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Abstract. We describe the accelerated propagation wave arising from a non-local reaction-diffusion
equation. This equation originates from an ecological problem, where accelerated biological inva-
sions have been documented. The analysis is based on the comparison of this model with a related
local equation, and on the analysis of the dynamics of the solutions of this second model thanks to
probabilistic methods.
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1. Introduction and results

Biological invasions happen when a species recently introduced in a location succeeds to establish
and to spread in this new environment. These introduction are usually either a consequence of
human transportation systems [15], or a consequence of the climate change [40]. Biological invasions
are occuring at an unprecedented rate [32], and have an important impact on e.g. biodiversity [60]
and human well-being [53, 34]. Predicting the dynamics of those invasion is an issue, that requires
(among other approaches) the development of new mathematical methods and results [16, 37].

In this study, we are interested in a particular phenomenon that may happen during biological
invasions [65, 46, 19]: the dispersion of the individuals increases during the invasion. As a result, the
speed of the invasive front increases, and often keeps accelerating as long as the invasion progresses
[46]. The best documented case is a biological invasion of Cane Toads in Australia [54, 68]. The
amphibians have been introduced in Australia in 1935 as a (failed) attempt to control beetles
populations in cane plantations. Since then, cane toads have been invading large coastal areas, at
an accelerated speed: the invasion started with a speed of 10 kilometres a year, and continuously
accelerated to the impressive speed of 55 kilometres a years today [68]. The mechanism for this
acceleration is documented [43]: the individuals close to the invasion fronts have an anomalously
high dispersion rate, and drive the invasion front.
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A model introduced in 1937 by Fisher in [21] (and simultaneously in [38]) has proven very useful
to describe biological invasions [62, 30]. This model describes the dynamics of the density of a
population. In a homogeneous environment, a population which is initially present on a limited set
only will propagate at an asymptotically constant speed [13], with a certain profile, called travelling
wave [38]. The study of travelling waves and related propagation phenomena has prompted a large
mathematical literature, we refer to [72] for a review on this active field of research. Recently, more
surprising dynamics have been uncovered: in [58], it has been shown that a slowly decaying initial
condition may lead to accelerating invasion fronts. Similar dynamics can be observed for compactly
supported initial populations if the diffusion operator of the Fisher-KPP equation is replaced by a
nonlocal dispersal operator with fat tails [39, 23], or by a fractional diffusion operator [17]. Finally,
in [9], it was proven that a similar dynamics can be observed when the diffusion operator is replaced
by a kinetic operator modelling a run and tumble dynamics.

The phenomena that we want to describe here is different from the ones described above: in
our case, the acceleration dynamics is due to the continual selection of individual with enhanced
dispersion abilities. To model such phenomena, involving both a spatial dynamics of the population
and evolutionary phenomena (see [25, 42]), the population should be structured by a phenotypic
trait as well as a spatial variable. Starting from an Individual Based model of such a population,
a large population limit can be performed [22] to obtain a non-local parabolic equation. Related
models have been studied in e.g. [57, 1]. The case where the phenotypic trait structuring the
population is the dispersion rate of the population has been introduced in [5].

1.1. The model. We will consider a population described by its density v = v(t, x, θ), where t ≥ 0
is the time variable, x ∈ R a spatial location, and θ ∈ (1,∞) a phenotypic trait. The dynamics of
the population is given by the following model:

Model (NLoc): 

∂tv =
θ

2
∆xv +

1

2
∆θv + v (1− 〈v〉)

v = v(t, x, θ), t ≥ 0, x ∈ R, θ ≥ 1,

〈v〉(t, x, θ) :=

ˆ θ+A

max(θ−A,1)
v(t, x, ω) dω,

v(0, x, θ) = v0(x, θ) ≥ 0,

∂θv(t, x, 1) = 0, t ≥ 0, x ∈ R.
In this model, we assume that individuals diffuse through space at a rate given by the phenotypic
trait θ. This phenotypic trait θ ∈ [1,∞) is itself submitted to mutations, which appears in the
model as a diffusion term in the variable θ, at a rate constant rate 1 independent from x and θ.
We assume that the growth rate of the population in the absence of intra-specific competition is
1, and is in particular independent of the spatial location x and phenotypic trait θ. We assume
that the individuals are in competition with the individuals present in the same location, provided
their phenotypic traits are not different, which is quantified by A > 0. Note that (NLoc) would
correspond to the model introduced in [5] if A =∞; we will however always consider here that A > 0
is finite. We also assume that the individuals reproduce asexualy: during sexual reproductions,
recombinations of the DNA strains happen, which leads to very different mathematical models [49].

From a modelling point of view, assuming that the phenotypic trait θ can take arbitrarily large
values may appear surprising. It seems however to be a reasonable assumption in this context: an
artificial selection experiment [70] has shown that it is possible to increase the dispersion rate of
flies a hundred folds in just a hundred generations, with little impact on the reproduction rate of
the individuals. The field data obtained in [68] suggest that the set of possible phenotypic traits

2



does not have a limiting effect on the evolution of dispersal in cane toad populations. The data
collected in [43] provides some indications on how rapid evolution of the dispersion rate is possible:
tracking data of the cane toads show that the animals alternate resting phases and ballistic motion,
and the individuals at the front of the invasion simply have longer ballistic phases, and a higher
directional persistence. These simple modifications of individual motion has limited energetic cost,
while greatly increasing individuals dispersion rate.

1.2. The main results. We make the following assumptions on the initial condition:

(1) (Compact support in θ.) We have that u0(x, θ) = 0 unless θmin ≤ θ ≤ θmax for some
θmax > θmin ≥ 1;

(2) (Thin tail) We have, for some C, c > 0 u0(x, θ) ≤ C exp(−cx) uniformly over x and θ, and
infR−×[θ′min,θ

′
max] u0 > 0, for some θ′max > θ′min ≥ 1;

(3) (Regularity.) We assume that ((x, θ) 7→ v̄0(x, θ = v0(x, |θ|+ 1)) ∈ C3(R2), that is∑
0≤k+l≤3

‖∂kx∂lθv̄0‖L∞(R2) <∞.

We can now state the main result of this study, which describes the acceleration of the invasion
front:

Theorem 1. Let v0 ∈ C2+δ(R × [1,∞)) with compact support in θ, thin tail in x and regular, as
described in Subsection 1.2. Let v(t, x, θ) denote the corresponding solution of (NLoc). For x ∈ R,
let S(t, x) = supθ v(t, x, θ) and let

γ0 =
2

3
21/4.

We have for all γ > γ0,

(1.1) lim
t→∞

sup
x>γt3/2

S(t, x)→ 0

while for γ < γ0

(1.2) lim inf
t→∞

inf
x<γt3/2

S(t, x) > 0.

In other words the population spreads in space as γ0t
3/2.

An example of an initial condition which satisfies the assumptions (1) and (2) is given by
u0(x, θ) = H(x)1{θ∈(1,2)}, where H is the Heavyside function. This is a good example to keep
in mind for this result, and as a matter of fact much of the proof relies on the analysis of this
example, for a modified model (where the non local competition is replaced by a local term,
see (Loc)). Note however that the thin tail condition we make here is much weaker than the
condition that is usually made for propagation front problems: for the Fisher-KPP equation
∂tn(t, x) − 1

2∆xn(t, x) = n(t, x)(1 − n(t, x)), the solution propagates at speed
√

2 provided the

tail of initial condition satisfies n(0, x) ≤ Ce
√

2x for some C > 0. If the tail of the initial condition
decreases slower than that, the solution can propagate much faster than that, and indeed, for any
c ≥

√
2 there exist a travelling wave propagating at speed c (see e.g. [72]). Note that if tail of

the initial condition of (NLoc) decreases polynomially only, we expect that the population could
propagate faster than what we describe here, just as it happens for the Fisher-KPP equation [58].

Remark 2. This description of the propagation of the population is close to the notions of spreading
speed (see e.g. [3, 26]), and generalized travelling wave (see [6]). Indeed, the solution u = u(t, x) :
R+ × R → R+ of the Fisher-KPP equation is said to spreading at speed 2, in the sense that if
u(0, ·) 6= 0, u(0, ·) ≥ 0 is compactly supported, then for any c− < 2 < c+,

lim
t→∞

u(t, c−t) = 1, lim
t→∞

u(t, c+t) = 0.
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The description of the solution’s dynamics in Theorem 1 can thus be seen as an extension of this
spreading speed.

Note that the estimates (1.1) and (1.2) provide a precise description on the acceleration of the

invasion front: it does provide the exponent t
2
3 of the acceleration (see e.g. [9] for a result of this

type), but it is indeed much more precise: We provide the exact multiplicative constant γ0 in front

of the leading term γ0t
3
2 .

Before describing the key ideas of the proof, let us discuss a natural generalizations of Theorem 1,
where the dispersion rate of the population is not given by the phenotypic trait θ, but by θα, for
some α > 0. The equation on v would then become:

(1.3) ∂tv =
θα

2
∆xv +

1

2
∆θv + v(1− 〈v〉).

We believe the framework of our analysis could be used to show that

lim
t→∞

sup
x≥tκ

ˆ
v(t, x, θ) dθ = 0, lim inf

t→∞
sup
x≥tκ′

ˆ
v(t, x, θ) dθ > 0,

for any κ′ < 2+α
2 < κ, this analysis is however beyond the scope of this study. Note that the case

of (NLoc), leads to an acceletarion x ∼ t
2+α

2 = t
3
2 , that is close to the observation from [68] on the

invasion of Cane toads in Australia, which justifies our particular focus on this case.
Another possible generalization of this model is to consider a competition term that is non local

in both trait and phenotype. If we assume that the spacial non-locality of this competition is
related to individual dispersal, a natural model to consider is

∂tw =
θ

2
∆xw +

1

2
∆θw + w (1− 〈w〉) ,

where 〈w〉(t, x, θ) := 1√
θ

´ x+α
√
θ

x−α
√
θ

´ θ+A
min(θ−A,1)w(t, y, ω) dω dy. The dynamics of this other model can

indeed be described with an approach similar to the one presented here: simple a priori estimates
show that 〈w〉 is uniformly bounded. A De Giorgi-Moser iteration scheme (see [52]) can then be
used to show that w is indeed uniformly bounded. One can then compare the dynamics of this
model with the local model (Loc), as done in this study (see Section 8).

Finally, let us mention that in (NLoc), it would be natural to consider the case where A = ∞.
This is actually the model that was introduced in [5]. In Figure 4, numerical simulations show that
the description of the dynamics of (NLoc) seem to apply to the case where A = ∞ also. Proving
this result would however require additional estimates.

1.3. Discussion on the dynamics of the solutions. In Theorem 1, we show that the position
of the invasion front is well approximated by

(1.4) x(t) =
25/4

3
t3/2.

Indeed, the proof also provides some information on the phenotypic trait present at this front: at
x(t) = γt3/2, v(t, x(t), θ(t)) > C > 0 for

(1.5) θ(t) =

√
2

2
t.

Moreover it would be relatively easy to show that near the edge of the invasion front, that is in
x ∼ γ0t

3/2 = (25/4/3)t3/2, all particles have a mobility of approximately θ(t) = (
√

2/2)t.
If we considered a linearisation of (NLoc), and a situation where v is independent of x, then the

solution would propagate towards large θ > 1 at speed
√

2. It is worth noticing that the mobility
4



θ found at the edge of the propagation front increases at only half this speed, θ = (
√

2/2)t. This
dynamics is then indeed the effect of a combination of evolutionary and spatial dynamics.

To validate the quantitative approximations (1.4) and (1.5), we performed some numerical simu-
lations of (NLoc), (Loc) and (NLoc) with A =∞. The simulations are based on a finite difference
scheme, with some additional Neuman boundary conditions at the edge of the x interval we con-
sider. The numerical results are in good agreement with the theoretical results (1.4) and (1.5) in
each of the three cases: (NLoc) (Figure 1 which corresponds to Theorem 1), (Loc) (Figure 3 which
corresponds to Theorem 3), and (NLoc) with A =∞ (Figure 4 for which we do not have theoretical
results).

For (NLoc), which is the main focus of this study, we provide in Figure 2 a more precise com-
parison of the numerical position and phenotype at the front with the theoretical approximations
(1.4) and (1.5). The approximations developed in this study seem to provide a good description of
the dynamics of solutions.

