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Abstract

Inspired by the success of the ring-polymer molecular dynamics (RPMD)

method, we derive a transition-state-theory version (RPTST) with a dividing

surface which is, in general, conical in ring-polymer space. It is explained why

this conical form is a good approximation to the optimal dividing surface and

therefore why centroid-based quantum transition-state theories are inaccurate

for asymmetric barriers at low temperatures.

The geometry of the ring-polymer transition state is found to describe a

finite-difference approximation to the semi-classical instanton trajectory (a

classical periodic orbit of length βh̄ on the inverted potential). Based on this,

a new practical method for locating multidimensional instantons is proposed,

by computing saddle points on the ring-polymer surface, and a derivation

for the reaction rate constant based on the “ImF” premise using the ring-

polymer formalism is shown to be far simpler than in previous instanton

approaches based on functional determinants. The resulting expression is

based only on the ring-polymer potential at the transition-state and its

Hessian, and is applied to evaluate the rate in a number of polyatomic

systems. We show that a free-energy version of the ImF instanton theory

is related to RPTST and thereby provide an explanation for why RPMD

produces accurate results for thermal reaction rates in the deep-tunnelling

regime and demonstrate how it can be made more efficient and systematically

improved. From this, we also explain why RPMD is seen to underestimate

the rates of symmetric reactions and overestimate the rates of asymmetric

reactions.

We also present a ring-polymer instanton derivation of a theory for

calculating tunnelling splittings leading to another new practical method,

which owing to its simple form, is easily extended to determine the entire

tunnelling-splitting pattern of molecular clusters with two or more degenerate

wells. This method is applied to the water dimer, trimer, and octamer, and

shown to be in good overall agreement with experiment and to provide a

deeper understanding of the tunnelling pathways.
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Chapter 1

Introduction

This work is concerned with developing, improving, and gaining a better

understanding of methods used for the study of nuclear quantum effects

in chemistry and in particular for the computation of reaction rates and

tunnelling splittings. First, we review some of the most important methods

and concepts which can be used for these calculations before describing the

new work introduced and showing how it contributes to the field.

For many chemical systems, we are able to make use of the Born-

Oppenheimer approximation which accurately separates the electronic from

the nuclear dynamics. This allows a potential energy surface (PES) to be

defined on which the nuclei move according to the laws of quantum mechan-

ics. In this thesis, only single-surface systems will be studied as multi-state

non-adiabatic generalizations of the new work are not yet known.

There is a wide variety of exact and approximate methods which have

been applied to the calculation of properties related to quantum nuclear

dynamics. A representative selection, by no means complete, of methods

in this class is summarized here. We shall return to some of the methods

described when the specific applications of calculating thermal rate constants

and tunnelling splittings are discussed below.

1.1 Exact dynamical methods

The majority of exact methods compute either the time-independent or

time-dependent nuclear wave function directly and use this to calculate the

required observable properties of the system. There are two main approaches
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for calculating the time-independent wave function: a basis-set expansion

can be used, for which one solves matrix equations for the coefficients, or

else the solution to the differential equations can be computed directly using

numerical iterative schemes.

One such method of the former type involves the diagonalization of the

Hamiltonian projected onto a finite spectral representation to obtain the

eigenstates of the system (Chan and Stelman, 1963). The integrals are

usually computed as a finite sum using Gaussian quadrature (Harris et al.,

1965). The method is exact in the limit of a complete basis set, and so the

results can be converged to whatever accuracy is required. However, unless

the basis functions are chosen to be similar to the correct eigenfunctions,

a very large basis set, and hence a large amount of computation, will be

needed to construct the matrix required for convergence. The calculation

of the time-independent wave function is also possible in a pseudo-spectral

basis set such as a discrete variable representation (Light et al., 1985).

The other approach for computing time-independent wave functions is

provided by methods such as the Numerov (Blatt, 1967) and log derivative

(Johnson, 1973; Manolopoulos, 1986) methods which compute solutions to

the Schrödinger equation using a stepwise finite-difference integration of the

second-order ordinary differential equation.

Exact time-dependent methods propagate wave packets on the potential

energy surface, for example by the split operator method (Feit et al., 1982).

The wave packets are usually represented on a grid which avoids expansion

in an predetermined basis set, but as for the time-independent methods,

it soon becomes intractable as the number of atoms grows (Althorpe and

Clary, 2003) such that the largest system treated in this way is the H2 +OH

reaction in six degrees of freedom (Zhang and Zhang, 1994). This is because

of the non-local nature of wave functions and the size of the space, which

increases exponentially with the number of degrees of freedom, that must be

represented by the grid as the wave function spreads out. Other problems

include unphysical reflections from the edge of the grid, which, although

they are mostly relieved by artificial absorbing potentials (Gonzalez-Lezana

et al., 2004), set a lower bound on the size of the grid that must be used.

An advantage of the method over the time-independent case is that it can

sometimes reveal the dynamics of the system in an intuitive way; a movie of

|ψ2(t)| can be made, from which the reaction mechanism may be discerned.
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One important development of the time-dependent method is the multi-

configurational time-dependent Hartree (MCTDH) approach (Meyer et al.,

2009). This has increased the size of the reactions which it is possible to

study from four atoms to six by expanding the wave function as a product

of single-particle functions and including correlation between the degrees

of freedom with a sum over configurations. Wave-packet propagation in

this form can be performed efficiently if the PES can be written, to a good

approximation, as a product of single-particle potentials. The method is able

to treat very large system-bath models where correlation between the modes

is minimal, but because the difficulty rapidly increases when simulating large

systems with strong correlations between the degrees of freedom, it is not

suited to more complex large systems.

Degrees of freedom can of course be frozen or treated adiabatically to

reduce the dimensionality of the system and make these time-independent

(Bowman, 1991; von Horsten et al., 2011) and time-dependent (di Domenico

et al., 2001) methods applicable to polyatomic systems, but this is neither a

rigorous nor systematic approximation; the errors cannot be controlled and

no information can be gathered about what has been lost. In order to obtain

information of the quantum effects on these complex systems, approximate

methods which can treat all degrees of freedom equally must instead be used,

to which we now turn our attention.

1.2 Semi-classical methods

The application of the correspondence principle, which states that the laws of

quantum mechanics must reduce to those of classical mechanics in the limit

h̄→ 0, has provided a range of approximate semi-classical methods, which,

although they seem to emanate from diverse theories, are all inherently related

by taking this limit. One such method is the Wentzel-Kramers-Brillouin

(WKB) approximation which neglects high-orders of h̄ and attempts to

construct the wave function in the classically-allowed and forbidden regions

separately, joining them at the so-called “classical turning-points” (Schiff,

1968, §34). The result is that the wave function is proportional to eiS/h̄, where

S =

dx

2m(E − V (x)) is the classical action (Goldstein et al., 2002, ch. 2)

and becomes imaginary in classically-forbidden regions and hence describes

exponential decay. In this way the WKB approximation extends classical
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mechanics to allow for tunnelling effects. There is, however, no general

method for extending such calculations to more than one dimension.

Simple scattering problems, including elastic, inelastic and reactive colli-

sions, have been successfully treated using “classical dynamics plus quantum

superposition”. These methods are able to describe interference, tunnelling,

quantization and selection rules and are based only on classical trajectories

(in complex phase space for classically-forbidden processes) with probability

amplitudes related to the WKB phase term (Miller, 1974a). The semi-

classical propagator for these processes (Gutzwiller, 1967) takes a prefactor

equal to a determinant attributed to van Vleck (1928). This is equivalent

to a stationary-phase approximation of Feynman’s path integral approach

(Feynman and Hibbs, 1965), which provides an alternative but equivalent

methodology to the usual wave-function description of quantum mechanics

in which the propagator is expressed as the sum over all paths between the

initial and final coordinates, each with a phase again equal to S/h̄. In the

limit h̄→ 0, the phases vary enormously for small changes in the path and

the integrand becomes very oscillatory and sums to zero except in the vicinity

of the paths where S[x(t)] is stationary. According to Hamilton’s principal,

it is classical trajectories for which the action is stationary, and therefore, as

it is only these paths which contribute, this explains how classical mechanics

is recovered. In the semi-classical limit, these classical trajectories are given

a Jacobian-type determinant based on the stability of the trajectory, which

effectively describes some of the quantum paths which lie very near by. Using

the semi-classical propagator, an approximation to the S-matrix can be

defined, the elements of which give the quantum-mechanical amplitudes and

hence the probabilities for transition from each reactant state to each product

state (Schiff, 1968, §36).
An improvement to this method for including quantum effects into mo-

lecular dynamics simulations is provided by the semi-classical initial-value

representation (SC-IVR) (Skinner and Miller, 1999; Miller, 2001), which

removes the necessity of end-point boundary conditions on the trajectories

and expresses the propagator as an integral over initial conditions. Another

useful contribution was made by Herman and Kluk (1984), who proved that

the frozen-Gaussian method (Heller, 1981) stems from the semi-classical

propagator. This method surrounds each classical trajectory with an ana-

lytical Gaussian wave packet with average position and momentum equal
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to that of the initial point of the trajectory and with a phase equal to the

classical action along the path. The wave function can be formed from the

superposition of the swarm of Gaussian wave packets at final time.

All these forms of semi-classical dynamics based on real-time trajectories

suffer from convergence problems when computing reaction rates in complex

systems (Yamamoto et al., 2002), because although the phase is stationary

in the immediate vicinity of the classical path, the other classical trajectories

have quite different phases and may contribute with opposite signs, making

it very difficult to converge the integral. Indeed, the reason why all the

real-time quantum methods described so far are limited to small systems

stems from this “sign problem”, because of which, methods common in

classical simulations such as Monte Carlo and molecular dynamics cannot be

used.

1.3 Quantum statistical methods

Computing thermodynamical properties of quantum systems is far easier

than dynamical properties. The Boltzmann operator is equivalent to a

propagator in imaginary time, where the problems concerning phase oscilla-

tions disappear as the integrand becomes a function of exponential decay.

There are two main approaches based on an imaginary-time formulation of

quantum mechanics which can be used for computing stationary states and

equilibrium phenomena: the methods of diffusion Monte Carlo (DMC) and

imaginary-time path integrals.

The DMC method is a powerful way of computing the time-independent

ground-state wave function in polyatomic systems (Suhm and Watts, 1991).

It exploits the equivalence between a recasting of the Schrödinger equation

in imaginary time and a diffusion equation, which can be solved by random

walks of many replicas of the system, such that after many iterations, the

excited states decay away leaving the walkers arranged so as to describe

the ground-state wave function. An extension to compute excited states is

possible if the wave function’s nodes are known a priori. It would be too

difficult to treat dynamical processes in this way but the method has been

successfully used to compute vibrational states and tunnelling splittings; we

shall return to these applications in §1.5. A large amount of sampling is

necessary to converge the results, and it is thus suitable for systems described
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by fairly cheap potentials.

