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Abstract

This work proposes a low-overhead half-barrier pattern to

schedule fine-grain parallel loops and considers its integra-

tion in the Intel OpenMP and Cilkplus schedulers. Experi-

mental evaluation demonstrates that the scheduling over-

head of our techniques is 43% lower than Intel OpenMP and

12.1x lower than Cilk.We observe 22% speedup on 48 threads,

with a peak of 2.8x speedup.

1 Introduction

While Moore’s Law remains active, every new processor gen-

eration has an increasing number of CPU cores. Scheduling

and distributing work load on large scale shared-memory

machines becomes increasingly important to make efficient

use of the hardware. The runtime overhead caused by sched-

uling, work distribution and synchronization [1] can make

some parallel codes too fine-grain to make parallel execu-

tion worthwhile. This overhead, growing with the degree of

parallelism, can affect the scalability of schedulers.

This work focuses on fine-grain, micro-second-scale par-

allel loops, comparable in duration to the overhead of state-

of-the-art schedulers on current hardware. We reason on

commonly used loop scheduling techniques and propose a

“half-barrier” pattern to remove redundant synchronisation.

2 Contribution

Static scheduling of parallel loops requires the following

steps: The master thread 1) divides the loop iteration range

among available worker threads, and 2) sends work descrip-

tions to the workers. 3) Workers initialize local copies of

reduction variables and execute work sent by the master 4)

The master thread waits for the workers to complete, and

partial results are reduced for reduction variables.
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(b) Parallel loop
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(c) Half-barrier loop

Figure 1. Schematic structure of threads and synchroniza-

tion in parallel loops and barriers

The synchronization in step 2 and 4 is implemented using

barriers. Barriers involve a join and a release phase (Fig-

ure 1(a)) that respectively records the arrival of threads, and

signals threads to enter the next phase of computation. Typ-

ically, at least two barriers are executed per parallel loop

(Figure 1(b)). The Intel OpenMP runtime implements reduc-

tions on top of a barrier-like construct, which effectively

introduces an additional barrier.

For the parallel loop model, the worker threads are associ-

ated to a specific master which makes some synchronization

steps redundant. This implies that worker threads are idle

and available for work at the start of parallel regions, and

are independent of one another. Hence, we can skip the join

part of fork barrier as the threads do not need to wait for

each other. Similarly, once the workers notify master about

completion of parallel work, there is no need for the master

to send acknowledgement. Hence, the release part of join

barrier can also be skipped, reducing the synchronization

overhead from two barriers (Figure 1(b)) to one barrier (Fig-

ure 1(c))

We use a scalable tree barrier algorithm [2] and tune it to

the organisation of our evaluation machine.

The half-barrier can be leveraged further to optimise re-

ductions. For static OpenMP loops with reduction variables,

the Intel OpenMP runtime executes a tree barrier, in addition

to the full barriers at the start and end of the loop, to aggre-

gate per-thread results in the join phase of the tree barrier.

Our runtime optimizes performance further by merging the

reduction operation with the final join half-barrier. This re-

sults in two half-barriers for a parallel loop with reductions,

compared to three full-barriers with Intel OpenMP runtime.

We provide an efficient implementation of Cilk reducers

for fine-grain loops and allocate their thread-local copies
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Table 1. Characterizing scheduler burden

d ( μs)

Fine-grain tree 5.67

Fine-grain centralized 7.55

Fine-grain tree with full-barrier 12.00

OpenMP static 8.12

OpenMP dynamic 31.94

Cilk 68.80

statically at the start of the loop while retaining their pro-

gramming interface and non-commutativity. The views are

reduced as part of pairwise thread synchronization in the

join phase of the barrier. This results in exactly P − 1 reduc-

tion operations for P threads, as opposed to baseline Cilk for

which operations may be significantly higher.

We extend the Cilk work stealing algorithm to allow static

scheduling for fine-grain loops and dynamic scheduling for

coarse-grain loops by alternating a cycle of the random work

stealing algorithm with polling in the half-barrier.

3 Experimental Evaluation

We evaluate our schedulers on a 4-socket 2.6 GHz Intel Xeon

E7-4860 v2 machine with 12 physical cores, 30 MB L3 cache

per socket, and CentOS 7.0. We use thread pinning and no

hyper-threads. We use the Intel C/C++ compiler v. 14.0.0

for OpenMP and implemented compiler support for the Cilk

runtime in clang v. 3.4.1. We calculate speedup against the

sequential version of the benchmark.

We first use a micro-benchmark to measure loop schedul-

ing overhead by varying the amount of work in the parallel

loop. The speedup is measured for varying granularity of the

loop for the OpenMP, Cilk and our fine-grain scheduler, and

the scheduling burden is estimated using Amdahl’s Law:

S =
T

d +T /48

where T is the sequential execution time, S is the resulting

speedup and d is the work distribution time estimated by a

least-squares fit between the measurements and the model.

The burden of our fine-grain scheduler is 43% lower than

OpenMP and 12.1x lower than Cilk (Table 1). Using a half

barrier in our scheduler reduces the scheduling delay further

compared to a full barrier.

Figure 2 shows the performance of our fine-grain sched-

uler on Multidimensional Positive Definite Advection Trans-

port Algorithm (MPDATA)[3], from the European Centre for

Mid-range Weather Forecasting, on a grid with 5568 points

and 16399 edges. The speedup of MPDATA with OpenMP

stagnateswith increasing parallelism (Figure 2 (left)) whereas

the fine-grain scheduler increases performance by up to 22%

(Figure 2 (right)) over the off-the-shelf Intel OpenMP run-

time.

Figure 2. MPDATA: speedup of fine-grain and OpenMP

schedulers (left); speedup of fine-grain scheduler over

OpenMP (right)

(a) Linear regression, Cilk (b) Linear regression, OpenMP

Figure 3. Performance analysis of map reduce workloads

Figure 3 shows the performance of reductions in our Cilk

and OpenMP runtimes using linear regression (medium in-

put from Phoenix++ [4]). Our fine-grain scheduler results in

a higher parallel efficiency than baseline Cilk and OpenMP

schedulers (Figure 3), owing to the reduced scheduling over-

head and efficient implementations of reduction. This leads

to a best-case speedup of 2.8.

4 Conclusion

This paper demonstrates that scheduling overhead, increas-

ing with the degrees of parallelism, limits the performance

for applications with fine-grain loops. A scheduler tuned to

fine-grain parallelism, embedded in the Intel OpenMP and

Cilkplus runtimes, provides speedup for such loops by 22%

over the baseline OpenMP and Cilk schedulers, which grows

with increasing thread count.
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