Figure 1. Numerical simulation of (NLoc). The first graph represents v(53, ·, ·).
In the second graph, the red curve represents the theoretical position of the front,
x(t) : t 7→ (25/4/3)t3/2 (see (1.4)), while the blue curve represent the result of the
numerical simulation. Similarly, in the last graph, the red curve represents the
theoretical phenotypic trait present at the front, θ(t) : t 7→ (

√
2/2)t (see (1.5)),

while the blue curve represent the result of the numerical simulation.

1.4. Key ideas of the proofs. The first difficulty in the analysis of the model (NLoc) is to derive
a uniform L∞ bound on the solution. This difficulty already appeared in [9], where an L∞ bound
was constructed for travelling waves of (NLoc) (that is steady-states of (NLoc), with an additional
drift term), provided the set of phenotypic traits is bounded: θ ∈ [1, θ̄]. A bound of this type was
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Figure 2. Numerical simulation of (NLoc). The first graph represents the quotient

of the theoretical position x(t) : t 7→ (25/4/3)t3/2 of the front (see (1.4)) divided
by the corresponding quantity obtained by simulation. Similarly, the second graph
represents the quotient of the theoretical phenotypic trait θ(t) : t 7→ (

√
2/2)t present

at the front (see (1.5)) divided by the corresponding quantity obtained by simulation.

also derived for a parabolic model in [67], still for a bounded set of phenotypic traits. In Section 7,
we will prove that an L∞ bound on the solution v of (Nloc) can be established, even when the set
of phenotypes is unbounded, that is θ ∈ (1,∞). The proof will be based on a generalization, and
a simplification of the argument of [67].

Equipped with this uniform in time estimate, we will be able to show, in Section 8 that the
dynamics of solutions of (NLoc) is similar to the dynamics of the following parabolic model, where
the non-local competition kernel −〈v〉 is replaced by a local competition −u:

Model (Loc): 

∂tu =
θ

2
∆xu+

1

2
∆θu+ u (1− u)

u = u(t, x, θ), t ≥ 0, x ∈ R, θ ≥ 1,

u(0, x, θ) = u0(x, θ) ≥ 0,

∂θu(t, x, 1) = 0, t ≥ 0, x ∈ R.

To description of the dynamics of the solutions of this parabolic equation, we will use a probabilist
representation of those solutions through branching brownian motions. This idea was introduced
by McKean in [48], who showed that the solution of the Fisher-KPP equation, that is

∂tu−
1

2
∆xu = u(1− u),

with the initial condition u(0, x) := 1x≤0 is given by

u(t, x) = 1− Ex
 ∏
i∈I(t)

1Xi≤0

 ,
where I(t) is the number of vertex at time t in a branching Brownian tree, stated at time 0 at
location x ∈ R, and Xi(t) is the location of the vertex i at time t. Notice that this stochastic
representation of the solutions of the Fisher-KPP equation is very different from the Individual-
Based Model underlying this equation.
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Figure 3. Numerical simulation of (Loc). The first graph represents v(53, ·, ·). In
the second graph, the red curve represents the theoretical position of the front,
x(t) : t 7→ (25/4/3)t3/2 (see (1.4)), while the blue curve represent the result of the
numerical simulation. Similarly, in the last graph, the red curve represents the
theoretical phenotypic trait present at the front, θ(t) : t 7→ (

√
2/2)t (see (1.5)),

while the blue curve represent the result of the numerical simulation.

We will show in Section 2 that this representation of McKean can be extended to the solutions of
(Loc), using a branching Brownian tree in 2D. This Branching Brownian Motion is not standard: to
represent the fact that the dispersion in x is given by θ in (NLoc), the dispersion of the particles of
the BBM in the two directions will be coupled. The result of this analysis for (Loc) can be summed
up in Theorem 3, where we will use a slightly modified assumption on the initial condition:

(2’) (Thin tail) We have, for some C, c > 0 u0(x, θ) ≤ C exp(−cx) uniformly over x and θ, and
u0(x, θ)→ 1 as x→ −∞, uniformly over θ ∈ [θmin, θmax].

Theorem 3. Let u0 ∈ L∞(R×R+) with compact support in θ as described in Subsection 1.2, and
a thin tail (see (2’) above). Let u(t, x, θ) denote the corresponding solution of (Loc) with either
Neuman or Dirichlet boundary condition on {θ = 0}. For x ∈ R, let S(t, x) = supθ u(t, x, θ) and
let

γ0 =
2

3
(2)1/4.

We have for all γ > γ0,

(1.6) sup
x>γt3/2

S(t, x)→ 0

7



Figure 4. Numerical simulation of (NLoc) with A =∞. The first graph represents
v(53, ·, ·). In the second graph, the red curve represents the theoretical position of

the front, x(t) : t 7→ (25/4/3)t3/2 (see (1.4)), while the blue curve represent the result
of the numerical simulation. Similarly, in the last graph, the red curve represents
the theoretical phenotypic trait present at the front, θ(t) : t 7→ (

√
2/2)t (see (1.5)),

while the blue curve represent the result of the numerical simulation.

while for γ < γ0

(1.7) inf
x<γt3/2

S(t, x)→ 1

as t→∞.

Proving this result will be the core of our study. We will first provide in Section 3 an upper bound
on the propagation of solutions of (Loc). We will then describe some optimal trajectories of the
BBM in Section 4, which will in then allow us to derive a precise lower bound on the propagation of
solutions in Section 5. In Section 6, we combine those estimates to conclude the proof of Theorem 3.

2. Probabilistic preliminaries

We will assume without loss of generality that θmin = 0, θmax = 1.

2.1. McKean representation. To start the proof we will use a McKean representation for the
equation (Loc). To this end we recall the general idea of this representation. Let L be the generator
of some continuous Markov process X taking values in Rd. (Thus if L = (1/2)∆, X is nothing
but ordinary Brownian motion). Let f0 be an initial measurable data with 0 ≤ f0 ≤ 1. Let
(Xi

t , i ∈ It, t ≥ 0) be a system of branching diffusions based on L: that is, each particle branches at
8



rate 1, and move according to the diffusion specified by L. All motions and branching events are
independent of one another, and note that no particle ever dies. In these notations, It is the set
of indices of particles alive at time t (note that It is thus never empty). We label the positions of
the particles at some time t ≥ 0 by (Xi

t)i∈It . Let Px denote the law of this system when there is
initially one particle at x ∈ Rd.

Proposition 4 (McKean representation [48]). Let

u(t, x) = 1− Ex
 ∏
i∈I(t)

(1− f0(Xi
t))


solves the problem: {

∂u
∂t (t, x) = Lu+ u(1− u)

u(0, x) = f0(x)

In fact, McKean’s result is stated for Brownian motion but it is straightforward to extend the
result to a general diffusion. Applying the above result to our setting, we are led to the following
representation. Introduce a branching Brownian motion in R2, where a general element for the first
and second coordinates respecitvely will be labelled x and θ. We denote by It the set of indices of
particles alive at time t, and let Nt = |It|. We label the positions of the particles by (W i

t , θ
i
t)i∈It . In

the case of Dirichlet boundary conditions, we further kill the particle if it ever touches zero: that
is, we consider Ĩ(t) = {i ∈ I(t) : infs≤t θ

i
s,t > 0}. For a fixed t ≥ 0 and i ∈ It, let (W i

s,t, θ
i
s,t) denote

the position of the ancestor of the particle i ∈ It at time s ≤ t. We use this to build a new process
(Xi

t , i ∈ Ĩt)t≥0 as follows: we set

(2.1) Xi
t =

ˆ t

0

√
θis,tdW

i
s,t

where the integral above is Itô’s stochastic integral with respect to the Brownian motion (W i
s,t, 0 ≤

s ≤ t).

Proposition 5. Let u(t, x, θ) be as in Theorem 3. We have

(2.2) u(t, x, θ) = 1− E(x,θ)

∏
i∈Ĩt

(1− u0(Xi
t , θ

i
t))

 .
In particular, if u0(x, θ) = H(x)1{θ∈(0,1)}, where H is the Heavyside function, then

u(t, x, θ) = P(0,θ)(∃i ∈ It : Xi
t > x and θit < 1)

Proof. The only thing which needs to be noted that if θ,W are two independent Brownian motions,

and if Xt =
´ t∧τ

0

√
θsdWs, then {(Xt, θt), t ≥ 0}, where τ is the first hitting of zero by θ, forms a

Markov process with generator

Lu(x, θ) =
|θ|
2

∂2u

∂x2
+

1

2

∂2u

∂θ2

and Dirichlet boundary conditions. �

Note that by convention, when Ĩt is empty, the product
∏
i∈Ĩt is set equal to 1.

In the case of Neumann boundary conditions, the McKean representation is similar, except that

we set Xi
t =
´ t

0

√
|θis,t|dW i

s,t for all i ∈ It and the product is over all i ∈ It in the formula (2.2).
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2.2. Many-to-one lemma. We will use repeatedly the so-called many-to-one lemma, which is a
trivial but useful way of relating expected sum of functions of particle trajectories in a branching
Brownian motion to the expected value of the same function applied to a single Brownian trajectory.

Lemma 6. Let T be a random stopping time of the filtration Ft = σ(W̄i(s), θi(s), i ∈ I(s), s ≤ t),
and assume that T is almost surely finite. For any bounded measurable functional g on the path
space C([0,∞)2),

E

∑
i∈IT

g((W i
s,T , θ

i
s,T )s≤T )

 = E[eT g((Ws, θs))s≤T )],

where (Ws, θs)s≥0 is a standard planar Brownian motion.

3. Proof of upper bound for the local equation

From now on, and until almost the very end of the proof, we will assume that n0(x, θ) =
H(x)1{θ∈(0,1)}. With the use of Proposition 5 the upper bound (1.6) from Theorem 3 is easy to
prove.

We fix θ some arbitrary initial value. We fix γ > γ0 and call Zt = |Zt|, where

Zt = {i ∈ Ĩt : Xi
t ≥ γt3/2 and θit < 1}.

From Proposition 5 we get that

u(t, xt(1 + ε), θ) = P(0,θ)(Zt 6= ∅) ≤ E(0,θ)(Zt).

Hence it suffices to show that this expectation tends to 0 as t→∞.
We will principally focus on the case of Dirichlet boundary conditions for readability, and make

brief comments along the way on how to adapt the arguments to the case of Neumann boundary

conditions. The idea will be to consider the particles such that
´ t

0 θsds has a fixed order of magni-

tude, namely at2 (and satisfy |θt| < 1). More precisely we introduce, for a fixed h > 0, the set of

particles Ĩt(a) such that

Ĩt(a) =

{
i ∈ Ĩt : at2 ≤

ˆ t

0
θis,tds ≤ (a+ h)t2; θit < 1

}
In the case of Neumann boundary conditions, it is instead the set It(a) = {i ∈ It : at2 ≤

´ t
0 |θ

i
s,t|ds ≤

(a+ h)t2; |θit| < 1} which is of interest.
We first have the following lemma:

Lemma 7. Suppose a > 0. We have

(3.1) Eθ0 [|Ĩt(a)|] ≤ c

t1/2
et(1−3a2/2)

for some constant c, uniformly over θ0 > 0. In the case of Neumann boundary conditions, the same
estimate holds with Ĩt(a) replaced by It(a).

Proof. We start by Ĩt(a). By the many to one lemma, we immediately get

Eθ0(|Ĩt(a)|) = etPθ0
(
at2 ≤

ˆ t

0
θsds ≤ (a+ h)t2; inf

s≤t
θs > 0; θt < 1

)
≤ etPθ0

(
at2 ≤

ˆ t

0
θsds ≤ (a+ h)t2; θt < 1

)
We will see that

Pθ0
(ˆ t

0
θsds ≥ at2; θt < 1

)
∼ c

t1/2
et(1−3a2/2)

10



and (3.1) will then follow.

Note that, by time-reversibility, under Pθ0 , (θ̃s := θt − θt−s, 0 ≤ s ≤ t) is a Brownian motion

started from 0 and run for time t. Furthermore, if θ did not hit zero, and θt ≤ 1, and
´ t

0 θsds ≥ at
2,

then we certainly have that at2 − t ≤
´ t

0 θ̃sds. Therefore,

Pθ0
(
at2 ≤

ˆ t

0
θsds; θt < 1

)
≤ P0

(
at2 − t ≤

ˆ t

0
θsds

)
.

