
Data Driven Discovery of Cyber Physical Systems

Ye Yuan1,2, Xiuchuan Tang3, Wei Zhou1, Wei Pan4, Xiuting Li1,

Hai-Tao Zhang1,2, Han Ding2,3,∗ and Jorge Goncalves1,5,6,∗

1School of Artificial Intelligence and Automation,

Key Laboratory of Image Processing and Intelligent Control,

Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

2State Key Lab of Digital Manufacturing Equipment and Technology,

Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

3School of Mechanical Science and Engineering,

Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

4Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands

5 Department of Engineering, University of Cambridge, CB2 1PZ, United Kingdom

6Luxembourg Centre for Systems Biomedicine, University of Luxembourg,

7 Avenue des Hauts Fourneaux, 4362, Esch-sur-Alzette, Luxembourg

∗Corresponding Authors. E-mail: dinghan@hust.edu.cn, jmg77@cam.ac.uk.

Abstract

Cyber-physical systems embed software into the physical world. They appear in a wide range of

applications such as smart grids, robotics, and intelligent manufacturing. Cyber-physical systems

have proved resistant to modeling due to their intrinsic complexity arising from the combination of

physical and cyber components and the interaction between them. This study proposes a general

framework for discovering cyber-physical systems directly from data. The framework involves the

identification of physical systems as well as the inference of transition logics. It has been applied

successfully to a number of real-world examples. The novel framework seeks to understand the

underlying mechanism of cyber-physical systems as well as make predictions concerning their state

trajectories based on the discovered models. Such information has been proven essential for the

assessment of the performance of cyber-physical systems; it can potentially help debug in the

implementation procedure and guide the redesign to achieve the required performance.

1

INTRODUCTION

Since the invention of computers, software has quickly become ubiquitous in our daily

lives. Software controls domestic machines, such as washing and cooking appliances, aerial

vehicles such as quadrotors, the scheduling of power generation and the monitoring of human

body vital signals. These technologies embed cyber components throughout our physical

world, in fact, almost all modern engineering systems involve the integration of cyber and

physical systems. The integration of cyber and physical components provides new opportu-

nities and challenges. On one hand, this integration produces new functionality in traditional

physical systems, such as brakes and engines in vehicles, intelligent control systems for bio-

chemical processes and wearable devices [1–3]. On the other hand, the integration of cyber

components adds new layers of complexity, potentially seriously complicating their design

to guarantee the performance. Cyber-Physical Systems (CPSs), such as modern power grids

or autonomous cars, require to be economically and safely integrated into society. In power

grids, the failure of transformer taps, capacitors and switching operations alter the dynamics

of the grid, which can be extremely costly. We have, after all, already witnessed a massive

power outage in Southern California on September 2011 due to a cascading failure from a

single line tripping (which was not detected by operators using their model), costing billions

of US dollars. In autonomous driving, autonomous cars are expected to be well-operated in

multiple complex scenarios from driving on multi-lane highway to turning at intersections

while obeying rules. These objectives are achieved through decisions made by high-level soft-

ware and control by low-level computer systems, realizing the command using a combination

of GPS/IMU, camera, radar and LIDAR data [4]. In such complex scenarios, guaranteeing

CPS’s performance poses a fundamental challenge.

For performance guarantees, we require reliable models that capture essential dynamics.

The central question this study seeks to answer, therefore, is how to reliably and efficiently

automate mechanistic modeling of CPSs from data [5]. An appropriate mathematical model

of CPS should recognize the hybridity of CPS, which comprise of discrete and continuous

components due to the integration of software and physical systems, respectively. Hybrid

dynamical systems (detailed below and Supplementary Note 2) use finite-state machines to

model the cyber components and dynamical systems for the physical counterparts. Hybrid

dynamical models can produce accurate predictions and enable assessments of the CPSs’

2

performance [6]. This paper presents a new method, namely Identification of HYbrid

Dynamical Systems (IHYDE), for automating the mechanistic modeling of hybrid dynamical

systems from observed data. IHYDE has low computational complexity and is robust to

noise, enabling its application to real-world CPS problems.

There are various methods for identifying non-hybrid dynamical systems. Schmidt and

Lipson [7] propose a data-driven approach to determine the underlying structure and pa-

rameters of time-invariant nonlinear dynamical systems. Schmidt and Lipson’s method uses

symbolic regression to identify the system, balancing model complexity and accuracy. How-

ever, symbolic regression has its possible limitations: it can be computationally expensive,

does not scale to real large-scale systems, and is prone to overfitting. The work in [8–

10] expand the vector field or map of the underlying system into suitable function series;

then, they use compressive sensing and sparse Bayesian learning techniques to accurately

estimate various terms in the expansion. Later, Brunton et. al. [11] apply a sequentially

thresholded least-square method to discover ordinary differential equations. Although these

recent advances [8–11] manage to reduce the expensive computational burden using com-

pressive sensing and sparse learning, these methods cannot be applied to hybrid dynamical

systems because of the complexity and switching behaviors in hybrid dynamical systems;

basically, these algorithms cannot account for an unknown number of unknown subsystems

that interact via unknown transition logics.

There have been a number of interesting results in hybrid dynamical system identifica-

tion over the past two decades [12–23]. Reference [13] gives a comprehensive literature

review, summarizing major advances up to 2007. Methods span across several fields, such

as algebraic geometry [14], mixed integer programming [17], bounded-error [18], Bayesian

learning [19], clustering-based strategies [20], and multi-modal symbolic regression [21]. The

algebraic geometry [14] and bounded-error [18] methods can handle cases with unknown

model order and number of subsystem models. However, algebraic-geometric methods can-

not deal with discontinuous dynamics. The Bayesian approach in [19] exploits available

prior knowledge about modes and parameters of hybrid systems, which helps tuning pa-

rameters. Clustering-based methods [20] are suitable for cases with little prior knowledge

on physical systems. However, it requires prior knowledge of model order and number of

subsystems. Despite clear merits of all these pioneering contributions, most methods focus

on the simplest hybrid dynamical models: piecewise affine systems with linear transition

3

rules [18].

