
The assessment of local lattice strains in alloys using
total scattering

L.R. Owena,b,∗, H.J. Stonea, H.Y. Playfordb

aDepartment of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK
bISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK

Abstract

The highly-strained lattice hypothesis in high-entropy alloys (HEAs) has led to

an interest in local distortions created in substitutional solid-solution alloys. In

this work, the use of total scattering for the assessment and analysis of local lat-

tice strains in alloys is considered. Using two theoretical models, the variation

in the width of peaks in the pair distribution function (PDF) with changes in

composition, ordering and atomic radius is presented. Key practical considera-

tions for the successful analysis of local lattice strains using this technique are

discussed, with particular reference to sample preparation, instrumental and

data processing effects. Further, the mitigation of errors in local-strain mea-

surements caused by differences in the scattering length of constituent atoms is

presented. This is concluded with a proposed methodology for the analysis of

local strains using this technique.

Keywords: *Total scattering, Diffraction, Pair correlation

function, Lattice strains

1. Introduction

It is commonly assumed that the substitution of atoms with others of dif-

ferent atomic radii leads to a local distortion field around the substituent atom.

This strain field interacts with a moving dislocation, hindering its motion and
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resulting in an increase in the strength of the material. Recently, the extensive

interest in the novel metallurgical field of high-entropy alloys has extended this

argument. It has been suggested that the mixing of multiple atomic species of

differing atomic radii results in a ‘highly-distorted lattice’ [1, 2, 3]. The high

level of local offsite displacement, or strain, exhibited by such a lattice is of-

ten cited as the explanation for the increased strength of many of this family

of materials compared with compositionally less complex alloys. However, di-

rect observations of such local strains in materials are relatively sparse in the

literature.

In our previous work, a case study [4] was presented in which the total scat-

tering technique, was used to assess the local lattice strain in the characteristic

HEA CrMnFeCoNi (Cantor’s alloy [5]). The study demonstrated the potential

for using pair distribution functions (PDF) obtained from total scattering mea-

surements to provide insight into the level of local strains exhibited in a lattice.

The measurements made suggested that the lattice of Cantor’s alloy [5] does not

contain a comparatively higher level of strain than other compositionally sim-

pler materials. If this result holds true for other HEAs, then their strengthening

cannot be attributed to anomalous levels of strain and alternative mechanisms

are required to explain the observed effects.

A full understanding of lattice distortions and their effects on the structure

is key to understanding the structure-property relationship of alloys. As a probe

of the local-environment, total scattering analyses allow the direct observation

of such local effects and have already been used to provide new understanding

and insight into a host of interesting complex materials systems (see e.g. [6]).

However, for the technique to be used systematically for the study of local

distortions in alloys a robust methodology is required. This paper seeks to

provide such a methodology by answering two questions. Firstly, is the PDF

susceptible to changes in the local level of strain exhibited in a lattice due

to variation of concentration and radii of substituting species? Second, what

practical steps need to be considered to ensure an accurate determination of

local lattice strains?
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2. Background theory

It is commonly understood that dynamic thermal displacements away from

idealised atomic positions in a structure results in a decay in the intensity of the

Bragg peaks at high-Q (Q is the magnitude of the scattering vector Q̄, Q = 2π
d ,

where d is the interplanar spacing in the lattice). This effect can be successfully

described mathematically by a decaying form factor using a Debye-Waller factor

[7, 8]. However, it should be noted that the total scattering intensity is not lost,

but rather redistributed into diffuse scattering features that appear at the base

of the Bragg peaks.

The effect of static distortions on a powder diffraction pattern would be

expected to be analogous to a thermal Debye-Waller effect; manifesting as a de-

crease in the intensity of the Bragg peaks with an accompanying increase in the

observed diffuse scattering. Unlike the standard micro-strains discussed in crys-

tallographic literature, these local strains produced by the atomic substitution

would not, therefore, be expected to produce broadening of the Bragg peaks, but

rather a damping in the intensity of peaks at high-Q. Practically, the combined

effects of static and dynamic displacements will therefore be subsumed into the

Uiso (isotropic Debye-Waller factor parameter) term of a Rietveld refinement.

However, a direct measure of the local distortions in the system should still be

possible from analysis of the diffuse scattering.

The total scattering technique, which is an extension of traditional powder

methods, involves a simultaneous consideration of both the Bragg and diffuse

components of scattering.

For neutrons, the total scattering function of a material, F (Q), is given by:

F (Q) = ρ0

∫ ∞
0

4πr2G(r)
sinQr

Qr
dr (1)

in which Q is the magnitude of the scattering vector and r is the instantaneous

atomic position, ρ0 is the average density of the structure and:

G(r) =
∑
i,j

cicj b̄ib̄j(gij(r)− 1) (2)
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where i and j are atomic labels, ci is the concentration of species i, b̄i the

neutron scattering length of species i and the gij(r) terms are the partial pair

distribution functions. The partial pair distribution functions are related to the

spatial distribution of atoms by the expression:

gij(r) =
nij(r)

4πr2ρidr
(3)

where nij(r) is the number of atoms lying within r and r + dr from an atom i,

and ρi = ciρ0, where ρ0 is the atomic number density and ci the concentration

of species i.

Consequently, the function G(r), often referred to as the pair distribution

function (PDF), is a weighted histogram of the interatomic distances in a ma-

terial. Practically, the PDF may be obtained by the inverse Fourier transform

of Eq. 2, given by:

G(r) =
1

(2π)3ρ0

∫ ∞
0

4πQ2F (Q)
sinQr

Qr
dQ (4)

A peak in the pair distribution function will indicate atomic species sepa-

rated by that distance. If the peak is assumed to be Gaussian (which is often

practically found to be the case), the maximum of the peak will yield the aver-

age interatomic distance, whilst the peak area will be a function of the number

and type of correlations at that distance. Importantly, the peak width will be

a function of the distribution in the interatomic distances around the average

interatomic distance (given by the peak maximum).

In a substitutional solid-solution, the distortion field created by the intro-

duction of a solute atom with a different atomic radius, will lead to a shift of the

atoms from their idealised average atomic positions - referred to as local lattice

strain. Such displacements would normally be described by an atomic displace-

ment parameter, U , which is the mean square displacement of the atoms in the

system away from their ideal locations. This change in the magnitude of the

off-site displacements will change the distribution of the interatomic distances,

and thus the width of peaks in the PDF (see Fig. 1)

The measurement of the change in peak widths is different to the majority
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Figure 1: Demonstrative illustration of the change in the PDF on the substitution of atoms

with a different atomic radius. The increase in local lattice strain results in an increase in

peak width. The lattice also expands to accommodate the larger atoms, resulting in a shift

in the peak positions. Colour version available online.

of studies carried out using PDFs, which normally follow larger changes such as

the shift in peak positions or the appearance of new features in the PDF. It is

further distinct from the previous studies of short-range order (SRO) in alloys

[9, 10] where variations in peak areas were recorded, as a result of the change

in occupation of different coordination shells.

