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Abstract

Modern computers enable methods for design optimization that account for uncertainty in the system—so-called optimization
under uncertainty (OUU). We propose a metric for OUU that measures the distance between a designer-specified probability
density function of the system response (the target) and the system response’s density function at a given design. We study
an OUU formulation that minimizes this distance metric over all designs. We discretize the objective function with numerical
quadrature, and we approximate the response density function with a Gaussian kernel density estimate. We offer heuristics for
addressing issues that arise in this formulation, and we apply the approach to a CFD-based airfoil shape optimization problem.
We qualitatively compare the density-matching approach to a multi-objective robust design optimization to gain insight into the
method.
c⃝ 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Keywords: Optimization under uncertainty; Design under uncertainty; Density-matching

1. Introduction

Modern computing power enables industrial-scale design optimization with high-fidelity numerical simulations
of physical systems. Simulation-based design is found in aircraft [1], engine [2], automotive [3] and shipping [4]
industries, among many others. To optimize, designers must precisely specify operating scenarios and manufactured
production. Off-design operation and manufacturing tolerances are typically incorporated afterward. A more complete
perspective on design optimization accounts for these uncertainties, e.g., by employing statistical performance metrics
within the design optimization. This perspective leads to optimization under uncertainty (OUU).

The computational engineering literature is chock full of formulations and approaches for OUU. Allen and
Maute [5] give an excellent overview that broadly categorizes these formulations as either robust design optimization
(RBO) or reliability-based design optimization (RBDO). The essential idea behind RBO formulations is to
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simultaneously maximize a statistical measure of the system performance (e.g., the mean) while minimizing a
statistical measure of system variability (e.g., the variance), thus improving robustness to variability in operating
conditions. The optimization is often formulated with multiple objective functions (e.g., maximize mean and
minimize variance), which leads to a Pareto front of solutions representing a trade-off between robustness and
performance. Alternative formulations treat performance as the objective function and robustness as a constraint or
vice versa. Some applications of RBO include the design of Formula One brake ducts [6], compressor blades [7],
compression systems [8], airfoils [9], and structures [10]. The RBDO formulations seek designs that satisfy reliability
criteria, such as maintaining a sufficiently small probability of failure, while minimizing a cost function of the
design [11]. Estimating the failure probabilities within the optimization with randomized methods (e.g., Monte
Carlo) can be prohibitively expensive for large-scale models; several methods exist for approximating regions of
low failure probability [12]. Engineering examples of RBDO include transonic compressors [13], aeroelasticity [14],
structures [5], and vehicle crash worthiness [15].

The statistical measures in the RDO and RBDO objective functions and constraints are typically low-order
moments – e.g., mean and variance – or probabilities associated with the system response. The chosen statistical
measures affect the optimal design, so they must be chosen carefully for each specific application.

In this paper, we propose an alternative OUU formulation. We assume the designer has described the desired
system performance as a probability density function (pdf), which we call the target pdf, and we seek to minimize
the distance between the design-dependent system response pdf and the target pdf. In other words, all criteria on
the stochastic system’s moments or failure probabilities are encoded in the target pdf. Mathematically, we treat
the target pdf as given; it is not a tunable parameter. In any real-world scenario, this pass-the-buck attitude places
tremendous responsibility on the designer to devise the perfect target pdf. We expect that a practical methodology
including the proposed statistical measure will involve some back and forth between designer and optimizer to devise
the most appropriate target pdf. Using a designer-specified response pdf has some precedent in the OUU literature.
Rangavajhala and Mahadevan [16] assume a designer-specified pdf in their optimum threshold design, which finds
thresholds that satisfy the given joint probability while allowing for preferences among multiple objectives.

Compared to other OUU formulations, density-matching is appropriate when the designer is able to specify her
desiderata for the uncertain response as a pdf. The density-matching approach finds the design that best matches the
designer’s specified pdf, and there is no need to estimate the Pareto front of a multi-objective optimization (as in RDO)
or minimize a failure probability (as in RBDO). Tolerated variability and failures are encoded in the target pdf.

We present a single-objective OUU formulation where the distance between target and response pdfs is the
objective function. We explore some interesting properties of this optimization problem, namely how the objective’s
gradient behaves when the two pdfs are not sufficiently large on the same support (Section 2). We propose a consistent
discretization of the objective function – based on numerical quadrature and kernel density estimation – that produces
a continuous approximation well-suited for gradient-based optimization (Section 3). Our prior work uses histograms
to approximate the response pdf, which leads to a less scalable optimization problem with integer variables [17].
There are some drawbacks to the density-matching formulation; we offer heuristics for addressing these drawbacks
in Section 4. In Section 5, we test the formulation on an algebraic test problem and a shape optimization problem
with the NACA0012 airfoil. In the latter case, we qualitatively compare the optimal designs to those generated by a
multi-objective RDO strategy.

2. Mathematical formulation

Consider a function f = f (s, ω) that represents the response of a physical model with design variables s ∈ S ⊆ Rn

and random variables ω ∈ Ω ⊆ Rm ; the random variables represent the uncertainty in the physical system.
The space S encodes the application-specific constraints on the design variables, e.g., bounds or linear inequality
constraints. We assume that ω are defined on a probability space with sample space Ω and probability density function
p = p(ω), which encode all available knowledge about the system’s uncertainties.1 We assume that f is scalar-valued,
f ∈ F ⊆ R, and continuous in both s and ω. For a fixed s ∈ S , let qs : F → R+ be a probability density function of

1 The final results depend on Ω and p(ω). If multiple probability density functions are consistent with the available information, then one should
check the sensitivity of the results to perturbations in these quantities.
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f (s, ω). We assume that f (s, ω) admits a square-integrable pdf for all values s in the design space S . The shape of
qs will be different for different values of s.

