in a retrieval context.

The parametric 𝑃–𝑇 profile incorporated into Aura-3D has been sufficiently complex to
analyse the synthetic JWST spectra considered in this study. Aura-3D has the capability
to model thermal variations with both \ and 𝜙, however only variations with \ have been
explored to carry out the retrievals presented in this work. However, for certain targets it
is possible that an even higher signal-to-noise will be achieved, either due to observations
of atmospheres with a very large scale height or via observing multiple transits of a given
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target. In these cases it is possible that more complexity, including a 𝜙-dependent temperature
profile, will be required to accurately retrieve certain parameters. Our current framework has
a built-in 𝜙-dependence which has already been used to model patchy clouds (Pinhas et al.,
2019), and has the functionality to include a parametric temperature profile with variations in
both 𝜙 and \.

It is also important to assess the impact of inhomogeneous chemical abundances on
retrievals of transmission spectra. This topic has been explored for ultra-hot Jupiters (Pluriel
et al., 2021) but may also be relevant for cooler planets, as discussed in this work. While Aura-
3D is capable of modelling planets with different day- and nightside chemical compositions,
further work is needed to ascertain the feasibility of retrieving inhomogenous chemical
abundances directly from a transmission spectrum. A retrieval allowing for independent
dayside and nightside chemical abundances for each species would be subject to very strong
degeneracies, since low dayside abundances could be compensated for by high nightside
abundances and vice-versa. It would therefore be important to limit the allowed parameter
space to physically realistic dayside and nightside abundances motivated by detailed self-
consistent models. As discussed above, combining transmission spectra with observations
of other regions of a planet’s atmosphere, such as emission spectra, could also be useful in
breaking this degeneracy.

Ultimately, we should strive to incorporate the most sophisticated forward models possible
into retrieval algorithms, so that they can be invoked if necessary to explain observations.
Any additional increases in model complexity must be accompanied by concurrent efforts to
make these models efficient for retrievals, as we have done in the present work. Efforts are
underway to improve the computational efficiency of forward models and retrievals through
means such as GPU implementations (e.g. Malik et al., 2017) and machine learning (e.g.
Márquez-Neila et al., 2018, Nixon & Madhusudhan, 2020). These avenues for improvement
may enable further steps towards reducing other simplifying assumptions that still remain in
place in current retrieval frameworks.

The developments presented in this work represent an important step forwards in our
ability to identify and constrain multidimensional effects in exoplanet atmospheres. This
opens the field to comprehensive atmospheric characterisation of exoplanets with large
spectral features that will be accessible with transmission spectroscopy in the JWST era. Our
retrieval framework will be an important tool as we work to uncover exciting new insights into
the nature of exoplanet atmospheres using upcoming observations of unprecedented detail.





Chapter 5

Exploring the Phase Structure of
Water-Rich Sub-Neptunes

“How much do I love you? I’ll tell you no lie. How deep is the ocean? How high is the sky?”
– Irving Berlin

5.1 Introduction

One of the most intriguing findings of recent planetary detection missions is the ubiquity of
sub-Neptune planets, whose radii lie between 1–4𝑅⊕, i.e., larger than Earth but smaller than
Neptune (Batalha et al., 2013, Fulton et al., 2017). These planets are often grouped into two
categories, super-Earths and mini-Neptunes, distinguished by whether their radii are greater
than or less than ∼1.75𝑅⊕ (Fulton & Petigura, 2018). With no solar system analogues, the
characterisation of such planets is an important challenge in exoplanet science. In particular,
understanding whether these planets are typically large rocky planets, scaled-down ice giants,
or some intermediate between the two is crucial in order to place these planets in the context
of the broader exoplanet population. Planets in this regime are likely to contain a substantial
amount of H/He and/or H2O (Rogers, 2015, Zeng et al., 2019), and so detailed forward
modelling of planetary internal structures including these components is important for their
characterisation.

Recently, Madhusudhan et al. (2020) conducted a joint analysis of the interior and
atmosphere of K2-18b, a habitable-zone mini-Netpune (Foreman-Mackey et al., 2015,
Cloutier et al., 2017, Benneke et al., 2019, Tsiaras et al., 2019). One of the key findings of
that study was that for certain solutions, K2-18b could host a liquid water ocean beneath its
hydrogen-rich atmosphere. This result provides motivation for a detailed investigation of
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the thermodynamic conditions and phase structures of the H2O layers of super-Earths and
mini-Neptunes in general. In this paper, we aim to characterise the interiors of planets with
a significant H2O mass fraction, both with and without H/He envelopes. We use detailed
internal structure models to explore the range of phases of H2O that are accessible within
planetary interiors. This allows us to address a number of topics including the possible depths
of liquid water oceans on such planets, and the phases of water that may be found at the
interface between the H2O and H/He layers of an exoplanet.

As discussed in Section 1.3.1, internal structure modelling has long been used to link a
planet’s composition to its observable bulk properties such as mass, radius and equilibrium
temperature. In this paper we focus on planets which contain a substantial H2O component,
and which may also possess an extended H/He envelope. Since we are interested in the
phase structure of the water components of these planets, it is important to accurately model
the effect of temperature variations within the H2O layer. A number of previous studies
have considered the importance of thermal effects when modelling such planets. Early
studies suggested that temperature variations did not significantly alter the 𝑀–𝑅 relation for
water worlds (Sotin et al., 2007, Grasset et al., 2009), however these works were generally
limited to low-temperature planets with either liquid or icy surfaces. More recent work has
suggested that thermal effects can have a sizeable impact on the 𝑀–𝑅 relation. Madhusudhan
& Redfield (2015) showed that for highly irradiated H2O-rich planets, the atmospheres can
contribute significantly to the observed radii. Thomas & Madhusudhan (2016) explored
thermal effects on the 𝑀–𝑅 relation for water worlds in more detail, focusing on planets
with surfaces in liquid or supercritical phases, and finding that higher surface temperatures
could lead to a large increase in radius. For example, changing the surface temperature
from 300–1000 K could increase the radius of a 1–10𝑀⊕ planet by up to 25%. Otegi et al.
(2020) also demonstrated that changes in a planet’s temperature profile can substantially
alter the 𝑀–𝑅 relation for sub-Neptunes. Mousis et al. (2020) modelled planets with steam
atmospheres and supercritical H2O layers, which can inflate the radii of water worlds without
invoking a H/He envelope, while Turbet et al. (2020) also found that irradiated planets could
possess inflated H2O layers, applying their results to the TRAPPIST-1 system.

Another important aspect is the possible extent of oceans on H2O-rich planets. A number
of past studies have explored this to some extent. For example, Léger et al. (2004) calculated
the depths of oceans on planets with fixed mass (6𝑀⊕) and an adiabatic H2O layer with fixed
mass fraction (50%) across several different surface temperatures, reporting depths of 60 km
for 𝑇0 = 273 K, 72 km for 𝑇0 = 280 K and 133 km for 𝑇0 = 303 K. Similarly, planets with
50% H2O by mass were considered by Sotin et al. (2007), however in this case they used an
isothermal temperature profile and the surface temperature was fixed to 300 K while the planet
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mass was varied. They found that a 1𝑀⊕ planet should have an ocean that is 150 km deep,
decreasing to 50 km for a 10𝑀⊕ planet. The decrease in ocean depth with increasing mass is
a result of the higher surface gravity of more massive planets with the same composition.
Alibert (2014) considered the limiting case where a planet has the maximum amount of
H2O possible while avoiding a high-pressure ice layer. In this scenario, the total H2O mass
remains approximately constant (at ∼0.03𝑀⊕) as the planet mass changes. A study by Noack
et al. (2016) noted that the maximum possible ocean depth for a given planet varies with its
mass, composition and surface temperature. At 300 K their results agree with Sotin et al.
(2007), but they found that between 290 and 370 K, a 10 K increase in surface temperature
leads to a 14–16% increase in ocean depth.

More broadly, understanding a planet’s phase structure can provide insight into its bulk
geophysical properties, as has been demonstrated for icy moons in the Solar System (e.g.
Hsu et al., 2015, Soderlund et al., 2020). The presence or absence of a liquid water layer has
important consequences for planetary habitability (Lammer et al., 2009). Other works have
explored the general phase structures of H2O-rich planets. For example, Zeng & Sasselov
(2014) studied the temperature evolution of the interiors of water-rich planets. They found
that the phase structures of these planets may change as the planet cools, and that planets older
than ∼3 Gyr should have mostly solid H2O layers, assuming they are not highly irradiated.

As well as H2O-rich planets without an extended atmosphere, we are also interested in the
interiors of planets smaller than Neptune which retain an extended H/He envelope. Only a
small amount of H/He is required to have a large impact on planetary radius (Lopez & Fortney,
2014). Rogers et al. (2011) showed that increasing the equilibrium temperature of such planets
also inflates their radii significantly, with the effect being more pronounced for lower-mass
planets. The extent of such an envelope as well as its temperature structure determines the
thermodynamic conditions at the boundary between the envelope and the remaining interior.
This is a crucial factor in determining the internal structure and surface conditions of a water
layer. Various approaches have been taken when incorporating hydrogen-rich envelopes
into internal structure models, ranging from isothermal H/He layers (Seager et al., 2007) to
envelopes following an analytic temperature profile (Rogers et al., 2011, Valencia et al., 2013)
or a temperature profile derived from self-consistent atmospheric modelling (Madhusudhan
et al., 2020).

Internal structure models have been used to characterise observed super-Earths and
mini-Neptunes, both through population studies and application to specific planets. At the
population level, Rogers (2015) used 𝑀–𝑅 relations along with a hierarchical Bayesian
analysis of the Kepler sample of planets to show that planets with radii ≳ 1.6𝑅⊕ are most
likely volatile-rich. Dorn et al. (2015, 2017) developed a Bayesian framework to infer



130 Exploring the Phase Structure of Water-Rich Sub-Neptunes

super-Earth compositions and place constraints on the extent of a volatile envelope, finding
that solutions are often highly degenerate, with a range of compositions able to explain a
given mass and radius. Lopez et al. (2012) predicted that the H2O component of planets in
the Kepler-11 system would be in vapour, molecular fluid or ionic fluid phases. As one of the
first exoplanets smaller than Neptune to have both a measured mass and radius, the planet
GJ 1214b has been the subject of numerous studies aiming to characterise its interior. The
bulk properties of the planet suggest the presence of a H/He envelope, with the possibility of
a H2O layer in the interior. Rogers & Seager (2010b) showed that the planet most likely has a
substantial H/He layer above a layer of H2O, which would be in supercritical and sublimated
ice phases. The presence of a gaseous layer was also suggested by Nettelmann et al. (2011),
whose models favoured a metal-enriched H/He atmosphere with a significant H2O mass
fraction. An upper limit on the H/He mass fraction of 7% was proposed by Valencia et al.
(2013). As mentioned previously, Madhusudhan et al. (2020) analysed the interior and
atmosphere of K2-18b, a habitable-zone temperature mini-Neptune, constraining the planet’s
H/He mass fraction to ≲ 6%. Constraints on the planet’s interior structure showed that
conditions at the surface of the H2O layer could range from supercritical to liquid phases.

In this paper we present internal structure models for super-Earths and mini-Neptunes,
with the aim of thoroughly exploring the phase structures of H2O layers on such planets.
We describe our model in Section 5.2, including our compilation of the H2O equation of
state (EOS) that is valid across a wide pressure and temperature range, and approaches to
incorporating the temperature structure of a H/He envelope. In Section 5.3 we validate our
model against previously published results. We then use our models to explore the phase
structures of H2O-rich planets in Section 5.4. We investigate in detail how the ocean depth
depends on observable properties such as surface gravity and temperature. We also constrain
the range of masses and radii of planets that might host liquid water beneath H/He envelopes.
We explore the wide range of internal structures that may be present on H2O-rich planets with
different surface conditions. We also show 𝑀–𝑅 relations for planets with mixed H/He-H2O
envelopes. Finally in Section 5.5 we summarise our results and discuss possible caveats,
implications of our findings and avenues for future study.

5.2 Methods

The canonical planetary internal structure model consists of a differentiated two-component
nucleus made up of an iron core and silicate mantle, a layer of H2O and/or a H/He envelope
(e.g. Léger et al., 2004, Fortney et al., 2007, Seager et al., 2007, Sotin et al., 2007, Valencia
et al., 2007). We adopt this approach and follow the standard assumption that the core and
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Fig. 5.1 Architecture of the internal structure model used in this study.

mantle are fully differentiated. However, since it has been suggested that water and hydrogen
are miscible in the interiors of giant planets (Soubiran & Militzer, 2015), we therefore allow
for a mixed H/He and H2O envelope as well as a differentiated structure with an outer H/He
envelope on top of the H2O layer. The components of our model are depicted in Figure 5.1
and described in detail in this section.

5.2.1 Planetary Structure Equations

Our model solves the equations which determine the interior structure of a planet: the mass
continuity equation,

𝑑𝑅

𝑑𝑀
=

1
4𝜋𝑅2𝜌

, (5.1)



132 Exploring the Phase Structure of Water-Rich Sub-Neptunes

Table 5.1 Parameters for the EOS of Fe (𝜖) from Anderson et al. (2001) and MgSiO3
(perovskite) from Karki et al. (2000).

Component 𝐵0 (GPa) 𝐵′0 𝐵′′0 (GPa−1) 𝜌0 (kg m−3)
Fe 156.2 6.08 n/a 8300

MgSiO3 247 3.97 -0.016 4100

where 𝑀 is the mass of a spherical shell of material internal to a radius 𝑅 and density 𝜌, and
the equation of hydrostatic equilibrium,

𝑑𝑃

𝑑𝑀
= − 𝐺𝑀

4𝜋𝑅4 , (5.2)

where 𝑃 is the pressure at the shell. Linking these equations requires an EOS 𝜌 = 𝜌(𝑃,𝑇)
as well as a pressure–temperature (𝑃–𝑇) profile 𝑇 = 𝑇 (𝑃), or simply 𝜌 = 𝜌(𝑃) for a
temperature-independent EOS. The EOS for each component is described in Section 5.2.2
and the temperature profiles used in this study are discussed in Section 5.2.3.

These equations are solved using a fourth-order Runge-Kutta scheme, with the mass
interior to a shell taken as the independent variable. Previous internal structure models have
performed the integration either by starting at the surface of the planet and proceeding inward
(e.g. Rogers & Seager, 2010a, Madhusudhan et al., 2012, Thomas & Madhusudhan, 2016,
Madhusudhan et al., 2020), or by integrating outward from the centre (e.g. Seager et al.,
2007, Sotin et al., 2007, Noack et al., 2016). We choose to integrate inward from the surface
since in this case the boundary conditions to be specified are surface conditions of the planet,
which are more closely linked to observable parameters than the conditions at the centre of
the planet. For example, Madhusudhan et al. (2020) used the retrieved reference pressure
from the transmission spectrum of K2-18b as a boundary condition for the interior models.
Our boundary conditions are therefore the temperature and pressure at the photosphere of the
planet (i.e. the conditions at 𝑅 = 𝑅𝑝.)

We solve for the planetary radius 𝑅𝑝 at a given mass 𝑀𝑝 and mass fractions 𝑥𝑖 = 𝑀𝑖/𝑀𝑝

of iron, silicates, H2O and H/He. 𝑅𝑝 is found using a bisection root-finding scheme. The
value of 𝑅𝑝 is updated iteratively for solving the structure equations until the conditions
0 < 𝑅(𝑀 = 0) < 1 km are satisfied.