The other approach, that based on an imaginary-time path-integral rep-

resentation of the Boltzmann operator (Feynman, 1972), is the foundation of

all the work derived in this thesis. In imaginary time, the complex oscillatory

integrand of the standard path integral becomes a positive real decaying ex-

ponential, which is far easier to work with. If the path integral is discretized,

one obtains an expression equivalent to a classical partition function of many

replicas of the system connected together by harmonic springs; this is called a

ring polymer. It is possible to evaluate the integrals, and hence the quantum

statistics and thermodynamics, exactly using standard classical statistical

mechanics including Monte Carlo (Ceperley, 1995) or molecular dynamics

(Tuckerman, 2002) methods, even while employing ab initio potentials (Marx

and Parrinello, 1996). Numerical methods based on this principle scale well

with system size (the calculation of the PES is the limiting step), such that

all degrees of freedom can be treated in an equivalent way and can be used

to compute static properties of large systems fully quantum mechanically

(Chandler and Wolynes, 1981; Parrinello and Rahman, 1984). Although

they neglect interference effects and the real-time quantum dynamics, it is

possible to recast certain dynamical calculations in terms of statistics, as we

discuss below, such that these ring-polymer methods are applicable.

The methods reviewed so far can be used to describe a whole range of

quantum effects. In the following sections, we turn our attention to the

particulars of computing rates and tunnelling splittings of chemical systems.

1.4 Chemical reaction rates

In the study of chemical reaction dynamics, an important quantity of interest

is the thermal rate constant (Hänggi et al., 1990). For example, there is

considerable interest in the catalytic effect on the rate of a reaction in a

biological system (Kamerlin and Warshel, 2010). The reaction mechanism can

often be inferred from a theoretical approach to calculating the temperature

dependence of the rate constant and the kinetic isotope effect. We shall review

some of the foremost methods which can be used for the computation of rate

constants and describe some of the historical and theoretical background to

the approaches used in the main part of this work.

The concept of a rate constant can be defined for reactions for which
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it is possible to divide the configuration space into products and reactants

by a dynamical variable or reaction coordinate. Often these are separated

by a high activation barrier, over which transitions caused by statistical

fluctuations from the thermally equilibriated reactants can be considered to

be rare events, for the effects of recrossing of the barrier must decay away

quickly or the reaction will be reversible on a short timescale and the rate

constant will be undefined (Chandler, 1987, §8.3).
An approach for computing the reaction rate based on classical mechanics

computes the trajectories on the PES and averages over those which cross the

barrier (Levine, 2005, §5.2). However, the inclusion of quantum-mechanical

effects in such calculations is often important, because for reactions at low

temperature or involving light atoms, and especially the transfer of hydrogen,

the effects of tunnelling can increase the rate by many orders of magnitude.

Much work has been concentrated on computing the correct rate in these

cases where classical mechanics fails.

Quantum rates were first computed via the reactive scattering matrix

(S-matrix) using the exact quantum-dynamical methods described above,

and such approaches are therefore limited to small systems. Miller put

reaction-rate theory into a more general form (Miller, 1974b) by deriving a

formula for the rate constant from the Boltzmann average of the reactive

cross-section. This gave an expression in terms of the long-time limit of a

flux-side correlation function, which is similar to that of classical rate theory

except that it tends to zero in the t→ 0+ limit. In this formulation, the rate

is independent of the choice of dividing surface which can be important for

calculations on complex systems where it is difficult to locate the optimal

surface. The method was applied to simple test cases by Miller et al. (1983),

to a fully-dimensional four-atom system (Manthe et al., 1993), and to H+CH4

using MCTDH (Huarte-Larrañaga and Manthe, 2000). For “direct reactions”,

those for which the system passes quickly through the barrier region (Levine,

2005, §4.4.1), the method is able to calculate the rate at short times without

constructing the S-matrix of state-to-state reaction probabilities and is thus

a more efficient method for computing thermal rates than is provided by

quantum scattering calculations. However, because of the difficulties involved

in propagation of multidimensional wave functions, it has not been practical

to apply the method to larger systems.

A popular approximation used in the calculation of classical rate constants
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for direct reactions is transition-state theory (TST). Modern approaches to

TST define the rate in terms of the short-time limit of the classical flux-side

correlation function, and it is thus a statistical rather than a dynamical

theory. The dividing surface is placed along a reaction coordinate which leads

from reactants to products, and the TST approximation assumes that the

barrier region is the bottleneck for the reaction and that classical trajectories

having crossed the dividing surface would not return (Levine, 2005, §6.1); it
is not therefore applicable to systems with diffusive dynamics. The rate is

given by a flux through the dividing surface and the ratio of the partition

function constrained to the dividing surface and the partition function of

the reactants, each of which is computed by standard statistical-mechanics

methods. The TST rate depends exponentially on the location of the dividing

surface, but as it can be shown to give an upper bound to the classical result,

the dividing surface can in practice be variationally chosen to give the best

approximation to the classical rate (Truhlar and Garrett, 1984).

Eyring’s famous TST (Eyring, 1935) chooses the dividing surface to

pass through the first-order saddle point on the PES and assumes that the

classical dynamics along the reaction coordinate are separable from those

in the other degrees of freedom in the vicinity of the transition state. The

modes perpendicular to the reaction coordinate are treated using the analytic

formulae for quantum partition functions (with the approximations of rigid

rotors and harmonic oscillators). Treating quantum effects perpendicular

to the reaction coordinate in this way allows zero-point energy effects to

become apparent but does not account for tunnelling through the barrier.

Tunnelling effects have been included approximately in some versions of

TST based on ad hoc one-dimensional tunnelling paths with a WKB-type

approximation (Truhlar et al., 1985). For example, some of the pathways

which have been chosen follow the minimum-energy path, a straight line or

something in-between (Marcus and Coltrin, 1977).

Because Miller’s flux-side correlation function does not have a useful

t→ 0+ limit, it is not so obvious how to make a quantum version of transition-

state theory which does not require solution of the full multidimensional

reaction dynamics and would thus be able to treat complex systems including

polyatomic molecules and clusters in and out of condensed phase. One would

like to have a theory which makes only one assumption—direct dynamics in

the barrier region—but without making the approximation that the reaction
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coordinate is separable from the other degrees of freedom (Miller, 1993).

The quest for such a quantum transition-state theory (QTST) still continues.

Indeed, such a diverse set of theories have been named QTST, none of which

rigorously fulfils this definition, that it can become rather confusing, and we

shall avoid labelling any current method by the term.

One method in this class was derived by Miller (1975) from the semi-

classical limit of the exact quantum flux-side correlation function. It gives

an approximation to the low-temperature rate from the action and stability

parameters (Gutzwiller, 1971) of a classical periodic orbit on the upside

down surface (Miller, 1971). This orbit is known as an instanton and its

action S[x(τ)] =
 βh̄
0 dτ


1
2mẋ(τ)

2 + V (x(τ))

is the same as in the WKB

expression. In its original implementation, it was extremely difficult to locate

the unstable periodic trajectories on general multidimensional surfaces. One

had to choose the initial conditions of a trajectory such that by solving the

classical equations of motion (“shooting”), the trajectory returned after a

specified time, not just to the same location, but with the same momentum

with which it started. However, as we shall show, more practical methods

for locating instantons exist and will be used in this work.

A different formulation of instanton theory, based on the “ImF” premise,

was also developed (Affleck, 1981) and was recently proved to be equivalent

to that of Miller’s (Althorpe, 2011). This rate expression is computed from a

steepest-descent approximation to the imaginary part of the partition function

analytically continued into the complex plane. As in Miller’s version, there

is an exponential factor which depends on the action of the classical periodic

orbit, but the prefactor is given as a functional determinant describing

fluctuations about the instanton.

Gillan (1987) proposed a method for computing the rate based on the

centroids of path integrals q̄ = (βh̄)−1
 βh̄
0 dτ x(τ), and Voth, Chandler and

Miller (1989) (VCM) modified Gillan’s prefactor to reproduce the correct rate

in the classical limit. These centroid-based methods work well for symmetric

barriers but poorly for asymmetric systems at low temperature as was shown

by Makarov and Topaler (1995) who also explained how Gillan’s theory

could be obtained from a centroid-based derivation of ImF . A key step was

made by Mills et al. (1997) who departed from centroid-based theory and

defined the transition-state as a cone rather than a plane in the space of

Feynman paths. This allowed modes other than the centroid to contribute to
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the flux and hence corrected the asymmetric rates. With a steepest-descent

approximation, ImF instanton theory is recovered.

The quantum instanton method (Miller et al., 2003) was derived from the

flux-flux correlation function using steepest-descent approximations to the in-

tegrals in time (Vańıček et al., 2005). It is similar in form to the semi-classical

instanton method but does not take the steepest-descent approximation in

positional coordinates. Instead, it computes diagonal and non-diagonal ele-

ments of the quantum Boltzmann operator using path-integral Monte Carlo

(Yamamoto and Miller, 2004). This corrects for errors in the local quadratic

approximation present in the instanton method and performs well for deep

tunnelling but is not correct for a free particle or in the high-temperature

classical limit. Because two optimal free-energy dividing surfaces need to be

found, this method is difficult to apply.

There is also a set of rate theories based on path integrals which do not

take a TST-type approximation. The simplest is the classical Wigner method,

which is a linearized version of the SC-IVR method discussed above (Miller,

2001). For this method, one propagates real-time classical trajectories chosen

from a Wigner distribution of initial conditions. This method performs quite

well at short times if a good dividing surface is chosen, but as the trajectories

do not conserve the quantum Boltzmann distribution, it is not independent

of this choice, and because quantum coherence is neglected, it is unable to

describe long-time behaviour. A further difficulty is that, in order to sample

a multidimensional Wigner distribution, one must make a local harmonic or

Gaussian approximation (Liu and Miller, 2009).

Another such method is centroid molecular dynamics (CMD) (Voth, 1996)

in which the centroid moves classically in an effective potential of mean force

defined by a constrained path integral over the other modes. CMD suffers

from the same problems as the centroid-based QTST methods described

above when used to compute the rate of asymmetric barriers, and has the

added difficulty of needing to compute the effective potential in a large space.

In certain versions, the rate is not dividing-surface independent and does not

necessarily systematically improve on its corresponding TST theory (Jang

and Voth, 2000).

The method of ring-polymer molecular dynamics (RPMD) (Craig and

Manolopoulos, 2005b) has been used to compute rate constants using the

fictitious dynamics of path integrals. RPMD was derived starting from the
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ring polymers used to sample the quantum Boltzmann statistics and by

applying classical rate theory in the resulting extended phase space; it is

thus independent of the choice of dividing surface. The method reproduces

the correct rate for a parabolic barrier, and in its most common formulation

reduces to VCM in the short-time limit but is systematically improved at

longer times. The dynamics are obviously fictitious and yet the rates are

surprisingly good, even in the deep-tunnelling regime. RPMD has been

shown to be superior to CMD for rate calculations because of a different

choice of bead masses (Braams and Manolopoulos, 2006), although the latter

is more suitable for the calculation of spectra (Habershon et al., 2008).

In this work, a transition-state-theory approach is applied to RPMD

and the resulting theory is shown to be related to the work of Mills et al.