Recent pioneering results in [15, 16] use compressive sensing [24] to identify the mini-

mum number of subsystems by recovering a sparse vector-valued sequence from data. These

algorithms tradeoff the mismatch between data and model predictions, and the energy of

the noise. Breschi et. al. [25] proposes a regression approach based on recursive clustering

and multi-class linear separation methods. To solve time-varying parameter identification

on stochastic autoregressive models with exogenous inputs (ARX), [26] employs expec-

tation maximization algorithms to recursively solve mixed-integer optimizations problems.

The work in [27] proposes a method based on difference of convex functions programming

to optimize non-smooth and nonconvex objective functions. Finally, [28] aims to identify

switched affine models in a set membership framework, [29] uses hybrid stable spline algo-

rithms, where Gaussian processes model the impulse response of each subsystem, and [30]

uses symbolic regression.

IHYDE aims to provide a more flexible and general framework by directly discovering

the number of subsystems, their dynamics, and the transition logics from data. IHYDE

deals with this problem in two parts: first, the algorithm discovers how many subsystems

interact with each other and identifies a model for each one; second, the algorithm infers the

transition logic between each pair of subsystems. Methods in [9, 11, 15] can be viewed as

special cases of the first step in this new framework. IHYDE is illustrated on a number of

examples, ranging from power engineering and autonomous driving to medical applications,

to demonstrate the algorithm’s application to various types of datasets.

RESULTS

The IHYDE algorithm

This section is divided in two major parts. The first presents the proposed inference-

based IHYDE algorithm using a simple example – a thermostat, while the second illustrates

its applicability to a wide range of systems, from real physical systems to challenging in

silico systems, and from linear to nonlinear dynamics and transition rules. Details of both

the algorithm and how data was acquired or generated can be found in Supplementary

Information.

4

The inference-based IHYDE algorithm applied to a thermostat. This section

explains the key concepts of IHYDE using one of the simplest and ubiquitous hybrid dynam-

ical systems: a room temperature control system consisting of a heater and a thermostat.

The objective of the thermostat is to keep the room temperature y(t) near a user specified

temperature. At any given time, the thermostat can turn the heater on or off. When the

heater is off, the temperature dissipates to the exterior at a rate of −ay(t) degrees Celsius

per hour, where a > 0 is related to the insulation of the room. When the heater is on, it

provides a temperature increase rate of 30a degrees Celsius per hour (Fig. 1a).

Assume a desired temperature is set to 20 degrees Celsius. Thermostats are equipped with

hysteresis to avoid chattering, i.e., fast switching between on and off. A possible transition

rule is to turn the heater on when the temperature falls bellow 19 degrees, and switching it

off when it reaches 21 degrees (Fig. 1b). The goal of IHYDE is to infer both subsystems plus

the transition logics from only the observed time-series data of the temperature (Fig. 1c).

Next, we shall illustrate the key ideas of the proposed algorithm on this simple example.

Inferring subsystems. The first step of the proposed IHYDE algorithm is to iteratively

discover which subsystem of the thermostat generated which time-series data. Initially, the

algorithm searches for the subsystem that captures the most data, since this subsystem

would explain the largest amount of data. In this case, the algorithm would firstly discover

subsystem 2 (heater on) since more than half of the data corresponds to that subsystem (see

Fig. 1c). The time-series portion of the data (Fig. 1d) is then used to find the dynamics of

subsystem 2. The algorithm is then repeated on the remaining data (Fig. 1e). In this case,

there is only one subsystem left (heater off). Hence, the algorithm classifies all the rest data

to a subsystem and identifies the corresponding dynamics.

Inferring transition logics. The second and final step is to identify the transition

logics between the two subsystems, i.e., what triggered the transitions from on to off and

from off to on. Starting with subsystem 2 (heater on) and its associated data in Fig. 1d,

the algorithm first learns that no switch occurs when the temperature changes from just

below 19 to near 21. Since the switch happens when the temperature reaches 21 degrees,

the algorithm concludes that the switch from on to off happens when y(t) = 21 degrees. In

practice, however, the software detects the switches when y(t) ≥ 21. Similarly, from Fig. 1e,

the algorithm learns that the switch from on to off happens when y(t) ≤ 19.

In summary, IHYDE automatically learns the dynamics of all subsystems and the tran-

5

sition rules from one subsystem to another. While this is a simple system, as we will show

next, this is true even in the presence of a large number of subsystems, potentially with

nonlinear dynamics and transition rules.

Applications

Next, we illustrate how IHYDE can be applied to a wide range of applications, from

power engineering to robotics and medicine, showing the flexibility, applicability and power

of IHYDE to model complex CPSs. Here, we consider the following examples. 0) Benchmark

examples (see Supplementary Note 3, Example 1, 2, 3 and 4); 1) Autonomous vehicles and

robots: design and validation of an autonomous vehicle (see Supplementary Note 3, Example

5); 2) Complex electronics: Chua’a circuit (see Supplementary Note 3, Example 6); 3)

Monitoring of industrial processes: monitoring a wind turbine (see Supplementary Note

3, Example 7); 4) Power systems: transmission lines and smart grids (see Supplementary

Note 3, Example 8 and 9); 5) Medical applications: heart atrial active potential monitoring

(see Supplementary Note 3, Example 10). To test IHYDE’s performance, these systems

will include both experimental and synthetic datasets. Details can be found below and in

Supplementary Note 3.

Fig. 2 contains a summary of the most important systems analyzed in the paper. The

first three examples are based on real experimental data, while the other three are based

on simulated data. The first two columns illustrate the systems and the corresponding

subsystems respectively where each subsystem is associated with a particular color. The

third column shows the original time-series data (dots) in the color associated with the

subsystem that generated it, the fitted data from the identified models (lines connecting the

dots), and the location of the transitions (changes in colors). Note that, at this resolution,

the original data and the data obtained from the fitted models are indistinguishable. The last

column presents the relative error ratio [31] between the true data and the data simulated

by the fitted model. A small error ratio indicates a good agreement between the true and

modeled systems, and serves as a measure of the performance of IHYDE. Data is either

collected (real systems) or simulated (synthetic systems) and captures all key transitions.

