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Abstract

Atomic defects in solids offer access to atom-like quantum properties without complex
trapping methods while displaying a rich physics due to interactions with their solid-
state environment. Such properties have made them an advantageous building block for
quantum information processing, in particular to construct a quantum network, where
information would be encoded in spins and transferred between nodes via photons.
Among defects in solids, the negatively charged silicon-vacancy centre in diamond
(SiV−) has attracted attention for its very promising optical properties for such a
network.

In this thesis, we investigate the spin properties of the silicon-vacancy centre as a
potential spin-photon interface. First, we use resonant excitation of an SiV− centre
in an external magnetic field to selectively address different electronic states and
analyse the resulting fluorescence. We find evidence of selection rules in the optical
transitions revealing that the centre possesses an electronic spin S = 1/2. Making use
of the dependence of such selection rules on the applied magnetic field orientation, we
resonantly drive two optical transitions forming a Λ-scheme. In the double resonance
condition, we achieve coherent population trapping, whereby the SiV− is pumped into
a dark state corresponding to a superposition of the two addressed ground states of
opposite spin. This technique allows us to evaluate the coherence time of the dark
state and hence of the spin, while demonstrating the possibility of all-optical control
of the spin when a Λ-scheme is available. We then use resonant optical pulses to
initialise and read out the spin state of a single SiV−. By tuning a microwave pulse
into resonance between two ground states of opposite spin, we demonstrate optically
detected magnetic resonance. Subsequently, by varying the duration of a resonant
microwave pulse, we achieve coherent control of a single SiV− electronic spin. Through
Ramsey interferometry, we measure a spin dephasing time of 115±9 ns. We then
investigate interactions of the SiV− with its environment. We analyse the hyperfine
interaction of the SiV− spin with the nuclear spin of 29Si, with a view to taking
advantage of the long-lived nuclear spin in the future. We show that single-phonon-



x

mediated excitations between electronic states of the SiV− are the dominant spin
dephasing and population decay mechanism and evaluate how external strain alters
optical selection rules and can be used to improve the coherence time of the spin.
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Introduction: Quantum
information processing and
impurities in solids

Computers have revolutionised our world by enabling us to process data and improve
communication abilities at an unprecedented scale. Yet, it is predicted that harnessing
quantum mechanics for processing information could drastically expand today’s abilities
and thus unlock key computational problems such as the simulation of quantum systems,
complex chemical reactions or protein misfolding involved in many diseases such as
Alzheimer’s and Parkinson’s diseases [1]. This new vision of computing, named quantum
information processing, relies on quantum versions of computer bits, called qubits, to
process information. Such a qubit consists of a quantum system with two isolated
states tagged 0 and 1. The improvement arises from the property of quantum systems
to be in a superposition of states, property which can be extended to several qubits
in a collective superposition of states resulting in those qubits being entangled. Such
capacities are at the basis of theoretical proposals of quantum algorithms expected to
provide an exponential speed-up in the resolution of currently complex computing tasks.
The most famous of such proposals is Shor’s algorithm formulated in 1994 for integer
factorisation into prime numbers [2], the first experimental implementation of which
has been demonstrated in 2001 using nuclear magnetic resonance on molecules [3].
The architecture of such a quantum computer is subject to intense debate. All-optical
quantum computing appears promising as photons can carry information over long
distances with minimum loss and can be manipulated on-chip at room temperature
with well-established photonic structures [4–8]. It might however be too costly in terms
of resources compared to other methods [9]. A popular approach is to combine the
strengths of different systems in a hybrid architecture. In 2008, Kimble proposed the
concept of a quantum network in which information is processed in nodes by stationary
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qubits and transferred between nodes by flying qubits, most likely photons. However,
the choice of a quantum system to be used as stationary qubits is not straightforward
[10]. To guide this choice, DiVincenzo has proposed a list of criteria which include
the necessity of scalability of well-defined qubits, the capacity to initialise and read
out their state individually, a universal set of quantum computation gates and qubit
coherence times long enough to perform a meaningful number of such gates [11].

To date, there is no consensus on which quantum system should be used as a
qubit and several systems are developed in parallel. They all exhibit advantages
and weaknesses [10]. Among them, trapped atoms [12–19] behave as ideal quantum
systems with long coherence times but can be difficult to scale up due to the complex
experimental setups they require. Superconducting qubits [20–24] and electrically
defined quantum dots [25, 26] have the advantage of scalability but are difficult to
interface with optical photons [27] and display more modest coherence properties,
although progress has been steady over the past few years [24]. A particular attention
has been drawn to quantum spin defects in solid-state matrices, such as donor impurities
in silicon [28–31] and self-assembled quantum dots [32–39]. While the former hold the
record for coherence time [40], they are challenging to interface with light [41], and the
latter, although exhibitting excellent optical properties, suffer from short spin dephasing
times [42–44]. Indeed, even though such systems behave effectively as single atoms, they
interact with the solid-state matrix, which can induce decoherence through various noise
sources such as baths of electronic or nuclear spins. There is thus a strong incentive
to look for spin-free materials to ensure that spin impurities retain suitable coherence
properties. Among such materials, silicon carbide [45–47] and diamond [48–50] have
attracted the most attention owing to the variety of optically active defects they host.
While silicon carbide offers the advantage of industrial grade synthesis and processing
capabilities [45], diamond stands out for its unique physical properties, including its
high thermal conductivity [51], wide bandgap accommodating many possible impurity
levels from the ultraviolet to the far-infrared [48], its relatively high refractive index
[48], important for photonic structures [52–54], its biocompatibility [55–57] and the
possibility to use carbon chemistry to functionalise its surface [58, 59]. The most widely
studied defect in diamond to date is the negatively charged nitrogen-vacancy (NV−)
centre, consisting of a substitutional nitrogen atom and a neighbouring carbon vacancy
[48]. The reason for this popularity is the impressive range of applications which have
been achieved using this defect [60–63]. Most of them rely on its optically accessible
electronic spin S = 1 which can be operated at room temperature. For quantum
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information processing, several key steps have already been demonstrated, among
which the demonstration of entanglement between the NV− spin and the polarisation
of a single photon [64], later used to entangle two distant NV− spins using their photons
as vectors of the entanglement [65, 66]. The NV− centre also offers optical access to
long-lived neighbouring nuclear spins, which can be entangled with the NV− spin [67] or
other nuclear spins [68], coherently controlled [69–71, 67, 72], and be used as quantum
memories [73] and ancilla qubits for computation protocols [74]. The applications of
the NV− centre even extend beyond quantum information processing into quantum
sensing at the nanometric scale, for electric [75] and magnetic field sensing [76–79], and
thermometry [80–82], including in biological systems [83, 84], where it can also be used
for bio-labelling [55–57]. However, the optical properties of the NV− centre are not
ideal for quantum information processing as only a fraction of the emitted photons can
be used as flying qubits in the absence of optical cavities. While progress has recently
been reported [85], an alternative approach consists in searching for defects already
offering the desired optical properties [50]. This approach has brought us to study the
silicon-vacancy centre in diamond, which shows great promise owing to its remarkable
optical properties but remains elusive as to its possessing a spin degree of freedom.

In this thesis, we investigate the potential of the silicon-vacancy centre in diamond
for quantum information processing. In Chapter 1, we review the current knowledge
about this system, focusing in particular on its structure and optical properties, the
latter being characterised by a desirable low coupling to phonons. In Chapter 2, we
evidence optical signatures of an electronic spin S = 1/2, hence paving the way for
the silicon-vacancy centre to be used as a qubit. In Chapter 3, we demonstrate the
feasibility of optical control of the spin through achieving coherent population trapping,
and extract a first evaluation of the spin coherence time. In Chapter 4, we demonstrate
optically detected magnetic resonance and coherent control of the silicon-vacancy centre
spin by microwave pulses. We use this control to perform Ramsey interferometry and
obtain a direct measurement of the spin coherence time. Finally, in Chapter 5, we
explore the interactions of the silicon-vacancy centre with its environment. In particular,
we measure the hyperfine coupling between the electronic spin and the nuclear spin
of the constituent 29Si. We also show that the interaction with lattice phonons is
the dominant source of decoherence of the electronic spin. Finally, we investigate the
influence of crystalline strain onto the silicon-vacancy centre energy levels and spin
properties and discuss how strain could be used as a resource for quantum information
applications.





Chapter 1

The silicon-vacancy centre in
diamond

Diamond is host to many optically active defects which have been characterised to
various degrees and display a wide range of optical and electronic properties [48].
Although many of them have been known since the 1960s, it is the success of the
nitrogen-vacancy (NV−) centre for various applications in quantum computing and
sensing over the past two decades that has drawn attention to the potential of impurities
in diamond. The investigation of other defects has mainly been motivated by the
interest in finding emitters with optical properties surpassing those of the NV− centre,
for which only a fraction of the emitted photons can be used as flying qubits in the
absence of photonic structures.

In this chapter, we introduce the silicon-vacancy centre in diamond. We review its
composition and structure as well as its optical and spin properties, which are those of
particular interest from the point of view of quantum information processing. The main
motivation for pursuing the investigation of this colour centre relies on its desirable
fluorescence properties, where most of the emission does not involve the incoherent
generation of phonons. Most of the emitted photons could thus be suitable to encode
information and transfer it between processing nodes in a quantum network [86].

1.1 Structure and creation

The silicon-vacancy centre (SiV) is an optically active defect which consists of a silicon
atom and a vacancy, replacing two neighbouring carbon atoms in a diamond matrix
(see Fig. 1.1). The presence of silicon has been determined through growth and ion
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implantation studies where fluorescence characteristic of SiV centres is only found
when silicon has been incorporated into the diamond [87, 88]. This has been confirmed
by showing that a change in the isotopic ratios of silicon incorporated into the diamond
structure shifts the wavelength of its emission [89–91]. The association of a contiguous
vacancy is deduced from the increase of the emission intensity of the centre after
annealing, this increase being concomitant with a decrease in the intensity of the GR1
band, corresponding to neutral vacancies [92, 93].

Figure 1.1 Representation of the structure of a silicon-vacancy centre in a diamond
lattice (carbon atoms in dark grey, silicon atom in blue) [94]. The silicon atom is located
in the middle of the two lattice sites (in light grey) along the < 111 > crystallographic
directions.

The ensemble composed of the silicon atom and the vacancy is theoreticlly predicted
to lie along the < 111 > directions of the diamond lattice [95, 96], as shown in Fig.1.1.
This orientation has been confirmed experimentally by electron paramagnetic resonance
(EPR) [97]. This implies that four equivalent orientations of the axis of the colour
centre are possible along the crystallographic directions [111], [11̄1̄], [1̄1̄1] and [1̄11̄]. We
mention that some fluorescence polarisation measurements have suggested a < 110 >

orientation, although the emitters investigated were likely strained, which can affect
polarisation [94].

Simulations based on density functional theory (DFT) [95, 96] and restricted open-
shell Hartree-Fock (ROHF) calculations [98] reach the conclusion that the silicon atom
sitting at a lattice position next to a vacancy is unstable. Instead, the silicon atom
relaxes towards the centre of the two lattice sites and the vacancy is split on each side
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[95, 96, 99]. The silicon atom is thought to lie exactly in the middle of the vacancy
sites, thus giving the SiV centre an inversion symmetry [95, 96, 99], although other
theoretical predictions argue in favour of the Si atom oscillating along the < 111 >

axis in a double-well potential [98]. This double semi-vacancy configuration is also
suggested for other defects in diamond involving a vacancy and a large atom, such as
nickel, cobalt and germanium [100–104].

We focus our study on the negative charge state of the SiV, where an extra electron
is captured by the colour centre. It is thus labelled SiV−. The attribution of this
charge state to the fluorescence described in the next section is based on theoretical
predictions [95] as well as photoionisation experiments [105].

The diamond samples used as host of SiV centres are mainly synthetic diamonds
manufactured by high-pressure-high-temperature (HPHT) processes or chemical vapour
deposition (CVD). HPHT diamonds are formed by compressing carbon in an anvil cell
to pressures reaching the GPa regime and heated to more than 1400 ◦C, thus mimicking
the growth conditions of natural diamonds in the earth mantle [106]. Small diamonds
are used to seed the growth and certain metals, such as iron or cobalt, act as catalysts.
Such diamonds usually contain large quantities of impurities, in particular nitrogen
from the air, but have the advantage of displaying relatively low crystalline strain.
CVD diamonds are grown in a plasma chamber containing a mixture of hydrocarbon
gas, often methane, and hydrogen [107]. The gases are ionised to form radicals which
deposit and form sp2 and sp3-bound carbon on a heated substrate, and grow diamond
layer by layer in tightly regulated pressure, temperature and gas mixture conditions.

The creation of the SiV centre is relatively easy and can be performed by ion
implantation or by incorporation of silicon during chemical vapour deposition (CVD)
growth. In the former, a diamond sample is exposed to a beam of Si+ ions accelerated
by strong electric fields, and directed and focused by magnetic lenses. The ions acquire
a kinetic energy from a few tens to hundreds of keV, enough to allow them to penetrate
into the diamond [108]. This kinetic energy is the dominant factor in determining
the implatation depth of the silicon ions which can be evaluated through a stopping-
range-of-ions-in-matter (SRIM) algorithm [109]. The second creation method relies on
incorporation of silicon atoms during CVD growth, with silicon being provided by a
silicon substrate, a neighbouring piece of silicon carbide or even by simple contamin-
ation of the growth chamber [110–112]. After silicon atoms have been implanted or
incorporated during growth, an irradiation with MeV electrons or carbon ions can be
used to increase the number of vacancies. Annealing at around 900◦C for several hours
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then allows vacancies to become mobile, thus facilitating the capture of vacancies by
silicon atoms and causing partial healing of implantation damage [93, 97]. Finally, the
charge state in which we are interested for its optical properties corresponds to an
extra electron being trapped by the centre, which is consistent with density functional
theory studies of the fluorescence [113].

1.2 Optical properties

The diamond band structure is characterised by a large indirect band gap of 5.5 eV and
a direct gap energy of 7.3 eV at the Γ point at the centre of the Brillouin zone [114].
This makes diamond transparent from the utlraviolet into the far-infrared [48]. As a
consequence, optically active defects with energy levels lying in this gap give diamond
its colour, when such defects are in large concentrations. They are thus often referred
to as colour centres [48].

The SiV− centre is until now the brightest reported colour centre in diamond, with
up to 6.2×106 counts per second [115] for an SiV− in a nanodiamond. However, for
bulk samples, values lower by one order of magnitude under non-resonant excitation
(see Section 3.2) and by up to three orders of magnitude under resonant excitation
(see Section 3.3) are more typical. The latter is partially due to an unstability of the
charge state of the SiV [116], as is the case for the NV centre [117].

A first element influencing the brightness of the centre is the lifetime of the excited
state. A relatively short lifetime of 1-4 ns has been determined by intensity decay [89]
and autocorrelation measurements [94, 115] at cryogenic temperatures. Those values
are in good agreement with a theoretical value of 3 ns obtained by spin-polarised local
density functional cluster theory [95] and can be compared to the 13 ns lifetime of NV−

centres [118].
The fluorescence spectrum of colour centres is typically composed of a sharp zero-

phonon line (ZPL) corresponding to direct transitions between electronic states, and
broader phonon sidebands, where the photon emission is accompanied by emission
or absorption of phonons, resulting in fluorescence being shifted to lower or higher
wavelengths, respectively [48]. The SiV− centre fluorescence is characterised by a
zero-phonon line at 737 nm (1.68 eV) and phonon sidebands ranging approximately
from 750 to 800 nm [94, 90, 95]. This ZPL has the particularity of being remarkably
narrow, down to 0.7 nm at room temperature [94].
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In addition, the SiV− centre fluorescence is found to exhibit a low electron-phonon
coupling, resulting in little emission occurring into the phonon sidebands. Such a
coupling originates from the fact that when the centre is excited from the ground to
the excited state, the electron wavefunction and thus the electronic charge distribution
changes, leading to the neighbouring nuclei to shift in position. This phenomenon
can be visualised by considering the interaction between two electronic levels and a
vibrational mode approximated as a harmonic oscillator. Following Ref. [119], in the
ground state, the vibronic harmonic potential is of the form:

Vg = 1
2mω2Q2 (1.1)

where ω is the mode frequency, m the mass of the mode and Q the displacement from
equilibrium (generalised coordinate frame). In the excited state, it is:

Ve = V0 + 1
2mω2Q2 +aQ+ bQ2 (1.2)

= V0 +
(1

2mω2 + b
)(

Q+ a

mω2 +2b

)2
− a2

2mω2 +4b
(1.3)

where V0 is the energy of the purely electronic transition, aQ is the linear phonon
coupling corresponding to the new equilibrium position for the nuclei and bQ2 is
the quadratic phonon coupling, small in diamond [119], reflecting the change in the
harmonic potential. The new equilibrium point is Q0 = −a/(mω2 +2b) and the new
mode frequency is ω′ =

√
ω2 +2b/m. We represent those potentials in Fig. 1.2. A

non-resonant excitation of the system brings it from the ground state parabola to the
excited state one, as depicted by an orange arrow. Since, according to the Franck-
Condon principle, optical transitions are fast compared to the vibrations of nuclei, they
occur vertically, without displacement (∆Q = 0). The system thus reaches a vibrational
excited state in the harmonic potential, and can then relax to a lower vibrational
state corresponding to a number n′ of phonons (dashed grey arrow). The subsequent
emission of a photon occurs vertically towards a vibrational state of the ground state
with phonon number n (dark red arrow), the transition propability depending on the
wavefunction overlap between initial and final states. The number of phonons involved
in the transition corresponds to the difference between the phonon number in the initial
state n′ and that in the final state n. The optical emission is thus shifted in frequency
when this number is different from zero, causing the presence of phonon sidebands in
the fluorescence spectrum. When the difference in phonon number is zero, the emission
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corresponds to the zero-phonon line. In summary, the larger the difference in charge
distribution between ground and excited states, the stronger the phonon sidebands.

n = 0

n = 1

n = 2

n' = 0

n' = 1

n' = 2

Potential V

Displacement Q

Figure 1.2 Illustration of electron-phonon coupling in fluorescence. The vibrational
modes are approximated by the levels of harmonic potentials in the ground and
excited electronic states (black parabolae), with the phonon numbers n or n′ and
the wavefunctions of the harmonic oscillator (light blue curves) represented on each
vibrational level. The system is excited from the ground state to a vibrational level of
the excited state (orange arrow) and then decays to a lower vibrational level in the
excited state (dashed grey arrow). Fluorescence takes place towards the vibrational
levels of the ground state (dark red arrow), with probabilities corresponding to the
wavefunction overlaps between initial and final states.

Experimentally, this electron-phonon coupling is quantified by the Huang-Rhys
factor S defined by exp(−S) = IZP L/Itot, with IZP L and Itot being respectively the
integrated emission intensity of the ZPL and the total emission intensity [120]. For
an SiV− ensemble, a Huang-Rhys factor around 0.24 is generally reported [93, 48, 94],
which means that about 80% of the emission is concentrated into the ZPL. Values
as low as 0.05 have been reported for ensemble and single centres [94, 97, 121, 122].
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Generally, defects containing heavy atoms tend to present a low electron-phonon
coupling [123, 124]. In comparison, the NV− centre is associated with a Huang-Rhys
factor of 3.2 leading to only 4% of the total emission occurring in the ZPL even
around 4 K. The rest of the fluorescence is taken by a 100 nm wide ensemble of phonon
sidebands [48], as shown in Fig. 1.3 where we compare the fluorescence spectra of NV−

and SiV−.
The low electron-phonon coupling in the fluorescence of the SiV− indicates that

there is little change in the charge distribution between ground and excited states.
This can be linked to the inversion symmetry causing electronic wavefunctions involved
to be relatively symmetric [99].

Fluorescence from the neutral charge state of the SiV centre, SiV0, has been
predicted by computational studies [95] and observed at 946 nm in optical absorption
and photoluminescence [97]. However, with a Huang-Rhys factor of 1.5, the optical
properties of SiV0 do not match those of SiV− [97].

This strong emission into the ZPL for SiV− is one of the most important features
of its optical properties, as those photons can be used as flying qubits and vectors of
entanglement, unlike emission involving phonons [125, 65].

Reports about the quantum efficiency of the SiV− centre are contradictory. The
comparison between photoluminescence and calorimetric absorption spectroscopy sug-
gests a very large radiative efficiency above 80% [126]. On the other hand, the quantum
efficiency has been measured to be about 5% by comparison with a dye of known
efficiency at 77 K in a diamond film [127], and values up to 9% have been reached
in nanodiamonds close to a metallic surface by evaluation of the collection efficiency
[115]. Recent experiments on single SiV− centres in diamond nanobeams report values
of about 10% [128]. A relatively low quantum yield can come from a quenching of
colour centre luminescence in environments rich in defects, which act as non-radiative
recombination centres [115, 129]. Alternatively, multi-phonon processes can make
emitters in the near infrared prone to non-radiative decay, as shown by the temperature
dependence of the lifetime of the SiV− [130]. In comparison, a quantum efficiency of
70% has been inferred for NV− centres [131, 132].

At temperatures below 50 K, a characteristic fine structure of the ZPL composed
of four peaks appears [89, 90, 133], as shown in Fig. 1.4a for an SiV− ensemble in bulk
diamond. Those four peaks can be gathered into two equally spaced doublets. It is
therefore assumed that the level structure of the centre is made of a ground and excited
state, each split into two orbital branches, as represented in Fig. 1.4b [48, 90, 133].
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Figure 1.3 Fluorescence spectra of SiV− (blue curve) and NV− (grey curve in inset)
at 4 K. The NV− spectrum displays a narrow zero-phonon line at 637 nm and broad
phonon sidebands at longer wavelengths accounting for 96% of the fluorescence. The
SiV− displays a narrow zero-phonon line at 737 nm which accounts for about 80%
of the fluorescence. The phonon sidebands are in comparison too weak to be clearly
visible with a linear intensity scale.

The splitting of the ground state corresponds to the splitting of each doublet and the
splitting of the excited state, to the spectral distance between the centres of those
two doublets. This attribution is deduced from the comparison between the expected
Boltzmann population of the levels and the temperature dependence of absorption and
photoluminescence [89, 90]. This also indicates that termalisation occurs between the
orbital branches within the ground and excited states.

