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Network Identifiability from Intrinsic Noise
David Hayden, Ye Yuan and Jorge Gonçalves

Abstract—This paper considers the problem of inferring an
unknown network of dynamical systems driven by unknown, in-
trinsic, noise inputs. Equivalently we seek to identify direct causal
dependencies among manifest variables only from observations
of these variables. For linear, time-invariant systems of minimal
order, we characterise under what conditions this problem is well
posed. We first show that if the transfer matrix from the inputs
to manifest states is minimum phase, this problem has a unique
solution irrespective of the network topology. This is equivalent
to there being only one valid spectral factor (up to a choice of
signs of the inputs) of the output spectral density.

If the assumption of phase-minimality is relaxed, we show
that the problem is characterised by a single Algebraic Riccati
Equation (ARE), of dimension determined by the number of
latent states. The number of solutions to this ARE is an
upper bound on the number of solutions for the network. We
give necessary and sufficient conditions for any two dynamical
networks to have equal output spectral density, which can be
used to construct all equivalent networks. Extensive simulations
quantify the number of solutions for a range of problem sizes. For
a slightly simpler case, we also provide an algorithm to construct
all equivalent networks from the output spectral density.

I. INTRODUCTION

MANY phenomena are naturally described as networks
of interconnected dynamical systems and the identi-

fication of such networks remains a challenging problem,
as evidenced by the diverse literature on the subject. In
biological applications in particular, experiments are expensive
to conduct and one may simply be faced with the outputs of an
existing network driven by its own intrinsic variation. Noise is
endemic in biological networks and its sources are numerous
[1]; making use of this natural variation as a non-invasive
means of identification is an appealing prospect, for example
in gene regulatory networks [2]. We now give a brief overview
of relevant work, focusing on the case where the network is
driven by stochastic, rather than deterministic inputs.

An active problem in spectral graph theory is whether the
topology of a graph can be uniquely determined from the
spectrum of, for example, its adjacency matrix. There are
simple examples of non-isomorphic graphs for which this is
not possible and classes of graph for which it is (see [3]);
however the approach does not consider dynamics of the
graph (other than that of the adjacency matrix). A related
problem is that considered in the causality literature [4] of
determining a graph of causal interactions between events
from their statistical dependencies. Again, there are classes of
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graph for which this is possible and again the dynamics of the
system are not considered. Probabilistic methods, such as [5],
seek to identify a network in which each state is considered
conditionally independent of its non-descendants, given its
parent states. An heuristic search algorithm is then used to
select an appropriate set of parent states, and hence obtain a
graph of dependencies.

Granger [6] considered the problem of determining causality
between a pair of states interacting via Linear, Time-Invariant
(LTI) systems. An autoregressive model is estimated for the
first state, then if the inclusion of the second state into the
model significantly improves its prediction, the second state
is said to have a causal influence on the first. The idea can be
extended to networks of greater than two states by considering
partial cross spectra, but it is difficult to guarantee that this
problem is well posed – there could be multiple networks that
explain the data equally well. Two crucial issues are the choice
of model order and the combinatorial problem of considering
all partial cross spectra [7], [8].

Current approaches to network reconstruction that offer
guarantees about the uniqueness of the solution require either
that assumptions about the topology be made or that the system
dynamics are known. For example, in [9] the undirected graph
of a network of coupled oscillators can be found if the system
dynamics and noise variance are known. In [10], networks
of known, identical subsystems are considered, which can be
identified using an exhaustive grounding procedure similar to
that in [11]. A solution is presented in [12] for identifying the
undirected structure for a restricted class of polytree networks;
and in [13] for “self-kin” networks. In contrast, for networks
of general, but known topology, the problem of estimating
the dynamics is posed as a closed-loop system identification
problem in [14].

We focus on LTI systems with both unknown and unre-
stricted topology and unknown dynamics and consider the
problem from a system identification perspective. The origin of
this problem is arguably the paper by Bellman and Astrom [15]
in which the concept of structural identifiability is introduced.
A model is identifiable if its parameters can be uniquely
determined given a sufficient amount of data, which is a
challenging problem for multivariable systems [16]. Previous
work has characterised the identifiability of a network of
LTI systems in the deterministic case where targeted inputs
may be applied [17]. The network was modelled as a single
transfer matrix representing both its topology and dynamics;
the network reconstruction problem is then well posed if this
transfer matrix is identifiable.

The purpose of this paper is to assess the identifiability of
networks with unknown, stochastic inputs. The identifiability
of state-space models in this setting is considered in [18]
based on the spectral factorization results of [19], in which all
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realizations of a particular spectral density are characterized.
We present novel results on the relationship between an
LTI network and its state-space realizations and use these
to characterise all solutions to the network reconstruction
problem.

Our contributions are threefold: first, for networks with
closed-loop transfer matrices that are minimum phase, we
prove that the network reconstruction problem is well posed
– the network can be uniquely determined from its output
spectral density; second, in the general case, we provide an
algebraic characterization of all networks with equal output
spectral density, in which every network corresponds to a dis-
tinct solution to an Algebraic Riccati Equation; and third, for
a slightly simpler case, we provide an algorithm to construct
all such solutions from the spectral density.

Section II provides necessary background information on
spectral factorization, structure in LTI systems and the network
reconstruction problem. The main results are then presented
in Section III, followed by a detailed example and numerical
simulations in Section IV. One further case is considered in
Section V, in which noise is in addition applied to the latent
states. Conclusions are drawn in Section VI and additional
proofs are included in the Appendix.

Notation

Denote by A(i, j), A(i, :) and A(:, j) element (i, j), row
i and column j respectively of matrix A. Denote by AT the
transpose of A and by A∗ the conjugate transpose. We use I
and 0 to denote the identity and zero matrices with implicit
dimension, where ei := I(:, i). The diagonal matrix with
diagonal elements a1, . . . , an is denoted by diag(a1, . . . , an).
We use standard notation to describe linear systems, such as
the quadruple (A,B,C,D) to denote a state-space realization
of transfer function G(s), x(t) to describe a time-dependent
variable and X(s) its Laplace transform and we omit the
dependence on t or s when the meaning is clear. Superscripts
are used to highlight particular systems. We also define a
signed identity matrix as any square, diagonal matrix J that
satisfies J(i, i) = ±1.

II. PRELIMINARIES

A. Spectral Factorization

Consider systems defined by the following Linear, Time-
Invariant (LTI) representation:

ẋ = Ax+Bu

y = Cx+Du
(1)

with input u(t) ∈ Rm, state x(t) ∈ Rn, output y(t) ∈ Rp,
system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n
and D ∈ Rp×m and transfer function from u to
y: G(s) = C(sI −A)−1B +D. Make the following
assumptions:

Assumption 1. The matrix A is Hurwitz.