Observe that under P0, (θs, s ≤ t) is a centred Gaussian process with covariance E(θsθt) = s∧ t.
We immediately get that

´ t
0 θsds is a centred Gaussian random variable with variance σ2 which can

be explicitly computed:

(3.2) σ2 =

ˆ t

0

ˆ t

0
(s ∧ u)dsdu =

t3

3
.

Consequently, using the easily established fact about standard normal random variables that as
x→∞,

(3.3) P(X ≥ x) ∼ x−1 e
−x2/2

√
2π

we obtain

P0

(ˆ t

0
θsds ≥ at2 − t

)
= P(X ≥ (at2 − t)/σ)

∼ c

t1/2
exp

(
− a2t4

2t3/3

)
=

c

t1/2
exp

(
−3a2t

2

)
as desired. This proves (3.1). For the case of Neumann boundary conditions, the proof is essentially

similar, except that in the reversibility argument, we observe that if
´ t

0 |θs|ds ≥ at2 we also have´ t
0 |θ̃s|ds ≥ at

2−t if we also know that |θt| ≤ 1. The rest of the proof is similar, with the estimate for

the tail
´ 1

0 |θs|ds coming from a theorem of Tolmatz [66] (see also, for a related question, [33]). �

From now on we focus on the case of Dirichlet boundary conditions, but the case of Neumann
boundary conditions can be treated in exactly the same way thanks to Lemma 7.

Corollary 8. Let a1 =
√

2/3 and fix a > a1. Let B1 be the event that there is an i ≤ Nt such that

(3.4)

ˆ t

0
θis,tds ≥ at2 and |θit| < 1

Then supθ0 P
(0,θ0)(B1)→ 0.

Proof. Apply the many-to-one Lemma and Lemma 7 to find that the expected number of particles
satisfying (3.4) tends to 0, and then use Markov’s inequality. �

Consider the filtration Gt = σ(θis,t, i ∈ It, s ≤ t). When we condition on Gs, Xi
t is a Gaussian

random variable with variance
´ t

0 θ
i
s,tds. Fix a = 2a1. We get, applying the many-to-one Lemma

again, on the event Bc
1,

E(0,θ0)(Zt|Gt) ≤
∑
i∈It

√´ t
0 θ

i
s,tds

x
exp

(
− x2

2
´ t

0 θ
i
s,tds

)
11



≤
2a1/h∑
n=0

|It(nh)|
√
nht2

ct3/2
exp

(
−(γt3/2)2

2nht2

)

=

2a1/h∑
n=0

|It(nh)|t−1/2
√
nh exp

(
− γ2

2nh
t

)
.

Taking expectations, we get

E(0,θ0)(Zt) ≤
2a1/h∑
n=0

t−1/2
√

2a1t
−1/2 exp(t(1− 3(nh)2/2)) exp

(
− γ2

2nh
t

)

≤ (2a1)3/2

ht
exp(t max

a∈[0,2a1]

{
1− 3a2

2
− γ2

2a

}
)(3.5)

We claim that for γ > γ0, this maximum, call it M(γ), is negative. Indeed, let

φ(a) = 1− 3a2

2
− γ2

2a
.

At a maximum point of φ we also have φ′(a) = 0 or −3a+ γ2/(2a2) = 0 or

γ2 = 6a3,

in which the maximum is given by

M(γ) = 1− 3a2

2
− 3a2 = 1− 9a2

2
.

But since γ > γ0 = (2/3)21/4 we get that a > a0 =
√

2/3. It follows that M(γ) < M(γ0) = 0. We
deduce that

(3.6) P(0,θ0)(Zt ≥ 1) ≤ E(0,θ0)(Zt1Bc1) + P(0,θ0)(B1)→ 0,

uniformly over θ0, as desired.

4. Identifying the relevant stochastic trajectories

In this short section, we discuss the intuitive idea on which the rest of the proof is based. For a
lower bound, the idea is to apply a second moment argument to say that there are indeed particles
at distance xt = γt3/2 with high probability for γ < γ0. In order to do so, we need to identify the
relevant trajectories which make this event possible.

It can be guessed that a particle satisfying θ0 = 0 and
´ t

0 θsds ≥ at2 fluctuates around a deter-

ministic function f̄ on the interval [0, t] given by

(4.1) f̄(s) = 3a

(
s− s2

2t

)
; s ∈ [0, t].

Note that f̄ is not linear. This is somewhat surprising as optimal Brownian paths which get to
a large distance are roughly linear; as can be seen by trying to minimise the Dirichlet energy of
functions going from 0 to a far away point x in a given amount of time t. (Indeed, optimal paths
in the usual KPP equation are roughly linear).

To identify the optimal trajectories here, recall that the ’probability’ of a given path f is roughly

exp(−(1/2)
´ t

0 f̄
′(s)2ds). (This can be made rigorous for instance using the theory of large devia-

tions, see Schilder’s theorem.). Hence the function f̄ is obtained as the minimiser of the Dirichlet
12



energy subject to a constraint:

f̄ ≡ arg min

{
1

2

ˆ t

0
f̄ ′(s)2ds : subject to

ˆ t

0
f̄(s)ds = at2

}
.

By a standard calculus of variations argument, (i.e., +̄εφ has a bigger Dirichlet norm than f̄ for

any function φ with
´
φ = 0) we deduce that

´ t
0 f̄
′′φ = 0 for any such function after integration by

parts. We deduce f̄ ′′ is constant. So f̄ is a parabola, of the form

f̄(s) = bs+ cs2

(there is no constant term as f(0) = 0. We claim that an optimal trajectory must further satisfy
f̄ ′(t) = 0. This can be justified on a heuristic level but can also be taken as an ansatz otherwise;
the fact that the upper bound and lower bound match up then justify it a posteriori.

At any rate, this leads to the equation 2ct + b = 0. Finally, plugging
´ t

0 f̄(s)ds = at2 gives the
value of the coefficients: b = 3a, c = −3a/(2t). We then find

(4.2)

ˆ t

0
f̄ ′(s)2ds = 3a2t

consistent with the above lemma. The proof of the lower bound relies crucially on the identification
of the function f̄ above. Indeed our strategy will be to show that there are particles at the desired
distance x = γt3/2 by also requiring that θs stays close to the time-reversal of f̄ . In particular,
this will explain the requirement on θ0 = f̄(t) = 3at/2 = (

√
2/2)t. (Note that this is only half of

the maximal value of θit among all particles i ∈ It, since the particles θi are performing standard
BBM). The particle will then reach its final position, x = γt3/2 by moving linearly on the correct
timescale, that is the timescale which turns X into a Brownian motion. Consequently, the position
at time s of a particle ending up at γt3/2 will be approximately given by

Xs = W

(ˆ s

0
θudu

)
≈ µ
ˆ s

0
θudu,

where µ = γt3/2/
(´ t

0 θudu
)

= γt3/2/(at2) = γt−1/2/a. Therefore we find,

Xs ≈ µ
ˆ s

0
f̄(t− u)du

and making the relevant calculation,

(4.3) Xs ≈
3γ

2

(
s
√
t− s3

3t3/2

)
.

It would be interesting to know whether the above guesses can give rise to a simplified and purely
analytic proof of the main theorem of this paper, in the spirit of the recent PDE proof of Bramson’s
logarithmic delay in the KPP equation by Hamel, Nolen, Roquejoffre and Ryzhik [27].

4.1. Open questions. From a probabilistic perspective, this raises several questions of interest.
Do particles near the maximum have a trivial correlation structure, as in the usual branching
Brownian motion? (In the terminology of spin glasses, this would correspond to a 1-step replica
symmetry breaking for the associated Gibbs measure). Secondly, can the shape of the front be
described in more detail? We believe that the effective size of the front (say, the spacing between
the first and third quartiles of S(t, x), or some other function of u) does not stay of order 1 as in
the case of the usual branching Brownian motion. Instead we believe that the front spreads over
time with a spacing of size roughly

√
t. Supporting evidence for this comes from the proof of the

lower bound, where a fluctuation of size
√
t is inherent in the identification of relevant trajectories.

Scaling by
√
t, does one obtain a limiting shape for the front?

13



5. Proof of lower bound for local equation

For this we rely on our understanding of the optimal trajectories in the previous section. Fix
γ < γ0 and set a such that 6a3 = γ2, so a < a0 and φ(a) = M(γ) > 0. Set

f̄(s) = 3a

(
s− s2

2t

)
,

and set f to be a C2 function which is always greater than 1/2 and which coincides with f̄(t− s)
on [0, t− 1]. Thus for s ≤ t− 1,

(5.1) f(s) = f̄(t− s) =
3a

2

(
t− s2

t

)
.

Now set

Ms = (t− s+ 1/4)3/4, 0 ≤ s ≤ t

m = 10t1/2

τ = at2

µ =
γt3/2

τ
.

Recall that by choice,
´ t

0 f̄(s)ds = at2 = τ . Let Ω = C([0,∞),R) be the set of continuous
trajectories, equipped with the Borel σ-field induced by the topology of uniform convergence on
compacts. For θ ∈ Ω set

Js =

ˆ s

0
θsds; J = Jt

5.1. Good events. Our goal will be to estimate u(t, x, θ) for values of x close to x = γt3/2 where
γ is as above of θ satisfies: |θ− 3at/2| ≤ 1. Hence we will assume that our initial condition is such
that there is initially one particle at x0, θ0 with

(5.2) |x0| ≤ 1;

∣∣∣∣θ0 −
3a

2
t

∣∣∣∣ ≤ 1.

We introduce the event

(5.3) A = {θ ∈ Ω : |θs − f(s)| ≤Ms for all s ≤ t} ∩ {τ − t ≤ J ≤ τ}.
In other words the event A is the event that θ remains not too far away (at most Ms) from the
function f , throughout the interval [0, t], and has a total integral which is smaller than that of
f but by no more than O(t). Recall that the function f is, apart from an unimportant additive
constant (1/2), the optimal trajectory identified in the previous section, which will guarantee that´ t

0 θsds ≈ at2 = τ and satisfies θt ≤ 1. The error bound Ms is decreasing from approximately

O(t3/4) initially to Mt < 1/2 at the end. In particular, note that if A holds, then 0 ≤ θt ≤ 1 and

moreover θ never hits zero on [0, t], and so there is no difference between
´ t

0 θsds and
´ t

0 |θs|ds. (In
particular, the following proof works for both Dirichlet or Neumann boundary conditions.)

We introduce a second event B which deals with the W coordinate, and which is defined as
follows. First observe that given Define the event B by

(5.4) B :=

{
W ∈ Ω : sup

u≤τ
Ws − sµ ≤ m, sup

u∈[τ−t,τ ]

∣∣∣Wu − γt3/2
∣∣∣ ≤ m}

for some small enough δ. In other words, the event B is that the Brownian path progresses linearly
towards its target position γt3/2 up to time τ , is always below the corresponding straight line

14



(shifted by about m = 10
√
t), and lies within m = 10

√
t of that target throughout the interval

[τ − t, τ ].

Now return to the branching Brownian motion (θit,W
i
t ) from the previous section. For i ∈ Ĩt, set

J it =

ˆ t

0
θis,tds,

and set Ki(·) to be the cad lag inverse of J i· . We will sometimes write J i for J it in order to lighten

to the notations. Set W̃ i(s) = Xi(Ki(s)), and note that by Dubins–Schwarz theorem, for a fixed

i ∈ Ĩt, W̃ i is just a Brownian motion over [0, J i]. For i ∈ Ĩt, let Ai = {θi·,t ∈ A} and Bi = {W i ∈ B}.
We shall consider the good event Gi = Ai ∩ Bi and set

Z =
∑
i∈I(t)

1Gi

the number of particles which satisfy this good event. Note that if with high probability there is a
particle satisfying Gi, (i.e. if Z > 0) then at time t the position of this particle is γt3/2(1 + o(1)).

Indeed, the position Xi
t of particle i at time t is by definition W̃ i

Ji
. On Ai, |J i − τ | ≤ t so if

Bi also holds, |W̃ i
Ji
− γt3/2| ≤ m = 10t1/2. Thus if Z > 0 there is a particle such that Ai ∩ Bi

holds and hence the maximal particle is greater than ct3/2 −m. We conclude using the McKean
representation.