The given target pdf expresses the designer’s desired system performance accounting for uncertainty in operating
conditions. Denote the target pdf by t : R → R+, which we assume is square-integrable. To find the values of the
design variables s that bring the system’s response as close as possible to the designer’s target, we pose the following
optimization problem:

s∗
= argmin

s∈S
d(t, qs), (1)

where d(·, ·) is a distance metric between two comparable probability density functions. The values s∗ correspond to
the optimal design under uncertainty.

A few comments on this optimization problem are in order. Since d is a distance metric, d ≥ 0. However, d(t, qs)

is not generally a convex function of s. Therefore, s∗ may not be unique, and the optimization problem may need a
regularization term to make it well-posed (e.g., Tikhonov regularization).

The minimum value of the objective function d(t, qs∗) measures how well the optimal design meets the designer’s
specifications. A non-zero value at the minimum means that the model cannot completely satisfy the designer’s
specification. If the minimizing design’s pdf is deemed too far from the target, then the model may need to be
improved, e.g., by incorporating more controls or otherwise modifying the relationship between the design variables
and the system behavior.

The formulation in (1) uses d as the sole objective function, and (1) has no constraints that depend on the
uncertainties ω; constraints on the design variables are incorporated by the space S . We study this formulation because
of its simplicity. Given a target pdf, one could use the metric d as a one objective in a multi-objective RDO formulation
or as a measure of reliability in an RBDO formulation. We do not pursue these ideas in this paper.

There are many possible choices for the distance metric d; Gibbs and Su [18] review several metrics and the
relationships between them. To enable efficient, scalable gradient-based methods for the optimization (1), we choose
the differentiable squared L2-norm,

d(t, qs) =


∞

−∞

(t ( f ) − qs( f ))2 d f. (2)

This integral is finite by the square-integrability assumption on t and qs .

2.1. The trouble with non-overlapping response and target pdfs

Something peculiar happens to d from (2) when the supports of t and qs do not overlap—i.e., t is zero if qs is
positive and vice versa. Expanding the integrand in (2),

d(t, qs) =


∞

−∞

t ( f )2 d f − 2


∞

−∞

t ( f ) qs( f ) d f +


∞

−∞

qs( f )2 d f. (3)

Since the target t is independent of the design variables s, the minimizer of d is the same as the minimizer of d ′

defined as

d ′(t, qs) :=


∞

−∞

qs( f )2 d f − 2


∞

−∞

t ( f ) qs( f ) d f. (4)

If the supports of t and qs do not overlap, then the second term in (4) vanishes, and

d ′(t, qs) =


∞

−∞

qs( f )2 d f. (5)

In words, when t and qs do not overlap, the objective function has no information from the target t . The gradient of d ′

with respect to the design variables s may point in a direction that decreases d ′, but there is no guarantee that a step
along that direction in the design space moves qs closer (by the distance metric) to the target t . The following example
illustrates this issue.
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Example 1. Let f (s, ω) = s + ω, where ω is a random variable distributed uniformly on [0, 1] and s ∈ [0, 2]. The
response pdf qs( f ) is a uniform density function on the interval [s, s + 1]. Let the target pdf t ( f ) be a uniform
density on the interval [2, 3]. The minimizer of (1) is s∗

= 2, and d(t, qs∗) = 0. However, for s ∈ [0, 1), the first and
second derivatives of d(t, qs) with respect to s are zero. Thus, a gradient-based optimization method would stop at
any candidate minimizer in the interval [0, 1).

The overlap issue forces us to make the following assumption to ensure that the minimizer from a gradient-based
method applied to (1) with distance metric (2) produces a response pdf with some relationship to the given target pdf.

Assumption 1. Assume that for all s ∈ S , the intersection of the support of the target pdf t ( f ) and the support of the
design-dependent response pdf qs( f ) is non-empty.

Assumption 1 is sufficient but not necessary; it can be relaxed to (i) the initial design point produces a response pdf
whose support overlaps the target’s support and (ii) all iterates of the optimization method produce response pdfs
whose supports overlap the target’s support. For computation, we exploit choices in the kernel density estimates to
ensure that Assumption 1 is satisfied. This approach also suggests a heuristic to accelerate the numerical optimization;
see Section 4.1.

In principle, our construction can be extended to f ’s that return a vector of responses from the system. However,
this case requires (i) a joint probability density for the target, (ii) a multivariate density estimation method for the
response pdf, and (iii) multivariate integration to compute the distance metric. Thus, the approach suffers the dreaded
curse of dimensionality as the number of components in f increases. The density-matching approach is not appropriate
when the number of responses is more than two or three.

3. Discretization and computation

We turn to the computational aspects of solving the optimization problem (1) using the distance metric (2). There
are two main issues to address: (i) discretizing the integral in the distance metric and (ii) estimating the response
density qs .

3.1. Discretizing the distance metric

To avoid issues with numerical integration on unbounded domains, we assume that f (s, ω) is bounded for all s
and ω,

fℓ ≤ f (s, ω) ≤ fu, s ∈ S, ω ∈ Ω . (6)

This implies that the support of qs( f ) is always finite. Such an assumption is not terribly restrictive. For a particular
design point, qs may have a long tail, but any computer representation of this long tail necessarily imposes finite
bounds. The bounds fℓ and fu need not be tight. But finite bounds help us devise a practical discretization. The
bounds imply

d(t, qs) =

 fu

fℓ
(t ( f ) − qs( f ))2 d f +

 fℓ

−∞

t ( f )2 d f +


∞

fu

t ( f )2 d f. (7)

Since the target pdf t is independent of the design variables s, the optimization can ignore the last two terms in (7).
We choose an N -point numerical quadrature rule on the interval [ fℓ, fu] with points γi ∈ [ fℓ, fu] and associated

weights wi with i = 1, . . . , N . The number N of points in the integration rule can be very large without a large
computational burden. We need to evaluate the given target pdf t and an estimate of the response pdf qs at each
quadrature node, but this is very cheap. The discretized objective function is

d̂(t, qs) =

N
i=1

(t (γi ) − qs(γi ))
2 wi = (t − qs)

T W(t − qs), (8)
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where

W =

w1
. . .

wN

 , t =

 t (γ1)
...

t (γN )

 , qs =

qs(γ1)
...

qs(γN )

 . (9)

The resolution of the points {γi } should be fine enough to resolve both the target t and the response pdf qs for all
s ∈ S . In an extreme example of insufficient resolution, the support of t may be entirely inside an interval defined by
two neighboring quadrature nodes. In such a case, t does not affect the discretized objective d̂ in (8). If the support of
t or a particular qs is very small relative to the interval [ fℓ, fu], then one might consider a non-uniform distribution
of quadrature nodes to properly resolve the pdfs. However, as noted, an extremely fine grid does not greatly increase
the cost of evaluating the discretized objective function. So resolution – and, consequently, discretization error in the
integral from (2) – is not a primary concern.