Assumption 2. The system is driven by unknown white noise
u(t) with covariance E[u(t)uT (τ)] = Iδ(t− τ).

Assumption 3. The system (A,B,C,D) is globally minimal.

The meaning of Assumption 3 is explained below. From y(t),
the most information about the system that can be obtained is
the output spectral density:

Φ(s) = G(s)G∗(s)

The spectral factorization problem (see for example [20])
is that of obtaining spectral factors G′(s) that satisfy:
G′G′∗ = Φ. Note that the degrees of two minimal solutions
may be different; hence make the following definition.

Definition 1 (Global Minimality). For a given spectral density
Φ(s), the globally-minimal degree is the smallest degree of all
its spectral factors.

Any system of globally-minimal degree is said to be globally
minimal. Anderson [19] provides an algebraic characterisation
of all realizations of all spectral factors as follows. Given Φ(s),
define the positive-real matrix Z(s) to satisfy:

Z(s) + Z∗(s) = Φ(s) (2)

Minimal realizations of Z are related to globally-minimal
realizations of spectral factors of Φ by the following lemma.

Lemma 1 ([19]). Let (A,Bz, C,Dz) be a minimal realization
of the positive-real matrix Z(s) of (2), then the system
(A,B,C,D) is a globally-minimal realization of a spectral
factor of Φ if and only if the following equations hold:

RAT +AR = −BBT

RCT = Bz −BDT

2Dz = DDT

(3)

for some positive-definite and symmetric matrix R ∈ Rn×n.

This result was used by Glover and Willems [18] to provide
conditions of equivalence between any two such realizations,
which are stated below.

Lemma 2 ([18]). If (A,B,C,D) and (A′, B′, C ′, D′) are
globally-minimal systems, then they have equal output spectral
density if and only if:

A′ = T−1AT (4a)
C ′ = CT (4b)

SAT +AS = −BBT + TB′B′TTT (4c)

SCT = −BDT + TB′D′T (4d)

DDT = D′D′T (4e)

for some invertible T ∈ Rn×n and symmetric S ∈ Rn×n.

For any two systems that satisfy Lemma 2 for a particular S,
all additional solutions for this S may be parameterized by
Corollary 1. This is adapted from [18] where it was stated for
minimum-phase systems.

Corollary 1. If (A,B,C,D) and (A′, B′, C ′, D′) satisfy
Lemma 2 for a particular S, then all systems that also satisfy
Lemma 2 with (A,B,C,D) for the same S are given by:

(T ′A′T ′−1, T ′B′U,C ′T ′−1, D′U) (5)
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for some invertible T ′ ∈ Rn×n and orthogonal U ∈ Rp×p. If
G(s) is square and minimum phase (full rank for all s with
Re(s) > 0), then for S = 0, (5) characterises all realizations
of minimum-phase spectral factors.

B. Structure in LTI Systems

We now suppose that there is some unknown underlying
system (A0, B0, C0, D0) with transfer function G0 and we
wish to obtain some information about this system from its
spectral density Φ0. Even if G0 is known to be minimum
phase, from Corollary 1 it can only be found up to multipli-
cation by some orthogonal matrix U . Given G0, the system
matrices can also only be found up to some change in state
basis. The zero superscript is used to emphasize a particular
system.

The following additional assumption is made:

Assumption 4. The matrices C =
[
I 0

]
and D = 0.

The form of C implies a partitioning of the states into manifest
variables which are directly observed and latent variables
which are not. The form of D restricts the systems to be
strictly proper, and hence causal. For this class of systems we
seek to identify causal dependencies among manifest variables,
defined in [17], as follows.

Partition (1) under Assumption 4:[
ẏ
ż

]
=

[
A11 A12

A21 A22

] [
y
z

]
+

[
B1

B2

]
u (6)

where y =
[
I 0

] [y
z

]
and z(t) ∈ Rl are the l = n− p latent

states. Taking the Laplace transform of (6) and eliminating Z
yields sY = WY + V U , for proper transfer matrices:

W := A12 (sI −A22)
−1
A21 +A11

V := A12 (sI −A22)
−1
B2 +B1

(7)

Now define WD := diag(W (1, 1), . . . ,W (p, p)), subtract
WDY from both sides of sY = WY + V U and rearrange to
give:

Y = QY + PU (8)

where
Q := (sI −WD)

−1
(W −WD)

P := (sI −WD)
−1
V

(9)

are strictly-proper transfer matrices of dimension p × p and
p×m respectively. Note that Q is constructed to have diagonal
elements equal to zero (it is hollow).

Definition 2 (Dynamical Structure Function). Given any sys-
tem (1) under Assumption 4, the Dynamical Structure Function
(DSF) is defined as the couple (Q,P ), where Q and P are
given in (9).

The DSF defines a directed graph with only the manifest
states and inputs as nodes. There is an edge from Y (j) to Y (i)
if Q(i, j) 6= 0; and an edge from U(j) to Y (i) if P (i, j) 6= 0.
In this sense, the DSF characterises causal relations among

manifest states Y and inputs U in system (1). The transfer
function G is related to the DSF as follows:

G = (I −Q)−1P (10)

where, given G, the matrices Q and P are not unique in
general, hence the following definition is made.

Definition 3 (Consistency). A DSF (Q,P ) is consistent with
a transfer function G if (10) is satisfied.

We also define a state-space realization of a particular DSF
(Q0, P 0) as any realization for which the (unique) DSF is
(Q0, P 0). The relationship between state space, DSF and
transfer function representations is illustrated in Fig. 1, which
shows that a state-space realization uniquely defines both a
DSF and a transfer function. However, multiple DSFs are
consistent with a given transfer function and a given DSF can
be realized by multiple state-space realizations.

All realizations of a particular G are parameterized by the
set of invertible matrices T ∈ Rn×n. A subset of these will
not change the DSF as follows.

Definition 4 ((Q,P)-invariant transformation). A state
transformation T of system (A0, B0, C0, D0) with DSF
(Q0, P 0) is (Q,P )-invariant if the transformed system
(TA0T−1, TB0, C0T−1, D0) also has DSF (Q0, P 0).

The blue region in Fig. 1(a) is the set of all (Q,P )-invariant
transformations of (A0, B0,

[
I 0

]
, 0).

C. Network Reconstruction

The network reconstruction problem was cast in [17] as
finding exactly (Q0, P 0) from G0. Since in general multiple
DSFs are consistent with a given transfer function, some
additional a priori knowledge about the system is required
for this problem to be well posed. It is common to assume
some knowledge of the structure of P , as follows.