Hence it suffices to prove that Z > 0 with probability tending to 1 as t → ∞. To this end we
use the Payley–Zigmund inequality:

(5.5) P(Z > 0) ≥ E(Z)2

E(Z2)

We will thus compute the first and second moment of Z, and show that E(Z2) ≤ CE(Z)2. This
will show that P(Z > 0) ≥ p for some uniform p > 0. A simple argument will then show that in
fact we can bound this probability from below by something arbitrarily close to 1.

5.2. First moment of Z. We will first establish the following lower bound on the first moment
of Z.

Proposition 9.

(5.6) E(Z) ≥ C

t5/2
exp

(
t

(
1− 3a2

2
− γ2

2a

))
.

Remark 10. Note that, up to a polynomial factor, this matches the upper bound in (3.5). This
polynomial term will be tracked carefully over the course of the proof, to match the upper bound
on the second moment later on, so that the bound in (5.5) is bounded away from zero.

Proof. By the many-to-one Lemma, E(Z) = etP(A ∩ B). Observe that A and B are independent,
so we can estimate P(A) and P(B) separately.

Let Q denote the law of Brownian motion (started from θ0 = f(t) = 3at/2 with drift −f̄(s),
that is, the distribution on C[0, t] of the process (θs − f̄(s), s ≤ t) under Pθ0 . Then by Girsanov’s
theorem,

P(A) = Q (|θs| ≤Ms for all s ≤ t;−t ≤ J ≤ 0)

= E0

(
1{|θ·|≤M·,−t≤J≤0} exp(−

ˆ t

0
f̄ ′(s)dθs −

1

2

ˆ t

0
f̄ ′(s)2ds)

)
.
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Now, by stochastic integration by parts (or Itô’s formula), since f̄ is differentiable and is thus a
finite variation process, we deduce that it has zero cross-variation with the Brownian motion θ, and
hence ˆ t

0
f̄ ′(s)dθs = [f̄ ′(t)θt − f̄ ′(0)θ0]−

ˆ t

0
θsf
′′(s)ds

=
3a

t

ˆ t

0
θsds+O(1)

since f̄ satisfies f̄ ′(0) = 0, θt = O(1) on A and f̄ ′(t) = O(1), and f ′′(s) = (−3a/t) for all s ≤ t.
Therefore, using definition of the event A, and the relation (4.2),

P(A) = exp

(
−1

2

ˆ t

0
f ′(s)2ds

)
E0

(
1{|θ·|≤M·,−t≤J≤0} exp

(
−3a

t

ˆ t

0
θsds

))
≥ exp

(
−3a2

2
t

)
P0 (|θ·| ≤M·,−t ≤ J ≤ 0) exp(−3a)(5.7)

Now, we will need the following Lemma:

Lemma 11.

P0 (|θ·| ≤M·,−t ≤ J ≤ 0) ≥ C

t

Proof. Let Fa,b be the event that |θs| ≤Ms for all a ≤ s ≤ b. We also introduce the stronger event

F+
a,b that |θs| ≤Ms/2 for all a ≤ s ≤ b
We will denote θ̄s = θt−s and also introduce F̄a,b = {|θ̄u| ≤ M̄u for all u ∈ [a, b]} where M̄u =

Mt−u. Fix s0 = λ(log t)2 where λ is a big constant to be chosen later. We will work conditionally
given Θ̄s0 = σ(θ̄s, s ≤ s0) and assume that F+

t−s0,t holds. Note that, conditionally on Θ̄s0 , the

process (θs, 0 ≤ s ≤ t− s0) is a Brownian bridge of duration t− s0 from 0 to z = θ̄s0 , a distribution

which we will denote by P0
t−s0→ z. Its time-reversal is hence a Brownian bridge of duration t − s0,

from z to 0.
Observe that a Brownian bridge from 0 to z, of duration t− s0 , when restricted to the interval

[0, 3t/4], is absolutely continuous with respect to a Brownian motion started from 0, and further-
more the density is uniformly bounded by a constant C (see e.g. (6.28) in [35]), since z = o(

√
t)

on F+
t−s0,t. Therefore, for s ≤ 3t/4,

P0
t→z(F0,3t/4) ≤ CP0(F0,3t/4) ≤ P( sup

s≤3t/4
θs ≥ ct3/4) ≤ 2e−ct

1/2
(5.8)

by the reflection principle and (3.3).

Denote Ēs = F̄ cs,2s. Note that once again the law of Pz
t−s0→ 0, restricted to [0, t/2], is absolutely

continuous to a Brownian motion started from z and the density is uniformly bounded. Hence for
s ≤ t/4, by scaling, since |z| ≤ (1/2)M̄s0 on F+

t−s0,t,

Pz
t−s0→ 0(θ̄u = M̄u for some u ∈ [s, 2s]) ≤ CPz(θ̄u = M̄u for some u ∈ [s, 2s])

≤ CP0(sup
u≤2

θu ≥ C ′s1/4)

≤ Ce−C′s1/2(5.9)

by the reflection principle and (3.3) again. By combining (5.8) with (5.9) we deduce that

(5.10) P0(F c0,t−s0 |Θ̄s0) ≤ t−2

16



for λ sufficiently large, on F+
t−s0,t.

Now let J1 =
´ s0

0 θ̄udu and let J2 = J − J1 =
´ t
s0
θ̄udu. Note that

P(−t ≤ J ≤ 0;Fs0,t|Θ̄s0) = P(−t− J1 ≤ J2 ≤ −J1|Θ̄s0)− P(F cs0,t|Θs0).

Note that, given Θ̄s0 , J2 is the integral of a certain Gaussian process, namely a Brownian bridge of
duration t− s0 from θ̄s0 to 0. This has mean m2 = z(t− s0)/2 and a computation similar to (3.2)
shows that it has a variance of order at least Ct3.

Hence

P(−t− J1 ≤ J2 ≤ −J1|Θ̄s0) = P
(
N (0, 1) ∈

[
−m2 − t− J1

Ct3/2
,
−m2 − J1

Ct3/2

])
.

On the event we are considering, 0 ≤ m2 ≤ t(log t)3/4 and 0 ≤ J1 ≤ s
7/4
0 ≤ (log t)2, so the interval

in the right hand side has a size at least O(1/
√
t) and is located within [−1, 1] where the density

of N (0, 1) is bounded away from zero. Hence,

P(−t− J1 ≤ J2 ≤ −J1|Θ̄s0) ≥ C√
t
.

Consequently, taking expectations so as to remove the conditional expectation given Θs0 , we
deduce that

P(−t ≤ J ≤ 0;F0,t) ≥ E(1F+
t−s0,t

P(−t ≤ J ≤ 0;F0,t−s0 |Θ̄s0))

≥ E(1F+
t−s0,t

[P(−t ≤ J ≤ 0|Θ̄s0)− P(F0,t−s0 |Θ̄s0)])

≥ P(F+
t−s0,t)C(t−1/2 − t−2)(5.11)

Note also that P(F+
t,t) ≥ Ct−1/2 and, by following the argument in (5.9), P(F+

t−s0,t|F
+
t,t) ≥ p for

some p > 0. It follows that P(F+
t−s0,t) ≥ Ct

−1/2. Plugging this into (5.11) we get

P(−t ≤ J ≤ 0;F0,t) ≥ Ct−1

as desired. �

Altogether, combining Lemma 11 and (5.7), we get

(5.12) P(A) ≥ C

t
exp

(
−3a2

2
t

)
.

We now turn to P(B), which is somewhat easier. Recall the value of the drift

µ =
γt3/2

τ
= O(t−1/2),

so that µτ = γt3/2 (i.e., µ is the slope of the line involved in the definition of B). From Girsanov’s
theorem,

P(B) = P

(
sup
u≤τ

(Wu − uµ) ≤ m; sup
u∈[τ−t,τ ]

|Wu − γt3/2| ≤ m

)

= E0

(
1{supu≤τ (Wu−uµ)≤m;supu∈[τ−t,τ ] |Wu−γt3/2|≤m} exp(−µWτ −

1

2
µ2τ)

)
≥ exp(−µm− 1

2
µ2τ)P0

(
sup
u≤τ

Wu ≤ m; sup
u∈[τ−t,τ ]

|Wu| ≤ m

)
17



≥ O(1) exp(−c
2t

2a
)P0

(
sup
u≤τ

Wu ≤ m; sup
u∈[τ−t,τ ]

|Wu| ≤ m

)
.

Lemma 12.

P0

(
sup
u≤τ

Wu ≤ m; sup
u∈[τ−t,τ ]

|Wu| ≤ m

)
≥ cm3τ−3/2

Proof. We can use the reflection principle to compute this. Indeed, we know that for 0 ≤ a ≤ b,
letting ST = sups≤T Ws,

P0(ST ≥ b,WT ≤ a) = P(WT ≥ 2b− a) =

ˆ ∞
2b−a

1√
2πT

e−x
2/(2T )dx

and hence the joint density of (ST ,WT ) at the point 0 ≤ a ≤ b is, after differentiating twice the
above expression, is

(5.13)
2(2b− a)

2
√

2πT 3/2
e−(2b−a)2/(2T )

If T ≥ Cm2, by integrating, we find

P(sup
u≤T

Wu ≤ m;WT ∈ [−3m/4,−m/4]) ≥
ˆ −m/4
−3m/4

ˆ m

0

C(2b− a)

T 3/2
e−(2b−a)2/(2T )dbda

≥ C

T 3/2

ˆ −m/4
−3m/4

ˆ m

0
(2b− a)dbda ≥ Cm3

T 3/2
.

We apply this result with T = τ − t and then apply the Markov property at time T , to find that

P0

(
sup
u≤τ

Wu ≤ m; sup
u∈[τ−t,τ ]

|Wu| ≤ m

)

≥ P(sup
u≤T

Wu ≤ m;WT ∈ [−3m/4,−m/4])P0( sup
u∈[0,t]

Wu ≤ m/4) ≥ Cm3

T 3/2
p

for some p > 0, by scaling. The result follows. �

Putting things together, we find

(5.14) P(B) ≥ O(1)t−3/2 exp(−γ
2t

2a
),

Now, Proposition 9 follows by combining (5.12) and (5.14). �

5.3. Second moment of Z. In this section we prove the following upper bound on the second
moment of Z.

Proposition 13.

E(Z2) ≤ C

t5
exp(2t(1− 3a2

2
− γ2

2a
)).

To compute the second moment we use a modified version of the many-to-one Lemma, which
can be called the many-to-two lemma. We begin with a useful definition for what follows.

Definition 14. Let B1 be a real Brownian motion and T ≥ 0 a possibly random time. We say
that B2 branches from B1 at time T if there exists another Brownian motion W , independent of
B1 and T , such that

B2(u) =

{
B1(u) for u ≤ T ;

B1(u) +W (u− T ) for u ≥ T.
18



This definition is in fact symmetric: if B2 branches from B1 at time T , then B1 branches from
B2 at time T . We will sometime simply say that B1 and B2 branch from each other at time T .

Lemma 15. Let F be a measurable functional on C[0, t], and set

Z =
∑
i∈It

F (Xi
s,t, 0 ≤ s ≤ t).

Let T be an exponential random variable with parameter 2, and let B1, B2 be Brownian motions
branching from each other at time T . Then we have

E(Z2) = e2tE[eT∧tF (B1(s), 0 ≤ s ≤ t)F (B2(s), 0 ≤ s ≤ t)].

Proof. See [28] for a slightly more general result. �

We will use it as follows. For a fixed 0 < s < t, let (B1, B2) denote Brownian motions branching
from each other at time T = s. (Technically we should indicate the dependence on s within the
notation, but we will avoid doing this in order to ease readability). We then have, if F (X) = 1{X∈A}
for some Borel set A on C[0, t]

(5.15) E(Z2) = E(Z) + 2

ˆ t

0
e2(t−s)esP(B1 ∈ A, B2 ∈ A)ds.

This can be interpreted as follows: write Z2 =
∑

i,j 1{Xi,Xj∈A}. If we decompose on the time at
which the particles i and j have their most recent common ancestor, say s, then there are es expected
potential ancestors at generation s, and each produces et−s expected descendants at generation t.
Hence the number of pair of descendants descending from a given individual at generation s is
e2(t−s) if we order them, and each pair is counted twice (hence an additional factor 2).

