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Abstract

The objective of the present paper is to study the
maximum radius r of a connected graph of order n,
minimum degree § > 2 and girth at least g > 4. Erd6s,
Pach, Pollack and Tuza proved that if g = 4, that is, the
"~2 4 12, and noted

s
that up to the value of the additive constant, this upper

graph is triangle-free, then r <

bound is tight. In this paper we shall determine the
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Trust; University of Cambridge We settle the order of the maximum r for g = 6, 8 and

12, and prove an upper bound for every even g, which
we conjecture to be tight up to a constant factor.
Finally, we show that our conjecture implies the
so-called Erdés girth conjecture.
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1 | INTRODUCTION

The girth of a graph G is the length of the shortest cycle in G; we set the girth to be oo if no cycle
exists. The radius r of a connected graph G is the smallest integer such that there exists some
v € V(G) with d(v, w) < r for every w € V (G).

Consider the following question: given a connected graph G on n vertices, with minimum
degree § > 2 and girth at least g > 4, what is the maximum radius r this graph can have (note
that the connectedness condition is superfluous if we let 7 be the biggest radius of a connected
component)? Denote this maximum value of the radius as r(n, 6, g).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
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Erdds, Pach, Pollak and Tuza [2] studied 7 (n, 6, 4), and proved that it is at most ";2 + 12.

They also noted that, up to the additive constant 12, this bound is tight. We improve this to a
best possible bound.

Theorem 1.1. Fix integer § > 2.

e If26 <n <25+ 1, thenr(n,6,4) =2.
o« If26+2<n<494, thenr(n,o,4) = 3.
o Ifn > 46, then

=1 if 8 isoddand n= ks for k odd,

[gJ otherwise.

r(n,é,4) =

Observe that every graph of order n and minimum degree greater than n/2 has a
triangle, so in the study of r(n, §, 4), we may assume that n > 26.

Next we consider the case when the girth g is bigger than 4. We shall prove the following
upper bound.

Theorem 1.2. Letn,d > 2 and g = 2k > 4. Then

nk(d — 2)

r(n, 5, 2k) < m

+ 3k.

In the cases g = 6, 8, 12, we shall prove the following lower bound.

Theorem 1.3. Let S > 2 be such that § — 1 is a prime power. Then there exists sequences
(ny), (n)), (n/") with ny, n/, n’ — oo such that

* r(ni7 57 6) Z 3ni -3= 3ni (5 — 2) - 9
20°-6+1) 206-1P -1
R r(ni/’ 5, 8) Z Zni _ 4 — Zni (5 - 2) _ ,
8% —28% + 25 G-1*-1
3n/ I CR)

TrO 81 e D@ e ) O G- 1

We note that the results for the girth 6, 8 and 12 are optimal up to the value of the additive
constant, as established by Theorem 1.2. We are very grateful to the anonymous referee for
pointing out that our previous approach can be optimised to obtain the correct bounds even for
all lower-order terms.

It would be interesting to see whether the upper bound from Theorem 1.2 is tight, at least
up to some constant factor. We believe it is and hence make the following conjecture.

Conjecture 1.4. Let g = 2k > 4. Then there exist infinitely many values & for which the
following holds.
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There exists a sequence (n(8);) with n(8); — oo and a positive constant c(8) such

that r(n(6),, 8, 2k) = ¢(8)"C).

As our final result, we obtain the following theorem.

Theorem 1.5. Let r,c> 0, g =2k and n < c(r + 1)6*1, so that r(n,8,g) > r. Then
there exists a connected graph of girth at least 2k on at most (2k + 1)c6*~1 vertices with at
least %52(5 — 1)*=2 edges.

This theorem is related to the following girth conjecture of Erdds.

Conjecture 1.6 (Erdés [1]). For any positive integers I, n, there exists a graph with girth
2l + 1, n vertices and Q(n*1) edges.

If the upper bound from Theorem 1.2 was tight up to a constant factor for some fixed
g = 2k, then we could find graphs G; with §; - oo and n; < c(r(n;, ;, 2k) + 1)51-"_1 for some
fixed c¢. By Theorem 1.5, that would verify the girth conjecture of Erdés for [ = k — 1.

We note that some similar problems relating to various parameters in a graph have been studied
in the literature—for instance, the analogous problem for the diameter instead of the radius [2,4], and
problems involving more detailed information about the degree sequence of the graph [5].

The structure of the paper is as follows: In Lemma 2.1, we establish a general tool that gives
a lower bound on 7 in terms of  and & that is tight in many cases. This lemma unfortunately is
not strong enough to handle all cases, so we prove the additional Lemma 3.6. We use these two
lemmas (the key ingredients of the proof) to prove Lemma 3.4 which establishes the upper
bound on r in Theorem 1.1. Together with Lemmas 3.1 and 3.3, which establish the lower
bound on r, this completes our proof. Finally, in Section 4, we consider the case of general
girth.