As seen in column 3 and column 4 of Fig. 2, IHYDE successfully discovers the original

dynamics that generated the data in all examples with extremely high precision (nearly zero

6

identification errors). First, it is able to classify each time point according to the respective

subsystem that generated it. Second, it identifies the dynamics of each subsystem with a

very small error (less than 0.03% on all simulated examples). Finally, it correctly identifies

the transition rules between subsystems.

Autonomous vehicles and robots: design and validation. To demonstrate

IHYDE’s usefulness in designing and validating complex systems, we test the algorithm

on an autonomous vehicle, custom built in the lab (Fig. 2A). Typically, the design pro-

cess of complex systems consists of an arduous, time-consuming, and trial-and-error based

approach: start from an initial design, evaluate its performance and revise it until the

performance is satisfied. A primary issue with this iterative approach is that when a design

fails to meet desired specifications, many times engineers have little to no insight on how

to improve the next iteration. Often, an engineer cannot discern whether the issue is due

to poor mechanical design, issues with the software, or factors that were not considered.

And this is also true with other general complex CPSs that involve interactions between

physical/mechanical parts and software.

The autonomous electrical car consists of a body, a MK60t board, a servo motor, a

driving motor, and a camera. The design goal of the autonomous car was to successfully run

through a winding track as quickly as possible. Using an embedded camera, the software

captures information of the upcoming road layout to ascertain whether a straightway or a

curve is coming up. Based on this information, the motor chooses an appropriate power

to match the desired speed control strategy. For the purpose of illustration, we consider

a simple controller that provides higher velocities on straightways and lower velocities on

curves. In addition, simple feedback controllers help the car follow the chosen speed and stay

on the track. The speed control strategy is based on incremental proportional and integral

(PI) control that keeps the car at the correct speed, while the switching rule decides on the

correct speed depending on whether a straight or curve is coming up.

For the first-round design, we deliberately swap the straightway and curve speeds to

mimic a software bug. As a consequence, the car moves rather slow in the straights and

leaves the tracks in the curves (Supplementary Movie 1). While in this case it is rather easy

for engineers to spot the software bug; debugging, in general, can be extremely difficult,

sometimes only possible by trial and error, and, as a consequence, very time consuming.

One would like to check whether these types of bugs could be detected by IHYDE. Indeed,

7

from the data generated by the faulty system, IHYDE compares its discovered models with

the to-be-built ones, pinpoints the incorrect speed controllers. Hence, from data alone,

IHYDE has successfully discovered both the control strategy and software of the designed

car and pinpointed the software bug.

Complex electronics: Chua’s circuit. Debugging and verifying complex, large scale

electronics can be a daunting experience. Modeling could help identify whether a device

has been built according to the desired specifications by identifying faulty connections or

incorrect implementations. Simple electrical circuits, such as RLC circuits, are linear and

easy to model. However, most electronic circuits introduce both nonlinear dynamics and

switches (e.g., diodes and transistors), which can lead to extremely complex behaviors. Thus,

modeling such systems can be very challenging.

To illustrate IHYDE’s applicability in this scenario, we build an electronic circuit that

exhibits complex behaviors. We choose a well known system, called the Chua’s circuit [32],

that exhibits chaotic trajectories (Fig. 2B). Chaotic systems constitute a class of systems

that depend highly on initial conditions, and makes simulation and modeling very challeng-

ing. Our circuit consists of an inductor, two capacitors, a passive resistor and an active

nonlinear resistor, which fits the condition for chaos with the least components. The most

important active nonlinear resistor is a conceptual component that can be built with oper-

ational amplifiers and linear resistors. The resulting nonlinear resistor is piecewise linear,

making the Chua’s circuit a hybrid dynamical system with a total of three subsystems and

a well-defined transition logic.

After collecting real data measured from the circuit, IHYDE successfully captures the

dynamics of system and the transition rules between identified subsystems. In particular,

the nonlinear dynamics are consistent with the true parameters of the circuit elements. As

with all examples, modeling of the Chuas circuit is achieved using only the data and the basic

knowledge of the field (to guide the choice of nonlinearities), without other assumptions on

dynamics or switching behaviors. This application demonstrates the capabilities of IHYDE

in revealing underlying mechanistic model of complex circuit.

Monitoring of industrial processes: wind turbines platform. Next, we consider

the problem of real-time monitoring industrial processes. Modeling large scale industrial

processes is challenging due to the large number of parts involved, nonlinear dynamics and

switching behaviors. Switches, in particular, are caused by breaking down of parts (due

8

to wear and tear) and turning processes on and off, which introduce discontinuities in the

dynamics. We propose IHYDE as a tool to detect these switches as quickly as possible to

prevent lengthy and expensive downtimes in industrial processes.

To put IHYDE to the test, we use real data from a wind turbine platform built in [33]. The

data consists of measurements of the current generated by the wind turbine experimental

platform under different operating conditions (Fig. 2C). The system included a 380V power

supply, a variable load, a power generator, a motor, a fan, two couplings and a gearbox

that transmits the energy generated by the wind wheel to the power generator [33]. We

perform experiments under normal and faulty conditions (a broken tooth of gearbox) and

down-sample the measuring current of the wind turbine with a period 0.3 seconds. In both

experiments, the generator speed is 200 revolutions per minute and the load is 1.5 KNm.

IHYDE is tested under two different scenarios: offline modeling, used, for example, at the

design stage; and online modeling, for real-time monitoring. In offline modeling, all the data

are available for modeling, while in real-time monitoring only past data are available, and

the system is continuously modeled as new data is gathered. In offline modeling, IHYDE

identifies two linear subsystems, corresponding to the system in the two different conditions.