(1997) and hence to ImF instanton theory. This provides the explanation

of why RPMD works so well in the deep-tunnelling regime, and thereby

provides a better understanding of what can be expected from RPMD and

centroid-based methods. Recognizing the similarity between instanton theory

and the ring-polymer transition state provides a much simpler method for

computing the instantons than had previously been applied, avoiding the

problem of shooting by instead locating the periodic orbit using a saddle-

point optimization on the extended ring-polymer surface. This approach

also simplifies the mathematics in the derivation of instanton rate theory by

avoiding stability parameters and functional determinants, and allows rates

to be computed with relative ease for multidimensional reactions. We call

this the ring-polymer instanton method, and it was developed concurrently

but independently by Andersson et al. (2009), who called it harmonic QTST,

and applied the methodology to the reaction H + CH4 achieving results in

good agreement with MCTDH.

After a mathematical introduction to the ring-polymer path-integral ap-

proach in Chapter 2, the instanton method in ring-polymer form is described

in Chapter 3 and its relationship to RPMD in Chapter 4. Numerical results

are given showing the accuracy of these methods.

1.5 Tunnelling splittings

The other area in which progress has been made by the work of this thesis is

in the calculation of tunnelling splittings. The overlap between degenerate
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eigenstates in symmetric wells leads to energy-level splitting patterns which

are important observables in molecular science as they provide quantifiable

clues to the structures and rearrangement dynamics in molecular clusters

and help the development of accurate universal force fields.

In particular, because of the unique importance of liquid water in mo-

lecular science, water clusters have been at the centre of much interest for

experimentalists and theoreticians, and both microwave and infrared rotation-

vibration-tunnelling spectroscopy have provided detailed experimental data

which numerous theoretical studies have attempted to reproduce. Studies

on clusters, starting with the water dimer before increasing the size one

monomer at a time, have provided insight into the many-body interactions

which are so difficult to compute accurately (Keutsch and Saykally, 2001).

Over the years, many potential energy surfaces have been constructed

to describe water clusters which we review in Chapter 6. However, many of

them describe only the relative positions of rigid monomers and have been

fitted empirically such that a classical dynamics simulation reproduces some

experimental properties of liquid water. They are not therefore accurate

enough for application to calculating tunnelling splittings, which are very

sensitive to the anisotropy of the PES (Szalewicz et al., 2009). In this work,

we apply our methods to accurate, and therefore more expensive, potentials

such as the ab initio water PES of Bowman and co-workers (Wang and

Bowman, 2010).

There have been a number of theoretical studies to calculate tunnelling

splittings. One such exact method, the direct solution of the Schrödinger

equation by diagonalization of the Hamiltonian, has been applied to small

van der Waals clusters such as (HF)2 and (H2O)2 with fixed monomers

(Althorpe et al., 1991; Althorpe and Clary, 1994, 1995). As mentioned

previously, such methods suffer from huge computational requirements and

are thus not applicable to large clusters. DMC has also been used to compute

tunnelling splittings in small clusters including flexible models of (HF)2 (Sun

and Watts, 1990; Quack and Suhm, 1995) and rigid models of water dimer

to pentamer (Gregory and Clary, 1995a, 1996), including a study of the

effects of three-body terms in the potential (Gregory and Clary, 1995b). In

these studies the nodal positions were defined approximately using symmetry

arguments, and only some of the tunnelling splittings were calculated rather

than the complete pattern. We return to the specific applications of these
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methods to water clusters in Chapter 6.

Path-integral approaches have also been used for computing electron

transfer in a fixed environment (Kuki and Wolynes, 1987; Marchi and Chand-

ler, 1991), and exchange frequencies in solid (fermionic) 3He (Ceperley and

Jacucci, 1987; Alexandrou and Negele, 1988). These theories are directly

related to the computation of tunnelling splittings between two degenerate

wells. They require the calculation of free energies which is well-known to

be a difficult problem in classical statistical mechanics, and are therefore

not appropriate for use with high-quality, expensive water potentials. A

major drawback is that they have not been generalized to treat systems with

more than two wells. Nonetheless, there are many similarities between these

path-integral approaches and the instanton method which we shall propose.

None of these exact methods is able to treat complex systems in full

dimensionality and so there is need for an approximate, yet still reliable,

method which can be applied to larger water clusters using more-accurate

flexible potential energy surfaces than current methods are able to man-

age. However, most approximate methods tend to be based on reduced

dimensionality, where a reaction coordinate is chosen (Wales, 1993b) and the

resulting one-dimensional system solved for the tunnelling splitting using

the WKB or periodic-orbit approximation (Miller, 1979). These methods

involve no sampling but do require prior knowledge of the tunnelling path

and could potentially lead to large errors if the pathway is poorly chosen.

The tunnelling pathway, along which the WKB phase integral is taken, tends

to be chosen in an ad hoc fashion as either the line of steepest ascent to

the saddle point (i.e. the minimum-energy path), or within the “sudden”

approximation, the direct straight line from one minimum to another. A

better approach would be to locate the optimal pathway with the smallest

action as was done by Tautermann et al. (2002a, b) using the global optim-

ization method, simulated annealing. This is not, however, a very efficient

algorithm and in this thesis, we shall give a simpler method for performing

this minimization and derive a more rigorous and self-contained theory based

on another application of instanton theory.

In a similar way to these approximate implementations using WKB theory,

the semi-classical instanton method, which was first applied to a double-

well system by Polyakov (1977), can also be used to calculate tunnelling

splittings based on a single pathway. The instanton pathway is defined as
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the minimum-action path between the wells. However, as it has not been

practical to compute this pathway in multidimensional systems until recently,

reduced dimensionality approximations were used (Benderskii et al., 1994).

Mil’nikov and Nakamura (2001) developed a multidimensional method able

to locate instantons in many degrees of freedom. They did not shoot for

trajectories, but described the tunnelling pathway as a linear combination of

basis functions, and optimized the parameters to minimize the action. The

method has been applied to estimate the tunnelling splitting of malonaldehyde

with an ab initio potential (Mil’nikov et al., 2004). However, their derivation,

which involves calculating the functional determinant of the instanton, has

not been extended to treat systems with more than two wells.

We develop an instanton method using the same ideas as for the rate

calculations—using the ring-polymer representation of the quantum partition

function. This leads to far simpler mathematics than is encountered in the

standard instanton literature, and importantly, has allowed the development

of an practical and accurate theory which is able to compute the entire

splitting pattern for a system with more than two degenerate wells. Sampling

is avoided altogether, all degrees of freedom are treated equally, and no prior

assumptions about the tunnelling pathways are made. The disadvantage

of all instanton approaches is that fluctuations around the instanton are

treated harmonically. Anharmonicity along the instanton is included exactly,

however, and it thus should capture the dominant tunnelling mechanism and

give results correct to within an order of magnitude. Because of the simplicity

of the approach, we were able to use accurate potentials for clusters of flexible

water molecules and apply the method to each of the many possible tunnelling

splittings in the systems studied. The theory and example calculations of the

ring-polymer instanton method for two degenerate wells is given in Chapter 5

and its extension for complex systems in Chapter 6, in which results are also

given for the water dimer, trimer and octamer and predictions made for some

other water clusters. The method is shown to reproduce some well-known

experimental and theoretical results in most cases to well within a factor of

two; it makes predictions about previously uncalculated pathways and helps

explain the appearance of the experimental spectra of the water trimer and

octamer. Chapter 7 concludes the thesis and describes some applications to

which the methods developed here could be applied.
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Chapter 2

Path Integrals and Ring

Polymers

In this chapter we show how ring polymers can be used to compute quantum

partition functions and provide useful concepts and relationships which will be

used throughout the rest of this thesis. It was Feynman who first formulated

quantum statistical mechanics in terms of path integrals (Feynman and

Hibbs, 1965; Feynman, 1972). However, only a few systems are simple

enough that these expressions can be evaluated analytically and so Monte

Carlo and molecular dynamics techniques are often used to compute the

multidimensional integrals (Ceperley, 1995; Tuckerman, 2002). Such methods

have been used to compute quantum equilibrium properties, for example by

Parrinello and Rahman (1984) and Marx and Parrinello (1996), and they

provide a way to calculate many of the integrals needed for this work in

either an exact or approximate manner.

2.1 Partition functions

The quantum partition function in the canonical (NVT) ensemble for a

system with reciprocal temperature β = 1/kBT is given by the well-known

formula

Q(β) =


n

e−βEn , (2.1)

where the energy levels are solutions of the time-independent Schrödinger

equation Ĥ|n⟩ = En|n⟩. For large and anharmonic systems, it will not be
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possible to calculate Q(β) in the standard manner by enumerating the energy

levels, and so we require a transformation to ease the computation; this is

provided by the path-integral representation.

Let us consider first one-dimensional systems with Hamiltonians of the

form

Ĥ =
p̂2

2m
+ V̂ , (2.2)

where m is the system mass, V̂ = V (x̂) the potential, and p̂ = −ih̄d/dx the

momentum operator. The generalization to multidimensional systems will

be carried out in §2.2.

The partition function can also be defined more generally as the trace of

the Boltzmann operator (Chandler, 1987, §3.3)

Q(β) = tr

e−βĤ


, (2.3)

which reduces to Eq. 2.1 if evaluated in the basis set of eigenstates |n⟩ of the
Hamiltonian, but could instead be expanded in any complete set of states,

for instance in the position representation as

Q(β) =

 ∞

−∞
dx

x
e−βĤ

x

. (2.4)

Although the kinetic-energy part can be evaluated in the momentum

representation as

e−βp̂2/2m
p

= e−βp2/2m

p

, (2.5)

and the potential-energy part in the position representation as

e−βV̂
x

= e−βV (x)

x

, (2.6)

the exponential of the total Hamiltonian cannot in general be evaluated in

either representation because x̂ and p̂ do not commute.

It is, however, possible to make an approximation to the Boltzmann

operator using the split-operator method or Trotter splitting. Using T̂ as a
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shorthand for p̂2/2m, the density matrix is


x′
e−βĤ

x

≈

x′
e−βV̂ /2e−βT̂ e−βV̂ /2

x


(2.7a)

= e−βV (x′)/2 x′
e−βT̂

x

e−βV (x)/2 (2.7b)

=

 ∞

−∞
dp

x′
e−βT̂

p
 
p|x

e−β[V (x′)+V (x)]/2 (2.7c)

=

 ∞

−∞
dp

x′|p


e−βp2/2m


p|x

e−β[V (x′)+V (x)]/2 (2.7d)

=
1

2πh̄

 ∞

−∞
dp e−βp2/2m eip(x

′−x)/h̄ e−β[V (x′)+V (x)]/2 (2.7e)

=
1

2πh̄

 ∞

−∞
dp exp


i


β

2m
p+


m

2βh̄2
(x′ − x)

2

− m

2βh̄2
(x′ − x)2


e−β[V (x′)+V (x)]/2 (2.7f)

=
1

2πh̄

 ∞

−∞
dp e−βp2/2m e

− m
2βh̄2

(x′−x)2−β[V (x′)+V (x)]/2
(2.7g)

=


m

2πβh̄2
e
− m

2βh̄2
(x′−x)2−β[V (x′)+V (x)]/2

, (2.7h)

where i =
√
−1, and we have introduced the completeness relation for the

momentum eigenstates  ∞

−∞
dp |p ⟩⟨ p| = 1 (2.8)

and used the relation

⟨x|p⟩ = 1√
2πh̄

eipx/h̄. (2.9)

Equation 2.7a is not an equality because T̂ does not commute with V̂ and

the error introduced by the approximate commutation is of order β3 (Tannor,

2007, §11.7.1); it therefore diminishes only in the high-temperature limit.