Hence in view of (5.15), our task will be to show that if A and B are the events defined in (5.3)
and (5.4), and G = A ∩ B, then

(5.16)

ˆ t

0
e2(t−s)esP(B1 ∈ G, B2 ∈ G)ds ≤ C

t6
exp(2t(1− 3a2

2
− γ2

2a
)).

This will imply Proposition 13 as it is clear that E(Z) → ∞ and thus E(Z) ≤ E(Z)2 for t large
enough.

We thus turn to the

Proof of (5.16). Let 0 ≤ s ≤ t. We begin by spelling out the event {B1, B2 ∈ G} more explicitly.
Take two independent real Brownian motions θ and W . We can then introduce a proces (θ′u, 0 ≤
u ≤ t) which branches from θ at time s, and a process W ′ which is a Brownian motion branching
from W at time Js, where

Js =

ˆ s

0
θudu =

ˆ s

0
θ′udu.

Thus W ′u = Wu for u ≤ Js and W ′u = WJs + W̃u−Js for u ≥ Js, where W̃ is independent from
(θ,W ).

Event B. The event {B1, B2 ∈ G} can be reformulated as {θ, θ′ ∈ A}∩{W,W ′ ∈ B}. We will first
condition on the entire processes θ, θ′ and compute the conditional probability that (W,W ′) ∈ B.
Recall our notation Js =

´ s
0 θudu. For this computation, as before, the key result we use is

Girsanov’s theorem. The joint law of (Wu − uµ,W ′u − uµ, u ≤ τ) has density

ZB = exp

({
−µW (Js)−

1

2
µ2Js

}
− {µ(W (τ)−W (Js)) +

1

2
µ2(τ − Js)}(5.17)

−
{
µ(W ′(τ)−W ′(Js)) +

1

2
µ2(τ − Js)

})
.(5.18)
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We have grouped the terms in brackets so that they are independent of one another (conditionally
on (θ, θ′)), but in fact we will reorder them in a convenient way later on. Consequently,

P(W,W ′ ∈ B|(θ, θ′)) = E
(
ZB1{supu≤τ (Wu,W ′u)≤m;supu∈[τ−t,τ ] |Wu,W ′u|≤m}

∣∣∣ (θ, θ′))
≤ E

(
ZB1{supu≤Js Wu≤m}1{supu∈[Js,τ ](Wu,W ′u)≤m}1{Wτ ,W ′τ≥−m}

∣∣∣ (θ, θ′))
≤ exp

(
−1

2
µ2τ − 1

2
µ2(τ − Js)

)
×

× E
(
eµW (Js)1{W (Js)≤m}e

−µW (τ)−µW ′(τ)1{supu∈[Js,τ ](Wu,W ′u)≤m}1{Wτ ,W ′τ≥−m}

)
Now, we need the following lemma:

Lemma 16. For all x, y > 0,

P( inf
u≤2T

Wu ≥ 0;W2T ∈ [0, y]|W0 = x) ≤ Cxy2

T 3/2
.

where C is independent of x, y.

Proof. The cases where x ≤
√
T and x ≥

√
T can be treated similarly. For simplicity we focus on

the case x ≤
√
T which is slightly more interesting. We first note that P(infu≤T Wu ≥ 0|W0 = x) ≤

cx/
√
T by well known (and very simple) estimates. By the Markov property of Brownian motion

at time T , conditionally given infu≤T Wu ≥ 0 and WT = z, the probability that infu∈[T,2T ]Wu ≥ 0
and W2T ∈ [0, y] can be expressed as

Px( inf
u∈[0,2T ]

Wu ≥ 0;W2T ∈ [0, y]|WT = z; inf
u≤T

Wu ≥ 0) = P0(sup
u≤T

Wu ≤ z;WT ∈ [z − y, z])(5.19)

The latter can be computed using the reflection principle. Indeed, we know that for 0 ≤ a ≤ b,
letting ST = sups≤T Ws,

P0(ST ≥ b,WT ≤ a) = P(WT ≥ 2b− a) =

ˆ ∞
2b−a

1√
2πT

e−x
2/(2T )dx

and hence the joint density of (ST ,WT ) at the point 0 ≤ a ≤ b is, after differentiating twice the
above expression, is

2(2b− a)

2
√

2πT 3/2
e−(2b−a)2/(2T )

Integrating over 0 ≤ b ≤ z and 0 ≤ z− y ≤ a ≤ b gives us, after applying Fubini’s theorem, making
a change of variable,

P0(sup
u≤T

Wu ≤ z;WT ∈ [z − y, z]) =

ˆ z

z−y
da

ˆ z

a

(2b− a)√
2πT 3/2

e−(2b−a)2/(2T )db

≤ C

T 3/2

ˆ z

z−y
da

ˆ z

a
(2b− a)db

=
C

T 3/2

ˆ z

z−y
z(z − a)da =

C

T 3/2
zy2.

Taking expectations in (5.19) this yields

Px( inf
u∈[0,2T ]

Wu ≥ 0;W2T ∈ [0, y]) ≤ Cxy2

T 2
Ex(WT | inf

u≤T
Wu ≥ 0)

≤ Cxy2

T 3/2
.
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Indeed, the position at time T of WT , given infu≤T Wu ≥ 0, is dominated stochastically from above
by a three-dimensional Bessel process started from x at time T , whose expectation is Ex(RT ) ≤
c3

√
T by scaling, for some constant universal constant c3, since we assumed x ≤

√
T . The case

x ≥
√
T is similar (but easier). �

We condition on W (Js) and apply Lemma 16. Since W (τ) ≥ −m and µm ≤ O(1), we thus
obtain

E
(
e−µW (τ)−µW ′(τ)1{supu∈[Js,τ ](Wu,W ′u)≤m}1{Wτ ,W ′τ≥−m}|W (Js)

)
≤ O(1)P

(
sup

u∈[Js,τ ]
(Wu,W

′
u) ≤ 1;Wτ ,W

′
τ ≥ −m|W (Js)

)

≤ O(1)
(m+ |W (Js)|)2m4

(τ − Js)3
≤ O(1)

(m2 +W (Js)
2)m4

(τ − Js)3
.

Taking the expectation again, we find

P(W,W ′ ∈ B|(θ, θ′)) ≤ O(1) exp

(
−1

2
µ2τ − 1

2
µ2(τ − Js)

)
m4

(τ − Js)3
×

(5.20)

× E(eµW (Js)(m2 +W (Js)
2)1{W (Js)≤m}|(θ, θ

′))

≤ O(1) exp

(
−1

2
µ2τ − 1

2
µ2(τ − Js)

)
m4

(τ − Js)3
(m2 + E(W (Js)

2|(θ, θ′)))

= O(1) exp

(
−µ2τ +

1

2
µ2Js

)
m4

(τ − Js)3
(m2 + Js) =: B.(5.21)

Event A. We now turn to the event θ, θ′ ∈ A. As in (5.18), we have that the joint law of
(θu− f(u), θ′u− f(u), 0 ≤ u ≤ t) has a density (with respect to a pair of driftless Brownian motions
branching from each other at s) which is

ZA = exp

(
−f ′(s)θs −

3a

t

ˆ s

0
θudu−

1

2

ˆ t

0
f ′(u)2du+

+{f ′(s)θs −
3a

t

ˆ t

s
θudu−

1

2

ˆ t

s
f ′(u)2du}+

+{f ′(s)θ′s −
3a

t

ˆ t

s
θ′udu−

1

2

ˆ t

s
f ′(u)2du}

)
≤ exp

(
−1

2

ˆ t

0
f ′(u)2du−

ˆ t

s
f ′(u)2du+ θsf

′(s) +
3a

t

ˆ s

0
θudu

)
.(5.22)

where the inequality holds on the event θ, θ′ ∈ A. Furthermore, f ′(s) = −3as/t, |θs| ≤ Ms ≤ t3/4,

hence
´ s

0 θudu ≤ Cst
3/4, so that

ZA ≤ z+
A := exp

(
−
ˆ t

0
f ′(u)2du+

1

2

ˆ s

0
f ′(u)2du+

Cs

t1/4

)
Note that z+

A is nonrandom. Also, on the event θ, θ′ ∈ A, and while s ≤ t/2, the random variable
B on the right hand side of (5.21) is bounded above by

B ≤ O(1)
m4

t6
(t+ st) exp

(
−µ2τ +

1

2
µ2Js

)
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≤ O(1)
1

t3
(1 + s) exp

(
−µ2τ +

1

2
µ2Js

)
.

Therefore, we may rewrite, letting j(s) =
´ s

0 f(u)du,

P(θ, θ′ ∈ A;W,W ′ ∈ B) ≤ E(B1{θ,θ′∈A})

≤ O(1)
s+ 1

t3
exp

(
−µ2τ

)
E
(
e

1
2
µ2Js1{θ,θ′∈A}

)
≤ O(1)

s+ 1

t3
exp

(
−µ2τ +

1

2
µ2j(s)

)
E
(
z+
A1{|θ·|,|θ′·|≤Mu;−t≤J,J ′≤0}e

1
2
µ2Js

)
≤ O(1)

s+ 1

t3
exp

(
−µ2τ +

1

2
µ2j(s)

)
z+
A exp

(
1

2
µ2 3as

t1/4

)
×

× P(−t ≤ J, J ′ ≤ 0; |θ·|, |θ′·| ≤M·)

where we have used that (as above) Js ≤ 3as
t1/4

on |θ·|, |θ′·| ≤M·. Since µ2 = O(1/t), we deduce

P(θ, θ′ ∈ A;W,W ′ ∈ B) ≤ O(1)
s+ 1

t3
exp

(
−µ2τ +

1

2
µ2j(s)

)
z+
AP(−t ≤ J, J ′ ≤ 0; |θt|, |θ′t| ≤ 1).

We will need the following lemma:

Lemma 17. For x, j, a ∈ R,

Px(j − a ≤ J ≤ j; |θt| ≤ 1) ≤ Ca

(t+ 1)2

for some constant C independent of x, j, a and t.

Proof. Observe first that the position θt is normally distributed with mean x and variance t, so its
density is uniformly bounded by Ct−1/2 and Px(|θt| ≤ 1) ≤ Ct−1/2.

When we condition on the value of θt = z, J is a normal random variable, as the integral of
a certain Gaussian process (namely, a Brownian bridge of duration t from x to z) with a certain
mean and a variance at most t3/3. Consequently the probability density function of J is uniformy

bounded by C/(t+ 1)3/2. Integrating over the interval [j − a, j] gives

Px
t→z(J ∈ [j − a, j]) ≤ Ca

(t+ 1)3/2
,

uniformly in z. Hence

Px(j − a ≤ J ≤ j; |θt| ≤ 1) ≤ Ca

(t+ 1)3/2
Px(|θt| ≤ 1) ≤ Ca

t2
.

Since this probability is also trivially bounded by 1, we get the desired upper bound. �

From Lemma 17 it follows, after conditioning by (θu, u ≤ s), that

P(−t ≤ J, J ′ ≤ 0; |θt|, |θ′t| ≤ 1) ≤ Ct2

(t+ 1− s)4
.

Consequently,

P(θ, θ′ ∈ A;W,W ′ ∈ B) ≤ O(1)
s+ 1

t3
exp

(
−µ2τ +

1

2
µ2j(s)

)
z+
A

t2

(t+ 1− s)4

≤ O(1)(s+ 1)

t(t+ 1− s)4
exp

(
−µ2τ +

1

2
µ2j(s)

)
z+
A .
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We return to the integral that we wish to estimate in (5.16), which isˆ t

0
e2te−sP(B,B′ ∈ G)ds.