In addition, it correctly detects the fault right after it happens and infers the transition

logic. In online modeling, a model predicts the next time-series data point, and compares it

with the real one, when this becomes available. If the difference is high, IHYDE detects a

transition, builds a new model, and compares it with the old model to pinpoint the location

of the fault. This example focuses on online modeling: the fault is detected within only

3 data points following its occurrence. This application demonstrates the capabilities of

IHYDE in online monitoring of industrial processes.

Power systems: smart grids and transmission lines. Smart grids have been gaining

considerable attention in the last decades and are transforming how power systems are

developed, implemented and operated. They considerably improve efficiency, performance

and makes renewable power feasible. In addition, it overhauls aging equipment and facilitates

real-time troubleshooting, which decreases brownouts, blackouts, and surges. As with all

critical infrastructures, smart grids require strict safety and reliability constraints. Thus,

it is of great importance to design monitoring schemes to diagnose anomalies caused by

unpredicted or sudden faults [34]. Here, we consider two examples of power systems: real-

time modeling to control smart grids and pinpointing the location of a transmission line

9

failure.

We start by illustrating how IHYDE can model and control smart grids in real-time.

Accurate model information is not only necessary for daily operation and scheduling, but

also critical for other advanced techniques such as state estimation and optimal power flow

computation. However, such information is not always available in distribution systems

due to frequent model changes [35]. These changes include: high uncertainty in distributed

energy resources, such as components being added and removed from the network; unex-

pected events, such as line faults and unreported line maintenance; and trigger of automatic

control and protection measures. We apply IHYDE to identify network models and infer

transition logics, capturing model changes from advanced metering infrastructure data and

in real-time. The 33-bus benchmark distribution system [36] generates the data. It is a

hypothetical 12.66 KV system with a substation, 4 feeders, 32 buses, and 5 tie switches [36].

The system is not well-compensated and lossy, and is widely used to study network recon-

figuration problems. Assume the loads on some remote nodes of a feeder suddenly increase,

causing voltage sag. Subsequently, an operator takes switch action for load balancing and

voltage regulation. (Supplementary Figure 12) depicts the switching topologies and the real

transition logic. Suppose we can measure all active and reactive power consumptions, and

voltage phasors of the nodes. Hence, the system is changing between two configurations

corresponding to topologies when some switches turn on and off. For each node and subsys-

tem, IHYDE successfully identifies the responding column of the admittance matrices with

nearly zero identification errors. The identified admittance matrices at the switching time

instants are very different from that of the previous moments, indicating a model switching

(corresponding to changes in colors on the data in Fig. 2D). Indeed, the identified logic is

consistent with the real logic and demonstrates that IHYDE can reveal voltage drops at

specific nodes in real-time and suggest switch action to avoid sharp voltage drops.

To simulate a transmission line failure, we assume that a transmission line fails between

two buses in the network. We will use a standard benchmark IEEE 14-bus power network

[37]. This system consists of generators, transmission lines, transformers, loads and capac-

itor banks. Looking directly at the generated data (Fig. 2E), it is not clear when the fault

occurred, and much less what happened at the time of failure and where it was located.

This is because the power system compensated the failure by rerouting power across other

lines. IHYDE, however, can immediately detect the occurrence of this event and determine

10

its location. This is done by estimating the new admittance matrix using only 10 mea-

surements following the failure (corresponding to 166.7 milliseconds, according to the IEEE

synchrophasor measurements standard C37.118, 2011). Basically, it successfully discovers

both subsystems (normal and failure) from data and calculates the difference of the discov-

ered subsystems (leading to the location of the fault). Given the frequency at which Phasor

Measurement Units (PMUs) sample voltage and current, IHYDE is able to locate the fault

in a few hundred milliseconds after the event occurs, enabling the operators to detect the

event, identify its location, and take remedial actions in real-time.

Medical applications: heart atrial active potential monitoring. The development

of medical devices is another active research area. Especially, with the widespread use of

wearables and smart devices, there is an exponential growth of data collection. These data

requires personalized modeling algorithms to extract critical information for diagnosis and

treatments. Within this context, we apply IHYDE to model data gathered from a human

atrial action potential (AP) system [38]. The human atrial AP and ionic currents that

underlie its morphology are of great importance to our understanding and prediction of the

electrical properties of atrial tissues under normal and pathological conditions.

The model captures the spiking of the atrial AP. In particular, two gating variables

capture the fast and slow inactivation with switching dynamics. Following a spike, these

two variables raise, preventing a new spike. Eventually, as the AP returns to low values,

the inactivation dynamics switch back, and in time allow a new spike to take place. The

goal is to test whether IHYDE can detect these transitions, together with the rules that

led to the switch. Two scenarios are considered here: the first scenario assumes the first-

principle model parameterization is available while the second not. In the first scenario,

IHYDE indeed identifies the two subsystems, together with their dynamics, and pinpoints

the changing logic correctly (Fig. 2F). For the second scenario, we repeat the modeling of

this system, this time assuming that the choice of dictionary functions is unclear and/or the

domain knowledge is lacking. In such cases, we consider a canonical dictionary function,

such as polynomials approximations. IHYDE can still detect the transition points. However,

the nonlinear dynamics are different than the true ones: as expected, it identifies instead

a polynomial approximation of the original nonlinear dynamics. While these dynamics can

still be used for simulation and trajectory prediction, they are not in a form that reveals

physical meaning. For an interpretable model, we require domain knowledge. Hence, IHYDE

11

provides a reliable model to study the system and to build devices to detect abnormal AP.

DISCUSSION

This work presents a new framework for identifying CPSs from data. Current state-of-

the-art methods assume either parameterization of the system and/or the exact dynamics

of subsystems, number of subsystems, or the switching rules. Instead, IHYDE only requires

similar assumptions to those in literature. For example, full state measurements, linear de-

pendence of the to-be-identified parameters and the choice of dictionary functions generally

guided by the area of the application [9, 11]. IHYDE successfully identifies complex mech-

anistic models directly from data, including the subsystem dynamics and their associated

transition logics. The proposed method differs from classical machine learning tools, such

as deep neural network models [39], which typically do not provide insight on the under-

lying mechanisms of the systems (as the state-variables and learned parameters have no

direct meaning). While IHYDE is inspired by prior work in symbolic regression [30], it has

much lower computational complexity due to the use of convex optimization formulation.