Throughout the paper, for a vertex v in a graph, we will denote by N (v) its open
neighbourhood, and by N [v] its closed neighbourhood. The difference between closed and
open neighbourhoods is that the closed one contains also the vertex v itself.

2 | STRATEGY

The following lemma will be used throughout our paper. It tells us that if we can find a large
collection of vertices in our graph such that any two vertices are either neighbours or suffi-
ciently far away from each other, then our graph must in fact have many vertices.

We thank the anonymous referee for pointing out to us how to improve the lemma.

Lemma 2.1. Assume G is a graph on n vertices of girth g > 2k (where k > 2) with
minimum degree 6. Let T C V (G) be such that all pairs of nonadjacent vertices in T have

— 1k =
%). Moreover if

distance at least 2k — 1 from each other. Then we have n > ITI(
IT| is odd, this inequality is strict.
Note that for k = 2, that is, the triangle-free case, this means that n > |T\6 and if 1T is

odd, then n > |TIé.
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Proof. Since G contains no triangles, we know we can label
T= {xl’ yla vee 5 Xiy yp Zls veey Zj}’

with d(x;, y;) = 1for1 <1 < i, while all other pairs of vertices in T have distance at least
2k — 1.
Forve T, let

S =weVvG)Ildv,w)=k-1}
and
Bw)=weV(G)Ildyv,w)<k-1}

Consider the sets B(x), S(y,)\B (), ..., B(x;), S(y)\BXy), B(z1), ..., B(z)).
Note that by the distance condition, all these sets are disjoint. Moreover, by the girth
condition, for any v € T, we have

6 -1DF1-1

BMI>1+80+F-D+ - +F-1DFH=1+96 >3

and that for any 1 <1 < i,

ISOD\BG)I 2 (6 — ¥,

We conclude

n=1V(G)I>

UBG) U USO\BG) U U B()
=1 =1

=1

i i J
= DBl + D IS(y)\BE)! + D 1B(z)!
=1 =1 =1

> (ITI — i)(l + 5(5‘51)#] +i(6 = 1!
> %(1 PP Ch Al 1)_16_1 ~1,6- 1)"—1)
— |T|(w}

52

Moreover, when IT! is odd, the third inequality above is strict (as IB(v)l > IS(v)I for
any v and we cannot have j = 0 in the odd case). Hence, the proof is finished. |

To find such large collections of points T with restricted distances, we shall use several
observations. We formulate these observations used throughout the proof in the following
general setting.

Let G be a graph with n vertices and radius r. We take v, to be some fixed centre of G.
We let v, be a vertex such that d(vy, v,) = r, and let vy, vy, ..., v, be a path of length r from v,
to v,.
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Fix an integer m € {1, ..., r — 1}, and let v’ be a vertex such that d (v, v") > r. Then lett > 0
be such that d (vy, V') = r — t, and let vy = vy, V5, ..., V/_; = V' be a path of length r — t from v, to
vV =v_,.

Observation 2.2. We have t < m.

Proof of Observation 2.2. Assume for contradiction that we had ¢t > m. Then by a
triangle inequality

d(vm, v,’_t) < dWp, vo) + d(vo, v,’_t) =m+ -1 <r,

which is a contradiction. O

Observation 2.3. Foranym <i<rand any 0 <j <r — t, we have

d(vi,v]’-) > d(vm,v,’_t) +m4+t+j—r—i

and for anyi < m and any 0 < j < r — t, we have
d(vi, v]’) > d(vm,v,’_t) t+i+j+t—m-—r.
Moreover, in either of these cases, we also have
d(vi, ) 2 1i = ji.
Proof of Observation 2.3. For the case m < i < r, note that

d(vm, vr’_,) <dWm,v) + d(vi, vj’) + d(vjf, vr’_,) =@{—-m)+ d(vl-, vj’)

+@T—t—j).

Rearranging gives the result.
For the case i < m, note that

d(vm, v,’_,) <dWm,v) + d(vi, vj/) + d(vjf, v,’_,) =(m-1i)+ d(vi, v]’)

+(r—t—j).

Rearranging gives the result.
For the last claim, note that by triangle inequality

d(vi, vJ’) > ld(v;, vo) — d(vo, v})l =li —jl.
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m+r—t—dW,vi_,)

B , and we cannot

Observation 2.4. We cannot have v; = v/ for any i >
have v; = v} for any i # j.

m+r—t—d@nvi_,)

Proof of Observation 2.4. Assume that v; = v/ for some r —t > i > 5

Then we obtain contradiction, as d (v;, v/) > 0 by Observation 2.3.
We cannot have v; = v; for any i # j, since

dwe,v) =i#j= d(vo, vj’) O

Now we are ready to move on to the case of the triangle-free graphs.

3 | TRIANGLE-FREE GRAPHS
To prove Theorem 1.1, we will establish the following four lemmas.