This level structure has several suggested origins. A proposed explanation for the
splitting of the ground and excited states is a tunnel coupling of the electronic state
between the two sides of the silicon atom [98]. Another possibility arises from group
theory, according to which the split-vacancy configuration assumed for the centre yields
a D3d symmetry [97, 95, 96]. This symmetry is associated with doubly degenerate
states for the ground and the excited states [95]. Then, a spin-orbit coupling or the
Jahn-Teller effect, the latter corresponding to a shift of the silicon atom along the [11̄0]
or [112̄] directions, could be responsible for a lifting of the degeneracy of those states
[96]. This deformation of the centre would result in a C2 or D2 symmetry, which is
consistent with polarisation [123, 134] and uniaxial stress measurements [135].
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Figure 1.4 Fluorescence fine structure at low temperature. (a) Photoluminescence
spectrum of an ensemble of SiV− centres at 4 K. ∆g and ∆e correspond to the splittings
of the ground and excited states, respectively. The four main transitions, labelled from
α to δ, correspond to SiV− centres containing 28Si (92.3% natural abundance). Replicas
of the four peaks shifted to larger wavelengths correspond to SiV− with 29Si (4.6%)
(red arrows) and 30Si (3.1%) (pink arrows, only the more intense doublet is visible)
[91]. (b) Representation of the energy levels involved in the fluorescence spectrum:
the ground and excited states are each split into two orbital branches separated by
approximately 50 GHz and 260 GHz respectively [48]. The transitions corresponding
to the peaks in (a) are indicated by red arrows.

In bulk diamond, the splitting of the ground state is typically about 50 GHz and the
splitting of the excited state is about 260 GHz [48]. In nanodiamonds, those splittings
and even the central wavelength are very different and vary from centre to centre. It
has been reported that mechanical strain causes the central wavelength of the ZPL
to shift by up to 20 nm at room temperature [89, 48, 94, 123]. Those variations are
thus suggested to arise from the likely presence of strain in nanodiamonds grown on
foreign substrate. The influence of strain on SiV− properties will be further developed
in Chapter 5.

Let us also mention that, in the autocorrelation measurements, a bunching of the
g(2) function indicates a deexcitation process involving a shelving state, the exact
nature of which remains unclear [94].

In more recent experiments, the SiV− centre has been shown to be a good source
of indistinguishible photons through Hong-Ou-Mandel experiments [136]. Furthermore,
the low inhomogeneous broadening among several SiV− centres [137] and the near



14 The silicon-vacancy centre in diamond

lifetime-limited linewidth of focused-ion-beam-implanted centres [138] make it ideal for
interfacing several emitters in a quantum network. Those properties arise from the
inversion symmetry of the SiV− which makes it insensitive to first-order electric field
noise [136, 116]. Finally, the remarkable optical properties of the SiV− centre have
recently been used to realise a bright fibre-coupled source of coherent photons [139]
and a quantum-optical switch at the single-photon level controlled by a single SiV−

centre in a diamond nanobeam [128].

1.3 Electronic spin

Besides optical properties, another crucial aspect of a colour centre for quantum
information processing is the accessibility of a spin degree of freedom used to perform
quantum gates. ESR studies have determined that the ground state of the SiV0 is
characterised by a spin S = 1. They have also shown that a charge state of the centre
different from SiV0 possesses a spin S = 1/2 [140]. Although SiV− is predicted to
possess a spin S = 1/2 [97, 95, 96], this signal could not unambiguously be attributed
to it and the spin state of the SiV− remains elusive.

The confirmation of the spin state of the SiV− would open a large field of potential
applications, especially if this spin is optically accessible. It could be used as a qubit,
a spin-photon interface in a quantum network and most of the applications which
have been demonstrated for NV− centres could potentially be implemented with SiV−,
such as the creation of a quantum register by coupling to a superconducting qubit
[141, 142], entanglement of two spin qubits associated to two distant NV− centres
[65, 66] or entangling nuclear spins by using the NV− electron spin as an ancilla
[143, 68]. Showing evidence of an optically accessible spin state in the SiV− centre
therefore presents considerable interest, especially in association with its remarkable
fluorescence properties.



Chapter 2

Optical signatures of spin

The optical properties of the SiV− centre make it an advantageous source of single
photons to encode and transfer information. In order that the SiV− centre could be
used as a node of a quantum network [86], in addition to those desirable photonic
properties, it requires a storage qubit with which information processing could be
performed. To that purpose, quantum spins are good candidates as qubits, thanks to
their potential to exhibit long coherence times [10]. As we mentioned in Chapter 1,
the neutrally charged SiV has been shown to possess an electronic spin S = 1 and an
electronic spin S = 1/2 is expected from theory [95] for the negatively charged SiV.
However, no electronic spin has yet been evidenced through electron paramagnetic
resonance.

In this chapter, we report optical signatures of an electronic spin S = 1/2 for the
negatively charged SiV centre. Applying a magnetic field to the SiV− results in the
splitting of its optical transitions in a way which is compatible with a spin degree of
freedom. We use resonant excitation in order to selectively populate excited states
and reveal in the subsequent fluorescence optical selection rules which confirm that
the SiV− possesses a spin S = 1/2. The analysis of the SiV− fluorescence under a
magnetic field allows us to design a model which deepens our understanding of this
quantum system. The results presented in the chapter were obtained with Tina Müller
and Christian Hepp, and have been published in Refs. [144, 145].
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2.1 Experimental conditions

2.1.1 Experimental setup

The experimental setup used for this experiment is presented in Fig. 2.1. The cryogenic
part of this setup consists of a helium bath cryostat. The sample is placed into an insert
dipped into liquid helium. The insert contains about 15 mbar of helium gas, acting as
exchange gas and thus allowing the sample to be held at a constant temperature of
approximately 4 K. A confocal microscope is mounted on top of the cryostat and is
used for excitation and detection of SiV− centres. The excitation is performed using
a Ti:sapphire laser (Mira 900, Coherent) tuned to a wavelength of 700 nm. The laser
is coupled to a single mode fibre connected to the excitation arm of the microscope.
In the excitation arm, two 10 nm band-pass filters centred around 700 nm are used
to eliminate Raman scattering generated by the laser in the optical fibre. The laser
is then directed down into the insert and is focused onto the sample by an aspheric
lens with NA = 0.68 (Thorlabs C330TME-B). Piezoelectric stages (ANPxyz 101/LT
xyz-positioners, Attocube) on which the sample is mounted allow us to position the
sample with respect to the aspheric lens. The emitted fluorescence is collected through
the same lens and is sent through a single mode optical fibre from the detection arm of
the confocal microscope to a spectrometer (SpectraPro 2750, Princeton Instruments)
with a 1800 lines/mm grating, giving a spectral resolution of 0.018 nm. The reflected
laser light is used to image the sample surface with a CCD camera in the detection
arm and is filtered out before the optical fibre by long-pass filters to avoid parasitic
reflections in the spectrometer and potential inelastic scattering in the fibre. In the
cryostat, a superconducting coil mounted around the insert where the sample lies,
allows us to apply a tunable magnetic field aligned with the optical axis up to 7 T.

2.1.2 Sample

We study an SiV− ensemble in a 80-100 nm thick diamond film grown as described in
Ref.[133]. The growth was performed by Hadwig Sternschulte and Doris Steinmüller-
Nethl by hot filament chemical vapour deposition (CVD) on a type Ib high pressure
and high temperature (HPHT) parallelepiped diamond, from the company Sumitomo.
A homo-epitaxial growth combined with optimised growth parameters (low methane
fraction (0.26% methane in H2) and slow growth) was employed to minimise strain
and defects in the sample [133]. SiV centres were incorporated during the growth due
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Figure 2.1 Schematic of the experimental setup used for fluorescence measurements at
4 K and under magnetic field.

to contamination of the growth chamber by silicon. The HPHT diamond substrate
and the CVD-grown film are oriented along the [001] crystallographic direction. As a
consequence, the four possible orientations of SiV centres all have the same angle to
the magnetic field applied along [001].

2.2 Magnetic field dependence

We investigate the variation of the optical transitions of an ensemble of SiV− centres
with the magnitude of a magnetic field. We acquire non-resonant photoluminescence
spectra of the zero-phonon line fine structure around 737 nm for values of the applied
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magnetic field from 0 to 7 T. The excitation power from the laser at 700 nm is set below
the saturation of the ensemble of emitters to minimise power broadening. Figure 2.2a
displays the obtained spectra as a function of the applied magnetic field. A two-
dimensional plot with the emission intensity being colour-coded on a logarithmic scale,
as shown in Fig. 2.2b, allows us to follow the evolution of each transition. At zero
magnetic field, we label the four optical transitions from α to δ, as introduced in
Section 1.2. The lines indicated by arrows correspond to SiV− centres comprising a
29Si or a 30Si atom, as mentioned in Section 1.2. As the magnetic field is increased, we
can see a clear splitting of each of the four original transitions, similar to what was
reported by Sternschulte et al. [135]. Since the four possible orientations of the SiV−

centres all make the same angle to the magnetic field, the observed splitting is the
same for all of them and does not correspond to the superposition of several splittings
of different individual SiV− centres. We can count a total of 14 visible transitions with
large disparities in intensity. From the brighter transitions γ and δ, it appears that
each transition splits into four. It is likely to be also the case for transitions α and β

with some transitions being too dim to be observed clearly.
Such a splitting of the transitions can originate from a splitting of the two branches

of the excited state as well as from those of the ground state. However, intensity ratios
of the four-peak structure without magnetic field indicate that ground and excited states
should present the same degeneracy [90]. Consequently, the observed magnetic field
response indicates that each energy level splits into two, which matches the expected
behaviour for S = 1/2. The splitting into four transitions is the result of different
effective gyromagnetic ratios between ground and excited states, as illustrated in
Fig. 2.3, as similar effective gyromagnetic ratios would cause the two central transitions
to overlap. Those results thus support the assumption of a spin S = 1/2. However,
we cannot rule out at this stage that this splitting does not originate from a purely
orbital Zeeman effect.

2.3 Resonant excitation

In order to confirm that the observed magnetic field splitting is caused by a spin S = 1/2,
we need to demonstrate the presence of selection rules in the optical transitions. To
do so, we implement resonant excitation so that we can populate selectively each
individual excited state level and analyse the optical transitions originating from each
of them.
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Figure 2.2 Magnetic field dependence for an SiV− ensemble, with a magnetic field
along the [001] crystallographic axis, thus making an angle of 54.7° to all possible
orientations of the SiV centres. (a) Individual spectra plotted from 0 to 7 T on top
of each other with a constant offset. The excitation power is well below saturation.
(b) Fluorescence spectra plotted as a function of the magnetic field. The intensity is
represented on a logarithmic grey scale. The four transitions at 0 T are labelled from
α to δ. Black arrows indicate transitions from SiV− with 29Si and 30Si, as in Fig. 1.4a.

2.3.1 Resonant excitation in the absence of magnetic field

Using the same experimental setup, we use a tunable diode laser in the region of 737 nm
(DL 100 Pro Design, Toptica) for resonant excitation. The laser is coupled to the same
single mode fibre as the one used for non-resonant excitation and the band-pass filters
around 700 nm in the excitation branch of the microscope are removed. The reflected
laser light is suppressed by a factor up to 2×106 by polarisation rejection [146], using
two crossed polarisers, one in the excitation arm and the other in the detection arm.

We start by implementing resonant excitation of the SiV− ensemble in the absence
of external magnetic field in order to explore potential orbital selection rules. We
tune the laser to excite all four transitions in turn and measure the spectra of the
resulting fluorescence, as shown in Fig. 2.4. The relative intensities of the peaks when
resonantly exciting the higher energy transitions (α and β), which originate from the
upper branch of the excited state, are comparable to those obtained in non-resonant
photoluminescence, indicating that there are no selection rules. When resonantly
exciting transition γ, which originates from the lower branch of the excited state, the
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Figure 2.3 Schematic of the splitting of the SiV− energy levels in the presence of a
magnetic field. Each orbital branch in the ground and excited states splits into two.
Each optical transition at 0 T, illustrated for transition δ, gives rise to four transitions
at non-zero magnetic field, as depicted by red arrows.

obtained spectrum presents relatively weaker intensities for transitions α and β. This
can be explained by the fact that, in order to see fluorescence from transitions α and
β, the system needs to be thermally excited to the upper branch of the excited state.
At 4 K, Boltzmann statistics indicates that the upper branch of the excited state is
about 20 times less populated than the lower one, which is consistent with the observed
relative intensities. This thermalisation in the excited state is relatively fast, as it
occurs before spontaneous emission, the timescale of which is about 1-4 ns [89, 94, 115].

We note that in Fig. 2.4b, the ratio between SiV− and laser photons is about 9 : 1.
This value is estimated by integrating the intensity of the peaks after fitting them with
Lorentzian functions and assuming that the contribution of transition β is comparable
to its relative intensity with the other peaks in non-resonant excitation. This value,
although promising, is far from the 100 : 1 value, achieved for single quantum dots
[146], and shows that efforts are necessary to increase the collection efficiency of SiV−

photons.
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Figure 2.4 Fluorescence spectra of an SiV− ensemble in the absence of magnetic field,
upon resonant excitation of transition α (a), transition β (b), transition γ (c) and
transition δ (d). The large peak on each spectrum corresponds to leakage from the
resonant laser. On each spectrum, the spectrum obtained under non-resonant excitation
is plotted as a grey dashed curve.

We now scan the laser frequency over transition α and integrate the intensity of
transition γ, as shown in Fig. 2.5a. A Lorentzian fit gives a full width at half maximum
of 9.0±0.7 GHz for the absorption linewidth. This is consistent with the inhomogenous
broadening of the ensemble under non-resonant excitation [147] as evidenced by the shift
of transitions when the laser frequency is scanned and resonantly excites sub-ensembles
with slightly shifted resonance frequencies, as shown in Fig. 2.5b.

2.3.2 Resonant excitation in the presence of magnetic field

We now proceed to resonant excitation of Zeeman sublevels in the presence of an
applied magnetic field. We apply a magnetic field of 4 T along the [001] direction, a
value at which most transitions are resolved. For clarity, we label the Zeeman-split
energy levels from 1 to 4 in the ground state and from A to D in the excited state, as
illustrated in Fig. 2.6. At that magnetic field, two of the ground state levels, 2 and 3,
have anticrossed (this will be developed in Section 2.4).

We excite resonantly transition C1, from the ground state level 1 to the excited
state level C. The resulting fluorescence, displayed in red in Fig. 2.7a, comprises only
about half of the transitions visible in the non-resonant spectrum, plotted as a grey
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Figure 2.5 Photoluminescence excitation of an SiV− ensemble. (a) Normalised fluores-
cence intensity of transition γ (purple dots) measured as the laser frequency is scanned
over transition α. The laser power is set below saturation. The obtained absorption
profile of transition α is fitted with a Lorentzian function with a full width at half
maximum of 9.0±0.7 GHz. (b) Fluorescence spectra measured while sweeping the laser
frequency over transition α. The laser position is indicated by a purple dashed line.
Transitions γ and δ are visible and appear to shift with the laser, indicating that SiV−

sub-ensembles with slightly different resonance wavelengths are excited successively.

Excited
state

Ground
state

B = 0 T B = 4 T
1
2
3
4

A
B

C
D

Figure 2.6 Labelling of Zeeman-split energy levels. Ground state levels are labelled
from 1 to 4 and excited state levels from A to D.
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dashed curve. Traced back to the energy levels (see Fig. 2.7b), the visible transitions
originate exclusively from the excited state levels C and A, which both have the same
Zeeman response and are expected to correspond to mS = −1/2. From those levels,
transitions occur towards all the ground states.
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Figure 2.7 Resonant fluorescence of an SiV− ensemble at 4 T. (a) Spectrum obtained
when resonantly exciting transition C1 (red shaded curve). The corresponding spectrum
obtained at 4 T under non-resonant excitation is displayed as a grey dashed curve (not
to scale). Each transition from which fluorescence is observed is labelled according
to its ground and excited state levels, as displayed in (b). (b) Representation of the
energy level diagram at 4 T. Transition C1 is excited (large red arrow) and fluorescence
is observed from a subset of transitions, as indicated by light red arrows. The grey
dashed arrow indicates fast thermalisation from the upper branch of the excited state
to the lower branch.

We repeat this operation and excite transition D4, populating the excited state
level D, which has the opposite Zeeman response and is expected to correspond to
mS = +1/2. The obtained fluorescence spectrum is shown in Fig. 2.8a in blue, alongside
the fluorescence from C1 in red and the non-resonant spectrum as a grey dashed curve.
Once again, only about half of the transitions are visible. The transitions which are
visible when resonantly exciting D4 correspond to those which are not visible when
resonantly exciting C1. This leads to the two fluorescence spectra being complementary
to each other and together reconstructing the non-resonant spectrum. When traced
back to the energy level diagram shown in Fig. 2.8b, the visible transitions when
exciting D4 occur from levels D and B towards all the ground state levels.
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Figure 2.8 Resonant fluorescence of the SiV− ensemble at 4 T. (a) Spectrum obtained
when resonantly exciting transition D4 (blue shaded curve). The spectrum obtained at
4 T under non-resonant excitation is displayed as a grey dashed curve (not to scale)
and the spectrum obtained through resonant excitation of transition C1 is plotted as
a red shaded curve (to scale). Each transition from which fluorescence is observed
is labelled according to its ground and excited state levels, as displayed in (b). (b)
Representation of the energy level diagram at 4 T. Transition D4 is excited (large
blue arrow) and fluorescence is observed from a subset of transitions, as indicated by
light blue arrows. The grey dashed arrow indicates fast thermalisation from the upper
branch of the excited state to the lower branch.

To quantify the complementarity of the two resonant spectra, we fit the transition
peaks with Lorentzian functions and, for each transition, compare the integrated peak
when either C1 (red) or D4 (blue) is excited resonantly, as seen in Fig. 2.9a. The
contrast is clear for all transitions, and even exceeds 9 : 1 for some of them, such as B1,
A1, B2 and B4. For others, the contrast may be reduced due to their low intensity,
such as A3 and A4, or due to the overlap with another peak, such as A2 and B3. The
thermalisation process among excited state levels thus displays a strong selectivity.
This selectivity can only be explained by the fact that those levels have different spin
orientations, which cannot be flipped by the phonons responsible for thermalisation.
This is consequently a clear optical signature that the SiV− possesses a spin S = 1/2.

The fact that transitions occur towards all the ground state levels is however not
expected since optical transitions are dipolar electric and hence ought to be spin-
preserving. We examine the ratios between the intensities of transitions which occur
between ground and excited states with opposite expected spin orientations and those
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Figure 2.9 Comparison of transition intensities under resonant excitation. (a) Relative
intensities of each luminescent transition (indicated along x-axis), depending on whether
transition C1 (red) or transition D4 (blue) is excited resonantly. For each of the two
spectra in Fig. 2.8, the intensity of each transition has been normalised by the total
intensity of all the transitions of the spectrum. Then, this normalised intensity for
one spectrum has been divided by the sum of the normalised intensities of the peak in
both spectra. (b) Intensity ratios between transitions between states with opposite
Zeeman response (supposedly spin-flipping) and transitions between states with the
same Zeeman response (supposedly spin-preserving), for resonant excitation of C1 (red)
and D4 (blue). In (a) and (b), the error bars correspond to the full width at half
maximum of the Gaussian profile of the white noise taken far from the peaks.

between levels with the same expected spin orientations, as shown in Fig. 2.9b. While
some of the ratios are low as expected, the majority of them are relatively high with
even the ratio between B2 (opposite spin orientations) and B4 (same spin orientations)
reaching 1. A deeper investigation into the physics of the SiV− and the exact nature
of its energy states is thus required to fully understand its optical transitions.

2.4 Group theoretical model

We introduce here a model developed by Christian Hepp, Victor Waselowski and
Jeronimo Maze and described in details in Refs.[148, 149]. This model uses group
theory to understand and simulate the physics at play in the SiV− centre.

Similarly to a molecule, the electronic orbitals of the SiV− centre arise from the
interaction between the atomic orbitals of the atoms which constitute it. It was shown
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that in the case of the SiV−, these orbitals are mainly the sp3-orbitals from the dangling
bonds of the six carbon atoms around the silicon atom [99]. The symmetry of the
arrangement of those constitutive atoms imposes restrictions on how their orbitals can
overlap and form the SiV− orbitals. Such restrictions can be predicted by group theory
[150, 151].

The combination of the different symmetry operations under which the SiV is
invariant determine that the SiV belongs to the D3d symmetry group [95]. Among
them, the most notable ones are an inversion symmetry with the inversion centre at
the location of the silicon atom, and a rotation axis of order 3 labelled C3, which we
will refer to as the SiV axis, as represented in Fig. 2.10.

x

y

z

C3

i

Figure 2.10 Representation of the SiV centre, with the silicon atom (purple sphere)
located in the middle of two vacancies (light grey spheres) and the six nearest neighbour
carbon atoms (blue spheres). The SiV has a centre of inversion in the middle of the two
vacancies (orange dot) and a rotation axis of order 3 along the two vacancies (green
arrow), and referred to as the SiV axis. A reference frame is attached to the SiV with
orthogonal axes x, y and z, z being aligned with the SiV axis and x lying in one of the
three planes of symmetry containing two carbon atoms in symmetric positions with
regards to the centre of inversion.

The D3d symmetry group is associated with a set of irreducible representations
corresponding to the possible linear combinations of atomic orbitals that can form
the SiV− orbitals. Among them, density functional theory simulations show that the
ground and excited states of the SiV− involved in optical transitions correspond to
orbitals of symmetry Eg and Eu respectively [96, 99]. They are referred to as eg and
eu orbitals and have each a twofold orbital and a twofold spin degeneracy.

By combining those results with the analysis of the spectral characteristics of the
SiV− fluorescence, a Hamiltonian can be constructed for the ground state and for the
excited state. In both cases, this Hamiltonian comprises the following components: a
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spin-orbit coupling, the Jahn-Teller effect and the Zeeman effect, for each of which
group theory allows one to determine their vanishing matrix elements. For the spin-orbit
coupling λL⃗ · S⃗, where λ is the coupling constant, L⃗ is the orbital momentum and S⃗ is
the spin, a group theoretical analysis shows that the Lx and Ly terms can only affect
states of symmetry A1g or A2u, while only the Lz term acts on the E-symmetric orbitals
[148] (the z-component being taken along the SiV axis and the x- and y-components
are orthogonal to it, as shown in Fig. 2.10). This leads to a spin-orbit coupling of the
form λLzSz. The spin-orbit coupling thus acts in the SiV− as an inherent quantisation
axis for the spin along the SiV centre axis. This results in the following spin-orbit
Hamiltonian, when expressed in the basis {|ex ↑⟩ , |ex ↓⟩ , |ey ↑⟩ , |ey ↓⟩} (where ex and
ey constitute the orbital basis, with e standing for eg in the ground state and eu in the
excited state, and |↑⟩ and |↓⟩ form the spin basis, with the spin aligned along z):

HSO =


0 0 −iλg/u/2 0
0 0 0 iλg/u/2

iλg/u/2 0 0 0
0 −iλg/u/2 0 0

 (2.1)

where λg/u are the spin-orbit coupling constants in the ground (g) and excited states
(u).