On the interval [0, t/2] we may write that t+1−s ≥ t/2 so we deduce, after writing out the various
terms,

e2t

ˆ t/2

0
e−sP(B,B′ ∈ G)ds ≤ e2t−µ2τ−

´ t
0 f
′(u)2duO(1)

t5

ˆ t/2

0
e−s(s+ 1)e

1
2
µ2j(s)+ 1

2

´ s
0 f
′(u)2du+Cs/t1/4ds

(5.23)

Over the interval [t/2, t], we use the crude bound t+ 1− s ≤ 1 and we get

e2t

ˆ t

t/2
e−sP(B,B′ ∈ G)ds ≤ e2t−µ2τ−

´ t
0 f
′(u)2duO(1)

t

ˆ t

t/2
e−s(s+ 1)e

1
2
µ2j(s)+ 1

2

´ s
0 f
′(u)2du+Cs/t1/4ds

(5.24)

Note that the exponential prefactor in front of the two integrals above is precisely e2t(1−3a2−c2/2a)/t5,
as desired in (5.16). Hence it suffices to show that the total integral above (from 0 to t) is bounded.
We compute the exponential term inside the integrand. Recall that for s ≤ t−1, f(s) = (3a/2)(t−
s2/t), that µ = ct−1/2/a. Thus,

j(s) =

ˆ s

0
f(u)du =

ˆ s

0

3a

2
(t− u2

t
)du =

3a

2
(ts− s3

3t
)

so that

(5.25)
1

2
µ2j(s) =

3γ2

4a
(s− s3

3t2
).

Also, ˆ s

0
f ′(u)2du =

9a2

t2

ˆ s

0
u2du =

3a2

t2
s3.(5.26)

Hence returning to the exponential term in the integral in the right hand side of (5.23) and (5.24),
and making a change of variable s = xt, x ∈ (0, 1),

exp

{
−s+

1

2
µ2j(s) +

1

2

ˆ s

0
f ′(u)2du+ Cst−1/4

}
= exp

{
tψ(x) + Ct3/4x

}
where

ψ(x) = x(−1 +
3γ2

4a
) + x3(

3a2

2
− γ2

4a
).

Using the relation γ2 = 6a3 we see that all the cubic terms cancel, and we are left with

ψ(x) = −x(1− 9a2

2
)

and note that since a <
√

2/3, 1−9a2/2 > 0. Thus returning to the integral in (5.23), this becomes:ˆ t/2

0
(s+ 1) exp

(
−s(1− 9a2

2
) + Cst−1/4

)
ds.

It is easy to see that this is less than C for some universal constant C > 0.
We deduce that

(5.27) E(Z2) ≤ C

t5
exp(2t(1− 3a2

2
− γ2

2a
))

which concludes the proof of Proposition 13. �
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6. End of proof of Theorem 3

It is now not hard to finish the proof of Theorem 3.

Proof of Theorem 3. First suppose that u0(x, θ) = H(x)1{θ∈(0,1)}. In this case we have already
obtained the upper bound supθ0>0 supx>γt3/2 u(t, x, θ0)→ 0 in (3.6) for γ > γ0.

For the lower bound, combining Propositions 9 and 13 and the Payley–Zygmund inequality (5.5)
we see that for γ < γ0,

(6.1) lim inf
t→∞

Px,θ(maxXi(t) > γt3/2) ≥ C

for some C > 0 and for θ0 ∈ (θ−, θ+) and x0 ∈ (−1, 1) where θ± = 3a
2 t± 1, as per (5.2). Supposer

that initially there is one particle at x0 = 0 and θ0 = 3at/2. Fix a large constant T > 0 and

condition on the population at time T (given FT ). Let I be the set of particles i ∈ Ĩ(T ) such that
θiT ∈ [θ−, θ+] and Xi

T ∈ (−1, 1). For each particle i ∈ I, let xi = Xi
T and θi = θiT . Then

P0,θ0

(
max
i∈Ĩt

Xi
t ≤ ct3/2|FT

)
≤
∏
i∈I

Pxi,θi
(

max
i∈ĨT−t

Xi
t ≤ γ(t− T )3/2 − xi

)
so

lim inf
t→∞

P0,θ0

(
max
i∈Ĩt

Xi
t ≤ ct3/2|FT

)
≤ (1− C)|I|

Also, the random variable on the left hand side (before taking the liminf) is bounded by one, so by
the dominated convergence theorem,

lim inf
t→∞

P0,θ0

(
max
i∈Ĩt

Xi
t ≤ γt3/2

)
≤ E((1− C)|I|)

uniformly in T . Since it is clear that |I| → ∞ in probability as T →∞, we deduce that

(6.2) lim inf
t→∞

P0,θ0

(
max
i∈Ĩt

Xi
t ≤ γt3/2

)
= 0,

which completes the proof of Theorem 3 in the case of the Heavyside initial condition.
We now turn to the general case of initial conditions subject to our assumptions, and use the

general case of the McKean representation (Proposition 5) together with the result obtained above
in the particular case of Heavyside data.

We first consider the upper bound on the speed. Fix γ > γ0 and let γ0 < γ′ < γ and let
δ = γ′ − γ0. Note that for x ≥ γt3/2,∏

i∈Ĩt

(1− u0(Xi
t)) ≥ 1{all particles are greater than δt3/2 ;|Ĩt|≤e2t} × (1− C exp(−cδt3/2))e

2t

thanks to our assumption on the behaviour at +∞ of u0. Therefore,

u(t, x, θ) ≤ 1− (1 + o(1))Px,θ(all particles are greater than δt3/2 ; |Ĩt| ≤ e2t)

The probability of the event above tends to one by the above observations and Markov’s inequality
as E(|Ĩt|) ≤ E(|It|) = et.

Lower bound. Note that for all δ > 0, we can find A > 0 chosen sufficiently large so that
f(x) ≥ 1− δ if x ≤ −A. Therefore,∏

i∈Ĩt

(1− f(Xi
t)) ≤ δ + 1{Xi

t≥−A for all i∈Ĩt}
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and it follows that u(t, x, θ) ≥ 1 − δ − P(x,θ)(X
i
t ≥ −A for all i ∈ Ĩt). Fix x ≤ x0 = γt3/2 with

γ < γ0, and θ = 3at/2. Since

P(0,θ)(∃i : Xi
t ≥ x+A) ≥ P(0,θ)(∃i : Xi

t ≥ x0 +A)→ 1

as t → ∞ (uniformly in x ≤ x0 = γt3/2) by using (6.2) with x = γ′t3/2 where γ < γ′ < γ0, we
deduce

lim inf
t→∞

inf
x≤γt3/2

u(t, x, θ) ≥ 1− δ

for x = γt3/2, θ = 3at/2. Thus infx≤γt3/2 S(t, x)→ 1 as t→∞, as desired. �

7. Global-in-time estimate

Theorem 18. Let us consider a solution v to (NLoc) with initial data v0 satisfying the compact
support in θ assumption (1) and the regularity assumption (3), described in Subsection 1.2. Then
the unique global non-negative L∞ solution satisfies the global pointwise bound

∀ t ≥ 0, x ∈ R, θ ≥ 1, 0 ≤ w(t, x, θ) ≤M(7.1)

for an explicit constant M independent of the solution.

Lemma 19. Let v = v(t, x, θ) the solution of (NLoc) with an initial condition satisfying the compact
support in θ and regularity assumptions of Subsection 1.2. Then, for any τ > 0, there exist C > 0
such that for k, l ∈ N, k + l ≤ 3,

∀(t, x, θ) ∈ [0, τ ]× R× [1,∞), |∂kx∂lθv(t, x, θ)| ≤ Ce
θ2

2τ+1 ,

and

∀(t, x, θ) ∈ [0, τ ]× R× [1,∞), |∂tv(t, x, θ)|+ |∂x∂tv(t, x, θ)|+ |∂θ∂tv(t, x, θ)| ≤ Ce−
θ2

2τ+1 .

Proof of Lemma 19. In order to avoid dealing with boundaries in θ, we shift [1,+∞) to [0,+∞)
and then do mirror symmetry, i.e. we define v̄(t, x, θ) := v(t, x, |θ|+ 1), which solves

∂tv̄ =
|θ|+ 1

2
∆xv̄ +

1

2
∆θv̄ + v̄ (1− 〈v̄〉)

v̄ = v̄(t, x, θ), t ≥ 0, x ∈ R, θ ∈ R, v̄(t, x,−θ) = v̄(t, x, θ)

〈v̄〉(t, x, θ) :=

ˆ θ+A

min(θ−A,0)
v̄(t, x, ω) dω dy, θ ≥ 0,

v̄(0, x, θ) = v̄0(x, θ) ≥ 0.

(7.2)

Let ε > 0, and ϕ a regular approximation of θ 7→ |θ|+1
2 . More precisely, we assume that

ϕ(θ) = ϕ(−θ) for θ ∈ R, ϕ(θ) = |θ|+1
2 for |θ| ≥ ε > 0, and that for some C > 0,

‖ϕ′‖L∞ ≤ C, ‖ϕ′′‖L∞ ≤
C

ε
, ‖ϕ′′′‖L∞ ≤

C

ε2
.

Such functions can be constructed for any ε > 0, for instance through the rescaling of such a
function for ε = 1. Let w a solution of

(7.3) ∂tw − ϕ(θ)∆xw −
1

2
∆θw = w (1− 〈w〉) ,

with a regular initial condition w0 = w0(x, θ) (in the sense that ‖w0‖C3(R2) < ∞) with a compact

support in θ (that is w0(x, θ) = 0 if |θ| > θ̄, for some θ̄ > 0). Then, the comparison principle shows
that w(t, x, θ) ≤ ‖w0‖L∞et for t ≥ 0. More precisely, we notice that

(7.4) ∂tw − ϕ(θ)∆xw −
1

2
∆θw − w ≤ 0,
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while w̄1(t, x, θ) := Cet−
θ2

2t+1 is a solution of (7.4). If C > 0 is large enough, w(0, ·, ·) ≤ w̄1(0, ·, ·),
and the comparison principle then implies that 0 ≤ w ≤ w̄. We notice that for k ∈ {1, 2, 3}, ∂kxw
satisfies (7.3), the same argument then shows that for some C > 0, |∂kxw| ≤ Cet−

θ2

2t+1 . We notice
next that ∂θw satisfies:

∂t (∂θw)− ϕ(θ)∆x (∂θw)− 1

2
∆θ (∂θw)− ∂θw = ϕ′(θ)∆xw +O(1)‖w‖L∞w

≤ C
(
‖ϕ′‖L∞ + 1

)
et−

θ2

2t+1 .(7.5)

Let w̄1(t, x, θ) := Ceλ1t− θ2

2t+1 , which satisfies

∂tw̄1 − ϕ(θ)∆xw̄1 −
1

2
∆θw̄1 − w̄1 ≥ C(λ1 − 1)et−

θ2

2t+1 ,

so that w̄1 is a super-solution of (7.5) for t ∈ [0, τ ], as soon as λ1 > 0 is chosen large enough. Just
as above, for k ∈ {1, 2}, it is possible to repeat this method to show that for some C > 0 and

λ1 > 0, |∂kx∂θw| ≤ Ce
λ1t− θ2

2t+1 . We now turn to ∂2
θw, which satisfies:

∂t
(
∂2
θw
)
− ϕ(θ)∆x

(
∂2
θw
)
− 1

2
∆θ

(
∂2
θw
)

= ϕ′′(θ)∆xw + 2ϕ′(θ)∆x∂θw +O(1) (‖∂θw‖L∞w + ‖w‖L∞∂θw)

≤ C
(

1{θ∈[−ε,ε]}
1

ε
+ 1

)
eλ1t− θ2

2t+1 .(7.6)

Let w̄2(t, x, θ) := Ceλ2t−ψ2(θ)
2t+1 , where ψ2(θ) = 1

εθ
2 +1−ε on [−ε, ε], and ψ2(θ) = (|θ|+ 1− ε)2 for

|θ| ≥ ε. Then, ψ2 ∈ C1(R) (in particular, ‖ψ′‖L∞ < 2), and ψ′′2(θ) = 2
(

1
ε1{θ∈[−ε,ε]} + 1{θ∈[−ε,ε]c}

)
.

Then, for t ∈ [0, τ ],

∂tw̄2 − ϕ(θ)∆xw̄2 −
1

2
∆θw̄2 =

(
λ2 +

2ψ2(θ)

(2t+ 1)2
+
ψ′′2(θ)

4t+ 2
− (ψ′2(θ))2

2(2t+ 1)2

)
w̄2

=

(
λ2 +

2ψ2(θ)

(2t+ 1)2
+

1
ε1{θ∈[−ε,ε]} + 1{θ∈[−ε,ε]c}

2t+ 1
− (ψ′2(θ))2

2(2t+ 1)2

)
w̄2

≥
(

(λ2 − 2) +
1

ε
1{θ∈[−ε,ε]}

)
Ceλ2t−ψ2(θ)

2t+1 .

