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Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate
ground state properties of complex quantum systems and gives relations between correlation func-
tions. In this work, we show that the Sachdev-Ye-Kitaev model, in its simplest form of Majorana
fermions with random four-body interactions, is supersymmetric. In contrast to existing explicitly
supersymmetric extensions of the model, the supersymmetry we find requires no relations between
couplings. The type of supersymmetry and the structure of the supercharges are entirely set by the
number of interacting Majorana modes, and are thus fundamentally linked to the model’s Altland-
Zirnbauer classification. The supersymmetry we uncover has a natural interpretation in terms of a
one-dimensional topological phase supporting Sachdev-Ye-Kitaev boundary physics, and has conse-
quences away from the ground state, including in q-body dynamical correlation functions.

The Sachdev-Ye-Kitaev (SYK) model [1, 2] is a toy
model that provides insight into diverse physical phe-
nomena, ranging from the holographic principle [3–5] to
quantum chaos [6–11], and non-Fermi liquid behavior of
strongly correlated electron systems [12–18]. Similar to
black holes, it is believed to scramble quantum informa-
tion with maximal efficiency [17, 19].

The simplest variant of the SYK model describes k
Majorana fermions that interact through a random four-
body term [2]. Its proposed physical realizations include
mesoscopic systems based on Majorana fermions in vor-
tices or quantum dots [20, 21], or the ends of a one-
dimensional topological phase [22].

Various generalizations of the SYK model have
been considered, including models with n-body inter-
actions [23, 24] and supersymmetric extensions [25–29].
Typically, exact supersymmetry (SUSY) requires fine-
tuning of the parameters [30–33]. In the supersymmetric
SYK extensions, this fine-tuning corresponds to requiring
certain relations between different couplings [25].

In this work, we show that already the simplest four-
body SYK model, without any fine-tuning, is supersym-
metric for all but two values of k mod 8. The type
of SUSY depends only on k. The supercharges will be
shown to relate to ramps and long-time plateaus in time-
dependent correlation functions [34], which thus provide
signatures of SUSY far from equilibrium. In particu-
lar, we find that the number of supercharges is linked to
the presence and nature of time-reversal symmetry and
is reflected in the ramp shape [35]. We also show that
the number and structure of supercharges set the plateau
features in q-body time-dependent correlation functions.

Throughout this work, we focus on SUSY in the sense
of supersymmetric quantum mechanics [30, 31, 36–42].
SUSY is characterized by N , the number of mutually
anticommuting Hermitian fermionic supercharges that
square to the Hamiltonian [36]

{Qa, Qb} = 2Hδab, [H,Qa] = 0. (1)

The Hamiltonian we consider describes four-body in-
teractions between k Majorana modes [2]

H =

k−1∑
t=0

t−1∑
s=0

s−1∑
r=0

r−1∑
q=0

Jqrstγqγrγsγt + E0 (2)

with real (as required by Hermiticity) but otherwise
structureless couplings Jqrst, and the constant E0 that
ensures positive energies. The Hermitian Majorana op-
erators γq = γ†q satisfy the anticommutation relation
{γq, γr} = 2δqr [43], and span an M -dimensional Hilbert
space with M = 2dk/2e [44]. Since each term in the
Hamiltonian (2) contains an even number of Majoranas,
it conserves fermion parity P , given by

P =

{
ik/2γ1γ2 . . . γk even k

i(k+1)/2γ1γ2 . . . γkγ∞ odd k.
(3)

To work in a Hilbert space with well-defined fermion par-
ity, the additional Majorana γ∞ “at infinity” must be
included when k is odd [45]. The operator γ∞ is not
local to the SYK model; considering, e.g., a realization
in a superconducting vortex [20], it represents a degree
of freedom with support far away from the vortex where
the SYK Majoranas γj 6=∞ reside. Like the local Ma-
joranas, γ∞ is Hermitian and satisfies {γq, γr} = 2δqr.
Since [H,P ] = 0, all eigenstates of H can by labeled by
their parity eigenvalue p = ±1, giving H|ψpµ〉 = εpµ|ψpµ〉
and P |ψpµ〉 = p|ψpµ〉.

The number of interacting Majorana modes, specif-
ically k mod 8, sets the model’s antiunitary symme-
tries [22, 45–47]. These come in two variants T±, antiu-
nitary operators satisfying T±γq 6=∞T

−1
± = γq 6=∞. They

further satisfy T±PT
−1
± = ±P . We refer to T+ as time-

reversal symmetry because it commutes with fermion
parity and hence sets correlations within a parity sector.
Conversely, we call T− particle-hole symmetry. Crucially
for this work, since T− flips fermion parity, its presence
implies correlations between parity sectors.
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k mod 8 0 1 2 3 4 5 6 7
Label AI BDI D DIII AII CII C CI
T 2
+ +1 +1 0 −1 −1 −1 0 +1
T 2
− 0 +1 +1 +1 0 −1 −1 −1

TABLE I. Time-reversal symmetry T+ and particle-hole sym-
metry T− in the SYK model. The symmetries may be absent
(denoted by 0), or present and square to −1 or +1.