Its eigenvalues ±λ/2 and corresponding eigenstates can be deduced:

+ λ

2


|e+ ↑⟩ = − 1√

2 (|ex ↑⟩+ i |ey ↑⟩)

|e− ↓⟩ = 1√
2 (|ex ↓⟩− i |ey ↓⟩)

(2.2)

− λ

2


|e+ ↓⟩ = − 1√

2 (|ex ↓⟩+ i |ey ↓⟩)

|e− ↑⟩ = 1√
2 (|ex ↑⟩− i |ey ↑⟩)

(2.3)

It is important to notice that the spin-orbit interaction, despite acting on the spin and
the orbitals, does not lift the spin degeneracy, as shown in Fig. 2.11.

Another contribution to the Hamiltonian is the dynamic Jahn-Teller effect. It
consists in the coupling of electronic orbitals with the vibrational modes of the nuclei
(the six carbon atoms and the silicon atom forming the SiV), resulting in a coupling
between the different electronic orbitals. Following a group theoretical analysis, it can
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Figure 2.11 Energy levels and eigenstates of the spin-orbit Hamiltonian. The spin-orbit
Hamiltonian partially lifts the fourfold degeneracy of the initial ground and excited
states (orbital twofold degeneracy and spin twofold degeneracy) without lifting the
spin degeneracy as eigenstates of different spin projections have the same energy.

be expressed in the {|ex ↑⟩ , |ex ↓⟩ , |ey ↑⟩ , |ey ↓⟩} basis as:

HJT =


ξx 0 ξy 0
0 ξx 0 ξy

ξy 0 −ξx 0
0 ξy 0 −ξx

 (2.4)

where ξx/y are the Jahn-Teller coupling strengths for the x and y components and their
values can differ between the ground and excited states.

Both the spin-orbit coupling and the Jahn-Teller effects are responsible for lifting
the twofold orbital degeneracy of the eg ground state and the eu excited state, each
with a splitting

√
λ2

g/u +4ξ2
g/u, with ξg/u =

√
ξ2

x + ξ2
y the strengths of the Jahn-Teller

coupling in the ground and excited states. This leads to the four energy levels in the
absence of magnetic field.

It is worth noting that the Hamiltonian of the Jahn-Teller effect is very similar
to that of uniaxial strain (see Section 5.3). The model thus does not allow us to
distinguish between a dynamic Jahn-Teller effect and a possible internal strain of SiV
centres, possibly linked to the large size of the silicon atom. A previous experiment
on the evolution of the optical transitions of SiV− upon application of uniaxial strain
along the [001]-direction had extrapolated a negative stress value of −60 MPa [135].
However, this value was extracted without consideration for the spin-orbit interaction
and was thus attributing the zero-field splitting entirely to strain. A study of the
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optical transitions of SiV− at lower temperatures at which a dynamic Jahn-Teller effect
might be quenched could contribute to distinguish which effect is at play.

Finally, the Zeeman effect HZee is introduced. Its orbital part only includes the Lz

term (for the same reason as for the spin-orbit coupling) and is largely quenched by the
Jahn-Teller interaction, as is commonly observed in solid-state defects [148, 152, 153].
It is of the form:

HZee,L = fγL


0 0 iBz 0
0 0 0 iBz

−iBz 0 0 0
0 −iBz 0 0

 (2.5)

where f = 0.1 is the quenching factor of the orbital gyromagnetic ratio γL = µB/h̄

(deduced from comparison to experimental spectra, as explained below), and Bz is the
component of the external magnetic field along z.

The spin part of the Hamiltonian is:

HZee,S = γS


Bz Bx − iBy 0 0

Bx + iBy −Bz 0 0
0 0 Bz Bx − iBy

0 0 Bx + iBy −Bz

 (2.6)

where γS = 2µB/h̄ is the electron gyromagnetic ratio, and Bx and By are the components
of the external magnetic field along x and y respectively. We can see that the external
magnetic field has components in Bx and By coupling different spin projections as
defined by the spin-orbit interaction. The magnetic field thus introduces some mixing
of the spin. It can be practical to think of the external magnetic field and of the
spin-orbit coupling as two competing quantisation axes for the SiV− spin, along B⃗ for
the magnetic field and along the SiV symmetry axis for the spin-orbit coupling.

The model then consists in determining the eigenvalues and eignestates of the total
Hamiltonian Htot = HSO + HJT + HZee. The respective contributions of the three
physical effects and their parameters are extracted by fitting the energy differences of
the simulated levels in the excited and ground states and the experimentally measured
optical transitions, as shown in Fig. 2.12a for the SiV− ensemble with the magnetic
field at an angle of 57.4° to the SiV axes. While the parameters of the Zeeman effect
are trivial to extract especially at high magnetic fields, the relative contributions
of the spin-orbit and Jahn-Teller interactions are determined by the evolution of
the transition frequencies with the magnetic field as the position and energy of the
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level anticrossing depends on the relative strengths of the spin-orbit coupling and
the transverse component of the magnetic field: for a larger spin-orbit interaction,
the anticrossing occurs at higher values of the magnetic field and its energy is also
higher. From this, it appears that the spin-orbit coupling, with coupling constants
λg ≈ 45GHz and λu ≈ 255GHz is a very strong component in the Hamiltonian and is
dominant over the Jahn-Teller effect (ξg ≈ 11GHz and ξu ≈ 20GHz) in determining
the zero-field orbital splitting. The intensity of the transitions can also be simulated.
Considering that these transitions are dipolar electric (the SiV is much smaller than
the wavelengths of the fluorescence), their intensity is proportional to the optical
dipole matrix elements ⟨j|Dx,y,z|i⟩, where Dx,y,z are the matrices of the electric dipole
D⃗ = −er⃗ (e is the elementary charge and r⃗ = (x,y,z)) and |i⟩ and |j⟩ are the initial and
final simulated eigenstates respectively. These matrix elements are multiplied by the
Boltzmann populations of the energy levels involved. Such a reconstructed fluorescence
is shown in Fig. 2.12b. The intensities of the transitions depend on the orbital and
spin components of the eigenstates, in particular, dipolar electric transitions between
states with opposite spin orientations are forbidden.

This fitting procedure allows us to deduce the energy levels of the SiV−, as shown
in Fig. 2.13, where excited states are labelled from A to D and ground states from 1
to 4. We can see that the avoided crossings in the fluorescence spectra arise from the
ground states labelled |2⟩ and |3⟩ undergoing an avoided crossing at around 1.5 T.

It is also possible to simulate the tomography of the different eigenstates by
plotting the norms of the components of their density matrices, as exemplified in
Fig. 2.14, at a magnetic field of 4 T at an angle of 57.4°. Due to the dominance of
the spin-orbit coupling, the SiV− states are expressed in the basis of the spin-orbit
eigenstates {|e+ ↑⟩ , |e+ ↓⟩ , |e− ↑⟩ , |e− ↓⟩}. We can see that while the excited state
levels are strongly tagged by one of the two spin orientations along the SiV axis z,
the ground state levels display spin orientations which correspond to superpositions of
the original spin-orbit-dictated spin orientations. This arises due to the competition
between external magnetic field and spin-orbit coupling to fix an effective quantisation
axis for the spin. As the spin-orbit coupling is approximately five times stronger in the
excited state than in the ground state (about 250 GHz vs 50 GHz respectively), the
spin remains mainly dictated by the spin-orbit interaction in the excited state, while
the relative importance of the external field is much stronger in the ground state. As
a consequence, the effective quantisation axes differ between the ground and excited
states resulting in all optical transitions being allowed in this configuration.
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Figure 2.12 Simulation of SiV− fluorescence spectra for a magnetic field at an angle of
54.7° to the SiV axis. (a) Experimental magnetic field dependence of the fluorescence
spectra of the SiV− ensemble (as shown in Fig. 2.2) with simulated transition energies
superimposed as white curves. Simulated transitions are labelled according to their
excited and ground state levels, as seen in Fig. 2.13. (b) Fully simulated fluorescence
spectra as a function of the applied magnetic field.

2.5 Influence of the magnetic field orientation

The competition between spin-orbit coupling and external magnetic field for determining
the effective quantisation axis of the spin has a considerable impact on the optical
spectrum of the SiV− as well as on how optical photons and spin can be interfaced.
In order to gain experimental confirmation of this phenomenon, we investigate the
influence of the orientation of the magnetic field on the fluorescence spectrum of the
SiV−, in particular when aligned with different crystallographic axes, as labelled in
Fig. 2.15. The following experiment has been performed with assistance from Tillman
Godde in the laboratory of Prof. Alexander Tartakovskii (University of Sheffield).

We study a single SiV− centre in a high-purity ([N ]0s < 5 ppb, [B] < 1ppb) diamond
produced by chemical vapour deposition (electronic grade from Element Six) with a
[001] surface orientation. The sample is at a temperature of 4 K in a helium bath
cryostat equipped with two orthogonal superconducting coils allowing to apply a
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Figure 2.13 Simulation of the magnetic field dependence of SiV− energy levels for a
magnetic field at an angle of 54.7° to the SiV axis, as extracted from the fit to the
experimental spectra.

magnetic field of up to 4.5 T at any angle within a vertical plane. The optical part of
the setup is similar to that described in Section 2.1.

We first measure the magnetic field dependence of the fluorescence spectrum for a
magnetic field aligned along the [001] crystallographic direction and thus making an
angle of 54.7° to the SiV axis, as was the case for the SiV− ensemble in Section 2.2.
Figure 2.16 diplays the experimentally obtained variation of the optical transitions with
magnetic field strength (Fig. 2.16a), alongside the simulated transitions superimposed
to the experimental spectra (Fig. 2.16b) and the fully simulated spectra (Fig. 2.16c)
using the group theoretical model described above. From the fit of the model to the
experimental spectra, we determine the parameters of the Hamiltonians as well as the
magnetic field dependence of the eigenstates and energy levels of the SiV−, as diplayed
in Fig. 2.17. We notice that the response to the applied magnetic field is very similar
to the one measured with the ensemble, although not all transitions are visible, most
likely due to the overall low counts from the single SiV− compared to the ensemble.
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Figure 2.14 Simulated tomography of the SiV− eigenstates at 4 T for an angle of 54.7°
between the magnetic field and the SiV axis. For each state, labelled as in Fig. 2.13,
the histograms represent the norms of the components of its density matrix expressed
in the eigenbasis of the spin-orbit coupling {|e+ ↑⟩ , |e+ ↓⟩ , |e− ↑⟩ , |e− ↓⟩}.

Figure 2.15 Schematic of the SiV and the main crystallographic axes.

In order to investigate the correlation between spin state and optical selection rules,
we extract from the simulated eigenstates their spin projection in the following way.
The eigenstates of the SiV− determined through the group theoretical model, are of
the form

∣∣∣Ψg/u

〉
= α

∣∣∣eg/u,+ ↑
〉

+β
∣∣∣eg/u,+ ↓

〉
+γ

∣∣∣eg/u,− ↑
〉

+ δ
∣∣∣eg/u,− ↓

〉
, where α, β, γ

and δ are complex numbers, e± refer to orbital components of the spin-orbit basis
states and ↑,↓ to their spin Sz component with the quantisation axis taken along the
axis of the SiV centre. The subscripts g and u correspond to ground and excited states
respectively. We extract the spin Sz component of the eigenstates of the SiV− by using



34 Optical signatures of spin

Magnetic Field (T)

T
ra

ns
iti

on
 F

re
qu

en
cy

 (
G

H
z)

0 1 2 3 4
−300

−200

−100

0

100

200

300

A1
B1

C1D1

A2

B2

C2

D2

A3

B3

C3

D3

A4 B4

C4
D4

A1
B1

C1D1

A2

B2

C2

D2

A3

B3

C3

D3

A4 B4

C4
D4

Magnetic Field (T)
0 1 2 3 4

Magnetic Field (T)
0 1 2 3 4

In
te

ns
ity

 (
a.

u.
)

0.01

0.1

1a b c

Figure 2.16 Magnetic field dependence of the fluorescence spectra of a single SiV−

centre for a magnetic field along the [001] crystallographic axis, corresponding to
an angle of 54.7° to the SiV axis. (a) Experimental spectra alone, (b) overlapped
with simulated transitions (white lines). (c) Fully simulated spectra as a function of
magnetic field.

the projector P = |↑⟩⟨↑|+ |↓⟩⟨↓|, which projects the eigenstate onto the spin subspace:

P
∣∣∣Ψg/e

〉
= (α +γ) |↑⟩+(β + δ) |↓⟩ = c↑ |↑⟩+ c↓ |↓⟩ (2.7)

We can rewrite it as P
∣∣∣Ψg/e

〉
= cos(θ/2) |↑⟩+ eiφ sin(θ/2) |↓⟩ to represent this spin as

a vector on a Bloch sphere [1, 154], where the North pole is |↑⟩, the South pole is
|↓⟩, and θ with 0 ≤ θ ≤ π and φ with 0 ≤ φ < 2π are the colatitude (angle from the
North pole) and the longitude respectively. For convenience, we represent the spin
projection of each eigenstate using only the colatitude, i.e. the angle between the
spin and the z-axis (SiV axis), as illustrated in Fig. 2.17. We can see that the spin in
the excited states remains roughly aligned with the SiV axis, whereas in the ground
states, it is much more tilted away from it. This, as mentioned earlier, is the result of
the competition between the spin-orbit along the SiV axis and the magnetic field to
determine an effective quantisation axis for the spin. The spin-orbit coupling being
about five times stronger in the excited state remains dominant, while the impact of the
Bx and By components of the external magnetic field is in comparison stronger in the
ground state and "tilts" the spin away from the SiV axis. Consequently, the effective
spin quantisation axes are different between ground and excited states. In the basis of
the ground state spin, the exited state levels are characterised by superpositions of
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Figure 2.17 Magnetic field dependence of the energy levels for a magnetic field along
the [001] crystallographic axis (54.7° with the SiV axis), corresponding to the spectra
in Fig. 2.16. Optical transitions are represented as vertical black arrows. The spin
projections of each level is illustrated as red arrows, as described in the text. For
clarity, we do not tilt the spin arrows proportionnally to the applied magnetic field.

spin, and inversely in the basis of the excited state spin. There can thus be dipolar
electric transitions between all the levels. It is worth noting that the avoided crossing
between levels |2⟩ and |3⟩ is caused by the components of the magnetic field which are
not aligned with the SiV axis, namely Bx and By.

We now repeat the same experiment for a magnetic field along the [111] crystallo-
graphic direction and thus aligned with the SiV axis. The experimental and simulated
spectra are displayed in Fig. 2.18. We highlight the fact that in the simulation, only the
angle of the magnetic field was modified, while all the other parameters were left un-
changed. The experimental spectrum (Fig. 2.18a) shows only few transitions with little
dependence on magnetic field. From the simulated transitions (Fig. 2.18b), it appears
that several transitions, such as A4 or B1, are not visible experimentally. When traced
back to the energy levels, as depicted in Fig. 2.19, we notice that those transitions
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occur between states of opposite spin projections. Indeed, due to the alignment of
the magnetic field with the SiV axis, the spin quantisation axis is the same in the
ground and excited states, along the SiV axis. Dipolar electric transitions are thus only
allowed between states with the same spin orientations, the others being forbidden. In
this experiment, above 2 T, some normally forbidden transitions, such as B2 and C3,
are visible, due to a slight misalignment of the magnetic field by approximately 10°.
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Figure 2.18 Magnetic field dependence of the fluorescence spectra of a single SiV−

centre for a magnetic field close to alignment with the SiV axis ([111] crystallographic
axis). (a) Experimental spectra alone, (b) overlapped with simulated transitions (white
lines). (c) Fully simulated spectra as a function of magnetic field. An angle of 10°
between magnetic field and SiV− axes fits best the experimental data.

Finally, we apply the magnetic field along the [1̄1̄1] axis, thus making an angle of
109.5° to the SiV axis. Figure 2.20 displays the experimental and simulated spectra
and Fig. 2.21 the corresponding energy levels. In this configuration, the magnetic
field has a large transverse component with respect to the SiV axis. Hence the spin
projections of the SiV− states are even more tilted than for a [001]-orientation and
the difference in quantisation axes between ground and excited states is increased.
The result of this is that the state selectivity of dipolar electric transitions is further
reduced and transitions have more similar intensities, as can be seen by comparing
Fig. 2.16c and Fig. 2.20c.

In conclusion, we verify experimentally the validity of the group theoretical model.
In particular, we confirm the role of the spin-orbit coupling as an inherent quantisation
axis for the spin and its competition with the external magnetic field to fix effective
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Figure 2.19 Magnetic field dependence of the energy levels for a magnetic field at an
angle of 10° to the [111] crystallographic axis, corresponding to the spectra in Fig. 2.18.
Optical transitions are represented as vertical black arrows. The spin projections of
each level is illustrated as red arrows, as described in the text.

spin quantisation axes in the ground and excited states. The consequences for the
optical transitions is their relative intensity dependence upon magnetic field orientation.
To summarise this point, we simulate the evolution of optical transitions as a function
of the magnetic field angle in Fig. 2.22 for two values of the magnetic field. The most
striking feature is the disappearance of several optical transitions as the angle goes to
zero. These transitions would occur between states of different spin orientations along
the same quantisation axis and are therefore forbidden.

2.6 Conclusion

We have shown that, in the presence of an external magnetic field, the four transitions
forming the SiV− zero-phonon line further split, leading to a total of 16 transitions. This
splitting, although compatible with an electronic spin S = 1/2, is not a sufficient proof.
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Figure 2.20 Magnetic field dependence of the fluorescence spectra of a single SiV−

centre for a magnetic field along the [1̄1̄1] crystallographic axis, corresponding to
an angle of 109.5° to the SiV axis. (a) Experimental spectra alone, (b) overlapped
with simulated transitions (white lines). (c) Fully simulated spectra as a function of
magnetic field.

Through the implementation of resonant excitation, we have selectively populated
excited state levels. The subsequent fluorescence displays clear optical selection rules,
evidencing a spin-selective thermalisation among the excited state levels and thus
confirming that the SiV− centre possesses a spin S = 1/2. However, the presence of
optical transitions between levels of a priori opposite spin orientations has led to the
necessity to develop a model of the system. A model based on group theory not only
allows one to reproduce the magnetic field dependence of the optical spectra measured
experimentally, but also suggests a peculiar form of the spin-orbit coupling. Indeed, in
the case of the SiV−, the spin-orbit coupling provides an inherent quantisation axis for
the spin along the SiV axis. This results in spin mixing when a magnetic field is applied.
This mixing can be thought of as different effective spin quantisation axes between
ground and excited states, due to different strengths of spin-orbit coupling. Exploring
the dependence of the fluorescence spectra on the angle of the applied magnetic field,
we have confirmed this phenomenon and shown that when the magnetic field is aligned
with the SiV axis, only half of the transitions are optically allowed and correspond to
cycling transitions, whereas a large angle between magnetic field and SiV axis leads to
all possible transitions being allowed.
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Figure 2.21 Magnetic field dependence of the energy levels for a magnetic field along
the [1̄1̄1] crystallographic axis (109.5° with the SiV axis), corresponding to the spectra
in Fig. 2.20. Optical transitions are represented as vertical black arrows. The spin
projections of each level is illustrated as red arrows, as described in the text. For
clarity, we do not tilt the spin arrows proportionnally to the applied magnetic field.

Those results shed light on the physics of the SiV− centre, which is essential for
understanding and taking advantage of its properties. From the point of view of
quantum information processing, the presence of an optically accessible spin which
can be used as a quantum bit makes the SiV− centre a promising building block for a
quantum network. This optical accessibility is indeed crucial for transfer of quantum
information between stationary qubits (spins) processing and storing this information
and flying qubits (photons) transporting it with minimum losses between processing
nodes. Next steps are then to evaluate whether this spin is not only accessible but also
controllable by light and evaluate for how long it could store and process information.
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Figure 2.22 Simulated fluorescence spectra of the SiV− as a function of the angle
between the magnetic field and the symmetry axis of the SiV at (a) 2 T and (b) 7 T.
When the magnetic field is not aligned with the SiV axis, "spin-forbidden" transitions
A2, A4, B1, B3, C2, C4, D1 and D3 become visible. In D3d symmetry the Zeeman
perturbation of the SiV− energy levels is cylindrically symmetric and therefore only
depends on the azimuthal angle of the magnetic field with respect to the high symmetry
axis of the emitter.



Chapter 3

Coherent population trapping of a
single SiV− centre

The evidence that the SiV− possesses a spin makes this colour centre a candidate for
quantum information processing as this spin can be used as a quantum bit. The next
question is then that of the coherence properties of this spin, as this will shape its
usability for quantum information processing. Furthermore, the direct optical access
to the spin degree of freedom is also promising for combining spin and desirable optical
properties. This aspect thus needs further investigation as the ultimate goal is to be
able to transfer information from photon to spin and inversely with a view to using
the SiV− as a spin-photon interface in a quantum network.

In this chapter, we build upon resonant excitation of the SiV− centre to achieve
coherent population trapping. This technique not only addresses the potential for
all-optical control of the spin, but also provides a measurement of the spin coherence.
Those results were obtained with Jonas N. Becker, with assistance from Carsten Schulte,
Carsten Arend and Christian Hepp, and have been published in Ref. [145].

3.1 Theoretical background

Coherent population trapping (CPT) is a phenomenon based on the coherent interaction
between light and the energy levels of a quantum system [155]. We introduce here the
fundamental concepts of this phenomenon as well as how to use CPT to extract some
coherence properties of the quantum system.
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3.1.1 Coherent interaction of a two-level atom and an elec-
tromagnetic field

Let us consider an atom with ground and excited states |g⟩ and |e⟩ (of energies
Egr and Eex respectively) and a monochromatic electromagnetic field. In the dipole
approximation, the interaction Hamiltonian between the driving field and the atom is
that of an electric dipole d⃗ = −er⃗ (−e is the electron charge and r⃗ is the position of the
electron with respect to the centre of mass of the atom) in the electric field E⃗ = E⃗0 cos(ωt)
oscillating at the frequency ω. This interaction is of the form Hint = −d⃗ · E⃗ [156, 154].
The original states |g⟩ and |e⟩ are no longer stationary and the system evolves in time
as:

Ψ(t) = cg(t) |g⟩+ ce(t) |e⟩e−iω0t (3.1)

where ω0 = (Eex −Egr)/h̄, and the coefficients cg and ce vary in time and are such that
|cg|2 + |ce|2 = 1. In the rotating-wave approximation, the time-dependent Schrödinger
equation yields [156, 154]:

i
dcg

dt
= ce exp{i(ω −ω0)t} Ω

2 (3.2)

i
dce

dt
= cg exp{−i(ω −ω0)t} Ω∗

2 (3.3)

where Ω = ⟨g|er⃗ · E⃗0|e⟩/h̄ is the Rabi frequency quantifying how strongly the transition
dipole of the atom and the electric field couple. By solving the time-dependent
Schrödinger equation with the initial condition cg(0) = 1 and ce(0) = 0, we obtain that
the probability of being in the excited state is:

|ce|2 = Ω2

Ω2 + δ2 sin2
(√

Ω2 + δ2 t

2

)
(3.4)

with δ = ω −ω0 is the frequency detuning between the electromagnetic wave and the
atomic transition. When in resonance (δ = 0), we obtain:

|ce|2 = sin2
(

Ωt

2

)
(3.5)

The population oscillates between the ground and the excited state. Starting from the
ground state, the population is fully transferred to the excited state for an electromag-
netic wave of duration ∆t such that Ω∆t = π. Such an electromagnetic pulse is thus
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called a π-pulse and inverts the population from one state to the other. Similarly, a
π/2-pulse such that Ω∆t = π/2 creates an equal superposition between |g⟩ and |e⟩.