5.2.2 Equations of State

Previous works have explored a number of EOS prescriptions for different model components.
Some early studies used an isothermal EOS for each component (Zapolsky & Salpeter, 1969,
Seager et al., 2007), while others considered temperature dependence throughout the interior
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Fig. 5.2 Equations of State for Fe and MgSiO3 used in our model. We use a temperature-
indpendent EOS adopted from Seager et al. (2007) for each of these components. The EOS
for H2O at 300 K is also shown for comparison.

(Valencia et al., 2006, Sotin et al., 2007). It has been demonstrated that thermal effects in
the iron and silicate layers do not substantially alter the 𝑀–𝑅 relation (Grasset et al., 2009,
Howe et al., 2014), and therefore several models treat the inner layers as isothermal with
a temperature-dependent prescription for other components (e.g. Rogers & Seager, 2010a,
Zeng & Sasselov, 2013, Thomas & Madhusudhan, 2016). Although a number of past models
have used isothermal H2O layers (e.g. Hubbard & Marley, 1989, Seager et al., 2007), several
works have shown that thermal effects in this layer can significantly affect the 𝑀–𝑅 relation
(Thomas & Madhusudhan, 2016, Mousis et al., 2020, Turbet et al., 2020). Constructing an
EOS for H2O can be challenging due to the need to accurately describe the behaviour of the
many different phases of water. For example, the International Association for the Properties
of Water and Steam (IAPWS) provide a detailed functional EOS (Wagner & Pruß, 2002)
covering liquid, vapour and some of the supercritical phase, and French et al. (2009) present
an EOS that is valid for high-pressure ice. One way of avoiding this problem is to compile a
patchwork EOS that uses different prescriptions for different phases. This approach was taken
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Fig. 5.3 Left: Data sources for the H2O EOS used in our model: 1. Wagner & Pruß (2002). 2.
Feistel & Wagner (2006). 3. Journaux et al. (2020a). 4. Fei et al. (1993). 5. Klotz et al.
(2017), Fei et al. (1993). 6. Seager et al. (2007). 7. French et al. (2009). 8. Salpeter &
Zapolsky (1967). The EOS of Salpeter & Zapolsky (1967) is also used for 𝑃 > 1014 Pa.
Right: Phase diagram of H2O (Wagner & Pruß, 2002, Dunaeva et al., 2010). The contour
plot shows the EOS 𝜌 = 𝜌(𝑃,𝑇) used in our model. Regions of 𝑃–𝑇 space are labelled with
their corresponding phase. The transition from ice X to ice XVIII (also called superionic ice)
occurs at approximately 2000 K (Millot et al., 2019).

by Thomas & Madhusudhan (2016), who compiled a temperature-dependent H2O EOS valid
at pressures from 105 − 1022 Pa and temperatures from 300 − 24 000 K). A similar method
was adopted by Mazevet et al. (2019), who constructed an EOS covering the liquid, gas and
superionic regimes.

For the iron and silicate layers we adopt the isothermal (room-temperature) EOS described
in Seager et al. (2007). We present a revised and updated version of the temperature-dependent
H2O EOS from Thomas & Madhusudhan (2016) and we use the recently published H/He
EOS from Chabrier et al. (2019). We now describe each of these prescriptions in detail.

5.2.2.1 Iron

Figure 5.2 shows the temperature-independent EOS that we use for each component of the
nucleus, alongside our H2O EOS at 300 K for comparison. We adopt the EOS of the 𝜖
phase of Fe from Seager et al. (2007), which consists of a Vinet fit (Vinet et al., 1989) to
experimental data from Anderson et al. (2001) at lower pressures (𝑃 < 2.09 × 1013 Pa), and



5.2 Methods 135

2 4 6 8 10 12 14 16
log P (Pa)

10-5

10-3

10-1

101

103

105

ρ
(k

g
m

-3
)

200 K

500 K

1000 K

10 000 K

24 000 K

200 1000 10 000
T (K)

1

2

3

4

5

6

7

c p
(k

J
k

g
-1

K
-1

)

1 mbar

1 bar

100 bar

1000 bar

10 000 bar

-3 -1 1 3 5 7 9 11
log P (bar)

Fig. 5.4 Left: Density of H2O as a function of pressure for several different isotherms. At
500 K there is a phase transition from vapour to liquid at 26.4 bar. Right: Specific heat capacity
𝑐p of H2O as a function of temperature for a range of isobars. The value of 𝑐p increases
sharply across the ice-liquid phase transition and decreases across the liquid-vapour boundary.
At high temperatures away from the phase boundaries 𝑐p does not vary significantly.

transitions to the Thomas-Fermi-Dirac (TFD) EOS as described in Salpeter & Zapolsky
(1967) at higher pressures. The Vinet EOS takes the functional form

𝑃 = 3𝐵0[
2/3

(
1 − [−1/3

)
exp

[
3
2

(
𝐵′0 − 1

) (
1 − [−1/3

)]
(5.3)

where 𝐵0 = 𝜌(𝜕𝑃/𝜕𝜌) |𝑇 is the isothermal bulk modulus, 𝐵′0 is the pressure derivative of
𝐵0 and [ = 𝜌/𝜌0, where 𝜌0 is the ambient density. The values used in this study for those
quantities are shown in Table 5.1. For the TFD EOS, electrons are treated as a gas of
non-interacting particles in a slowly-varying potential. At lower pressures chemical bonds
and the crystal structure of a material play an important role in determining the EOS, and the
TFD approximation breaks down since these effects are not considered. However at very
high pressures, when kinetic energy dominates over Coulomb energy, TFD theory can yield
an accurate EOS. The low-pressure Fe EOS smoothly transitions into the TFD EOS allowing
the pressure range to be extended beyond what is obtainable solely from experimental data.

5.2.2.2 Silicates

The silicate EOS used in our model is also adopted from Seager et al. (2007) and comes from
the perovskite phase of MgSiO3. For 𝑃 < 1.35 × 1013 Pa this takes the form of a fourth-order
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Fig. 5.5 EOS for H/He used in our model for different isotherms. At low pressures (≲ 107 Pa)
the EOS behaves like an ideal gas, and at high pressures (≳ 1012 Pa) it becomes temperature-
independent. The EOS data is taken from Chabrier et al. (2019).

finite strain Birch-Murnaghan EOS (Birch, 1952) fit to a density functional calculation from
Karki et al. (2000). The fourth-order Birch-Murnaghan equation is

𝑃 =
3
2
𝐵0

(
[7/3 − [5/3

) {
1 + 3

4
(
𝐵′0 − 4

) (
[2/3 − 1

)
+ 3

8
𝐵0

(
[2/3 − 1

)2
[
𝐵0𝐵

′′
0 + 𝐵′0

(
𝐵′0 − 7

)
+ 143

9

] } (5.4)

where 𝐵′′0 is the second pressure derivative of 𝐵0. The values used in this study for the
relevant quantities are shown in Table 5.1. As with the Fe EOS, this smoothly transitions into
a TFD EOS at high pressures.

5.2.2.3 Water

For the liquid, vapour and supercritical phases of H2O we use the prescription presented in
Thomas & Madhusudhan (2016). However, we have used different sources for several ice
phases, both to extend the validity of the EOS to lower pressures and temperatures and to
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incorporate newer data. The resulting EOS is valid for pressures from 102 − 1022 Pa and
temperatures from 200 − 24 000 K. Figure 5.3 shows the various sources used to compile the
EOS and their regions of validity in 𝑃–𝑇 space. We now describe our choice of EOS for each
of the relevant phases of H2O.

Liquid and vapour. We use the functional EOS from the International Association for the
Properties of Water and Steam (IAPWS, Wagner & Pruß, 2002). The IAPWS EOS has been
validated by numerous experiments and covers the region of 𝑃–𝑇 space above the melting
curve of H2O (lowest temperature 251.2 K).

Supercritical. Wagner & Pruß (2002) showed that the IAPWS formulation can be
extrapolated to pressures and temperatures beyond the critical point of H2O. We therefore
adopt their formulation for some of the supercritical phase. However, for 𝑇 > 1000 K and
𝑃 > 1.86 × 109 Pa we smoothly transition to the EOS presented by French et al. (2009).
This EOS is derived from quantum molecular dynamics simulations of high-pressure ice,
supercritical and superionic H2O, and has been validated by experiments (Knudson et al.,
2012).

Low-pressure ice. We incorporate the EOS for ice Ih from Feistel & Wagner (2006) which
is widely considered to be the best available formulation for this phase (see e.g. Journaux
et al., 2020b). For ices II, III, V and VI we use the latest available EOS from Journaux
et al. (2020a) which is derived from experiments conducted at a range of pressures and
temperatures.

High-pressure ice. We use the French et al. (2009) EOS where applicable, covering parts
of the ice VII, X, and XVIII phases. Ice XVIII exists at 𝑃 > 1011 Pa, 𝑇 > 2000 K and is
also called superionic ice (Millot et al., 2019). For the remainder of the ice VII phase we
follow the approach of Fei et al. (1993), who used a Vinet EOS with a thermal correction.
Klotz et al. (2017) determined a functional form of the coefficient of volumetric thermal
expansion, 𝛼, that allows for the extrapolation of the ice VII EOS down to the ice VIII phase
at lower temperatures, finding good agreement with experimental data. We therefore use
their prescription for 𝛼 to calculate an EOS for ice VIII. Thermal effects become negligible
for very high pressures, and so we switch to the temperature-independent TFD theoretical
EOS as described in Salpeter & Zapolsky (1967) for pressures above 7.686 × 1012 Pa. For
intermediate regions not covered by another data source we use the EOS from Seager et al.
(2007) in order to smoothly transition to the TFD regime.

5.2.2.4 Hydrogen/Helium

We use the temperature-dependent H/He EOS from Chabrier et al. (2019) for a solar helium
mass fraction (𝑌 = 0.275), which covers pressures from 1–1022 Pa and temperatures from



138 Exploring the Phase Structure of Water-Rich Sub-Neptunes

100–108 K. At temperatures relevant to our model, the hydrogen EOS is a combination of the
semi-analytical model from Saumon et al. (1995) at low densities (𝜌 ≤ 50 kg m−3), the model
based on ab initio electronic structure calculations from Caillabet et al. (2011) at intermediate
densities (300 < 𝜌 ≤ 5000 kg m−3), and the model for fully ionised hydrogen from Chabrier
& Potekhin (1998) at high densities (𝜌 > 104 kg m−3). Similarly, the helium EOS is derived
using a combination of models from Saumon et al. (1995) for 𝜌 ≤ 100 kg m−3 and Chabrier &
Potekhin (1998) for 𝜌 > 105 kg m−3, and ab initio calculations based on quantum molecular
dynamics for 1000 < 𝜌 ≤ 105 kg m−3. In both cases a bicubic spline procedure is used to
interpolate the thermodynamic quantities between the given regimes.

The combined H/He EOS is produced using an additive volume law, which takes the form

1
𝜌mix(𝑃,𝑇)

=
∑︁
𝑖

𝑥𝑖

𝜌𝑖 (𝑃,𝑇)
, (5.5)

where 𝑥𝑖 is the mass fraction of the 𝑖th component. This prescription does not consider
interactions between the two species, but Chabrier et al. (2019) claim that the correction to
the EOS from taking this into account should only be of the order of a few per cent. The
resulting EOS at several different temperatures is shown in Figure 5.5. The same additive
volume law is used to compute the density of a mixed envelope consisting of H/He and H2O
in this study.

5.2.3 Temperature Profiles

The inclusion of EOS data across a wide range of pressures and temperatures enables us to
consider any reasonable temperature profile within the H2O and H/He layers. Deep within
the interior of the planet we expect convection to dominate energy transport, leading to an
adiabatic temperature profile with constant specific entropy 𝑆. However, at lower pressures
near the planetary surface an adiabatic temperature profile may no longer be appropriate.
Previous studies have used different methods to model the temperature structure of the outer
envelope: for example, Fortney et al. (2007) took 𝑃–𝑇 profiles from a grid of atmospheric
models, while Rogers et al. (2011) and Valencia et al. (2013) incorporated the analytic
atmospheric model from Guillot (2010). Recent works have also coupled interior models of
water worlds to steam atmosphere models (Mousis et al., 2020, Turbet et al., 2020). Here we
describe some of the most common approaches used to model the temperature structures of
planetary interiors: analytic models and self-consistent models. We subsequently describe
the approach that we use throughout most of this paper, in which the temperature profile
consists of an isothermal layer above an adiabatic layer. While our model has the capability
to incorporate both analytic 𝑃–𝑇 profiles as well as those produced using a self-consistent
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Fig. 5.6 Comparison of analytic and self-consistent 𝑃–𝑇 profiles. The solid curves show
profiles from self-consistent models (Piette & Madhusudhan, 2020b), color-coded by the
intrinsic temperature 𝑇int used for the model. The self-consistent models span a broad range
of possible internal energies for sub-Neptunes, assuming nominal planet properties based
on the mini-Neptune K2-18b. Black dashed lines show isothermal/adiabatic profiles with
𝑃rc = 1 bar and 𝑃rc = 1000 bar. We consider these as end-member scenarios when modelling
planets with H/He envelopes.

atmospheric model, we find that isothermal/adiabatic temperature profiles are the most
appropriate for this study, as we explain in Section 5.2.4.

5.2.3.1 Analytic profiles

The temperature profile of a planet’s outer envelope can be calculated using an analytic model,
such as the one described in Guillot (2010), which takes the form



140 Exploring the Phase Structure of Water-Rich Sub-Neptunes

𝑇4 =
3𝑇4

int
4

[
2
3
+ 𝜏

]
+

3𝑇4
irr

4
𝑓
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2
3
+ 1
𝛾
√

3
+

(
𝛾
√

3
− 1
𝛾
√

3

)
exp

(
−𝛾𝜏

√
3
)] (5.6)

which is a solution to the equations of radiative transfer assuming a grey atmosphere and
the two-stream approximation. The irradiation temperature 𝑇irr = 𝑓 −1/4𝑇eq characterises the
irradiation intensity from the host star and is related to the planetary equilibrium temperature
via the redistribution factor 𝑓 . The intrinsic temperature 𝑇int characterises the planetary
intrinsic heat flux. The ratio of visible to thermal opacities is represented by 𝛾. This approach
requires the inclusion of another differential equation in the model to solve for the optical
depth 𝜏:

𝑑𝜏

𝑑𝑀
= − ^

4𝜋𝑅2 , (5.7)

where the opacity ^ can be specified as a function of 𝑃 and 𝑇 using, for example, the tabulated
values of Freedman et al. (2008) for H/He. The analytic model described here has some
limitations: for example, there is no treatment of clouds, which can have a significant impact
on the form of the temperature profile (e.g. Kitzmann et al., 2010) and may be prevalent
in super-Earth atmospheres (Kreidberg et al., 2014b). In this study, we only use analytic
temperature profiles in order to validate our model against previous work that used this
prescription (see Section 5.3).

5.2.3.2 Self-consistent profiles

Another approach is to use a temperature profile that has been calculated using self-consistent
atmospheric modelling (e.g. Gandhi & Madhusudhan, 2017, Malik et al., 2019, Piette &
Madhusudhan, 2020b). Self-consistent atmospheric models solve the equations of radiative
transfer numerically under the assumptions of hydrostatic, radiative-convective and thermal
equilibrium. These models are able to account for many more phenomena than the analytic
prescription, such as atmospheric dynamics, clouds and particle scattering. Detailed self-
consistent atmospheric modelling is not incorporated directly into our internal structure
model, but temperature profiles calculated in this way can be used to obtain the density profile
for the outer layers of a planet (Madhusudhan et al., 2020). Self-consistent atmospheric
modelling requires many planet-specific parameters and is more time-consuming than the
other approaches discussed here, so while this method is useful for exploring the structure
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of a particular planet, it is less well-suited to theoretical calculations across a wide range of
masses and radii. We show in Section 5.2.3.3 that an isothermal/adiabatic profile can be used
in place of a self-consistently modelled profile with little change to the 𝑀–𝑅 relation.