Lemma 3.1. Fix integers n > 4,8 > 2. If n > 25, there exists a connected triangle-free
graph on n vertices with minimum degree § and radius 2. If n > 26 + 2, there exists a
connected triangle-free graph on n vertices with minimum degree § and radius 3.

Lemma 3.2. Every connected triangle-free graph on n vertices with minimum degree
8 > 2 and radius r satisfies r > 2 and n > 26. Moreover, if r = 3, we have n > 26 + 2.

Lemma 3.3. Fixintegersr > 4,5 > 2, ¢ > 0. There exists a connected triangle-free graph

with 2[%1 + c vertices, minimum degree § and radius r.

Lemma 3.4. Every connected triangle-free graph on n vertices with minimum degree
d > 2 and radius r > 4 satisfies n > 2[%],

Let us first see how Theorem 1.1 follows from these.
Proof of Theorem 1.1 assuming Lemma 3.1, 3.2, 3.3, 3.4.

Case: 260 <n<25+1.

As 26 < n, Lemma 3.1 shows r(n,8,4) > 2. Asn < 28 + 2 < 45, Lemma 3.4 shows
r(n,d,4) < 4 and Lemma 3.2 shows r(n, §, 4) # 3. We conclude r(n, 8, 4) = 2.

Case: 20+2<n<46—-1.

As 26 + 2 < n, Lemma 3.1 shows that r(n, ,4) > 3. As n < 45, Lemma 3.4 shows
r < 4. We conclude r(n, 8, 4) = 3.

Case: 46 < n.

In this case, we consider two subcases depending on the precise form of .
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Subcase: n = ké with § and k both odd.

We setr = % — 1, ¢ = ¢ and we show thatr(n,d,4) =r.

By Lemma 3.3, there exists a connected triangle-free graph with 2[%] +c=n
vertices, minimum degree § and radius 7, and hence r(n, §,4) > r.

First consider the case r(n,d,4) < 4. As n > 48, we also have r(n, d,4) < % and
hence r(n, 8, 4) < r, finishing this case. So further assume r(n, §, 4) > 4. By Lemma 3.4,
every connected triangle-free graph on n vertices and of minimum degree § > 2 and
radius r(n, 8, 4) > 4 satisfies n > 2[@]. As n is odd integer and 2[r(n,5,4)5

2
r(n,8,4)8
2

] is an
even integer, we must even have n — 1 > 2[ .So we getn—12>r(n,3d,4)34.

Therefore, r(n, §,4) < % and hence r(n,8,4) <r.

Subcase: n is not of the form ké with § and k both odd.

We set r = EJ andc=n — 2[?} and show that r(n,8,4) = r.

By Lemma 3.3, there exists a connected triangle-free graph with 2[?1 +c=n
vertices, minimum degree § and radius 7, and hence r(n, §,4) > r.

First once again consider the case r(n, §,4) < 4. Asn > 45, we also haver (n, §,4) < %
and hence r(n, d,4) < r, completing the proof in this case. Hence further assume
r(n,8,4) > 4. By Lemma 3.4, every connected triangle-free graph on n vertices and of

minimum degree § > 2 and radius r(n, d,4) > 4 satisfies n > 2[@]

r(n,8,4) < % and hence r(n, 8,4) < r. [

. Therefore,

In the rest of the section, we will prove Lemmas 3.1-3.4 and thus prove Theorem 1.1. The
section will be divided into five subsections—in Section 3.1 we prove Lemma 3.3; in Section 3.2
we prove a technical lemma and we will need to prove Lemma 3.4; in Section 3.3 we prove
Lemmas 3.1 and 3.2; in Section 3.4 we prove Lemma 3.4 when r € {4k, 4k + 1, 4k + 2}; and in
Section 3.5 we prove Lemma 3.4 when r = 4k + 3.

3.1 | Proof of Lemma 3.3

It suffices to prove the lemma for ¢ = 0. Indeed, given a triangle-free graph G, we can add a
vertex while preserving both the radius and the minimum degree: if v € V(G) is such that
d(v) = 8, then add a vertex v’ to V (G), which is connected precisely to the same vertices as v is.
For ¢ = 0, consider the following example.
Partition V (G) into 2r sets labelled By, ..., By-_1 such that

[él if i = 0,1 mod 4,
|Bi| =

{—J if i = 2,3 mod 4.

2
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Connect all vertices in B; to all vertices in B; whenever i — j = =1 mod 2r. Example of such
a graph with r = 5 and § = 6 is depicted in Figure 1.
It is easy to see that this is a connected triangle-free graph with Z[g] vertices, minimum degree &

and radius r.

3.2 | Technical lemma
First, recall Lemma 2.1 which implies the following result for triangle-free graphs.

Lemma 3.5. Let G be a triangle-free graph on n vertices and with minimum degree 8. Then
for any subset T C V (G) such that no two vertices of T are at distance 2, we have n > 2[%].

We will also need another lemma of similar flavour here.