The consideration of both T+ and T− implies [46]
a classification with more structure than the threefold
Wigner-Dyson way highlighted in Ref. 22. In fact, as
we now briefly review, it gives rise to the eight real
Altland-Zirnbauer classes. For even k, either time-
reversal symmetry T+ or particle-hole symmetry T− is
present. For odd k, both T+ and T− are present; in
this case T+γ∞T

−1
+ = (−1)(k+1)/2γ∞. Their product,

the unitary operator Z = T+T−, equals the product of
all local Majorana operators up to a complex phase and
corresponds to a chiral symmetry [45, 46]. A key feature
of Z, which we will use repeatedly for diagnosing local-
ity, is [Z, γq 6=∞] = 0 and {Z, γ∞} = 0. The squares T 2

±
vary with k and label the eight real Altland-Zirnbauer
classes [48]. While the Altland-Zirnbauer and Wigner-
Dyson picture give the same level spacing statistics, the
former also takes cross-parity correlations into account.
We summarize the symmetry classification in Table I and
review it in detail in the Supplemental Material [49].

SUSY is known to imply a degeneracy between the par-
ity sectors [36]: the supercharges Qa exchange bosonic
states with parity eigenvalues p = +1 and fermionic
states with parity eigenvalue p = −1 [36]. Thus, the su-
percharges anticommute with fermion parity, {P,Qa} =
0. The presence of particle-hole symmetry also guar-
antees degeneracy between parity sectors, which as we
now note, also implies SUSY. Parity degeneracy directly
follows from particle-hole symmetry because |ψpµ〉 and
T−|ψpµ〉 have the same energy εµ = εpµ = ε−pµ (since
[T−, H] = 0), but opposite parity ({T−, P} = 0) [45, 46].
Therefore, |ψpµ〉〈ψ−pµ | is an odd-parity zero mode, i.e.,
an operator that commutes with the Hamiltonian, but
anticommutes with fermion parity [46]. This in turn
implies SUSY: The operator Q̃µ =

√
εµ|ψ+

µ 〉〈ψ−µ | sat-

isfies Q̃µQ̃
†
µ = εµ|ψ+

µ 〉〈ψ+
µ | and Q̃†µQ̃µ = εµ|ψ−µ 〉〈ψ−µ |,

and hence the linear combinations Q1,µ = Q̃µ + Q̃†µ
and Q2,µ = i(Q̃µ − Q̃†µ) are Hermitian, anticommute,
and square to εµ times the projector on the two parity-
degenerate states. Consequently, the two supercharges

Q1 =
∑
µ

(Q̃µ + Q̃†µ), Q2 = −i
∑
µ

(Q̃µ − Q̃†µ) (4)

satisfy Eq. (1) and anticommute with P . Particle-hole
symmetry is present unless k = 4n. Thus, all but two of
the symmetry classes are supersymmetric.

Given the presence of six supersymmetric classes, there

are a number of questions regarding the interplay of
SUSY and the symmetry classification. How does N
depend on the symmetry class? How do Qj transform
under T± and how does this translate to the structure of
the supercharges? We next turn to these questions.

We start with counting N . A direct approach is based
on counting level degeneracies. This follows from the ob-
servation that the “spectrally flattened” Hermitian su-
percharges Γj = Qj/

√
H satisfy

{Γj ,Γk} = 2δjk, [H,Γk] = 0, {P,Γk} = 0. (5)

They are thus many-body zero mode forms of Majorana
fermions. An even N of such zero modes give rise to a
2N/2-dimensional fermionic degeneracy space for each of
the εµ with one of the |ψpµ〉 chosen as “vacuum”. (With
a suitable choice, the Γj-fermion parity of an eigenstate
matches the state’s physical fermion parity.) This pro-
cedure is similar in spirit to the standard construction
of supermultiplets [50]. For the six supersymmetric SYK
classes, a twofold degeneracy is guaranteed by T− and
a further twofold (Kramers) degeneracy is present when-
ever T 2

+ = −1, resulting in an overall fourfold degeneracy.
This suggests N = 2, except for DIII and CII where this
count gives N = 4. What this counting does not address
is how many Γj (and hence Qj) are local to the SYK
model. Next we investigate this to obtain the decompo-
sition N = Nloc +N∞ with Nloc counting the number of
supercharges involving only γq 6=∞. We first discuss the
symmetry classes D and C before demonstrating the im-
plications of locality in classes BDI and CI. For brevity,
we derive the supercharges in classes DIII and CII with
T 2
− = −1 in [49] and only summarize the results here.
We begin with classes D and C. Here k is even hence

all γq are local. Therefore, our argument above applies
directly: we find N = Nloc = 2. All the other supersym-
metric classes have odd k, thus potentially N 6= Nloc

due to γ∞. As we shall see, in all of these classes
N = Nloc + 1 with N following its degeneracy-based
value above. This is intuitive because γ∞ ≡ Γ∞ auto-
matically satisfies Eq. (5) (in particular, it anticommutes
with any local parity-odd operator), thus Nloc is at most
N − 1. To formally establish Nloc, and the transforma-
tion of Γj under T±, we work in the energy eigenbasis,
H = diag({εµ}) ⊗ 112N/2 , with P = 11M/2 ⊗ τ3. (Here
and below, τj and σj are Pauli matrices; τj act in parity
grading and σj in the space of Kramers doublets, where
applicable. We will often omit trivial tensor factors.)
In this basis, class D (C) has particle-hole symmetry
[up to a phase diag({exp(iϕµ)}) omitted here and be-
low] T− = τ1(2)K (with K for complex conjugation); this
follows from T 2

− = ±1 and parity being the only degener-
acy, 112N/2 = τ0. We have Γ1,2 = τ1,2, which correspond
to the two supercharges introduced in Eq. (4) [51].