3.1.2 Theory of coherent population trapping

Let us now consider an atom-like system with three energy levels: two ground states
|1⟩, |2⟩ and one excited state |3⟩ (at the energies E1, E2 and E3 respectively) forming
a Λ-type scheme and two electromagnetic fields of frequencies ω1 and ω2 driving
transitions between |1⟩ and |3⟩ and between |2⟩ and |3⟩ respectively, as illustrated in
Fig. 3.1.

3|↑		

Ω1 Ω2

1|↑		
2|↑		

ω1 ω2

Δ1
Δ2

Figure 3.1 Representation of a Λ-scheme for CPT. Two electromagnetic fields of
frequencies ω1 and ω2 drive the transition between |1⟩ and |3⟩ with a Rabi frequency Ω1
and between |2⟩ and |3⟩ with a Rabi frequency Ω2 respectively. ∆1 and ∆2 correspond
to the detunings of the respective electromagnetic fields.

Using the same approach as for the two-level atom, the driving field ω1 generates
oscillations between states |1⟩ and |3⟩ with a Rabi frequency Ω1 and the driving field
ω2 generates oscillations between states |2⟩ and |3⟩ with a Rabi frequency Ω2. In the
basis {|1⟩ , |2⟩ , |3⟩}, the matrix of the Hamiltonian for the whole system in the rotating
frame (at frequency (E1/h̄)+ω1) can be written as [155]:

Hint = h̄


0 0 Ω1/2
0 −(∆1 −∆2) Ω2/2

Ω1/2 Ω2/2 −∆1

 (3.6)

where ∆1 and ∆2 are the driving field frequency detunings as indicated in Fig. 3.1.
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The eigenstates of this Hamiltonian at the two-photon resonance ∆1 = ∆2 = ∆ are
[155]:

|B+⟩ = sin(Θ)sin(Φ) |1⟩+cos(Φ) |3⟩+cos(Θ)sin(Φ) |2⟩ (3.7)
|B−⟩ = sin(Θ)cos(Φ) |1⟩− sin(Φ) |3⟩+cos(Θ)cos(Φ) |2⟩ (3.8)
|D⟩ = cos(Θ) |1⟩− sin(Θ) |2⟩ (3.9)

with:

tan(Θ) = Ω1
Ω2

(3.10)

tan(2Φ) =

√
Ω2

1 +Ω2
2

∆ (3.11)

We can see that state |D⟩ corresponds to a superposition of the two ground states
only and does not include the excited state. In resonance ∆ = 0, it becomes:

|D⟩ = |Ω2|√
Ω2

1 +Ω2
2

|1⟩− |Ω1|eiφ√
Ω2

1 +Ω2
2

|2⟩ (3.12)

where φ is the relative phase between the two driving fields. In contrast, the two other
eigenstates |B+⟩ and |B−⟩ have a component with the excited state. As a consequence,
|B+⟩ and |B−⟩ can be destroyed by spontaneous emission from their excited state
component, whereas |D⟩ cannot lead to fluorescence and can thus be called a "dark
state", as opposed to the other two "bright states". This system can thus be thought
of as a radiative cascade down eigenstates. The cascade gets interrupted when the
system falls into state |D⟩ and remains "trapped", a phenomenon analogous to optical
pumping and responsible for the term "coherent population trapping". An important
point is that the dark state can be destroyed by dephasing between the two ground
states, which leads to the restart of the radiative cascade.

This process is most easily observed in the frequency domain. Having the frequency
of one of the driving fields fixed, the frequency of the other is scanned. At the two-
photon resonance, i.e. when both optical fields have the same detuning from the
excited state, the system is pumped into the dark state and the fluorescence intensity
displays a dip. The width of the CPT dip is directly proportional to the decay rate out
of the dark state, and thus inversely proportional to the dephasing time T ∗

2 between
the two ground states. One can make an analogy between leaving the dark state and
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spontaneous emission, whereby the lifetime of the dark state determines the width of
the transition in the frequency domain, with the "full width at half maximum" of the
CPT dip corresponding to 1/(2πT ∗

2 ), in the absence of external dephasing mechanisms
(which includes being in the limit of zero optical power).

3.2 Experimental conditions

3.2.1 Experimental setup

All the measurements are performed at a temperature of 4 K. The cryogenic setup is
the same as that described in Section 2.1 and consists of a helium bath cryostat into
which the diamond sample is mounted. A stack of three piezoelectric stages allows
us to move the sample with respect to an aspheric lens with NA=0.68 positioned in
the cryostat above the sample. A superconducting coil surrounding the sample space
allows us to apply a tunable magnetic field from 0 to 7 T. Resonant excitation is
performed using two tunable diode lasers (Toptica DL 100 pro design and Toptica
DL pro). They are both independently stabilised in frequency through feedback from
a wavelength meter (High Finesse WS-U). The optical setup consists of a confocal
microscope positioned on top of the cryostat. In detection, fluorescence from the SiV−

is separated from the resonant laser light using a home-built monochromator with a
grating of 1600 grooves/mm in "4f" configuration, and sent to an avalanche photodiode
(APD). This detection method separates light in frequency instead of polarisation as in
Chapter 2. It is more adapted to the simultaneous suppression of two laser fields and
is much more resilient to changes of the optical parameters such as laser frequencies
and polarisations, but does not allow for detection of photons from resonantly excited
transitions. As the dark state depends on the complex Rabi frequencies from both
driving fields, the laser intensities are stabilised with acousto-optic modulators (AOM).
The relative phase of the two lasers is not stabilised. The two lasers have a mutual
coherence of about 5 MHz for integration times between 0.5 s and 8 s typically used
during our CPT measurements. The impact of this mutual coherence will be discussed
in Section 3.4.

3.2.2 Sample

The sample used for those measurements is a (111)-oriented type IIa high-pressure-
high-temperature (HPHT) diamond provided by Dr. Matthew Markham (Element 6).
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The sample has been implanted with 28Si by ion implantation at an energy of 900 keV,
resulting in an average implantation depth of 500±50 nm as evaluated through a
SRIM algorithm [109] (ion implantation performed by Dr. Detlef Rogalla at RUBION,
Bochum, Germany). Implantation doses have been varied from 109 to 1012 ions·cm−2.
The sample was subsequently annealed at 1000 ◦C in vacuum for 3 hours to allow
vacancies, both naturally present and implantation-induced, to become mobile and
thus form SiV centres or reach the sample surface and be eliminated. This annealing
step creates a light graphitisation of the sample surface and thus requires a subsequent
oxidation step in air for 1 hour at 460 ◦C to eliminate the graphite layer. Single SiV−

centres can be found in the 109 ions·cm−2 region.
Since diamond has a high refractive index of n = 2.4, the large index mismatch at

the interface with air results in most of the photons emitted in the diamond by an
SiV− centre to undergo total internal reflection. We circumvent this effect by etching
hemispherical solid immersion lenses (SIL) into the sample surface. Such structures
have previously been reported to increase collection efficiency by a factor 10 [157, 158].
The photons emitted by an SiV− located at the centre of a SIL reach the SIL surface
with an angle of incidence of zero which maximises the probability of transmission.
These SILs have been created through focused ion beam milling (FIB) (see Fig. 3.2),
where a beam of gallium ions is focused onto the diamond surface to etch it (FIB
milling performed by C. Pauly). After the milling step, graphite and gallium residues
incorporated into the diamond surface are removed by acid cleaning in a piranha
solution of 2/3 sulfuric acid and 1/3 30 % hydrogen peroxide. Each SIL is carved with
a radius of 500 nm to match the implantation depth of silicon atoms, as shown in
Fig. 3.2b. SILs are arranged in arrays randomly located in the implantation area where
single centres could be isolated. SiV− centres are thus randomly located within the
SILs.

3.2.3 Characterisation of the SiV− centre studied

As the surface of the sample is orthogonal to the <111> crystallographic axis, the
optical axis is aligned with the [111] direction. As the optical dipole of the SiV− is
mainly along its symmetry axis, the fluorescence from centres aligned with the external
field is not efficiently collected and, as a consequence, those centres are not visible. All
the visible emitters thus make an angle of 109.5±1.0° (angle between [1̄1̄1] and [111]
directions) to the optical axis and hence to the applied magnetic field. At such an
angle, all optical transitions are allowed, as shown in Section 2.5.
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r = 500 nm

Figure 3.2 Scanning electron microscope (SEM) images of solid immersion lenses (SILs)
etched into the diamond surface. (a) Nine arrays of 10 × 10 SILs have been created
using focused ion beam (FIB) milling. (b) The 500 nm radius of the hemispherical
SILs matches the implantation depth of the SiV− centres, each SIL is surrounded by a
300 nm wide trench to avoid light scattering at the edges of the FIB cut.

The SIL arrays are scanned under non-resonant excitation in order to identify bright
emitters. The SiV− centre chosen for this experiment is located at the centre of a
SIL (as shown in Fig. 3.3) which makes it almost an order of magnitude brighter than
neighbouring centres (up to 3 · 105 counts/s close to saturation under non-resonant
excitation).

A
P
D
D
et
ec
tio
n
R
at
e
(H
z)

Figure 3.3 SEM image of the solid immersion lens array superimposed with a corres-
ponding fluorescence intensity image (excitation 690 nm, detection 730-750 nm).

We measure the lifetime of the excited state of the centre through a time-correlated
single photon counting experiment, as shown in Fig. 3.4. A fit with a single exponential
decay gives a value of 1.66 ns. This lifetime is used to determine the transition rates in
the master equation model described below in Section 3.4.
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Figure 3.4 Excited state lifetime measured by time-correlated single photon counting
on the SiV− centre studied. The relaxation is fitted using a single exponential giving a
decay time of 1.662±0.006 ns.

We characterise the SiV− centre chosen for this experiment under non-resonant
excitation at 660 nm. The evolution of the fluorescence spectra as a function of the
applied magnetic field is shown in Fig. 3.5a. Using, the group theoretical model
described in Chapter 2 Section 2.4, we fit the evolution of the transitions (see Fig. 3.5b
and c) and deduce that of the energy levels, as seen in Fig. 3.6. From the spectrum at
0 T, we can extract that the ground state orbital splitting is about 100 GHz instead of
the usual 50 GHz. As will be investigated in Chapter 5 Section 5.3, this is the result of
crystal strain, which is most likely induced by the FIB milling.

Sweeping the frequency of a resonant laser over the transition labelled D1 in Fig. 3.5
under a magnetic field of 3 T shows that a second SiV− centre, dimmer than the other
one, is also excited within the lens focal spot, as shown in Fig. 3.7. This second emitter
is responsible for the extra faint transitions in Fig.3.5a. The ability to resolve those
two emitters is the result of their slightly different strain (approximately 2 % ground
state splitting difference).
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Figure 3.5 Magnetic field dependence of optical transitions. (a) Experimental fluores-
cence spectra as a function of the applied magnetic field for the SiV− centre studied.
The magnetic field has a relative angle of 109.5° to the SiV− axis. The colour scale
indicates the relative fluorescence intensity in logarithmic scale. (b) Simulated trans-
ition wavelengths (white lines) based on the group theoretical model (Section 2.4),
superimposed with experimental data. Transition labels correspond to the energy levels
displayed in Fig. 3.6. (c) Fully simulated spectra as a function of magnetic field for an
angle of 109.5° between magnetic field and SiV− axes.

3.3 Measurement of coherent population trapping

In order to lift the spin degeneracy, we apply a magnetic field of 0.7 T to the SiV−. The
orientation of the SiV− studied, which is almost orthogonal to the applied magnetic
field (109.5°), results in the spin quantisation axes to be different enough between
ground and excited states to make all optical transitions allowed and hence allow for
the optical excitation of a Λ-scheme. As we aim to evaluate the spin dephasing time,
the generated dark state has to correspond to a superposition of the two possible spin
orientations of the SiV−. We thus resonantly drive the optical transitions labelled D1
and D2 between ground states |1⟩ and |2⟩, which have opposite spin orientations at this
magnetic field, and the common excited state |D⟩, as shown in Fig. 3.8. Fluorescence
from the SiV− is then collected from the remaining transitions of the zero-phonon line,
as indicated by light grey arrows.

Figure 3.9a displays a CPT scan obtained with one laser being held resonant
with transition D1 and the laser resonant with D2 is scanned in frequency. When
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Figure 3.6 Simulated magnetic field dependence of the energy levels of the SiV− centre
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spin states of the levels, black arrows mark the optical transitions corresponding to
Fig. 3.5.
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Figure 3.7 Photoluminescence excitation on transition D1 of the SiV− at 3 T (black dots)
reveals the presence of a second emitter (the purple and green curves are Lorentzian
fits).

the second laser is brought closer to resonance with D2, the fluorescence from the
SiV− increases until the double resonance is achieved, at which point the fluorescence
drops, indicating pumping into the dark state. However, the double resonance is not
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Figure 3.8 Representation of the SiV− energy levels at non-zero magnetic field with
transitions D1 and D2 driven resonantly (red double arrows). The fluorescence is
measured on the transitions indicated by grey arrows, following thermalisation among
excited state levels (dashed grey arrows). The spin orientations of the levels are
illustrated with respect to the spin-orbit quantisation axis which is along the SiV axis,
as introduced in Section 2.5.

a necessary condition and CPT is achieved for any two-photon resonance, i.e. when
both lasers have the same detuning from the excited state. This can be evidenced in
Fig. 3.9b, which is a 2D CPT scan where both laser frequencies are tuned. There, a
CPT dip is visible whenever both lasers have the same detuning, resulting in the CPT
dips forming a diagonal line.

It is worth noting that, as the relative phase of the two lasers is not fixed, the exact
nature of this dark state cannot be known (see equation 3.12). However, this does not
impact the coherence time which we will extract from those measurements.

As explained in Section 3.1, the width of the CPT dip is directly correlated with the
dephasing time between the two states forming the dark state. However, it also includes
the finite mutual coherence of the two lasers and the power broadening described by
the Rabi frequencies for the two driven transitions. In order to minimise the impact of
power broadening onto the CPT dip width, a CPT scan is measured with both lasers
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Figure 3.9 CPT scans at 0.7 T. (a) SiV− fluorescence intensity recorded as the frequency
of one laser is scanned over transition D2 and the other laser is resonant with transition
D1. (b) Same for different detunings from transition D1 (fluorescence intensity is
colour-coded as indicated on the scale bar). Laser powers are equal to approximately
four times and seven times the saturation powers for transitions D2 and D1 respectively.
The CPT dip from the second SiV− is too close to the main CPT dip to be resolved at
those laser powers.

kept at as low excitation powers as possible (equal to saturation power for the D1
transition and half the saturation power for D2) and is diplayed in Fig. 3.10. Using a
Lorentzian fit, the full width at half maximum of the CPT dip under these conditions
is 11±1 MHz. A modelling of the CPT signal is necessary to separate the different
contributions to the dip width and extract the spin dephasing time.

3.4 Estimation of the electron spin dephasing time

In order to fit the CPT curve and determine the spin dephasing time, we simulate
the dynamics of the SiV− centre through a theoretical model based on optical Bloch
equations. The energy levels of the SiV− are reduced to an open Λ-system including
two ground states labelled 1 and 3, an excited state 2 and an auxiliary state 4, as
shown in Fig. 3.11. This labelling is not to be confused with that of the full level
diagram of the SiV−. Level 1 corresponds to state |2⟩ of the SiV− energy level scheme,
level 3 to |1⟩, and level 2 to |D⟩. The auxiliary level 4 is used to model additional
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Figure 3.10 CPT scan at 0.7 T at low driving powers (0.33 µW each, corresponding
to the saturation power for the D1 transition and half the saturation power for D2)
yielding a dip full width at half maximum of 11±1 MHz . The smaller CPT dip
corresponds to the second SiV− centre.

decay channels involving excited and ground states of the SiV− which are not part of
the Λ-system.

1

3

2

4

Figure 3.11 Level scheme and corresponding transition rates employed for the master
equation model. Red double arrows indicate driving fields at frequencies ωi and
detunings ∆i, leading to Rabi frequencies Ωi. Decay (Γij) and dephasing (γij) processes
are represented by blue and green double arrows, respectively.
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The Λ-system is driven between the two ground states 1 and 3 and their common
excited state 2. The driving field between levels 3 and 2, corresponding to transitions
D1, is held in resonance and labelled the pump field. The second driving field between
levels 1 and 2, corresponding to transition D2, is scanned in frequency and termed the
probe field. The Hamiltonian Hint of this effective four-level system in the rotating
frame, where we apply the rotating-wave approximation, can be written as [159, 160]:

Hint = h̄


0 Ω1

2 0 0
Ω1
2 ∆1

Ω2
2 0

0 Ω2
2 ∆1 −∆2 0

0 0 0 0

 (3.13)

with Ω2 and Ω1 being respectively the pump and probe laser Rabi frequencies (trans-
itions D1 and D2 respectively) and the corresponding laser detunings:

∆1 = ωD2 −ω1 (3.14a)
∆2 = ωD1 −ω2 (3.14b)

for the probe and pump transitions respectively. The dynamics of the system are
governed by the following master equation in Lindblad form [161]:

dρ

dt
= i

h̄
[ρ,Hint]+L(ρ)+D(ρ)+W(ρ). (3.15)

with the density matrix ρ and the Lindblad superoperator L(ρ) describing spontaneous
emission processes. The matrix D(ρ) is used to describe additional dephasing processes
and W(ρ) describes the coherence properties of the lasers. Spontaneous emission
processes are taken into account by coupling the SiV− to a reservoir into which photons
can be emitted, leading to a relaxation of the system. This is modelled using the
Lindblad superoperator:

L(ρ) =
∑

Lij(ρ) = −1
2
∑

(C†
ijCijρ+ρC†

ijCij)+
∑

CijρC†
ij (3.16)

with the collapse operators:
Cij =

√
Γij |j⟩⟨i| (3.17)



3.4 Estimation of the electron spin dephasing time 55

defining a relaxation from state |i⟩ to state |j⟩. The obtained matrices for the Lindblad
operators Lij of the individual decays from |i⟩ to |i⟩ are:

L21(ρ) =


Γ21ρ22 −Γ21

2 ρ12 0 0
−Γ21

2 ρ21 −Γ21ρ22 −Γ21
2 ρ23 −Γ21

2 ρ24

0 −Γ21
2 ρ32 0 0

0 −Γ21
2 ρ42 0 0

 (3.18)

L23(ρ) =


0 −Γ23

2 ρ12 0 0
−Γ23

2 ρ21 −Γ23ρ22 −Γ23
2 ρ23 −Γ23

2 ρ24

0 −Γ23
2 ρ32 Γ23ρ22 0

0 −Γ23
2 ρ42 0 0

 (3.19)

L24(ρ) =


0 −Γ24

2 ρ12 0 0
−Γ24

2 ρ21 −Γ24ρ22 −Γ24
2 ρ23 −Γ24

2 ρ24

0 −Γ24
2 ρ32 0 0

0 −Γ24
2 ρ42 0 Γ24ρ22

 (3.20)

L42(ρ) =


0 0 0 −Γ42

2 ρ14

0 Γ42ρ44 0 −Γ42
2 ρ24

0 0 0 −Γ42
2 ρ34

−Γ42
2 ρ41 −Γ42

2 ρ42 −Γ42
2 ρ43 −Γ42ρ44

 (3.21)

L43(ρ) =


0 0 0 −Γ43

2 ρ14

0 0 0 −Γ43
2 ρ24

0 0 Γ43ρ44 −Γ43
2 ρ34

−Γ43
2 ρ41 −Γ43

2 ρ42 −Γ43
2 ρ43 −Γ43ρ44

 (3.22)

L41(ρ) =


Γ41ρ44 0 0 −Γ41

2 ρ14

0 0 0 −Γ41
2 ρ24

0 0 0 −Γ41
2 ρ34

−Γ41
2 ρ41 −Γ41

2 ρ42 −Γ41
2 ρ43 −Γ41ρ44

 (3.23)

with the transition rates Γij and the density matrix elements ρij . To account for
additional pure dephasing processes (without transfer of population) between the two
ground states as well as between the ground and excited states of the Λ-system, we
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introduce the matrix:

D(ρ) =


0 −γ21ρ12 −γ31ρ13 0

−γ21ρ21 0 −γ23ρ23 0
−γ31ρ31 −γ23ρ32 0 0

0 0 0 0

 (3.24)

with γij the individual dephasing rates acting on the off-diagonal density matrix
elements. Finally, the finite laser linewidths additionally increase the dephasing rates
of the states coupled to the laser fields and thus have to be taken into account. This
effect is introduced into the model by the matrix

W(ρ) =


0 −ξ1ρ12 −ξmutρ13 0

−ξ1ρ21 0 −ξ2ρ23 0
−ξmutρ31 −ξ2ρ32 0 0

0 0 0 0

 (3.25)

with ξ1,2 the linewidths of the individual lasers and ξmut the mutual coherence of the
lasers.

The number of free parameters in the model can be reduced by using certain
constraints. First, the Rabi frequencies of both transitions can be linked through:

Ω2 = Ω1 ·
√

P2
P1

· µ2
µ1

(3.26)

with the laser powers P1,2 proportional to the square of the laser electric field amplitudes
E2

1,2 and the transition dipole moments µ2 and µ1 of the transitions involved. The
group theoretical model used to simulate the optical spectra in Subsection 3.2.3 allows
us to determine the relative transition dipole moments µx,y,z

ij of the individual optical
transitions. With the resulting relative transition dipole moments, the individual
transition rates Γij can be linked to the total spontaneous decay rate Γ by the equation:

Γij =
(µx

ij +µy
ij +µz

ij)∑(µx
ij +µy

ij +µz
ij)

Γ (3.27)

with the total spontaneous decay rate Γ = τ−1 where τ = 1.66ns is the spontaneous
emission lifetime of the SiV−. We furthermore assume thermalisation between states 2
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and 4 with Γ42 = Γ24e
− ∆E24

kBT , where ∆E24 is the average energy between the state |D⟩
and the other excited states |C⟩, |B⟩ and |A⟩. Finally, the two dephasing rates γ21 and
γ23 are chosen such that they reproduce the total linewidth of the optical transition
and are kept constant at these values (these parameters do not affect the width of the
CPT dip).