This is of course not the regime in which we are interested in studying, as

quantum nuclear dynamical effects are only apparent at low temperatures.

Higher-order Trotter algorithms are available which reduce the error but

increase the complexity. For certain applications the higher-order methods

make computations more tractable (Drozdov, 1998), but for our purposes we

choose to retain the simpler form.

In order to calculate the quantum trace efficiently yet accurately, we note

that the Boltzmann operator can be split in two and a new complete set of
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states inserted over which we integrate, i.e.

Q(β) =

 ∞

−∞
dx

x
e−βĤ/2 e−βĤ/2

x


(2.10)

=

 ∞

−∞
dx

 ∞

−∞
dx′

x
e−βĤ/2

x′

x′
e−βĤ/2

x

, (2.11)

where we have used the property that

 ∞

−∞
dx′
x′

x′
 = 1. (2.12)

In fact, we can split the operator into N factors inserting a new set of states

each time to give

Q(β) =

 ∞

−∞
dx1

 ∞

−∞
dx2 · · ·

 ∞

−∞
dxN


x1
e−βN Ĥ

x2


×

x2
e−βN Ĥ

x3

· · ·

xN
e−βN Ĥ

x1

, (2.13)

where βN = β/N . Taking advantage of the split-operator approximation to

the density matrix (Eq. 2.7h) now introduces an error only of order β3N in

each case, and the method becomes exact in the limit N →∞. The partition

function can therefore be written

Q(β) ≃


m

2πβN h̄
2

N/2 
dx e−βNUN (x), (2.14)

where x = (x1, . . . , xN ),

UN (x) =

N

i=1


m

2β2N h̄
2 (xi − xi−1)

2 + V (xi)


, (2.15)

and, as a consequence of representing a quantum trace, the sum is cyclic, i.e.

x0 ≡ xN .

Equation 2.14 is equivalent to a classical partition function of an extended

system with Hamiltonian

HN (p,x) =

N

i=1

p2i
2m

+ UN (x), (2.16)

which can be seen to describe a ring, somewhat akin to a necklace, of N
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Figure 2.1 – One possible arrangement of N = 10 ring-polymer beads
(blue blobs) connected by harmonic springs (blue lines) in a potential well
(red). In the limit of an infinite number of beads, the classical partition
function of the ring polymer is equal to the quantum partition function of
the system. NB, the vertical spacing of the beads in this one-dimensional

potential is chosen for clarity and has no physical meaning.

“beads”, each of mass m, with momentum pi and connected together by

temperature-dependent Hookean springs (with nil equilibrium length), and is

known as the “ring polymer” (see Figure 2.1). Describing a quantum system

with the ring polymer in this way is known as the classical isomorphism

(Chandler and Wolynes, 1981). The external potential V (x) acts on each bead

separately, whereas the springs act to pull only neighbouring beads together.

With large masses and at high temperatures, the springs become very strong

and force the beads to collapse to a single point—the ring polymer then has

the dynamics of a classical particle. The springs become easier to stretch for

small masses at low temperatures which is the quantum regime. Nonetheless

the vibrations are fictitious and describe only the quantum thermodynamics

but not the real-time dynamics. In the limit of an infinite number of beads,

Eq. 2.14 tends to Feynman’s path integral representation of the partition

function, and hence the exact result. However, in order to make the method

practicable for numerical solution, we choose N to be large enough to achieve

results to whatever accuracy is required, and for the purposes of keeping the

formulae simple, we assume that it is an even number.
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It will be useful to have the forms of the first and second derivatives of

the ring-polymer potential:

∂UN (x)

∂xi
=

m

β2N h̄
2 (−xi+1 + 2xi − xi−1) +

∂V (xi)

∂xi
, (2.17)

and

Gii′ =
1

m

∂2UN (x)

∂xi∂xi′
=
−δi+1 i′ + 2δii′ − δi−1 i′

β2N h̄
2 +

δii′

m

∂2V (xi)

∂x2i
. (2.18)

The mass-weighted Hessian matrix is sparse and has the following structure:

G =
1

β2N h̄
2




α1 −1 · · · −1
−1 α2 −1 · · ·
· −1 α3 −1 · ·
· · . . .

. . .
. . . ·

· · · −1 αN−1 −1
−1 · · · −1 αN




, (2.19)

where αi = 2 + (βN h̄)
2V ′′(xi)/m and zeros fill the empty spaces.

2.1.1 Harmonic oscillator

We now demonstrate that the ring-polymer formulation gives the exact par-

tition function in the infinite-bead limit for the quantum harmonic oscillator

described by the potential

V (x) =
1

2
mω2

sx
2. (2.20)

In order to calculate the partition function of Eq. 2.14, we can expand the

ring-polymer potential as a Taylor series about the stationary point x = 0

giving

UN (x) =
1

2
m

N

i=1

N

i′=1

xiGii′xi′ . (2.21)

It is possible to perform the multidimensional integral over x as the product

of N one-dimensional integrals by first transforming to a basis of the normal

modes, as in this basis, the matrix G is diagonal.∗ The normal modes are

∗See Wales (2003, §2.5.2) for an introduction to normal-mode analysis.
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found by an orthogonal transform from the coordinates x = (x1, . . . , xN )

using a transformation matrix with columns equal to the normalized eigen-

vectors of the (symmetric) mass-weighed Hessian G. The normal modes are

associated with frequencies equal to the square root of the eigenvalues. To

find the form of these normal modes and their eigenvalues, one can draw

a parallel with the Hückel theory calculation of molecular orbitals and en-

ergy levels for an even-membered alkene ring, whose Hamiltonian matrix is

equivalent to the ring-polymer Hessian, and use the standard results (Salem,

1966, §3.2) for the eigenvectors which represent the normal modes. Because

of the presence of degenerate eigenvalues, there is no unique way of specifying

the transformation. However, one possible choice is

q0 =
1√
N

N

i=1

xi, (2.22a)

qk =


2

N

N

i=1

sin


2πik

N


xi, k = 1, . . . , N/2− 1, (2.22b)

q−k =


2

N

N

i=1

cos


2πik

N


xi, k = 1, . . . , N/2− 1, (2.22c)

qN/2 =
1√
N

N

i=1

(−1)ixi. (2.22d)

The corresponding normal frequencies are

ωk =


4

β2N h̄
2 sin

2 |k|π
N

+ ω2
s . (2.23)

Note that the normal-mode eigenvectors are independent of ωs; they will be

referred to as the free-ring-polymer normal modes (Craig and Manolopoulos,

2005a).

These formulae are also applicable to multidimensional systems (for

which see below) and for odd values of N if the N/2 mode is removed.

Because the vectors q ≡ (q0, q1, q−1, . . . , qN/2) and x describe the same

ring-polymer geometry, even though they use a different representation and

hence have different components, we shall use them interchangeably, e.g.

UN (q) ≡ UN (x).

Since the Jacobian is unity for a normal-mode transformation, we can
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rewrite Eq. 2.14, using Eq. 2.21, as

Qvib(β) ≃


m

2πβN h̄
2

N/2 
dq e−βN


k

1
2
mω2

kq
2
k (2.24)

=


m

2πβN h̄
2

N/2

k


2π

βNmω2
k

(2.25)

=


k

1

βN h̄ωk
, (2.26)

where k runs from 1−N/2 to N/2. Taking the limit N →∞ and following

the manipulations from Kleinert (2006, §2.10), we obtain

Qvib(β) =
1

2 sinh (βh̄ωs/2)
, (2.27)

which is of course the exact result for the partition function of a quantum

harmonic oscillator. Equation 2.26, which shows how the vibrational partition

function for a ring polymer in a harmonic potential can be calculated, is the

main result of this section.

NB, when computing Eq. 2.26, one must be aware of the danger of

overflow errors. It is generally safest to use the formula given there rather

than the version given in Eq. 2.25.

It is also possible to use the ring-polymer formalism to compute the exact

vibrational partition function for a particle in an anharmonic well. However,

in this case, an analytic expression is not available and a simulation would

have to be carried out in the way described in Chapter 4. Alternatively, one

can neglect the effect of the anharmonicity and use the harmonic expression

anyway, effectively truncating the Taylor series at second order. This is the

approach used in Chapter 3; it introduces an error which is usually small in

comparison to the tunnelling effect that we are attempting to describe. For

example, the error in the rate of H + CH4 at 200K from taking a harmonic

approximation to the reactant partition function was about a factor of three

(Bowman et al., 2001).
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2.1.2 Translational partition function

As the translational partition function Qtrans(β) for an unbounded particle

is infinite, the quantity which we wish to compute is the (finite) partition

function per unit length. In this section, we derive the partition function for

a free ring polymer in one dimension.

The derivation is somewhat similar to that of the harmonic oscillator

except that ωs = 0 and therefore ω0 is also zero. This means that the

integrand along the q0 mode is no longer Gaussian but constant since this is

the unbounded mode. We set the limits of this integral to −L/2 to L/2 and

let L tend to infinity:

Qtrans(β) =


m

2πβN h̄
2

N/2  L/2

−L/2
dx e−βNUN (x) (2.28)

=


m

2πβN h̄
2

N/2  √
NL/2

−
√
NL/2

dq0
′

k


2π

βNmω2
k

(2.29)

= L


Nm

2πβN h̄
2

′

k

1

βN h̄ωk
, (2.30)

where the prime indicates that the zero-frequency mode (k = 0) is omitted

from the product. Using 1.396.1 from Gradshteyn and Ryzhik (2000), in the

special case that ωs = 0, we obtain the useful equality

′

k

βN h̄ωk = N, (2.31)

from which one can compute the translational partition function per unit

length,

Qtrans(β)/L =


m

2πβh̄2
, (2.32)

which is the exact result for the quantum partition function of a free particle

and also holds true for a bounded particle in the classical limit.

We could have derived Eq. 2.30 directly using arguments from standard

classical statistical mechanics by separating the N -dimensional ring-polymer

system into translational and vibrational factors. In this sense, the reciprocal

temperature is βN and there is one translational degree of freedom, for

which the relevant mass is Nm, and N−1 classical vibrational modes each

contributing 1/βN h̄ωk. Note that the method includes vibrational modes of
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the ring polymer even whilst formulating the translational partition function,

and that the translational factor alone does not reproduce the correct result.

This is a consequence of the nature of the classical isomorphism which

describes quantum effects by the classical fluctuations of the ring polymer.

2.2 Multidimensional generalization

The molecular systems that we wish to study cannot in general be separated

along each degree of freedom to give one-dimensional integrals, but the

advantage of the ring-polymer method is that it is easily extended to treat

multidimensional systems without considerably increasing the complexity.