5.2.3.3 Isothermal/adiabatic profiles

This 𝑃–𝑇 profile consists of an isotherm at the photospheric temperature 𝑇0 down to the
radiative-convective boundary, at which point the temperature profile becomes adiabatic.
This approach to calculating the temperature profile allows for a high degree of flexibility
while remaining simple to compute. The pressure at the radiative-convective boundary (𝑃rc)
is a free parameter.

The adiabatic temperature gradient is

𝜕𝑇

𝜕𝑃

����
𝑆

=
𝛼𝑇

𝜌𝑐p
, (5.8)

where 𝑐p is the specific heat capacity at constant pressure and 𝛼 is the coefficient of volumetric
thermal expansion. Chabrier et al. (2019) present the adiabatic gradient for H/He along
with their EOS and so we incorporate this directly into our model. For H2O we require
prescriptions for 𝑐p and 𝛼. Thomas (2016) incorporated 𝑐p data for the liquid and vapour
phases from (Wagner & Pruß, 2002) and extrapolated this to cover all other phases of H2O.
We also use this data for liquid and vapour, but we do not extrapolate beyond these regions.
Instead, we add data from Feistel & Wagner (2006) for ice Ih, Journaux et al. (2020a) for
ices II, III, V and VI, Fei et al. (1993) for ices VII and VIII and French et al. (2009) for the
ice VII-X transition. The behaviour of 𝑐p is summarised in the right-hand panel of Figure
5.4. For higher pressures where 𝑐p data is unavailable (i.e. sources 6 and 8 in Figure 5.3),
we assume that 𝑐p is equal to its value at the nearest point in 𝑃–𝑇 space with available
data. The true value of 𝑐p is not required here since the EOS used for these pressures is not
temperature-dependent.

We calculate 𝛼 directly from our EOS:

𝛼 =
1
𝑉

𝜕𝑉

𝜕𝑇

����
𝑃

= −𝜕 ln 𝜌
𝜕𝑇

����
𝑃

. (5.9)

Transitions between different phases of H2O can lead to significant discontinuities in the EOS,
causing 𝛼 to become undefined at phase boundaries. In order to avoid this, the derivative is
calculated separately for each phase and smoothly interpolated across the boundary, yielding
adiabats that remain continuous.



142 Exploring the Phase Structure of Water-Rich Sub-Neptunes

For mixed envelopes consisting of both H/He and H2O, the adiabatic gradient is calculated
by linear interpolation using the following formula:(

𝜕 log𝑇
𝜕 log 𝑃

����
𝑆

)
mix

= −
Σ𝑖𝑥𝑖𝑆𝑖

𝜕 log 𝑆𝑖
𝜕 log 𝑃

��
𝑇

Σ𝑖𝑥𝑖𝑆𝑖
𝜕 log 𝑆𝑖
𝜕 log𝑇

��
𝑃

, (5.10)

with values of the specific entropy of H/He and H2O taken from the same sources as the
values of 𝑐p.

5.2.4 Choice of Temperature Profiles in This Study

In the rest of this paper we use isothermal/adiabatic 𝑃–𝑇 profiles as described in the previous
subsection. Here we show that these 𝑃–𝑇 profiles are a reasonable approximation to those
generated by self-consistent models. We take a number of 𝑃–𝑇 profiles generated using the
self-consistent model genesis (Gandhi & Madhusudhan, 2017), which was recently updated
to model atmospheres of sub-Neptunes (Piette & Madhusudhan, 2020b). We consider a
number of models with a wide range of internal energies, which are determined by 𝑇int. 𝑇int

can be calculated using evolutionary models. For example, Lopez & Fortney (2014) find
that, for a low-mass 5 Gyr-old planet, 𝑇int can be as low as ∼10 K. Conversely, Valencia et al.
(2013) find that for the mini-Neptune GJ 1214b, 𝑇int may be up to 80 K at an age of 0.1 Gyr,
and Morley et al. (2017a) consider even higher values for the Neptune-mass GJ 436b, whose
interior may be warmed by tidal heating. We therefore explore a range of 10–150 K for 𝑇int.

The resulting temperature profiles are shown in Figure 5.6, and can be closely matched
by isothermal/adiabatic profiles with 𝑃rc lying between 1 bar and 1000 bar. We therefore take
1–1000 bar to be a reasonable range of values for 𝑃rc when considering a general sub-Neptune
atmosphere in the remainder of this paper.

To further illustrate that a model incorporating an isothermal/adiabatic temperature
profile can yield very similar results to a model with a temperature profile generated by a
self-consistent model, we consider one of the interior models for the planet K2-18b from
Madhusudhan et al. (2020), which used 𝑃–𝑇 profiles produced by genesis. We take case
2 from that paper, which has a composition of 45% Earth-like nucleus, 54.97% H2O, and
0.03% H/He. We fit the temperature profile used for that case with an isothermal/adiabatic
profile, finding best-fit parameters 𝑇0 = 300 K, 𝑃0 = 0.05 bar, and 𝑃rc = 3 bar. The model
using an isothermal/adiabatic profile gives a radius of 2.613 𝑅⊕ at the mean observed planet
mass (8.63𝑀⊕, Cloutier et al., 2019) which, like the model from Madhusudhan et al. (2020),
agrees with the observed planetary radius to well within the observational uncertainty
(2.610 ± 0.087 𝑅⊕; Benneke et al., 2019).



5.3 Model Validation 143

2 3 4 5 6 7 8 9 10
Mass / M⊕

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
a

d
iu

s
/

R
⊕

Rogers et al. (2011)
Valencia et al. (2007)
Seager et al. (2007)

Fig. 5.7 Comparison between 𝑀–𝑅 relations produced by our model and previously published
results. The red curves are taken from Seager et al. (2007) for planets of pure Fe, Earth-like
and pure silicate composition. The blue curves are taken from Valencia et al. (2007) for
planets with an Earth-like core and adiabatic H2O layers of 30% and 50%. The green curves
are taken from Rogers et al. (2011) for planets with a 33% Earth-like nucleus, a ∼67%
isothermal H2O layer and H/He envelopes of 0.1% and 1%. The black dashed lines show
our model reproductions of each of these cases. All of our results agree with the previously
published 𝑀–𝑅 relations to within 0.05𝑅⊕.

5.3 Model Validation

In this section we validate our model by reproducing results from a number of previous
works concerning the internal structures of sub-Neptunes. We also examine the effect of a
temperature-dependent interior on the radii of H2O-rich planets and compare our results to
other studies that have followed similar approaches.

5.3.1 Comparison with Previous Studies

Figure 5.7 shows several 𝑀–𝑅 relations from previous works alongside the results of our
model given the same input parameters. We begin by reproducing the results of Seager et al.
(2007) for isothermal planets comprised of iron and silicates. Since we use the same EOS for
Fe and MgSiO3 as that paper, we expect to find total agreement between their results and
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our model when considering planets consisting solely of iron and rock. We reproduce 𝑀–𝑅
relations for three compositions shown in figure 4 of Seager et al. (2007): a pure iron planet,
a pure silicate planet, and a planet consisting of 32.5% iron and 67.5% silicates. In each of
these cases our results agree completely with the published 𝑀–𝑅 relations.

Next we consider 𝑀–𝑅 relations shown in figure 3 of Valencia et al. (2007) for planets
at 𝑇0 = 550K with H2O mass fractions of 10% and 30%. The H2O layer consists of ice
VII and X and follows an adiabatic temperature profile. The inner layers of the planet are
made up of silicates and iron in a 2:1 ratio. Valencia et al. (2007) do not provide a surface
pressure for their models, so in order to reproduce their results we take 𝑃0 = 1010 Pa, since
this forces the phase at the surface to be ice VII rather than liquid. The ice VII EOS used
in our models differs slightly from Valencia et al. (2007), however we find good agreement
between the two sets of 𝑀–𝑅 curves. Across all masses and compositions considered, the
largest discrepancies in radius are below 0.04𝑅⊕, smaller than the observational uncertainties
of even the best super-Earth radius measurements (∼0.1𝑅⊕). The small differences that do
appear are likely due to the different formulation of the ice VII EOS and the fact that Valencia
et al. (2007) incorporate conduction in the mantle.

Finally we compare our model to equilibrium models of planets with H/He envelopes
from Rogers et al. (2011). We consider 𝑀–𝑅 relations shown in figure 4 of that paper
for planets with 𝑇eq = 500K and H/He mass fractions of 0.1% and 1%. The underlying
composition in each case is 10% Fe, 23% silicates and 67% H2O. Rogers et al. (2011) did not
use a temperature-dependent H2O EOS, instead adopting the isothermal EOS from Seager
et al. (2007), and so for our reproduction we take an isothermal temperature profile at 300 K
in the H2O layer. Rogers et al. (2011) also used the H/He EOS from Saumon et al. (1995),
which differs from the Chabrier et al. (2019) EOS at high densities (𝜌 > 50 kg m−3). The
temperature profile used in the H/He envelope is analytic, taking the form of Equation 5.6
with 𝛾 = 0.6

√︁
𝑇irr/2000K, 𝑓 = 1/4 and 𝑇int = (𝐿𝑝/4𝜋𝑅2

𝑝𝜎)1/4, where 𝐿𝑝 is the intrinsic
luminosity of the planet and 𝜎 is the Stefan-Boltzmann constant. For the models reproduced
here, 𝐿𝑝 is determined by fixing 𝐿𝑝/𝑀𝑝 = 10−10.5 W kg−1. For the purposes of this
reproduction we do not correct for the transit radius effect. Again we find good agreement
between our models and those of Rogers et al. (2011), with maximum discrepancies less than
0.05𝑅⊕. These may be a result of the differing H/He EOS. Regardless, our 𝑀–𝑅 relations
and all those from previous studies shown here agree to well within typical observational
uncertainties for super-Earths.



5.3 Model Validation 145

5.3.2 Mass–radius Relations

Here we use our model to produce mass–radius (𝑀–𝑅) relations for sub-Neptune exoplanets
with varying temperature structures and compositions, and compare these to previous work
in the field.

5.3.2.1 Water worlds with no H/He envelope

Figure 5.8 shows 𝑀–𝑅 curves for H2O-rich planets with no H/He envelope. We assume that
the underlying nucleus is Earth-like in composition (1/3 Fe, 2/3 MgSiO3 by mass). For the
liquid, ice and supercritical phases of H2O we assume an adiabatic temperature profile. We
consider two end-member temperature profiles in the vapour phase: an isothermal profile and
an adiabatic profile. We consider the effect of several different parameters on the planetary
radius, including the temperature 𝑇0 and pressure 𝑃0 at the photosphere as well as the water
mass fraction 𝑥H2O. The photospheric pressure and temperature of a planet can be constrained
from observations: 𝑇0 is closely related to the planetary effective temperature, which can be
estimated from the orbital separation of the planet and the luminosity of the host star. 𝑃0

is defined as the pressure at the photosphere (where 𝑅 = 𝑅𝑝). It can be retrieved from an
atmospheric spectrum (Welbanks & Madhusudhan, 2019, Nixon & Madhusudhan, 2020)
and subsequently used as a boundary condition when analysing a planet’s internal structure
(Madhusudhan et al., 2020).

In agreement with the findings of Thomas & Madhusudhan (2016), it is clear from
Figure 5.8 that variations in 𝑇0 can have a significant effect on planetary radius in both the
isothermal and adiabatic cases. For model scenarios with a large H2O mass fraction of 0.9
and an isothermal vapour layer, increasing 𝑇0 from 300 K to 1000 K inflates the planetary
radius by 0.25𝑅⊕–0.4𝑅⊕ depending on the planet mass. If the vapour layer is adiabatic the
radius increases more dramatically, by up to 2.2𝑅⊕ in the most extreme case. The inflation is
enhanced at lower masses due to the low surface gravity of the planet allowing for a more
extended envelope (Rogers et al., 2011). This effect is still significant for planets with a lower
H2O mass fraction: even in the isothermal vapour case, at 𝑥H2O = 0.3 the radius is inflated by
0.1 − 0.2𝑅⊕ for the 1000 K model planets compared to those at 300 K. We note that even
in the case of a minimal H2O layer, the effect of changing 𝑇0 may be non-negligible: for
𝑥H2O = 0.01, the radius of a 1𝑀⊕ planet with 𝑇0 = 300 K is 0.981𝑅⊕, increasing to 1.076𝑅⊕

at 𝑇0 = 1000 K with an isothermal vapour layer or 1.171𝑅⊕ with an adiabatic vapour layer.
Even for mostly rocky planets that may host thin H2O envelopes, temperature dependence
within the H2O layer is still important to consider.
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Fig. 5.8 Mass–radius (𝑀–𝑅) relations for water worlds without H/He envelopes. The model
planets consist of a H2O layer of 30% (left) or 90% (right) above an Earth-like nucleus (1/3
iron, 2/3 silicates by mass). All planets follow an adiabatic temperature profile in the liquid,
supercritical and ice phases of the H2O layer. In the top panel, planets with water vapour
follow an isothermal temperature profile in the vapour layer, whereas in the bottom panel the
temperature profile in this layer is also adiabatic. The line colour denotes the photospheric
temperature 𝑇0 and the line style indicates the photospheric pressure: solid lines show models
with 𝑃0 = 1 bar, dotted lines show models with 𝑃0 = 100 bar and dashed lines show models
with 𝑃0 = 0.1 bar. Increasing 𝑇0 from 300–1000 K increases the planet radius considerably,
with a more pronounced effect if the vapour layer is adiabatic. For planets with isothermal
vapour layers, changing 𝑃0 does not strongly affect the radius, but decreasing 𝑃0 for a planet
with an adiabatic vapour layer can substantially increase its radius.
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Figure 5.8 also shows how 𝑃0 affects the planetary radius. In general, a higher 𝑃0 leads to
a smaller radius if all other parameters are left unchanged. If an isothermal temperature profile
for vapour is assumed, this change is quite small: ≲ 0.001𝑅⊕ for planets with 𝑇0 = 300 K,
and approaching 0.1𝑅⊕ for the lowest masses (𝑀 ∼ 1𝑀⊕) at 𝑇0 = 1000 K. However, the
choice of 𝑃0 affects the 𝑀–𝑅 relation more significantly if the temperature profile in the
vapour layer is adiabatic. At 10𝑀⊕, the radius of a 90% water planet with 𝑇0 = 1000 K
increases by 0.47𝑅⊕ if 𝑃0 changes from 0.1–100 bar. The effect is more pronounced at higher
temperatures since the density of vapour and supercritical H2O varies more strongly with
pressure than the density of liquid (see Figure 5.3). If the vapour layer is adiabatic, then the
temperature profile increasing from a lower 𝑃0 leads to a hotter H2O layer throughout which
further magnifies this effect.

We find that a 20𝑀⊕, 90% H2O planet with a solid or liquid photosphere can have a
radius of up to 3𝑅⊕, in agreement with the findings of Zeng et al. (2019) that planets > 3𝑅⊕

generally require a gaseous envelope. Planets with 𝑥H2O ≳ 0.9 are likely unrealistic from a
planet formation perspective, since some amount of refractory material is required to initiate
ice and gas accretion (Zeng & Sasselov, 2014, Lee & Chiang, 2016).