As a result, it can solve large-scale CPSs, facilitating its application to complex real-world

problems.

After IHYDE models a CPS, the resulting model can help verify the design specifications

and predict future trajectories. If the CPS model reveals bugs or flaws in the implementa-

tion, it can potentially guide the redesign to achieve the required performance. Applications

include robotics and automated vehicles, where data-driven models promise to reduce the

reliance on trial and error. Furthermore, IHYDE can monitor, detect, and pinpoint real-time

faults of CPSs (for example, power systems), thereby helping avoid catastrophic failures. As

seen in the results section, IHYDE can be applied to a wide range of applications. Sup-

plementary Information includes additional examples on canonical hybrid dynamical sys-

tems [30]. As before, IHYDE successfully identifies both the subsystems and the transition

rules (Supplementary Note 3, Example 1 - Example 4).

One more thing, IHYDE unifies previous results as it can discover not only hybrid dy-

namical systems, but also non-hybrid dynamical systems (i.e., time-invariant linear and

nonlinear systems [9, 11]) as special cases. This is confirmed in (Supplementary Method

1), where IHYDE successfully identifies the original canonical dynamical systems from the

12

data in [11] (Supplementary Table 48). Hence, IHYDE provides a unified approach to the

discovery of hybrid and non-hybrid dynamical systems.

While the approach has a number of advantages, there are still some open questions. First,

it requires a new theory to understand when particular datasets are informative enough to

uniquely identify a single (the true) hybrid dynamical system. Identifiability is a central topic

in system identification and provides guarantees that there does not exist multiple systems

that can produce the same data. This is illustrated in Supplementary Discussions, where

we construct several hybrid dynamical systems that yield the exact same data, and hence

cannot be differentiated from data alone. A second issue lies in the linear parameterization

of the model. For equations whose parameters enter nonlinearly, gradient descent can be

applied to obtain a local minimizer, although in this case a global optimum cannot typically

be guaranteed. Finally, the choice of dictionary functions is generally guided by the area of

the system. Any insight or domain knowledge to construct dictionary functions for hybrid

dynamical systems can help reduce computational burden and improve model accuracy.

When the domain knowledge in unclear or lacking, canonical dictionary functions, such

as polynomials, kernels, Fourier series, can approximate the true dynamics. An example in

(Supplementary Discussion 3) illustrates how a polynomial series successfully approximates a

sinusoid. However, in these cases the exact original true function may be lost or hard to find,

as illustrated in (Supplementary Note 3, Example 10). There, while IHYDE can still detect

the location of switches, it discovers different dynamics based on the choice of the canonical

dictionary function. Nevertheless, these dynamics can still be used for prediction since they

still approximate the main dynamics of each subsystem (see for example, Supplementary

Discussion 3).

METHODS

The theoretical foundation of IHYDE algorithm. Motivated by the above ex-

ample, we shall give a formal definition of hybrid dynamical systems. Physical systems

are characterized by inputs u(t) ∈ Rm and outputs y(t) ∈ Rn. Based on these vari-

ables, at any given time a particular mode m(t) is chosen from a possible total of K

modes, i.e., m(t) ∈ {1, 2, ..., K}. Each mode corresponds to a particular set of physi-

cal parameters. The physical system evolves according to sets of differential equations:

13

dy(t)
dt

= Fk (y(t),u(t)) , k = 1, 2, . . . , K, where each Fk(y(t),u(t)) is related to the dynam-

ics of subsystem k. Assume y(t) and u(t) are sampled at a rate h > 0, i.e. sampled at

times 0, h, 2h, 3h.... For fast enough sampling (for small sampling period h), one of the

simplest method to approximate derivatives is to consider dy(t)
dt
≈ y(t+h)−y(t)

h
, which yields

the discrete-time system y(t+ h) = y(t) + h Fk(y(t),u(t)) , fk(y(t),u(t)), k = 1, 2, . . . , K.

At any given time, the decision of the transition logic to switch to another subsystem is

governed by transition rules of the form m(t + h) = T (m(t),y(t),u(t)). Hence, the current

input-output variables y(t),u(t) plus the current subsystem mode m(t) determine, via a

function T , the next subsystem mode. Without loss of generality, we can rescale the time

variable t so that h = 1. Thus, we can construct the following mathematical model for

hybrid dynamical systems

m(t+ 1) = T (m(t),y(t),u(t)),

y(t+ 1) = f(m(t),y(t),u(t)) =


f1(y(t),u(t)), if m(t) = 1,

... ,
...

fK(y(t),u(t)), if m(t) = K.

Given the mathematical definition of the hybrid dynamical systems, we can then propose

the IHYDE algorithm for discovering such systems from data.

Inferring subsystems. Let Y and U denote column vectors containing all the samples

of y(t) and u(t), respectively, for t = 1, 2, . . . ,M + 1, where M + 1 is the total number

of samples. The first step to identify the subsystems is to construct a library Φ(Y,U) of

nonlinear functions from the input-output data. The exact choice of nonlinear functions in

this library depends on the actual application. For example, for simple mechanical systems,

Φ would consist of constant, linear and trigonometric terms; in biological networks, Φ would

consist of polynomial (mass action kinetics) and sigmoidal (enzyme kinetics) terms. Let

Y =

 y(1) y(2) . . . y(M)



T

, U =

 u(1) u(2) . . . u(M)



T

, Ȳ ,

 y(2) y(3) . . . y(M + 1)



T

.

As an illustration, for polynomials (assuming U = 0 for notational simplicity) we would

have Φ(Y,U) =

[
1 Y YP2 · · ·

]
where higher polynomials are denoted as YP2 ,YP3 , etc.

14

For instance, YP2 denotes quadratic nonlinearities[11]:

YP2 =



y21(1) y1(1)y2(1) · · · y2n(1)

y21(2) y1(2)y2(2) · · · y2n(2)

...
...

. . .
...

y21(M) y1(M)y2(M) · · · y2n(M)


.