Assumption 5. The matrix P is square, diagonal and full
rank.

This is a standard assumption in the literature [10], [13], [14],
[17] and equates to knowing that each of the manifest states
is directly affected only by one particular input. By direct we
mean that there is a link or a path only involving latent states
from the input to the manifest state. In the stochastic case
considered here, each manifest state is therefore driven by
its own intrinsic variation. The case in which inputs are also
applied to the latent states is considered in Section V.

The following theorem is adapted from Corollary 1 of [17]:

Theorem 1 ([17]). There is at most one DSF (Q,P ) with P
square, diagonal and full rank that is consistent with a transfer
function G.

Given a transfer function G0 for which the generating system
is known to have P 0 square, diagonal and full rank, one can
therefore uniquely identify the “true” DSF (Q0, P 0).
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(a)

(b)

(c)

State space

DSF space

TF space G0

(Q0, P 0)

(A0, B0, [I 0], 0)

Fig. 1. Pictorial representation of relationship between state space, DSF space
and transfer function space for a particular system (A0, B0, [I 0], 0). In (a)
is contained the set of state transformations of this system by matrices T that
preserve C0 = [I 0]; in red is the particular realization with T = I and in
blue the set of realizations with the same DSF (Q0, P 0). In (b) is the set of
all DSFs that have realizations in (a); in blue is the particular DSF (Q0, P 0).
In (c) is the single transfer function G0, with which are consistent all DSFs
in (b) and which can be realized by all realizations in (a).

D. Example

Consider the following stable, minimal system with two
manifest states and one latent state:

A0 =

−1 0 4
0 −2 5
−6 0 −3

 , B0 =

1 0
0 1
0 0

 ,
with C0 =

[
I 0

]
and D0 = 0. The system transfer matrix is

given by:

G0(s) =

[ s+3
s2+4s+27 0
−30

(s+2)(s2+4s+27)
1
s+2

]
and may be realized by an infinite variety of A and B matrices.
The DSF is given by:

Q0(s) =

[
0 0
−30

(s+2)(s+3) 0

]
, P 0(s) =

[ s+3
s2+4s+27 0

0 1
s+2

]
and is the only valid Q and diagonal P that is consistent with
G0. This system is represented graphically in Fig. 2.

E. Two realizations for diagonal P

The presence of latent states allows some freedom in the
choice of realization used to represent a particular DSF. It
will be convenient to use particular forms for systems with P
square and diagonal, defined here. We start with the following
lemma.

Lemma 3. The matrix V (and hence P ) is diagonal if and
only if the matrices:

B1 and A12A
k
22B2

for k = 0, 1, . . . , l − 1 are diagonal, where l = dim(A22).

The proof is given in Appendix A. Hence, without loss of
generality, order the manifest states such that B1 can be
partitioned:

B1 =

[
0 0
0 B22

]
where B22 is square, diagonal and full rank. Any system
(A0, B0, C0, D0) with P 0 square and diagonal can be trans-
formed using (Q,P )-invariant transformations into one in the

x1

x2

x3

u1

u2

(a)

y1

y2

x3

u1

u2

Q21

P11

P22

(b)

Fig. 2. Graphical representation of (a) example system (A0, B0, C0, D0)
and (b) its DSF (Q0, P 0) from Section II-D. The DSF describes causal
interactions among manifest states that may occur via latent states in the
underlying system.

following form. Note that any transformation that preserves P
diagonal is (Q,P )-invariant by Theorem 1.

Definition 5 (P-Diagonal Form 1). Any DSF (Q,P ) with P
square, diagonal and full rank has a realization with A12, A22,
B1 and B2 as follows:

[
A12 B1

A22 B2

]
=


ĉ 0 0 0
0 × 0 B22

â × b̂ 0
0 × 0 0

 (11)

where × denotes an unspecified element. The following is a
canonical realization of V = A12 (sI −A22)

−1
B2 +B1:(

â,
[
b̂ 0

]
,

[
ĉ
0

]
,

[
0 0
0 B22

])
(12)

where â := diag(α1, · · · , αp11), b̂ := diag(β1, · · · , βp11) and
ĉ := diag(γ1, · · · , γp11), p22 = dim(B22), p11 = p − p22
and where (αi, βi, γi, 0) is a minimal realization of V (i, i) in
controllable canonical form (see [21] for example). Denote
the dimension of αi as ri := dim(αi).

Further (Q,P )-invariant transformations can be applied to
systems of the form (11) to give a second realization as
follows.

Definition 6 (P-Diagonal Form 2). Any DSF (Q,P ) with P
square, diagonal and full rank has a realization with A12, A22,
B1 and B2 as follows:

[
A12 B1

A22 B2

]
=



0 0 I 0 0 0 0
0 γ22 0 0 0 0 0
× × × γ34 0 0 B22

× × × α14 I 0 0
× × × α24 0 I 0
α31 0 × α34 0 0 0
× × × α44 0 0 0


(13)

where B22 ∈ Rp3×p3 and γ22 ∈ Rp2×p2 are square, diagonal
and full rank and × denotes an unspecified element. The di-
mension of B1 is p = dim(B1) = p1 + p2 + p3 and the matrix
α31 ∈ Rp1×p1 is square and diagonal but not necessarily full
rank. The elements of A22 satisfy the following properties for
i = 1, . . . , p1:

α31(i, :) = α
(2)
31 (i, :) = · · · = α

(ki−1)
31 (i, :) = 0T

α
(ki)
31 (i, :) 6= 0T

α
(ki)
34 (i, :) = 0T

(14)



5

for some 1 ≤ ki ≤ l − 1, where l := dim(A22) and α
(k)
ij :=

Ak22[i, j] denotes block (i, j) of Ak22.

The diagonal elements of V have been ordered according
to their relative degrees: the first p1 elements have relative
degree greater than one; the next p2 have relative degree of
one; the last p3 have relative degree of zero. The problem is
considerably simpler if all elements have relative degree of
zero, in which case p = p3.

III. MAIN RESULTS

Given an underlying system (A0, B0, C0, D0) with DSF
(Q0, P 0), transfer function G0 and output spectral density Φ0

under Assumptions 1 - 5, we seek to identify (Q0, P 0) from
Φ0. From Theorem 1, we know that (Q0, P 0) can be found
uniquely from G0; in Section III-A we prove that if G0 is
minimum phase, we can find it from Φ0 up to a choice of
sign for each of its columns. From the spectral density Φ0,
we can therefore find Q0 exactly and P 0 up to a choice of
signs.