The 𝑀–𝑅 relations reported in Mousis et al. (2020) yield larger radii than our model
for a similar composition. This a result of different methods being used to compute the
temperature profile in the water layer. In order to compare the models more directly we
consider a 15𝑀⊕ planet with a 20% H2O layer above a silicate mantle and an adiabatic steam
atmosphere with 𝑃0 = 0.1 bar, 𝑇0 = 430 K, which gives a temperature profile close to that of
Mousis et al. (2020) with 𝑇eq = 300 K (see figure 1 of that paper). The radius of this model
planet is 2.6𝑅⊕, close to the 2.7𝑅⊕ shown in figure 2 of Mousis et al. (2020).

5.3.2.2 Water worlds with H/He envelopes

Next we model planets with an Earth-like nucleus (1/3 iron, 2/3 silicates) and an adiabatic H2O
layer of equal mass to the nucleus underneath a H/He envelope. We adopt isothermal/adiabatic
temperature profiles for the H/He layer as described in Section 5.2.3.3, meaning the temperature
profile is determined by three parameters: 𝑇0, 𝑃0 and 𝑃rc.

Figure 5.9 shows 𝑀–𝑅 relations for planets with different photospheric temperatures,
radiative-convective boundaries and H/He mass fractions. The main factors governing the
𝑀–𝑅 relation for water worlds with H/He envelopes are the temperature profile in the envelope
and the mass fraction of H/He. Many features of the 𝑀–𝑅 relations presented in this figure
are well-documented in the literature (e.g. Rogers et al., 2011, Lopez & Fortney, 2014), such
as the inflation of radii at low masses, which is a result of low surface gravity increasing the
atmospheric scale height, and the significant effect of 𝑇0 on the planetary radius.
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Fig. 5.9 𝑀–𝑅 relations for planets with H/He envelopes. The line style indicates the location
of the radiative-convective boundary: solid lines show models with 𝑃rc = 10 bar, dotted lines
show models with 𝑃rc = 1000 bar and dashed lines show models with 𝑃rc = 1 bar. Even a
small amount of H/He can inflate the radius of a planet substantially, and this effect is more
pronounced at higher temperatures. Increasing 𝑃rc decreases the planet radius.

We consider two values of 𝑇0, 300 K and 500 K. We also include several different
radiative-convective boundaries, with 𝑃rc ranging from 1–1000 bar (see Section 5.2.3.3).
The results indicate that only a small amount of H/He by mass is required to substantially
increase the radius of a planet. Planets with 𝑇0 > 500 K may have larger radii than Neptune
(3.88𝑅⊕), even with a H/He mass fraction as low as 1%. Changing 𝑃rc also has a very
significant effect on the 𝑀–𝑅 relation. This highlights the importance of using an accurate
atmospheric temperature profile when modelling planets with a gaseous envelope. In cases
where a planet’s temperature profile is not well-constrained, a wide variety of 𝑃–𝑇 profiles
should be considered in order to fully explore its possible internal structures. These thermal
effects become more significant as the envelope mass increases.

Throughout this section we assume a nominal photospheric pressure of 0.1 bar. Analysis
of the transmission spectra of hydrogen-rich planets yield values of 𝑃0 ranging from ∼1 mbar–
∼1 bar (e.g. Welbanks et al., 2019). It is straightforward to compute the change in radius
resulting from a change in 𝑃0, since at pressures below ∼1000 bar the EOS for the H/He
envelope is that of an ideal gas. Combining this with equation 5.2 shows that the change in
adjusting the pressure at the photosphere from 𝑃1 to 𝑃2 yields a change in radius of 𝑁𝐻sc,
where 𝑁 = ln(𝑃1/𝑃2) and 𝐻sc = 𝑘𝐵𝑇/`𝑔 is the atmospheric scale height. Adjusting 𝑃0 from
1 bar to 1 mbar increases the planetary radius by ∼7𝐻sc.
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Fig. 5.10 Extent of oceans on H2O-rich planets with different surface gravities 𝑔 and
temperatures 𝑇0. The left-hand panel shows the ocean depth against log 𝑔 at different values
of 𝑇0 from 273–550 K. Ocean depth is inversely proportional to surface gravity for planets
without gaseous envelopes. The right-hand panel shows ocean depth against 𝑇0 for different
values of log 𝑔 (cgs) from 2.6–3.8. The grey dashed lines indicate the pressure at the bottom
of the ocean, 𝑃base, which depends on 𝑇0. A higher 𝑃base leads to a deeper ocean.

5.4 Results

Here we present our results exploring in detail the internal phase structures of H2O-rich
super-Earths and mini-Neptunes. We investigate four key aspects. We begin by calculating the
range of possible ocean depths on planets with a large H2O component across a wide range of
possible bulk properties and temperature structures. We allow for the full extent of the liquid
phase of H2O, reaching temperatures as high as 647 K at pressures from 218–7×104 bar. Next
we determine the range of masses, radii and surface conditions for which a mini-Neptune
with a H/He envelope may possess a liquid water ocean underneath. We also consider how
different temperature profiles can affect the phase structures of water worlds, investigating
planets with ice and vapour surfaces as well as those with surface oceans. Finally, we consider
how miscibility of H/He and H2O within a planet’s envelope might affect the 𝑀–𝑅 relation.

5.4.1 Depth of Oceans on Water Worlds

Our primary goal is to estimate the possible depths of liquid H2O layers in water-dominated
planets over a range of surface conditions. For reference, the Earth’s oceans have an average
depth of 3.7 km, extending to 11 km at their deepest point (Charette & Smith, 2010, Gardner
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et al., 2014). Given that the Earth’s H2O mass fraction is ∼0.02%, one might expect that
planets with a significant portion of their mass in H2O should possess deeper oceans. However,
it is also the case that much of the H2O layer of a water world can be in supercritical or
high-pressure ice phases due to high pressures in the interior. Therefore, the possible extent
of an ocean is not simply limited by the amount of H2O available.

Here we investigate the range of ocean depths that may be achieved in the case where
a planet has enough H2O that the size of the ocean is not limited by water mass fraction.
While other works have explored this to some extent as discussed previously, for this study
we consider planets across a wider range of masses, compositions and surface conditions. We
aim to determine which parameters are important in controlling the extent of an ocean, and
how the ocean depth varies across the full parameter space encompassed by super-Earths and
mini-Neptunes that may host H2O layers. We parametrise the temperature profile of the H2O
layer by assuming an adiabatic profile with a H2O surface of 𝑃0 = 100 bar, where 𝑇0 = 𝑇 (𝑃0)
is a free parameter that determines the adiabat. While the thermodynamic conditions at
the surface of the H2O layer are determined by numerous factors, including the level of
irradiation received from the host star, the planet’s intrinsic temperature 𝑇int, and atmospheric
properties such as opacity from molecular and atomic chemical species, by varying 𝑇0 across
the full set of possibilities for a liquid surface we can encapsulate all feasible cases.

Before exploring the extent of oceans found by our internal structure models, we can
examine the approximate behaviour of ocean depths by returning to the equation of hydrostatic
equilibrium (Equation 5.2), but with radius rather than mass as the independent variable:

𝑑𝑃

𝑑𝑅
= −𝜌𝑔, (5.11)

where 𝑔 is the gravitational acceleration. Consider a planet with a liquid H2O surface. From
Section 5.4.3 we can see that the ocean is unlikely to constitute a large portion of the planet
interior, and so we can assume that 𝑔 is constant throughout the ocean. If we also consider
the density of liquid water to remain constant (see Figure 5.3), then we find that the depth of
the ocean is proportional to change in pressure from the surface to the base. If the pressure
at the base of the ocean is much larger than the surface pressure, then we expect the base
pressure 𝑃base to strongly affect the ocean depth. For a planet with a large H2O mass fraction,
the value of 𝑃base is determined by the location where the adiabatic 𝑃–𝑇 profile crosses from
liquid to either supercritical water or high-pressure ice. This in turn depends on the chosen
surface temperature. Therefore we would expect the key parameters in determining the ocean
depth to be the gravity and temperature at the ocean’s surface.

We now turn to the full models to explore this in more detail. Our analysis above suggests
that planets with the same surface temperature and gravity should have approximately the
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same ocean depth, regardless of other factors like the planet mass, radius and composition.
We find this to be the case when using the full models. For example, consider two ocean
planets corresponding to points from the 𝑀–𝑅 curves from Figure 5.8: a 5𝑀⊕ planet with
30% H2O by mass, which has a radius of 1.78𝑅⊕, and a 10𝑀⊕ planet with 90% H2O by mass,
whose radius is 2.51𝑅⊕. Both planets have a surface temperature of 300 K and the same
surface gravities, log 𝑔 (cgs) = 3.19, despite their differing masses, radii and compositions.
We find that the oceans on both planets are 125 km deep. Similarly, we find that ocean depth
is not strongly affected by the surface pressure or the presence of an atmosphere. However,
we note for a planet with a gaseous envelope, the ocean depth is determined by the gravity at
the surface of the ocean rather than the gravity with the envelope included.

Having confirmed that surface temperature and gravity are the main parameters which
determine the extent of an ocean, we explore the (𝑔, 𝑇0) parameter space in order to find
the range of possible ocean depths for H2O-rich planets. We consider values of log 𝑔 (cgs)
ranging from 2.6–3.8. A 90% H2O planet at 1𝑀⊕ with 𝑇0 = 500 K, has log 𝑔 = 2.67, which
gives a reasonable lower bound for the surface gravity of a water world. The upper limit of
log 𝑔 = 3.8 corresponds to an extreme case of a 20𝑀⊕ iron planet with a thin H2O layer. For
reference, the water-rich planets considered later in Figure 5.14 all have log 𝑔 ≈ 3.2. We also
consider surface temperatures from 273–584 K, spanning the liquid phase assuming a surface
pressure of 100 bar.

Figure 5.10 shows the depths of oceans for planets across this parameter space. As
expected from the arguments at the beginning of this section, we find that ocean depth is
inversely proportional to gravity and approximately directly proportional to 𝑃base, which is
determined by the surface temperature. From the adiabatic temperature profiles shown in
Figure 5.13 we would expect that the optimum surface temperature in order to maximise
𝑃base, and hence ocean depth, lies between 350 and 450 K. From the grid of models we see
that the surface temperature which maximises ocean depth assuming an adiabatic temperature
profile starting from 100 bar is 413 K. At this temperature, and a minimal log 𝑔 = 2.6, the
ocean depth is 1654 km, about 450 times the average depth of the Earth’s ocean (3.7 km,
Charette & Smith, 2010). This can be considered an extreme upper limit to the depth of an
ocean on a water world.

In scenarios that have been explored previously, our results are in agreement with past
work. For example, for a 6𝑀⊕ planet with 50% H2O we find ocean depths of 66 km for
𝑇0 = 280 K and 125 km for 𝑇0 = 303 K, which are similar to the values of 72 km and 133 km
from Léger et al. (2004).

Looking at the broader parameter space, the models show that a wide variety of ocean
depths are possible. For example, a water world with a 300 K surface can have an ocean
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depth from 30–500 km, or 8–135 times deeper than the Earth’s ocean, depending on its mass
and composition. For a given planet mass, higher H2O mass fractions lead to deeper oceans,
since planets with more H2O relative to iron and silicates will have lower surface gravities
allowing for a more extended liquid water layer. A 1𝑀⊕ planet with a 30% water layer and
𝑇0 = 300 K has log 𝑔 = 2.83 and an ocean depth 𝑅ocean = 283 km, about 76 times deeper than
the average depth on Earth, whereas a 1𝑀⊕ planet with the same 𝑇0 but a water mass fraction
of 90% has log 𝑔 = 2.70 and 𝑅ocean = 388 km. We can also see that for a fixed composition,
more massive planets have higher surface gravities and so 𝑅ocean decreases as the mass of the
planet increases. For example, a 20𝑀⊕ planet with a 30% water layer and 𝑇0 = 300 K has log
𝑔 = 3.50 and 𝑅ocean = 59 km.

5.4.2 Potential for Liquid Water on Mini-Neptunes

We now consider the extent to which planets possessing H/He envelopes may host liquid H2O
at their surface. Assuming that the H/He and H2O layers of the planet do not mix, the pressure
and temperature at the H2O-H/He boundary (HHB) depends on the H/He mass fraction and
the atmospheric temperature profile (Madhusudhan et al., 2020). This in turn determines the
phase of H2O at the HHB. The liquid phase of H2O is accessible at temperatures up to 647 K
and pressures up to 7.3 × 104 bar (see Figure 5.3).

Madhusudhan et al. (2020) demonstrated that the mini-Neptune K2-18b, despite having a
mass and radius indicative of a planet with a substantial gaseous envelope, could have liquid
water at the HHB. This scenario arises in the case where K2-18b consists mostly of H2O,
with a small Earth-like nucleus and a low but non-negligible H/He mass fraction. Figure
5.11 shows the internal structure of one such model planet, the equivalent of Case 3 from
Madhusudhan et al. (2020), which has a nucleus mass fraction of 10% and a H/He mass
fraction of 6 × 10−5, with the rest of the planet consisting of H2O. The phase structure of the
H2O layer is also shown.

These results hint at a region in 𝑀–𝑅 space where planets must host non-negligible
gaseous envelopes to explain their inflated radii, but could still possess a liquid H2O layer.
Here we aim to determine the extent of this region of the parameter space and investigate
which, if any, other observed planets fall into this category. To begin, we construct the 𝑀–𝑅
curve for a theoretical planet with an Earth-like nucleus of 10% and a H2O layer of 90% by
mass, with a surface temperature of 300 K. We consider this to be an upper limit to the radius
of a planet with surface liquid water and no H/He envelope. We choose this composition
since a 100% H2O planet is unrealistic from a planet formation perspective (see Section
5.3.2.1). Next we give the planet a H/He envelope, which we assume is fully differentiated
from the H2O layer (see Section 5.4.4 for a discussion of mixed envelopes). The pressure
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Fig. 5.11 Internal structure for one possible interior composition of K2-18b, corresponding to
Case 3 from Madhusudhan et al. (2020) with a H/He mass fraction of 6 × 10−5, an Earth-like
nucleus of 10% by mass and a ∼90% H2O layer. A layer of liquid water is present directly
beneath the H/He envelope.

and temperature at the HHB increases with the mass of the envelope, since we assume a
temperature profile consisting of an isotherm and an adiabat; i.e., the temperature either
remains constant or increases monotonically with depth (see Section 5.3.2.2). Therefore, for a
habitable-zone temperature planet with a fixed core mass fraction, there must be a maximum
amount of H/He that it can possess before the HHB becomes too hot for liquid water. For a
given mass and temperature profile we can solve for this H/He mass fraction and therefore
obtain the maximum radius of a planet that could host liquid water.

We find solutions for a finely-spaced grid of masses and a range of temperature profiles.
For illustration, we consider planets from 1–20𝑀⊕ and nominally assume a photospheric
pressure 𝑃0 = 0.1 bar, with photospheric temperatures 𝑇0 ranging from 100–647 K and 𝑃rc

from 1–1000 bar; the parameter ranges are motivated by the 𝑃–𝑇 profiles shown for a wide
range of mini-Neptune atmospheres in Piette & Madhusudhan (2020b), as discussed in
Section 5.2.4 and Figure 5.6. Although we consider photospheric temperatures up to the
critical temperature of H2O, i.e. the maximum temperature at which liquid H2O can exist,
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we note that for planets with 𝑇0 ≥ 319 K at our chosen 𝑃0 an inflated radius could also be
attributed to a steam atmosphere (see Section 5.4.3).