3. Changes in the PDF due to lattice distortion

3.1. The relationship between lattice strain and PDF peak width

It is commonly assumed that the displacements of atoms away from their

ideal lattice positions, u, can be modelled by a Gaussian distribution of the

form:

f(u) = Nu exp−
( u2

2σ2
u

)
(5)

where Nu is a scaling factor, and σu is the width of the distribution and hence

the numerical measure of the displacements in the material.

Provided that all atoms obey this distribution, their interatomic distance, r,

will be described by the convolution of Eq. 5 with a similar function centred at

the average interatomic distance of a given shell, µr. The corresponding peak

in the PDF will therefore be given by:

f(r) = Nr exp−
[

(r − µr)2

2σ2
r

]
(6)
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where

σr =
√

2σu (7)

and

Nr =
√
πN2

uσu (8)

As the PDF peak width is a scalar multiple of the width of the distribution of

the atomic displacements, the PDF peak width can be used as a quantitative

indicator of the offsite displacement of the atoms. Therefore, throughout this

paper the PDF peak width will be used as a proxy for the offsite displacement.

It should be noted that the offsite displacements exhibited by the atoms

will be a combination of local lattice strains and thermal components. The

magnitude of the offsite displacements from static effects, σS , and thermal dis-

placements, σD, may be related to the overall offsite displacement, σu, by:

σ2
u = σ2

S + σ2
D (9)

In the examples considered in the following sections, the homologous tempera-

ture of the samples was taken as being constant, and hence the magnitude of

the thermal displacements would be invariant. Therefore, changes in the PDF

peak width should be attributable to changes in local lattice strain (see Fig.

1). Based on the definition of these types of local strain, it is common to quote

the magnitude of σS as a quantitative measure of the displacement exhibited

by atoms in the structure due to local static effects. This can be converted to

a dimensionless quantity, more consistent with definitions of macroscopic engi-

neering strains, by taking the ratio to the average atomic radius of the material:

εL =
σS
rAv

(10)

The average atomic radius, rAv, will be most commonly calculated from the

experimentally measured lattice parameter and assuming a hard sphere model.
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3.2. Vegard’s relation

If an atom with a larger atomic radius is substituted into a monatomic

structure, the lattice expands to accommodate the larger atomic species (the

converse is true for the substitution of atoms with smaller atomic radii). This

can be observed in the change in the lattice parameter extracted from fitting of

the Bragg pattern or traditional powder indexing methods. For binary alloys,

the variation of lattice parameter with concentration of the substituting species

is often approximately linear, and this trend is known as Vegard’s relation [11].

However, it should be noted that whilst Vegard’s relation often predicts the

lattice parameters of binary alloys fairly well, it does not necessarily hold for

higher order systems. Nevertheless, in the absence of a more accurate model,

the lattice parameter of a higher order system is often still predicted using a

weighted average of the atomic radii of the individual components.

For the theoretical binary alloys considered in this work it will be assumed

that Vegard’s relation holds for the average structure, i.e. the unit cell of the

material. Consequently, it is expected that the positions of the peak maxima in

the PDF will shift when substituting with an atom of a different atomic radius

(see Fig. 1). In this paper, the predictions will be limited to a consideration

of fcc structures only, but a similar treatment could equally be applied to any

crystal structure.

3.3. Variation in the distribution of bond lengths

As noted previously, the local lattice strain is a measure of the distribution

of the average offsite displacement of atoms, and hence the nearest neighbour

interatomic distances. It can be imagined that the substitution of atoms (re-

placing A atoms with atoms of B), with a differing atomic radius, into a lattice

could have two main effects on the distribution of interatomic distances. Firstly,

there may be a change in the average interatomic distances of the different pairs

of atoms, i.e. the AB and BB average distances may be different from the AA

bond length. Secondly, the width of the distribution of the interatomic dis-

tances may change, compared with the width of the pure monatomic sample.
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In reality, the observed effect is likely to be a combination of these two effects.

To demonstrate the changes that might be expected on substitution, two simple

models can be proposed:

• Sum of Gaussians Model (SGM) - The distributions of the AA, AB and BB

pair distances are assumed to be independent Gaussian distributions that

can be summed, Eq. 2, to yield a peak in the PDF. This model assumes

that no relaxation occurs in the system and is only capable of calculating

the first peak in a PDF. To account for higher order correlations, the

spatial relationship and radii of the correlating atom types, and the atoms

located at intermediate positions in the lattice would need to be considered

- the calculation of which rapidly becomes complex. Whilst these are

obviously limitations, the model is useful in providing an upper bound on

the maximum effect on the PDF that might be observed upon substitution.

• Spring model (SM) - The system is modelled as a collection of hard spheres

connected by springs, with energies described by a Morse potential. By

energetically relaxing the system, a more physically realistic representation

of what is likely to occur on substitution of B into A may be obtained.

Importantly, this enables the calculation of the PDF of the structure up

to a desired point in r, and not the first peak in isolation.

Full details of the two models and how the calculations were carried out can

be found in the supplementary information. In formulating these models it was

assumed that all of the alloys demonstrate the same magnitude of thermal oscil-

lations, reflecting real materials measured at the same homologous temperature.

Using these two models it is possible to demonstrate how the PDF peaks may

vary as a result of changes in alloy composition (e.g. relative concentrations,

atomic radii etc.).

To obtain meaningful information about the local lattice strain, it is nec-

essary that quantitative characterisation of the PDF peaks is performed. One

potential method involves fitting the calculated PDF peaks with a Gaussian
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function of the form1 f(r) = N exp
(
− (r−µ)2

2σ2

)
. While the calculated peaks are

unlikely to be strictly Gaussian in nature they can still be reasonably well fitted

with this function, and the relevant parameters obtained with a corresponding

error. Alternatively, the full width at half maximum (FWHM) of the peak can

be measured. The latter approach is a more general method as it makes no

assumptions about the shape of the peak. The two methods can be compared

using the relationship FWHM = 2σ
√

2 ln 2, where σ is the Gaussian width pa-

rameter. As the two methods are found practically to produce little difference

in the measured values, the former method will be employed here, as the fitting

algorithms used provide an estimate in the error of the fitted distribution.

3.4. Variation with concentration

To establish the effect of varying concentration, a series of theoretical fcc

alloys of composition A1−xBx, where x = 0, 0.05, 0.10 . . . 1.00 were considered.