The choice of quadrature rule depends on the smoothness of the target t and the response qs (or, its estimate) [19].
If these pdfs are very smooth on the interval [ fℓ, fu], then one could use high-order, interpolatory quadrature rules
like Gaussian quadrature or Clenshaw–Curtis quadrature [20]. However, say the target is a uniform density on a small
interval. Then a low-order method like the trapezoidal rule is more appropriate. We prefer a highly resolved trapezoidal
rule in general; recent analysis shows that it compares well to high-order methods for smooth functions [21].

3.2. Estimating the response density

For a fixed design point s ∈ S , the density qs is, in general, not a known function of f and must be estimated. We
propose to use a kernel density estimate for qs [22]. We draw a set of M points {ω j } independently according to the
given density p(ω) on the random variables representing uncertainty. Define the functions

f j (s) = f (s, ω j ), j = 1, . . . , M. (10)

For a bandwidth parameter h and a radial kernel K (·) that depends on h, we approximate qs by

qs( f ) ≈ q̂s( f ) =
1
M

M
j=1

K ( f − f j (s)). (11)

We approximate the vector qs from (8) as

qs ≈ q̂s = Ke, K ∈ RN×M , (12)

where

Ki j =
1
M

K (γi − f j (s)), i = 1, . . . , N , j = 1, . . . , M, (13)

and e is an M-vector of ones. For computation, we replace qs by q̂s in the approximate objective function d̂ in (8).
For a sufficiently small h, the asymptotic mean-squared error in the kernel density estimate decreases as the

number M of samples increases [22, Chapter 6]. In practice, one can increase the bandwidth parameter h to create
smooth estimates that compensate for too few samples. Such heuristics are appropriate, since our goal is not perfect
representation of the response density qs . Our goal is to find a design point s∗ whose corresponding response pdf is
sufficiently close to the given target pdf. Nevertheless, if the number n of components in ω is large, then one might be
concerned that M is not large enough to represent the system response over the high-dimensional space Ω , resulting
in a poor approximation of qs—potentially poor enough to adversely affect the optimization. This concern is valid
when evaluating f is computationally expensive, e.g., if the system involves complex computational fluid dynamics
model, thus limiting M . In this case, we might construct a response surface of f (s, ω) as a function of ω to sample in
place of the true system response. We discuss the benefits and drawbacks of response surfaces in Section 4.2.

We propose a Gaussian kernel for the density estimate,

K (r) =
1

√
2π

exp

−(r/h)2/2


. (14)
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There are two main advantages for using a Gaussian kernel. First, it is differentiable at all points in its infinite domain,
so we can take the derivative of the density estimate without worrying about non-differentiability at kernel support
boundaries; many compactly supported kernels do not enjoy such an advantage. Second, the infinite support of the
kernel implies that, at least mathematically, we can address the non-overlapping issue discussed in Section 2.1 and
satisfy Assumption 1. It might seem inconsistent to use a kernel with infinite support when we assume that the support
of qs is bounded according to (6). But approximating compactly supported densities with Gaussian kernel density
estimates is common; we can control the error in the tails to keep it from heavily influencing the objective function
in (8). In Section 4.1, we propose a heuristic that exploits the freedom in the bandwidth parameter to help ensure that
the qs’s kernel estimate is sufficiently large on the target pdf’s support.

3.3. Computing the gradient

We can compute the gradient of the approximate objective d̂ with respect to the design variables s. For the kth
component of s, denoted sk ,

∂ d̂

∂sk
= 2 (t − q̂s)

T W


∂q̂s

∂sk


. (15)

Note that

∂q̂s

∂sk
=

1
M

M
j=1

K ′( f − f j (s))
∂ f j

∂sk
, (16)

where K ′ is the derivative of the kernel with respect to its argument, which is easily computed from (14). To reiterate,
the partial derivative ∂ f j/∂sk is the derivative of the response f (s, ω), with ω = ω j , with respect to the kth design
variable sk . This partial derivative is a function of the design variables. Define

f′k =


∂ f1

∂sk
...

∂ fM

∂sk

 , K′

i j =
1
M

K ′(γi − f j (s)). (17)

Then we can concisely write the derivative of d̂ from (8) with respect to the kth component of s as

∂ d̂

∂sk
= 2 (t − Ke)T W K′ f′k . (18)

Define the M × n Jacobian matrix F′ by

F′
=


∂ f1

∂s1
· · ·

∂ f1

∂sn
...

. . .
...

∂ fM

∂s1
· · ·

∂ fM

∂sn

 . (19)

We can write the gradient of the objective function – oriented as a row vector – as

∇s d̂ = 2 (t − Ke)T W K′ F′. (20)

The elements of K, K′, and F′ all depend on s. Recall the dimensions of the terms in (20). The gradient vector ∇s d̂
has n components, which is the number of random variables describing the system’s uncertainty. The vector t has N
components, which is the number of quadrature nodes from (8); we expect this to be a very large number. The matrix
K has size N × M , where M is the number of randomly chosen points in Ω used to estimate the pdf qs . If evaluating
the response is cheap, or if the response is approximated by a response surface, then M may also be very large. The
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vector e of ones has length M . The diagonal matrix W has N nonzero elements on the diagonal. The matrix K′ has
size N × M , and the matrix F′ has size M × n. Our numerical studies have not needed special methods to evaluate
the matrix–vector products in (20). However, with a Gaussian kernel, we could perform extremely large computations
(i.e., large M and N ) with a fast Gaussian transform [23].