Our results are shown in Figure 5.12, which shows the region of 𝑀–𝑅 space where a
planet hosting a H/He envelope could possess a liquid water ocean. We also show measured
masses and radii of planets near this region. We find that for a given 𝑇0 and 𝑃rc, there is a
maximum total mass of H/He envelope, 𝑀env, that can allow for liquid water at the HHB. This
maximum 𝑀env increases as the HHB becomes deeper, meaning the shaded region in Figure
5.12 represents planets with a maximal 𝑃rc = 1000 bar. For planets whose atmospheres
have a radiative-convective boundary at a lower pressure, the temperature starts to increase
from higher in the atmosphere. Therefore, the envelope must be smaller to maintain liquid
water at the HHB. For example, consider a planet with 𝑇0 = 300 K. If 𝑃rc = 1000 bar, then
a 10𝑀⊕ planet can host up to 7.0 × 10−2𝑀⊕ of H/He while retaining liquid water at the
HHB. However, if 𝑃rc = 10 bar, then the maximal 𝑀env = 4.1 × 10−4𝑀⊕. The mass of
envelope permitted also decreases as the photospheric temperature increases, following an
approximate power law behaviour: for example, for 𝑀𝑝 = 10𝑀⊕ and 𝑃rc = 10 bar we have
(𝑀env/𝑀⊕) ≈ 3.3 × 106 (𝑇0/𝐾)−4. 𝑀env only weakly depends on the total planet mass 𝑀𝑝:
for example, at 𝑇0 = 300 K, 𝑃rc = 10 bar, a 20𝑀⊕ planet has at most 𝑀env = 3.4 × 10−4𝑀⊕

while a 1𝑀⊕ planet has up to 𝑀env = 5.8 × 10−4𝑀⊕ while retaining a surface ocean. This
behaviour also follows an approximate power law, with 𝑀env ≈ 6 × 10−4 𝑀−0.18

𝑝 in this case.
Despite the maximum permissible mass of the H/He envelope decreasing with increasing 𝑇0,
the increase in radius is approximately the same across all values of 𝑇0 considered. Although
a hotter H/He envelope is less dense and therefore should be more inflated, the maximum
𝑃HHB that can permit a water ocean also decreases as 𝑇0 increases, cancelling out the increase
in radius from the warmer, less dense envelope. The maximum permitted H/He envelope
across all temperature profiles considered increases the radius of the planet by 0.23–1.19𝑅⊕,
with larger envelopes seen for lower mass planets due to the smaller surface gravity.

Our results hold for a H2O mass fraction of 0.9 and can be treated as an upper limit
for the radius of a planet with a liquid water ocean. For planets with less H2O relative to
the nucleus, the increase in radius permitted from a H/He envelope while retaining a liquid
HHB is smaller, since the planet has a higher surface gravity. For example, in the 90% H2O
case, a 10𝑀⊕ planet has 𝑅𝑝 = 2.51𝑅⊕ and therefore log 𝑔 = 3.192 (cgs). For 𝑃rc = 10 bar,
the maximum increase in radius allowed from a H/He envelope while retaining an ocean is
0.238𝑅⊕. A planet with the same mass but with only 50% H2O (and ∼50% nucleus) has
log 𝑔 = 3.287, and the maximum increase in radius for this planet is 0.156𝑅⊕.

From Figure 5.12 we see that there are several planets other than K2-18b whose observed
masses and radii could be explained with a small H/He envelope, possibly with liquid H2O at
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the HHB. However, most of these planets have equilibrium temperatures high enough that
their radii could be also be explained with a steam atmosphere. One planet which falls into
this category is Kepler-20d (Gautier et al., 2012), which has a mass of 10.07+3.97

−3.70𝑀⊕ and a
radius of 2.744+0.073

−0.055𝑅⊕, with an equilibrium temperature of 401 ± 13 K (Buchhave et al.,
2016). A primarily H2O planet with a steam atmosphere would be consistent with these
measurements, as would a planet with a H/He envelope of up to a few per cent. Due to its
surface temperature, whether such a planet could host a liquid H2O layer is very sensitive to
the choice of temperature profile: while there are solutions allowing for liquid water when
using the temperature profiles considered here, the atmosphere of Kepler-20d has not been
observed, and so it is not known whether the hydrogen-rich temperature profiles used in this
section would be appropriate to model this particular planet. This problem will be alleviated
as more mini-Neptune atmospheres are observed in the future.

5.4.3 Diversity of Water World Phase Structures

Our results thus far have focused on planets with a liquid water component, however in reality
these planets represent just a fraction of the possible phase structures of water worlds. Here
we discuss the wide variety of H2O phase structures that may be present on water-rich planets.
To achieve this we examine each phase of H2O that can be found at the planet’s surface and
determine the various phase structures that the H2O layer may possess depending on its
internal temperature profile.

The phase structure of the H2O layer of a planet depends strongly on the choice of internal
temperature profile. Most of the planet’s interior will be convective and so we use an adiabatic
temperature profile for the liquid, ice and supercritical phases (Valencia et al., 2007, Thomas,
2016). We consider two end-member cases for vapour layers: an isothermal or an adiabatic
profile. Since the true temperature profile of a steam atmosphere is likely to lie between these
extremes, this should allow us to explore the set of possible phase structures for water-rich
planets with steam atmospheres.

For illustration, we consider planets of 8𝑀⊕ consisting of a 70% H2O layer by mass over
an Earth-like nucleus (1/3 Fe, 2/3 MgSiO3). We exhaustively search the parameter space
of surface conditions to identify the various phase structures that can arise in water world
interiors, and choose a representative case for each unique structure that we find. Each of
these cases has a surface in one of three phases: ice, liquid or vapour. In the remainder
of this section we discuss the structure for each case in turn. Table 5.2 and Figure 5.13
summarise the temperature structures of our representative model planets, and Figure 5.14
shows the resulting phase structures for each of these cases. In this figure we refer to ice Ih as
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Fig. 5.12 𝑀–𝑅 diagram showing the range of planet masses and radii consistent with a H/He
envelope and liquid H2O at the HHB (light blue shaded region). Temperatures at the HHB can
lie anywhere within the liquid phase of water, which extends to 647 K at high pressures. The
dark blue line shows a theoretical 𝑀–𝑅 relation for a planet consisting of a 10% Earth-like
nucleus and a 90% H2O layer with a 300 K surface temperature, which we take as the upper
limit for a planet with no H/He envelope. We also show planets whose masses and radii have
been reported with at least 2𝜎 confidence, with 𝑇eq ≤ 1000 K. 𝑇eq is indicated by the colour
of each planet. Data on planetary masses, radii and equilibrium temperatures is taken from
the NASA Exoplanet Archive.

"low-pressure ice" and other ice phases as "high-pressure ice". The various cases are now
discussed in more detail.

Case 1: Ice surface

Planets with ice Ih surfaces may have one of two different phase structures: they can remain in
ice throughout the interior (Case 1a) or host a liquid layer in between low- and high-pressure
ices (Case 1b). A completely icy structure prevails in model planets with 𝑇0 < 251.2 K.
This is represented by Case 1a, which has a surface temperature of 220 K and surface
pressure of 1 bar. The interior passes through ices Ih, III, V, VI, VII and X. However, a
hotter surface temperature that is closer to the ice-liquid phase boundary yields a sub-surface
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Fig. 5.13 𝑃–𝑇 profiles of the planets shown in Figure 5.14. An adiabatic profile is used for all
phases other than vapour. In the vapour phase, an isothermal profile is used in cases 3a and
3b, and an adiabatic profile is used in case 3c.

ocean in between ices Ih and the high-pressure ices (in this case ices VI, VII and X). This
is demonstrated with Case 1b, for which the model inputs are identical to 1a except for a
higher 𝑇0 of 270 K. A structure similar to Case 1b has been proposed previously for water-rich
exoplanets at large orbital separations (Ehrenreich et al., 2006). Allowing for deviations from
an adiabatic temperature profile by considering processes such as conduction in the ice layers
could heat the interior further, increasing the probability of a subsurface ocean.

Case 2: Liquid surface

Water-rich planets with a liquid surface host predominantly icy H2O layers, either moving
directly from liquid to high-pressure ice (Case 2a) or hosting a supercritical layer in between
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Table 5.2 Surface conditions and radiative convective boundaries for the model planets
considered in Section 5.4.3. Each model planet represents a unique phase structure that a
water-rich sub-Neptune may possess.

Case Phase at 𝑅𝑝 𝑇0 (K) log 𝑃0 (bar) log 𝑃rc (bar)
1a Ice 220 0 0
1b Ice 270 0 0
2a Liquid 300 0 0
2b Liquid 450 1 1
3a Vapour 350 -1 -0.3
3b Vapour 500 -1 1.5
3c Vapour 500 -1 -1

(Case 2b). For most surface conditions, the H2O layer transitions directly from liquid to ices
VII and X, as demonstrated by Case 2a which has 𝑇0 = 300 K and 𝑃0 = 1 bar. In a small
number of cases where 𝑇0 and 𝑃0 are large it is possible to obtain a layer of supercritical
H2O between the liquid and ice phases. This is shown in Case 2b which has 𝑇0 = 450 K,
𝑃0 = 10 bar.

Case 3: Steam atmosphere

For planets whose photospheric pressure and temperature correspond to the vapour phase,
leading to a steam atmosphere, the underlying phase structure depends strongly on the atmo-
spheric temperature profile, with interiors consisting of liquid water (Case 3a), supercritical
water (Case 3c), or both (Case 3b) before transitioning to high-pressure ice. In order to
demonstrate this we consider end-member cases of a purely isothermal and purely adiabatic
profile, each with the same photospheric pressure, 𝑃0 = 0.1 bar. For a planet to host a surface
ocean, the temperature throughout the envelope must remain below the critical temperature
of water, 647 K. Cases 3a and 3b demonstrate this for two different values of 𝑇0: in Case
3a, which has a lower 𝑇0 of 350 K, the interior moves directly from liquid to high-pressure
ice, giving a similar structure to Case 2a underneath the atmosphere. By contrast, the hotter
𝑇0 = 500 K used for Case 3b yields an additional layer of supercritical H2O, which is similar
to Case 2b. Finally, if an adiabatic temperature profile in the atmosphere is assumed, the
vapour-liquid transition is forbidden and so the interior changes directly from vapour to
supercritical H2O, as shown in Case 3c. This is also the case for any planet with 𝑇0 ≥ 647 K.
Note that this also inflates the radius of the planet significantly.
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Fig. 5.14 Phase structures of H2O-rich planets with different surface conditions and tempera-
ture structures. Each of these planets has the same mass (8𝑀⊕) and H2O mass fraction (0.7),
but different surface conditions. The 𝑃–𝑇 profiles of the H2O layers of these planets are
shown in Figure 5.13. We find that a diverse set of phase structures are possible depending
on the surface conditions and temperature profile, from a sub-surface ocean between low-
and high-pressure ice (Case 1b) to a steam atmosphere above a layer of supercritical water
(Case 3c).
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5.4.4 Planets with Mixed Envelopes

So far we have considered models where each layer in the planetary interior is fully
differentiated. However, it is possible that sub-Neptunes could host envelopes consisting of
mixed H2O and H/He, as has been suggested for the interiors of giant planets (Soubiran &
Militzer, 2015). H2O is regularly detected in exoplanet atmospheres, and mass–metallicity
trends derived from atmospheric observations suggest that lower-mass planets should have
higher H2O abundances (Welbanks et al., 2019). In this section we aim to determine the
difference between 𝑀–𝑅 relations for mixed and unmixed H2O-H/He envelopes, where
the envelope is defined here to mean the outer H2O and H/He components of the planet.
This will indicate whether interior structure models need to take into account the presence
of atmospheric species as well as highlighting possible degeneracies between mixed and
unmixed envelopes of different compositions. We produce 𝑀–𝑅 relations for mixed H2O-
H/He envelopes with different quantities of each component, and compare these to the
equivalent unmixed relations. The methods for modelling mixed envelopes are described in
Section 5.2. The helium mass fraction within the H/He component is held constant throughout
(𝑌 = 0.275).

For all models considered here we take 𝑇0 = 500 K, 𝑃0 = 0.1 bar and 𝑃rc = 10 bar.
This ensures that the temperature profile is sufficiently hot for the H2O to be in vapour or
supercritical phase throughout the envelope, where miscibility with H/He is more likely. The
model planets consist of an Earth-like nucleus with a mass fraction of 0.95. The remaining
5% of the planetary mass is divided between H2O and H/He in different proportions, ranging
from a pure H2O to a pure H/He envelope. For each composition we produce 𝑀–𝑅 relations
for both a mixed and an unmixed envelope.

The resulting 𝑀–𝑅 relations are shown in Figure 5.15. We find that small amounts of
H2O in a H/He-rich envelope do not significantly alter a planet’s radius. A planet with a
mixed envelope containing 1% H2O by mass has a radius that is on average 0.028𝑅⊕ lower
than a planet of the same total mass with a pure H/He atmosphere, which is small compared
to the measurement uncertainties of sub-Neptune radii. An unmixed envelope with 1%
H2O lies in between these cases. This mass fraction corresponds to a volume mixing ratio
of log 𝑋H2O ≈ −2.9, close to solar H2O abundance at this temperature, log 𝑋H2O = −3.0
(Asplund et al., 2009, Madhusudhan, 2012), and suggests that when modelling the interior
structures of planets with hydrogen-dominated atmospheres that may contain small amounts
of other chemical species, the assumption of a pure H/He outer envelope provides a sufficient
density profile. Conversely, while the difference between a pure H2O envelope and a mixed
envelope with 1% H/He is also minimal, the radius increases substantially when considering
an unmixed rather than a mixed envelope. In this case, switching from a mixed to unmixed
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Fig. 5.15 𝑀–𝑅 relations for planets with mixed (dashed) and unmixed (dotted) envelopes of
fixed mass fraction (𝑥env = 0.05) above an Earth-like nucleus. All models have 𝑇0 = 500 K,
𝑃0 = 0.1 bar and 𝑃rc = 10 bar. The solid blue and pink lines show end-member cases of a
pure H2O and H/He envelope respectively. For H/He-rich envelopes with small amounts of
H2O, there is little difference between the mixed and unmixed cases. However, for planets
with mostly H2O envelopes, mixing in the envelope leads to a much smaller radius than the
unmixed case.

envelope drastically changes the planet’s structure: a mixed envelope has a mostly steam
atmosphere throughout, whereas the unmixed case with 𝑇0 = 500 K has a H/He atmosphere
over a layer of supercritical water. It is worth noting that the 𝑀–𝑅 relation for a planet with a
mixed envelope consisting of equal amounts of H/He and H2O is very close to the relation for
an unmixed envelope with 90% H2O, 10% H/He. This provides another source of uncertainty
when constraining a planet’s composition and interior structure. However, this can potentially
be resolved using atmospheric observations.
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5.5 Summary and Discussion

We have investigated the internal structures of water-rich exoplanets, motivated by the recent
suggestion of the possibility of a habitable water ocean under a H/He atmosphere in the
mini-Neptune K2-18b (Madhusudhan et al., 2020). We have presented a modelling framework
for sub-Neptune planets, spanning super-Earths and mini-Neptunes, and used this to explore
the H2O phase structures of such planets in detail. We have found the following key results:

• For planets with a liquid H2O layer, the depth of the ocean is determined by the planet’s
surface gravity and temperature, and can extend up to ∼1600 km. Planets with gravities
comparable to Earth’s can have oceans that are over one hundred times deeper than the
Earth’s ocean, which has an average depth of ∼3.7 km.