Section III-B considers the general case, including non-
minimum-phase transfer functions, in which all spectral factors
of Φ0 that satisfy the assumptions can be characterised as solu-
tions to a single Algebraic Riccati Equation (ARE). Necessary
and sufficient conditions for two DSFs to have equal spectral
factors are given. An algorithm is presented in Section III-C
to construct all DSF solutions from the spectral density, and
illustrated by an example in Section IV-A.

A. Minimum-Phase G

Suppose the following assumption holds:

Assumption 6. The transfer function G(s) is minimum phase
(full rank for all s with Re(s) > 0).

In this case, any two spectral factors G and G′ are related by:
G′ = GU for some orthogonal matrix U ∈ Rp×p [18]. We
first provide some intuition for G to be minimum phase by
the following lemma.

Lemma 4. If Q is stable and P is square, diagonal and
minimum phase then G is minimum phase.

Proof: If Q is stable, then I − Q is also stable as it
has the same poles. For any invertible transfer function, z0 is
a transmission zero if and only if it is a pole of the inverse
transfer function [21]. Therefore (I−Q)−1 is minimum phase
if and only if Q is stable. If in addition P is minimum phase,
then G = (I −Q)−1P is also minimum phase since P is
diagonal.
Hence systems with stable interactions among manifest vari-
ables that are driven by filtered white noise, where the filters
are minimum phase, satisfy Assumption 6.

Theorem 2. Two systems (A,B,C,D) and (A′, B′, C ′, D′)
under Assumptions 1-6 with DSFs (Q,P ) and (Q′, P ′) have
equal output spectral density:

Φ(s) = G(s)G∗(s) = G′(s)G′∗(s)

if and only if G′ = GJ , for some signed identity matrix J .
This is equivalent to having Q′ = Q and P ′ = PJ . Given
a particular Φ0, the minimum-phase spectral factor G0J is
therefore unique up to some choice of J , after which the
solution for the DSF (Q0, P 0J) is unique.

Proof: From Lemma 1, two systems under Assumptions
1-5 have equal output spectral density if and only if they satisfy
(5) for some invertible T ∈ Rn×n and orthogonal U ∈ Rp×p.
We shall derive necessary conditions for (5) to hold and show
that these imply that U must be a signed identity matrix.

First, C ′ = CT−1 from (5) is satisfied if and only if T =[
I 0
T1 T2

]
, for some T1 ∈ Rl×p and invertible T2 ∈ Rl×l.

Then B′ = TBU gives:

B′1 = B1U (15a)
B′2 = (T1B1 + T2B2)U (15b)

Take (A,B) and (A′, B′) to be in P-diagonal form 1 (11);
then from (15a) the size of the partitioning of B1 is the
same as that of B′1. Since B′1 must be diagonal, (15a) implies

U =

[
U11 0
0 J22

]
partitioned as B1 for some orthogonal U11

and signed identity J22.
In the case that B1 is invertible (B1 = B22), it is clear

that U = J22 and the result holds. The result for the general
case is the same and the proof given in Appendix B. We must
therefore have U = J for some signed identity matrix J in
order for (5) to be satisfied. From (10), equality of spectral
densities implies:

G′ = (I −Q′)−1P ′ = (I −Q)−1PJ = GJ

Inverting the above and equating diagonal elements yields
P ′ = PJ and hence Q′ = Q.
Given only the spectral density Φ0, the reconstruction problem
for minimum-phase systems therefore has a unique solution for
Q0 irrespective of topology. We find this to be a surprising
and positive result. The sign ambiguity in P 0 is entirely to be
expected as only the variance of the noise is known.

B. Non-Minimum-Phase G

We now relax Assumption 6 to include non-minimum-phase
solutions. A straightforward corollary of Theorem 2 is the
following.

Corollary 2. If two systems (A,B,C,D) and (A′, B′, C ′, D′)
under Assumptions 1 - 5 with DSFs (Q,P ) and (Q′, P ′) satisfy
Lemma 2 for a particular S, then all additional systems that
also satisfy Lemma 2 with (A,B,C,D) for the same S have
DSFs:

(Q′, P ′J)

for some signed identity matrix J . Each solution S to Lemma
2 therefore corresponds to at most one solution for the DSF
(Q′, P ′J) for some choice of J .

Next we prove that for a given system (A,B,C,D), solutions
S to Lemma 2 can be partitioned into two parts: the first
must be zero and the second must solve an Algebraic Riccati
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Equation (ARE) with parameters determined by the original
system.

Analagous to the minimum-phase case, we evaluate so-
lutions to Lemma 2 for any two realizations that satisfy
Assumptions 1 - 5 and are in P-diagonal form 2 (13). Since
every such system can be realized in this form, these results are
completely general given the assumptions made. Immediately
(4) yields:

A′ = T−1AT (16a)

B′1B
′T
1 = B1B

T
1 (16b)

A12S2 = B1B
T
1 T

T
1 (16c)

S2A
T
22 +A22S2 = −B2B

T
2 + T1B1B

T
1 T

T
1 (16d)

+ T2B2B
T
2 T

T
2

where

S =

[
0 0
0 S2

]
and T =

[
I 0
T1 T2

]
(17)

with S2 ∈ Rl×l, T1 ∈ Rl×p and T2 ∈ Rl×l. We can further
partition S2 as follows.

Lemma 5. For any two systems (A,B,C,D) and
(A′, B′, C ′, D′) in P-diagonal form 2 that satisfy Assumptions
1-5 and Lemma 2, the matrix S2 in (17) satisfies:

S2 =

[
0 0
0 s22

]
where s22 ∈ Rl2×l2 and l2 := l − 2p1 − p2.

The proof is given in Appendix C and is obvious if B1 is
invertible, in which case l = l2. The above lemma significantly
simplifies (16). Whilst there is some freedom in the choice of
T1 and T2, the number of solutions for s22 only depends on
the system in question, as follows.

Theorem 3. Two DSFs (Q,P ) and (Q′, P ′) with realizations
(A,B,C,D) and (A′, B′, C ′, D′) in P-diagonal form 2 under
Assumptions 1-5 have equal output spectral density if and only
if the following equations are satisfied:

s22ā+ āT s22 − s22b̄b̄T s22 = 0 (18)

α34s22 = 0 (19)

for some symmetric s22 ∈ Rl2×l2 with l2 = l − 2p1 − p2,
where ā and b̄ are comprised of parameters of A and B in
(13) as ā := αT44 and b̄ :=

[
γT34B

−T
22 αT14 αT24 αT34

]
and

there exists invertible T =

[
I 0
T1 T2

]
such that:

A′ = T−1AT (20a)
B′22 = B22J (20b)

T1B1 =

0 0
0 0
0 s22γ

T
34B22

 (20c)

T2B2 =

 t1 0
0 0

s22
[
αT14 αT24

]
t1 0

 (20d)

for some orthogonal t1 ∈ R(p1+p2)×(p1+p2) and signed iden-
tity matrix J ∈ Rp3×p3 .