3.4. Interfaces and cost

In terms of interfaces to the simulation code, we need to evaluate (i) f given s and ω, and (ii) the gradient ∇s f given
s and ω—similar to a deterministic optimization. In this sense, the approach is non-intrusive. If we use a gradient-
based optimization algorithm, such as a sequential quadratic program [24, Chapter 16], then each iteration uses M
evaluations of f and its gradient with respect to s.

4. Computational heuristics

In this section, we discuss two heuristics for the optimization in (1). The first is an approach to the kernel
bandwidth selection that alleviates the non-overlapping issue discussed in Section 2.1. The second is the use of
response surfaces in place of the true response for expensive simulations. We end this section with a short discussion
of some implementation details.

4.1. Bandwidth parameter and the overlap problem

There is a great deal of work on the proper bandwidth choice in kernel density estimation [22, Chapter 6]. In most
statistical inference, the data determines the bandwidth parameter [25]. Our goal is somewhat different. Indeed, we
want a reasonable estimate of the response pdf qs at a design point s, where we can treat the set of scalars { f j (s)}
as data. However, we can also use the bandwidth parameter to help ensure sufficient overlap between the estimate q̂s
and the target pdf t , thus aiding the optimization. Mathematically, by using the Gaussian kernel in (14) with infinite
support, the kernel estimate q̂s is strictly positive over the entire support of t . Numerically, the value of q̂s may be too
small on t’s support to produce a useful gradient.

If t’s support resides in q̂s’s tail, then increasing the bandwidth h increases q̂s over t’s support. Loosely speaking,
we can use a large h to help the response pdf find the target pdf. The large h produces estimates of qs that are
too smooth with large half-widths. But the large width produces useful gradients for the optimizer to help bring the
response pdf closer (in terms of the L2 distance) to the target. For unimodal response pdfs, this leads to more overlap
between the target and the response. Once the optimizer has found a region of the design space S where there is
sufficient overlap, we reduce h to data-driven values to better estimate qs . For a kernel estimate of a Gaussian pdf
using a Gaussian kernel, the optimal bandwidth is

hopt =


4

3M

1/5

σ, (21)

where σ is the Gaussian’s standard deviation. The formula (21) is known as Scott’s rule [26,22]. In the first few
optimization iterations, we use an initial bandwidth h = ( fu − fℓ)/5. Once we are satisfied that the design point s
yields an estimate of qs whose support sufficiently overlaps t , we reduce the bandwidth to h = hopt. The results in
Section 5.2 use this heuristic.

4.2. Response surfaces

When the simulation is expensive, the number m of random variables is sufficiently small, and the response f (s, ω)

is a sufficiently smooth function of ω, it may be more efficient to use a response surface when approximating the pdf
qs . Response surfaces for approximating pdfs are common in uncertainty quantification [27, Chapter 13]. Popular
response surface constructions include polynomial approximations [28, Chapter 7] [29, Chapter 3] and radial basis
approximations [30]. The essential idea is, for a fixed design point s, evaluate f (s, ω) at a few points ωk ∈ Ω
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with k = 1, . . . , P , where P is smaller than the number of points needed to accurately estimate the pdf qs ; let
fk(s) = f (s, ωk). Most response surface constructions are linear models of the data,

f (s, ω) ≈ f̃ (s, ω) =

P
k=1

ak(ω) fk(s), (22)

where the coefficients ak(ω) depend on type of response surface. The approximation can be cheaply sampled by com-
puting the coefficients ak(ω) at the M points in Ω needed to estimate qs . This approximation introduces additional
error in the estimate of qs , and one should validate that f̃ is sufficiently accurate—e.g., that P is large enough to pro-
duce a good approximation. Asymptotically, an L2-convergent response surface implies convergence in distribution,
i.e., the pdf of f̃ converges to the pdf of f [31, Chapter 2]. However, this well-known result does not account for the
finite sampling used to estimate the pdfs, and asymptotic results do not always give confidence when P is small.

The airfoil example in Section 5.2 has a smooth response that is a function of one parameter representing
uncertainty, and the system uses a relatively expensive CFD solver in two spatial dimensions. We use a response
surface – validated several points in the design space – for both the response and its partial derivatives with respect to
the design variables.

4.3. Implementation details

In this section, we collect the pieces needed to implement a numerical solver for the optimization (1). This
summarizes the method and provides some details about the choices we make in implementation.

Optimization package. From MATLAB’s Optimization Toolbox, we use the fmincon function with Algorithm
option set to sqp (sequential quadratic program). An open source alternative is SciPy’s minimize function from
its Optimization package with the method set to SLSQP (sequential least-squares quadratic program). We provide
subroutines for computing the objective function, implemented as (8) with the approximation (12), and the objective’s
gradient, implemented as (20).

Numerical integration. We hand code a trapezoidal rule to evaluate the objective function (8). This includes forming
the diagonal matrix W in (8) and (20).

Kernel density estimation. From MATLAB’s Statistics and Machine Learning Toolbox, we use the ksdensity
function for kernel density estimation. The default kernel is the Gaussian as in (14), and the interface takes an optional
bandwidth parameter argument, which we use to implement the heuristic described in Section 4.1. We hand code the
gradient of the Gaussian kernel to compute K′ in (20). An open source alternative is SciPy’s gaussian kde function,
which also accepts a user-specified bandwidth parameter.

Response surfaces. The variety of response surface types and applications make it difficult to create a general purpose
toolbox for response surfaces. For the specific experiment in this paper, we use a hand-coded least-squares-fit 5th
degree global polynomial approximation for the univariate response. Since the airfoil application has only a single
parameter representing uncertainty, we are able to visually validate the response surface quality with plots.