To study classes BDI and CI, we focus on a degeneracy
space with energy εµ and first establish the form of T±
and thus Z in this space. T 2

+ = +1 implies that parity
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is again the only degeneracy, so T− = τ1(2)K in class
BDI (CI). T+|ψpµ〉 ∝ |ψpµ〉 implies that the most general
form is T+ = exp(iϕµτ3)K. With a suitable choice of
the relative phases between the two parity sectors we
can thus use Z = T+T− = τ1; in this basis T+ = K
(T+ = τ3K) for class BDI (CI). The two Γj satisfying
Eq. (5) can again be chosen as Γ1,2 = τ1,2. However,
checking the (anti)commutation with Z we find that only
Γ1 is local. Conversely, we can identify Γ2 ≡ Γ∞ ≡ γ∞;
this is consistent both with γ∞ itself satisfying Eq. (5)
and its transformation under T+. We thus find Nloc = 1.

In classes DIII and CII, we find Nloc = 3 local su-
percharges as we show in detail in [49]. The spectrally
flattened supercharges can be written as Kronecker prod-
ucts Γj = τ1σj . Their product Γ4 = −iΓ1Γ2Γ3 = τ1 is
also local, but does not anticommute with Γj≤Nloc

; it
does, however, contribute to correlation function, as we
discuss in the following. As in classes BDI and CI, the
nonlocal supercharge is Γ∞ = τ2.

The values Nloc, together with the sign s in
T±Γj≤Nloc

T−1± = sΓj≤Nloc
have a natural interpretation

if one views the SYK model as arising at the end of a
one-dimensional topological phase in class BDI [22, 45].
These systems admit a Z8 classification: At one of their
ends, they have ks Majoranas satisfying T±γqT

−1
± =

sγq; the topological index is ν = (k+ − k−) mod 8.
Thus, the eight topological classes can be labeled by
ν = 0, 1, 2, 3, 4,−3,−2,−1 with the integers counting the
number and sign of unpaired Majoranas. In the SUSY
classes, we find the same pattern for sNloc against k
mod 8 (T±γq 6=∞T

−1
± = γq 6=∞ implies k+ = k, k− = 0),

see Table II. The Nloc supercharges Γj≤Nloc
can thus be

viewed as the many-body emergence of the minimal num-
ber and type of unpaired Majoranas consistent with k.

Next we turn to the structure of the supercharges in
terms of the Majorana fermions γq. For this, we employ
another operator basis of the Hilbert space, the products
of na Majorana operators γq 6=∞ [52]

Υa = ina(na−1)/2γi1(a)γi2(a) · · · γina (a)
(6)

with ij(a) 6= ij′(a). Υa are Hermitian, unitary, and or-
thonormal with respect to the trace, tr [ΥaΥb] /M = δab.
In total, there are 2k local operators Υa [52]. As we aim
to expand Γj 6=∞, i.e., Hermitian odd-parity operators in
terms of Υa, we use only those Υa with odd na, and use
only real expansion coefficients.

Both time-reversal and particle-hole symmetry have
the same (anti-) commutation properties when acting
on Υa. Since T±γqT

−1
± = γq, only the phase of Υa [cf.

Eq. (6)] may change when applying T±, giving

T±ΥaT
−1
± = (−1)na(na−1)/2Υa. (7)

That is, T± and Υa commute when na = 4n+1, and anti-
commute when na = 4n+3. This, together with vj,a ∈ R

k mod 8 1 2 3 5 6 7
Label BDI D DIII CII C CI
β 1 2 4 4 2 1

sNloc 1 2 3 −3 −2 −1
Γj≤Nloc

4n+ 1 4n+ 1 4n+ 1 4n+ 3 4n+ 3 4n+ 3
Γ4 4n+ 3 4n+ 1

TABLE II. The Dyson index β, number Nloc, signature
T±Γj≤Nloc

T−1
± = sΓj≤Nloc

, and the Majorana fermion struc-
ture of Γj 6=∞. (The supercharges Qj have the same proper-
ties, since T±HT

−1
± = H.) In the Majorana expansion of Γj ,

only those Υa with na = 4n + 1 or na = 4n + 3 contribute;
the two options are shown in the last two rows of the table.
The horizontal line visually distinguishes Γ4 from the three
supercharges because it does not anticommute with them. A
blank entry indicates that Γ4 does not exist in these classes.

below, implies that, when expanding the supercharges,

Γj =
∑
a

vj,aΥa,
∑
a

v2j,a = 1, (8)

only terms with na = 4n + 1 contribute to Γj when
[T±,Γj ] = 0, and only terms with na = 4n+ 3 contribute
when {T±,Γj} = 0. In classes DIII and CII we also
consider Γ4 = −iΓ1Γ2Γ3 whose transformation proper-
ties follow from those of Γ1,2,3. The resulting expansion
structure is summarized in Table. II.