Lemma 3.6. Let G be a triangle-free graph on n vertices and with minimum degree 6.
Assume for some r > 4, we have a subset U C V (G) such that|U| = 2r and U is as follows:

FIGURE 1 Construction from Lemma 3.3 forr = 5,8 =6
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if we consider auxiliary graph H such that V (H) = U and in which we connect two vertices
if their distance in G is precisely 2, then H is a disjoint union of two cycles of length r. Then

we have n > 2[%].

Proof. Letcy, ..., ¢, and dj, ..., d, be our two cycles of length r in H. Consider the open
neighbourhoods N (¢y), ..., N (c,). On the one hand, we have N (¢;)| > d for1 <i <r.On
the other hand, each v € V(G) can be contained in the neighbourhood of at most two
vertices from {cy, ..., ¢,;} by our triangle-free condition.

Further, as no ¢; and d; are at distance 2, and G is triangle-free, no vertex can be
contained both in an N (¢;) and in an N (d)).

Let B = |J; N(c;), so that by the above discussion

2IBl > IN(c))l + --- + IN(c,)| > 76.

Since |BI is an integer, we have |Bl > [g]

Let B'=J;N(d)), so that similarly we get |B'| > [g] As B, B’ are disjoint, we

conclude n > Z[g]. O

3.3 | Proof of Lemmas 3.1 and 3.2
Here we handle the small radius cases.

Proof of Lemma 3.1. Ifn > 25, note that K; ,_s is a connected triangle-free graph on n
vertices of radius 2 and minimum degree J.

If n > 25 + 2, start with a complete bipartite graph Ks.1,-s—1 with vertex classes
{v1, .., Vs41} and {wy, ..., w,_s_1}. Erase the edges

ViW1, VoW, ooy Vs 1Ws41, Vs41Ws425 -vs V41 Wn—5-1-

The resulting graph is a connected triangle-free graph on n vertices of radius 3 and
minimum degree §. O

Proof of Lemma 3.2. Consider a connected triangle-free graph G on n vertices of radius r
and minimum degree § > 2. We must have r > 2, since the only connected triangle-free
graphs of radius 1 are star graphs, which have minimum degree 1.

Consider adjacent vertices a,b € V(G). It follows from Lemma 3.5 applied to
T = {a, b} that n > 26.

If r = 3, then we can take a, b which instead satisfy d(a, b) > 3. But then even their
closed neighbourhoods are disjoint, which implies

IV (G)l > IN[a] UN[b]l = IN[a]l + IN[b]l > 25 + 2. O
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3.4 | Proof of Lemma 3.4 forr =4k,4k + 1,4k + 2
In this subsection, we prove the following.

Lemma 3.7. If G is a connected triangle-free graph on n vertices with minimum degree
8 > 2 and radiusr > 4 such thatr = 4k + i for some k and somei € {0, 1, 2}, then we have

rd

Proof. Let v, be a centre of our graph G with a minimal number of vertices at distance r. Let
v, be any vertex such that d (v, v,) = r. Let vy, vy, ..., v, be a path of length r from v to v,.

Let v/_, be the following vertex: if v; is not a centre of G, then let v/_, be any vertex
such that d(vs,v/_,) > r + 1. If v3 is a centre of G, then let v/_, be a vertex such that

d(vs, v/_;) = r and d (v, v/_;) < r (such a vertex exists by a choice of vy).
Let t be so that d (vy, v/_,) = r — t. Let vy = vg, vy, ..., Vr_, be a path of length r — ¢ from
Vo to v_,. It follows from Observation 2.2 that t < 3.

Claim 3:8. Ifr=4k+1and0 <t <2, orr € {4k, 4k + 2}, then n > 2[%].
Proof of Claim 3.8. We show that in each of these cases, we can find a collection C of r

vertices in G such that no two are at distance 2. The result then follows from Lemma 3.5.
Depending on the values of r and ¢, choose C to be the following collection.