5. Numerical examples

We use two numerical examples to study the characteristics of the proposed density-matching OUU approach. The
first is a simple response function that produces surprisingly complex behavior in the optimization. The second is an
airfoil shape optimization problem with uncertainty in the freestream Mach number.

5.1. Simple response function

Consider the model

f (s, ω) = sω + 3.5, (23)

where s ∈ R and ω is a standard normal random variable, so f is a normal random variable with mean 3.5 and
standard deviation s. The goal is to find s that minimizes the L2-norm distance between the pdf of f (s, w) and a



570 P. Seshadri et al. / Comput. Methods Appl. Mech. Engrg. 305 (2016) 562–578

Fig. 1. Response (23) with different values of the design parameter s. The red rectangle is the uniform target pdf and the blue dashed line is the
response pdf. The goal is to minimize the yellow area in the figures. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

uniform target pdf

t ( f ) =


1, for f ∈ [3, 4],
0, elsewhere.

(24)

The pdf of f is

qs( f ) =
1

√
2πs

exp


− ( f − 3.5)2

2s2


. (25)

The objective function is

d(t, qs) =


∞

−∞

(t ( f ) − qs( f ))2 d f

=

 3

−∞

qs( f )2 d f +


∞

4
qs( f )2 d f +

 4

3
(1 − qs( f ))2 d f. (26)

Fig. 1 plots the two densities and their squared difference. The red density is the target pdf and the blue dashed line is
the response pdf. The yellow-shaded region is the squared difference in (26). Fig. 1 shows the effect of varying s on
the yellow region, with s = 0.3467 yielding the smallest area under the curve, minimizing the distance (26). Note the
complexity of the integrand. Table 1 shows the effect of varying the number of quadrature points. Above 1000 points
the error in the optimal s is in the fourth decimal place. Table 2 repeats this study with kernel density estimates for the
response pdf.

5.2. Airfoil design

Next we apply the density matching scheme to the design of an airfoil under uncertainty. MATLAB and Python
codes used for this numerical study can be found at https://github.com/psesh/density-matching. The airfoil used in
this example is a NACA0012 at an angle of attack of 5◦. The uncertainty is in the inlet Mach number, which is
characterized by a β(2, 2) distribution between Mach numbers of 0.66 and 0.69. Flow computations for this airfoil are
carried out by solving the compressible Euler equations using Stanford University’s SU2 flow solver [32]. The airfoil

https://github.com/psesh/density-matching
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Table 1
Effect of the number of quadrature points for the simple problem (23).

Number of quadrature points Optimal s Minimum distance

10 0.3531 0.00670
100 0.3556 0.017385

1000 0.3469 0.016048
10,000 0.3467 0.016022

100,000 0.3467 0.016023

Table 2
Effect of the number of quadrature points and kernel density estimate (KDE) samples for the simple
problem (23).

Number of quadrature points Optimal s Minimum distance Number of samples

10 0.3488 0.006759 105

10 0.3505 0.006729 106

100 0.3513 0.01743 105

100 0.3537 0.01741 106

1000 0.3464 0.01610 105

1000 0.3465 0.01610 106

10,000 0.3466 0.01608 105

10,000 0.3467 0.01605 106

Table 3
Hicks–Henne bump function heights and locations as a proportion of
chord. The heights and locations are shown for the upper surface; the
lower surface has the same parameterization.

Location Bump amplitude

0.05 ±0.0007
0.15 ±0.0030
0.30 ±0.0090
0.40 ±0.0090
0.55 ±0.0090
0.65 ±0.0060
0.75 ±0.0030
0.90 ±0.0007

is parameterized with 16 Hicks–Henne bump functions: 8 on the upper surface and 8 on the lower surface. The design
space is the height of each bump; a point in the design space produces a perturbation from the NACA0012 shape. The
height ranges and locations for the bumps are shown in Table 3.

For a point in the design space, the airfoil mesh is deformed using a torsional spring analogy. The flow solver runs
on the new mesh producing the lift-to-drag ratio L/D, which is the response of interest. To connect to the notation
in Sections 2 and 3, the response f is L/D, the design variables s are the 16 Hicks–Henne bump heights, and the
random variable ω is the Mach number with a β(2, 2) density on the interval [0.66, 0.69].

5.3. Robust design optimization

For qualitative comparison, we perform a multi-objective RDO on the same physical model, though we emphasize
that this is a different optimization problem than the density-matching objective. A design that is optimal with respect
to the following RDO formulation need not be optimal with respect to a density-matching formulation with a given
target and vice versa. The RDO problem is

minimize
s∈S

(E [L/D])−1 and Var [L/D] , (27)
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Table 4
NSGA-II algorithm parameters used for RDO.

Parameters Value

Population size 100
Number of generations 35
Crossover probability 0.9
Mutation probability 0.0625
Crossover distribution index 20
Mutation distribution index 20

Fig. 2. Results of the RDO airfoil design problem. Mean and log-variance of L/D are plotted on the horizontal and vertical axes, respectively.
Individual designs are colored by their skewness values as shown on the color bar legend. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

where E[·] is the mean and Var[·] is the variance. These two moments both depend on the design variables s that
parameterize the airfoil shape. We use the genetic algorithm NSGA-II [33] to estimate the Pareto front for (27). The
default parameters for NSGA-II are shown in Table 4.

We use a population size of 100 with 35 generations, yielding a total of 3500 function calls from the optimizer.
Each function call uses 21 CFD computations to fit a least-squares 5th degree polynomial response surface, which is
used to estimate the objectives in (27). Thus, the RDO study used a total of 3500 × 21 = 73,500 CFD runs.

Fig. 2 plots the moments from each computation. The mean is plotted on the horizontal and the variance on the
vertical on a logarithmic scale. The nominal NACA0012 design has a mean L/D ratio of 27.2356 and a variance of
7.4615. Fig. 2 indicates the skewness values of individual designs by the marker color. Negatively skewed designs are
blue while positively skewed designs are red. The RDO took approximately two days to run on an 8-core workstation.
It should be noted that the L/D values are very high here because drag predictions from an Euler code do not include
viscous and induced contributions.