Proof: The proof follows directly from Lemma 5 by

substituting S2 =

[
0 0
0 s22

]
into (16).

Remark 1. From Corollary 2, the number of DSFs that have
equal spectral density to that of any given (Q0, P 0) (up to a
choice of signed identity matrix) is therefore at most equal to
the number of solutions to the ARE (18).

Remark 2. It is straightforward to see that (ā, b̄) is con-
trollable due to the minimality of (A,B,C,D). The number
of solutions to (18) can therefore be calculated from the
Hamiltonian matrix of (18) and in particular is finite if and
only if every eigenvalue has unit geometric multiplicity (see
[22]). In general the solution will not be unique.

Remark 3. Any solution to the ARE must also satisfy (19) in
order to satisfy Theorem 3. This condition will not necessarily
be satisfied, reducing the size of the DSF solution set.

Remark 4. Given any system (A0, B0, C0, D0) with DSF
(Q0, P 0), the solution set of (18) can be calculated; for any
solution that also satisfies (19) it is straightforward to choose
T and J to satisfy (20); however, the resulting transformed
system may not have P diagonal, and it is nontrivial to choose
T such that it does.

Remark 5. The l latent states have been partitioned into
l2 = l − 2p1 − p2 and l1 = l − l2, where the dimension of
the ARE (18) is l2. The number of DSF solutions is therefore
principally determined by l2 and not by p, the number of
measured states; a “large” network (high p) could have
relatively few spectrally-equivalent solutions if it has “small”
l2. Any system with l2 = 0 has a unique solution.

C. A Constructive Algorithm

If B1 is invertible, the transfer functions V (i, i) have relative
degree of zero and any realization in P-diagonal form 2 has
B2 = 0. Any system with B1 diagonal and B2 = 0 trivially
satisfies Lemma 3 and hence has P diagonal. In this case,
the matrix T1 is completely determined by (20) and T2 can
be chosen freely. For this class of systems, DSFs (Q,P ) with
output spectral density Φ(s) can be constructed. A procedure
is outlined below, which essentially finds solutions to Lemma
1 under Assumptions 1-5.

1) Estimate Φ(s)
2) Construct positive-real Z(s) such that: Z + Z∗ = Φ
3) Make a minimal realization of Z of the form:

(A,B,
[
I 0

]
, 0)

4) Find all solutions to the following equations for B′ and
symmetric R > 0:

RAT +AR = −B′B′T (21a)

RCT = B (21b)

5) For each solution, B′, the system (A,B′,
[
I 0

]
, 0)

with transfer function G′ is minimal and has spectral
density Φ from Lemma 1
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6) Apply the state transformation T =

[
I 0

−B′2B′−11 I

]
to

obtain system (A′′, B′′,
[
I 0

]
, 0), which has the same

transfer function G′, spectral density Φ and has P ′′ di-
agonal. The system (Q′′, P ′′) then satisfies Assumptions
1-5 and has spectral density Φ.

Step 1 may be achieved by standard methods, the details of
which are not considered here. Every spectral density matrix
has a decomposition of the form of Step 2, as described in [19]
and Step 3 is always possible for strictly-proper Z. Solutions
to step 4 can be obtained as follows.

Equation (21) derives from (3) under Assumption 4. Parti-
tioning (21b) gives:

R =

[
B1 BT2
B2 R2

]
(22)

for some symmetric R2. Equation (21a) then defines three
equations:

B′1B
′T
1 = −B1A

T
11 −BT2 AT12 −A11B1 −A12B2 (23a)

R2A
T
12 = −B2A

T
11 −A21B1 −A22B2 −B′2B′T1 (23b)

R2A
T
22 +A22R2 +B2A

T
21 +A21B

T
2 +B′2B

′T
2 = 0 (23c)

Both sides of (23a) must be diagonal and full rank, since such
a solution for B′1 is known to exist; hence a diagonal, full-rank
solution for B′1 can be found from (23a). Given B′1, B′2 can
be eliminated from (23c) using (23b), yielding the following
ARE in R2:

R2Ā+ ĀTR2 +R2B̄B̄
TR2 + Q̄ = 0 (24)

with:
Ā =

(
A22 + FB′−21 A12

)T
B̄ =

(
B′−11 A12

)T
Q̄ = B2A

T
21 +A21B

T
2 + FFT

(25)

and F = B2A
T
11 + A21B1 + A22B2. Since the parameters

of (24) are known, we can compute all symmetric, positive-
definite solutions R2. Given R2, the matrix B′2 is given
uniquely by (23b) as:

B′2 = −
(
R2A

T
12 +B2A

T
11 +A21B1 +A22B2

)
B′−11 (26)

The system (A,B′,
[
I 0

]
, 0) with DSF denoted (Q′, P ′)

therefore has spectral density Φ but will in general not have P ′

diagonal. The transformation of Step 6 results in B′′2 = 0 and
hence the transformed P ′′ diagonal from Lemma 3. Since state
transformations do not affect the spectral density, the system
(Q′′, P ′′) satisfies Assumptions 1-5 and has spectral density
Φ.

IV. EXAMPLES

A. Example with Two Solutions
Given the output spectral density Φ(s) for the system of

Section II-D, we construct all DSF solutions with this spectral
density as described in Section III-C. From the output spectral
density construct the positive-real matrix Z(s), such that
Z(s) + Z∗(s) = Φ(s):

Z(s) =

[
0.17(s+1)
s2+4s+27

0.032(s+19)
s2+4s+27

0.032(s+8.2)(s−17.2)
(s+2)(s2+4s+27)

0.57s2+2.9s+15.1
(s+2)(s2+4s+27)

]

x1

x2

x3

u1

u2

(a)

y1

y2

x3

u1

u2

Q′
21

Q′
12

P ′
11

P ′
22

(b)

Fig. 3. Graphical representation of (a) example system (A′, B′, C′, D′) and
(b) its DSF (Q′, P ′) from Section IV-A.

after numerical rounding. Construct any minimal realization
of Z by standard methods, such as:

A =

 −3.9 −0.97 1.9
−3.6 −3.2 2.4
−15.5 −1.5 1.1

 , B =

 0.17 0.032
0.032 0.57
0.092 0.60

 ,
with C =

[
I 0

]
and D = 0. First solve for B′1 as in (23a):