Having discussed the interplay of SUSY and the sym-
metry classification, we now identify signatures of SUSY,
Nloc, and the supercharge structure in various observ-
ables. A simple link between Nloc and observables exists
due to the fact that the number of different Γj≤Nloc

and
their linearly independent odd-parity products, i.e., in-
cluding Γ4 in classes CII and DIII, equals the degrees of
freedom β (i.e., the Dyson index linked to T+ [53]) of the
Hamiltonian’s off-diagonal matrix elements. In fact, the
most general Hermitian linear combinations of these Γj
have the same type of offdiagonals, up to an imaginary
unit, as the Hamiltonian: real for β = 1 (classes BDI
and CI), complex for β = 2 (classes D and C) and real
quaternion for β = 4 (classes DIII and CII).

In the SUSY classes, the value of β sets the energy
level correlations, including the long-range spectral rigid-
ity, across opposite parity sectors (these are uncorre-
lated without SUSY) which lead to “ramps” in time-
dependent correlation functions of parity-odd observ-
ables. (For single-Majorana examples see Refs. 34 and
46.) These ramps occur at time scales below 2π times the
inverse mean level spacing 1/∆∞, and have β-dependent
shape [35]. In particular, the ramp connects to a long-
time plateau smoothly when β = 1, sharply when β = 2,
and with a kink when β = 4. In Fig. 1, we show ensemble-
averaged q-body correlation functions [Eq. (10) below] in
classes D, C, DIII, and CI. For completeness, we show the
correlation function in the remaining symmetry classes,
including those that do not support SUSY, in [49].
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FIG. 1. q-body time-dependent correlation function at infinite
temperature, averaged over an ensemble of up to 216 Gaussian
distributed Jqrst, for classes (a) D, (b) C, (c) DIII, and (d) CI.
The different colors denote different k and q, cf. inset in (a),
the dashed lines represent q = 3 and the solid lines q = 5.
The ramp shape follows the Dyson index β and hence links
to the number of supercharges. The long-time plateau Cq,∞
is studied in Fig. 2. Error bars are either smaller than the
line width (for small k) or smaller than the disorder-induced
fluctuations of the lines (for large k).

Besides this direct correspondence between the super-
charges and ramp structure, we additionally find more
subtle consequences of SUSY: The long-time (t� 1/∆∞)
plateau in q-body correlation functions is also related to
the number and structure of the supercharges, cf. Fig. 2.
To quantify this relationship, we consider the retarded
time-dependent q-body correlation function

C+
q (t) = −iΘ(t)

1(
k
q

) ∑
a,na=q

〈{Υa(t),Υa(0)}〉, (9)

where 〈. . .〉 denotes thermal average. Although the sig-
natures we reveal are present at any temperature, we find
an especially transparent relationship at infinite temper-
ature, where the correlation function reads

C+
q (t) =− iΘ(t)

1(
k
q

) ∑
a,na=q

1

M

∑
pµν

∣∣〈ψpµ|Υa|ψ−pν 〉
∣∣2

× 2 cos
(
t
(
εpµ − ε−pν

))
. (10)

When t� 1/∆∞, terms with εpµ 6= ε−pν give a quickly os-
cillating contribution δC+

q (t) that averages to zero. Only
states with εpµ = ε−pν give a time-independent contribu-
tion Cq,∞. Thus, C+

q (t) = −iΘ(t)[Cq,∞ + δC+
q (t)] with

Cq,∞ =
1(
k
q

) ∑
a,na=q

2

M

∑
µ

tr Υ2
aµ, Υaµ = PµΥaPµ, (11)

DIII
CII

BDI
CI

D
C

FIG. 2. Normalized plateau Cq,∞M/4 of the q-body correla-
tion function, averaged over an ensemble of up to 214 Gaussian
distributed Jqrst. The color encodes the number k of Majo-
ranas, cf. panels (d) and (e). In all classes, C∞M/4 alternates
with q approximately as predicted in Eq. (13); the agreement
is excellent when

(
k
q

)
/
(

k
bk/2c

)
is close to one. In panel (d), we

show that C∞M/(4c) [with c the random matrix expectation
based on Eq. (13)] increases as a function of k, but with a
rate that decreases upon increasing q [panel (e)]. Statistical
error bars are smaller than the marker size.

where in converting the equal-energy sum to a trace, we
introduced the projection Pµ to the eigenspace with en-
ergy εµ and used that Υa is Hermitian and parity odd.

Next we convert Eq. (11) into a sum over Γj<∞. We
start by expanding Υaµ =

∑
j<∞ yjPµΓj (with real yj)

which holds as within an eigenspace, the (projected)
operators PµΓj<∞ form a basis for local, Hermitian,
parity-odd operators. If Υa transforms the same (op-
posite) way to Γj under T± then generically yj 6= 0
(yj = 0). Now using the trace-orthogonality of the Γj<∞
and tr Γ2

j = 2N/2 = N (for N = 2, 4), we find

Cq,∞ =
1(
k
q

) ∑
a,na=q

2

MN
∑
µ

∑
j<∞

[tr(PµΥaPµΓj)]
2
. (12)

A simple estimate for Cq,∞ can be given assuming that
expanding PµΓj<∞ =

∑
a vµj,aΥa results in random co-

efficients vµj,a subject only to normalization and symme-
try constraints. Denoting such a random vector average
by (. . .), we find

Cq,∞M

4
=

{
N
β Nloc q : Υa , Γj≤Nloc

,
N
β δβ,4 otherwise,

(13)

where Υa , Γj here means that Υa transforms the same
way as Γj under T±. Thus, each Γj<∞ give the same con-
tribution to Cq,∞ when they contain q-Majorana terms
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and zero otherwise. The nonzero value for β = 4 when
Υa 6, Γj≤Nloc

arises due to Γ4 since Γ4 6, Γj≤Nloc
. Con-

sidering the Majorana structure of Γj in Table II, Eq. (13)
translates to an alternating pattern of Cq,∞ as q is var-
ied in a given symmetry class, with complementary Cq,∞
values for classes with opposite sNloc.