’ !’ !’ !’ ’ !’
r =4k t=0 V3, V4, V7, Vg, wes Vak—1, Vaks V35 Vg5 V7, Vgy ooy Vgg— 15 Vag
’ !’ ’ ’ !’ ’ ’
r=4k t=1 Vo, V3, V4, V7, V8 weey Vak—1, Vaks> V35 Vg V7, Vg, woos Vag—ss Vag—as Vagk—1
’ ! ’ ’ ’ ’
r =4k t=2 V3, V4, V7, V8, wees Vak—1, Vaks V15 V2, Vs, Vg ey Vag—35 Vak—2
’ ’ ’ ’ ! ’ ’
r=4k t=3 Vo, V3, V4, V7, Vg, ..., Vak—1, Vak, V1, Vg, Vs, Vg, Vg, ooy Vg g, Vag—3
’ ’ ’ ’ ’ ’
r=4k + 1 t=0 Vo, V4, Vs, Vg, V9, ..., Vak, Vak+1, V4> V5, Vg, Vg, o5 Vags Vak4+1
’ ’ ’ ’ !’ ’
r=4k + 1 t=1 Vo, V3, V4y V7, Vg, «oes Vak—15 Vaks V35 Vg5 V7, Vg ey Vg1 Vi
’ ’ ! ’ ’ ’ ’
r=4k + 1 t=2 Vo, V1, V4, V5, Vg, Vo, ..., Vak, Vak+15 V3, Vas V7, Vg, «ovs Vag—s5 Vak—as Vag—1
’ ’ ’ ’ ’ ’
r=4k+2 t=0 V05 V1, Vs, V65 V9, V105 -5 Vak+15 Vak+25 Vss Vos Vos Vigs o5 V1> Vak+2
!’ ’ ’ ’ ’ ’
r=4k + 2 t=1 Vo, V1, V4, Vs, Vg, Vo, ..., Vak, Vak+1, Va5 Vs, Vg, Vg, ooy Vages Vagt1
! ! !’ !’ ! ’
r=4k + 2 t=2 Vo, V1, Vs, Ve, Vg, V105 «oes Vakt1> Vak+25 V3> Vi V75 Vgs wos Vag—15 Vak
’ ’ ’ !’ !’ ’
r=4k + 2 t=3 V1, V2, Vs, V6, Vg, V10, w5 Vak+15 Vak+2> V25 V3, Vo, V75 ooy Vag—25 Va1

Subclaim: ICl = r, and if v, v;, v/, v; € C, then d(v;, v)), d(v/, v}) # 2.

12 7]

Proof of subclaim. None of the collections above contains both v; and v{. For all
other pairs vi,v;, it follows from Observation 2.4 that v; # v}. Hence, C consists of

r distinct vertices.
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!

Note that vy, ..., v, is a path of length r and vy, ..., v/_, is an induced path of length
r — t. Hence, C contains no two vertices of the form v;, v; such that d(v;, v;) = 2 and no
two vertices of the form v/, v; such that d(v/, v}) = 2. O

Subclaim: If v, v} € C, then d(v;, V) # 2.

Proof of subclaim. Ifli — jl > 2, the claim follows from Observation 2.4. Henceforth
assume li — jl < 2.

Case: i=1.

It follows from Observation 2.3 that it suffices to ensure that if our collection contains
V1, then it does not contain:

« v/ in the case v; # v/,
« vy in the case d(vs,v/_) + t < r + 2,
« v; in the case d(vs, v,_) + t <17+ 1.

Recall that if t = 0, then d(v3, v/_;) > r + 1. Hence, we easily verify that C satisfies these
conditions.

Case: i=2.

It follows from Observation 2.3 that it suffices to ensure that if our collection contains
V,, then it does not contain:

« v in the case d(v3, v/_,) + t < 7 + 2,
« vyin the case d(v3,vi_) + t <r+ 1.

We again can verify easily that all of the collections above satisfy these conditions.
Case: i > 3.
Note that by our choice of vy, v/_,;, we always have eithert > 1ord(vs,v/_,) > r + 1. If
j=>i-—1, it follows from Observation 2.3 that d(vl-,v;) >3. Ifj=i—2,dw, v;) >3
follows from Observation 2.3 under additional assumption that d(vs,v/_,) + ¢t > r + 2.

Hence, fori > 3, it is enough if C does not contain both v; and v/_, in the case when we
have d (v3, v/_,) + t < r + 1. But it is easy to check this condition is satisfied for all of the

collections above. O
The claim follows. O

Claim 39. Ifr=4k + 1 andt = 3, we have n > 2[%].

Proof of Claim 3.9. We let v/, be such a vertex that d(v;, v’ ) >r, then
d(vg, V) =r — s for some 0 < s < 1. We consider two cases based on the value of

d(v;f/—s’ Vik—z)-

Case: d(W/_g, o) > 3.
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T = {Vz, V3, Vos V75 +ves Vak—2> Vak—15 V1> V35 Vs Vg oer Vae—35 Viak—25 vr”_s}.

Assume for a contradiction two vertices of T have distance 2. It follows from
Observation 2.3 that one of them has to be v/_;. Since for any v, w € V (G), we have

dw,w) > ldv,vy) — d(w, vy)l
and as also d (W, Vi_,) > 3 by assumption, it further follows that the other vertex would
have to be v,_; or v_1. Note that if d(v;, v ) < 2 for some 1 < i < 4k — 1, then

d(vl, v ) <d,w) + d(vl-, v,”_s) <@k-2+2<r

yielding a desired contradiction. Hence, no two vertices of T have distance 2 while
ITI = r. The result then follows from Lemma 3.5.

Case: d(V/_g, Vig_s) < 3.
Since

d(W-o Vi) 2 1d (47 v0) = d (Vi v0) 2 3 = 522,

this means s = 1 and d(v/_;, vy_,) = 2. Hence there exists a vertex a, such that a is
neighbour of both v/_; and vj;,_,. Moreover, clearly d(a, vo) = r — 2.
Consider two cases based on the value of d(a, vy41).