5.4. Density-matching with a designer-specified target

We begin with some details of the density-matching optimization applied to the airfoil design. The initial design for
all cases is the NACA0012 airfoil. To compute the response pdf’s kernel density estimates, we draw 105 independent
samples from a least-squares-fit 5th degree polynomial response surface of L/D as a function of Mach number. We fit
the response surface with P = 21 flow computations at uniformly spaced Mach numbers between 0.66 and 0.69; the
21 independent runs were executed in parallel. The nominal design (the NACA0012 airfoil) produces a response pdf
that is far from each of synthetic targets described below; see Fig. 3 for a comparison of the nominal design pdf with
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Table 5
Density-matching parameters.

Quantity Definition Value

N quadrature points 2500
M random samples 105

n design parameters 16
hstage 1 stage 1 bandwidth parameter 50.0
hstage 2 stage 2 bandwidth parameter 1.0
fℓ lower bound for L/D −100
fu upper bound for L/D 150
Kh kernel function Gaussian

Fig. 3. Initial (NACA0012) design pdfs and the uniform target. The initial design is shown with bandwidth parameter values of 1 and 50.

two different bandwidths and one of the targets. We use the two-stage heuristic discussed in Section 4.1. We run 3 itera-
tions of the SQP solver with a large bandwidth of h = 50. The remaining iterations used a bandwidth h = 1—slightly
larger than hopt in (21). We use a trapezoidal rule with N = 2500 quadrature points on the interval [−100, 150]

in the objective function (8). The negative lower bound on L/D accommodates kernel density estimates with large
bandwidths. We tested larger values of N , but they did not lead to substantial improvement in the optimized design.

The gradient in (20) includes the matrix of kernel evaluations K, their derivatives K′, and design parameter
sensitivities in the matrix F′. The size of these matrices is determined by the number of quadrature points and the
number of random samples used to estimate the pdfs. Both K and K′ have dimensions 2500 × 105. We used SU2’s
adjoint capabilities at the P = 21 Mach numbers to compute partial derivatives of L/D with respect to 16 bump
heights. We used a least-squares-fit 5th degree polynomial response surface to approximate the partial derivatives at
all the sample points needed to compute the elements of F′ in (19). The response surfaces for all 16 partial derivatives
are shown in Fig. 4 for a perturbed NACA0012. From these and other similar plots, we determined that the polynomial
response was sufficiently accurate. We used least-squares to avoid interpolating noisy partials, such as parameter 12
in Fig. 4. Table 5 summarizes the parameters used in the optimization.

We assume that the designer has provided us with three target pdfs for the response L/D:

1. a uniform density in the interval [75, 80],
2. a Gaussian density with mean 50 and variance 10,
3. a β(1.5, 3.5) density on the interval [50, 80].

In what follows, we describe the results for each of these three cases.

5.4.1. Uniform target
For the uniform target, we repeat the density-matching optimization four times to see the effects of the random

sampling used to estimate the response pdf at each optimization iteration. The four independent trials produced nearly
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Fig. 4. Polynomial response surfaces and adjoint-based partial derivatives of L/D with respect to Mach number for a random design point.

identical results. The results with the uniform target are shown in Fig. 5. Fig. 5(a) compares the kernel density estimate
for the initial design with bandwidth h = 50 (blue), the uniform target (green), and the final designs from stage 1 of
the optimization using bandwidth h = 50 across all four independent trials (red). Using the final stage 1 designs with
bandwidth h = 1.0 produces the red density estimates shown in Fig. 5(b); these are the initial designs for stage 2
using bandwidth h = 1. The final optimized designs from stage 2 produce the black density estimates in Fig. 5(b). We
plot the final designs from both stages in Fig. 5(c) to compare them with the RDO designs obtained in Section 5.3. In
this case, the results from both stage 1 and stage 2 lie well beyond the Pareto front obtained from NSGA-2.

Optimization convergence histories for all four tests are shown in Fig. 5(d). All objective function values are
normalized by the initial objective value. Stage 1 for this target took an average of 1 h and 34 min while stage 2 took
an average of 3 h and 36 min. While there are some differences in the convergence histories, the differences in the
final designs are very minor across the four independent trials. The final designs from stage 2 are plotted in Fig. 5(e)
with a close-up in Fig. 5(f).

5.4.2. Gaussian target
Fig. 6 shows results with the Gaussian target similar to Fig. 5. In this case, we ran a single test instead of four

independent trials. Fig. 6(a) shows the initial and final designs from stage 1, and Fig. 6(b) shows the initial and final
designs for stage 2. Note that the final design for stage 1 is the initial design for stage 2. The final design is extremely
close to matching the target. Fig. 6(d) shows that changes in the objective function value are negligible after 12
optimization calls in the second stage. Here stage 1 took 46 min while stage 2 took 5 h and 12 min.

5.4.3. Beta target
With beta density, we examine a case where the target is positively skewed. For this case, we use only one trial as

in the Gaussian target case. The results are shown in Fig. 7. The target has mean 59.0 and variance 31.5. The initial
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Fig. 5. Uniform target results: (a) stage 1 (h = 50), (b) stage 2 (h = 1), (c) comparison with RDO designs, (d) stage 1 and stage 2 convergence
plots, (e) stage 2 optimal designs with a close-up in (f). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

designs are shown in Fig. 7(a), the final designs in Fig. 7(b), and the convergence history in Fig. 7(e). Stage 1 used 7
function calls with 3 major iterations, while stage 2 used 26 with 7 major iterations. For the beta target, stage 1 took
1 h and 24 min while stage 2 took 5 h and 8 min.