B′1 =

[
±1 0
0 ±1

]
(27)

and choose the signs to be positive for simplicity. Next
construct and solve the ARE (24), which has the following
two solutions:

R2 = 1.02 and 1.65

In each case, solve for B′2 using (26):

B′2 =
[
1.49 0.5

]
and

[
0.28 −1.01

]
and transform both systems by T =

[
I 0

−B′2B′−11 I

]
to yield

two systems with DSFs with P diagonal. The first corresponds
to the system of Example II-D with DSF:

Q(s) =

[
0 0
−30

(s+2)(s+3) 0

]
, P (s) =

[ s+3
s2+4s+27 0

0 1
s+2

]
and the second to the following stable, minimal system:

A′ =

−3.3 −2.9 4
−2.9 −5.7 5
−8.3 −3.7 3

 , B′ =

1 0
0 1
0 0

 ,
with C ′ =

[
I 0

]
, D′ = 0 and DSF:

Q′(s) =

[
0 −2.9(s+2.0)

s2+0.34s+23.3
−2.9(s+11.1)
s2+2.7s+1.3 0

]
,

P ′(s) =

[ s−3
s2+0.34s+23.3 0

0 s−3
s2+2.659s+1.3

]
Note that this system has a different network structure for
both state-space and DSF, as illustrated in Fig. 3. The reader
may verify that these systems do indeed have the same output
spectral density Φ(s). It may also be verified that (16), or
equivalently Lemma 2, is satisfied for the following matrices
S and T :

S =

0 0 0
0 0 0
0 0 −0.15

 , T =

 1 0 0
0 1 0

−0.59 −0.73 1


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The transfer matrix for the second system is given by:

G′(s) =

[
s+0.66

s2+4s+27
−2.9

s2+4s+27
−2.9(s+11.1)

(s+2)(s2+4s+27)
s2+0.34s+23.3

(s+2)(s2+4s+27)

]

which (from Theorem 2) is necessarily non-minimum phase
– it has a transmission zero at s = 3. In this example these
are the only two globally-minimal solutions for Q that have
diagonal P ; additional solutions for P may be obtained by
changing the signs of B′1 in (27).

B. Numerical Simulations

In Remark 5 it was noted that the principal system di-
mension that determines the number of DSF solutions is
l2 = l − 2p1 − p2 as this is the dimension of the ARE.
We simulated 18129 random systems with dimensions in the
ranges given in Table I. For each case, random matrices A
and B are generated such that the system (A,B,

[
I 0

]
, 0)

is stable, minimal and has DSF with P square, diagonal and
full rank. Invertible state transformations are then applied to
this system to convert it into P-diagonal form 2 and the ARE
(18) is formed.

The number of real, symmetric solutions to (18) is deter-
mined and, if finite, all solutions are constructed. For each
solution, (19) is checked and if satisfied, matrices T and J
are chosen to satisfy (20), resulting in a transformed system
(A′, B′,

[
I 0

]
, 0) with DSF (Q′, P ′) and equal spectral

density to the original system. As mentioned in Remark 4,
the matrix P ′ may or may not be diagonal for the chosen T ;
if it is not, there may still exist a T for which it is.

Of the systems considered, 109 (approximately 0.6%) re-
sulted in an ARE with a continuum of solutions and hence
an infinite number of solutions to the network reconstruction
problem. The average number of solutions for the remaining
18020 are shown in Fig. 4, from which it can be seen that
little restriction is provided by (19). The number of solutions
found with P diagonal is a lower bound on the actual number
of such solutions, which therefore lies between the red and
blue lines.

V. FULL INTRINSIC NOISE

We now relax Assumption 5 and assume instead the follow-
ing form of B:

Assumption 7. The matrix B is given by: B =

[
B11 0
0 B22

]
,

where B11 ∈ Rp×p and B22 ∈ Rl×l are square, full rank and
diagonal.

This corresponds to the more general scenario of each state
being driven by an indepedent noise source. The following
lemma, derived directly from Lemma 2, characterises all DSFs
with equal output spectral density.

Lemma 6. Two systems (A,B,C,D) and (A′, B′, C ′, D′)
with DSFs (Q,P ) and (Q′, P ′) under Assumptions 1-4 and
Assumption 7 have equal output spectral density if and only if

TABLE I
RANGE OF SYSTEM DIMENSION USED IN SIMULATIONS

Dimension min max

l2 0 10

p 2 6

l 0 16

0 2 4 6 8 10
10

0

10
1

10
2

Average of 18020 random systems

Dimension of ARE, h
2

N
u
m

b
e
r 

o
f 
s
o

lu
ti
o
n
s

 

 

ARE
a

34
s

22
=0

P diagonal

Fig. 4. Average number of solutions for different cases. In black (-) is the
number of solutions to the ARE (18); in blue (- -) is the number of solutions
that also satisfied (19); in red (-.-) is the number of solutions for which a DSF
with P diagonal was found.

there exists invertible T =

[
I 0
T1 T2

]
∈ Rn×n and symmetric

S2 ∈ Rl×l such that:

A′ = T−1AT (28a)

B′11B
′T
11 = B11B

T
11 (28b)

T1 = S2A
T
12B

−2
11 (28c)

S2Ā+ ĀTS2 − S2B̄B̄
TS2 + Q̄ = 0 (28d)

where Ā, B̄ and Q̄ are defined as:

Ā := AT22

B̄ := (B−111 A12)T

Q̄ := B22B
T
22 − T2B′22B′T22TT2

(29)

It is straightforward to construct multiple solutions to Lemma
6 as illustrated by the following example.

A. Example with Continuum of Solutions

Consider the system from Example II-D with noise inputs
applied to every state:

A =

−1 0 4
0 −2 5
−6 0 −3

 , B =

1 0 0
0 1 0
0 0 1


with C =

[
I 0

]
and D = 0. The DSF is now given by:

Q(s) =

[
0 0
−30

(s+2)(s+3) 0

]
,
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P (s) =

[ s+3
s2+4s+27 0 4

s2+4s+27

0 1
s+2

5
(s+2)(s+3)

]
From (28) the matrices S and T of Lemma 2 are parametrized
by a scalar θ ∈ R:

S(θ) =

0 0 0
0 0 0
0 0 θ

 , T (θ) =

 1 0 0
0 1 0
4θ 5θ T2(θ)


where S2 = θ and T2(θ) =

√
1− 6θ − 41θ2. The set

{θ | θ > −0.99} defines a continuum of solutions S(θ) and
T (θ) to Lemma 6, with, for example, B′11 = B11. This results
in a continuum of DSF solutions with equal spectral density
in which Q(θ) =[

0 20θs+40θ
s2+(4+25θ)s+(27+25θ−592θ2)

20θs+(30−20θ−740θ2)
s2+(5+16θ)s+(6+32θ) 0

]
Clearly neither the structure nor dynamics of the network are
unique.