This approach allows us to reduce the free parameters in the model to the Rabi
frequency Ω1 and the ground state dephasing rate γ31. A single set of these parameters
can be identified to model the CPT dip observed experimentally. The system of
differential equations defined by Eq. 3.15 is solved numerically over the experimental
integration time of 0.5 s, with a steady-state being reached within this time interval.
This resolution is performed for a range of values of the probe frequency detuning.
Experimentally, we measure the fluorescence from the transitions from the lower orbital
branch of the excited state (levels |A⟩ and |B⟩ as shown in Fig. 3.8). We thus plot
the normalised population of state |4⟩ as a function of the two-photon detuning of the
lasers. By fitting the CPT curve of Fig. 3.10, we extract from the model the following
set of transition rates:

Γ21 = 2π ·3.0MHz Γ23 = 2π ·4.7MHz
Γ24 = 2π ·88.1MHz Γ42 = 2π ·40.5MHz
Γ41 = 2π ·19.3MHz Γ43 = 2π ·20.9MHz

(3.28)

and dephasing rates:

γ21 = 2π ·γ23 = 3250MHz (3.29)
γ31 = 2π ·3.5MHz (3.30)

Among them, the ground state dephasing rate γ31/2π = 3.5±0.2MHz leads to a
dephasing time T ∗

2 = 45±2ns for the spin of the SiV−.

3.5 Magnetic field dependence

From a general point of view, the coherence time measured by CPT is strictly speak-
ing the coherence time between the two addressed ground states whether they be
characterised by a spin state or not. It would thus be conceivable that the coherence
time we have measured corresponds to an inherent coherence time of two ground state
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levels of the SiV− and is actually not correlated with their spin projections. In order
to evaluate the influence of the spin state on the measured coherence time, we take
advantage of the presence of an avoided crossing between states |2⟩ and |3⟩ around
3.5 T, as seen in Fig. 3.12a. As the magnetic field brings the states closer to their
avoided crossing, their respective spin projections are altered, as depicted by tilted
arrows. We thus want to use CPT to measure how the coherence time between the
ground states is affected by this change of their spin projections. Before the avoided
crossing, from 0 to 3.5 T, the dark state is created between states |1⟩ and |2⟩, and
beyond the avoided crossing, above 3.5 T, between |1⟩ and |3⟩, as illustrated by the
orange and green ribbons respectively. Figure 3.12b displays the evolution of the width
of the CPT dip as a function of the applied magnetic field (between states |1⟩ and |2⟩
as orange dots and between states |1⟩ and |3⟩ as green dots). Those measurements
are performed at the same laser powers with respect to saturation so that the power
broadening is held constant. We can see that the CPT dip width is minimum away
from the avoided crossing and increases rapidly when getting closer to it. This implies
that the coherence between the ground states is drastically reduced by the avoided
crossing, when the spin projections of the addressed levels cease to be opposite.

In order to confirm the correlation between alteration of the spin orientation and
reduction of coherence, we make use of the group theoretical model of the SiV− states
to calculate the spin overlap between the two addressed ground states as a function of
the magnetic field. We proceed to extract the spin orientation along the SiV axis for the
three addressed ground states through the projection method described in Section 2.5.
Applying the projector P = |↑⟩⟨↑| + |↓⟩⟨↓| to an eigenstate |Ψ⟩, we can express the
obtained projection onto the spin subspace as P |Ψ⟩ = cos(θ/2) |↑⟩+ eiφ sin(θ/2) |↓⟩ to
represent this spin as a vector on a Bloch sphere, as shown in Fig. 3.13 for the three
ground state levels |1⟩, |2⟩ and |3⟩.

We can see that the Bloch vectors of states |1⟩ and |2⟩ are antiparallel until state
|2⟩ undergoes an avoided crossing with state |3⟩. Above this avoided crossing, states
|1⟩ and |2⟩ have similar Sz components, and the Bloch vectors are not antiparallel any
more, while states |1⟩ and |3⟩ now have opposite Bloch vectors. From this, we evaluate
the spin overlap between states by calculating the squared scalar product of the spin
projections of the two states, such as

∣∣∣⟨1|P †P |2⟩
∣∣∣2. We then multiply this value by

a Boltzmann factor e−∆E/kBT , where ∆E is the energy difference between the two
states considered, T = 4K is the temperature and kB is the Boltzmann constant. This
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Figure 3.12 Evolution of the ground state coherence across a level avoided crossing. (a)
Simulated ground state energy levels for the SiV− studied (same as those in Fig. 3.6),
illustrating the spin state for magnetic field values below, above and at the avoided
crossing. (b) Full width at half maximum of the CPT dip as a function of the magnetic
field, extracted using a Lorentzian fit. Dots denote measured widths (for each transition,
laser powers are equal to four times the saturation power), with the error bars being
the standard deviation of multiple measurements. In panels (a) and (b), the colours
orange and green indicate CPT realised between states |1⟩ and |2⟩, and between |1⟩
and |3⟩, respectively.
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Figure 3.13 Representation of the spin vector of states |1⟩, |2⟩ and |3⟩ on Bloch spheres
at 1 T, 4 T and 7 T. The basis states are those of the spin-orbit coupling, along the
SiV axis (see Sction 2.4).

factor aims to account crudely for the influence of thermal phonons which are vectors
of orbital relaxation (this will be investigated in more details in Chapter 5 Section 5.2).

The product of the spin overlap and Boltzmann factor as a function of the magnetic
field is finally compared to the experimental CPT dip widths, as shown in Fig. 3.12b
where the orange curve corresponds to |1⟩-|2⟩ and the green curve to |1⟩-|3⟩. We use a
function of the form a+ b ·

∣∣∣⟨1|P †P |2/3⟩
∣∣∣2e−∆E/kBT , where a and b are free parameters

common to both curves and |2/3⟩ corresponds to |2⟩ before the avoided crossing and
to |3⟩ after it. The offset a corresponds to the contributions to the CPT dip width of
the power broadening, the mutual coherence of the two lasers (5 MHz here), as well as
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further decoherence mechanisms. Those mechanisms likely include magnetic noise from
neighbouring spins such as those of NV− centres, paramagnetic N atoms or 13C nuclear
spins. The same functions comprising only the spin overlap without the Boltzmann
factor are plotted as grey dashed curves.
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Figure 3.14 CPT dip width compared to the overlap of the spin projections. Experi-
mental values of the CPT dip width presented in Fig. 3.12b, superimposed with the
fitted curves corresponding to the spin overlap between the levels addressed in CPT
(grey dashed curves). The solid curves correspond to the spin overlap between the
states, multiplied by a Boltzmann factor. The colours orange and green indicate CPT
realised between states |1⟩ and |2⟩, and between |1⟩ and |3⟩, respectively.

The good agreement between the evolution of the spin overlap and the CPT dip
width confirms that the measured coherence times correspond to those of the spin
state. We can interpret the observed variation of the spin coherence time as follows:
away from the avoided crossing, the opposite spin projections of the two addressed
states prevent direct decoherence by phonons resonant with their Zeeman splitting,
as phonons do not carry a spin. In contrast, at the avoided crossing, where the spin
projections of |2⟩ and |3⟩ have a significant overlap with all the other ground state levels,
such phonon-induced transitions are possible, thus opening extra decoherence channels.
The mechanisms for spin decoherence will be examined in Chapter 5 Section 5.2.
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3.6 Conclusion

By utilising coherent population trapping on a single SiV− centre, we have obtained
a first evaluation of 45±2 ns for the dephasing time between two ground state levels
with opposite spin orientations. This value has been shown to be considerably reduced
when the addressed levels do not have opposite spin projections, thus confirming that
this dephasing time is that of the SiV− spin. The mechanisms for spin decoherence
will be examined in Chapter 5 Section 5.2, but this result already hints at a central
role played by lattice phonons.

The realisation of coherent population trapping opens the way to all-optical control
of the SiV− spin [162, 163]. Indeed, in this experiment, the superposition of spin
corresponding to the generated dark state was not controlled. However, by implementing
amplitude and phase control of the driving lasers (as seen in equation 3.12), it becomes
possible to prepare an arbitrary dark state and hence superposition of spin [164].
Manipulation of the spin can then be achieved through stimulated Raman adiabatic
passage (STIRAP) or optically driven Rabi oscillations [165], which both rely on the
CPT configuration. Furthermore, all-optical control can be performed with picosecond
pulses thus leading to ultra-fast spin manipulation [163, 44]. Finally, this constitutes a
first step towards using the SiV− centre to interface spin and photons, which is a key
element of a quantum network.



Chapter 4

Coherent control of a single SiV−

centre electronic spin

The electronic spin of the SiV− centre shows promise as a quantum bit, all the more
so since it can be used in combination with coherent photons emitted by the SiV−. In
a quantum network, while photons would act as information and entanglement vectors
between nodes, the spin would be used to process information and thus be at the
core of the processing speed-up expected from quantum computing. In this context,
achieving coherent control of the SiV− spin constitutes a fundamental step towards
the implementation of spin-based quantum computing.

In this chapter, we present the realisation of optically detected magnetic resonance
and microwave-based coherent control of the spin of a single SiV− centre. This control
is then used for basic quantum sequences in order to extract a direct measurement
of the spin coherence. Those results were obtained with the technical assistance of
David-Dominik Jarausch, Christian Hepp, Lina Klintberg and Jonas N. Becker, and
have been published in Ref. [166].

4.1 Experimental conditions

4.1.1 Sample

The sample used for this experiment is a high-pressure-high-temperature (HPHT)
type IIa bulk diamond (provided by Dr. Mathew Markham from Element Six) with
surface oriented orthogonally to the <111> crystallographic axis. The sample was
implanted with isotopically purified 29Si+ ions, which possess a nuclear spin I = 1/2
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(implantation performed by Dr. Detlef Rogalla at RUBION, Bochum, Germany). The
implantation energy of 900 keV leads to an average implantation depth of 500±50 nm
below the diamond surface. This value is determined through simulations using
the stopping-range-of-ions-in-matter algorithm (SRIM) described in [109]. From one
implantation site to the other, the implantation doses were tuned from 109 ions/cm2

to 1012 ions/cm2 to guarantee that at least one implantation site has a low enough
SiV− concentration to measure single centres without them being too sparse. The
sample has been subsequently annealed for 3 hours at 1000 °C in vacuum, to allow
vacancies to become mobile and form SiV centres, and oxidised in air for 1 hour at
460 °C to remove surface graphitisation. Single SiV− centres have been found in the
1010 ions/cm2 area. In order to circumvent total internal reflection and increase the
fluorescence collection efficiency, arrays of solid immersion lenses (SILs) with 500 nm
radius have been etched using focused ion beam milling (FIB) in the 1010 ions/cm2

area, as described in Section 3.2.2 (FIB milling performed by C. Pauly). SiV− centres
are randomly located in the SILs.

4.1.2 Experimental setup

The experimental setup is similar to the one used in Chapter 2. The sample is mounted
in a closed cycle liquid helium cryostat (Attodry 1000) reaching a base temperature of
3.5 K. The temperature of the sample can be tuned via a resistive heater and evaluated
using a thermocouple, both located under the sample mount. The temperature is
also increased by heating due to the microwave pulses. Due to the limited thermal
conductivity of the sample mount, the temperature is likely to be underestimated
when heating is due to the microwave and overestimated when it is provided by the
heater. A magnetic field ranging from 0 to 9 T can be applied to the sample thanks to
a superconducting coil around the sample space. The magnetic field is applied along
the optical axis.

Resonant excitation of the SiV− is performed as in Chapter 2 using a frequency-
tunable diode laser (Toptica DL pro design), the frequency of which is maintained
in resonance through continuous feedback from a wavelength meter (High Finesse
WSU). Resonant optical pulses are generated with an acousto-optic modulator (AOM,
AAOptoelectronic MT350-A0.12-800), which is triggered by a delay generator (Stanford
Research Systems DG645). The optical pulses are sent to the sample using a home-
built confocal microscope mounted on top of the cryostat. The laser is focused
onto the sample through a microscope objective with NA = 0.82 inside the sample
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chamber. Piezoelectric stages (Attocube ANPx101 and ANPz101) on top of which the
sample is mounted, allow the sample to be moved with respect to the objective. The
fluorescence from the SiV− is collected through the same objective. The laser light, and
consequently the SiV− fluorescence from the excited transition, are filtered out using a
home-built monochromator and the fluorescence from the remaining transitions is sent
to an avalanche photodiode (PicoQuant Tau-Spad). The signal from the avalanche
photodiode is sent to a time-to-digital converter (qutools quTAU) triggered by the
delay generator. An alternating current at a set frequency in the microwave regime is
generated by a frequency generator (Stanford Research Systems SG384) and sent to a
switch to produce microwave pulses. The switch is controlled by the delay generator
used for optical pulses in order to synchronise the optical and microwave parts of
the experiment. The microwave pulses are then amplified by a microwave amplifier
(Mini-Circuits ZHL-16W-43-S+). The microwave pulses travel through semi-rigid
cables installed inside the cryostat. A single copper wire (20 µm diameter) positioned
on top of the sample, as seen Fig. 4.1, allows the microwave to be radiated less than
20 µm away from the studied SiV−, marked by a red dot.

1 mm 20 µm

Figure 4.1 Optical microscope pictures of the surface of the diamond sample. At the
centre, a 3x3 array of solid immersion lenses (SILs) etched into the diamond surface
are crossed by a 20 µm-diameter copper wire. On the right picture, the location of the
SiV− studied is indicated by a red dot.
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4.1.3 Characterisation of the SiV− centre studied

As the surface of the sample is orthogonal to the <111> crystallographic axis, approx-
imately one quarter of SiV− centres are aligned with the optical axis and three quarters
make an angle of 109.5° to it. Only the latter are in practice visible, the optical dipole
of the SiV− being oriented along its symmetry axis.

The SIL arrays are scanned to find suitable emitters. The emitter chosen for
this experiment is first characterised under non-resonant excitation at 660 nm. The
obtained spectra as a function of the magnetic field are displayed in Fig. 4.2. The
group theoretical model described in Chapter 2 Section 2.4 is used to fit the spectra
and hence deduce the energy levels of this emitter, as shown in Fig. 4.3. With a ground
state orbital splitting of nearly 50 GHz, this emitter appears relatively unstrained.

0 1 2 3 4 5 6 7 8 9
Magnetic field (T)

a b c

0 1 2 3 4 5 6 7 8 9
Magnetic field (T)

0 1 2 3 4 5 6 7 8 9
Magnetic field (T)

300

200

100

0

-100

-200

-300

Tr
an

si
tio

n 
fr

eq
ue

nc
y 

(G
H

z)

0.001

0.01

0.1

In
te

ns
ity

 (
ar

b.
u.

)

Figure 4.2 Magnetic field dependence of optical transitions. (a) Experimental spectra
of the SiV− centre studied under non-resonant excitation as a function of the applied
magnetic field at an angle of 109.5±1.0°. The colour scale indicates the relative
fluorescence intensity in logarithmic scale. (b) Experimental spectra superimposed
with the transition frequencies (white curves) simulated using the group theoretical
model described in Section 2.4. Each transition is labelled according to its associated
excited (A to D) and ground states (1 to 4). (c) Simulated spectra using the group
theoretical model.

Subsequently, photoluminescence excitation (PLE) is measured on transition D1
and gives an optical linewidth of 600 MHz. This transition is thus optically resolvable
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Figure 4.3 Simulated magnetic field dependence of the energy levels of the SiV− centre
corresponding the the transitions in Fig. 4.2. The labelling of the levels includes the
nuclear spin state I = 1/2 of the 29Si, indicated by n↑ and n↓, although its influence is
not visible at those frequency scales.

at a magnetic field as low as 0.2 T. At this magnetic field, the Zeeman splitting is
almost 3 GHz, making it easily addressable by microwave pulses.

4.2 Spin initialisation, readout and population re-
laxation

A magnetic field of approximately 0.2 T is applied to the sample to lift the spin
degeneracy of the SiV− centre, as illustrated in Fig. 4.4. The diode laser is tuned into
resonance with transition D1. The fluorescence from the SiV− is measured on the
transitions indicated by solid grey arrows. First, a 500 ns optical pulse depletes the
spin-up state 1 and initialises the SiV− into the spin-down state 2 by optical pumping.
The fluorescence collected during this first pulse, displayed in Fig. 4.5, decreases rapidly
and saturates as the optical pumping is compensated by population decay back into
state 1. It is possible to estimate the initialisation fidelity by considering the ratio
of about 5 to 1 between the leading edge of the initialisation pulse (corresponding to
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approximately 50 % of the total population as the system is initially thermalised) and
the saturation value. This gives an approximate value of about 90 % of initialisation
fidelity into the spin down state. A more precise value of 86±2 % is extracted from an
eight-level master equation model, as described in Section 4.5

↓ ↑
|↑		

↓ ȁ↑|↑		

|↑		

Laser

A
B

C
D

1
2

3
4

↓ ↑
|↑		

↓ ȁ↑

|↑		
↓ ȁ↑

|↑		
↓ ȁ↑

|↑		 ↓ȁ
↑

|↑		 ↓ȁ
↑

Figure 4.4 Representation of the SiV− energy levels with an applied magnetic field.
The labels of the levels include their electronic spin orientation at about 0.2 T. The tilt
in the indication of the spin in the excited state indicates the difference in quantisation
axis between the ground and excited states. The resonant laser is depicted as a red
double arrow. Grey dashed arrows correspond to the fast thermalisation among excited
state levels. The transitions used for detection are marked by solid grey arrows. For
clarity, the nuclear spin is not indicated. In the ground state, the dashed grey box
highlights the levels 1 and 2 of the lower orbital branch on which we focus, while the
levels 3 and 4 form the upper orbital branch.

The readout of the spin state is performed analogously with a second optical pulse,
identical to the initialisation pulse and therefore resonant with transition D1, as shown
in Fig. 4.5. The recorded fluorescence displays again optical pumping, with the leading
edge indicating the degree of population recovery into the originally depleted spin-up
state 1.

The spin state measurement, corresponding to the spin-up population, is taken as
the peak ratio between the leading edge of the readout pulse fluorescence integrated
over 30 ns and that of the initialisation pulse fluorescence, as illustrated by the dark
grey areas in Fig. 4.5. This measurement method is resilient with regards to slow laser
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laser
Initialisation Readout

Δt

Figure 4.5 Optical initialisation and readout of the SiV− electronic spin. The top part
describes the resonant laser intensity pattern in time, composed of an initialisation
pulse and a readout pulse separated by a time delay ∆t. The lower part displays the
corresponding fluorescence measured from the SiV− which shows optical pumping. The
dark grey area under the curve indicates the signal integrated over 30 ns under the
peaks of the initialisation and readout pulses for the calculation of the peak ratio.

power fluctuations and frequency drift of the SiV−, as both leading edges are affected
similarly, their ratio remaining relatively less affected.

As the time delay ∆t between the two optical pulses is increased, the recovery of
the spin-up population increases, as shown in Fig. 4.6. The exponential recovery is
fitted by a function of the form 1−A · exp(−∆t/T1,spin), where A is the amplitude of
the recovery and depends on the initialisation fidelity and T1,spin is the spin population
decay time. This allows us to extract a spin relaxation time T1,spin = 350±11ns
at 3.5 K. This spin population decay time sets an upper bound for any subsequent
coherent manipulation of the electronic spin.

It should be noted that at temperatures around 4 K, thermally excited lattice
phonons are responsible for a Boltzmann distribution of the population between the
two orbital branches of the ground state. This results in approximately 2/3 of the
population in the lower branch states and 1/3 in the upper branch states. As it will be
shown later, the rate of population transfer between the orbital branches is relatively
fast compared to the population decay rate between states of different electronic spin
projections within a branch, a phenomenon already evidenced in Section 3.5. As a
consequence, the optical pulses are long compared to the inter-branch transitions and
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a b

Figure 4.6 Spin decay time T1,spin at 3.5 K and 0.2 T (angle of 109.5±1.0° to the SiV
axis). (a) Initialisation and readout pulses fluorescence signals as a function of the
time delay between initialisation and readout. (b) Variation of the peak ratio as a
function of the time delay (purple dots) and exponential fit (purple curve) with 1/e
value T1,spin = 350±11ns.

the peak ratio as a spin state measurement is not altered by shelving into the orbital
branches.

4.3 Optically detected magnetic resonance

We now aim to achieve optically detected magnetic resonance (ODMR), as a first step
in addressing the SiV− spin with a microwave field.

The dissipation of microwaves in the transmission lines and wire generates heating.
As a consequence, the use of a pulsed instead of continuous microwave radiation limits
the temperature rise. Furthermore, due to the relatively short T1,spin of a few hundreds
of nanoseconds, the microwave pulse has to be short enough to limit the loss of ODMR
contrast due to spin population decay between initialisation and readout. The use of
short pulses however broadens the ODMR signal proportionately to the inverse of the
pulse duration, and can limit the ODMR contrast due to insufficient driving of the
spin. As a consequence, we choose to apply a 140 ns microwave pulse, as a trade-off
between those considerations.

Keeping the initialisation and readout optical pulses unchanged and fixing the delay
between them at 160 ns, a 140 ns microwave pulse is applied during the time interval,



4.3 Optically detected magnetic resonance 71

as illustrated in Fig. 4.7a. The associated heating increases the measured temperature
to 4.3 K, at which T1,spin = 200ns (the temperature dependence of T1,spin is described
in Chapter 5).

Laser

Microwave

Initialisation Readouta

MW

b

c
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↓ ȁ↑
, n↓ ȁ↑1

|↑		
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, n↓ ȁ↑1

|↑		↓ ȁ↑, n↓ ȁ↑2
|↑		↓ ȁ↑, n↓ ȁ↑2

Figure 4.7 Optically detected magnetic resonance (ODMR). (a) Illustration of the
microwave and resonant laser pulse patterns in time. (b) Energy level diagram of the
electronic spin states in the ground state lower orbital branch split by the hyperfine
interaction with the 29Si I = 1/2 nuclear spin. The levels are labelled as in Fig. 4.4,
with the addition of the nuclear spin orientations n↑ and n↓. A microwave pulse can
flip the electronic spin while leaving the nuclear spin unchanged, which results in two
possible microwave-induced transitions (orange and green circular arrows). (c) ODMR
spectrum of the SiV− at 0.202 T: the two microwave transitions appear as two peaks,
each fitted with a Lorentzian function (colours correspond to those in (b)). The two
peaks are separated by 53.7±0.3 MHz (errors from the fits).