Since ψ2(θ) ≤ θ2 + 1, if we chose C, λ2 > 0 large enough, then w̄2 is a super solution of (7.6) for

t ∈ [0, τ ], and then |∂2
θw| ≤ w̄2 ≤ Ceλ2t− θ2

2t+1 for some C > 0 (for t ∈ [0, τ ]). Here also, a similar

estimate applies to ∂x∂
2
θw, to show that |∂x∂2

θw| ≤ Ce
λ2t− θ2

2t+1 . Note that this estimate is sufficient
to prove the well posedness of the problem for t ∈ [0, τ ], and thus in particular the symmetry of w in
θ: w(t, x, θ) = w(t, x,−θ) for (t, x, θ) ∈ [0, τ ]×R2, which implies in particular that ∂3

θw(t, x, 0) = 0
for (t, x) ∈ R+ × R. This property will be important to estimate ∂3

θw. We have

∂t
(
∂3
θw
)
− ϕ(θ)∆x

(
∂3
θw
)
− 1

2
∆θ

(
∂3
θw
)

= ϕ′′′(θ)∆xw + 3ϕ′′(θ)∆x∂θw + 3ϕ′(θ)∆x∂
2
θw

+O(1)
(
‖w‖L∞ + ‖∂θw‖L∞ + ‖∂2

θw‖L∞
) (
w + ∂θw + ∂2

θw
)

≤ C1{θ∈[−ε,ε]}
(
|ϕ′′′(θ)|+ |ϕ′′(θ)|

)
+ C‖ϕ′‖L∞eλ

2
1t−

θ2

2t+1
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≤ C
(

1

ε2
1{θ∈[−ε,ε]} + 1

)
eλ

2
1t−

θ2

2t+1 .(7.7)

Since ∂3
θw(t, x, 0) = 0 for θ = 0, ∂3

θw(t, x, θ) is a sub-solution of the problem(7.7) on R+×R× [0,∞)
with a Dirichlet boundary condition in θ = 0. We will build a super-solution for this half-space
problem:

w̄2(t, x, θ) = min

(
C1e

λ2t− θ2

2t+1 , C2

(
1 +

√
θ/ε
))

= 1{θ∈[θ̄(t),∞)}C1e
λ2t− θ2

2t+1 + 1{θ∈(0,θ̄(t))}C2

√
θ/ε,

for t ∈ [0, τ ]. Moreover, if C1 is chosen sufficiently larger than C2, then ε < θ(t) < Cε, for
some constant C > 0. Since a minimum of two super-solutions is a super-solution we simply
need to check that w̄2,1(t, x, θ) = C1e

λ2t is a super-solution of (7.7) on R+ × R × [ε,∞), and

w̄2,2(t, x, θ) = C2

(
1 +

√
θ/ε
)

is a super-solution of (7.7) on R+ × R × (0, Cε). The argument for

w̄2,1 is similar to earlier cases, while w̄2,2 satisfies

∂tw̄2,2 − ϕ(θ)∆xw̄2,2 −
1

2
∆θw̄2,2 − w̄2,2 =

C2

4
√
ε
θ−3/2 − C2

(
1 +

√
θ/ε
)
≥ C2

8ε2
,

provided ε > 0 is small enough. w̄2,2 is thus indeed a super-solution of (7.7) on [0, τ ]×R× (0, Cε),
provided C2 is chosen large enough. The comparison principle then shows that |∂3

θw(t, x, θ)| ≤

w̄2(t, x, |θ|) ≤ Ceλ2t− θ2

2t+1 .

We notice next that ∂tw(0, ·, ·) = ϕ(θ)∆xw(0, ·, ·) − 1
2∆θw(0, ·, ·) − w(0, ·, ·) is in C1(R) with a

compact support in θ, and ∂tw is a solution of an equation similar to (7.3). The argument above (see
(7.5) and (7.5)) can then be reproduced to show that |∂tw(t, x, θ)|+|∂x∂tw(t, x, θ)|+|∂θ∂tw(t, x, θ)| ≤
Ceλtt−

θ2

2t+1 .
We have proven that there exists C > 0 independent of ε > 0 (small enough) such that for

k, l ∈ N, k + l ≤ 3,

∀(t, x, θ) ∈ [0, τ ]× R2, |∂kx∂lθw(t, x, θ)| ≤ Ce−
θ2

2τ+1 ,

and

|∂tw(t, x, θ)|+ |∂x∂tw(t, x, θ)|+ |∂θ∂tw(t, x, θ)| ≤ Ce−
θ2

2τ+1 .

We can thus pass to the limit ε→ 0 in these estimates to obtain similar estimates on solutions of
(7.2), which conclude the proof.

�

We will now prove Theorem 18. Note that this proof draws a lot of inspiration from [67].

Proof of Theorem 18.
Step 1. Definitions and rescaling. We define the cylinder around a point z̄ := (t̄, x̄, θ̄):

(7.8) Qz̄,R := (t̄−R2, t̄)×B((x̄, θ̄), R).

We might omit the base point and/or the size R when obvious from the context. We define for any
cylinder Q = Qz̄,R the norms

[u]δ/2,δ,Q = sup
(t,x) 6=(s,y)∈Q

|u(t, x)− u(s, y)|(
|x− y|+ |t− s|1/2

)δ ,
|u|δ/2,δ,Q = ‖u‖L∞(Q) + [u]δ/2,δ,Q,

[u]1+δ/2,2+δ,Q = [∂tu]δ/2,δ,Q +
2∑

i,j=1

[∂2
xixju]δ/2,δ,Q,
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|u|1+δ/2,2+δ,Q = ‖u‖L∞(Q) +

2∑
i=1

‖∂xiu‖L∞(Q) + ‖∂tu‖L∞(Q)

+

2∑
i,j=1

‖∂2
xixju‖L∞(Q) + [u]1+δ/2,2+δ,Q.

We recall the definition (7.2) of v̄, and introduce an additional notation: for a given base point

z̄, we rescale the problem, ṽ = (t, x, θ) = v̄
(
t,
√
θ̄ + 1x, θ

)
, to get

∂tṽ =
|θ|+ 1

2
(
|θ̄|+ 1

)∆xṽ + ∆θṽ + ṽ (1− 〈ṽ〉)

ṽ = ṽ(t, x, θ), t ≥ 0, x ∈ R, θ ∈ R, ṽ(t, x,−θ) = ṽ(t, x, θ)

〈ṽ〉(t, x, θ) :=

ˆ θ+A

min(θ−A,0)
ṽ(t, x, ω) dω dy, θ ≥ 0,

ṽ(0, x, θ) = ṽ0(x, θ) ≥ 0.

(7.9)

Step 2. Relating |u|1+δ/2,2+δ,Q to ‖ · ‖L∞.
We use (in the particular framework needed here) the following two results from [41]:

Lemma 20 (Theorem 8.11.1 in [41]). Let δ ∈ (0, 1), (t̄, x̄, θ̄) ∈ R+ ×R2. If S ∈ Cδ/2t Cδx,θ(Q2) (i.e.

|S|δ/2,δ,Q2
<∞) and V (t, x, θ) is a solution of

∂tV −
|θ|+ 1

2
(
|θ̄|+ 1

)∆xV −∆θV = S, on Q2,

then, there exist a universal constant C > 0 such that

|V |1+δ/2,2+δ,Q1
≤ C

(
|S|δ/2,δ,Q2

+ ‖V ‖L∞(Q2)

)
.

Lemma 21 (Theorem 8.8.1 in [41]). Let (t̄, x̄, θ̄) ∈ R+ × R2 and δ > 0. There exists a constant

N > 0 such that for any ε > 0, and any V ∈ C1+δ/2
t C2+δ

x,θ (Q3),

[V ]δ/2,δ,Q2
≤ ε[V ]1+δ/2,2+δ,Q3

+Nε−δ/2‖V ‖L∞(Q3).

We recall the definition (7.8) of Q(t̄,x̄,θ̄),R, and ṽ as in (7.9). Thanks to Lemma 19, if t̄ ∈
[1, (3 +A)2 + 2], then

|ṽ|1+δ/2,2+δ,Q(t̄,x̄,θ̄),1
≤ C

(
|θ̄|2+δ + 1

)( ∑
k+l≤3

‖∂kx∂lθv(t, x, θ)‖L∞([0,t̄]×R×[−θ̄−A,θ̄+A])

+‖∂tv(t, x, θ)‖L∞([0,t̄]×R×[−θ̄−A,θ̄+A]) + ‖∂x∂tv(t, x, θ)‖L∞([0,t̄]×R×[−θ̄−A,θ̄+A])

+‖∂θ∂tv(t, x, θ)‖L∞([0,t̄]×R×[−θ̄−A,θ̄+A])

)
≤ C0,(7.10)

where the constant C0 > 0 is independent of (t̄, x̄, θ̄) ∈ [1, (3 +A)2 + 2)× R2.

Let T > (3 +A)2 + 1, and M such that

(7.11) M > 2C0,

where C is here the constant appearing in (7.10). We assume also that ‖v‖L∞([0,T ]×R×R+) ≤ M .

For (t̄, x̄, θ̄) ∈ [(3 +A)2, T )× R2, we can apply Lemma 20 to obtain

|ṽ|1+δ/2,2+δ,Q1
≤ C

(
| (1− 〈ṽ〉) ṽ|δ/2,δ,Q2

+ ‖ṽ‖L∞(Q2)

)
.
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We estimate further

| (1− 〈ṽ〉) ṽ|δ/2,δ,Q2∩(R+×R2)

= [(1− 〈ṽ〉) ṽ]δ/2,δ,Q2∩(R+×R2) + ‖ (1− 〈ṽ〉) ṽ‖L∞(Q2∩(R+×R2))

≤ ‖1− 〈ṽ〉‖L∞(Q2∩(R+×R2))[ṽ]δ/2,δ,Q2∩R+×R2

+ [1− 〈ṽ〉]δ/2,δ,Q2∩(R+×R2)‖ṽ‖L∞(Q2∩(R+×R2))

+ ‖1− 〈ṽ〉‖L∞(Q2∩(R+×R2))‖ṽ‖L∞(Q2∩(R+×R2))

≤ C
(
M [ṽ]δ/2,δ,Q2+A∩(R+×R2) +M2

)
,

and then,
|ṽ|1+δ/2,2+δ,Q1∩(R+×R2) ≤ CM

(
[ṽ]δ/2,δ,Q2+A∩(R+×R2) +M

)
.

Using Lemma 21, we get

|ṽ|δ/2,δ,Q2+A
≤ CM

(
ε[ṽ]1+δ/2,2+δ,Q3+A

+
(

1 + ε−δ/2
)
M
)
.

We select ε ∼ αM−1, to get

(7.12) |ṽ|1+δ/2,2+δ,Q1
≤ α|ṽ|1+δ/2,2+δ,Q3+A

+ CM2+δ/2,

for some new C > 0.

Let now ṽ, ṽ∗ as in (7.9), for (t̄, x̄, θ̄) and (t̄∗, x̄∗, θ̄∗) respectively, where |θ̄ − θ̄∗| ≤ 3 + A. Let
also r > 0. Then,

ṽ(t, x, θ) = v̄

(
t,
√
|θ̄|+ 1x, θ

)
= ṽ∗

(
t,

√
|θ̄|+ 1

|θ̄∗|+ 1
x, θ

)
.

Let φ(t̄∗,x̄∗,θ̄∗) : (t, x, θ) 7→
(
t,
√
|θ̄|+1

|θ̄∗|+1
x, θ
)

. Since we assumed that |θ̄ − θ̄∗| ≤ 3 + A, we have√
|θ̄|+1

|θ̄∗|+1
≤ 3 +A, which implies

|ṽ|1+δ/2,2+δ,Q(t̄∗,x̄∗,θ̄∗),r
≤ C|ṽ∗|1+δ/2,2+δ,φ(t̄∗,x̄∗,θ̄∗)(Q(t̄∗,x̄∗,θ̄∗),r)

.