Subcase:  d(a, vyy1) = 3.

Take
T —_ ! ! ! ! ! ! !
= 1V1, V2, Vs, Ve, ..., Vak—3, Vak—2, Vak+1, V2, V3, Vg, V75 ---Vag_g> Vak—5> Vak—2, Q-

Assume for a contradiction two vertices of T are at distance 2. It follows from
Observation 2.3 one of them has to be a. Since for any v, w in G, we have

dw,w) > ldw,vy) — d(w, vy)l

as well as d(a, vk,1) = 3 and d(a, vy_,) = 1, the other vertex has to be v_3 Or vy_».
Note that if d(a, v;) < 2 for some 3 < i < 4k — 2, then

(V3. vj3) < d s, ) + d(v @) + d(@,vpa) S @k = 5) + 2+ 1<,

a contradiction. Hence, no two vertices of T are at distance 2 and |IT| = r. The result
follows from Lemma 3.5.

Subcase: d(a, vyy1) < 3.
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By the triangle inequality, we have
d(a, vas1) > ld(a, vo) — d(vo, Vak41)| = 2,

so that d(a, wi+1) = 2. Hence, there exists a vertex b such that b is neighbour of both a
and vy, 1. Consider

o ’
U= {V(], V1, V2, V35 ey Vak+15 V15 V25 wees Vg—2, A, b}

We have |U|l = 8k + 2 = 2r. Consider auxiliary graph H on V (H) = U in which we
connect two vertices if their distance in G is precisely 2. H is union of two disjoint cycles
of length r, first being v, vy, ..., Vak, b, Vig_s, ..., V5, and second being vy, v, ...,
Vik+1> @, Vig—3» --» V1. The result then follows from Lemma 3.6. The only nontrivial
relationships needed to prove that H is union of two disjoint cycles of length r are

d(ba V4k_1), d(b7 v4k—2)s d(a7 v4k)a d(a’ v4k—1)a d(a’ V4k_2), d(a’ v4k—3) > 3.

If any of these distances was at most 2, we could find a path of length at mostr — 1
from v; to vy,_,. That would be a contradiction. |

Putting Claims 3.8 and 3.9 together now finishes the proof of Lemma 3.7. O

3.5 | Proof of Lemma 3.4 forr =4k + 3
In this subsection, we prove the following.

Lemma 3.10. IfG is a connected triangle-free graph on n vertices with minimum degree
8 > 2 and radius r > 4 such that r = 4k + 3 for some k, then we have n > 2[%].

We use a slightly weaker and more general set-up than we did in the proof of Lemma 3.7.
This will have the advantage that we have more freedom in our choice of a centre v, as well as
in the choice of v,_,.

Proof. Take vy, to be any centre of our graph G. Let v, be any vertex such that
d(vo, v,) = r. Let vy, vy, ..., v, be any path of length r from vq to v,.. Let v/_, be any vertex
such that d(vs,v/_,) >r. Then we have d(vy,v._;,) =r—t for some t>0. Let

Vo = Vg, Vys ..., Vi, be a path of length r — ¢t from vy to v/_,. By Observation 2.2, we
have t < 3. Moreover, consider a vertex v/ such that d(w, v/_) > r.

As before, we have d (vy, v/_;) = r — s for some s > 0. Let vy = v{/, v/, ..., V/_; be a path
of length r — s from v, to v/_,. By Observation 2.2, we have s < 4.

We will consider four cases depending on the value of ¢.

Case: t=s=0.
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Let

!
T= {v07 V3, v37 Ve, v6”7 V7, V7”, V10, vl”O’ V11, vl”ly v Vs, vr/'/—S’ Vr—4a, vr{/—4’ Vr—1, v}f,—la Vr, vy"’}’

By Observation 2.3, no two vertices in T have distance 2. The result follows from
Lemma 3.5.

Case: t=0,1<s<4.

We claim that we can find four vertices z, 22, 23,24 such that no two out of
2, 22, 23, %4 have distance 2, and fori =1, 2, 3, 4;

r—4<dWy,z) <r—3.

Set 73 = Vvy_4, 22 =V,—3 and zz =V’ ,. By Observation 2.3, we immediately see
d(W—4, v 4) > 5 and d(v,_3, v_,) > 4. If we have a vertex x such that x is neighbour of

v 4 and d(vy, x) > r — 4, we can set g, = x and are done. If on the other hand there
exists no such x, that implies d(v/_; v’ ,) > 3. By Observation 2.3 we have

dWr_4,V/_3) > 4, d(v,_3,V/_3) > 3, so we can set Z, = V/_;. Hence, we can always find
suitable z, Z2, 3, Za-
Let

T = {vo, V3, V3, Wy, VY, V7, V7 Vg, Vg ey Vi_gs Vi gy Vr—7, Vi 7, 215 Z25 235 Zds Vrs v,’}.
It follows from Observation 2.3 that no two vertices in T have distance 2. The result
follows from Lemma 3.5.
Case: t=2.