Because of the nuclear spin 1/2 of the 29Si isotope, each electronic spin state is split
by the hyperfine interaction, as depicted in Fig. 4.7b. The microwave can only drive
the electronic spin, while the nuclear spin remains unchanged during the few hundred
ns pulse, the nuclear spin magnetic moment being about three orders of magnitude
smaller than the electronic one. This results in two possible microwave resonances,
shown in Fig. 4.7b by circular arrows. As the microwave frequency is resonant with one
of those two transitions, the microwave drives population from the initialised spin-down
state back into the depleted spin-up state. This leads to a recovery of fluorescence
and thus appears as a peak in the ODMR spectrum. Figure 4.7c shows the obtained
ODMR spectrum at 0.202 T. The spectrum displays two peaks corresponding to the
two expected resonances. The peaks are separated by 53.7±0.3 MHz, corresponding to
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a hyperfine splitting of approximately 27 MHz (Further considerations on the hyperfine
interaction will be developed in Chapter 5.)

The ODMR contrast, taken as the ratio between the peak height and the baseline,
is about 30 %. This can be compared to contrasts of standard ODMR scans with NV−

centres, with maximum values of 20 % and 40 % in continuous and pulsed ODMR,
respectively [167, 168]. It should be noted however that the mechanisms involved
are different, with the contrast in NV− relying on spin-dependent shelving into a
long-lived excited state [169]. ODMR measurements performed on NV− centres at low
temperatures with spin initialisation through resonant optical pumping and microwave
π-pulses reach contrasts of approximately 80 % [170]. At the microwave power used
here, the 140 ns microwave pulse corresponds to a π-pulse, transferring the spin from
the initialised spin-down state back to the spin-up state, and is thus expected to provide
the maximum contrast achievable. However, the contrast is limited by the short spin
decay time of T1,spin = 200ns leading to both imperfect initialisation and population
recovery irrespective of the microwave frequency. T1,spin and initialisation fidelity have
been reported to vary with the angle between the magnetic field and the symmetry axis
of the SiV−, with T1,spin increasing from 60 ns for an angle of 70° to 2.4 ms for an angle
close to 0° [171]. As a consequence, it is expected that the contrast can be increased
considerably for small angles between the magnetic field and the SiV− symmetry axis.

It is important to notice that, in the absence of the Jahn-Teller effect (or strain),
an oscillating magnetic field cannot drive the transition between the Zeeman-split
levels within an orbital branch (here levels 1 and 2). Indeed, such levels differ in spin
and orbital, as shown in Fig. 2.11. This can be seen by considering the matrix of the
Zeeman effect (see Section 2.4) in the spin-orbit basis {|ex ↑⟩ , |ex ↓⟩ , |ey ↑⟩ , |ey ↓⟩}:

HZee =


−fγSBz +γSBz γSBx 0 0

γSBx −fγSBz −γSBz 0 0
0 0 fγSBz +γSBz γSBx

0 0 γSBx fγSBz −γSBz


(4.1)

where we assume By = 0. We can see that it does not have non-diagonal components
between states of different spin-orbit-defined orbitals. It is thus necessary to rely on the
Jahn-Teller effect (or strain) to mix these spin-orbit-defined orbitals (see Section 2.4)
in order to be able to drive the spin transitions within an orbital branch.
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4.4 Rabi oscillations

The microwave frequency is now fixed in resonance with one of the two transitions
and the duration of the microwave pulse is varied, as illustrated in Fig. 4.8a. To avoid
any overlap between the microwave pulse and the end of the initialisation pulse, the
microwave pulse starts 10 ns after triggering the end of the optical pulse, which allows
the AOM-controlled laser intensity to reach a negligible level. The delay between
initialisation and readout is held constant at 210 ns, a value which accommodates the
longest microwave pulse. Changing the delay between initialisation and readout optical
pulses in order to read out the spin state immediately after the end of the microwave
pulse would include the effect of the spin population decay into the signal as T1,spin is
comparable to the microwave pulse timescale.

Figure 4.8b shows the evolution of the spin-up population, measured through the
peak ratio described earlier, as the microwave pulse duration is increased. In the top
panel, the microwave is resonant with the transition between the states

∣∣∣1 ↑,n↑
〉

and∣∣∣2 ↓,n↑
〉
, where the nuclear spin is up, while in the bottom one, it is resonant with

the transition between states
∣∣∣1 ↑,n↓

〉
and

∣∣∣2 ↓,n↓
〉
, where the nuclear spin is down.

The spin-up population (the optical pulse reads out the population in |1 ↑⟩) displays
Rabi oscillations, demonstrating the coherent control of the SiV− electronic spin (see
Subsection 3.1.1 for the theory of Rabi oscillations; here, the electric dipole and the
electric field of the usual description are replaced by the spin magnetic moment and
the microwave oscillating magnetic field respectively). The oscillations are not centred
around a peak ratio value of 1, which corresponds to the equal thermal populations
between the two electronic spin states before initialisation. This comes from the fact
that, due to the hyperfine splitting, the microwave pulse only addresses resonantly
the electronic spin state associated with one of the two nuclear spin orientations. The
relatively fast decay of the oscillations is likely an indication of a short spin dehasing
time. Finally, the oscillations exhibit an upward drift which cannot be explained
considering only the dynamics among the levels of the ground state lower orbital
branch.

In order to verify that those oscillations correspond to Rabi oscillations, we repeat
the same experiment for different values of microwave power and detuning from
resonance. As expected, the Rabi frequency varies linearly with the square root of the
input microwave power, as shown in Fig. 4.9a. The dependence of the effective Rabi
frequency with detuning from resonance, shown in Fig. 4.9b, also behaves as expected,
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Figure 4.8 Rabi oscillations. (a) Resonant laser and microwave pulse scheme, with
the duration of the microwave pulse tMW being varied. The time interval between
initialisation and readout is held constant at 210 ns. (b) Variation of the peak ratio as
a function of the microwave pulse duration tMW at 0.214 T for a microwave frequency
resonant with the transition between states

∣∣∣1 ↑,n↑
〉

and
∣∣∣2 ↓,n↑

〉
(green dots), and

between states
∣∣∣1 ↑,n↓

〉
and

∣∣∣2 ↓,n↓
〉

(orange dots) (colours correspond to those in
Fig. 4.7b). The error bars correspond to the standard deviation of the peak ratio (the
two graphs have different integration times leading to different error bars).

with a variation of the form
√

Ω2 + δ2, where Ω is the bare Rabi frequency in resonance
and δ is the detuning.

The maximum bare Rabi frequency observed is about 15 MHz, which is comparable
to the values obtained with NV− centres in similar experimental conditions. This
similarity in coupling to a microwave radiation is promising for using strip lines or
antenna structures developed with NV− centres [172, 173], in order to implement
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a b

Figure 4.9 Dependence of the Rabi oscillations upon microwave power and detuning.
(a) Variation of the Rabi frequency (orange dots) as a function of the square root
of the input microwave power PMW , for a microwave resonant with the transition
between states

∣∣∣1 ↑,n↓
〉

and
∣∣∣2 ↓,n↓

〉
. The error bars are smaller than the dots. The

grey curve is a linear fit. (b) Variation of the effective Rabi frequency as a function of
the microwave frequency detuning from the transition between

∣∣∣1 ↑,n↓
〉

and
∣∣∣2 ↓,n↓

〉
(orange dots). The grey curve is a fit of the form

√
Ω2 + δ2, where Ω is the bare Rabi

frequency and δ is the detuning. In (a) and (b), the error bars correspond to the
standard error on the Rabi frequencies from fits by an exponentially decaying sine
function.

homogeneous and/or fast microwave control, in particular on timescales beyond the
rotating wave approximation [173, 174].

4.5 Master equation model

In order to model the Rabi oscillations and understand the dynamics involved in the
presence of a microwave pulse, we develop an eight-level master equation in Lindblad
form [161]. The eight levels considered encompass both orbital branches of the ground
state, each split into two by the electronic Zeeman interaction, and further split by
the hyperfine interaction. This leads to the energy level diagram depicted in Fig. 4.10,
where states, labelled from 0 to 7 for convenience, are characterised by their electronic
and nuclear spin projections. The various transition mechanisms between those states,
as shown in Fig. 4.10, are described in the following.
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Figure 4.10 Diagram of the eight energy levels of the ground state (energy splittings
are not to scale). Each state is labelled according to the labelling in Fig. 4.3, with the
indication of the electronic and nuclear spin orientations at around 0.2 T. A second
labelling from 0 to 7 is introduced for convenience in the master equation model. The
lower orbital branch is composed of the levels labelled from 0 to 3 and the upper orbital
branch is formed by the levels labelled from 4 to 7. The transitions between states
considered in the model are of two kinds: the Rabi frequencies Ωij between states i
and j are depicted as orange and green double arrows (colours correspond to those
in Fig. 4.7b) and the population decays Γij from state i to state j are represented by
dashed grey arrows, whose relative colour intensities are a rough indication of their
relative strengths.

The model consists in solving the following master equation:

dρ

dt
= i

h̄
[ρ,H]+L(ρ) (4.2)

where ρ is the density matrix for the SiV− states considered, h̄ is the reduced Planck
constant, H is the Hamiltonian of the system formed by the SiV− levels considered
and the microwave field in the rotating frame, and L(ρ) is the Lindblad superoperator.
The Hamiltonian of the system in the rotating-wave approximation can be written as
follows:
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H =



E0 +ω 0 0 Ω03/2 0 0 0 0
0 E1 +ω Ω12/2 0 0 0 0 0
0 Ω03/2 E2 0 0 0 0 0

Ω03/2 0 0 E3 0 0 0 0
0 0 0 0 E4 +ω 0 0 Ω47/2
0 0 0 0 0 E5 +ω Ω56/2 0
0 0 0 0 0 Ω56/2 E6 0
0 0 0 0 Ω47/2 0 0 E7



(4.3)

where Ei are the energies of the eight levels considered, Ωij are the Rabi frequencies
between levels i and j, and ω is the frequency of the microwave. The state labelled 0 is
taken as the origin of the energy scale. The energies of the other levels in the ground
state lower branch are determined from the ODMR spectrum at the applied magnetic
field of 0.214 T at which Rabi oscillations in Fig. 4.8 are measured:

E0 = 0GHz (4.4)
E1 = 2π ·0.027GHz (4.5)
E2 = 2π ·2.899GHz (4.6)
E3 = 2π ·2.926GHz (4.7)

The energies of the levels in the upper branch are extracted from the group
theoretical modelling of the optical transitions in Section 4.1.3 (more explanantion on
the modelling of the hyperfine interaction can be found in Chapter 5 Section 5.1):

E4 = 2π ·51.61GHz (4.8)
E5 = 2π ·51.63GHz (4.9)
E6 = 2π ·54.24GHz (4.10)
E7 = 2π ·54.26GHz (4.11)
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The microwave-induced bare Rabi frequencies are extracted from the Rabi oscillation
curves fitted by a sine function with an exponential decay:

Ω12 = 2π ·14.7MHz (4.12)
Ω03 = 2π ·14.4MHz (4.13)

The bare Rabi frequencies in the upper branch are assumed to be similar with
Ω47 = Ω56 = 2π ·14.5MHz.

The Lindblad superoperator, accounting for the relaxation mechanisms linked to
the coupling of the SiV− with its environment, is of the form:

L(ρ) =
∑
i,j

Lij(ρ) = −1
2
∑
i,j

(
C†

ijCijρ+ρC†
ijCij

)
+
∑
i,j

CijρC†
ij (4.14)

with the collapse operators Cij =
√

Γij |j⟩⟨i| describing the relaxation from state |i⟩ to
state |j⟩ with decay rate Γij . The electronic spin decay rates within the lower branch
are directly linked to the spin population decay time T1,spin through:

Γ = 1
2T1,spin

(4.15)

All the electronic spin decay rates in the lower branch of the ground state are
assumed to be equal, thus giving:

Γ03 = Γ30 = Γ12 = Γ21 = 1.39MHz (4.16)

The corresponding decays within the upper branch are assumed equal to those in the
lower branch, leading to:

Γ47 = Γ74 = Γ56 = Γ65 = 1.39MHz (4.17)

The microwave-induced heating, and hence the sample temperature, increase linearly
with the microwave pulse duration. As will be developed in Chapter 5 Section 5.2,
the spin population decay time decreases with temperature. This effect is accounted
for in the model by adjusting the value of the spin decay rates with respect to the
temperature measured for a given pulse duration.

Since at temperatures around 4 K, the upper orbital branch of the ground state is
thermally populated, population transfers from one orbital branch to the other have
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to be taken into account. We first consider the interbranch downward and upward
rates, Γdown and Γup respectively, where both electronic and nuclear spin orientations
are preserved. Those rates are directly linked to the orbital population decay time
T1,orbital through:

1
T1,orbital

= Γup +Γdown (4.18)

with Γup = Γdown · e
−∆E
kBT where kB is the Boltzmann constant and ∆E is the energy

difference between the lower and upper branches, taken to be approximately 52.4 GHz.
This guarantees a Boltzmann population distribution between the lower and upper or-
bital branches. The downward rates associated with all the spin-preserving interbranch
transitions are assumed equal, thus giving:

Γ51 = Γ40 = Γ73 = Γ62 = 1

T1,orbital

(
1+ e

−∆E
kBT

) (4.19)

And similarly for the upward rates:

Γ15 = Γ04 = Γ37 = Γ26 = e
−∆E
kBT

T1,orbital

(
1+ e

−∆E
kBT

) (4.20)

Due to the Boltzmann factor, those rates vary with temperature, depending on the
microwave pulse duration. Furthermore, T1,orbital itself decreases with temperature,
effect which will be examined in Chapter 5 Section 5.2. The rates in the model are
thus adjusted to account for the microwave-induced heating of the sample, using the
measured temperature increase with respect to the pulse duration.

The other interbranch rates, more precisely those associated with electron spin-
flipping transitions as well as all nuclear spin-flipping transitions, are considered
negligible compared to the spin-preserving rates.
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The initial conditions of populations in the different states immediately after
initialisation are as follows:

ρ00 = ρ11 = 0.5∗ (1−I)∗1/
(

1+ e
−∆E
kBT

)
(4.21)

ρ22 = ρ33 = 0.5∗I ∗1/
(

1+ e
−∆E
kBT

)
(4.22)

ρ44 = ρ55 = 0.5∗ (1−I)∗ e
−∆E
kBT /

(
1+ e

−∆E
kBT

)
(4.23)

ρ66 = ρ77 = 0.5∗I ∗ e
−∆E
kBT /

(
1+ e

−∆E
kBT

)
(4.24)

where ρii is the density matrix element corresponding to the population in state i. The
factors 1/

(
1+ e

−∆E
kBT

)
for states in the lower orbital branch and e

−∆E
kBT /

(
1+ e

−∆E
kBT

)
for

states in the upper orbital branch ensure an initial Boltzmann population distribution
between the two branches. This is an approximation since the microwave pulse starts
about 10 ns after the end of the optical initialisation pulse, but it takes a few tens
of nanoseconds for the orbital population decay (quantified by T1,orbital) to restore a
Boltzmann distribution. Pairs of states differing only by their nuclear spin projections
(namely 0 and 1, 2 and 3, 4 and 5, 6 and 7) are assumed to have the same initial
populations. As a consequence, a factor 0.5 is applied to the populations of each pair
to ensure that their sum is equal to the population of an equivalent single energy
level. Finally, I corresponds to the initialisation fidelity into states with an electronic
spin down (namely states 2 and 3 in the lower branch, 6 and 7 in the upper branch),
resulting in a factor 1 − I for the populations of the other states. The value of I
is considered as an adjustable parameter. The best fit to the experimental curve is
obtained with a value of 86±2 %, in agreement with the value obtained from the
optical pumping signal.

The master equation is solved numerically in time over a total duration of 200 ns,
corresponding to the experimental delay between the start of the microwave pulse
following initialisation and the optical readout pulse. An example is given in Fig. 4.11,
for a microwave pulse of 100 ns resonant with the transition between states 1 and 2 and
thus detuned from the other possible transitions in both orbital branches, as illustrated
in Fig. 4.11a. Figure 4.11b shows the populations of the four states in the upper (top
panel) and in the lower (bottom panel) orbital branches plotted as a function of time.
In the lower orbital branch, the populations of states 1 and 2 display Rabi oscillations
during the microwave pulse while simultaneously decaying on a timescale of T1,spin.
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Once the microwave is off, Rabi oscillations cease and the populations keep on decaying
according to T1,spin.

States 0 and 3, for which the microwave frequency is detuned by about 54 MHz,
are also driven by the microwave and display oscillations of smaller amplitude and
faster effective Rabi frequency in accordance with this detuning. They also experience
population decay due to T1,spin.

In the upper orbital branch of the ground state, due to different level splittings, the
microwave is detuned from both possible transitions by more than 200 MHz and the
detunings are thus too large for the microwave to induce sizeable Rabi oscillations. In
the case of states 5 and 6, oscillations arise with a similar frequency to those between
states 1 and 2 with a slight delay due to the spin-preserving orbital transitions between
states 1 and 5 and states 2 and 6, denoted Γ15/51 and Γ26/62 in the model and Fig. 4.10.
The timescale of this population transfer is approximately 50 ns, which is comparable
to the 34 ns half-period of the oscillations in states 1 and 2. This transfer is fast enough
to induce oscillations into states 5 and 6, but too slow for it to be approximated as
immediate, thus leading to a delay compared to the oscillations in 1 and 2. This delay
causes the oscillations in 5 and 6 to decrease in amplitude as dephasing is accumulated,
an effect which, added to the T1,spin-related decay, leads to a faster population decay
in 5 and 6 compared to 4 and 7. Reciprocally, the populations in 1 and 2 decay faster
than those in 0 and 3 because of the orbital transfer from 5 and 6. It should be noted
that, although less obvious, the same spin-preserving orbital population transfer occurs
between 0 and 4 and between 3 and 7 on the same timescale. However, due to the
detuning of the microwave frequency with the transition between 0 and 4, the impact
of the dephasing arising from the orbital transfer of the Rabi oscillations is reduced.

In order to simulate the experiment, where readout is performed after 200 ns after
the start of the microwave pulse, we solve the master equation for times up to 200 ns
for different durations of microwave pulse. The populations at 200 ns (indicated by
dots in Fig. 4.11b) are then plotted as a function of the microwave pulse duration.
The simulation for a microwave resonant with the transition between states 1 and
2 (see Fig. 4.12a), is shown in Fig. 4.12b. Here, the effect of the orbital population
transfer appears more clearly for the four states of the upper orbital branch, which
follow the evolutions of those in the lower branch. The decay of the oscillations is
mainly caused by the orbital transfers between the two branches, as longer microwave
pulses lead to the accumulation of more dephasing, in agreement with the faster decay
in time of the resonantly driven states 1 and 2 compared to 0 and 3. As the microwave
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Figure 4.11 Solution in time of the master equation. (a) Diagram of the energy levels in
the upper and lower branches of the ground state. The microwave is taken in resonance
with the transition between states 1 and 2 and is thus detuned from all the other
possible transitions in the lower and upper branches, in accordance with the energy
splittings in Eqs. 4.4 to 4.11. (b) Simulated evolution in time of the populations of the
upper orbital branch levels (top panel) and of the lower orbital branch levels (bottom
panel) for a 100 ns microwave pulse. The colours correspond to those in (a). The final
populations at 200 ns corresponding to the experimental readout time are indicated by
circles.

pulse duration is increased, the temperature of the sample rises, which leads to the
decrease of T1,spin and T1,orbital. The former is responsible for the populations within
each orbital branch converging faster and faster towards thermal equilibrium as the
pulse duration is increased, despite the delay between initialisation and readout being
held constant. The latter increases slightly the decay rate of the oscillations. The
Boltzmann factors in the orbital transfer rates lead to the general upward population
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shift in the upper orbital and to the downward shift in the lower one, and increase
more significantly the decay of the oscillations.
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Figure 4.12 Simulation of Rabi oscillations. (a) Diagram of the energy levels in the
upper and lower branches of the ground state. The microwave is taken in resonance
with the transition between states 1 and 2 and is thus detuned from all the other
possible transitions in the lower and upper branches, in accordance with the energy
splittings in Eqs. 4.4 to 4.11. (b) Simulated evolution of the level populations at 200 ns
as a function of the microwave pulse duration for the upper orbital branch levels (top
panel) and the lower orbital branch levels (bottom panel). The colours correspond to
those in (a).

Experimentally, the spin state is read out through a laser pulse resonant with
transition D1. In this model, this corresponds to reading out the populations in
the hyperfine levels labelled 0 and 1, as they are only 27 MHz apart and the optical
linewidth of the transition is about 600 MHz in the absence of power broadening.
In order to reproduce the experimental values of the peak ratio where the peak of
the readout pulse is divided by that of the initialisation pulse, the sum of the final
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populations in states 0 and 1 is divided by the sum of their initial populations. The
resulting simulated Rabi oscillation curves are displayed in Fig. 4.13 and superimposed
with the experimental data points. The good agreement between the simulated curves
and the experimental data points confirms that the master equation model we have
developed captures most of the dynamics of the system. From the analysis of the model,
we can conclude that the upward drift of the experimental curve is a consequence of
the orbital transfers between the two branches of the ground state combined with the
microwave heating-induced increase in orbital transfers and spin decay rates. The
progressive decrease in amplitude of the oscillations can be described entirely by the
spin-preserving orbital transfers between the two branches of the ground state without
introducing any other source of dephasing.

4.6 Ramsey interferometry

We now make use of the coherent control over the SiV− spin to obtain a direct
measurement of its dephasing time T ∗

2 , corresponding to the duration beyond which
the phase φ in the superposition |↑⟩+ eiφ |↓⟩ is randomised by noise. To this end, we
implement Ramsey interferometry [175, 154], with a pulse sequence consisting of two
π/2 microwave pulses (see Subsection 3.1.1 for the definition of a π/2-pulse) separated
by a variable delay, as illustrated in Fig. 4.14a.

The frequency of the microwave is first fixed such that its detuning from the
transition between nuclear spin-up levels is twice that from the transition between
nuclear spin-down levels (36 MHz and 18 MHz, respectively), as illustrated in Fig. 4.14b
left panel. The obtained evolution of the peak ratio as a function of the free precession
interval between the two π/2-pulses is shown in Fig. 4.14b right panel. The frequency
of the Ramsey fringes is equal to the detuning of the microwave frequency from a
given transition [154]. As a consequence, the oscillations due to the transition between
nuclear spin-up levels have twice the frequency of those associated with the transition
between nuclear spin-down levels. This results in a beating in the overall signal, as
observed experimentally.