Basically, each column of Φ(Y,U) represents a candidate function for a nonlinearity in fk.

Define the residual as

Z ,

[
z1 z2 . . . zn

]
= Ȳ −ΦW −Ξ,

where Ξ =

[
ξ1, . . . , ξn

]
, ξi are realizations of i.i.d Gaussian random variable ξ (i.e., ξ ∼

N (0, λI)) to model uncertainty and noise and a matrix of coefficients W =

[
w1 w2 . . . wn

]
,

where wi ∈ RP×1 and P < M is the total number of candidate functions in the library. The

nonzero elements in W determine which nonlinearities are active [9, 11] and the correspond-

ing parameters.

The first objective is to find the sparsest possible Z that the most input-output data is

fitted, i.e.,

Z∗ = arg min
Z
‖Z‖`0 ,

subject to: Z = Ȳ −ΦW −Ξ.

As a result, the indexes of the zero entries of Z∗ correspond to the indexes for input-output

that can be fitted by a single subsystem. This initial idea is an extension of those presented

in [15], yet the major difference is that we propose a robust Bayesian algorithm that works

even for noisy data with better performance (see Supplementary Method 1 for comparison).

Assume, without loss of generality, that the dictionary matrix Φ is full rank. A key step

is to define a transformation matrix Θ ∈ R(M−P)×M whose rows {Θ[1, :], . . . ,Θ[M − P, :]}
form a basis for the left null space of Φ. Then, it follows that ΘȲ = ΘZ + ΘΞ. Let

˜̄Y , ΘȲ and Π = ΘΘT , then

P (˜̄Y|Z) = N (˜̄Y|ΘZ, λΠ) ∝ exp

[
− 1

2λ

∥∥∥(˜̄Y −ΘZ)TΠ−1(˜̄Y −ΘZ)
∥∥∥2
F

]
. (1)

Each column of ˜̄Y (i.e., ˜̄yi) can be identified independently for i = 1, · · · , n (let zi be the

ith column of Z)

P (˜̄yi|zi) = N (˜̄yi|Θzi, λΠ) ∝ exp

[
− 1

2λ
(˜̄yi −Θzi)

TΠ−1(˜̄yi −Θzi)

]
. (2)

15

We introduce the Gaussian likelihood in (2) and the variational prior

P (zi) = max
γj>0

∏
j

N (zji|0, γj)ϕ(γj) = max
Γ�0
N (zi|0,Γ)

∏
j

ϕ(γj),

where Γ , diag{γ} and ϕ(γj) is a nonnegative function. The target is to maximize the

marginal likelihood as

∫
N (˜̄yi|Θzi, λΠ)N (zi|0,Γ)

∏
j

ϕ(γj)dzi. (3)

Using results in [9], we can get the following optimization problem jointly on zi and γ,

min
zi,γ

1

λ

(
˜̄yi −Θzi

)T
Π−1

(
˜̄yi −Θzi

)
+ zTi Γ−1zi + log det(λΠ + ΘΓΘT) +

∑
j

logϕ(γj).

For the case of uniform priors, let ϕ(γj) = 1. This program can be formulated as a convex-

concave procedure (CCCP), i.e., where the first part of the function

u(zi,γ) =
1

λ

(
˜̄yi −Θzi

)T
Π−1

(
˜̄yi −Θzi

)
+ zTi Γ−1zi (4)

is jointly convex in zi and γ, and the second part

s(γ) = log det(λΠ + ΘΓΘT) (5)

is concave in γ.

Now the high level plan is to optimize over each set of variables iteratively based on

CCCP, as follows:

zk+1
i = arg min

zi

u(zi,γ
k),

γk+1 = arg min
γ≥0

u(zki ,γ) +∇γs(γ
k)Tγ.

(6)

Then we propose our algorithm to solve the above procedure and the pseudo code is sum-

marized in Algorithm 1.

16

Algorithm 1 Reweighted `1 type algorithm
1: Initialize the unknown zi as a unit vector;

2: A tunable hyperparameter λ;

3: for k = 1, . . . ,Kmax do

4:

zk+1
i = arg min

zi

1

2

(
˜̄yi −Θzi

)T
Π−1

(
˜̄yi −Θzi

)
+ λ

∑
j

|αkj · zji|; (7)

5: γk+1
j =

∣∣∣∣ zk+1
ji

αk
j

∣∣∣∣, αk+1
j =

(
θTj (λΠ + ΘΓk+1ΘT)−1θj

) 1
2
;

6: if a stopping criterion is satisfied then

7: Break.

8: end if

9: end for

This step classifies which time points correspond to which subsystem. The second objec-

tive identifies the actual dynamics of each subsystem. The algorithm starts with subsystem

k (we neglect the index k for notational simplicity below), which is the one associated with

the largest number of time points. Let I denote those time points associated with subsys-

tem k. Once every data point is associated to different subsystems, next, we shall infer the

dynamics of every subsystem. We set up yet another sparse regression problem to determine

the sparse vectors of coefficients. The sparse coefficients W ,

[
w1 . . . wn

]
of subsystem k

are then identified by solving the following optimization problem

W∗ = arg min
wi

1

2
‖Ȳ[I, :]−Φ[I, :]W‖2F + λw

n∑
i=1

‖wi‖`1 ,

where λw is a hyperparameter that trades off estimation error and model complexity. These

hyperparameters are principally tuned using results in (Supplementary Method 1). We then

remove the data points in I that has already been fitted by the subsystem. Once we have

the new Ȳ and Θ, we can solve the same problem with the remaining time points (where

the corresponding elements of Ȳ and the corresponding row of Θ are nonzero) using the

exact same procedure. IHYDE repeats these two steps iteratively until all subsystems have

been identified and no data is left. The number of iterations gives the minimum number of

subsystems. Further details are found in (Supplementary Algorithm 2).