The radii of the A and B atoms were taken to be rA = 1.245 Å (approximately

that of nickel) and rb = 1.30725 Å i.e. the radius of B is 5% larger than that

of A (a typical radius difference, well within the bounds of stability of solid

solution suggested by Hume-Rothery [12]). The lattice parameters of the A-B

alloys were calculated using Vegard’s relation and the nearest neighbour bond

distances were then determined by a hard sphere model as rAA = 2.49000 Å,

rAB = 2.55225 Å and rBB = 2.61450 Å.

The two proposed peak calculation models were applied and the variation in

predicted PDF peak widths with concentration were obtained using the Gaus-

sian function fits. The modelling was carried out for three cases to demonstrate

the variations caused by differences in the scattering lengths of the atoms. The

three separate cases considered are: a) bA = bB, b) 2bA = bB (i.e. bA < bB)

1It is worth noting that this is the non-normalised version of this function where N is

a scaling factor. This form of the Gaussian has been used in lieu of the more usual func-

tion (which contains a,b and c parameters), to prevent confusion between symbols (e.g. the

scattering length bi)
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and c) bA = 2bB (i.e. bA > bB). The resultant PDF peak parameters and cal-

culated local lattice strain from the SGM (fitting with a Gaussian) are shown

in Fig. 2(a), (b) and (c). Considering the case where bA = bB (black) there is

an observable increase in the peak width and local strain as the concentration

of B increases, up to a maximum at the equiatomic concentration, as would be

expected. Likewise, the peak maximum shows the linear increase predicted by

Vegard’s relation.

Figure 2: Variation in peak parameters for the first peak in the PDF with varying concen-

tration for the two models, (a), (b) and (c) predicted from SGM, (d), (e) and (f) from SM,

fitting the resultant peak with a Gaussian. (a) and (d) show the calculated full width at half-

maximum; (b) and (e) the peak position or µ parameter; (c) and (f) show the calculated local

lattice strain from eqs. 9 and 10. Black line (circles) indicates bA = bB, red line (diamonds)

2bA = bB and blue line (crosses) bA = 2bB. Colour version available online.

However, considering the cases where bA 6= bB it is apparent that there is a

skew to the distribution of PDF peak width with A-B alloy composition. From

this, it can be seen that the measured peak width will vary as the relative

magnitudes of the scattering lengths of the components changes. This may

result in an under or over estimate of the local strain in the lattice, depending

on the relative magnitude of the component scattering lengths, as is seen in
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panel (c) (in this example, up to ∼ 40% error in the observed strain). This is

problematic, as it means that the peak width cannot be directly related to the

local lattice strain, without a consideration of the relative scattering lengths.

Methods for dealing with this issue are discussed in Section 4.1.

The result from the SM predictions are shown in Fig. 2(d), (e) and (f).

Comparing Fig. 2(b) and (e) it can be seen that both models predict a similar

variation in the peak maximum, although a much smaller change is apparent in

the SM owing to the relaxation of the system. However, a much greater variation

is observed between the peak widths predicted by the two models (Fig. 2(a)

and (d)). Most apparent is the overall reduction in the maximum strain shown

(compared with the SGM), Fig. 2(f), which is again the result of relaxation in

the system. In addition, differences in the relative scattering lengths now not

only change the skew of the distributions, but also the maximum change in the

FWHM as the concentration varies. From Fig. 2(d) it seems that if bA < bB the

peak width change is minimal, whereas if bA > bB there is a large change in the

peak width.

This variation in peak width suggests that for the SM, the peak width is

being dominated by the variation in the AA partial - i.e. the partial with the

closest interatomic distance. This is most likely the result of the asymmetric

nature of the Morse potentials used. As the system relaxes, the AA distribution

will shift to higher-r values, whilst the BB distribution will reduce to lower-r

values. The asymmetry of the Morse potential will mean it is energetically more

favourable to expand the AA partial to high r than to expand the BB partial

to lower r. Consequently the AA partial will broaden more and so will have a

greater effect on the overall peak width. Hence, varying the relative scattering

lengths of the partials will change the maximum observed in the peak width.

Considering the local lattice strains, there is comparatively little variation

in the observed local strain with concentration in the bA < bB case, and an

increase in the observed local strain in the bA > bB case, as a result of the

changes in peak width. Indeed in the former case, the observed local lattice

strain appears to become ‘negative’. A note should be made that a negative
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local lattice strain is obviously neither physically nor mathematically possible. It

indicates that the observed peak width is smaller than that caused by thermal

oscillations in the system alone, which would mean that σ2
S < 0 (see eq. 9).

The negative local strain plotted is calculated as −
√
|σ2
S | and demonstrates

that there is an unaccounted for effect on the data (in this case the scattering

lengths). Importantly, this further highlights the necessity for corrections to

minimise the effect of scattering length on the observed peak widths of the

system, see Section 4.1. Finally, it should be noted that the error on the local

strain increases as it approaches zero. This is a consequence of the calculation of

the local strain. The error in the calculated peak width is effectively constant,

but as the local strain is a function of the difference between the peak width

and the broadening caused by thermal displacements, in the limit as the local

strain approaches zero the error will increase to infinity.

3.5. Constant concentration, varying atomic radii

Thus far, the variation in peak width under different levels of substitution

of an atom with a fixed atomic radius has been considered. However, it is also

useful to consider the change that might be observed for a series of alloys with

the same concentration, but where the radius of the substituting atom is varied.

Using the two models suggested previously, a similar analysis can be carried out.

In this case, the radius of the substituting atom was varied in ratio to the solute

atom radius in steps of 1% from 0 to 15 %. The maximum value was chosen

to reflect the maximum difference in atomic radius suggested by Hume-Rothery

[12] for which complete solid solution could be expected in a binary alloy. The

resultant variation in width is shown for the two models in Fig. 3.

The top axis shows the value of the δ-parameter for the different alloys.

Whilst, for binary alloys it is possible to quote the percentage difference in

atomic radii of the two components, for higher order systems this is not pos-

sible. The δ-parameter, developed for multicomponent alloys such as HEAs,

provides a measure of the variation in atomic radius for alloys of any com-

plexity enabling the comparison of more complicated alloy systems to simple
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Figure 3: Variation in peak parameters for the first peak in the PDF with radius of the

substituting atom for the two models for an alloy of fixed composition AB, (a), (b) and (c)

predicted using the SGM, (d), (e) and (f) from the SM, fitting the resultant peak with a

Gaussian. (a) and (d) show the calculated full width at half-maximum; (b) and (e) the peak

position or µ parameter; (c) and (f) show the calculated local lattice strain from eqs. 9 and 10.

Dotted line on (a) demonstrates the R-squared of the fit for the bA = bB SGM. Dashed line

on graph indicates the region above which the SGM produces peaks that are no longer well

described by fitting with a single Gaussian peak. Black line (circles) indicates bA = bB, red

line (diamonds) 2bA = bB and blue line (crosses) bA = 2bB. Colour version available online
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binaries. The parameter is defined as:

δ =

√∑
ci
(
1− ri

rav

)2
(11)

where:

rav =
∑

ciri (12)

where i is an atomic species label, ri and ci are the radius and concentration of

atom species i respectively.