• Planets with H/He envelopes can allow for significant liquid H2O layers underneath the
envelope. This phenomenon can occur over a wide region in 𝑀–𝑅 space. For example,
liquid H2O may exist on such planets with 𝑇0 = 300 K, 𝑃rc = 10 bar provided the total
mass of the H/He envelope is ≲ 4 × 10−4𝑀⊕. The mass of H/He permitted increases
as the photospheric temperature decreases and as the radiative-convective boundary
moves deeper in the atmosphere.

• More broadly, a diverse range of phase structures are possible in H2O-rich super-Earths
and mini-Neptunes. Besides surface liquid H2O, other phase structures include liquid
water sandwiched between two ice layers or a steam atmosphere above supercritical
water and high-pressure ice, depending on surface conditions.

• Planets with mixed H/He-H2O envelopes have significantly lower radii than planets
with the same composition but differentiated H/He and H2O if the mass fractions of the
two components are comparable, but this effect is minimal for a small mass fraction of
H2O (∼1%) in a mostly H/He atmosphere.

5.5.1 Potential Habitability of Water Worlds

Traditionally, a planet is classed as habitable if it has the right conditions for liquid water at
its surface (Hart, 1979, Kasting et al., 1993). Living organisms have been found to survive
in liquid water at 𝑇 ≲ 400 K and 𝑃 ≲ 1000 bar (Merino et al., 2019). Some of the possible
interior structures found for K2-18b in Madhusudhan et al. (2020) had thermodynamic
conditions in this range at the surface of the water layer. Many of the model planets
considered in this work also fit this definition, highlighting the possibility of a family of
habitable planets in the mini-Neptune regime.
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It is important to consider whether other factors could preclude habitability for water
worlds. All of the planets with H2O oceans shown in Section 5.4.3 have very deep layers
of high-pressure ice which separate the ocean from the silicate mantle. Kitzmann et al.
(2015) found that this separation, which prevents a carbonate-silicate cycle that can regulate
the CO2 inventory of a planet, can have a destabilising effect on the climate with negative
consequences for habitability. However, other CO2 exchange mechanisms have been proposed
that may have a regulatory effect (Levi et al., 2017, Ramirez & Levi, 2018). The potential for
habitable conditions on H2O-rich planets should therefore not be ruled out despite the lack of
an Earth-like carbonate-silicate cycle.

In Section 5.4.1 we consider ocean depths for surface temperatures ranging from 273–
584 K. Past studies have been restricted to lower temperatures; for example Noack et al. (2016)
explores temperatures from 290–370 K, stating that for higher temperatures the liquid water
in the ocean would evaporate due to the runaway greenhouse effect. However, this rests on the
assumption of a surface pressure of 1 bar similar to Earth. By assuming a surface pressure of
100 bar we can explore higher temperatures, and we find that the increase in ocean depth with
surface temperature reported by Noack et al. (2016) no longer holds beyond 𝑇0 = 413 K. The
pressure at the surface of the ocean on a water world is not known and could be greater than
1 bar, especially if the planet possesses a H/He envelope. Relaxing this assumption allows
for a widening of the parameter space for water worlds with global oceans and suggests that
liquid water layers could be a possibility even for planets considerably warmer than Earth at
the bottom of their atmospheres.

In Figure 5.12 we show a region of 𝑀–𝑅 space where planets require H/He envelopes but
could still host liquid water oceans. This region is found assuming a maximal H2O mass
fraction of 90%. While it is understood that a minimal amount of rocky material is necessary
to form a planet by core accretion, the exact range of possible ice/rock ratios for exoplanets
is not known, and estimates vary widely. It is possible that a planet consisting of as much
as 90% H2O and only ∼10% iron and silicates could be unfeasible from a planet formation
perspective. If this is the case, a region of 𝑀–𝑅 space similar to the one described here
will still exist, but at smaller radii due to the lower maximum radius of a planet without any
H/He. Whether planets that fall into this category are indeed habitable depends on what
effect a hydrogen-rich atmosphere has on a planet’s climate, which is still poorly understood.
However, a number of studies have argued in favour of rocky planets with H/He atmospheres
being potentially habitable (Pierrehumbert & Gaidos, 2011, Koll & Cronin, 2019) and other
works (e.g. Seager et al., 2020) have shown that single-celled organisms can survive in a pure
H2 atmosphere. The potential for habitability of sub-Neptunes with H2-rich atmospheres
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is considered in several recent and upcoming works (Madhusudhan et al., 2020, Piette &
Madhusudhan, 2020b, Madhusudhan et al., in press).

5.5.2 Future Directions and Applications

There are many challenges to overcome in order to characterise water-rich exoplanets in detail,
both from a theoretical and observational perspective. Our model makes a number of standard
assumptions that may be challenged in the future. For example, while the vast majority of
internal structure models assume an adiabatic temperature profile throughout most of the
interior, thermal boundary layers that inhibit convection have been proposed for the interiors
of Uranus and Neptune (Nettelmann et al., 2016, Podolak et al., 2019). Additionally, while
we consider mixed H/He-H2O envelopes in this study, other chemical species will be present
in planetary interiors that might affect their internal structure. Levi et al. (2014) modelled
water-rich planets with a methane component, and while they found that the inclusion of
methane did not significantly change the 𝑀–𝑅 relation, they did see a noticeable effect on
the atmosphere. Shah et al. (2021) modelled planets with hydrated interiors, and while the
impact on 𝑀–𝑅 relationships was small compared to current measurement uncertainties,
future missions such as PLATO (Rauer et al., 2016) may lead to a higher precision for masses
and radii that could make these effects important to consider. Many aspects of the behaviour
of high-pressure ices, such as possible interactions between rock and ice in this regime, are
still unknown (Journaux et al., 2020b, Huang et al., 2021), and further understanding in this
area could have important consequences for the potential habitability of ocean worlds (Noack
et al., 2016).

Characterising observed sub-Neptunes using internal structure models is an inherently
degenerate problem, with many different compositions consistent with a given mass and
radius. For many planets in this regime, it is impossible to distinguish between a water world
scenario and a rocky planet with a thick H/He envelope (e.g. Luque et al., 2021). Determining
the atmospheric compositions of these planets may allow us to break this degeneracy: while
a small number of mini-Neptune atmospheres have been characterised using spectroscopic
observations (e.g. Benneke et al., 2019), it is hoped that upcoming facilities such as JWST
will provide the opportunity to observe the atmospheres of low-mass planets in much greater
detail than has previously been possible (e.g. Morley et al., 2017b, Welbanks & Madhusudhan,
2021), which should in turn allow better constraints on the interior composition and structure.

The results from this study, as well as those of Madhusudhan et al. (2020) and Piette
& Madhusudhan (2020b), highlight the diversity of exoplanets that have the potential to be
habitable. These results point to the exciting possibility of the right conditions for life being
present on planets much larger than Earth. As next-generation instruments make potential
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ocean planets more amenable to characterisation and facilitate the search for biosignatures,
we hope that our findings can further motivate the quest to detect signs of life on other worlds,
even those which bear little resemblance to our own.





Chapter 6

Internal Structures of JWST Targets in
the Sub-Neptune Regime

“You know, I don’t think there’s such a thing as ‘space earth’. If it’s from space, then it’s not
really earth.”

– Katara

6.1 Introduction

The previous chapter highlighted the wide diversity of possible structures of sub-Neptune
exoplanets. In order to further understand which of the scenarios presented in that work are
actually present in nature, we need to acquire high-quality observations of the atmospheres of
these planets. To date, informative observations of sub-Neptune atmospheres have proved
challenging, often returning featureless spectra which may be a result of high mean molecular
weight atmospheres leading to a small scale height, or high-altitude clouds and hazes (e.g.
Kreidberg et al., 2014a).

However, our understanding of the atmospheric and interior properties of sub-Neptunes is
set to be revolutionised with JWST. Simulated JWST observations indicate that information-
rich spectra of sub-Neptune atmospheres can be obtained with several different JWST
instruments, even in the presence of clouds (Constantinou & Madhusudhan, 2022). In order
to maximise the signal acquired from spectroscopic observations, it is optimal to target
planets orbiting M type stars, since the low masses, sizes and temperatures of these stars
mean that the planet–star contrast is favourable for planetary detection and characterization.
Recent detection surveys indicate that occurrence rates of low-mass planets orbiting M
dwarfs are high (Dressing & Charbonneau, 2015, Mulders et al., 2015), providing numerous
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opportunities to find small planets that are ideal for characterisation. This opportunity has
been recognised with a large number of approved JWST Guaranteed Time Observations
(GTO) and Cycle 1 General Observers (GO) programs dedicated to observations of spectra
of sub-Neptunes orbiting M-dwarfs.

In this chapter we present efforts to characterise the internal structures of a number of
sub-Neptunes that will be targeted by upcoming JWST observations1. In Section 6.2 we
present a study of the habitable-zone mini-Neptune K2-18b, a planet with a strong detection
of atmospheric water vapour (Benneke et al., 2019, Tsiaras et al., 2019, Madhusudhan et al.,
2020). We conduct a systematic study of the possible internal structures of the planet,
including identifying the possible locations and thermodynamic conditions of the boundary
between the planet’s H/He envelope and H2O layer. We discuss implications for the possible
origins of the planet as well as its potential habitability. In Section 6.3 we consider a pair
of mini-Neptunes in orbit around the M-dwarf TOI-776. We constrain the possible interior
compositions of both planets and discuss the limitations of our analysis based on extant data.
Finally, in Section 6.4 we briefly summarise the planned JWST observations of each of these
planets, and explain how these observations will enable us to better understand the nature of
each of these worlds.

6.2 The Habitable-zone Exoplanet K2-18b

The habitable-zone transiting exoplanet K2-18b is a particularly good example of a planet
orbiting an M-dwarf that is well-suited to detailed characterisation (Foreman-Mackey et al.,
2015, Montet et al., 2015). The brightness and small size of its host star make precise
measurements of the planetary mass, radius, and atmospheric spectra viable (Benneke et al.,
2017, Cloutier et al., 2019). The habitable-zone temperature of K2-18b provides further
impetus to uncover the nature of its interior and atmosphere.

Given its mass (𝑀𝑝 = 8.63 ± 1.35 𝑀⊕, Cloutier et al. 2019) and radius (𝑅𝑝 = 2.610 ± 0.087
𝑅⊕, Benneke et al. 2019), K2-18b has a bulk density (2.67+0.52

−0.47 g/cm3, Benneke et al. 2019).
This density, between that of Earth and Neptune, may be thought to preclude a purely rocky
or icy interior and require a hydrogen-rich outer envelope. However, the extent of such an
envelope and the conditions at the interface between the envelope and the underlying interior

1The contents of this chapter are based on published work (Madhusudhan et al., 2020, Luque et al., 2021).
The text in this chapter is adapted from my contributions to the text of these two papers. I contributed the
H2O equation of state for the interior models of K2-18b, and prepared figures 6.1–6.5. I used my internal
structure model (presented in Chapter 5) to characterise TOI-776b and c, and prepared figures 6.6 and 6.7. The
co-authors of these publications also contributed to the text and figure preparation for the manuscripts from
which the contents of this chapter are derived.
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Fig. 6.1 Mass–radius diagram. The solid magenta, teal, and orange curves show interior
models with three representative compositions that fit the mass and radius of K2-18b. The
dashed magenta line represents the same composition as the solid magenta line, but with a
mixed H2O-H/He envelope. Also shown are exoplanets whose masses and radii are known to
≥ 3𝜎 with 𝑇eq < 1000 K, from TEPCat (Southworth, 2011).

have not been explored. We note that the mass and radius of the planet have recently been
revised (Benneke et al., 2019), which may have impacted inferences made using previous
values (Cloutier et al., 2017, Tsiaras et al., 2019).

Previous studies of planets with similar masses and radii, such as GJ 1214b, suggested
envelope mass fractions ≲7% (Rogers & Seager, 2010b, Nettelmann et al., 2011, Valencia
et al., 2013). GJ 1214b is expected to host super-critical H2O below the envelope at pressures
and temperatures too high to be conducive for life (Rogers & Seager, 2010b). However, while
GJ 1214b has an equilibrium temperature (𝑇eq) of ∼ 500 K, K2-18b may be more favourable
given its lower 𝑇eq ∼ 250 − 300 K.
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The broadband spectrum of K2-18b was observed using HST WFC3 (Benneke et al.,
2019), covering a wavelength range of 1.1–1.7 `m. Analyses of this spectrum along with
data from Kepler and Spitzer has led to multiple high-confidence detections of H2O in the
atmosphere (Benneke et al., 2019, Tsiaras et al., 2019, Madhusudhan et al., 2020). For the
purposes of this work, we use the abundance estimates presented in Madhusudhan et al.
(2020), which are consistent to within 1𝜎 with Benneke et al. (2019). The derived H2O
volume mixing ratio ranges between 0.02-14.80%, with median values of 0.7-1.6% depending
on model assumptions. The derived H2O abundance range corresponds to an O/H ratio of
0.2-176.8×solar, assuming all the oxygen is in H2O as expected in H2-rich atmospheres at
such low temperatures (Burrows & Sharp, 1999). These results cannot be directly compared
to Tsiaras et al. (2019) as their retrievals used older measurements of the planetary mass and
radius which could have biased their inferences.

Madhusudhan et al. (2020) find a depletion of CH4 and NH3 in the atmosphere, suggesting
that the atmosphere is not in chemical equilibrium, and do not find strong evidence for
clouds/hazes. The retrieved value of 𝑃ref, the pressure at the observed planetary radius, is
12 − 174 mbar. The median value of 0.05 bar is used as the surface boundary condition,
pressure 𝑃0, for the internal structure models in Section 6.2.1.

6.2.1 Constraints on Internal Structure

We model the interior of the planet with a canonical four-layer structure. The model comprises
a two-component Fe+rock core consisting of an inner Fe layer and an outer silicate layer, a
layer of H2O, and an outer H/He envelope. Such a model spans the possible internal structures
and compositions of super-Earths and mini-Neptunes (e.g. Valencia et al., 2010, 2013, Rogers
et al., 2011, Lopez & Fortney, 2014), as well as terrestrial planets and ice giants in the solar
system (Guillot & Gautier, 2014). The mass fractions of the different components (𝑥Fe, 𝑥rock,
𝑥H2O, 𝑥env) are free parameters in the model and sum to unity. Our present model is adapted
from a three-layer model for super-Earths from Madhusudhan et al. (2012) comprising of
iron, rock, and H2O, with the H/He envelope added in the present work, and is very similar to
the model described in Chapter 5.

The model solves the standard internal structure equations of hydrostatic equilibrium and
mass continuity assuming spherical symmetry. The equation of state (EOS) for each of the
two inner layers is adopted from Seager et al. (2007) who use the Birch-Murnaghan EOS
(Birch, 1952) for Fe (Ahrens, 2000) and MgSiO3 perovskite (Karki et al., 2000). For the H2O
layer we use the temperature-dependent H2O EOS compiled by Thomas & Madhusudhan
(2016) from French et al. (2009), Sugimura et al. (2010), Fei et al. (1993), Seager et al. (2007)
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Fig. 6.2 Ternary diagram showing best-fitting (≤ 1𝜎) interior compositions allowed by the
mass and radius of K2-18b for two end-member core compositions and interior temperatures.

and Wagner & Pruß (2002). For the gaseous envelope we use the latest H/He EOS from
Chabrier et al. (2019) for a solar helium mass fraction (𝑌 = 0.275).