Within the Born-Oppenheimer approximation, we can separate the electronic

from the nuclear motions and introduce the concept of a potential energy

surface (PES). For example, a three-dimensional molecule of f/3 atoms

may be described by a single point in f -dimensional space subject to the

Hamiltonian

Ĥ =

f

j=1

p̂2j
2mj

+ V (x̂1, . . . , x̂f ), (2.33)

where the coordinates xj and their conjugate momenta pj can be chosen in

any way such that they span phase space and are orthogonal to each other.

The usual choice is: x1, x2 and x3 describe the Cartesian coordinates of

atom 1, x4 to x6 describe those of atom 2 etc., and mj is the mass of the

atom represented by the jth degree of freedom. V (x1, . . . , xf ) is a scalar field

which returns the value of the potential energy at the specified geometry.

As before, the ring polymer is represented by N beads and the notation

xi,j is introduced to describe the location of the ith bead in the jth dimension.

The ring-polymer potential is now defined as

UN (x) =

N

i=1

f

j=1

mj

2β2N h̄
2 (xi,j − xi−1,j)

2 +

N

i=1

V (xi,1, . . . , xi,f ), (2.34)

the gradients are

∂UN (x)

∂xi,j
= mj

−xi+1,j + 2xi,j − xi−1,j

β2N h̄
2 +

∂V (xi,1, . . . , xi,f )

∂xi,j
(2.35)
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and the Hessian is

∂2UN (x)

∂xi,j∂xi′,j′
= mj

−δi+1 i′ + 2δii′ − δi−1 i′

β2N h̄
2 δjj′+δii′

∂2V (xi,1, . . . , xi,f )

∂xi,j∂xi,j′
. (2.36)

The mass-weighted Hessian

Gi,j,i′,j′ =
1

√
mjmj′

∂2UN

∂xi,j∂xi′,j′
(2.37)

will be useful too.

Although we have formulated the multidimensional ring-polymer gradient

and Hessian with two and four indices each, it is often easier to think of

the gradient as a vector of length Nf and the Hessian as a matrix of size

Nf ×Nf . This allows us to apply standard optimization and linear algebra

routines. The mass-weighted Hessian then has a block structure similar to

that shown in Eq. 2.19 with −1 replaced by a submatrix of size f×f equal

to −1 and αi = 2× 1+ (βN h̄)
2∇2V (xi,1, . . . , xi,f )/

√
mm⊤, where ∇2V is

the Hessian of the PES at a particular geometry.

Each bead describes a “replica” of the system as its position completely

defines a geometry of all f/3 atoms, and generates a single value of the

potential energy including all interatomic forces. The beads are connected

to their neighbours with f -dimensional harmonic springs which are stronger

in the directions corresponding to heavy masses. Alternatively, one could

interpret Eq. 2.34 as describing a N -bead three-dimensional ring polymers on

each atom with beads that are only connected to their neighbouring beads on

the same atom and the usual atomic interactions are only included between

similarly-numbered beads on different atoms. In the author’s opinion, the

former interpretation is much simpler and will be used as the starting point

for all derivations in forthcoming chapters.

2.2.1 Total partition function

The harmonic oscillator and translational partition function formulations are

easily extended such that they can be applied to multidimensional systems.

When all the beads are collapsed at the bottom of a well, the normal modes

are defined as in Eq. 2.22 for each degree of freedom j, and their frequencies
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are

ωk,j =


4

β2N h̄
2 sin

2 |k|π
N

+ ζ2j , (2.38)

where ζj are the harmonic frequencies of the well (of which some may be

zero) calculated as the square roots of the eigenvalues of the mass-weighted

Hessian of the PES ∇2V/
√
mm⊤. Assuming an even number of beads, k

runs from 1−N/2 to N/2 and j from 1 to f . The same frequencies and

normal modes could of course be obtained directly, but less-efficiently, by

diagonalizing G (Eq. 2.37) computed with all the beads collapsed at the

minimum of the PES. The transformation of xi,j to normal modes can be

computed efficiently using a fast-Fourier transform (FFT) as described in

Appendix C.

It is also possible, but difficult, to reformulate ring-polymer methodology

for rotational degrees of freedom (Marx and Müser, 1999). However, since in

the majority of cases, the rotational spacing will be much smaller than kBT

and many rotational energy levels will be occupied, the partition function

will be close to its equipartition limit such that a fully classical treatment

will be good enough. We can modify the classical results (McClelland, 1973,

§5.5) for the rotation of a linear molecule to obtain

Qrot(β) =
2I

βh̄2
=

2NI

βN h̄
2

2

j=1

′

k

1

βN h̄ωk,j
, (2.39)

where the frequencies ωk,j describe fluctuations in the direction of the ro-

tational modes and are defined by Eq. 2.38 with ζ1 = ζ2 = 0. The index k

runs over all its possible values (1−N/2 to N/2) except that, as indicated

by the prime, k = 0 is excluded. I is the moment of inertia about the centre

of mass calculated in the standard way using the minimum-energy geometry.

For a non-linear molecule, the expression is

Qrot(β) =


8π det I

β3h̄6
=


8πN3 det I

β3N h̄
6

3

j=1

′

k

1

βN h̄ωk,j
, (2.40)

where ζ3 is also zero, and I is the 3× 3 moment of inertia tensor calculated

about the molecule’s centre of mass (McClelland, 1973, §5.5). We have not

taken account of the symmetry number in the rotational partition function

as this is an inherently quantum factor, which should not be included in the
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classical ring-polymer formulation, where the particles are distinguishable.

The effect of the symmetry instead manifests itself in a number of identical

transition states (see for example §3.4.2).
The formulae for the translational, rotational and vibrational partition

functions are multiplied together to obtain an expression for the total partition

function. For example, the total partition function per unit volume of a non-

linear molecule with three translational, three rotational and f−6 vibrational

degrees of freedom is

Q(β) =


NM

2πβN h̄
2

3/2


8πN3 det I

β3N h̄
6

f

j=1

′

k

1

βN h̄ωk,j
, (2.41)

where M =
f

j=1mj/3 is the total mass of the molecule. Only the six

zero frequencies ω0,1, . . . , ω0,6 are excluded from the product over ωk,j , but

all non-zero fluctuations, including those in the j = 1, . . . , 6 degrees of

freedom corresponding to translations and rotations, are included. Here,

I is calculated using just one replica of the system and the factor of N3

introduced accounts for all the beads occupying the same geometry.

We now have all the necessary equations for defining the ring-polymer

representation of the quantum partition function. The remainder of this

work shows how this formulation can be used to calculate rates (Chapters 3

and 4) and tunnelling splittings (Chapters 5 and 6).
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Chapter 3

Ring-Polymer Instanton

Rate Theory

In this chapter we shall derive an instanton method for estimating the

rate of a chemical reaction starting from the “ImF” premise and following

some standard instanton methodology (Coleman, 1977b). However, we

employ the ring-polymer formulation from the start which greatly simplifies

the mathematics and leads to a particularly practical method for locating

instantons in multidimensional systems (Richardson and Althorpe, 2009).

An equivalent method called harmonic QTST was derived independently

by Andersson et al. (2009) and has been used in a number of applications

on small gas-phase molecular reactions in the last couple of years since its

discovery (Andersson et al., 2011; Meisner et al., 2011; Goumans and Kästner,

2011).

The ImF instanton method follows the ideas of Coleman (1977a) and

Callan and Coleman (1977) who argued that, within the framework of a

semi-classical approximation to quantum field theory, the probability of

barrier penetration could be related to the imaginary part of a complex “free

energy”. Affleck (1981), however, described how the method could be applied

to calculate the rate of decay from a metastable state either by thermal

activation or tunnelling. Considering the reactants as a metastable states

which decay into products by tunnelling through an energy barrier, one can

therefore use the ImF method to compute the rates of chemical reactions at

low temperature (Benderskii et al., 1994).

Unfortunately, no rigorous derivation for the ImF premise at all tem-

29



0

V ‡
V

(x
)

x0 x‡
x

E0
0

E0
1

E0
2

E0
3

Figure 3.1 – A schematic of a potential (red curve) including a set of
metastable states in the vicinity of x0. The solid blue lines show the
energy levels that would be found in a system which could not escape,

but which, in reality, leak out through the barrier.

peratures exists, and it is not possible to rigorously evaluate the complex

“partition function”. Nonetheless, a steepest-descent approximation to an

analytic continuation of the partition function can be computed, as we shall

discuss below, which leads to an instanton theory which seems to work well

at a large range of temperatures and has become a standard and widely-

used technique in quantum chromodynamics, field theory and cosmology

(Vainshtein et al., 1982).

3.1 ImF rate theory

We follow the derivation of Benderskii et al. (1994, §3.4) to derive the rate

of decay of a metastable state. If there were no barrier transmission, a set

of bound-state energy levels would exist with energy E0
n (see Figure 3.1)

and partition function Qr(β). However, because of tunnelling through the

barrier, we can formally represent the energies in complex form (Landau and

Lifshitz, 1965, §132),
En = E0

n − ih̄Γn/2. (3.1)
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This gives the required decay of the states Ψn:

|Ψn(t)|2 =
Ψn(0) e

−iEnt/h̄

2

(3.2a)

=
Ψn(0) e

−iE0
nt/h̄ e−Γnt/2


2

(3.2b)

= |Ψn(0)|2 e−Γnt, (3.2c)

and it is seen that the rate of decay of the nth state is

Γn = −2

h̄
ImEn. (3.3)

We introduce a complex “partition function”

Q(β) =


n

e−βEn (3.4)

=


n

(cosβh̄Γn/2 + i sinβh̄Γn/2) e
−βE0

n , (3.5)

with an associated “free energy”

F = − 1

β
lnQ(β), (3.6)

and would like to compute Q(β) by an analytic continuation of the path-

integral expression into the complex plane. Unfortunately, it is not known

how to do this rigorously, but as we shall see, we can calculate the leading

contribution to the imaginary part using the method of steepest descent.

Assuming it is possible to compute Q(β), we could obtain the canonical,

Boltzmann-averaged rate as

k(β) =
1

Qr(β)



n

Γn e
−βE0

n (3.7)

= − 2

h̄Qr(β)



n

ImEn e
−βE0

n (3.8)

≈ 2

βh̄

ImQ(β)

ReQ(β)
= −2

h̄
ImF, (3.9)

where we have used the real and imaginary parts of Eq. 3.5 with the approxim-

ation that βh̄Γn/2≪ 1. This is valid for low values of n where the decay rates

are small such that ImQ(β)≪ ReQ(β) unless the barrier is asymptotically
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low or thin, and the errors associated with higher-n states will be reduced

by the Boltzmann weighting. We have also implicitly assumed that the rate

is dominated by tunnelling and not by thermal activation taking the system

over the barrier. However, at higher temperatures, classical thermodynamic

fluctuations dominate, and the expression for the ImF rate takes a different

form (Affleck, 1981), given in Appendix A, and reproduces Wigner’s exact

expression for a parabolic barrier. This form can describe shallow tunnelling

through the top of the barrier, which is approximately parabolic on a short

length-scale. The two expressions are equal at βc = 2π/h̄ωb where iωb is the

imaginary barrier frequency. This “cross-over” temperature will be seen to

be important in the derivation below. The ImF premise has a well-defined

limit at the cross-over temperature, and also in the limit h̄Γ0/2≪ β−1 ≪ E0
1

where k(β) reduces to Γ0, the decay rate of the lowest state. For now we shall

assume that it also gives a good approximation at temperatures between

these two limits, which will be confirmed by the numerical implementations.