Moreover, φ(t̄∗,x̄∗,θ̄∗)

(
Q(t̄∗,x̄∗,θ̄∗),r

)
⊂ Qφ(t̄∗,x̄∗,θ̄∗)(t̄∗,x̄∗,θ̄∗),(3+A)r, and then,

|ṽ|1+δ/2,2+δ,Q(t̄∗,x̄∗,θ̄∗),r
≤ C|ṽ∗|1+δ/2,2+δ,Qφ(t̄∗,x̄∗,θ̄∗)(t̄∗,x̄∗,θ̄∗),(3+A)r

.

We notice now that there exists
(
(t̄i, x̄i, θ̄i)

)
i=1,...,N

, (where N is a function of A only, and t̄i ∈ (1, t̄])

such that Q(t̄,x̄,θ̄),3+A ⊂ ∪Ni=1Q(t̄i,x̄i,θ̄i),1/(3+A). Thus,

|ṽ|1+δ/2,2+δ,Q3+A
≤ C

N∑
i=1

|ṽ|1+δ/2,2+δ,Q(t̄i,x̄i,θ̄i),1/(3+A)

≤ C

N∑
i=1

|ṽi|1+δ/2,2+δ,Qφ(t̄i,x̄i,θ̄i)
(t̄i,x̄i,θ̄i),1

,(7.13)

where ṽi is the equivalent of ṽ, with (t̄i, x̄i, θ̄i) instead of (t̄, x̄, θ̄).

We define now, for some T > 0,

‖v‖1+δ/2,2+δ,T := max
(t̄,x̄,θ̄)∈[1,t̄]×R2

|ṽ|1+δ/2,2+δ,Q(t̄,x̄,θ̄),1
.

If t̄ ∈ [(3 +A)2 + 1, T ], we can apply (7.12) and (7.13) to show that

|ṽ|1+δ/2,2+δ,Q1
≤ α|ṽ|1+δ/2,2+δ,Q3+A

+ CM2+δ/2

29



≤ αC

N∑
i=1

|ṽi|1+δ/2,2+δ,Qφ(t̄i,x̄i,θ̄i)
(t̄i,x̄i,θ̄i),1

+ CM2+δ/2

≤ αCN‖v‖1+δ/2,2+δ,T + CM2+δ/2.

This estimate holds for any (t̄, x̄, θ̄) ∈ [(3 + A)2 + 1, T ]× R2, and thanks to the assumption (7.11)
on M and (7.10), it also holds for (t̄, x̄, θ̄) ∈ [0, (3 +A)2 + 1]× R2. Thus,

‖v‖1+δ/2,2+δ,T ≤ αCN‖v‖1+δ/2,2+δ,T + CM2+δ/2,

and we chose α := 1
2CN to obtain that

‖v‖1+δ/2,2+δ,T ≤ CM2+δ/2.

Step 3. Maximum principle. Thanks to (7.11) and (7.10), we know that ‖v‖L∞([0,T ]×R×R+) ≤ M .
Our goal is to show that indeed, ‖v‖L∞([0,T ]×R×R+) < M .

Assume that there exists (t̄, x̄, θ̄) ∈ (0,∞)× R× [1,∞) such that v reaches the value M . Then
v(t̄, x̄, θ̄ + 1) = M , while

∀(t, x, θ) ∈ [0, t̄]× R× [1,∞), v(t, x, θ) ≤M.

If we define as before v̄(t, x, θ) := v(t, x, |θ|+ 1) (see (7.2)), then

∂tv̄(t̄, x̄, θ̄) ≥ 0, ∆xv̄(t̄, x̄, θ̄) ≤ 0, ∆θv̄(t̄, x̄, θ̄) ≤ 0,

which, combined to (7.2), implies

0 ≤ v(t̄, x̄, θ̄)
(
1− 〈v〉(t̄, x̄, θ̄)

)
,

and since v(t̄, x̄, θ̄) > 0,

(7.14) 0 ≤ 1− 〈v〉(t̄, x̄, θ̄).
For any a ∈ (0, A)

〈v̄〉(t̄, x̄, θ̄) ≥ 1

2

ˆ θ̄+a

θ̄−a
v(t, x, θ′) dθ′

≥ av(t̄, x̄, θ̄)− a2‖∂θv(t̄, x̄, ·)‖L∞([θ̄−a,θ̄+a]).(7.15)

We can now use the Gagliardo-Nirenberg interpolation inequality and the previous step with T := t̄,
to estimate the last term of (7.15):

‖∂θv̄(t̄, x̄, ·)‖L∞([θ̄−a,θ̄+a]) ≤ ‖∂θv̄(t̄, x̄, ·)‖L∞([θ̄−a,θ̄+a])

≤ C‖v̄‖
1
2

L∞([θ̄−a,θ̄+a])
‖∆θv̄‖

1
2

L∞([θ̄−a,θ̄+a])
+ C‖v̄‖L∞([θ̄−a,θ̄+a])

≤ CM
1
2

(
CM2+δ/2

) 1
2

+ CM = CM
3+δ/2

2 ,

where C > 0 is a universal constant. Thanks to (7.14), (7.15) and the last estimate, we get

0 ≤ 1−
(
aM − Ca2M

3+δ/2
2

)
.

If we select a := 2M−1, we get

0 ≤ 1−
(

2− 4C

M
1−δ/2

2

)
,

in which we chose e.g. δ = 1/2. We then obtain a contradiction as soon as M > (4C)4. This
contradiction implies that ‖v‖L∞([0,T ]×R×R+) < M .
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Let now a constant M satisfying (7.11). For T ∈ ((3 + A)2 + 1, (3 + A)2 + 2), we have
‖v‖L∞([0,T ]×R×R+) < M . We can then define the largest T > (3+A)2+1 such that ‖v‖L∞([0,T ]×R×R+) ≤
M . If T 6=∞, the argument above leads to a contradiction, which proved the Theorem. �

8. Comparison of the models

We show two comparison principles between the models (Loc) and (NLoc). First, we construct
a solution of (Loc) that will provide a lower bound for solutions of (NLoc):

Proposition 22. Let v0 ∈ C2+δ(R× [1,∞)) with compact support in θ, thin tail in x and regular,
as described in Subsection 1.2. Let v(t, x, θ) the corresponding solution of (NLoc). For any η > 0
small, there exists ε > 0 such that For any η > 0, there exists ε > 0 such that

∀(t, x, θ) ∈ R+ × R× [1,∞), εu
(

(1− η)t,
√

1− η x,
√

1− η(θ − 1) + 1
)
≤ v(t, x, θ),

where u is the solution of (Loc) with initial condition

(8.1) u0(t, x, θ) = 1{R−×(1,2)}.

Proof of Proposition 22. Let η > 0. We recall the definition (7.2) of v̄. Thanks to Theorem 18, v̄
satisfies

∂tv̄ −
1 + |θ|

2
∆xv̄ −

1

2
∆θv̄ ≥ (1− 2AM)v̄,

and since v̄(0, x, θ) > C > 0 for (x, θ) ∈ R−× (θmin, θmax), there exists C0 > 0 such that v̄(1, x, θ) >
C0 for (x, θ) ∈ R− × [−1, 1]. Then,

(8.2) C0ū0(0, x, θ) < v0(1, x, θ), for (x, θ) ∈ R− × [−1, 1].

For any (x, θ̄) ∈ [1,∞) × R, v̄(t, x, θ) = ṽ
(
t,
√
θ̄ + 1, θ

)
is solution of (7.9), which is a parabolic

equation, and the coefficients of this equation are bounded for (t, x, θ) ∈ R× R× [θ̄ − 2A, θ̄ + 2A],
with a bound on those coefficients that is uniform in (x̄, θ̄). Thanks to this property and the L∞

bound ‖v̄‖L∞ ≤ M < ∞ provided by Theorem 18, we can apply the Harnack-type inequality
Theorem 2.6 from [1] with δ := η

2 . There exists then CH > 0 such that for any t ≥ 1,

〈ṽ〉(t, x̄, θ̄) ≤ CH ṽ(t, x̄, θ) +
η

2
,

and then 〈v̄〉(t, x̄, θ̄) ≤ CH v̄(t, x̄, θ̄) + η
2 , where the constant CH is independent of (x̄, θ̄). v̄ then

satisfies

(8.3) ∂tv̄ −
|θ|+ 1

2
∆xv̄ −

1

2
∆θv̄ ≥

(
1− η

2
− 2ACH v̄

)
v̄.

Let now ū(t, x, θ) := u(t, x, |θ|+1), and notice that û(t, x, v) := εu
(
(1− η)t,

√
1− η x,

√
1− η (θ − 1) + 1

)
satisfies

∂tû−
|θ|+ 1

2
∆xû−

1

2
∆θû = (1− η)

(
1− 1

ε
û

)
û.

If we chose ε = min(4ACH , C0), then û is a sub-solution of (8.3), which, combined to (8.2) and the
comparison principle, implies that for (t, x, θ) ∈ R+ × R× [1,∞),

εu
(

(1− η)t,
√

1− η x,
√

1− η (θ − 1) + 1
)
≤ v(t, x, θ).

�

The second step is to construct a solution of (Loc) that will provide an upper bound for solutions
of (NLoc):
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Proposition 23. Let v a solution of (NLoc) such that its initial condition v0 satisfies (1) and (2)
of Subsection 1.2. For any η > 0 small, there exists ε > 0 such that

∀(t, x, θ) ∈ R+ × R× [1,∞), v(t, x, θ) ≤ 1

ε
u
(

(1 + η)t,
√

1 + η x,
√

1 + η θ
)
,

where u the solution of (Loc) with initial condition

(8.4) u0(x, θ) =

{
εv0

(
x√
1+η

, θ−1√
1+η

+ 1
)
, for (x, θ) ∈ (R− × (1, 2))c

1, for (x, θ) ∈ R− × (1, 2).

Proof of Proposition 23. We notice that v satisfies

∂tv −
θ

2
∆xv −

1

2
∆θv = v(1− 〈v〉) ≤ v < v

(
1 + η − η

2M
v
)
.

If u is a solution of (Loc), then û = 4M
η u

(
(1 + η)t,

√
1 + ηx,

√
1 + η(θ − 1) + 1

)
satisfies

(8.5) ∂tû−
θ

2
∆xû−

1

2
∆θû = û

(
1 + η − η

2M
û
)
.

Moreover, if we assume that the initial condition of u is given by (8.4) with ε = η
2M , then v0 ≤

û(0, ·, ·) (notice that ‖v0‖L∞ ≤ M < 4M
η ), and the comparison principle applied to the (local)

parabolic equation (8.5) implies that v(t, x, θ) ≤ û(t, x, θ) for (t, x, θ) ∈ R+ × R × [1,∞), which
proves the result.

�

Proof of Theorem 3. Let us first consider the upper bound (1.1) on the propagation of v. Thanks
to Proposition 23, for any η > 0 there exists ε > 0 such that

v

(
t

1 + η
,

x√
1 + η

,
θ√

1 + η

)
≤ 1

ε
u(t, x, θ),

where u is the solution of (Loc) with initial condition (8.4). Since the initial condition (8.4) satisfies
the conditions (1) and (2’) (see Subsection 1.4), Theorem 3 applies, and for any γ̃ > γ0, there exists
ε̃ > 0 such that

lim
t→∞

sup
θ≥1

v

(
t

1 + η
,

γ̃√
1 + η

t
3
2 , θ

)
= 0,

that is limt→∞ supθ≥1 v
(
t, γ̃(1 + η)t

3
2 , θ
)

= 0, which proves (1.1), provided we chose η > 0 small

enough, and γ̃ > γ0 small enough.
Proving the lower bound (1.2) is very similar: Thanks to Proposition 22, for any η > 0 there

exists ε > 0 such that

εu(t, x, θ) ≤ v
(

t

1− η
,

x√
1− η

,
θ√

1 + η

)
,

where u is the solution of (Loc) with initial condition (8.1).Since the initial condition (8.4) satisfies
the conditions (1) and (2’), Theorem 3 applies, and for any γ̃ < γ0, there exists ε̃ > 0 such that for
any t ≥ 1,

ε̃ ≤ sup
θ≥1

v

(
t

1− η
,

γ̃√
1− η

t
3
2 , θ

)
,

that is, for any t ≥ 2,

ε̃ ≤ sup
θ≥1

v
(
t, γ̃(1− η)t

3
2 , θ
)
,

which proves (1.2), provided we chose η > 0 small enough, and γ̃ < γ0 large enough. �
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