In Fig. 2, we show the numerically obtained value of
C∞M/4 for various k and q. The alternating pattern ex-
pected from Eq. (13) is clearly visible [panels (a) to (c)].
While the numerical value of the nonzero plateau differs
from expectation when q � k (and k−q � k, not shown),
Eq. (13) gives an accurate prediction when

(
k
q

)
/
(

k
bk/2c

)
is

close to one (with b. . .c the floor function). To investi-
gate this further, in panels (d) and (e), we show C∞M/4
versus k. The growth with k is slower for q = 5 than for
q = 3, which is in turn slower than the almost linearly
growing q = 1 case [46].

To summarize, we have shown that supersymmetry is
(almost) always present in the SYK model with generic
four-body interactions. It is only absent in those classes
without particle-hole symmetry, i.e., in classes AI and
AII. The type of SUSY, in particular the number Nloc

of local supercharges and their symmetry properties fol-
low a pattern that finds a natural interpretation when
Γj≤Nloc

are viewed as emergent Majorana fermions in
a one-dimensional topological phase with SYK model
boundary physics. These SUSY features all link directly
to features in time-dependent correlation functions of
fermion-parity-odd observables. For q-body retarded cor-
relation functions, this includes the shape of the ramp in
the short-time regime, due to a link between Nloc and the
Dyson index β; and the value of the long-time plateau due
to the imprint of how Γj transforms under T± on its mi-
croscopic Majorana structure. These q-body correlation
functions, even with large q, can be measured in digital
quantum simulation of the SYK model [54]. The single-
particle Green’s function (q = 1) is accessible through
scanning tunneling spectroscopy [20, 21]. We stress that
the features in the correlation functions are dynamical
consequences of SUSY, which are less frequently consid-
ered than ground-state consequences [55, 56].

We thank David Tong for helpful discussions. This
work was supported by the ERC Starting Grant No.
678795 TopInSy.
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[54] L. Garćıa-Álvarez, I. L. Egusquiza, L. Lamata, A. del
Campo, J. Sonner, and E. Solano, Digital Quantum Sim-
ulation of Minimal AdS/CFT, Phys. Rev. Lett. 119,
040501 (2017).

[55] P. Fendley and C. Hagendorf, Ground-state properties of
a supersymmetric fermion chain, J. Stat. Mech. Theory
Exp. 2011, P02014 (2011).

[56] A. C. Cubero, G. Mussardo, and M. Panfil, Quench dy-
namics in two-dimensional integrable SUSY models, J.
Stat. Mech. Theory Exp. 2016, 033115 (2016).

[57] B. de Wit and J. Smith, Field Theory in Particle Physics
(North-Holland, Amsterdam, 1986).

https://doi.org/10.1007/JHEP09(2017)050
https://doi.org/10.1007/JHEP05(2018)202
https://doi.org/10.1007/JHEP05(2018)202
https://doi.org/10.1103/PhysRevD.97.106003
https://doi.org/10.1103/PhysRevD.97.106003
https://doi.org/10.1103/PhysRevLett.90.120402
https://doi.org/10.1103/PhysRevLett.90.120402
https://doi.org/10.1088/0305-4470/36/50/004
https://doi.org/10.1088/0305-4470/36/50/004
https://doi.org/10.1103/PhysRevLett.117.166802
https://doi.org/10.1103/PhysRevD.95.065001
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/0550-3213(82)90071-2
https://doi.org/10.1088/0305-4470/9/9/010
https://doi.org/10.1088/0305-4470/9/9/010
https://doi.org/10.1088/0305-4470/18/15/020
https://doi.org/10.1088/0305-4470/18/15/020
https://doi.org/10.1103/PhysRevLett.63.2140
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1007/978-3-642-61194-0
https://doi.org/10.1007/978-3-642-61194-0
https://doi.org/10.1016/j.aop.2006.12.002
https://doi.org/10.1016/j.aop.2006.12.002
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.99.195123
https://doi.org/10.1103/PhysRevD.94.126010
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.86.115122
https://doi.org/10.1103/PhysRevB.86.115122
https://doi.org/10.1007/978-3-642-05428-0
https://doi.org/10.1103/PhysRevLett.119.040501
https://doi.org/10.1103/PhysRevLett.119.040501
https://doi.org/10.1088/1742-5468/2011/02/P02014
https://doi.org/10.1088/1742-5468/2011/02/P02014
https://doi.org/10.1088/1742-5468/2016/03/033115
https://doi.org/10.1088/1742-5468/2016/03/033115
https://doi.org/10.1016/C2009-0-08954-5


Supersymmetry in the standard Sachdev-Ye-Kitaev model
(Supplemental Material)

Jan Behrends1 and Benjamin Béri1, 2

1T.C.M. Group, Cavendish Laboratory, University of Cambridge,
J.J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

2DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom

In this Supplemental Material, we summarize the eightfold symmetry classification of the Sachdev-
Ye-Kitaev model and explain in detail how the number and structure of the supercharges arises in
classes DIII and CII. We also show q-body correlation functions in those classes that do not support
SUSY, i.e., classes AI and AII, along with two other classes omitted in the main text, BDI and CII.