Fig. 3(a) and (b) show the results of the predicted PDF peak widths and

positions from the SGM. The dotted line indicates the values of r (and δ) for

which the predicted first peak, from the SGM, is no longer well described by

fitting with a single Gaussian. It should be noted that the errors displayed

on the graph are errors in the fit, not the R-squared quality of the fit. The

dotted line shows the R-squared for the equal weighted SGM prediction, from

which the breakdown in quality of fit at high % differences in atomic radius for

this model can be seen (i.e. when the peak is no longer well described by a

single gaussian function). For the predictions made using the SM, there is no

associated dotted line, due to the relaxation of the bonds in the system resulting

in a distribution that remains well described by a Gaussian function for all δ

values considered. Panels (a) and (d) show that for both models, and for all

of the studied relative scattering length cases, there is the expected increase

in the observed peak width with increasing difference in the size of the atomic

radius and that it is well described by a quadratic expression. It can be seen

that in all the cases, the Gaussian model predicts a much greater lattice strain

than that predicted by the SM, panels (c) and (f). However, this can be easily

explained by the lack of relaxation in the SGM. Again it is worth noting that

in the SM without accounting for the scattering lengths a ‘negative’ local strain

is predicted for the case where bA < bB.

The two different models also predict different FWHM values depending on

the relative scattering lengths of the materials (with an error of up to ∼ 10% in

this example). Whilst for the SGM, the equal scattering lengths case shows a
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maximum value; for the SM the peak width is under or over predicted depend-

ing on the relative sizes of bA and bB. This is also reflected in the calculated

local strains where, for a given difference in radius, the SGM demonstrates the

maximum strain for the equal scattering length case, whilst for the SM this case

yields an intermediate calculated strain. Note that these orders are consistent

with those observed in Fig. 2 for the 50 at. % cases. Without real data for com-

parison, it is difficult to say which of these is actually observed. However, it does

again highlight the fact that some correction will be required for the relative

magnitudes of the scattering lengths if the data is to be processed effectively to

obtain quantitative information (See Section 4.1).

Fig. 3(b) and (e) show the variation in the observed peak maximum from the

first PDF peak from the two models. Note that for both models the black line

(the equally weighted scattering length cases) show the approximately linear

increase that is expected for Vegard’s relation. Changing the relative atomic

scattering lengths results in a change to the observed peak maximum. For both

models it suggests that if the scattering length of the largest atom is greater

than that of the smaller atom, the peak maximum will occur at a distance

greater than would be expected given the lattice parameter of the material.

The converse is also true if the scattering length of the smallest atom is greater

than that of the larger atom.

If the partials were weighted equally, then the smallest AA partial will have

the same contribution to the peak as the largest BB partial. Consequently,

when summed to yield the PDF peak, a symmetric peak will result. Increasing

the relative weight of the highest-r partial compared to the lowest partial will

lead, when summed, to the shift in intensity to higher-r. The resultant peak will

therefore be asymmetric with a shift in peak maximum to higher r compared

with the equal scattering length case.

The previous simulations were carried out for a 50:50 equiatomic binary.

The same simulations and calculations can be carried out to demonstrate the

expected variation with concentration (subject to equal scattering lengths). This

can be seen in Fig. 4. For the SGM, shown in (a), (b) and (c), there is the
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expected increase in the peak width, local strain and peak position µ with

increasing concentration of substituent. Note that for high values of δ, Vegard’s

relation appears to break down, but this is only in the region that is no longer

well described by the model (beyond the dashed line).

Figure 4: Variation in peak parameters for the first peak in the PDF with radius of the

substituting atom using the two models, (a), (b) and (c) predicted from the SGM, (d), (e)

and (f) from the SM, fitting the resultant peak with a Gaussian. (a) and (d) show the

calculated full width at half-maximum; (b) and (e) the peak position or µ parameter; (c) and

(f) show the calculated local lattice strain from eqs. 9 and 10. For all bA = bB. Dotted line

on graph indicates the region above which the SGM produces peaks that are no longer well

described by fitting with a single Gaussian peak. Black line (circles) indicates AB, green line

(diamonds) A2B and purple line (crosses) A3B. Colour version available online.

From the SM, panels (d), (e) and (f) it can be seen that the increase in

peak width and local lattice strain is much less than that in the SGM case,

but as stated previously this can be ascribed to the relaxation in this model.

However, the change in the width and local lattice strain with composition is

not as apparent. Comparing with Fig. 2(d) it can be seen that this is due to the

relatively shallow change that occurs in the peak width as the concentration is

varied from 20-50 at. %B for the equal scattering length case. Again the peak
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maximum is well described by the linear nature of Vegards relation.

Overall it is important to note that the observed peak width and hence

also the strain increases quadratically as the radius of the substituting atom

increases. However, variations in the relative scattering lengths will result in

slightly incorrect measured strain values obtained from the peak widths, and a

slight correction will be required if accurate values are sought (See Section 4.1).

3.6. Correlated motion

The consideration of local strain within a lattice has, so far, been limited to

the first coordination shell. However, it may be expected that a variation in the

local strain measured from other peaks in the PDF will change when moving

further out in r. For the same set of structures used to calculate Fig. 2 the

variation in the peak width in the successive shells was obtained. Note that this

was only possible using the large boxes generated from the SM. The SGM is

restricted to a consideration of only the first shell effect, unless the effect of the

intermediate atomic types and correlations can be made (as noted previously).

The plot of the variation in peak widths with concentration for the first 5 peaks

in the PDF is shown in Fig. 5(a). As can be seen from the graph, all the peaks

exhibit a similar variation with elemental concentration. Importantly, however,

there is a notable difference in the relative magnitudes of the peak widths, with

the first shell showing a much narrower peak width than the subsequent shells.

This can be further demonstrated in Fig. 5(b) where the change in observed

peak width with r for the simulated pure A alloy data is plotted.

This variation between peak widths from different coordination shells is at-

tributable to the effect of correlated motion. If the system were completely

non-interacting then the atoms would all be free to move independently and

there would be no r-dependance on peak width. Conversely, if the system were

bonded with rigid rods, the movement of an atom would move all other atoms

in the structure and a series of delta function peaks would result. For real sys-

tems, the nature of bonding is intermediate between these two extremes, and

can be thought of as a system of atoms connected by springs. If an atom in
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Figure 5: (a) Measured peak widths of the first 5 peaks in the PDF as a function of A-B

alloy composition (labels on right hand side). (b) Variation in peak width in the PDF with

r, simulated for a material containing only A atoms. Black line indicates fit with Eq. 13. (c)

local lattice strain calculated from individual peaks, using eqs. 9 and 10. (d) local lattice

strain calculated from σ0 values from fitting Eq. 13 to the peak widths from the first 14 peaks

in PDF generated using the SM.

the structure moves then the immediate neighbouring atoms will be displaced

along with it, but some of the motion will be taken up by the extension of the

spring or bond. For the subsequent neighbour shells there are more intermedi-

ate bonds between the moving atom and the atom of interest all of which will

extend, leading to a lesser motion. Consequently the nearest neighbour PDF

peaks will be narrower, and the correlations between atoms at greater distances

will be broader.