Inferring transition logics. Once every data point has been classified to different

subsystems, define ηi(t) as the set membership: it equals to 1 only if the subsystem i is

17

active at discrete-time t, otherwise it equals to 0. These functions are known from the

information in the subsystem identification above. Here, we are interested in learning what

functions trigger the switch from one subsystem to another. Define also step(x), which equals

to 1 if x ≥ 0, and 0 otherwise. Mathematically, we are searching for a nonlinear function

g, such that step(g(y(t),u(t))) specifies the membership. Due to non-differentiability of

step functions at 0, we alternatively relax the step function to a sigmoid function, i.e.,

ηj(t+1) ≈ 1
1+e−g(y(t),u(t)) [30], where j is a potential subsystem that can jump to at time t+1.

If we can parameterize g(y(t),u(t)) as a linear combination of over-determined dictionary

matrix, i.e., g(y(t),u(t)) , Ψ(Y,U)[t, :]v, in which Ψ can be constructed similarly to Φ in

the previous subsection and v is a vector of to-be-discovered parameters. We formulate the

following optimization problem:

min
v

M∑
t=1

ηi(t)

∥∥∥∥ηj(t+ 1)− 1

1 + e−g(y(t),u(t))

∥∥∥∥2
`2

. (8)

Further details can be found in (Supplementary Algorithm 3). It should be noted that, the

optimization problem in Eq. (8) is also convex in v, which yields a computationally efficient

solution.

Data availability. All data needed to evaluate the conclusions in the paper are avail-

able at [https://github.com/HAIRLAB/CPSid] except datasets from [30] (Supplementary

Note 3, Example 1 to 4). Code availability. The code implementation is available at

[https://github.com/HAIRLAB/CPSid].

REFERENCES

[1] Poovendran, R. Cyber-physical systems: Close encounters between two parallel worlds [point

of view]. Proc. IEEE 98, 1363-1366 (2010).

[2] Antsaklis, P. A Brief Introduction to the Theory and Applications of Hybrid Systems. Proc.

IEEE 88, 879-887 (2000).

[3] Aihara, K. & Suzuki, H. Theory of hybrid dynamical systems and its applications to biological

and medical systems. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 368, 4893-4914 (2010).

[4] Wooden, D., Powers, M., Egerstedt, M., Christensen, H. & Balch, T. A modular, hybrid

system architecture for autonomous, urban driving. J. Aerosp. Inf. Syst. 4, 1047-1058 (2012).

18

[5] Wang, W. X., Lai, Y. C. & Grebogi, C. Data based identification and prediction of nonlinear

and complex dynamical systems. Phys. Rep. 644, 1-76 (2016).

[6] Van Der Schaft, A. J. & Schumacher, J. M. An Introduction to Hybrid Dynamical Systems

(Springer-Verlag, London, 2000).

[7] Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science

324, 81-85 (2009).

[8] Wang, W. X., Yang, R., Lai, Y. C., Kovanis, V. & Grebogi, C. Predicting catastrophes in

nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106, 154101 (2011).

[9] Pan, W., Yuan, Y., Goncalves, J. & Stan, G. B. Reconstruction of arbitrary biochemical reac-

tion networks: A compressive sensing approach. In Proceedings of the 51st IEEE Conference

on Decision and Control, 2334-2339 (2012).

[10] Chang, Y. H. & Tomlin, C. Data-driven graph reconstruction using compressive sensing. In

Proceedings of the 51st IEEE Conference on Decision and Control, 1035-1040 (2012).

[11] Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by

sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 113, 3932-

3937 (2016).

[12] Ohlsson, H. & Ljung, L. Identification of switched linear regression models using sum-of-norms

regularization. Automatica 49, 1045-1050 (2013).

[13] Paoletti, S., Juloski, A. L., Ferrari-Trecate, G. & Vidal, R. Identification of hybrid systems a

tutorial. Eur. J. Control 13, 242-260 (2007).

[14] Vidal, R., Soatto, S., Ma, Y. & Sastry, S. An algebraic geometric approach to the identification

of a class of linear hybrid systems. In Proceedings of the IEEE Conference on Decision and

Control, 167-172 (2003).

[15] Bako, L. Identification of switched linear systems via sparse optimization. Automatica 47,

668-677 (2011).

[16] Ozay, N., Sznaier, M., Lagoa, C. & Camps, O. A sparsification approach to set membership

identification of a class of affine hybrid systems. In Proceedings of the IEEE Conference on

Decision and Control, 123-130 (2008).

[17] Roll, J., Bemporad, A. & Ljung, L. Identification of piecewise affine systems via mixed-integer

programming. Automatica 40, 37-50 (2004).

[18] Bemporad, A., Garulli, A., Paoletti, S. & Vicino, A. A bounded-error approach to piecewise

19

affine system identification. IEEE Trans. Autom. Control 50, 1567-1580 (2005).

[19] Juloski, A. L., Weiland, S. & Heemels, W. A Bayesian approach to identification of hybrid

systems. IEEE Trans. Autom. Control 50,1520-1533 (2005).

[20] Nakada, H., Takaba, K. & Katayama, T. Identification of piecewise affine systems based on

statistical clustering technique. Automatica 41, 905-913 (2005).

[21] Ferrari-Trecate, G., Muselli, M., Liberati, D. & Morari, M. A clustering technique for the

identification of piecewise affine systems. Automatica 39, 205-217 (2003).

[22] Oishi, M. & May, E. Addressing biological circuit simulation accuracy: Reachability for pa-

rameter identification and initial conditions. In Proceedings of the IEEE-NIH Life Science

Systems and Applications Workshop, 152-155 (2007).

[23] Thai, J. & Bayen, A. M. State estimation for polyhedral hybrid systems and applications to

the Godunov scheme for highway traffic estimation. IEEE Trans. Autom. Control 60, 311-326

(2015).

[24] Candes, E. J. Compressive sampling. In Proceedings of the international congress of mathe-

maticians, 1433-1452 (2006).

[25] Breschi, V., Piga, D. & Bemporad, A. Piecewise affine regression via recursive multiple least

squares and multicategory discrimination. Automatica 73, 155-162 (2016).