In the final result, we find that the optimizer tried to get as close as possible to the positively skewed target and
produced a design whose density estimate has skewness −0.08. Neighboring solutions in the Pareto front – with
similar means and variances – exhibited large negative skewness; see Fig. 7(c) and a closeup in Fig. 7(d). An RDO
formulation that uses only the first two moments has no control over the design pdf’s skewness. By trying to match
the response pdf to a positively skewed target (i.e., a synthetic example where a designer favors positive skewness in
the stochastic response), the density-matching approach attempts to satisfy the skewness criteria while simultaneous
finding a nearly Pareto optimal mean and variance. The final design is shown in Fig. 7(f).
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Fig. 6. Gaussian target results: (a) stage 1 (h = 50), (b) stage 2 (h = 1), (c) comparison with RDO designs, (d) stage 1 and stage 2 convergence
plots, (e) stage 2 optimal design.

6. Conclusions and future directions

We present a metric for optimization under uncertainty formulations. We assume that a designer has provided a
target pdf of the system response, and we minimize the distance between the design-dependent response pdf and the
given target over possible designs. We study the differentiable L2-norm between the response and target pdfs, though
other distance metrics may be employed. One drawback of the L2-norm is that if the target and response pdfs are
not sufficiently large on the same support, then the objective function’s gradient may not be useful for the OUU. We
present a particular discretization of the L2-norm objective function that uses a numerical integration rule and a kernel
density estimate for the response pdf. The kernel density estimate with the Gaussian kernel has a simple form for
the discretized objective’s gradient. We offer two computational heuristics: (i) a two-stage strategy in the bandwidth
choice for the kernel estimate that alleviates the support issue and (ii) a response surface approach for computationally
expensive system responses. We apply this approach in two examples: (i) a simple function that produces a Gaussian
response pdf whose variance is the design parameter and (ii) a CFD-based airfoil shape optimization.
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Fig. 7. Beta target results: (a) stage 1 (h = 50), (b) stage 2 (h = 1), (c) comparison with RDO designs with a close-up in (d), (e) stage 1 and stage
2 convergence plots, (f) stage 2 optimal design.

In principle, one could use the density-matching objective as one criterion in a hybrid OUU formulation if the
designer (i) has specified some desired data as a pdf and (ii) includes other measures of reliability or robustness,
e.g., failure probabilities or moments. In such a scenario, a numerical optimizer would need to balance the potentially
competing objectives. Such ideas may be explored in future work.

Acknowledgments

This research was funded through a Dorothy Hodgkin Postgraduate Award, which is jointly sponsored by the
Engineering and Physical Sciences Research Council (EPSRC) (UK) and Rolls-Royce plc. The first author would
like to acknowledge the financial assistance provided by the Center for Turbulence Research at Stanford University
and St. Edmund’s College, Cambridge. The authors would like to thank Shahrokh Shahpar of Rolls-Royce plc for
his advice on various aspects of this work. The authors also thank the reviewers for their suggestions and comments,
which improved the overall quality of this manuscript. The second author’s work is supported by the U.S. Department



578 P. Seshadri et al. / Comput. Methods Appl. Mech. Engrg. 305 (2016) 562–578

of Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under
Award Number DE-SC-0011077.

References

[1] A. Abbas-Bayoumi, K. Becker, An industrial view on numerical simulation for aircraft aerodynamic design, J. Math. Ind. 1 (1) (2011) 1–14.
URL http://dx.doi.org/10.1186/2190-5983-1-10.

[2] S. Shahpar, S. Caloni, L. dePrieelle, Automatic design optimisation of profiled endwalls including real geometrical effects to minimize turbine
secondary flows, in: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition Paper: GT2014-26628, Dusseldorf, Germany,
June 16–20, 2014. URL http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1907592.

[3] S. Chandra, A. Lee, S. Gorrell, C. Jensen, CFD analysis of pace formula-1 car, Comput. Aided Design Appl. -PACE 1 (2011) 1–14.
[4] A. Papanikolaou, Holistic ship design optimization, Comput. Aided Design 42 (11) (2010) 1028–1044. URL http://www.sciencedirect.com/

science/article/pii/S0010448509001973.
[5] M. Allen, K. Maute, Reliability-based design optimization of aeroelastic structures, Struct. Multidiscip. Optim. 27 (4) (2004) 228–242. URL

http://dx.doi.org/10.1007/s00158-004-0384-1.
[6] J. Axerio-Cilles, Predicting formula 1 tire aerodynamics: Sensitivites, uncertainties and optimization (Ph.D. thesis), Stanford University, 2012.
[7] P. Seshadri, S. Shahpar, G. Parks, Robust compressor blades desensitizing operational tip clearance variations, in: ASME Turbo

Expo 2014: Turbine Technical Conference and Exposition Paper: GT2014-26624, Dusseldorf, Germany, June 16–20, 2014. URL
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1907441.

[8] T. Ghisu, G. Parks, J. Jarrett, P. Clarkson, Robust design optimization of gas turbine compression systems, J. Propul. Power 27 (2) (2011)
282–295.

[9] H. Tachikawa, D. Schiavazzi, T. Arima, G. Iaccarino, Robust optimization for windmill airfoil design under variable wind conditions, in:
Center for Turbulence Research, Proceedings of the Summer Program, Stanford, CA, 2012. URL https://web.stanford.edu/group/ctr/Summer/
SP12/03.06 tachikawa.pdf.

[10] I. Doltsinis, Z. Kang, Robust design of structures using optimization methods, Comput. Methods Appl. Mech. Engrg. 193 (2004) 2221–2237.
[11] D. Frangopol, K. Maute, Life-cycle reliability-based optimization of civil and aerospace structures, Comput. Struct. 81 (7) (2003) 397–410.

URL http://www.sciencedirect.com/science/article/pii/S0045794903000208.
[12] B. Bichon, M. Eldred, L. Swiler, S. Mahadevan, J. McFarland, Efficient global reliability analysis for nonlinear implicit functions, AIAA J.