The “small box” PDF analysis software PDFGui [13] uses the following

expression to account for the variation in the overall peak width, σ, with r that
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results from correlated motion.

σ = σ0

√
1− δ1

r
(13)

where σ0 the expected width of the peak as determined by the magnitude of the

thermal oscillations in the system, δ1 is a parameter to account for correlated

motion and r the interatomic distance (δ1 ∼ 1.2 for these materials). This

function has been used in Fig. 5(b) to fit the observed data. The expression

suggests that as r → ∞ then σ → σ0. However, in the case of extreme local

lattice distortion, such as is often proposed in high entropy alloy (HEA) systems,

the magnitude of these distortions may be sufficiently large that the cumulative

effect over successive shells results in a featureless PDF at high-r, i.e. the system

tends towards an amorphous structure where only local coordination distances

are maintained.

Fig. 5(c) and (d) show the calculated local lattice strain from this model.

In (c) it can be seen that different values of strain are obtained depending on

which shell is used. For lower order shells a lower local lattice strain is recorded.

This is expected as for the lower order shells the correlated motion of atoms

caused by the bonds will lead to smaller relative displacements and hence smaller

measured strains. Fig. 5(d) shows the local lattice strain calculated from the

σ0 obtained from fitting Eq. 13 to the observed peak widths of the first fourteen

peaks. This, therefore, acts as an upper bound on the measured strain in the

system, as it effectivley models the displacements as if there was no correlated

motion between the atoms. Which value of strain should be quoted, and used

in subsequent property considerations, will depend on whether the correlated

motion of atoms will need to be included and accounted for. It should be noted

that the errors associated with fitting Eq. 13 are large and, as previously, as

the strain tends to zero, the error tends to infinity - resulting in the large error

shown with at x = 1.0 (the error for x = 0 is technically infinite - so is not

plotted)
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3.7. Variation with order

It has been noted [10, 14] that ordering transitions in an alloy will result

in a change in the observed area of a PDF peak. This is a consequence of the

change in the numbers of the different atom types in a given coordination shell.

However, assuming the locations of the occupied atomic sites are maintained

in the transition and only order is changed, overall the total number of bonds

at a given distance must be conserved. Therefore, if the number of A atoms

in a coordination shell is reduced (with an accompanying reduction in the area

of that peak in the partial), it must be compensated for by an increase in the

occupation of another atomic species (and an increase in area in the peak of

that partial). If the scattering lengths of all the atoms in the material are equal

there should be no change in the observed total PDF under such an ordering.

However, if the scattering lengths are different, this change in occupation will

result in a change in the Faber-Ziman coefficients for the partials, and so an

observed change in the area of the PDF.

A similar consideration can be made when considering the local lattice strain

change on ordering. Assuming that a partial PDF peak can be modelled as a

Gaussian, the area of such a peak will be:

Area = (
√

32π3)ρ0Nσ[σ2 + µ2] (14)

where N , σ and µ are Gaussian parameters, and ρ is the density of the material.

Assuming that the width, σ, and position, µ, of the partial peaks remains

constant under ordering then the N parameter must change. If all of the partials

in the system have the same µ and σ parameters it follows that, irrespective

of their weighting, the sum will be a scalar multiple (a linear combination) of

the Gaussian functions that define the peaks in each of the individual partials.

Consequently, it follows that there should be no change in the observed PDF

peak width under ordering.

However, this is only the case if the partials have the same width and posi-

tion, which is unlikely to be the case for real systems where it is expected that

the average bond lengths may vary. The change that may occur on ordering,
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if the partials PDF peaks have different peak maxima, can be readily modelled

using the SGM. As the total coordination number around the A and B atoms

respectively must be constant, the reduction in the AA partial must result in

an increase in the AB partial, and can be calculated for a given structure with

a known number of nearest neighbours.

The amount of order in the system can be described using the Warren-

Cowley parameters [15, 16]. These are defined as:

αAB
lmn = 1− PAB

lmn

cB
= 1− PBA

lmn

cA
(15)

where PAB
lmn is the probability of finding a B atom at position ~rlmn = l ~a1 +

m~a2 +n~a3 (where ~a1, ~a2 and ~a3 are lattice vectors, and l,m and n are fractional

coordinates) from an origin placed on an A atom, and cA and cB are the atomic

fractions of A and B respectively in the alloy. If the atoms are randomly dis-

tributed then αAB
lmn = 0. If there is a preference for like atom interactions then

α > 0, tending to a maximum of α = 1; whilst for unlike interactions α < 0,

tending to a maximum of α = (cA−1)
cA

when measured around B and α = (cB−1)
cB

when measured around A.

Fig. 6 shows the change in the FWHM, peak maximum and local lattice

strain on ordering in a simulated equiatomic binary alloy system, plotted against

the Warren-Cowley parameter. The ordering simulated is that in which AA and

BB partials are reduced in favour of forming AB partials (the type of ordering

that results in L10 formation in AB alloys). For the SM, a series of boxes with

varying α-parameter were built using a Monte-Carlo simulator.

From Fig. 6(a) and (d) it can be seen that as the local order increases

away from random (decreasing α) there is a reduction in the observed peak

width. This is because more strained AA and BB partials are removed as more

favourable intermediate AB partials form in the system, thereby reducing local

strain in the system, as seen in Fig. 6(c) and (f). Comparing the models, it can

be seen that with the relaxation allowed by the SM the overall magnitude of the

strain is reduced compared with the SG model, although the magnitude of the

change in strain upon ordering is similar for the two cases. Additionally, it can
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Figure 6: Variation in peak parameters for the first peak in the PDF for an AB alloy under

ordering using the two models, (a) and (b) predicted using the SGM, (c) and (d) using the SM,

fitting the resultant peak with a Gaussian. Horizontal axis shows Warren-Cowley parameters,

with α = 0 indicating random and α < 0 an increased preference to form unlike bonds. (a)

and (c) show the calculated full width at half-maximum, (b) and (d) the peak position or µ

parameter. Black line (circles) indicates bA = bB, red line (diamonds) 2bA = bB and blue line

(crosses) bA = 2bB. Colour version available online

be seen that the magnitude of the relative scattering lengths has an important

effect on the overall change in the peak width (causing an associated error in

the measurement of the strain of up to ∼ 30% in this example). For the SGM,

by varying the relative sizes of the symmetric AA and BB partials (the outer

partials), so the width will be reduced. For the SM, the asymmetric nature

of the Morse potentials and the associated peaks, results in an increase in the

observed FWHM for the case where bA = 2bB (blue line) case, and a decrease

when 2bA = bB (red line) when compared with the bA = bB case.