[26] Hartmann, A., Lemos, J. M., Costa, R. S., Xavier, J. & Vinga, S. Identification of switched

ARX models via convex optimization and expectation maximization. J. Process Control 28,

9-16 (2015).

[27] Dinh, T. P., Le, H. M., Le Thi, H. A. & Lauer, F. A difference of convex functions algorithm

for switched linear regression. IEEE Trans. Autom. Control 59, 2277-2282 (2014).

[28] Ozay, N., Sznaier, M., Lagoa, C. M. & Camps, O. I. A sparsification approach to set mem-

bership identification of switched affine systems. IEEE Trans. Autom. Control 57, 634-648

(2011).

[29] Pillonetto, G. A new kernel-based approach to hybrid system identification. Automatica 70,

21-31 (2016).

[30] Ly, D. L. & Lipson, H. Learning symbolic representations of hybrid dynamical systems. J.

Mach. Learn. Res. 13, 3585-3618 (2012).

[31] Ljung, L. System identification: theory for the user (PTR Prentice Hall, Upper Saddle River,

NJ 1999).

20

[32] Chua, L. O., Itoh, M., Kocarev, L. & Eckert, K. Chaos synchronization in Chua’s circuit. J.

Circuits Syst. Comput. 2, 705-708 (2011).

[33] He, Q., Guo, Y., Wang, X., Ren, Z. & Li, J. Gearbox fault diagnosis based on RB-SSD and

MCKD. China Mechanical Engineering 28, 1528-1534 (2017).

[34] Pan, W., Yuan, Y., Sandberg, H., Goncalves, J. & Stan, G. B. Online fault diagnosis for

nonlinear power systems. Automatica 55, 27-36 (2015).

[35] Weng, Y., Liao, Y. & Rajagopal, R. Distributed energy resources topology identification via

graphical modeling. IEEE Trans. Power Syst. 32, 2682-2694 (2017).

[36] Baran, M. & Wu, F. Network reconfiguration in distribution systems for loss reduction and

load balancing. IEEE Trans. Power Deliv. 4, 1401-1407 (1989).

[37] Christie, R. D. Power Systems Test Case Archive. Seattle, WA, USA: Univ. Washington, 2000.

[Online]. Available: http://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.htm.

[38] Courtemanche, M., Ramirez, R. & Nattel, S. Ionic mechanisms underlying human atrial ac-

tion potential properties: insights from a mathematical model. Am. J. Physiol.-Heart Circul.

Physiol. 275, 301-321 (1998).

[39] Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).

ADDITIONAL INFORMATION

Acknowledgements This work is supported by National Natural Science Foundation

of China through projects 91748112. General: The first author would like to thank Prof.

Claire J. Tomlin (UC Berkeley) for insightful discussion and continuous help. We thank

Prof. Guang Yang (Huazhong University of Science and Technology) for help on the experi-

mental setup. We thank Mr. Anthony Haynes, Mr. Frank Jiang, Dr. Anija Dokter and Mrs.

Karen Haynes for editing. We thank Dr. Daniel Ly (Stanford University) and Prof. Ke Li

(Jiangnan University) for sharing datasets. Author contributions. Y.Y. developed the

IHYDE algorithms. Y.Y. and X.T. developed simulation codes for the example problems

considered. Y.Y., X.T., W.Z., W.P., X.L., H.-T.Z., H.D. and J.G. participated in design-

ing and discussing the study and writing the paper. Competing interests. The authors

declare that they have no competing interests. Materials & Correspondence. Corre-

spondence should be addressed to Han Ding (dinghan@hust.edu.cn) and Jorge Goncalves

21

(jmg77@cam.ac.uk).

22

Temperature	y(t)

System	1	(OFF)	 System	2	
(On)	

y  19

y � 21

Temperature	y(t)

Temperature	y(t)

(A)
(C)

On On

(D)

(E)

19

20

21

Off

19

20

21

19

20

21

On On

Time

Time

TimeOff

ẏ = �ay ẏ = a(30 � y)

2019 21

(B)
Temperature	y(t)

On

Off

(a)

(b)

(d)

(c)

(e)

Subsystem 1
（OFF）

Subsystem 2
（ON）

FIG. 1. An illustrative toy example on a thermostat. (a) The physical dynamic equations plus the

transition rules of the hybrid dynamical system. A transition rule is to turn the heater on when

the temperature falls below 19 degrees, and switch it off when it reaches 21 degrees. When the

heater is off, the temperature y dissipates to the exterior at a rate of −ay(t) degrees Celsius per

hour, where a > 0 is related to the insulation of the room. When the heater is on, it provides a

temperature increase rate of 30a degrees Celsius per hour. (b) Visualization of transition rules of

the relay hysteresis based on the temperature of the room. (c) A simulation of the temperature of

the thermostat system. Red (blue) is associated with the heater on (off). (d) (e) Separated time

series of the temperature corresponding to the heater on (off) from the original temperature data.

23

Autonomous

vehicles and robots

A

Monitoring of

industrial processes

C

Medical

applications

F

System Hybrid dynamical System Data fitting and transitions

Straight Curve

Low-voltage

model

High-voltage

model

Middle-voltage

model

Normal Broken

Base

configuration

Changed

configuration

Normal Line Fault

Normal Disease

Large scale

electronics

B

Smart grid

D

Power systems

fault

monitoring

E

Relative error ratio (%)

0.24%

5.2%

2.5%

0.000081%

0.00080%

0.029%

Differential motor input

Gating variable

Current

Derivative of Voltage

Apparent power

Current

Time

FIG. 2. Summary of IHYDE algorithm applied to numerous examples. IHYDE has been applied

to six examples in different applications. The first column illustrates the systems, while the second

column shows the different subsystems plus the transition rules. Each subsystem is associated

with a particular color. The third column shows the original time-series data (dots) in the color

associated with the subsystem that generated it, the fitted data from the identified models (lines

connecting the dots), and the location of the transitions (changes in colors). The last column

presents the relative error ratio [31] between the true data and the data simulated by the fitted

model. A small error ratio indicates a good agreement between the true and discovered systems,

and serves as a measure of the performance of IHYDE.

24