Equation 3.9 will be our starting point for the instanton-theory derivation.

The problem is how to compute the complex partition function Q(β), the

real part of which describes the reactant state (and is approximately equal

to Qr(β)) and the imaginary part the barrier region.∗ The ImF approach

therefore relates the rate constant to a ratio of the partition functions of the

top of the barrier with the reactants in a similar, but not equivalent, way to

transition-state theory.

It is also possible to use the theory to treat reactive scattering problems

where there is no metastable well but rather a reactive channel with a

translational degree of freedom. In this case there would be a continuum of

states with decay constants Γn. However, as ImQ(β) is based only on the

quantum Boltzmann operator in the vicinity of the barrier, one is free to

modify the potential elsewhere to create a metastable well and a discrete

series of resonances which decay by tunnelling through the barrier as before.

As shown in Chapter 2, the ring-polymer method provides a relatively

simple way of computing quantum partition functions, especially when it is

possible to perform the integrals analytically. Although the N -dimensional

integral for an anharmonic PES is not separable by converting to normal

∗A purely imaginary partition function would result from a parabolic potential
with ω2

s < 0 (cf. Eq. 2.27), and so it is the barrier region of the metastable potential,
where the Hessian has a negative eigenvalue, which contributes to the imaginary
part of Q(β).
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Figure 3.2 – A function of the form S(x)/h̄, as shown on the left, with a
minimum at x̃ produces an approximately-Gaussian peak, centred about
x̃, when the exponential is taken and h̄ is small. In the steepest-descent
method, one uses this approximate function to perform the integral

analytically.

modes, we can employ a steepest-descent approximation which greatly simpli-

fies the integrals whilst retaining the majority of tunnelling effect. We shall

use these ideas to compute an approximation to ImQ(β) and therefore the

rate constant k(β) for the one-dimensional case and generalize the treatment

to systems of many dimensions in §3.3.

3.1.1 Steepest-descent instantons

In order to compute the integrals in the expression for the ring-polymer

partition function of an anharmonic system analytically, we employ the

method of steepest descent. The method is based on the principle that a

function of the form e−S(x)/h̄ is dominated by the region in which S(x) is

minimal (see Figure 3.2). In order to compute the integral over this function,

the method of steepest descent is employed, which in one-dimension can be

expressed as

 ∞

−∞
dx e−S(x)/h̄ ≈

 ∞

−∞
dx e−[S(x̃)+

1
2
S′′(x̃)(x−x̃)2]/h̄ (3.10)

=


2πh̄

S′′(x̃)
e−S(x̃)/h̄, (3.11)

where x̃ is the minimum of the function S(x) and so S′(x̃) = 0 and S′′(x̃) > 0.

This approximation becomes exact in the limit h̄→ 0 and is therefore a form
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of semi-classical approximation.

In the ring-polymer formulation for the partition function (Eq. 2.14) of the

metastable system, there is a minimum in the ring-polymer potential UN (x)

when all the beads are collapsed at x0. A steepest-descent approximation

about this point leads to a harmonic approximation for Qr(β) which is

calculated using the methods of Chapter 2. However, as will become clear,

we also need to take a steepest-descent integral about a first-order saddle

point in order to obtain ImQ(β).

To find these stationary points, we search for geometries where the

ring-polymer gradient (Eq. 2.17) is zero, giving

V ′(xi) = m
xi+1 − 2xi + xi−1

β2N h̄
2 , (3.12)

which is recognized as a finite-difference approximation to Newton’s equation

of motion in an inverted potential −V (x) with time steps of βN h̄. This

comes as no surprise since the Boltzmann operator e−βĤ can also be thought

of as the propagator e−iĤt/h̄ with βh̄ = it = τ as first done by Miller (1971).∗

In imaginary time,

dx

dτ
= −idx

dt
,

d2x

dτ2
= −d2x

dt2
, (3.13)

such that the classical equation of motion becomes

V ′(x) = m
d2x

dτ2
(3.14)

with the energy, a constant of motion,

E = −1

2
m


dx

dτ

2

+ V (x(τ)), (3.15)

and the Euclidean action along the path x(τ),

S[x(τ)] =

 βh̄

0


1

2
m


dx

dτ

2

+ V (x(τ))


dτ. (3.16)

We can see that βN h̄UN (x) is a finite-difference approximation to the action

of a periodic classical trajectory in the inverted potential. Periodic orbits

∗This transition to imaginary time is called the Wick rotation.
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formed the basis of early applications of instanton theory, but except in

one-dimensional systems, were extremely difficult to locate as one has to use

trial and error to find the initial conditions with which to “shoot” a particle

such that it describes a periodic orbit. Instead, this work uses a much easier

method to calculate a discretized orbit, using a standard transition-state

search on the ring-polymer potential surface.

There is a trivial solution of Eq. 3.12 where all the beads are located at

the position of the barrier maximum, xi = x‡. The normal-mode frequencies

are now

ωk =


4

β2N h̄
2 sin

2 |k|π
N
− ω2

b, (3.17)

where iωb =

V ′′(x‡)/m is the imaginary barrier frequency. Since in the

large-N limit, the lowest three frequencies are

ω0 = iωb, (3.18)

ω±1 ≃


4π2

β2h̄2
− ω2

b, (3.19)

we infer that there is a cross-over temperature Tc below which ω±1 is ima-

ginary, where

βc =
1

kBTc
=

2π

h̄ωb
, (3.20)

which is the same cross-over temperature as was seen before. At temperatures

above Tc, the solution xi = x‡ is a stationary point with only one imaginary

mode q0 corresponding to translation of the centroid. However, below the

cross-over temperature, this solution has three imaginary modes and the

location of the first-order saddle is elsewhere. The new solution x = x̃ must

be computed numerically and is named the instanton solution. An example of

an instanton located by the methods explained in §3.2 is shown in Figure 3.3.

The equivalence with periodic orbits in the upside down potential provides a

few insights into the geometry of the instanton. We deduce that the beads

will be closely spaced near to the turning points and have larger spacings

near to the barrier top, and that as the temperature is lowered (i.e. the

imaginary time lengthened) and the springs become weaker, the instanton

will stretch more into the regions of lower potential.

If the temperature is lowered below Tc/2, a collapsed ring polymer at
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Figure 3.3 – The 16-bead instanton on the metastable barrier for
βh̄ωb = 7. The beads form a ring which folds back on itself and have
been depicted lying on the potential curve but one must remember that

the springs only act in the x direction.

the barrier has five imaginary modes and another periodic orbit exists

which traces twice around the path of the instanton corresponding to twice

the temperature, but this is a third-order saddle point and therefore not

appropriate for our needs. The true instanton is very stretched such that

it spends most of its orbit in regions of positive curvature and is thus able

to remain a first-order saddle point. All temperatures below Tc, where the

instanton is not collapsed, are known as the the deep-tunnelling regime.

Below Tc, we expand the ring-polymer potential (Eq. 2.15) in a Taylor

series, truncated to second order, about the instanton geometry x̃ using a

new set of normal modes {sk}, where Gsk = η2ksk and k runs from 1 to

N . The normal modes and eigenvalues η2k are calculated using standard

eigenvalue solvers on the (symmetric) mass-weighted ring-polymer Hessian

G calculated at the point x̃. As expected for such a saddle point, one of the

frequencies η1 is imaginary, but it is also found that η2 tends to zero in the

limit of large N , and so it will not be possible to immediately perform the

integral by steepest descent. This is owing to the invariance of the periodic

orbit under time translation (Benderskii et al., 1994, §3.5). To see that this is

true, we must write the eigenvalue equation in its functional form, equivalent
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to the N =∞ case, and postulate that s2(τ) = ∂x̃(τ)/∂τ .

lim
N→∞

Gs2 ≡ Gs2(τ) = −
∂2

∂τ2
∂x̃

∂τ
+

1

m
V ′′(x̃(τ))

∂x̃

∂τ
(3.21a)

=
1

m

∂

∂τ


−m∂2x̃

∂τ2
+ V ′(x̃(τ))


(3.21b)

= 0, (3.21c)

which follows from Eq. 3.14 and proves that s2(τ) is indeed an eigenfunction

with zero eigenvalue. In the finite-N ring-polymer formalism, η2 is very close

to zero, and the mode, which cyclically permutes the beads, is defined as

s2 =
1√
BN

N

i=1

(x̃i+1 − x̃i)xi, (3.22)

where the normalization coefficient, chosen to make the transformation to

normal modes orthogonal, is

BN =

N

i=1

(x̃i+1 − x̃i)2. (3.23)

Moving all xi from x̃i to x̃i+1 adds the term
√
BN to s2 and it takes N

such steps to travel all the way around the ring. The integration over the

zero-frequency mode should be thus be from 0 to N
√
BN .

We are now in a position to compute the integrals using the method of

steepest descent about the instanton geometry x̃ in all degrees of freedom

except that in the direction of the imaginary mode s1. Expanding Q(β) in

the usual way about the saddle point would of course lead to a divergent

integral, but we are able to compute its imaginary part with an analytic

continuation into the complex plane.

3.1.2 Expression for the rate

Following the arguments of Coleman (1977b) we choose to compute Q(β)

following the integration path shown in Figure 3.4. Using this, we can see that

in the steepest-descent limit, ReQ(β) = Qr(β) the reactant partition function,

and that ImQ(β) can be calculated by integrating along the unstable mode

from 0 to ∞ and changing the sign of η21. The Gaussian integral over s1

therefore gives a factor of a half.
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Figure 3.4 – A schematic showing how the partition function Q(β) is
analytically continued into the complex plane of the unstable mode s1.

For temperatures below cross-over, steepest-descent integration over all

the modes gives

ImQ(β) =
N
√
BN

2


m

2πβN h̄
2

N/2 ′

k


2π

βNm|ηk|2
e−βNUN (x̃), (3.24)

where the factor of N
√
BN is from the integral over s2 and the prime indicates

that the zero-frequency mode k = 2 is omitted from the product. From this

and Eq. 3.9, we arrive at the expression for the rate constant

kinst(β)Qr(β) =
1

βN h̄


mBN

2πβN h̄
2

′

k


1

βN h̄ηk

 e−βNUN (x̃). (3.25)

This result was independently derived by Andersson et al. (2009) and

was proved (Althorpe, 2011) to be equivalent, in the infinite bead limit,

to Miller’s formulation of semi-classical instanton theory derived from the

flux-side correlation function (Miller, 1975),

kinst(β)Qr(β) =

2πh̄3

− 1
2


d2S[x̃(τ)]

dβ2


1
2

e−S[x̃(τ)]/h̄, (3.26)

which lends some support to the ImF premise.

The reactant partition function is computed using the ring-polymer
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techniques of Chapter 2, taking advantage of the expression in Eq. 2.23 to

save unnecessary computation. This partition function could perhaps be

computed more accurately, but it seems sensible to be consistent and take

the same steepest-descent approximations for Qr(β) as for ImQ(β). If we

are lucky, there may be some cancellation of errors.