Fig. 6(b) and (e) demonstrates that the position of the peak maximum,

µ, and hence the calculated lattice parameter, is also strongly affected by the

relative scattering lengths, under ordering conditions. Whilst for the equal

scattering length case there is little variation in the position of the peak max-

22



imum, changing the relative scattering lengths changes not only the measured

value of the peak maximum position, but also the rate of variation (increas-

ing/decreasing) under conditions of ordering. Specifically, as the scattering

length changes, the largest contributing partial will vary, and so therefore will

the position of the peak maximum. The observed peak maximum will move

away from the average value towards the radius of the most scattering species.

However, this effect will be reduced by local ordering in the system, which will

decrease the discrepancy by removing the outlying partials.

It should be noted that this is the result if the system orders in such a

way as to favour A-B partials (and tend towards the L10 structure) and similar

predictions could be made for other types of ordering. Importantly, the exact

effect on the PDF will be dependent on the type of ordering that is occurring

in the system [9], the relative scattering lengths and atomic radii of the species.

As such, it is impossible to generalise this effect for all short-range order.

4. Practical considerations

Thus far the consideration of variation in PDF peak width has been limited

to real static displacement effects; specifically variations in concentration and

atomic radius, and the additional complications caused by scattering length,

ordering in the system, correlated motion and dynamic displacements. In ad-

dition to these intrinsic effects, which are all the result of true local variations,

there may be variations in the observed peak widths caused by external effects

or non-local sample conditions (e.g. crystallite size, texture). These will need

to be accounted for if the peak width is to be related to the local lattice strains

in the system.

4.1. Accounting for the difference in atomic scattering power

As noted from the predicted distributions, the different scattering powers

of the atoms will affect the measured strain result. However, methods can be

proposed to account for this.
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Firstly, choice of incident radiation. Depending on the samples under con-

sideration the choice of X-ray or neutrons may be important. The discrepancy

between true strain and observed peak width will be minimised if the different

atoms have similar scattering lengths or form factors. The choice of radiation

can therefore help to minimise the difference in the scattering lengths and hence

reduce this effect.

Secondly, an assumption may be made that the partial distributions are

the same. In the SGM, the partials are treated as independent with constant

widths but different average bond lengths. In reality, each of the distributions

will relax and broaden, as is observed in the case of the SM. In the extreme

case, the distributions may broaden sufficiently that they become the same i.e.

all the partials for the first peak in the PDF may be written as:

gij(r) = N exp

[
− (r − µ)2

2σ2

]
(16)

Note that N , µ and σ are independent of i, j in this case. Therefore, from Eq.

2 the first peak in the PDF is given as:

G(r) =
∑
i,j

cicj b̄ib̄j(N exp

[
− (r − µ)2

2σ2

]
− 1) (17)

=

(
N exp

[
− (r − µ)2

2σ2

]
− 1

)
AFZ (18)

where:

AFZ =
∑
i,j

cicj b̄ib̄j (19)

Changing the scattering length of the atomic species will change the AFZ pa-

rameter, but not the measured peak width, σ. Therefore, if the distributions of

the partials are sufficiently similar to be effectively considered to be the same,

then the PDF peak width can be directly related to the local strain exhibited

in the lattice. This assumption is more likely to be valid in multicomponent

systems, such as equiatomic high entropy alloys, as each individual partial will

have a smaller contribution to the overall PDF peak. Additionally, the range

of atomic radii and complex local environments will increase the number of in-

termediate partials and lead to the partials converging to a similar distribution
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upon relaxation. It should be noted that this assumption will be implicit if a

grey atom method is employed. This involves modelling all atoms in the system

with a single atom-type, which has a scattering length equal to the average scat-

tering length of the constituent atoms of the system (see [9]). This ‘grey-atom’

consideration is common, particularly when using small box modelling methods

for the analysis of total scattering functions.

Alternatively, it is possible to correct for the discrepancy caused by the dif-

ference in scattering lengths by using large box modelling. In this approach,

fitting the experimental PDF using the RMC algorithm [17] will yield a large

box model containing tens of thousands of atoms, the predicted PDF of which

provides the best fit to the available data, subject to the input constraints. From

this large box model, the algorithm calculates the individual partial pair distri-

bution functions and combines these to produce the overall PDF. Consequently,

a model generated using the RMC algorithm is capable of yielding the partial

pair distribution functions of a system, which are not directly experimentally

accessible, but can provide invaluable insight into local effects occurring in the

system.

If the partials can be accessed it is possible to decouple the effect of the

scattering length on the observed peak width and more accurately assess the

magnitude of the offsite displacements. As already noted, the partials are com-

bined as in Eq. 2 to yield the G(r), which will naturally be dependent on the

relative scattering factors of the two materials. However, if instead, the cal-

culation is carried out using b̄A = b̄B = · · · = 1, a function Gstrain(r) may be

calculated, i.e.:

Gstrain(r) =
∑
i,j

cicj(gij(r)− 1) (20)

This function will have no dependence on the relative scattering lengths and

so peak widths in this ‘strain PDF’ will be a direct measure of the local lattice

strains of a material. Fig. 7a shows the partials for an AB equiatomic binary

alloy where the A and B atoms have different scattering lengths. Fig. 7b shows

how the partials vary if the scattering length changes such that bA = 2bB. Fig.
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7c shows the resultant summed peak that arises from the two cases. The black

line represents the Gstrain(r) and the red line the as calculated G(r). As can

be seen, the red peak is narrower and has a lower peak maximum (as suggested

from Fig. 2a and Fig. 2b). By calculating the Gstrain(r), this dependence on

scattering length is removed. Critically, it should be noted that this method is

highly reliant on an accurate determination of the partial PDFs, and so requires

large box modelling (RMC fitting) to obtain this result.

Figure 7: Change in the first peak in the PDF under variation of scattering length for an

equiatomic binary alloy, AB, with rA = 1.245 Å and rb = 1.30725 Å, calculated using the

SGM. (a) The partial pair distribution functions calculated with bA = bB; b) the partial pair

distribution functions calculated with bA = 2bB; (c) the resultant peak in the PDF for the

two cases shown in (a) and (b). The dotted line in (c) shows the expected peak maximum

from a hard sphere model. Colour version available online.

4.2. Calculation parameters: Qmax, Qmin and scaling factor

From Eq. 3 it can be seen that an integration needs to carried out over all

reciprocal, Q, space to calculate the PDF from the total scattering function

F (Q) .