We repeat the same measurement with the frequency of the microwave detuned
by the same amount from both transitions so that both oscillations have the same
frequency and thus add constructively, as illustrated in Fig. 4.14c left panel. The
obtained signal is shown in Fig. 4.14c right panel and can be fitted by a simple function
of the form cos(2πδτ)exp(−τ/T ∗

2 ), where δ is the common detuning of the microwave
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Figure 4.13 Comparison between experimental and simulated Rabi oscillations. The
sum of the simulated populations at 200 ns for levels 0 and 1, normalised to the sum of
their initial populations at 0 ns, is plotted as solid curves for a microwave resonant with
the transition between states 1 (

∣∣∣1 ↑,n↑
〉
) and 2 (

∣∣∣2 ↓,n↑
〉
) (green curve) and between

states 0 (
∣∣∣1 ↑,n↓

〉
) and 3 (

∣∣∣2 ↓,n↓
〉
) (orange curve). The corresponding experimental

data points from Fig. 4.8 are plotted for comparison.

pulses with both transitions and τ is the free precession interval. We thus obtain
a direct measurement of the dephasing time of the electronic spin T ∗

2 = 115±9ns
at 3.6 K. This value is significantly larger than the 45ns extracted from the CPT
measurements. While during a Ramsey measurement, the spin is left to evolve freely
between microwave pulses, a CPT experiment relies on constant driving of the system
by two laser fields which induce dephasing through noise, as discussed in Section 3.4.
Ramsey interferometry thus provides a more reliable measurement. However, the CPT
model used to extract the dephasing time takes into account the extra dephasing
from the lasers. The discrepancy between the CPT and Ramsey results is due to
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the fact that the SiV− used for CPT was slightly strained, unlike the one used for
Ramsey interferometry. The reason for this difference will be developed in Chapter 5
Sections 5.2 and 5.3.

4.7 Conclusion

We have evidenced a direct interaction between a single SiV− centre and a microwave
field. Through the realisation of optically detected magnetic resonance, we have
been able to identify the spin-flipping transitions which can be efficiently driven by
microwave. We have then achieved coherent control of the SiV− electronic spin using
microwave pulses. Such a control is demonstrated for both 29Si nuclear spin states,
making it possible to use the nuclear spin as a second qubit and take advantage of
its likely much longer coherence times. The coherent control by microwave does not
rely on any particular orientation of the magnetic field, thus giving more flexibility
than all-optical control for which a Λ-scheme is necessary. In particular, bringing the
magnetic field close to alignment with the SiV symmetry axis would provide several
advantages. Firstly, it would increase considerably the spin decay time T1,spin, with
values reaching more than 2 ms [171]. Secondly, due to the spin quantisation axis
being the same in the ground and excited states, optical transitions between states
of different spin orientations are forbidden as shown in Chapter 2 Section 2.5. It
would thus be possible to take advantage of the spin-cycling transitions for single-shot
readout of the SiV− spin state [176, 177], which would be a key ingredient for many
quantum information protocols, such as deterministic teleportation and quantum error
correction [1, 178]. Finally, the combination of the optical qualities of the SiV− with
the microwave addressing of some of its states makes the SiV− a promising system
to be used as a quantum transducer between optical and microwave photons [179].
This would be of particular interest in hybrid architectures combining the scalability
of superconducting qubits which operate in the microwave regime and the low losses in
optical communications for long-distance information transfer. The value of the spin
dephasing time appears relatively modest even for solid-state qubits [30, 40, 180–182],
and in particular compared to that of the NV− centre, where the dephasing times are
measured in the range of milliseconds [183, 184] and even approaching a second [185].
A very recent EPR measurement on SiV0 reports a dephasing time of more than 100 µs
at cryogenic temperatures [186]. It is thus necessary to investigate the causes for such
a short coherence time in order to improve it.
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Figure 4.14 Ramsey interferometry. (a) Ramsey sequence: two microwave π/2 pulses,
each corresponding to a duration of 8 ns, are separated by a variable delay τ . The delay
between optical initialisation and readout pulses is held constant at 160 ns not to include
the effect of the spin decay into the measured signal. (b) Ramsey oscillations (blue dots)
for a microwave frequency detuned by δ1 = 36MHz from the transition between nuclear
spin-up levels and by δ2 = 18MHz from the transition between nuclear spin-down levels,
as indicated in the ODMR spectrum on the left. The Ramsey oscillations are fitted
with a function of the form (A1 cos(2πτδ1)+A2 cos(2πτδ2))exp(−τ/T ∗

2 ), where A1 and
A2 are the amplitudes of the respective oscillations and T ∗

2 is the spin dephasing time.
The fit is diplayed as a solid blue curve. (c) Ramsey oscillations at 3.6 K (blue dots)
for a microwave frequency detuned by δ = 27MHz from both transitions, as indicated
in the ODMR spectrum on the left. The Ramsey oscillations are fitted with a function
of the form Acos(2πτδ)exp(−τ/T ∗

2 )), where A is the amplitude of the oscillations and
T ∗

2 = 115±9ns is the spin dephasing time. The fit is diplayed as a solid blue curve.





Chapter 5

Interactions with the environment

The advantage of solid-state systems over trapped atoms in terms of scalability have to
be balanced against decoherence which arises when any quantum system is surrounded
by an environment with which it interacts. However, by understanding these interac-
tions, we can devise ways to mitigate them. In addition, some of theses interactions
can actually be taken advantage of, as they provide additional resources for quantum
information processing.

In this chapter, we explore the interactions of the SiV− centre with three particular
elements of its environment, namely a single nuclear spin, lattice phonons and strain,
and evaluate their impact on the properties of the SiV− as a quantum bit. Those results
were obtained with the technical assistance of David-Dominik Jarausch, Christian
Hepp, Lina Klintberg and Jonas N. Becker for the nuclear spin and lattice phonons
parts, and have been published in Ref. [166], and the data of the strain part were taken
together with Tina Müller and partially published in Ref. [144].

5.1 29Si silicon-vacancy centres: coupling to the
nuclear spin

28Si is by far the most common isotope of silicon, with a natural abundance of 92.3 %.
However, it does not possess a nuclear spin. As a consequence, in order to investigate
the hyperfine interaction of an SiV− with a nuclear spin, we have implanted a diamond
sample with 29Si+ ions, which possess a nuclear spin I = 1/2. The details of the sample
preparation and experimental equipment are the same as those described in Chapter 4
Section 4.1.
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We aim to explore the coupling strength of the SiV− electronic spin with the nuclear
spin of its 29Si atom. To this end, we need to lift the spin degeneracy with an external
magnetic field, which is here oriented with an angle of 109.5±1.0°. We investigate the
low magnetic field regime (around 0.2 T) using optically detected magnetic resonance.
As described in Chapter 4 Section 4.3, the ODMR spectrum displays two resonances,
each corresponding to a transition between states of opposite electronic spin with
the nuclear spin remaining unchanged, up or down (as illustrated in Fig. 5.1 inset).
We measure the frequencies of those two resonances at different values of the applied
magnetic field, as shown in Fig. 5.1 as orange and green dots. The resonance frequencies
shift with the magnetic field while maintaining a constant separation of 53.7±0.3 MHz
between them. This corresponds to a hyperfine splitting of the states of approximately
27 MHz.

In order to extract information about the hyperfine coupling, we fit the observed
frequency shift using the group theoretical model described in Chapter 2 Section 2.4.
The parameters of the Hamiltonians of the Jahn-Teller effect, of the spin-orbit coupling
and of the Zeeman effect are deduced by fitting the evolution of the optical transitions
predicted by the model as a function of the external magnetic field with the corres-
ponding experimental measurement, as was shown in Fig. 4.2. From this, we have
deduced the relative energies of the electronic states of the SiV− (see Fig. 4.3).

This model is here expanded to include interactions due to the 29Si nuclear spin
I = 1/2. The hyperfine interaction between the nuclear spin I⃗ and the SiV− electron
spin S⃗ is of the form HHF = I⃗ · Ā · S⃗, with Ā the hyperfine coupling tensor. The
hyperfine coupling can be separated into parallel A∥ and orthogonal A⊥ components
with respect to the main symmetry axis of the SiV− centre [187]. This leads to the
following expression: HHF = A∥SzIz +A⊥(SxIx +SyIy). The orbital contribution to
the hyperfine coupling is thought to be minor as the hyperfine coupling measured
by EPR is close to isotropic [187]. The nuclear Zeeman interaction is included with:
HnZee = −g29Siµn

h̄ I⃗ · B⃗, where µn = 7.6MHzT−1 is the nuclear magneton and g29Si =
−1.11 is the nuclear Landé factor for 29Si [188]. We fit the measured transition
frequencies from the ODMR spectra with the energy differences of the hyperfine levels
from the model. This is shown in Fig. 5.1 as orange and green solid curves, the two
dashed grey curves corresponding to the transitions where the nuclear spin is flipped. In
this way, we can extract a value for A∥ = 70±2MHz, in agreement with the previously
reported values [187, 171] as well as theoretical predictions [96]. At the low magnetic
fields studied here (approximately 0.2 T), the quantisation axes for the electron and
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nuclear spins remain dictated by the spin-orbit coupling and the hyperfine interaction
respectively, and are both close to alignment with the symmetry axis of the SiV−.
Thus, A⊥ has little influence on the measured hyperfine splitting in this configuration.
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Figure 5.1 Magnetic field dependence of ODMR resonances. (Inset) Energy level
diagram of the electronic spin states in the ground state lower orbital branch split by
the hyperfine interaction with the 29Si I = 1/2 nuclear spin. The levels are labelled as
in Fig. 4.3, with the addition of the electronic spin orientations at around 0.2 T. An
applied microwave can flip the electronic spin while leaving the nuclear spin unchanged,
which results in two possible microwave-induced transitions (orange and green circular
arrows). (Main figure) Variation of the ODMR resonances with the applied magnetic
field (orange and green dots). The frequencies of the resonances are determined through
Lorentzian fits of the resonance peaks of the ODMR spectra (colours correspond to
those in the inset). Errors are smaller than dots. The curves correspond to the splittings
between the energy levels considered, as simulated by the group theoretical model
expanded to include the nuclear spin. Orange and green curves correspond to the
transitions indicated in the inset, the two overlapping grey dashed curves correspond
to the transitions where both electronic and nuclear spins are flipped.

5.2 Single phonon-mediated spin dephasing and de-
cay

We have seen in Chapter 4 Section 4.5 how transitions between the two orbital branches
of the ground state play an important role in the electronic spin dynamics of the SiV−
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centre. We here investigate more closely those transitions and their impact on the spin
coherence.

5.2.1 Spin dephasing

At around 4 K, both orbital branches of the ground state are populated following
a Boltzmann distribution. This population is a direct consequence of transitions
taking place between those two orbital branches. We investigate the dynamics of those
transitions using the same SiV− centre and experimental setup as those described in
Section 4.1. In the absence of magnetic field, the spin sublevels are degenerate and
only the orbital branches can be addressed (see Fig. 5.2a). We measure the orbital
decay time T1,orbital through a pump-probe experiment, analogous to that used to
measure the spin decay time T1,spin and described in Section 4.2. A first 500 ns optical
pulse resonant with transition β depletes the population in the upper orbital branch of
the ground state and initialises the SiV− into the lower ground state orbital branch
through optical pumping, as shown in Fig. 5.2b. After a time delay, a second 500 ns
optical pulse resonant with transition β measures the population recovery into the
upper ground state orbital branch. By varying the time delay between the pulses, we
measure an exponential recovery of the orbital population whose fit allows us to extract
a value of T1,orbital = 70±3ns at 3.5 K, as shown in Fig. 5.2.

Considering that lattice phonons are the most likely cause of these orbital transitions,
it is necessary to investigate how T1,orbital is affected by temperature. Figure 5.3
displays the variation of the transition rate 1/(2T1,orbital) as a function of the measured
temperature. The observed linear dependence indicates that orbital transitions result
from the absorption (upward transition) and emission (downward transition) of a single
phonon resonant with the orbital transition [130]. To reach this conclusion, Jahnke et
al. [130] consider a linear interaction between the E-symmetric ground state orbitals
and E-symmetric phonon modes. To first-order, they obtain the following upward and
downward transition rates:

Γup = 2π
∑
k

n−,k |χk|2 δ (∆E,ωk) (5.1)

Γdown = 2π
∑
k

(
n+,k +1

)
|χk|2 δ (∆E,ωk) (5.2)

where np,k is the occupation of the acoustic mode of polarisation p and wavevector k,
and |χk|2 is the coupling rate to a single phonon of wavevector k. Summing over all
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Figure 5.2 Measurement of the orbital decay time T1,orbital at 3.5 K in the absence
of magnetic field by a pump-probe experiment. (a) Energy levels of the SiV− at
zero magnetic field. We excite transition β resonantly (red arrow) and measure the
fluorescence from the lower branch of the excited state (wiggly red arrows). Dashed grey
arrows represent phonon-induced thermalisation processes. (b) Temporal dependence
of the fluorescence intensity during the initialisation pulse followed by the readout
pulse, separated by a delay ∆t. The signal displays a sharp decay indicating depletion
of the population in the upper orbital branch of the ground state and optical pumping
into the lower orbital branch. The fluorescence signal integrated to calculate the peak
ratio (corresponding to the population in the upper orbital branch of the ground state)
is indicated in dark grey. (c) Variation of the peak ratio as a function of the delay
∆t between initialisation and readout (grey dots). The population recovery into the
upper branch of the ground state is fitted with an exponential curve with time constant
T1,orbital = 70±3ns.

available phonon modes leads to:

Γup = 2πχρ(∆E)3n(∆E,T ) (5.3)
Γdown = 2πχρ(∆E)3(n(∆E,T )+1) (5.4)

with χ∆E the interaction frequency, ρ(∆E)2 the density of modes and n(∆E,T ) the
Bose-Einstein distribution. In Γdown, the additional +1 in (n(∆E,T ) + 1) can be
interpreted physically as the spontaneous emission of a phonon while n(∆E,T ) can be
thought of as stimulated emission. A Taylor expansion of the Bose-Einstein distribution
in T leads both rates to be linear in temperature.

As was evidenced by the master equation model for Rabi oscillations (see Section 4.5),
transitions between orbital branches act as a dephasing mechanism for the spin of the
SiV−. To evaluate the link between orbital transitions and spin dephasing, we perform
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Figure 5.3 Temperature dependence of the orbital decay time T1,orbital in the ground
state (grey dots). Error bars correspond to the standard error from the exponential fit of
the population recovery. The solid grey curve is a linear fit with 1/(2T1,orbital)(MHz) =
(3.8±0.2)(MHzK−1)∗T (K)− (5.8±0.8)(MHz).

Ramsey interferometry on the electronic spin at various temperatures. Figure 5.4 shows
the temperature dependence of the spin dephasing rate 1/T ∗

2 . This dependence is
plotted along that of the orbital transition rate 1/(2T1,orbital). We not only see that the
dephasing rate varies linearly with temperature, but also that it follows 1/(2T1,orbital).
This shows that single-phonon-induced excitations from the lower orbital branch to the
upper one is a dominant cause of spin dephasing. Physically, this can be understood
as follows. A superposition of spin in the lower ground state orbital branch can be
excitated by a single phonon resonant with the orbital splitting at about 50 GHz to
the upper orbital branch. There, due to the different spin splitting between the two
orbital branches, an extra phase is accumulated between the two components of the
spin superposition, which thus leads to the dephasing of the spin state.

Considering this dephasing mechanism, the spin dephasing rate 1/T ∗
2 is to be

compared to the upward transition rate Γup between orbital branches. At those low
temperatures, the Boltzmann distribution of the population between the two orbital
branches indicates that the upward transition rate Γup and downward transition rate
Γdown differ by a Boltzmann factor:

Γup = Γdown · e
−∆E
kBT (5.5)
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Figure 5.4 Temperature dependence of the spin dephasing rate 1/T ∗
2 (blue dots) determ-

ined by Ramsey interferometry (as described in Section 4.6). Error bars correspond to
the standard errors from the cosine fits of the Ramsey signals. The values and linear
fit of 1/(2T1,orbital) from Fig. 5.3 are displayed as grey dots an grey curve, respectively.

with 1
T1,orbital

= Γup +Γdown where kB is the Boltzmann constant and ∆E ≈ 50GHz is
the energy difference between the lower and upper branches. We thus obtain:

Γup = 1

T1,orbital

(
1+ e

∆E
kBT

) (5.6)

As a consequence, at around 4 K, Γup < 1/(2T1,orbital) and hence, 1/T ∗
2 > Γup. This

strongly suggest that other dephasing mechanisms also contribute to the spin dephasing
rate 1/T ∗

2 of this SiV−. We can decompose the spin dephasing rate into the contribution
Γup from single-phonon excitation to the upper orbital branch and the contribution γ

from the remaining dephasing mechanisms:

1/T ∗
2 = Γup +γ (5.7)

To extract the contribution of the remaining dephasing mechanisms, we thus need to
determine Γup. However, in our experimental setup, due to the thermometer being
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located below the sample mount, the sample temperature tends to be underestimated
Tmeasured < T as most of the heating comes from the microwave radiation on top of
the sample. In Fig. 5.5, we plot as a solid grey curve the lower bound Γup,min obtained
by taking T = Tmeasured in the Boltzmann factor and using the linear dependence of
1/T1,orbital from Fig. 5.3. As expected, this curve lies below the experimental values
of 1/T ∗

2 . Adding a constant to Γup,min allows us to compensate for this difference
(dotted grey curve in Fig. 5.5), and we therefore extract an upper bound γmax on the
contribution from other dephasing sources with 1/γmax ≈ 300ns. This characteristic
time can be taken as a lower bound for T ∗

2 in the absence of single-phonon-mediated
dephasing.
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Figure 5.5 Comparison between the temperature dependence of the spin dephasing
rate 1/T ∗

2 (blue dots) and that of the lower bound of the upward orbital transition rate
Γup,min (solid grey curve). The dotted grey curve corresponds to Γup,min +1/(300ns).

Among the possible sources of this extra dephasing, the dominant one is likely to
be the bath of 13C nuclear spins and of nitrogen impurity electronic spins in the HPHT
diamond sample. Such magnetic dephasing mechanisms can be minimised by using
isotopically purified diamond for 13C and purer diamond samples grown by chemical
vapour deposition (CVD) for nitrogen impurities. Furthermore, techniques such as
spin echo and dynamical decoupling can be used to eliminate the impact of its lower
frequency components on the spin coherence, and are routinely implemented with NV−

centres [143, 184, 189, 190].
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5.2.2 Spin population decay

We now investigate whether the spin decay time T1,spin is also affected by the thermally
excited transitions between orbital branches. We thus measure the temperature
dependence of the spin decay rate 1/(2T1,spin), as shown in Fig. 5.6. Its linear
dependence with temperature indicates that it is also dominated by a single phonon
process.
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Figure 5.6 Temperature dependence of the spin decay time T1,spin (purple dots).
Error bars correspond the the standard error from the fit of the exponential recovery
(see Section 4.2). The solid purple curve is a linear fit with 1/(2T1,spin)(MHz) =
(1.2±0.1)(MHzK−1)∗T (K)− (2.9±0.4)(MHz).

The suggested dominant mechanism for spin decay relies on excitation to the
upper orbital branch of the ground state followed by relaxation back to the lower
orbital branch. One of those two transitions could happen between two states with
different dominant spin orientations, thus leading to a spin flip in the lower branch
of the ground state. To verify this possibility, we make use of the group theoretical
modelling of the SiV− from Section 4.1.3 to deduce the tomography of the ground
state manifold at 0.2 T, as shown in Fig. 5.7 for the lower orbital branch and in Fig. 5.8
for the upper orbital branch. Each state is dominated by a given projection of the
electron spin and of the nuclear spin, but also includes weaker components of the other
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projections, especially for the electron spin. It is thus possible to have spin-preserving
transitions between states of opposite dominant spin orientations, as will be developed
in Section 5.3. This mechanism also explains why T1,spin can reach several milliseconds
[171] when the magnetic field is aligned with the SiV symmetry axis which otherwise
mixes the spin as defined by the spin-orbit interaction, as seen in Chapter 2 Section 2.5.
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Figure 5.7 Simulated tomography of the SiV− eigenstates in the lower branch of
the ground state at 0.2 T and for an angle of 109.5° between magnetic field and SiV
axis. The basis used is the eigenbasis of the spin-orbit coupling (see Section 2.4)
expanded with the nuclear spin states

∣∣∣n↑
〉

and
∣∣∣n↓
〉
. Each bar indicates the norm of

the corresponding component in the density matrix of the state.
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Figure 5.8 Simulated tomography of the SiV− eigenstates in the upper branch of
the ground state at 0.2 T and for an angle of 109.5° between magnetic field and SiV
axis. The basis used is the eigenbasis of the spin-orbit coupling (see Section 2.4)
expanded with the nuclear spin states
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. Each bar indicates the norm of

the corresponding component in the density matrix of the state.

5.2.3 Discussion

Both dephasing and population decay of the SiV− spin are limited by single-phonon
transitions between the orbital branches of the ground state, as evidenced by their
temperature dependence. Hence, an obvious way to improve the coherence times of
the spin is to cool the SiV− down. At 1 K, a temperature achievable by evaporative
cooling of liquid helium, Γup is already decreased by more than an order of magnitude
compared to its value at 3.6 K. Reaching the mK range using a dilution refrigerator will
then virtually eliminate this source of decoherence. Another approach would consist in
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decreasing the density of states of phonons at 50 GHz, the orbital transition frequency.
This would most likely require nanostructures smaller than 120 nm, the half-wavelength
of those phonons in diamond. This is not only challenging from a fabrication point
of view but would also bring the SiV− in close proximity with surfaces, which are
notorious sources of spin decoherence for NV− centres [191–193]. However, it should
be noted that some of the surface-related decoherence arises from electric noise to
which SiV− is insensitive to first order due to its inversion symmetry [99, 136]. Finally,
an alternative strategy relies on applying strain to the SiV− which, as we are going to
see in the following section, splits the orbital branches further apart, thus increasing
the energy required for phonons to cause decoherence.

5.3 SiV− centres in nanodiamonds: Influence of
strain

The solid-state environment of the SiV− can present inclusions and vacancies as well
as structural defects such as grain boundaries, stacking fault and dislocations. Such
defects, especially structural ones, are difficult to eliminate and are thus likely to be
present in most crystals. The most notable consequence of structural defects is local
distortions of the carbon lattice. This local alteration of the positions of atoms is likely
to impact the electronic states of any SiV− centre located nearby. It is thus important
to investigate how SiV− states are affected by strain and how the SiV− optical and
spin properties are altered. We here study single SiV− centres in diamond nanocrystals,
which exhibit significant strain from the growth process.