The EOS in the H/He and H2O layers can have a significant temperature dependence
which we consider in our model. Past studies (Rogers et al., 2011, Valencia et al., 2013)
considered analytic pressure–temperature (𝑃–𝑇) profiles for irradiated atmospheres derived
using double grey approximations (Hansen, 2008, Guillot, 2010) with the internal and external
fluxes and opacities as free parameters. Similarly to Chapter 5, we calculate self-consistent
dayside 𝑃–𝑇 profiles for K2-18b in the H/He envelope using the GENESIS code (Gandhi &
Madhusudhan, 2017). We include opacity due to H2O (Rothman et al., 2010), as detected in
the transmission spectrum, H2 Rayleigh scattering, clouds and H2-H2 and H2-He collision-
induced absorption. Our assumed H2O abundance is 10×solar (see Section 6.2) and we
also use 10×solar abundances for the cloud species. We include KCl, ZnS and Na2S clouds
(Morley et al., 2013), for which we obtain opacities from Pinhas & Madhusudhan (2017).
We further include water ice clouds using opacities from Budaj et al. (2015).



172 Internal Structures of JWST Targets in the Sub-Neptune Regime

The 𝑃–𝑇 profile also depends on the planetary internal flux, which is characterised by the
internal temperature𝑇int. We consider values of𝑇int which span the range expected for a planet
with the mass and radius of K2-18b and an age of 1 − 10 Gyr, with envelope compositions
from solar to water-rich. We choose end-member cases of 𝑇int = 25K and 50K, consistent
with previous studies on planets of similar mass and radius, such as GJ 1214b (e.g. Valencia
et al., 2013). The GENESIS models are calculated between pressures of 10−5 − 103 bar,
and assume full redistribution of the incident stellar irradiation. We explore a range of 𝑃–𝑇
profiles and choose two representative cases with different values 𝑇int. Where required by the
internal structure model, the bottom of the 𝑃–𝑇 profile of the H/He envelope is continued to
deeper pressures using the adiabatic gradient from Chabrier et al. (2019). We also employ an
adiabatic temperature profile in the H2O layer.

Figure 6.1 shows mass–radius relations for models with different interior compositions. We
explore the full range of plausible interior compositions in three components: 𝑥core = 𝑥Fe+𝑥rock,
𝑥H2O, and 𝑥env, where 𝑥𝑖 = 𝑀𝑖/𝑀𝑝 is the mass fraction of each component 𝑖. For each
atmospheric 𝑃–𝑇 profile considered, we explore two different core compositions: (1) an
Earth-like core made of 33% Fe, 67% rock by mass, and (2) a pure Fe core, the densest
possible composition. Here, we discuss results from two end-member cases: (1) a pure Fe
core with 𝑇int = 25K, and (2) an Earth-like (33% Fe) core with 𝑇int = 50K. Solutions for all
other cases lie between these two cases.

As shown in Figure 6.2, while a wide range of core and H2O mass fractions are permitted,
we place a stringent upper limit on the mass fraction of the H/He envelope: 𝑥env = 6.2%.
This maximal 𝑥env corresponds to the case of a pure Fe core, with 𝑥core ∼ 94%, underlying
the H/He envelope with no 𝑥H2O; here it is assumed that the atmospheric H2O is not mixed in
the envelope. However, if the retrieved atmospheric H2O abundance is assumed to be well
mixed in the envelope then the maximal 𝑥env = 6% with 𝑥H2O = 0.4% by mass; low, but still
significantly higher than that of the Earth’s oceans (∼0.02%).

We find that a substantial gaseous H/He envelope is not necessary to explain the density of
K2-18b. Figure 6.3 shows the 𝑥env required for different 𝑥core. At one extreme, a ∼100% H2O
interior with no rocky core can explain the data with an 𝑥env of just ∼10−6, comparable to the
mass fraction of the Earth’s atmosphere. The presence of a rocky core would necessitate at
least a thin H/He envelope. However, even considering a reasonable 𝑥core = 10 − 50% still
requires 𝑥env of only ∼ 10−5 − 10−2, as shown in Figure 6.3. Model solutions with the hotter
𝑃–𝑇 profile and/or lower Fe content in the core require smaller 𝑥env for a given 𝑥core.

We have also considered models with miscible H2O and H/He envelopes. We follow
the approach of Soubiran & Militzer (2015), using an additive volume law for mixtures.
Assuming that the median H2O mixing ratio in the atmosphere is representative of the mixed
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Fig. 6.3 Envelope vs core mass fraction for model solutions. The dark red and blue shaded
regions show the same cases as in the ternary diagram. The pale blue region shows an
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rocky world, intermediate and water world scenarios discussed in section 6.2.3.

(H2O-H/He) envelope, we find that the difference in radius between the mixed and non-mixed
models is less than half of the measured uncertainty (see Figure 6.1). The constraint on the
envelope mass fraction from this mixed case is 𝑥env = 2.5 − 6.4%, consistent with, and a
subset of, the constraints discussed above. Note that in this case 𝑥env includes both the H/He
and H2O mass fraction.

6.2.2 Atmosphere-ocean Boundary

Our constraints on the interior compositions of K2-18b result in a wide range of thermodynamic
conditions at the H2O-H/He boundary (HHB). The pressure (𝑃HHB) and Temperature (𝑇HHB)
at the HHB for the model solutions are shown in Figure 6.5. Each point on the HBB loci
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Fig. 6.4 Pressure–density profiles for three possible compositions of K2-18b discussed in
Section 6.2.3. The transitions between components are marked.

denotes the transition from the 𝑃–𝑇 profile in the H/He envelope to the corresponding H2O
adiabat. The 𝑃HHB and 𝑇HHB depend on the H/He envelope mass fraction. For a given
𝑃–𝑇 profile, larger envelopes result in higher 𝑃HHB and 𝑇HHB. For example, solutions with
𝑥env ≳ 1% lead to 𝑃HHB and 𝑇HHB corresponding to the super-critical phase of H2O. As
shown in Figure 6.2, solutions with higher 𝑥env correspond to higher 𝑥core and lower 𝑥H2O.

Conversely, solutions with lower 𝑥core and, hence, lower 𝑥env and higher 𝑥H2O, lead to
lower 𝑃HHB and 𝑇HHB; with H2O in vapour or liquid phases at the HHB. For example, an
𝑥core ≲ 30% leads to a 𝑃HHB and 𝑇HHB corresponding to the liquid phase of H2O, for the
cooler 𝑃–𝑇 profile (with 𝑇int = 25K). For 𝑥core ∼10% or less, the 𝑃HHB and 𝑇HHB approach
STP conditions for liquid H2O. Below the HHB, H2O is found in increasingly dense phases
spanning liquid, vapour, super-critical, and ice states depending on the location of the HHB
and the extent of the H2O layer, as shown in Figure 6.5. In the case of a mixed H2O-H/He
envelope, the HHB is undefined as it corresponds to an extreme case with no pure H2O layer.
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Fig. 6.5 Thermodynamic conditions at the H2O-H/He boundary (HHB) for K2-18b. The red
lines indicate possible pressures and temperatures at the HHB for two values of 𝑇int. The
phase diagram of H2O is shown in the background. The square, circle and triangle correspond
to the representative cases from Figure 6.4 with the same colour. We only show solutions
with core mass fractions ≥10%; less massive cores lead to lower 𝑃 and 𝑇 at the HHB. Blue
lines show adiabatic temperature profiles in the H2O layer for the three examples.

6.2.3 Possible Composition and Origins

Our constraints on the interior and atmospheric properties of K2-18b provide insights into its
physical conditions, origins, and potential habitability. Here we discuss three representative
classes that span the range of possible compositions, as indicated in Figures 6.1, 6.2, 6.4 and
6.5. The specific cases chosen here fit the 𝑀p and 𝑅p exactly, as shown in figure 6.1. A wider
range of solutions exist in each of these classes within the 1𝜎 uncertainties.

Case 1: Rocky World. One possible scenario is a massive rocky interior overlaid by a
H/He envelope. For example, a pure Fe core of 94.7% by mass with an almost maximal
H/He envelope of 5% explains the data with minimal 𝑥H2O = 0.3%, consistent with our
retrieved H2O abundance in the atmosphere. The HHB in this case is at ∼ 106 bar, yielding
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supercritical H2O close to the ice X phase. It is also possible in this case that the H2O and
H/He are mixed, meaning the HHB is not well-defined. Such a scenario is consistent with
either H2 outgassing from the interior (Elkins-Tanton & Seager, 2008, Rogers & Seager,
2010b) or accretion of an H2-rich envelope during formation (Lee & Chiang, 2016).

Case 2: Mini-Neptune. There are a range of plausible compositions consisting of a
non-negligible H/He envelope in addition to significant H2O and core mass fractions, akin to
canonical models for Neptune and Uranus (Guillot & Gautier, 2014). One such example is
a 45% Earth-like core with 𝑥env = 0.03% and 𝑥H2O = 54.97%. In this case the HHB is at
𝑃HHB = 700bar and 𝑇HHB = 1500K, with H2O in the supercritical phase.

Case 3: Water World. A ∼100% water world with a minimal H2-rich atmosphere
(𝑥env ∼ 10−6) is permissible by the data. However, such an extreme case is implausible from
a planet formation perspective; some amount of rocky core is required to initiate further ice
and gas accretion (Rogers et al., 2011, Lee & Chiang, 2016). For example, a planet with
𝑥core = 10%, 𝑥H2O = 89.994% and a thin H/He envelope (𝑥env = 0.006%) can explain the
data. For this case, 𝑃HHB = 130bar and 𝑇HHB = 560K, corresponding to liquid H2O. For
the same core fraction, solutions with even smaller H/He envelopes are admissible within
the 1𝜎 uncertainties on 𝑀𝑝 and 𝑅𝑝, leading to 𝑃HHB and 𝑇HHB approaching habitable STP
conditions.

6.2.4 Potential Habitability

A notional definition of habitability argues for a planetary surface with temperatures and
pressures conducive to liquid H2O (e.g. Kasting et al., 1993, Meadows & Barnes, 2018).
Living organisms are known to thrive in Earth’s extreme environments (extremophiles). Their
living conditions span the phase space of liquid H2O up to ∼1000 bar pressures at the bottom
of the Marianas Trench and ∼400 K temperatures near hydrothermal vents (e.g. Merino et al.,
2019).

Whether or not habitable conditions prevail on K2-18b depends on the extent of the H/He
envelope. The thermodynamic conditions at the surface of the H2O layer span a wide range
in the H2O phase diagram. While most of these solutions lie in the super-critical phase, many
others lie in the liquid and vapour phases. Model solutions with core mass fractions <15%
and H/He envelopes ≲ 10−3 allow for liquid H2O at Earth-like habitable conditions discussed
above. One plausible scenario is an ocean world, as discussed in section 6.2.3, with liquid
water approaching STP conditions (300 K, ∼1–10 bar) underneath a thin H/He atmosphere
(𝑥env ≲10−5).

A number of studies in the past have argued for potential habitability on planets with
H/He-rich atmospheres orbiting M-dwarfs (e.g. Pierrehumbert & Gaidos, 2011, Seager et al.,
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2013, Koll & Cronin, 2019). Given our constraints above, we find that K2-18b has a realistic
chance of being habitable. Furthermore, our constraints on CH4 and NH3 suggest chemical
disequilibrium. Among other possibilities for chemical disequilibrium, e.g. photochemistry,
the potential influence of biochemical processes may not be entirely ruled out (e.g. Seager
et al., 2013). Future observations, e.g. with JWST, will have the potential to refine our
findings (see Section 6.4). We argue that planets such as K2-18b can indeed have the potential
to approach habitable conditions and searches for biosignatures should not necessarily be
restricted to smaller rocky planets.

6.3 A Pair of Mini-Neptunes Orbiting the Bright M-dwarf
TOI-776

6.3.1 Planetary Composition and Internal Structure

For a better understanding of the nature of the two exoplanets, we produce detailed models of
their interior compositions, using their masses, radii, and surface temperatures. Our internal
structure model is the same as the model used in Chapter 5. We assume that the core is
Earth-like in composition (1/3 iron, 2/3 silicates by mass). The temperature profile in the
H/He envelope is isothermal from the surface down to some radiative-convective boundary,
where it becomes adiabatic. The pressure at the radiative-convective boundary 𝑃rc is a free
parameter in the model. For this study, we considered values of 𝑃rc ranging from 1–100 bar.

We explore the parameter space of possible compositions in (𝑥core, 𝑥H2O, 𝑥H/He) space.
For each composition, we consider a range of masses that agree with the observed mass of
the planet to within 1𝜎. For a given mass �̂�, the model radius �̂� is computed, and the 𝜒2

statistic is calculated:

𝜒2 =
(𝑀𝑝 − �̂�)2

𝜎2
𝑀

+
(𝑅𝑝 − �̂�)2

𝜎2
𝑅

, (6.1)

where (𝜎𝑀 , 𝜎𝑅) are the observed uncertainties on the mass and radius of each planet.
The bulk densities of TOI-776b and c (3.4+1.1

−0.9 g cm−3 and 3.5+1.5
−1.3 g cm−3, respectively) are

too low for either planet to have a purely terrestrial (iron plus rock) composition. Therefore,
the planets must possess an envelope with some amount of H2O and/or H/He, in order to
explain their masses and radii. The right panel of Fig. 6.6 shows limiting cases for each planet
in which the envelope composition is either purely H2O or purely H/He. The mass and radius
of TOI-776b can be explained to within 1𝜎 (𝜒2 ≤ 1) with a pure H2O envelope of 12–73% by
mass or a pure H/He envelope with a mass fraction of 1.1×10−4–5.2×10−3. Best-fit solutions
(those which minimize 𝜒2) for pure envelopes are found at 𝑥H2O = 0.3 and 𝑥H/He = 1.1×10−3.
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Fig. 6.6 Locations of TOI-776b and c on a mass–radius diagram. The solid pink and purple
lines show end-member models that are consistent with the mass and radius of TOI-776b,
and the orange and green lines show end-member compositions consistent with the mass and
radius of TOI-776c, assuming an Earth-like core (1/3 iron, 2/3 silicates).

TOI-776c might have larger envelopes; within 1𝜎, it is consistent with a pure H2O layer of
≥18% or a pure H/He envelope with a mass fraction of 5.4 × 10−4–1.2 × 10−2. The best-fit
pure-envelope solutions for TOI-776c are 𝑥H2O = 0.58 and 𝑥H/He = 3.6 × 10−3. Each of the
best-fit models, shown in the right panel of Fig. 6.6, have a radiative-convective boundary at
𝑃rc = 10 bar.

It is also possible that the planets in this system have both H2O and H/He components, as
well as an iron/rock core. For the three components, we explored the full range of plausible
values (𝑥core, 𝑥H2O, and 𝑥H/He) that could explain the interior compositions of each planet.
We consider two different temperature profiles for each planet, with 𝑃rc = 1 and 100 bar.
Figure 6.7 shows the mass fractions of water and H/He compatible to within 1𝜎 (𝜒2 ≤ 1)
with the masses and radii of TOI-776b and c. We obtain upper limits on the total H2O and
H/He mass fractions for TOI-776b: 𝑥H2O ≤ 73% and 𝑥H/He ≤ 0.52%. These correspond to
cases with pure H2O or H/He envelopes, as previously discussed. For TOI-776c, we find
that 𝑥H/He ≤ 1.2%. A 100% H2O planet would theoretically be consistent with the mass and
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radius of TOI-776c, but this would be unrealistic from a planet formation perspective, as
some rocky material is needed for further accretion of ice and gas (Lee & Chiang, 2016).
Figure 6.7 also shows a significant overlap between the best-fit shaded regions for the two
planets, meaning that the planets could also share the same composition.