The major error in the method, in addition to the ImF assumptions,

will be caused by taking the steepest-descent approximation. Although this

neglects anharmonicity around the instanton geometry, it is not equivalent

to taking a harmonic approximation about the barrier, in which case no deep

tunnelling would be possible at all. Instead, the anharmonicity of the barrier

is included exactly along the instanton pathway. It is for this reason that

the method is expected to give a reliable estimate of the quantum rate.

Above the cross-over temperature, the ImF solution has a different

form, as in this regime, it is the classical thermodynamic fluctuations which

dominate the rate (Affleck, 1981). It can be shown that when expressed in

ring-polymer form with the analytic continuation applied to the steepest-

descent integrals, this reduces to Wigner’s parabolic tunnelling correction

(see Appendix A) and to classical TST if N = 1.

3.2 Results

The method was tested for a one-dimensional Eckart barrier (Eckart, 1930)

for which the exact quantum dynamics can also be calculated.∗ This will

be useful for testing the validity of the instanton method at a wide range of

temperatures. The barrier is defined as

V (x) =
A

1 + exp(−2x/a) +
B

cosh2(x/a)
. (3.29)

∗The rate for this system can be computed from the transmission coefficient
T (E), for which the analytic form is known (Eckart, 1930) to be

T 2(E) = 1− coshπ(δ − ϵ) + coshπζ

coshπ(δ + ϵ) + coshπζ
, (3.27)

where η = 2ma2, δ =
√
ηE, ϵ =


η(E −A) and ζ = √4ηB − 1. The thermal rate

constant is obtained by (numerically) integrating over the microcanonical rate:

k(β) =


β

2πm

 ∞

0

T 2(E) e−βE dE. (3.28)
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Here we choose the parameters to make the barrier symmetric and to facilitate

comparison with previous work (Voth et al., 1989): A = 0, 2πB = 12h̄ωb,

m = 1836me and a = 0.66047 a0, where ωb is given by 12h̄/πma2. The

reactant has a purely translational partition function for which we use

Eq. 2.32.

For one-dimensional systems, the classical rate (see Appendix A) takes a

particularly simple form:

kcl(β)Qr(β) =
1

2πβh̄
e−βV ‡

, (3.30)

where V ‡ = V (x‡) is the height of the barrier relative to the energy of the

reactants.

The cross-over temperature at which non-collapsed instantons exist is

given by βch̄ωb = 2π. Above this temperature, the ImF rate is calculated

using Wigner’s parabolic approximation (Eq. A.8).

Below the cross-over temperature, instantons were computed at a range

of temperatures using the “stream-bed walk” algorithm (Nichols et al., 1990)

to locate the saddle point on the ring-polymer surface. This is a Newtonian

algorithm (Fletcher, 1987) which, at each iteration, computes the gradient

and Hessian of the ring polymer, diagonalizes the Hessian, and takes a step

in the upwards direction of the lowest normal mode and in the downwards

direction of the other modes. The step length is chosen according to the

magnitude and sign of the lowest two eigenvalues (see Appendix B).

The method is not very sensitive to the initial geometry of the ring

polymer, but it will not work if one starts from the third-order saddle point

xi = 0 as here the gradient is zero. In order to provide a strong test for the

method, the initial position of each bead was chosen according to a random

distribution about the barrier top. The algorithm was found to converge in

nearly all cases but needed significantly more iterations for computations with

many beads. An instanton calculated by this method is shown in Figure 3.3.

A better starting position is provided by the distribution (Rommel et al.,

2011)

xi = x‡ +∆x cos (2πi/N), (3.31)

where ∆x is chosen manually to reduce the computational effort of the

optimization.

It is possible, but not necessary, to project-out the zero-frequency mode
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Table 3.1 – Convergence of the instanton action S, “zero” frequency η2
and rate of the symmetric Eckart barrier with respect to the number of
beads N at the lowest temperature considered h̄βωb = 12. The exact

rate was computed using Eq. 3.28.

N S/h̄ |η2| k × 1011/a.u.

8 17.192 2(−3) 2.49
16 17.624 6(−4) 3.36
32 17.693 2(−5) 3.40
64 17.711 9(−6) 3.35
128 17.715 4(−6) 3.34
exact . . . 0 4.08

from the ring-polymer Hessian G at each step. In some calculations this

was found to improve performance, but in others to increase the number of

iterations needed for convergence. Either way, the effects were not drastic.

Converting the instanton geometry shown in Figure 3.3 to the free-

ring-polymer normal-mode coordinates (Eq. 2.22) provides a simple way

of describing how the ring polymer deforms in the barrier region. This

information will be invaluable to the work carried out in the following chapter.

The centroid-mode q0 is zero because the beads are arranged symmetrically

about the origin. The modes q1 and q−1 describe the first-order stretch along

the x-axis and at least one of them has a relatively large magnitude, whereas

the remaining modes have small magnitudes; they describe more irregular

patterns which do not generally lead to stationary points.

Table 3.1 shows how the method converges with respect to the number of

beads at a relatively low temperature. It can be seen that the rate converges

very quickly to give a good approximation to the quantum result, and that,

as expected, the action converges and the permutational mode descends in

magnitude as the beads become more-closely spaced. Even fewer beads are

needed to converge the rate at higher temperatures where the instanton is

less stretched.

Figure 3.5 shows how well the calculated instanton rates correspond to

the exact results. As expected, the classical results perform very badly at low

temperature because they do not allow for tunnelling through the barrier,

and underestimate the rate by more than a couple of orders of magnitude. On

the other hand, the rates from the instanton method are in good agreement

with the exact results. The only significant deviation is near the cross-over
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Figure 3.5 – The rates for the Eckart barrier calculated by four different
methods are shown. The classical results are depicted by the green dashed
line and the exact quantum results in black, the solid blue line shows
the results of Wigner’s parabolic approximation (above Tc), and the blue
blobs indicate the instanton results (below Tc) calculated with 64 beads.

temperature βch̄ωb = 6.28, where the ring-polymer potential surface becomes

flatter and the steepest-descent approximation breaks down. This is not

a serious limitation for the method because one can easily calculate βc in

advance to find out whether the approximation will be valid. A better result

in these cases could instead be obtained by a Monte Carlo integration or

MD simulation to avoid making the steepest-descent approximation as is

performed in Chapter 4. The WKB-like instanton method of Kryvohuz (2011)

is another way of computing the rates near to the cross-over temperature

but which does not require numerical integration.

3.3 Multidimensional generalization

The advantage of the ring-polymer ImF instanton method over exact quan-

tum dynamics, and over the original implementation of the instanton meth-

ods based on periodic orbits, is that it remains possible to evaluate the

rate computationally even for large systems, without using ad hoc reduced-

dimensionality models. The extension of the method to the treatment of
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multidimensional systems is straightforward and is explained below.

With the classical or N = 1 case, there is still only one imaginary

frequency iωb at saddle point. This is easily calculated via a transition-state

search on the PES and by diagonalizing the mass-weighted Hessian at the

geometry found. The cross-over temperature can then be determined by the

one-dimensional formula Eq. 3.20 but because of corner cutting (Benderskii

et al., 1994), instantons may still exist at higher temperatures, and thus,

unlike in the one-dimensional case, the value should only be treated as an

estimate of the true cross-over temperature. This phenomenon may occur if

the symmetry allows because the instanton is free to avoid passing through

the transition state if it can reduce its action by doing so. Although in

this case it must pass through regions of higher potential energy, the overall

path is shortened, especially in the degrees of freedom with large associated

masses.

To locate the instanton, we use the same transition-state search as was

used in the one-dimensional case, but applied to the multidimensional ring-

polymer surface (Eq. 2.34). Although the optimization is performed in

Cartesian coordinates, the mass-weighted Hessian (Eq. 2.37) must be used to

compute the Nf eigenvalues ηk and eigenvectors sk, and the steepest-descent

integrals are performed in mass-weighted coordinates yi,j =
√
mjxi,j (Wales,

2003, §2.5.2).
At at the instanton geometry, there is still one imaginary frequency η1,

one zero-frequency mode,

s2 =
1√
BN

N

i=1

f

j=1

√
mj(x̃i+1,j − x̃i,j)yi,j , (3.32)

where the normalization coefficient is

BN =
N

i=1

f

j=1

mj(x̃i+1,j − x̃i,j)2, (3.33)

and the remaining modes have real positive frequencies. The rate is therefore

obtained from the expression

kinst(β)Qr(β) =
1

βN h̄


BN

2πβN h̄
2

′

k


1

βN h̄ηk

 e−βNUN (x̃), (3.34)
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where k runs from 1 to Nf excluding the zero-frequency mode k = 2. Note

that if the instanton geometry itself has translational or rotational degrees

of freedom, there will be more zero-frequency modes that must also be

excluded from the product; they are instead treated in the same way as for

the partition function (see §2.2.1). For example, an instanton with three

translational and three rotational degrees of freedom would lead to the rate

expression

kinst(β)Qr(β) =
1

βN h̄


BN

2πβN h̄
2


NM

2πβN h̄
2

3/2


8π det IN

β3N h̄
6

×
′

k


1

βN h̄ηk

 e−βNUN (x̃), (3.35)

where IN is the moment of inertia tensor of the ring polymer treated as an

(Nf/3)-atom “super-molecule” in three-dimensional space and reduces to NI

if the beads are collapsed.

Miller’s (1975) formulation in the multidimensional case is

kinst(β)Qr(β) =

2πh̄3

− 1
2


d2S[x̃]

dβ2


1
2
f−1

j=1

1

2 sinh (uj/2)
e−S[x̃]/h̄, (3.36)

where uj are the stability parameters of the instanton orbit (Gutzwiller,

1971), and has also been shown to be equivalent to the ImF version in the

N →∞ limit (Althorpe, 2011).

3.4 Example calculations

Here we apply the multidimensional ring-polymer instanton method to

calculate the temperature dependence of the rate constant for three different

reactions. The first system studied is the collinear reaction

HA +HBHC → HAHB +HC,

using the BKMP2 surface (Boothroyd et al., 1991, 1996; Duchovic et al.,

2001–), for which exact quantum results calculated by wave packet propaga-

tion are available. The rates of hydrogen exchange in the water dimer and

trimer are also computed which are systems are too large for exact quantum

44



calculations.

3.4.1 Collinear H+H2

This reaction has been treated as a test case by many methods as it is the

simplest example of a chemical reaction. A system of three atoms constrained

to move along line can be reduced to a two-dimensional problem by removing

the degree of freedom related to the centre-of-mass. Computations were

carried-out in Jacobi coordinates (R, r), for which

R = 1
2(xB + xC)− xA, mR = 2

3mH, (3.37)

r = xC − xB, mr =
1
2mH, (3.38)

where xA is the position of the HA atom etc., and mH is the mass of a

hydrogen atom.

The reactant partition function (per unit length) is a product of a

translational part and a vibrational part:

Qr(β) =


NmR

2πβN h̄
2

2

j=1

′

k

1

βN h̄ωk,j
, (3.39)

where ωk is defined as in Eq. 2.38 with ζ1 = 0 and ζ2 = 4404 cm−1. The

latter is the frequency of vibration between atoms B and C when A is far

away and is the only non-zero frequency of the Hessian calculated at the

point found by minimizing V (R, r) with respect to r in the limit R→∞.