Let
_ [ N A ) ’ ’
T= {V(), V3, V4, V7, V3, wees Vak—1, Vaks Vak+35 V15 Vas Vs, Vg, Vg, woes Vgiee v4k+1}-

It follows from Observation 2.3 that no two vertices in T have distance 2. The result
follows from Lemma 3.5.

Case: t=3.

Let w,_, be so that d(vy, w,_,) > r and d(vy, w,_,) = r — u for some 0 < u < 1. We
consider subcases based on the value of d (w,_y, vy).

Subcase:  d(w,_y, vy) > 3.

Let

T= {‘)05 V1, V4, Vs, «.o5 Vak, Vak+1, V:;, vz{’ v’;; véa ooy vz{k—ls vz;k’ Wr—u}-
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Assume for a contradiction that two vertices of T are at distance 2. It follows from
Observation 2.3 that one of them has to be w,_,. Since for any v, w in G, we have

d, w) > 1d(v, vp) — d(w, )| and d(w,_u,v4k)>3

e s

it further follows that the other vertex would have to be vy or vy.;. If we had
d(;, w_,) <2 for somel <i <4k + 1, then

d(vb Wr—u) < d(Vl, vi) + d(vb Wr—u) < 4k +2< r,

a contradiction. Hence, no two vertices of T are at distance 2, and |T| = r. The result
follows from Lemma 3.5.

Subcase:  d(Wy_y, i) < 3.

Since
d(wr_u, vzik) > ld(Wp_y, Vo) — d(vA{k, vo)l >3—-u>2,

we have u = 1 and d(w,_1, vy,) = 2. Hence there exists a vertex a such that a is neighbour
of both w,_; and vj,. Moreover, clearly d(a, vy) = r — 2.
Consider two cases based on the value of d(a, v, 3).

Subsubcase: d(a, vy3) > 3

Let
—_ ’ ’ ! ! ’ ’ ’ ’
T= {VO’ V3, V4, V7, Vg, ooy Vak—1, Vak, Vak+3 vl’ V4, v5a Vga Vg, eeey v4k—4’ v4k—3’ ‘)4](9 a}-

Assume for a contradiction that two vertices of T are at distance 2. It follows from
Observation 2.3 that one of them has to be a. Since for any v, w in G, we have

dv, w) 2 1d©v, v) = d(w,v)l, d(a,vss) 23 and d(a,v) =1,
the other has to be vy_; or vy. Since d(a, v;) < 2 for some 3 < i < 4k, we find
d(vs,vie) < dvs,v) + d(v, @) + d(a, ) S 4k =3 + 2+ 1<,

a contradiction. Hence, no two vertices of T are at distance 2 while |T| = r. The result
follows from Lemma 3.5.

Subsubcase: d(a, vy3) < 3.
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By the triangle inequality, we have d(a, w+3) > 2, so that d(a, vy3) = 2. Hence,
there exists a vertex b, such that b is neighbour of both a and v,. Consider

U= {vo, V1 V2, V3, cery Vaeg 35 V15 Vg ees Vags @y b}.

We have Ul = 8k + 6 = 2r. Consider the auxiliary graph H on V(H) = U in which
two vertices are connected if their distance in G is precisely 2. H is the union of two
disjoint cycles of length r, the first being vy, vy, ..., Vax42, b, Vag» ..., V5, and the second being
V1, V3 vy Vg3, @5 Vig_15 -, V1. Indeed, the only nontrivial relationships needed to prove
that H is the union of two disjoint cycles of length r are

d(ba V4k+1), d(b7 v4k)a d(a’ V4k+2), d(a’ v4k+1)a d(a’ v4k)s d(a7 v4k—1) > 3.

If any of these distances was at most 2, we could find a path of length at most r — 1
from v; to vj,. The result follows from Lemma 3.6. This concludes the case t = 3.

Case: t=1.
We start with the following useful claim.

Claim 3.11. Assume r > 4, r = 4k + 3 and t = 1. Further assume there are four
distinct vertices y;,¥,,)s,); such that no two out of them have distance 2, and

d(vo,y,) <3 fori=1,2,3,4. Then we have n > 2[%].

Proof of Claim 3.11. Let

’ ’ ’ ! ’ ’ ’
T= {yli y29 y35 y49 Ve, V7, V105 V115 «ov5 Vak+2> Vak+3» vﬁa v77 le’ vll! eeey v4k—23 v4k—19 v4k+2}-

It follows by Observation 2.3 that no two vertices of T have distance 2. Moreover, we
have IT| = r. The result follows by Lemma 3.5. O

We return to the proof of Lemma 3.10 in the case t = 1.
Subcase: v, is not a centre of G.