5.3.1 Experimental setup and samples

The experimental setup used for these experiments is the same as the one described
in Section 3.2. The sample studied consists of nanodiamonds grown on an iridium
substrate. Their fabrication process is described in Ref.[94]. They have a diameter of
approximately 130 nm with 40 nm standard deviation. The substrate is composed of a
150 nm-thick iridium layer deposited on a 40 nm buffer layer of yttria-stabilised zirconia,
itself on a silicon substrate. The growth process consists in seeding nanodiamonds
(Microdiamant Liquid Diamond MSY) with sizes up to 30 nm on the iridium surface.
Then, a microwave plasma assisted CVD process is used to grow the nanodiamonds on
the seeds. Silicon is incorporated during the growth by etching of the cut areas of the
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silicon substrate [94]. The iridium layer reduces the amount of silicon incorporated
from the substrate and permits a limited lattice mismatch with the diamond nano-
crystals [94]. For this sample, no preferential orientation of the nanodiamonds has
been imposed, which results in a variety of possible orientations of SiV centres with
regards to the applied magnetic field. An average density of one bright SiV− centre
per 50 × 50µm2 has been observed. The strain in nanodiamonds likely originates
from lattice mismatch between nanodiamond and substrate, a difference of thermal
expansion coefficients and growth stress when slightly differently oriented crystallites
merge into a single nanocrystal [123, 144]. The use of nanodiamonds also presents
major advantages. In fact, it has been shown that the excitation efficiency of single
SiV− centres can be enhanced in nanodiamonds, possibly due to an increase of the
absorption coefficient linked to a change in the vibronic states of the centre, or to
the possibility of development of resonant modes (Mie resonances) of the light in
nanodiamonds smaller than the excitation wavelength [115, 123]. Furthermore, the
sub-wavelength size of nanodiamonds eliminates total internal reflections present in
bulk, and therefore enhances the luminescence extraction [115, 123].

5.3.2 Shift of energy levels

We start by measuring the non-resonant spectra of strained SiV− centres in nanodia-
monds as well as the magnetic field dependence of the optical transitions. Figure 5.9
shows the Zeeman spectra of three SiV− centres. At zero magnetic field, the splittings
between optical transitions differ from unstrained centres and vary from centre to
centre. Tracing the transitions back to the energy levels, these spectra indicate that
strain induces larger splittings between the orbital branches in the ground and excited
states. The general pattern of the magnetic field dependence of transitions is the same,
with each transition splitting into four and the presence of avoided crossings. However,
the magnitude of the splittings with magnetic field varies between the centres. This is
owing to the absence of a preferential growth orientation; nanodiamonds and hence
SiV centres have a random orientation with respect to the applied magnetic field.

We investigate this behaviour further by using the group theoretical approach
presented in Section 2.4. Assuming uniaxial stress, a group theoretical analysis
performed in Refs. [149, 194] leads to the following Hamiltonian for strain, when
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a b c

Figure 5.9 Magnetic field dependence of the fluorescence spectra for single SiV− centres
in nanodiamonds, referred to as SiV A in (a), SiV B in (b) and SiV C in (c). The
intensity scale is logarithmic for (a) and (c), linear for (b). Due to the growth conditions,
the relative orientations of the SiV centres with respect to the external magnetic field
are unknown.

expressed in the basis {|ex ↑⟩ , |ex ↓⟩ , |ey ↑⟩ , |ey ↓⟩}:

Hstrain =


α − δ 0 β 0

0 α − δ 0 β

β 0 −α − δ 0
0 β 0 −α − δ

 (5.8)

where α, β and δ are scaling factors which describe the response of the SiV− centre
to a strain contribution of symmetry Egx, Egy and A1g, respectively. These factors
can be different between ground and excited states. As the model focuses on splittings
among the levels of the ground state and of the excited state, the parameter δ, which
acts similarly on all the levels, is ignored and taken equal to zero. This Hamiltonian is
added to the group theoretical model to simulate the experimental fluorescence spectra.
An example of such a simulation is given in Fig.5.10 for SiV B presented in Fig. 5.9b.

Despite the strong assumption of the stress being uniaxial, we can see that the
model captures the influence of strain on the SiV− fluorescence. It also allows us to
determine an angle of 70±5° between SiV axis and magnetic field from the splitting
of the transitions. We can see from the simulated energy levels displayed in Fig. 5.11
that the orbital splitting is indeed larger than for unstrained centres with a value of
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Figure 5.10 Simulation of the Zeeman splitting for the emitter presented in Fig. 5.9b. (a)
Experimental spectra as a function of magnetic field superimposed with the simulated
optical transitions as white curves. Transition labels correspond to the energy levels
displayed in Fig. 5.11. (b) Fully simulated optical spectra. The fit between the magnetic
field splitting for the experimental spectra and the simulated transitions allows us to
determine that the SiV axis makes an angle of 70±5° to the applied magnetic field.
The strain parameters used are αg = 13±1GHz and βg = 76±3GHz for the ground
state, and αe = 10±1GHz and βe = 57±3GHz for the excited state.

more than 100 GHz compared to the usual 50 GHz. This results in the avoided crossing
between states |2⟩ and |3⟩ occurring at a larger magnetic field. This link between
strain and larger orbital splitting can be seen in the strain matrix acting on the same
elements as the spin-orbit Hamiltonian (see Eq. 2.1), which is mainly responsible for
the orbital splitting. We also notice that strain does not couple the different spin
states and only alters the orbital part of the wavefunctions. However, due to the strong
interplay between orbitals and spin in the physics of the SiV−, we can expect that
strain does have an impact on the spin properties.
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Figure 5.11 Simulated energy levels deduced from Fig. 5.10.

5.3.3 Optical selection rules

To evaluate the influence of strain on spin properties, we perform resonant excitation of
SiV B under magnetic field. As in Chapter 2 Section 2.3.1, we selectively populate an
excited state with a given spin orientation and measure the resulting optical spectrum.
Figure 5.12a displays the fluorescence spectra obtained when populating levels D and
C, the two levels of opposite spin orientations in the excited state upper orbital branch.

The two resonant spectra display a certain selectivity in the fluorescing optical
transitions. However, they are not completely complementary and several transitions
show clear fluorescence in both spectra. We trace back those transitions to the energy
levels, as illustrated in 5.12b. In the excited state upper branch, transitions are seen
to occur from the addressed level only, but in the lower branch, fluorescence is observed
from both levels even though some degree of selectivity remains, with the level of same
spin orientation as the addressed one generating more fluorescence than the level of
opposite spin orientation. We repeat the experiment, addressing levels A and B of
the lower branch of the excited state, as shown in Fig. 5.13a. The obtained spectra
are completely complementary and transitions only occur from the addressed level, as
illustrated in Fig. 5.13b. This shows that, while spin selectivity is preserved within
each excited state orbital branch, thermalisation does not preserve this selectivity.
Strain thus seems to have an impact on the spin part of the SiV− states.
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Figure 5.12 Resonant excitation of SiV B under a magnetic field of 2 T. (a) Fluorescence
spectra obtained when resonantly exciting transition D1 (blue shaded curve) and C1
(red shaded curve). Each transition is labelled according to Figs. (b) and 5.10. The
non-resonant spectrum at 2 T is displayed as a dashed grey curve. (b) Representation
of the energy levels of the SiV− with resonant excitation of transition D1 displayed as
a dark blue arrow. Experimentally measured optical transitions occur from excited
state levels D, B and A to the four ground state levels, as represented by light blue
arrows. Grey dashed arrows indicate the observed thermalisation among the excited
state levels.

To verify this, we compare the simulated tomographies of the states of the strained
SiV B, as shown in Fig. 5.14, with that of states simulated using the same parameters
except the strain ones which are set to zero, as seen in Fig. 5.15. We can see that
while in both cases, states contain some components of both spin orientations, with
one dominating the other, the states in the strained case contain larger components of
the minority spin orientation.

In order to gain further understanding of the interplay between strain and spin-orbit
coupling, we express both Hamiltonians in the eigenbasis of the spin-orbit coupling
{|e+ ↑⟩ , |e+ ↓⟩ , |e− ↑⟩ , |e− ↓⟩} (see Section 2.4):

H±
SO =


λ/2 0 0 0
0 −λ/2 0 0
0 0 −λ/2 0
0 0 0 λ/2

 (5.9)
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Figure 5.13 Resonant excitation of SiV B under a magnetic field of 2 T. (a) Fluorescence
spectra obtained when resonantly exciting transition B1 (blue shaded curve) and A1
(red shaded curve). Each transition is labelled according to Figs. (b) and 5.10. The
non-resonant spectrum at 2 T is displayed as a dashed grey curve. (b) Representation
of the energy levels of the SiV− with resonant excitation of transition B1 displayed as
a dark blue arrow. Experimentally measured optical transitions occur from excited
state level B to the four ground state levels, as represented by light blue arrows.

H±
strain =


0 0 −(α − iβ) 0
0 0 0 −(α − iβ)

−(α + iβ) 0 0 0
0 −(α + iβ) 0 0

 (5.10)

While the strain Hamiltonian does not couple states with different spins, it is not
diagonal in the spin-orbit basis and thus couples the orbital states dictated by the
spin-orbit coupling. Consequently, strain and spin-orbit coupling compete to determine
the orbital part of the states. As the spin-orbit coupling fixes the spin orientation to
its orbital eigenstates, we can thus consider that strain indirectly weakens the spin
quantisation axis determined by the spin-orbit coupling, resulting in a larger mixing of
spin orientations in the presence of an external magnetic field. As transitions between
orbital branches are mediated by single phonons [130], the corresponding operator
T couples the same states as strain and the Jahn-Teller effect and thus changes the
orbital from e+ to e− and inversely. To first order, Fermi’s golden rule gives that the
transition probability is proportional to |⟨f |T |i⟩|2 where |i⟩ and |f⟩ are the initial and
final states respectively. The diagonal of the state tomographies in Fig.5.15 represents
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Figure 5.14 Tomography of the states of the strained SiV B at 2 T and for an angle
of 70° between SiV axis and magnetic field. (The basis used is the eigenbasis of the
spin-orbit coupling (see Section 2.4). Each bar indicates the norm of the corresponding
component in the density matrix of the state.)

the diagonal of the density matrices of the states, which corresponds to the populations
along the different basis states. We can see that state |D⟩ has mainly components
along the basis states |e+ ↑⟩ and |e− ↓⟩. These will thus be transferred to |e− ↑⟩ and
|e+ ↓⟩ respectively. The components of |A⟩ and |B⟩ are mainly along |e− ↑⟩ and |e+ ↓⟩,
while those of |C⟩ are along |e+ ↑⟩ and |e− ↓⟩. As a consequence, |D⟩ can relax to
|A⟩ and |B⟩, but not to |C⟩. The same analysis can be done for relaxation from state
|C⟩. We have thus shown that strain, through its alteration of orbitals and with its
interplay with the spin-orbit coupling, has an impact on the spin properties of the
SiV−. This influence leads to a modification of transition selection rules, highlighting
the importance of both the orbital and spin components of the SiV− eigenstates.

5.3.4 Coherent population trapping

With evidence of strain impacting upon the transitions between orbital branches,
where such transitions are a major source of decoherence, we investigate the link
between strain and coherence. We use coherent population trapping to probe the spin
dephasing of an SiV− in a nanodiamond, with strain causing a ground state splitting
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Figure 5.15 Tomography of the states simulated using the same parameters as in
Fig. 5.14, with the exception of all strain parameters set to zero. (The basis used is
the eigenbasis of the spin-orbit coupling (see Section 2.4). Each bar indicates the norm
of the corresponding component in the density matrix of the state.)

of 360±5 GHz. The setup is similar to that described in Chapter 3 Section 3.2, and
the transitions addressed are transitions D1 and D2, as in Fig. 3.8. We managed to
achieve CPT, as shown in Fig. 5.16. We can see that the driven transitions display
some spectral wandering, which is caused by the relative fluctuation of the excited
state level with respect to both ground state levels. The latter two do not appear to
fluctuate significantly with respect to each other as the two-photon resonance leading
to CPT occurs for the same values of detunings for both transitions.

By decreasing the power of both lasers, we can reach a CPT dip of 12±1 MHz
with laser powers close to saturation, as seen in Fig. 5.17a. This value is very similar
to that obtained for the SiV− with about 6 times less strain in bulk diamond under
similar excitation conditions (see Section 3.3). Furthermore, by repeating CPT scans
in time, as diplayed in Fig. 5.17b, we can see that the two-photon resonance condition
fluctuates, sign that the two ground state levels exhibit frequency fluctuations with
respect to each other. Fluctuations faster than the experimental acquisition time of
about 15 s over the CPT dip widen this dip. As a consequence, we can assume that the
CPT dip value measured is only an upper bound. It thus appears that a spin coherence
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Figure 5.16 Coherent population trapping on a strained SiV− centre in a nanodiamond.
The fluorescence from the SiV− is plotted (colour scale) as a function of the detunings
of each laser addressing transitions D1 and D2. A magnetic field of 9 T is applied to
allow selective addressing of the two driven transitions.

comparable to that obtained for low strain SiV− centres in bulk can be obtained with
strongly strained centres in nanodiamonds.

The origin of the spectral wandering and ground state splitting fluctuations is
unclear. It has been reported that other colour centres in diamond, such as chromium
centres and NV− centres, experience worse emission properties in nanodiamonds than
in bulk, including shorter lifetimes by more than one order of magnitude [184, 195, 196].
This is generally attributed to the proximity of the surface where diverse impurities
and charge traps influence the dynamics and coherence of the centre [184, 147]. Surface
treatments have been shown to affect the emission quality of colour centres in diamond
with a view to improving it [147, 197].

5.3.5 Discussion: Using strain to improve the spin coherence
time

We have seen in Section 5.2 that spin decoherence is dominated at 4 K by phonons
resonant with the splitting between the two orbital branches of the ground state.
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Figure 5.17 Coherent population trapping on a strained SiV− at low laser powers (90 nW
corresponding to half saturation power for transition D2 and 180 nW corresponding
approximately to saturation power for transition D1). (a) CPT scan. (b) CPT scans
measured as a function of time. Fluorescence intensity is colour-coded.

This decoherence is thus directly proportional to the phonon population, which is of
the form ω3n(ω,T ), where ω is the frequency of the phonons. This is obtained by
considering a linear SiV-phonon coupling in ω, a phonon density of states varying
as ω2 in bulk and their population following Bose-Einstein statistics n(ω,T ) [130].
While at 4 K the population of phonons at 50 GHz is still significant, increasing the
orbital splitting by applying strain would lead to first an increase in phonon population,
followed by a decrease for splittings beyond approximately 230 GHz. At this energy,
the decrease due to the Bose-Einstein statistics starts to dominate over the increase
of density of states and we reach a net decrease of phonon population for splittings
beyond 600 GHz. The fact that strain allows transitions to occur between more
levels, as seen in Subsection 5.3.3 would be overcome by the depletion of the phonons
mediating those transitions. Furthermore, nanodiamonds or diamond nanostructures
with dimensions smaller than the phonon half-wavelength (≈ 120nm) would also deplete
the density of states of phonons responsible for spin decoherence. If the observed
frequency fluctuations can be overcome through surface treatments, strained diamond
nanostructures would thus be an ideal platform to eliminate the dominant source of
decoherence of the SiV− spin.
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5.4 Conclusion

In this chapter, we have investigated the interaction of the SiV− centre with certain
elements of its environment. We have determined, through ODMR, a value of the
hyperfine constant A∥ = 70±2MHz between the SiV− electronic spin and the nuclear
spin of the 29Si atom. Through the temperature dependence of the spin dephasing time
and the spin decay time, we have shown that both are dominated by single phonon-
mediated transitions between ground state orbital branches. And finally, we have
shown with SiV− centres in nanodiamonds that strain increases the orbital splitting and
indirectly affects the spin composition of the SiV− states, thus relaxing the selectivity
of phonon-mediated transitions. While it is clear that some interactions, such as
phonons, have a detrimental effect on the spin coherence properties, others, such as
nuclear spins and strain, can be used as resources. We have mentioned how strain
can advantageously eliminate phonon-induced spin decoherence. A natural extension
of this work would be to deterministically apply strain to an SiV− and measure the
corresponding evolution of the spin coherence properties until no improvement can
be measured and other decoherence mechanisms become dominant. Furthermore, the
controlled application of strain can be used to tune the emission wavelength to interface
emitters for quantum communication applications. Another axis of development will
be to gain control over the 29Si nuclear spin, starting with initialisation and readout
using the SiV− spin, and followed by its coherent control with a radiofrequency, with a
view to performing quantum gates between the two spins [67, 69–72].





Conclusion and outlook

In this thesis, we have investigated the spin properties of the SiV− centre with the
perspective of integrating it into a quantum network as a spin-photon interface. The
desirable optical qualities of this colour centre already make it an advantageous
source of indistinguishable photons for applications in quantum optics and quantum
communications [136, 128].

In this work, we have shown, through the analysis of the fluorescence emitted
under resonant excitation and in the presence of an external magnetic field, that the
SiV− offers a spin degree of freedom S = 1/2, which can be operated as a well-defined
quantum bit for quantum computing. This also implies that the emitted photons,
through their frequency, are correlated with the electronic spin state. We have then
showed, through the realisation of coherent population trapping, that this electronic
spin can be controlled with light, and thus, that the spin state can be correlated with
incoming photons. We have hence evidenced the potential for two-way spin-photon
interfacing using the SiV− centre.

While the control over the photon side of this interface is fairly trivial, the spin
side also needs to be controlled independently. We have addressed this point and
demonstrated coherent control of the spin state of a single SiV− using microwave pulses.
Such a control is at the basis of quantum information processing algorithms [1, 2, 198]
and constitutes a stepping stone for the implementation of quantum gates using the
spin of the SiV−.

As coherent control allows to encode quantum information into the spin degree of
freedom, the ensuing interrogation concerns the time during which such information can
be reliably processed and stored by this spin. Using coherent population trapping, we
have extracted a first estimation of the spin dephasing time, and coherent control has
allowed us, through Ramsey interferometry, to get a more direct measurement leading
to a value of 115±9 ns at 3.6 K. Considering that such a coherence time appears
modest compared to other solid-state systems [40, 180, 181], we have investigated what
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its primary limitation is and have determined that single-phonon-mediated transitions
between ground state orbital branches is the dominant source of spin dephasing.

We have then examined the impact of crystalline strain on the SiV− eigenstates
and suggested how it can be taken advantage of to circumvent this limitation. Strain
increases the splitting of the orbital branches and can in this way allow us to reach
energies at which phonon population is negligible at 4 K. We have also briefly investig-
ated another resource to have access to longer coherence times: the nuclear spin of
29Si, for which we have measured, through optically detected magnetic resonance, a
hyperfine constant of 70±2 MHz.

In summary, we have shown through our study of the spin of the SiV− that this
colour centre is a promising system to be used as a spin-photon interface.

A complementary extension of this work will consist in achieving all-optical control
of the spin state. Indeed, while microwave control offers the opportunity to work in a
magnetic field configuration enabling single-shot readout of the spin state [176, 177]
through cycling transitions, all-optical control will allow us to reach ultrafast control
using ps pulses [36, 37, 199, 200], hence compensating for the short spin dephasing
time.

Further developments on the path towards quantum computing closely follow
the direction set by the NV− centre, with first the demonstration of spin-photon
entanglement [64], followed by photon-mediated spin-spin entanglement [65, 66]. One
of the main difficulties in these experiments is the low intensity of the zero-phonon
line of the NV− centre, which considerably limits the rate of entangling events. These
protocols will thus greatly benefit from the intense zero-phonon line of the SiV−.

Similarly to the NV− centre, the nuclear spin can be used as an asset for its long
coherence due to weak coupling to its environment [73]. The milestones would include
its coherent control through the electronic spin [69–71, 67, 72], demonstration of its
entanglement with the electronic spin [67] or other nuclear spins [68], its use as an
ancilla qubit for computation protocols [74], and its single-shot readout [201, 202].

However, for such experiments and to match the spin properties of the NV− centre,
much progress is needed to improve the electronic spin coherence time. To address this
issue, operating at lower temperatures appears straightforward, but requires to be able
to pump on liquid helium to reach 1 K or even to operate in a dilution refrigerator with
optical access. An alternative approach consists in taking advantage of the sensitivity
of SiV− to strain to reach orbital splittings at which phonon population is negligible
at 4 K. In order to apply large amounts of static strain in a controllable and scalable
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way, a very promising approach is to use SiV− centres implanted into a diamond
cantilever [203, 204]. Such a device induces strain on the colour centre by applying
a voltage between the cantilever and the surface underneath, causing the cantilever
to bend towards the surface. Several of such devices would furthermore allow us to
apply different amounts of strain to different centres and thus tune them in and out of
resonance at will. Operated with an alternating voltage, this also opens the way to
optomechanical experiments where spin and photons interact with mechanical modes
[204–209]. The large strain susceptibility of SiV−, which is 3-4 orders of magnitude
larger than that of the NV− centre ground state [135, 204], and the use of diamond
optomechanical cavities [139] will help to reach the strong coupling regime with a
view to implementing phonon-mediated quantum-information processing and quantum
metrology [210]. Compared to photons, phonons have the advantage of needing a
propagation medium, which can thus restrict interactions to the desired qubits and
limit the risk of leakage to other qubits.

Finally, the SiV− centre’s strong zero-phonon line, its low inhomogeneous broadening
and suitability as source of indistinguishable photons [136, 137], and the capacity to
implant it with nanometric precision [138] make it a good candidate as a single-photon
emitter in photonic structures [128, 211–214]. Those optical properties would in
particular be of interest in photonic cavities to work towards strong coupling between
SiV− and photons. Reaching this regime would allow us to achieve photon blockade
[215–217], where strong coupling with a single SiV− only allows one photon to enter
the cavity at a time depending on the state of the SiV−. This would be crucial towards
the implementation of quantum many-body simulations [218, 219] using a lattice of
cavities, each containing a strongly coupled SiV− [220–222]. Such an architecture
would allow us to mimic solid-state phenomena exhibitted by electrons in the lattice
of atoms. The strength of this approach would rely on having the capacity to taylor
the cavity lattice at the single "atom" level through the individual control over the
SiV− state in each cavity. Another potential candidate for such experiments is the
germanium-vacancy centre in diamond [103, 104]. This centre is thought to exhibit a
high quantum efficiency based on the observation of non-linearities at the single-photon
level for a single centre in a diamond photonic waveguide [223].
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