EIGHTFOLD SYMMETRY CLASSIFICATION OF
THE SYK MODEL

In the main text, we make extensive use of the eightfold
symmetry classification of the SYK model with four-body
interactions. This classification, introduced in Ref. 1, re-
veals an Altland-Zirnbauer structure behind the period-
eight pattern of Wigner-Dyson classes highlighted in
Ref. 2. The considerations of both Refs. 1 and 2 are based
on the work of Fidkowski and Kitaev on the topological
classification of interacting fermions in one dimension [3],
which Ref. 2 noted to apply to the SYK model upon
viewing it as existing at the end of a one-dimensional
fermionic topological phase. Here we summarize the key
ideas in Ref. 1 and highlight certain aspects relevant for
the main body of the paper.

The eightfold symmetry classification is based on the
presence of antiunitary symmetries and their relation
to fermion parity. First note that the SYK Hamilto-
nian [Eq. (2) in the main text] conserves fermion parity,
[H,P ] = 0 with

P =

{
ik/2γ1γ2 · · · γk even k

i(k+1)/2γ1γ2 · · · γkγ∞ odd k
(S1)

where the Majorana γ∞ ensures a well-defined fermion
parity for odd k, but does not contribute to local opera-
tors, including the Hamiltonian. All Majorana operators
including γ∞ are odd in fermion parity and thus satisfy
{P, γq} = 0. When k is odd, the Hamiltonian also com-
mutes with the operator

Z = −i(k−1)/2γ1γ2 · · · γk (S2)

that in turn commutes with all local Majorana opera-
tors [Z, γq 6=∞] = 0, but anticommutes with the additional
Majorana at infinity {Z, γ∞} = 0 and accordingly with
fermion parity {Z,P} = 0.

Depending on the number of Majorana operators, it
may be possible to find local unitary operators C± that
satisfy [4]

C±γ
∗
q 6=∞C

†
± = ±γq 6=∞. (S3)

In other words, the antiunitary operator T = C+K
commutes with all local Majorana operators, whereas
A = C−K anticommutes with them.

For even k, it is always possible to find both operators
C+ and C− [4]. Using Eq. (S1) we conclude

TPT−1 = (−1)k/2P, (S4)

i.e., T commutes with fermion parity when k mod 4 = 0
and anticommutes with fermion parity when k mod 4 =
2. Thus, when both operators commute, T is an antiu-
nitary operator that maps each parity subblock of the
Hamiltonian to itself, otherwise, the parity subblocks are
exchanged by T . We refer to the first case as time-
reversal symmetry: The level spacing statistics of each
subblock are determined by the presence of T and by the
sign T 2 = ±1. We refer to the second case as particle-hole
symmetry, as the parity sectors are exchanged. Particle-
hole symmetry sets correlations across different parity
sectors, a feature we exploit in the main text. In the fol-
lowing, we distinguish the two cases by the notation T+
for time-reversal ([T+, P ] = 0) and T− for particle-hole
symmetry ({T−, P} = 0), the same notation we use in
the main text.

For odd k, only one of two operators C± is local. In
particular, when k = 4n+ 1, only C+ is local, and when
k = 4n + 3, only C− is local (with integer n). When
only C− is local, we can use fermion parity to define
T = PC−K, an antiunitary operator that commutes with
all fermions; when C+ is local, we can use T = C+K.
This implies that T and P commute

TPT−1 = (−1)(k+1)/2γ1γ2 · · · γkTγ∞T−1 (S5)

= P, (S6)

where we chose Tγ∞T
−1 = (−1)(k+1)/2γ∞ for conve-

nience. We thus identify T = T+. Due to the presence
of Z, we can define a second antiunitary operator T− via
T− = T−1+ Z such that Z = T+T− as quoted in the main
text. Since Z anticommutes with fermion parity, T− also
anticommutes with it, {T−, P} = 0.

The squares of T+ and T− can be determined from their
explicit construction in terms of Majorana operators [3].
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Without loss of generality, we choose the Majorana oper-
ators such that γ∗2n+1 = γ2n+1 are real while γ∗2n = −γ2n
are purely imaginary.

When k is even, the basis choice introduced above re-
sults in

C+ =

{
γ2γ4 · · · γk k = 4n

γ1γ3 · · · γk−1 k = 4n+ 2,
(S7)

thus, C+ is always the product of k/2 Majorana opera-
tors. In both cases, C+ = C∗+ is real (C+ is either the
product of only real Majorana operators or the product
of an even number of purely imaginary operators). When
k = 4n, we have

T 2
+ = C2

+ = γ2γ4 · · · γkγ2γ4 · · · γk, (S8)

giving T 2
+ = (−1)k/4, and when k = 4n+ 2,

T 2
+ = C2

+ = γ1γ3 · · · γk−1γ1γ3 · · · γk−1, (S9)

which gives T 2
+ = (−1)(k−2)/4.