In practice, therefore, if the commonly-made assumption
that noise is only applied at the measured states does not
hold, the network reconstruction problem is unlikely to have
a unique solution. It may also be verified that this result
remains the same even if the network contains no feedback,
for example by removing element (1, 3) of A.

VI. DISCUSSION AND CONCLUSIONS

The identifiability of the structure and dynamics of an
unknown network driven by unknown noise has been assessed
based on factorizations of the output spectral density. Two
noise models are considered: noise applied only to the manifest
states and noise applied to all the states, the latter of which
is shown to be not identifiable in general. For the former
noise model, the minimum-phase spectral factor is shown to
be unique up to sign and hence such networks are identifiable.
Non-minimum-phase spectral factors then correspond to solu-
tions to an Algebraic Riccati Equation, which can be solved to
compute all non-minimum-phase networks. The results apply
with no restrictions on the topology of the network and can
be derived analogously in discrete time.

The development of an efficient estimation algorithm re-
mains a significant challenge. One approach is suggested in
which factorizations are made from an estimated spectral den-
sity matrix; however robustness to uncertainty in the spectral
density is likely to present difficulties. Methods to estimate
the network solution directly are currently being considered,
one issue being enforcing the requirement for the system to
have a minimal realization. Non-minimal solutions are likely
to be non-unique.

APPENDIX A
PROOF OF LEMMA 3

Proof: The matrix P is defined in (9) and is hence
diagonal if and only if V is; from the definition of V in (7), let
s→∞ to prove the B1 part. With B1 diagonal, V is diagonal
if and only if:

A12(sI −A22)−1B2 (30)

is diagonal. The inverse (sI − A22)−1 can be expressed as a
Neumann series:

(sI −A22)−1 =
1

s

(
I − A22

s

)−1
=

1

s

∞∑
k=0

(
A22

s

)k
if the sum converges. For s > max(|λi|), where λi are the
eigenvalues of A22, this requirement is always met and hence
(30) can be written:

A12(sI −A22)−1B2 =

∞∑
k=0

A12A
k
22B2

sk+1

which is a polynomial in 1
s . This is diagonal if and only if all

of its coefficients are, and by the Cayley-Hamilton Theorem
it is sufficient to check only the first l = dim(A22) of these.

APPENDIX B
PROOF OF THEOREM 2 FOR B1 NOT INVERTIBLE

Continuing from the proof in the text, we have that

U =

[
U11 0
0 J22

]
for some orthogonal U11 and signed identity

J22; we now show that U11 must also be a signed identity
matrix. Since the second block column of B′2 must be zero
from (11), we require: T1B1 = 0. From (5) we now have:

A′12 = A12T
−1
2 (31a)

A′22 = T2(A22 + T−12 T1A12)T−12 (31b)
B′2 = T2B2U (31c)

Define T̂1 := T−12 T1 for clarity. The matrices V and V ′ are
both required to be diagonal by Assumption 5, where:

V ′ = A′12(sI −A′22)−1B′2 +B′1

= A12(sI −A22 − T̂1A12)−1B2U +B1J22

From Lemma 3, since B1J22 is diagonal, V ′ is diagonal if
and only if

A12(A22 + T̂1A12)kB2U (32)

is diagonal for k = 0, . . . , l − 1 where l = dim(A22). Given
that V is diagonal, we will now show that a necessary
condition for V ′ to be diagonal is that U11 is a signed identity.
First note that in P-diagonal form 1:

A12(A22)kB2U =

[
ĉâk b̂U11 0

0 0

]
(33)

and
ĉâk b̂ = diag(γ1α

k
1β1, . . . , γp11α

k
p11βp11) (34)

where p11 = dim(U11). Note also that if
γi,1 = . . . = γi,k = 0:

γiα
k
i βi = γi,k+1 (35)

since (αi, βi, γi, 0) is a realization in controllable canonical
form. Recall that ri = dim(αi) is the order of the transfer
function V (i, i).
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We now prove by induction that the following statement
holds for i = 1, . . . , p11 and for all k ≥ 0 if (32) is diagonal:

If {k < ri and γi,1 = . . . = γi,k+1 = 0}(
A12A

k
22B2U

)
(:, i) = 0(

A12A
k
22B2U

)
(i, :) = 0T

Else
U11(:, i) = (U11(i, :))

T
= ±ei

(36)

Base case: k = 0

Note that ri > 0 for i = 1, . . . , p11 (otherwise V (i, i) = 0) and
hence k < ri for k = 0. Then (32) requires A12B2U to be
diagonal, which is equivalent to:

ĉb̂U11 = diag(γ1,1, . . . , γp11,1)U11 (37)

being diagonal. Consider row i: if γi,1 = 0 then
clearly (A12B2U) (i, :) = 0T and (since it is diago-
nal) (A12B2U) (:, i) = 0 too. Conversely, if γi1 6= 0 then
U11(i, j) = 0 ∀j 6= i (since (37) must be diagonal) and there-
fore U11(i, i) = ±1 such that U is orthogonal. We therefore
have U11(i, :) = ±eTi and (by a standard property of orthog-
onal matrices) U11(:, i) = U11(i, :)T . Hence (36) holds for
k = 0 for all i = 1, . . . , p11.

Induction

Assume (36) holds for k = 0, . . . , k̂ − 1 for some k̂, for
i = 1, . . . , p11, and show that if the k̂th term of (32) is
diagonal then (36) holds for k = k̂. The k̂th term of (32)
is: A12(A22 + T̂1A12)k̂B2U =

A12A
k̂
22B2U +

k̂−1∑
h=0

ζhA12A
h
22B2U (38)

for some ζh. Consider any i for which γi,1 = . . . = γi,k̂ = 0

and note that γi,k̂+1 = 0 ⇒ k̂ < ri, otherwise V (i, i) = 0.
Hence we must show (a) that if γi,k̂+1 = 0, the ith column and
row of A12A

k̂
22B2U are zero vectors and (b) that if γi,k̂+1 6= 0,

the ith column and row of U11 are (signed) unit vectors.
(a): Suppose γi,k̂+1 = 0, then from (33) and (35):(