The masses and radii of TOI-776b and c allow for a wide range of possible solutions,
from water worlds with steam atmospheres to mostly rocky planets with hydrogen-rich
envelopes; however, they are inconsistent with bare rocks without atmospheres. Our models
assume a surface pressure of 0.1 bar, meaning a water-world solution for either planet yields
a steam atmosphere. On the other hand, a higher surface pressure could result in liquid
H2O at the surface. A rocky planet with an outgassed secondary atmosphere which includes
carbon compounds is unlikely: Elkins-Tanton & Seager (2008) placed an upper limit on the
mass fraction for this type of atmosphere at 5%. The lower mass limits in the case of pure
H2O envelopes are 8% and 18% for TOI-776b and c, respectively. On the other hand, in a
carbon-rich atmosphere, the dominant species, CO2, has a higher mean molecular weight
than H2O, leading to a lower atmospheric scale height. All things considered, we can infer
that a 5% carbon-rich atmosphere is less than what would be needed to explain the planet
radii. However, determining whether the two planets have H2O- or H/He-rich atmospheres is
impossible with the present data. Atmospheric observations of the planets will be required in
order to break this degeneracy.

6.4 Future Prospects for Characterisation

Each of the planets considered in this section require more detailed atmospheric observations
in order to answer key questions about their characteristics. Although a transmission
spectrum of K2-18b has been observed using HST, many unsolved puzzles regarding its
atmosphere remain. Given its low temperature, CH4 and NH3 would be expected to be the
prominent carriers of carbon and nitrogen in the atmosphere of K2-18b, assuming chemical
equilibrium. However, HST observations led to non-detections of CH4 and NH3, suggesting
strong disequilibrium in the atmosphere (Madhusudhan et al., 2020). Without more precise
observations, it is not possible to measure the causes extent of this disequilibrium, or
assess whether it affects the abundances of other chemical species such as CO and CO2.
Meanwhile, there are no extant observations of the atmospheres of the planets in the TOI-776
system. Based on mass and radius measurements it is highly likely that these planets possess
atmospheres, but it is not possible to tell if they are primary or secondary atmospheres,
meaning little is known about the possible formation and evolutionary histories of these
planets.
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Fig. 6.7 H/He vs. H2O mass fractions for the best-fit interior compositions (≤ 1𝜎) permitted
by the masses and radii of TOI-776b and c, assuming an Earth-like core, for two different
pressure–temperature profiles with radiative-convective boundaries at 1 and 100 bar. The
blue shaded region indicates possible compositions for TOI-776b, and the red shaded region
shows compositions for TOI-776c. The darker red shaded area between the two corresponds
to the range of possible compositions that could explain both planets. For TOI-776b, the
H2O mass fraction is constrained to be ≤ 73% and the H/He mass fraction is ≤ 0.52%. For
TOI-776c the upper limit for H/He is 1.2%. A purely H2O planet would be consistent with
this mass and radius, but we only show H2O mass fractions up to 90%.

K2-18b will be the target of two JWST Cycle 1 GO programs (2372, PI: Hu and 2722,
PI: Madhusudhan), both of which will observe the planet’s transmission spectrum. Program
2372 will be conducted using the Near Infrared Spectrograph (NIRSpec), using the G235H
and G395H gratings to cover the wavelength range 1.7–5.2 `m. The observations will consist
of two transits with G235H and four transits with G395H to achieve a precision of ∼20 ppm
per spectral element at a resolution of 𝑅 = 100. Program 2722 will use three different
instruments, incorporating the Near Infrared Imager and Slitless Spectrograph (NIRISS) and
the mid-Infrared Instrument (MIRI) as well as NIRSpec. NIRISS will be used in Single
Object Slitless Spectroscopy (SOSS) mode, NIRSpec will use the G395H grating and the
SUB2048 subarray, and MIRI’s Low Resolution Spectrometer will be used in slitless mode.
Each instrument will be used to observe one transit, leading to a combined transmission
spectrum covering 1–8`m.
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The transmission spectrum acquired from program 2372 will be sufficiently precise to
detect and measure the abundances of numerous chemical species, including H2O, CH4,
NH3, CO2 and CO. The observations should also be able to constrain the cloud-top pressure
and detect byproducts of photochemistry, such as HCN and N2O. The spectrum acquired
from program 2722 will be complementary to the spectrum from program 2372, and should
be able to make very accurate measurements of the abundances of CH4 and NH3 in the
atmosphere of K2-18b. This will enable unprecedented constraints on the degree of chemical
disequilibrium in the planet’s atmosphere.

TOI-776b and c will be observed as part of a JWST Cycle 1 GO program targeting 11
sub-Neptunes (2512, PI: Batalha). Two transits of each planet will be observed using the
G395H grating, yielding transmission spectra with a wavelength coverage of 2.9–5.3 `m.
These spectra will allow for a unique comparative study of two planets in the same system.
It is currently unclear whether these planets have hydrogen-rich primary atmospheres or
secondary atmospheres with high mean molecular weights. The planned observations will
answer this question for both planets. If both atmospheres are H-rich, then by measuring
the mixing ratios of chemical species, it will be possible to determine elemental abundance
ratios between the two planets, providing a direct comparison of their formation pathways. If
however one of the two planets does not have a H-rich atmosphere, this would also be an
extremely valuable result as it would suggest a different formation and evolutionary history for
the two planets in the system. If both planets have high mean molecular weight atmospheres,
these observations will indicate whether it will be feasible to measure the properties of
secondary atmospheres by observing a small number of transits using JWST.





Chapter 7

Conclusions and Future Developments

“There are special times in your scientific career where Truly Landmark Things Are Happening.
There will be other times where it feels like not much is happening. It’s all part of the journey.
Don’t forget to appreciate the Landmark times.”

– Jonathan Fortney, 14th July 2022

The aim of this thesis has been to explore the characteristics of exoplanetary atmospheres and
interiors. In order to achieve this, we have developed and expanded on a range of methods for
characterising planetary atmospheric and internal properties. For exoplanet atmospheres, we
have made advances in both the forward modelling and parameter estimation components
of the atmospheric retrieval algorithm, incorporating three-dimensional inhomogeneities
into the forward model and performing parameter estimation in a novel way using machine
learning. For interiors, we have developed and applied a detailed internal structure model
with the goal of characterising the possible phase structures of sub-Neptunes with a high
H2O component. In the remainder of this chapter, we summarise the main conclusions of my
work before describing future developments in these areas.

7.1 Machine Learning for Atmospheric Retrieval

In Chapter 3, we presented a new approach to atmospheric retrieval using supervised machine
learning, specifically the Random Forest algorithm (Nixon & Madhusudhan, 2020). This
method expanded on previous efforts to incorporate Machine Learning into the retrieval
framework with the goal of more closely approximating existing Bayesian methods in order
to ensure that the results were reliable. Using my new framework we reproduced the
results of a traditional Bayesian retrieval of the HST spectrum of the canonical hot Jupiter
HD 209458b, demonstrating that machine learning could be used to accurately and robustly
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reproduce traditional retrievals. My method is highly computationally efficient in low-
dimensional parameter spaces, with computation times a factor of a few lower than retrievals
using MultiNest. However, we found that the Random Forest algorithm is computationally
prohibitive in higher-dimensional spaces that are commonly explored with Bayesian retrievals,
due to the need to produce an increasingly large training data set. Further developments will
be needed before it will be possible to construct a widely applicable atmospheric retrieval
framework using machine learning.

A possible avenue for incorporating machine learning into retrievals would be to create
a hybrid machine learning/Bayesian algorithm which uses machine learning techniques to
emulate numerical models of transmission spectra while retaining a Bayesian parameter
estimation scheme. It is possible that the trained model could produce spectra much more
quickly than a radiative transfer code, which would lead to faster evaluations of the likelihood
function and enable more computationally efficient retrievals. Ultimately, this could allow
more complex forward models with fewer simplifying assumptions to be used to carry out
retrievals.

7.2 Three-dimensional Atmospheric Retrieval

In Chapter 4 we introduced Aura-3D, a retrieval framework incorporating three-dimensional
transmission geometry as well as a multidimensional temperature profile that is computation-
ally efficient for retrievals of JWST data (Nixon & Madhusudhan, 2022). Using Aura-3D
we showed that for simulated JWST data of hot Jupiters, it is possible to constrain thermal
inhomogeneities across the terminator region to a precision of a few hundred K. While a 3D
treatment does not appear to be necessary for retrievals of HST spectra, we did find that in
certain cases, a 1D retrieval of a JWST hot Jupiter transmission spectrum could lead to biased
abundance estimates, in agreement with previous studies. However, by incorporating my new
prescription for the temperature structure, we were able to overcome these biases and obtain
accurate retrieval results for a simulated planet with a fully 3D temperature structure. This
will be an important tool as we come to analyse the first JWST spectra of hot giant planets.

While Aura-3D represents a significant advance in retrieval capabilities, there are many
further developments that may be necessary in order to capture the complex nature of
exoplanet atmospheres. We have already described how inhomogeneous chemistry in a
planet’s terminator has a strong impact on transmission spectra, meaning this effect may
need to be incorporated into retrievals. However, it is important that concurrent advances in
self-consistent modelling provide information about what kinds of atmospheric phenomena
we can realistically expect to find on different planets, in order to ensure that models used in
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retrievals remain physically motivated. Another natural development of Aura-3D would be to
add capabilities for analysing other kinds of observations, such as emission spectra and phase
curves. It could then be possible to place joint constraints on atmospheric properties across
the whole planet, rather than solely focusing on the terminator region. Such an approach
would be complementary to analysis of these kinds of observations using GCMs.

The goal of any atmospheric retrieval algorithm should be to allow the data to speak for
itself. In order to achieve this, we should continue to explore the wide array of physical and
chemical processes at work in atmospheres, so that we are ready to learn as much as possible
from the glimpses of planetary atmospheres that we are able to observe.

7.3 Phase Structures of Water-rich Super-Earths

In Chapter 5 we presented a new internal structure modelling code for sub-Neptunes,
incorporating a newly-compiled equation of state for H2O that covers the full range of
pressures, temperatures and phases that we might expect to find in the interiors of planets
with radii between ∼1–4𝑅⊕ (Nixon & Madhusudhan, 2021). Using this model, we explored
the range of possible ocean depths on water-rich worlds, identifying the key parameters that
determine the extent of a planet’s ocean to be surface temperature and gravity. we found that,
for certain combinations of these parameters, these oceans could be hundreds of times deeper
than Earth’s. We also considered a hypothetical class of sub-Neptune consisting of a H/He
envelope over a liquid water ocean, exploring the possible masses, radii and temperatures at
which such a planet could exist. We found that certain planets could have H/He envelopes that
contribute substantially to the overall planet radius while retaining an underlying liquid ocean.
This finding expands the parameter space of planets that could host habitable conditions
beyond the terrestrial bodies which are normally considered.

Although my study did not focus primarily on habitability, further considerations of the
habitability of sub-Neptunes could be a possible future application of my internal structure
model. Similar models have already been used to explore the concept of a habitable zone
for sub-Neptunes (Madhusudhan et al., 2021). Furthermore, recent laboratory experiments
have suggested that microbial life could thrive in 𝐻2-dominated environments (Seager et al.,
2020). However, there are many more factors that could impede the development of life on
such planets; for example, many of the geological processes that take place on Earth and are
crucial for the development of life could not take place on a planet with an extremely large
internal H2O component (Kitzmann et al., 2015). Therefore, continuing to develop a detailed
understanding of the internal phase structures of water worlds will be paramount as we seek
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to determine the extent to which the search for extraterrestrial life could be expanded to more
exotic worlds.

7.4 Internal Structures of JWST Targets

In Chapter 6 we applied internal structure models to a number of exoplanets whose atmospheric
spectra are set to be observed with JWST (Madhusudhan et al., 2020, Luque et al., 2021). We
used the planetary bulk parameters and retrieved atmospheric properties of the mini-Neptune
K2-18b to constrain its interior structure and thermodynamic conditions. These constraints
span multiple scenarios, from rocky worlds with massive H/He to water worlds with thin
envelopes. The thermodynamic conditions at the surface of the H2O layer range from the
supercritical to liquid phases, with a range of solutions allowing for habitable conditions on
K2-18b. We also constrained the possible internal structures of two sub-Neptunes orbiting
the M dwarf TOI-776. Like K2-18b, bulk densities of TOI-776b and c allow for a wide
range of possible interior compositions, from water worlds to rocky planets with H/He-rich
atmospheres, but they are too low for either planet to have a purely terrestrial (iron plus rock)
composition. Thus, an atmosphere is expected for both planets.

Our understanding of the atmospheres of sub-Neptunes is set to be revolutionised with
JWST, an opportunity which has been recognised with a large number of approved JWST
programs dedicated to observations of their spectra, including each of the three planets
described above. In the future, it will be important to consider the extent to which interior-
atmosphere interactions can affect the atmospheric structure, since the atmospheres of
sub-Neptune planets are thinner than their hot Jupiter counterparts. Theoretical work is being
undertaken to understand these effects (Kite et al., 2020, Schlichting & Young, 2022), and
combining my atmospheric and interior models could be a very useful endeavour. Possible
areas of study include assessing the detectability of atmospheric species whose atmospheric
abundances will be affected by the interior, as well as the effect of a planet’s surface on its
temperature structure.

7.5 Concluding Remarks

On 12th July 2022, the first transmission spectrum observed using JWST was presented to the
public. The spectrum of the hot Jupiter WASP-96b was taken using NIRISS SOSS, covering
a wavelength range of 0.6–2.9 `m. A reproduction of this spectrum is shown in Figure 7.1,
along with a fiducial model fit. The spectrum was presented primarily as a demonstration of
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Fig. 7.1 JWST NIRISS transmission spectrum of the hot Jupiter WASP-96b, adapted from its
initial presentation by NASA (nasa.gov/webbfirstimages). The gold points with error bars
represent the observed data, and the purple line represents a fiducial model that achieves
a moderately good fit to the observations. H2O absorption is evident from the features at
1–2 `m.

the capabilities of JWST, with a number of caveats relating to the data reduction process, and
so we do not conduct a full retrieval of the spectrum here.

However, the spectrum that was displayed indicates the vast improvements in data quality
that we are about to realise as the JWST program commences. The wavelength coverage and
resolution of this spectrum far exceeds any spectrum taken using a single HST instrument,
and even this early reduction of the spectrum clearly exhibits a number of H2O absorption
features from 1–2`m, underlining the ability of JWST to make highly confident detections
of molecular species. Furthermore, this spectrum is far from the highest-quality data set
that JWST will be able to provide. Transit observations are very time-sensitive, and this
target was selected to fit a very narrow time window soon after JWST became operational in
order to be ready for the initial press release, meaning many planets which are expected to
be better suited to transmission spectroscopy could not be chosen. Also, this observation
was only of a single transit event using one instrument; by observing multiple transits with a
range of instruments, it will be possible to achieve more precise spectra with a much broader
wavelength coverage.

With this first spectrum, we have entered a new era in exoplanet science, in which the
quality and volume of observational data will improve immensely. The coming months
and years of JWST observations will lead to a flurry of new discoveries, never-before-seen
features, and a host of further questions and problems to consider. It is even possible that this
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era will see such landmark events as the first indications of signs of life on worlds beyond our
solar system. Theoretical models of planetary atmospheres and interiors will play a crucial
role in the interpretation of this new stream of data. It is my hope that the work presented
in this thesis, alongside future developments in atmospheric retrieval and internal structure
models, will advance our ability to characterise exoplanet atmospheres and interiors using
current instruments such as HST, contributing to its lasting legacy, while setting the stage for
a revolution in our understanding of other worlds using JWST.
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