In practice, of course, there will be a finite Q-range over which the Fourier

transform may be carried out. Oscillations in the F (Q) with a longer period will

Fourier transform to components with a short-period and high-frequency in real

space. Ideally, the broadest possible Q-range is required to provide these high-

frequency terms and give the peaks maximum resolution of the peaks. Achieving

a sufficiently large Q-range necessitates the use of either synchrotron X-ray
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radiation or spallation neutron sources, and instruments at these facilities that

are optimised for total scattering data collection. However, using the largest

measurable Q range is not always appropriate as Fourier transforming large

regions of featureless noise will result in spurious oscillations in the PDF. As

such, accurate measurement of PDF peak widths requires the Q-range (i.e. both

Qmax and Qmin) to be chosen carefully.

Ideally, the PDF is scaled according to the number density of the material,

calculated from the mass, dimensions, packing fraction and lattice parameter of

the sample. As such, the correctly normalised PDF should be entirely quantita-

tive. However, practical errors in the measurement of these normalising factors

(particularly due to variations in the composition and density) often necessi-

tate the incorporation of a scaling factor in order to be fitted satisfactorily or

compared with models (e.g. PDFGui or RMC fitting).

Scalar multiples of functions are invariant under a Fourier transform. Con-

sequently, the scaling factor applied to the F (Q) could equally be applied as a

scaling to the resultant PDF. Assuming that the PDF is effectively a sum of

Gaussians, applying a scaling factor will simply change the scale factor of each

Gaussian and not the width.

Whilst this is true mathematically; in practice this may not the case. Fitting

a PDF with a sum of Gaussians uses the expression:

Gcalc(r) = y0 +
∑
n

Nn exp

(
− (x− µn)2

2σ2
n

)
(21)

where N , µ and σ are constants defining the Gaussian function for each of the

n peaks, and y0 a constant. For a correctly scaled PDF, y0 =
∑
i,j bibjcicj , i.e.

the sum of the Faber-Ziman coefficients. In fitting the peak, the y0 parameter

can either be held at the desired value or allowed to refine. Depending on

the range over which the refinement is carried out, it may be necessary to

fix this parameter to the expected value. However, if the baseline value is

fixed, then the measured height of the peak under different scalings will be

different, and hence the measured FWHM (full width at half-maximum) will

vary. Consequently, the scaling will affect the measured peak widths due to the
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nature of the mathematical fitting procedures carried out.

Placing theoretical measures on the magnitudes of these effects is difficult,

and they should be quantified on a sample by sample basis, varying the param-

eters and comparing the resultant effect on the calculated peak widths.

4.3. Instrumentation - instrument dependant broadening

The reciprocal space resolution of a total scattering dataset will vary ac-

cording to instrument and radiation choice, and may also change across the

Q-range of the function. In the small box modelling program PDFGui, two

components are used to account for instrumental resolution effects; Qdamp and

Qbroad. The Qdamp term accounts for a Q-independent resolution of peaks in

the F (Q) and governs the observed decay envelope in the PDF data given by

the shape function:

S(r) = exp
(−(Qdamp)r2

2

)
(22)

where r is the interatomic distance and the Qdamp term can be estimated from

the observed full width at half maximum of peaks in the F (Q). The Qbroad term

is included to account for a Q dependent resolution factor and is implemented

through the equation:

σ = σ′
√

1− δ1
r
− δ2
r2

+
(
Qbroadr

)2
(23)

where σ is the Gaussian width of a peak in the PDF, σ′ is the width due

to thermal displacements, δ1 and δ2 are parameters included to account for

correlated motion in the structure, and r the interatomic distance. Note that

Eq. 13 is a simplified version of this equation with δ2 = 0 and Qbroad = 0.

Importantly, both of these broadening terms contain an r2 dependance, and

therefore the effect on the first few PDF peaks is likely to be minimal and can

largely be neglected. However, in practice it is found that their inclusion in a

small box refinement has a large effect on the refined scaling parameter. This,

in turn, will affect the recorded peak width (see Section 4.2) and so the use of

these parameters should be carefully considered.
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4.4. Crystallite size and strain broadening

The Bragg peaks are, of course, an important contributor to the overall

recorded PDF in a crystalline material. Unlike conventional microstrains, local

lattice strains should not result in an observed broadening of the Bragg peaks,

because they do not affect the interplanar spacing of the structure. However,

microstrain and crystallite size, both of which show well documented broadening

of the Bragg peaks, are likely to affect the static atomic displacements in a

structure and so will also need to be considered.

Scherrer [18] demonstrated that the peak broadening arising from crystalline

size has a sec θ dependance (where θ is the scattering angle), whilst microstrain

broadening has a tan θ dependance. These can be reformed to similar expres-

sions in terms of Q. Importantly, both lead to a broadening of the Bragg peaks

with increasing Q. If the Bragg peaks are assumed to be Voigt functions 1, then

it can be shown that the Fourier transform of a family of n Bragg peaks is given

as:

F [f(Nn, µn, σn,Γn, Q)] =
∑
n

Nn
√

2πσ2
n exp

(
− 2π2σ2

nr
2 − Γnπ|r|

)
exp (−2πiµnr)

(24)

where Nn, µn and σn are the Gaussian components and Γn the Lorentzian

component of the Voigt function representing peak n.

The first exponential in this expression is a decay function, and is depen-

dant on the width parameters of the Voigt function. The second exponential

determines the period of oscillation of the contribution wave and is a function

of the peak position, µ, of the Bragg peak in reciprocal space. For samples

with large microstrain and small crystallite size, the broadening of the Bragg

peaks increases at high Q. Consequently, the high frequency contribution to

the Fourier transform (i.e. from peaks at high Q) will be more heavily damped

(as the Bragg peak width is greater, and so too the decay envelope). It is the

1Paradoxically the mathematics is simpler if a Voigt function is considered as opposed to

a Pseudo-Voigt, more commonly used in diffraction fitting procedures
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inclusion of these high frequency oscillations that increases the resolution of the

peaks in the PDF. Therefore, an increased damping of these high-frequency os-

cillations at high-r will mean that the resolution of the PDF will decrease as r

increases.

In addition to the effect on the Bragg data, local strain distortion fields will

form both at the surface of a particle and around the cores of dislocations present

in the material. This will affect the diffuse scattering and, whilst the effect is

difficult to describe in reciprocal space, it will result in a broadening of the bond

distributions in low-r in real space. As a result of these effects, particle size and

strain broadening should also be accounted for when performing quantitative

assessment of local lattice strain.