46 (10) (2008) 2459–2468.
[13] Y. Lian, N. Kim, Reliability-based design optimization of a transonic compressor, AIAA J. 44 (2) (2006) 368–375.
[14] S. Missoum, C. Dribusch, P. Beran, Reliability-based design optimization of nonlinear aeroelasticity problems, AIAA J. Aircr. 47 (3) (2010)

992–998. URL http://arc.aiaa.org/doi/pdf/10.2514/1.46665.
[15] B. Youn, K. Choi, R.-J. Yang, L. Gu, Reliability-based design optimization for crashworthiness of vehicle side impact, Struct. Multidiscip.

Optim. 26 (3–4) (2004) 272–283. URL http://dx.doi.org/10.1007/s00158-003-0345-0.
[16] S. Rangavajhala, S. Mahadevan, Joint probability formulation for multiobjective optimization under uncertainty, J. Mech. Des. 133 (5) (2011)

051007. URL http://mechanicaldesign.asmedigitalcollection.asme.org/data/Journals/JMDEDB/27946/051007 1.pdf.
[17] P. Seshadri, P. Constantine, G. Iaccarino, Aggressive design under uncertainty, Amer. Inst. Aeronaut. Astronaut. (2014) URL

http://dx.doi.org/10.2514/6.2014-1007.
[18] A. Gibbs, F. Su, On choosing and bounding probability metrics, Internat. Statist. Rev. 70 (3) (2002) 419–435. URL http://dx.doi.org/10.1111/

j.1751-5823.2002.tb00178.x.
[19] P. Davis, P. Rabinowitz, Methods of Numerical Integration, second ed., Dover, Mineola, 2007.
[20] L. Trefethen, Is gauss quadrature better than clenshawcurtis? SIAM Rev. 50 (1) (2008) 67–87. URL http://dx.doi.org/10.1137/060659831.
[21] L. Trefethen, J. Wideman, The exponentially convergent trapezoidal rule, SIAM Rev. 56 (3) (2014) 385–458. URL http://dx.doi.org/10.1137/

130932132.
[22] D. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, second ed., John Wiley & Sons, Hoboken, 2014, URL

http://www.worldcat.org/isbn/0471547700.
[23] L. Greengard, J. Strain, The fast gauss transform, SIAM J. Sci. Stat. Comput. 12 (1) (1991) 79–94. URL http://dx.doi.org/10.1137/0912004.
[24] J. Nocedal, S. Wright, Numerical Optimization, second ed., Springer, New York, 2006.
[25] S.J. Sheather, M.C. Jones, A reliable data-based bandwidth selection method for kernel density estimation, J. R. Stat. Soc. Ser. B Stat.

Methodol. 53 (3) (1991) 683–690. URL http://www.jstor.org/stable/2345597.
[26] A.W. Bowman, A. Azzalini, Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations (Oxford

Statistical Science Series), Oxford University Press, USA, 1997, URL http://www.worldcat.org/isbn/0198523963.
[27] R. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, Philadelphia, 2013.
[28] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, Princeton, 2010.
[29] O. Le Maı̂tre, O. Knio, Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, Springer,

New York, 2010.
[30] H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, 2005.
[31] R. Durrett, Probability: Theory and Examples, Brooks/Cole—Thomson Learning, Belmont, 2005.
[32] Aerospace Design Lab, Stanford University SU2 unstructured solver, 2011 http://su2.stanford.edu/.
[33] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Trans. Evol. Comput. 6 (2)

(2002) 182–197.

http://dx.doi.org/10.1186/2190-5983-1-10
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1907592
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref3
http://www.sciencedirect.com/science/article/pii/S0010448509001973
http://www.sciencedirect.com/science/article/pii/S0010448509001973
http://www.sciencedirect.com/science/article/pii/S0010448509001973
http://www.sciencedirect.com/science/article/pii/S0010448509001973
http://www.sciencedirect.com/science/article/pii/S0010448509001973
http://www.sciencedirect.com/science/article/pii/S0010448509001973
http://www.sciencedirect.com/science/article/pii/S0010448509001973
http://www.sciencedirect.com/science/article/pii/S0010448509001973
http://dx.doi.org/10.1007/s00158-004-0384-1
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref6
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1907441
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref8
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
https://web.stanford.edu/group/ctr/Summer/SP12/03.06_tachikawa.pdf
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref10
http://www.sciencedirect.com/science/article/pii/S0045794903000208
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref12
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref13
http://arc.aiaa.org/doi/pdf/10.2514/1.46665
http://dx.doi.org/10.1007/s00158-003-0345-0
http://mechanicaldesign.asmedigitalcollection.asme.org/data/Journals/JMDEDB/27946/051007_1.pdf
http://dx.doi.org/10.2514/6.2014-1007
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref19
http://dx.doi.org/10.1137/060659831
http://dx.doi.org/10.1137/130932132
http://dx.doi.org/10.1137/130932132
http://dx.doi.org/10.1137/130932132
http://dx.doi.org/10.1137/130932132
http://dx.doi.org/10.1137/130932132
http://dx.doi.org/10.1137/130932132
http://dx.doi.org/10.1137/130932132
http://www.worldcat.org/isbn/0471547700
http://dx.doi.org/10.1137/0912004
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref24
http://www.jstor.org/stable/2345597
http://www.worldcat.org/isbn/0198523963
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref27
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref28
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref29
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref30
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref31
http://su2.stanford.edu/
http://refhub.elsevier.com/S0045-7825(16)30088-3/sbref33

	A density-matching approach for optimization under uncertainty
	Introduction
	Mathematical formulation
	The trouble with non-overlapping response and target pdfs

	Discretization and computation
	Discretizing the distance metric
	Estimating the response density
	Computing the gradient
	Interfaces and cost

	Computational heuristics
	Bandwidth parameter and the overlap problem
	Response surfaces
	Implementation details

	Numerical examples
	Simple response function
	Airfoil design
	Robust design optimization
	Density-matching with a designer-specified target
	Uniform target
	Gaussian target
	Beta target


	Conclusions and future directions
	Acknowledgments
	References