A12A
k̂
22B2U

)
(i, :) =

[
γi,k̂+1U11(i, :) 0T

]
= 0T

as desired. To show
(
A12A

k̂
22B2U

)
(:, i) = 0 note that the

ith column of the second term in (38) is zero from (36) for
k = 0, . . . , k̂ − 1 and hence the ith column of A12A

k̂
22B2U

must also be zero such that (38) is diagonal.
(b): Suppose γi,k̂+1 6= 0 and consider element (i, j)

of (38) for j 6= i, which must be equal to zero. If
γj,1 = . . . = γj,k̂ = 0 then from (36) for k = 0, . . . , k̂ − 1,
the jth column of the second term in (38) is zero and element
(i, j) is determined only by A12A

k̂
22B2U , giving:(

ĉâk̂ b̂U11

)
(i, j) = γi,k̂+1U11(i, j) = 0

and hence U11(i, j) = 0. Otherwise, if γj,h 6= 0 for some
1 ≤ h ≤ k̂, we have U11(:, j) = ±ej and hence U11(i, j) =
0 directly from (36). Therefore U11(i, j) = 0 ∀j 6= i which
requires U11(i, :) = ±eTi = U11(:, i)T as desired.

Termination

Therefore by induction (36) holds for i = 1, . . . , p11 for all
k ≥ 0. In particular, it holds for k = maxi(ri), in which
case the “if” condition is never satisfied and U11(:, i) = ±ei
for i = 1, . . . , p11 and hence U11 = J11 is a signed identity
matrix.

APPENDIX C
PROOF OF LEMMA 5

Proof: The proof is given for the case where p3 = p2 = 0,
for which the notation is considerably simpler. The proof of
the general case follows in exactly the same manner. In this
case, A12, A22, B1 and B2 are given by:

[
A12 B1

A22 B2

]
=


0 I 0 0
× × α14 I
α31 × α34 0
× × α44 0

 (39)

Equations (16c) and (16d) now simplify to:

A12S2 = 0 (40a)

S2A
T
22 +A22S2 +B2B

T
2 − T2B2B

T
2 T

T
2 = 0 (40b)

from which S2 and T2B2 are required to be in the following
forms, partitioned as A22 and B2:

S2 =

s11 0 s12
0 0 0
sT12 0 s22

 and T2B2 =

t10
t3

 (41)

We will now prove by induction that we must have s11 = 0
and s12 = 0 to satisfy (40) for any valid choice of T2.

Recall that for i = 1, . . . , p1, the number ki is the smallest
value of j in the range 0 < j < l such that α(j)

31 (i, i) 6= 0. Hy-
pothesize that the following statement holds for i = 1, . . . , p1
and for all j = 1, . . . , ki − 1:

α
(j)
34 (i, :)sT12 = 0T

α
(j)
34 (i, :)s22 = 0T

(42)

Base case: j = 1

Multiply (40b) by A12(i, :) on the left for some i in the range
1 ≤ i ≤ p1 with ki > 1:

A12(i, :)S2A
T
22 +A12(i, :)A22S2

+A12(i, :)B2B
T
2 −A12(i, :)T2B2B

T
2 T

T
2 = 0T

and note that directly from (39) and (41) terms one, three and
four are zero. Hence we have:

A12(i, :)A22S2 = 0T (43)

Since α31(i, :) = 0T (because ki > 1), (43) gives:

α34(i, :)sT12 = 0T and α34(i, :)s22 = 0T

The hypothesis (42) therefore holds for j = 1 for all i =
1, . . . , p1 with ki > 1.
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Induction

Suppose for some i in the range 1 ≤ i ≤ p1, for some k̂ < ki,
the hypothesis holds for j = k̂ − 1. This implies that:

α
(k̂−1)
34 (i, :)sT12 = 0T and α

(k̂−1)
34 (i, :)s22 = 0T (44)

Now show that the hypothesis is satisfied for j = k̂ as follows.
First multiply (40b) on the left by A12(i, :)Ak̂−122 to give:

A12(i, :)Ak̂−122 S2A
T
22 +A12(i, :)Ak̂22S2

+A12(i, :)Ak̂−122 B2B
T
2

−A12(i, :)Ak̂−122 T2B2B
T
2 T

T
2 = 0T

(45)

Since α
(k̂−1)
31 (i, :) = 0T , the expression A12(i, :)Ak̂−122 S2 is

equal to zero from (44) and hence the first term in (45) is equal
to zero. The third term is also zero due to α(k̂−1)

31 (i, :) = 0T .
The remaining two terms give:

α
(k̂)
34 (i, :)sT12 − α

(k̂−1)
34 (i, :)t3t

T
1 = 0T (46a)

α
(k̂)
34 (i, :)sT22 − α

(k̂−1)
34 (i, :)t3t

T
3 = 0T (46b)

where we have used the fact that α(k̂)
31 (i, :) = 0T since ki > k̂.

Now multiply (46b) on the right by α(k̂−1)
34 (i, :)T , which, from

(44), gives:

α
(k̂−1)
34 (i, :)t3t

T
3 α

(k̂−1)
34 (i, :)T = 0

which implies α
(k̂−1)
34 (i, :)t3 = 0T . This eliminates all T2

terms from (46), giving the desired result:

α
(k̂)
34 (i, :)sT12 = 0T and α

(k̂)
34 (i, :)sT22 = 0T

By induction the hypothesis (42) therefore holds for all i =
1, . . . , p1 for j = 1, . . . , ki − 1.

Termination

To show that s11 and s12 must be equal to zero, multiply (40b)
on the left by A12(i, :)Aki−122 for any i such that 1 ≤ i ≤ p1.
Recall that:

α
(ki)
31 (i, :) = α

(ki)
31 (i, i)eTi 6= 0

α
(ki)
34 (i, :) = 0T

and hence the equivalent of (46) is:

α
(ki)
31 (i, i)s11(i, :)− α(ki−1)

34 (i, :)t3t
T
1 = 0T (47a)

α
(ki)
31 (i, i)s12(i, :)− α(ki−1)

34 (i, :)t3t
T
3 = 0T (47b)

Since the hypothesis (42) holds for j = ki − 1, we know
that α(ki−1)

34 (i, :)sT12 = 0T . Multiply (47b) on the right by
α
(ki−1)
34 (i, :)T to give α

(ki−1)
34 (i, :)t3 = 0T and (47) then

simplifies to:

α
(ki)
31 (i, i)s11(i, :) = 0T ⇒ s11(i, :) = 0T

α
(ki)
31 (i, i)s12(i, :) = 0T ⇒ s12(i, :) = 0T

Since the above holds for every i = 1, . . . , p1, we therefore
have s11 = 0 and s12 = 0.
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