Overall, the best solution is to mitigate against these effects through care-

ful sample preparation. Atomisation techniques typically yield particle sizes

∼ 50µm and, as such, the volume of the strained surface (assuming a thickness

of around 10 Å) accounts for only 0.006% of the volume, and so strain effects

can be neglected. Likewise, heat treating of the sample will allow the relaxation

of the structure and reduction of the dislocation density. Typically dislocation

densities in annealed nickel are of the order 1010 to 1012 m−2 [19, 20], which sug-

gests a strained volume of 0.0001% (assuming a strained region of 10 Å around

a dislocation core).

4.5. Compositional variance

The case examples considered in this paper were chemically homogenous

systems. However, this cannot always be assumed fro real samples. As such,

when experimentally applying the total scattering method for assessing local

lattice strains, the chemical homogeneity of the system on the crystallite scale

should first be confirmed, e.g. by SEM EDX. The identification of short-range

order should then be done by considering the change in the area of PDF peaks in

the system and discrepancies when fitting the system with a grey-atom model.

If it is believed that short-range order is present in the system, then the widths

of the peaks should be treated with caution as it is likely that the relationship
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between peak width and local strain is complicated by the presence of short-

range order.

4.6. Texture and preferred orientation

The total scattering technique is a powder technique and, as such, relies on

the assumption that the samples constitute a crystallographic powder, i.e. one in

which the crystallites occupy all possible orientations in space. However, often

real samples may exhibit a preferred orientation, or crystallographic texture.

Whilst the effect of texture on the Bragg pattern is well documented, the effect

on the PDF is not well understood.

Crystallographic texture is identifiable from the Bragg pattern by the re-

duction or increase in intensity of families of Bragg peaks. This will have a

corresponding affect on the PDF as it will reduce the oscillations in real space

that are a function of the peak position in reciprocal space. However, unlike the

effects of particle size or dislocation density there will be no systematic variation

with Q, and so the effect on the PDF is difficult to discern.

Consequently, if a sample exhibits crystallographic texture it is currently as-

sumed to be unsuitable for assessment by this methodology. Therefore judicious

samples preparation should be carried out to ensure that the samples are not

textured (e.g. atomisation, with subsequent heat-treatments).

5. Conclusions and methodology

This paper has considered in detail the feasibility of using total scattering

methods, particularly the analysis of PDFs, for the assessment of local strain

in alloys. Using two theoretical models, one considering non-interacting bond

distributions and the second allowing relaxation to occur, the changes that

might be expected to occur in the position of the peak maximum, the PDF

peak width and hence magnitude in local lattice strain, as a result of various

physical changes has been explored. It was noted that varying the concentration

of a substituting atom increased the local strain and PDF peak width, to a
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maximum at 50at.% substitution, with an accompanying increase in the average

bond length. Similarly, increasing the size of the substituting atom resulted in

an increase in the observed PDF peak widths, local strain and peak maximum.

In all of the examples given, the magnitude of the changes observed were highly

dependant on both the difference in the radii and the relative concentrations

of the atomic species. Further, it was shown how the PDF peak width is not

constant across the observed r-range due to correlated motion effects which must

be accounted for if multiple coordination shells are to be modelled. Finally, the

reduction in local strain caused by ordering, with accompanying reduction in

peak-width and changes in lattice parameter, was discussed.

The successful acquisition of total scattering data suitable for quantification

of the local lattice strains therefore requires carefully control of the complicat-

ing factors (microstrain, crystallite size, texture, instrumentation etc.). It was

shown how the measurement of PDF peak widths and positions will also be

dependent on the relative scattering lengths or magnitudes of the form factors,

and can result in large errors of measurement in local lattice strain (up to ∼ 40%

in some of the cases considered). However, this effect may be minimised by ju-

dicious choice of radiation, average distribution (‘grey-atom’) assumptions or

the calculation of ‘strain-PDFs’.

Taken as a whole, these simulations demonstrated that analysis of the PDF

peaks in this way can yield valuable insight into the magnitude of local strains

in the system and may be uniquely capable of examining the short-range effects.

Methodology

As a result of the insights gained from the theoretical case studies considered,

the following methodology is suggested for the analysis of local lattice strains

in alloys

• Sample preparation - Samples should be prepared in such a way as to

minimise crystallographic texture, microstrain broadening and crystallite

size broadening. The suggested preparation method is via either water
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or gas atomisation, with subsequent heat treatments to remove micro-

segregation and relax the structure to remove microstrain effects (Sections

4.4 & 4.6).

• Data collection - Total scattering quality data should be obtained across

as broad a Q-range as possible. The use of high-energy synchrotron X-

rays or spallation neutrons is suggested (Section 4.3). The choice of X-

rays or neutrons should be determined by the relative scattering lengths

and contributing form factor effects that may be observed. The direct

determination of local strains is made simpler if the assumption can be

made that the different elements have similar scattering lengths (Section

4.1). It should be noted that this is actually the opposite advice normally

given for the planning of a total scattering experiment! All data, for a

comparative study, should be collected on the same instrument, to limit

instrumental Q-resolution effects.

• Data processing - A number of internal checks need to be carried out

during the data processing. The following steps are recommended:

1. SEM imaging and EDX analysis - to determine the composition and

chemical homogeneity of the material, and the crystallite (particle)

size to ensure that these factors do not affect the PDF data.

2. Powder pattern refinement - Rietveld refinement should be carried

out to determine accurate values of the lattice parameter and to en-

sure that the sample contains no texture. If the sample is textured,

subsequent analyses will not be accurate using existing data process-

ing tools.

3. Total scattering data processing and Fourier transform - ensure that

Qmin and Qmax are constant for all samples (Section 4.2), and that

the Q-range is chosen from a consideration of how the peak widths

change under variations in these parameters.

• Modelling - The following modelling steps are suggested for the extraction
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of quantitative local lattice strain data:

1. Grey atom modelling - A grey atom model, either large or small box,

can be useful in suggesting whether there is any change in chemical

order (short-range order) in the system from a change in area of the

PDF peaks. If so, it may be that assessments of the local lattice

strain are no longer feasible.

2. Calculation of a ‘strain PDF’ - Fitting of the PDF can be carried

out using a multiple component large box model. From the output

structure the atoms can be given the same scattering length and the

PDF recalculated to yield a ‘strain PDF’ from which the peak widths

will be directly related to the observed strain (Section 4.1).

3. Peak width determination - The observed peak widths can be mea-

sured using either the FWHM or Gaussian fitting method. Errors

should be calculated based on the maximum error inherent in the

system (e.g. from error in varying one of the fitting parameters such

as the scale factor). If either a ‘grey-atom’ assumption or the ‘strain-

PDF’ method are used this should be explicitly stated.

It is hoped that this methodology will facilitate the accurate determination

and comparison of local lattice strains in different alloy systems. This could

help to provide valuable insight and clarity in many fields, such as the study

of the High-Entropy Alloys, where the nature of these subtle effects have been

used to explain observed physical properties.
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