When k is odd, we need to distinguish the two cases
k = 4n+ 1 and k = 4n+ 3. For k = 4n+ 1 we find

C+ = γ2γ4 · · · γk−1. (S10)

Since k is odd, the nonlocal Majorana γ∗∞ = −γ∞ is
purely imaginary, giving

C+γ
∗
∞C

†
+ = −(−1)(k−1)/2γ∞ = (−1)(k+1)/2γ∞ (S11)

where we used that C+ contains (k − 1)/2 Majorana
operators γq 6=∞. Accordingly, we identify T+ = C+K
and conclude T 2

+ = (−1)(k−1)/4. We further identify

T− = T−1+ Z with T 2
− = T 2

+T+ZT
−1
+ Z. Using T+ZT

−1 =

(−1)(k−1)/2Z = Z and Z2 = 1, we realize that T 2
− = T 2

+.

For k = 4n+ 3 we find

C− = γ1γ3 · · · γk, (S12)

which is a product of (k + 1)/2 Majorana operators.
Since C−K and P both anticommute with all local Ma-
jorana operators, the antiunitary operator PC−K com-
mutes with them. Again, γ∗∞ = −γ∞, which gives

PC−Kγ∞(PC−K)−1 = (−1)(k+1)/2γ∞, (S13)

where we used that C− is the product of (k + 1)/2 local
Majorana operators and {P, γ∞} = 0. Thus, we iden-
tify T+ = PC−K. The square T 2

+ = PC−P
∗C− =

(−1)k+1C2
− and C2

− = (−1)(k+1)/4, such that T 2
+ =

(−1)(k+1)/4. Accordingly, T 2
− = T 2

+T+ZT
−1
+ Z =

(−1)(k−1)/2T 2
+ = −T 2

+.

We summarize these results in Table I in the main text.

SUPERCHARGES IN CLASSES DIII AND CII

In this section, we construct the supercharges in classes
DIII and CII along the lines of the same strategy that we
followed in the main text for the other classes. We show
and discuss how the supercharge structure summarized
in the main text arises in these classes.

In classes DIII and CII, time reversal symmetry with
T 2
+ = −1 implies Kramers degeneracy: The states |ψpµ〉

and T+|ψpµ〉 are orthogonal. Together with parity degen-
eracy this gives a fourfold degeneracy of energy eigenval-
ues andN = 4. In its diagonalized form, the Hamiltonian
reads H = diag({εµ})⊗ 112N/2 with 112N/2 = τ0σ0, where
the matrices τµ act in parity grading space and σν in the
space of Kramers doublets (hence τµσν is a shorthand for
the Kronecker product τµ ⊗ σν ; additional tensor prod-
ucts with the identity are implied).

Without loss of generality, we can choose Z = τ1. The
four Γj satisfying Eq. (5) in the main text are now the
familiar Dirac matrices, chosen as Γj = τ1σj (j = 1, 2, 3)
and Γ∞ = τ2. Checking the (anti)commutation with Z
we indeed find that only Γ1,2,3 are local. Conversely,
identifying Γ∞ ≡ γ∞ and requiring that it transforms
under T+ as T+γ∞T

−1
+ = (−1)(k+1)/2γ∞ sets

T+ =

{
iτ3σ2K class DIII

iσ2K CII
(S14)

in this basis. The form of particle-hole symmetry T−
follows from T+T− = Z.

The product Γ4 = −iΓ1Γ2Γ3 is also Hermitian, par-
ity odd, local, and linearly independent of Γ1,2,3. Fur-
thermore, Q4 = diag({√εµ})⊗ Γ4 squares to the Hamil-
tonian. It is, however, not a supercharge because Γ4

does not anticommute with Γ1,2,3. (Nevertheless, Γ4 con-
tributes to correlation functions, as discussed in the main
text.) We thus find Nloc = 3.

Using the explicit form of T+ obtained above and T− =
T−1+ Z, we find

T±Γj≤Nloc
T−1± =

{
+Γj≤Nloc

class DIII

−Γj≤Nloc
class CII.

(S15)

This implies that

T±Γ4T
−1
± = −Γ4 =

{
−Γ4 class DIII

+Γ4 class CII.
(S16)

For completeness, we give these operators in terms of
the eigenstates. To give explicit relations, we need to fix
certain phase relations between the eigenstates. Defining
time-reversal symmetry as

T+|ψ+
2µ+1〉 = |ψ+

2µ〉 (S17)

fixes the phase relation between Kramers doublets that
we denote by |ψp2µ〉 and |ψp2µ+1〉. This choice sets ε2µ =
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ε2µ+1. We fix the phase between opposite parities by
choosing

Z|ψpµ〉 = |ψ−pµ 〉. (S18)

In this basis, the supercharges defined above read

Γ1 =
∑
pµ

(
|ψp2µ〉〈ψ

−p
2µ+1|+ |ψ

p
2µ+1〉〈ψ

−p
2µ |
)

(S19)

Γ2 = −i
∑
pµ

(
|ψp2µ〉〈ψ

−p
2µ+1| − |ψ

p
2µ+1〉〈ψ

−p
2µ |
)

(S20)

Γ3 =
∑
pµ

(
|ψp2µ〉〈ψ

−p
2µ | − |ψ

p
2µ+1〉〈ψ

−p
2µ+1|

)
. (S21)

Their product is accordingly

Γ4 = −iΓ1Γ2Γ3 =
∑
pµ

|ψpµ〉〈ψ−pµ | = Z (S22)

and the nonlocal supercharge

Γ∞ = −i
∑
µ

(
|ψ+
µ 〉〈ψ−µ | − |ψ−µ 〉〈ψ+

µ |
)
. (S23)

Writing the fermion parity P in terms of the eigenstates

P =
∑
µ

(
|ψ+
µ 〉〈ψ+

µ | − |ψ−µ 〉〈ψ−µ |
)

(S24)

and using P = −iZγ∞ confirms that Γ∞ ≡ γ∞.