There exists a vertex ¢ such that d(v,,¢) > r + 1, and by the triangle inequality
d(vg,¢) > r—1 and d(vs, ¢) > r. We consider two cases: if d(vy, ¢) = r, we could have
chosen c in place of v;_, (as d (v3, ¢) > r) and pass to a case t = 0 which we already solved.
If, on the other hand, d(vy,c) = r — 1, then let vy = v{’,v/", ..., V"1 = ¢ be a path of
length r — 1 from v, to c. No two out of v3, v, v, v can have distance 2 by Observation

2.3, using that d(v,, ¢) > r + 1. Hence, we conclude by using Claim 3.11 for y, = v,

n

— — " _
Yo =V2, Y3=V3, )y =V,
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Subcase: v, is a centre of G.

The vertices vy, V1, 14, V5 all have distance at most three to v, and no two have distance
2. Now start the proof again with vj := v, instead of vy (choosing some vertices v, and
(v_;»)' in place of v,, and v/_,). If t" # 1, then the conclusion follows as before. If t" = 1,

then we can find four distinct vertices
Y1=Vo, Vo=V, Ys=VN, N =1V5

such that no two out of them have distance 2, and d(v,,)) <3 fori=1,2,3,4. We
conclude with Claim 3.11.
This finishes the proof of Lemma 3.10. O

4 | GENERAL PROBLEM FOR GIRTH g=5
We first establish Theorem 1.2 using Lemma 2.1.

Proof of Theorem 1.2. We will find a large enough collection of vertices T such that no
two nonadjacent vertices of T are at distance less than 2k — 1. The result then follows by
Lemma 2.1.

Let vy be a centre of G, v, a vertex with d (v, v,) = r, and vy, vy, ..., V,_1, V, a path of
length 7 in G from v, to v,.. If r < 2k, we know the inequality holds, so assume r > 2k. We
let v/_, be a vertex such that d(vy,v,_,) > r and denote d (v, v/_;) = r — t for some
0 <t < 2k. Further, let vy = vy, vy, ..., V/_; be a path of length r — ¢ from v to v;_,.

Let

T:{v2kilosisléJ}U{Vzki+1|0SiS[éJ—l}
U{vzlkillsiﬁlij—l}U{vﬁkHﬂlSiSliJ—Z},

It follows from Observation 2.4 that the above is a disjoint union. It follows from
Observation 2.3 that no two nonadjacent vertices of T are at distance less than 2k — 1.
Hence, we conclude by Lemma 2.1 that

0> m[w] 5 (z _ 6)[%]
6—2 k 6—2

We prove the next lemma using an idea similar to one of Erdds, Pollack, Pach and Tuza [2].
Its most important corollary is Theorem 1.3.

Lemma 4.1. Denote by f(g,6) for § > 2, g > 3 the minimum number of vertices in the
graph of girth at least g and minimum degree 5. Then for any r > £, there exists a
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connected graph G on n = [%h (g, 8) vertices of girth at least g, minimum degree § and

radius at least r.

Proof. Let H be a connected graph with f (g, §) vertices, minimum degree 6 and girth at
least g. As§ > 1, we know H contains a cycle. Let v, w be two neighbouring vertices of H
such that the edge vw is part of a cycle. Let H' be the (still connected) graph obtained by
deleting the edge vw from H. By the girth condition, we have dy'(v,w) > g — 1.

Take [%] identical disjoint copies of H', called Hj, ..., Hr’%1, with vertices vy, ..., vra and

Wi, .y Wiy, and connect v; to w;,;, where w = w;. The resulting graph has

2
!

[%lf (g, 8) vertices, radius at least r, girth at least g, and minimum degree §. I

Theorem 1.3 follows easily.

Proof of Theorem 1.3. We know (see [3]) that when § — 1 is a prime power, then

f(6,8)<2(82-6+1),
£(8,8) <2(8° — 28% + 20),
f(12,8)<2(6 -1 +1)(6* -6+ 1).

Hence the result follows directly from Lemma 4.1 by taking
i i i
i =|=1f(6,9), [ =1=|f(8,9), ! =1=1fQ2,9).
m=|tlreo. n=|treo. nr=|traze

Finally, we prove Theorem 1.5. O

Proof of Theorem 1.5. Let v, be a centre of our graph, v, a vertex with d (vy, v,) = r and
Vo, ..., Vr a path of length r.
For0<i<r,let

Qw)={PveV(G):dv,v) <k}

Every vertex in our graph is in at most 2k + 1 of these sets, so in particular there is
an iy so that

IQ;)! < (2k + 1)es* L.

We easily find using the girth condition that v;, has at least 6(5 — 1)¥~2 vertices at
distance at most k — 1 from it. Hence, as all edges adjacent to these vertices are inside Q (v;,),
we get that for every i the subgraph induced by Q(v;,) has at least %52 (6 — 1)*2 edges.

We conclude that the subgraph induced by Q (v;,) is a connected graph of girth at least
2k on at most (2k + 1)c8*~1 vertices with at least %52 (6 — 1)%=2 edges. O
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