CORRELATION FUNCTIONS

Symmetry classes AI and AII. Classes AI (k
mod 8 = 0) and AII (k mod 8 = 4) are the two classes
without SUSY. In these classes, parity sectors are un-
correlated, hence, upon evaluating Eq. (9) of the main
text, we expect to see neither a ramp structure nor a
plateau at long times t� 1/∆∞. To support this expec-
tation with numerical evidence, we show the ensemble-
averaged q-body correlation function at infinite tempera-
ture [Eq. (10) in the main text] in Fig. S1. In Fig. S1(a),
we show the (q = 5)-body correlation function for k =
8, 16 Majoranas, i.e., symmetry class AI. The correlation
function rapidly decays to zero and does not exhibit a
plateau. The correlation function behaves qualitatively
similar when q = 3, as shown in panel (b). The plateau
Cq,∞ = 0 is consistent Eq. (13) in the main text since
N = 0.

In Fig. S1(c) and (d), we show the correlation function
for k = 12, 20 Majoranas, i.e., symmetry class AII. For
k = 12, we observe for both q = 3 and q = 5 that signa-
tures appear at intermediate time scales (t ≈ π/∆∞)
before the correlation function eventually vanishes for
longer times (t � 1/∆∞). We attribute these correla-
tions between the two parity sectors at intermediate time

FIG. S1. Ensemble-averaged q-body correlation function in
symmetry classes AI [k mod 8 = 0, panels (a) and (b)] and
AII [k mod 8 = 4, panels (c) and (d)]. The color code de-
notes the different values of k and q; cf. the inset in panel (a).
Here, q = 5 serves is a representative example for q = 4n+ 1,
and q = 3 for q = 4n + 3. The correlation function decays to
zero in all cases shown here. Only when k = 12 [panels (c)
and (d)] do the two parity sectors show correlations, which
is a small-size effect. All results are averaged over a large
ensemble, ranging from 768 (for k = 20, q = 5) to 217 (for
k = 8) realizations of the couplings Jqrst. Error bars are ei-
ther smaller than the line width (for small k) or smaller than
the disorder-induced fluctuations of the lines (for large k).

scales to small-size effects: They are the time-domain sig-
natures of spectral oscillations observed in Ref. 1 and are
present only for k = 12, the smallest nontrivial instance
of class AII, and already disappear for k ≥ 20. This
finite-size effect is pronounced in class AII due to the
strong level repulsion corresponding to the Dyson index
β = 4, in contrast to class AI with β = 1.

Symmetry classes BDI and CII. In Fig. S2, we show
the ensemble-averaged correlation functions in classes
BDI and CII. These classes are supersymmetric, there-
fore the correlation functions show the ramp and plateau
structure discussed in the main text. Indeed, we find
a ramp that connects smoothly to a plateau in class
BDI [Fig. S2(a)–(b)]. When q = 4n + 1, this plateau
is at Cq,∞ ≈ 2, otherwise, Cq,∞ = 0 and the cor-
relation vanishes for long times t � 1/∆∞, as pre-
dicted by Eq. (13) in the main text. The smooth con-
nection between ramp and plateau is characteristic for
T 2
+ = +1 [5]. These features match the expectations for a

single local supercharge (Dyson index β = 1) that trans-
forms under time-reversal and particle-hole symmetry as
T±Q1T

−1
± = +Q1.

Similarly, we find a ramp that connects with a kink to
a plateau in class CII [Fig. S2(c)–(d)]. When q = 4n+ 1,
this plateau is at Cq,∞ ≈ 1, and when q = 4n + 3, it is
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FIG. S2. Ensemble-averaged q-body correlation function in
symmetry classes BDI (k mod 8 = 1) and CII (k mod 8 =
5). In panels (a) and (b), we show different system sizes in
class BDI, where the different colors denote k and q; cf. inset
in panel (d). As in Fig. S1, q = 5 serves is a representative
example for q = 4n + 1, and q = 3 for q = 4n + 3. In
panels (c) and (d), we show different systems sizes in class
CII. The dotted lines show the expectation for Cq,∞ based
on random matrix theory; cf. Eq. (13) in the main text. All
results are averaged over a large ensemble, ranging from 192
(for k = 21, q = 5) to 214 (for k = 9) realizations of the
couplings Jqrst. Similarly to Fig. S1, error bars are either
smaller than the line width (for small k) or smaller than the
disorder-induced fluctuations of the lines (for large k).

at Cq,∞ ≈ 3, as predicted by Eq. (13) in the main text.
The kink is characteristic for T 2

+ = −1 [5].

The numerical data presented in this Supplemental
Material thus supports the statements made in the main
text, in particular, the direct relation between the num-
ber of supercharges and the Dyson index (that is reflected
in the shape of the ramp), and the value of the plateau
(that reflects the number of supercharges and their lin-
early independent products that transform in the same
way under time-reversal and particle-hole symmetry as
Υa).
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