As there are only two dimensions, it was easy enough to compute the

Hessian by finite-differences at each step in the calculation and the stream-

bed walk (Nichols et al., 1990) was again used to find the transition state and

the instanton geometry. The cross-over temperature estimated by Eq. 3.20

was 345 K but actually, because of corner-cutting, instantons were found up

to 348 K. One instanton geometry calculated is shown in Figure 3.6 and

illustrates this concept—the instanton pathway does not pass though the

classical transition state. This had been predicted by Marcus and Coltrin

(1977), but the advantage of the instanton method is that it is able rigorously

to find the tunnelling path without ad hoc assumptions. As the temperature

is raised, however, the pathway shrinks until at Tc, the beads collapse onto a

single point at the saddle point of the PES.
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Figure 3.6 – The 32-bead instanton geometry at 240 K for the collinear
H+H2 reaction is shown by the blue beads, whereas the N = 1 (classical)
transition state is marked by the green circle. The potential surface is

represented by isoenergetic contours with a spacing of 6mEh.
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Figure 3.7 – The rates for collinear H+H2 calculated by three different
methods are shown. The green dashed line depicts the classical harmonic
TST results, the black line depicts the quantum results calculated by
wave packet propagation, and the blue blobs depict the ring-polymer

instanton results which used 128 beads.
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As one can see from Figure 3.7, the instanton results perform very well at

low-temperature where the classical TST is out by many orders of magnitude.

However, as in the previous example, there is a discrepancy near the cross-over

temperature owing to the flattening of the ring-polymer potential.

The calculations performed on the Eckart barrier in §3.2 and on this

hydrogen-exchange reaction have shown that the instanton method produces

results in good agreement with exact methods for a wide range of temperat-

ures. Armed with this knowledge, we can use it to study systems too large

to be for exact treatments to be possible.

3.4.2 Water dimer

The rate of bimolecular hydrogen exchange in the water dimer has been

studied by Wang et al. (2010) using the HBB2 water dimer potential (Shank

et al., 2009), which is described in §6.2.1. They computed the rate using

standard transition-state theory with a tunnelling correction based on a

one-dimensional calculation along the imaginary mode of the saddle point.

It is not necessary for the instanton method to make this a priori separation

of degrees of freedom, and we can thus test whether their assumption was

correct by comparing the instanton results with those of the one-dimensional

method, and if not, the instanton calculations will provide a more accurate

result.

For this particular reaction, the reactant state is that of two separate

unbounded water molecules, both of which have translational, rotational and

vibrational degrees of freedom. To compute the reactant partition function

Qr(β), the minimum geometry of a water molecule was found. The 9 × 9

Hessian at that point has 6 zero eigenvalues, but as there are two identical

molecules, each eigenvalue forms a pair to give a set of 18 eigenvalues of

which 12 are zero. All 18 frequencies ζj are used to compute the 18N values

of ωk,j using Eq. 2.38, from which the 12 zero-frequency modes are extracted

before computing the partition function using the method described in §2.2.1
with M as the mass of one water molecule and I its moment of inertia.

It is found that there are two transition states on the potential energy

surface with symmetries C2h and C2v which describe different mechanisms

of the reaction (Wang et al., 2010). Both are arranged with the oxygen and

one hydrogen atom from each molecule forming a rhombus and with the

remaining two hydrogen atoms in either a trans or cis configuration.
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Computational details

The potential energy surface is a lot more expensive than those used in the

previous examples, and because neither analytical gradients nor Hessians

were not available from the routines, it was not practical to use the stream-

bed walk algorithm to compute the stationary points. Instead, numerical

gradients were calculated using finite-differences and the limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (Zhu et al., 1997)

implemented in SciPy (Jones et al., 2001–) was used to locate minima

and the Hessian-update scheme of Bofill (1994) to locate the saddle points.

Neither of these methods needs to compute the Hessian at each step as

it is instead estimated from the values of the potential and gradient at

previous iterations (see Appendix B). This significantly reduces the amount

of computation per iteration, and even if the total number of iterations is

increased slightly, overall these methods are far more efficient (Rommel et al.,

2011).

At least a two-fold improvement in efficiency is quickly gained by modi-

fying the function given in Eq. 2.34. Since the instanton geometry always

describes a trajectory which retraces its path between the turning points, half

of the beads will lie on top of the other half such that it will not necessary

to calculate the potential and gradient for all the beads. Effectively, we can

locate stationary points on the object function

UN (x) =

N/2−1

i=1

f

j=1

mj

β2N h̄
2 (xi+1,j − xi,j)2 +

N/2

i=1

2V (xi,1, . . . , xi,f ). (3.40)

We call the N/2 beads a half ring polymer and its stationary-point geometry

a half instanton. In this representation, the Hessian is banded and can

potentially greatly speed-up the optimization (see Appendix B). Using this

improvement, the fluctuation matrix can be constructed more quickly—the

f × f submatrices need only be calculated for half of the beads—but the full

Nf ×Nf matrix must still be diagonalized because we must still include all

the fluctuation modes.

We expect the bottleneck for such computations to be in the calculation

of the PES, and the method is easily parallelized such that the potential and

gradient for each bead is computed on separate CPUs.
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A good initial geometry is provided by (Rommel et al., 2011)

xi,j = x‡j +∆x zj cos (πi/N), (3.41)

where (z1, . . . , zf ) is the unstable eigenvector of the (not mass-weighted)

Hessian at the transition state, and again ∆x is chosen manually to reduce

the computational effort of the optimization.

In order to compute instantons efficiently with large numbers of beads, the

solutions from previous calculations were used to provide good initial guesses.

First, a ring polymer with N beads is formed by folding the converged half

instanton back on itself. Then the geometry can be converted to normal-

modes coordinates q̃ using an FFT routine and n extra modes added each

with nil values. The geometry q̃ will have to be renormalized by multiplying

by


(N + n)/N so that when it is transformed back to Cartesian coordinates,

one has an instanton which traces the original path but with a higher-density

of beads. The half instanton is easily extracted from this ring polymer by

removing the doubled-back beads and is used to restart the transition-state

search.

Results

Figure 3.8 shows an instanton calculated for each of the mechanisms studied.

The trans instanton has a lower action than that of the cis instanton and so

the trans mechanism dominates. As is usual in classical TST, the rate of the

reaction is calculated as a sum over the rates of each mechanism. In fact,

owing to permutations of the atoms, but enforcing a particular hydrogen to

be exchanged, there are four equivalent saddle points for each of these two

mechanisms and so the overall rate is multiplied by 4.

The rates computed by the instanton method are shown in Figure 3.9 for

the reactions in two isotopic forms. As expected, the TST results are almost

equivalent for the deuterated case because the barrier height is unchanged.

However, the instanton method correctly finds that the rate of the deuterated

reaction is lower, because of the lessening of quantum effects for larger masses.

These results agree fairly well with those calculated by Wang et al. (2010)

and we can therefore say that in this case, the one-dimensional approximation

that they used was acceptable.
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Figure 3.8 – A depiction of the 32-bead instantons for hydrogen exchange
in (H2O)2 at 300 K, showing the trans (upper) and cis (lower) mechanisms.

The geometries of each bead are printed overlapping one another.
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H2O + H′2O→ 2H′OH
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D2O + H2O→ 2HOD

Figure 3.9 – The bimolecular reaction rate for hydrogen exchange in
the water dimer. The dashed green line shows the Eyring TST results,
the blue line the parabolic approximation and blue blobs the instanton
results. For comparison, the results of Wang et al. (2010) using their

one-dimensional potential V (Qim) are shown in black.
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3.4.3 Water trimer

As a final example of the use of the instanton method for calculating reaction

rates, results are presented for hydrogen transfer in the water trimer, for

which the minimum geometry is a triangular arrangement of water molecules

(see Figure 6.5). Unlike in the previous example, it is the unimolecular

reaction which is studied: a concerted triple hydrogen motion, simultaneously

breaking and forming three covalent bonds.

This work was inspired by the calculations of Loerting et al. (1998)

who used one-dimensional methods along two different tunnelling pathways

chosen a priori to compute the rate. One pathway followed the minimum-

energy path and the other took a straight-line path between the reactants

and products. Owing to the imprecise nature of the chosen pathway, they

received results which varied by many orders of magnitude. However, the

instanton method automatically chooses the appropriate pathway and should

return a more trustworthy value.

An unpublished trimer potential (Wang and Bowman, 2011) based on

MP2/aVTZ calculations was used to describe the system. This is able

to describe the breaking and forming of hydrogen bonds, unlike the PES

described in §6.3.1. This PES is not equivalent to that used by Loerting

et al. (1998) but does seem to be quite similar as is shown in Table 3.2.

The reactant partition function for the unimolecular system is calculated

as in Eq. 2.41, and the computational details were equivalent to those used

for the water dimer. An instanton for this system is depicted in Figure 3.10.

The calculated rates are depicted in Figure 3.11 and fall somewhere between

the two extremal values calculated by Loerting et al. (1998).

Table 3.2 – Properties of the minimum and stationary point on the
water trimer surface.

Property MP2/6-311++G(3pd,3df)a PESb

Barrier [kcal/mol] 26.99 25.88
Min ZPE [kcal/mol] 46.16 46.02
TS ZPE [kcal/mol] 42.08 42.36
Imaginary Frequency [cm−1] 1833i 1795i

a From Loerting et al. (1998).
b Using the potential of Wang and Bowman (2011).
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Figure 3.10 – The 32-bead instanton for the concerted proton transfer
in water trimer at 300 K.
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Figure 3.11 – The reaction rate for concerted hydrogen transfer in the
water trimer. Results computed using 64 beads.
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Chapter 4

Connection Between

Ring-Polymer Molecular

Dynamics and Instanton

Theory

It is possible to show that there is a link between RPMD rate theory in the

deep-tunnelling regime and the ImF instanton approach described in the

previous chapter. We derive this result by defining a TST version of RPMD,

using a conical dividing surface in the ring-polymer space, which is in turn

related to a free-energy version of ImF theory within a factor of order unity.

This solves the long-standing question of why RPMD performs so well for

low-temperature rate calculations (Richardson and Althorpe, 2009).

4.1 Ring-polymer molecular dynamics

The method of RPMD can be used to approximate quantum-dynamical

properties, while being based simply on the classical mechanics of ring

polymers. It therefore scales well with system size such that it has been

possible to apply the method to the computation of rate constants for both

gas- and condensed-phase reactions (Collepardo-Guevara et al., 2008, 2009;

Suleimanov et al., 2011).

It was noted in §2.1 that the ring-polymer partition function has the

form of a classical partition function in an extended phase space (p,x). In
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order to sample this configuration space efficiently, the beads can be made

to follow classical trajectories subject to the Hamiltonian given in Eq. 2.16.

Because these dynamics preserve the quantum Boltzmann distribution, this

method has often been used in calculations of static equilibrium properties

(Chandler and Wolynes, 1981; Parrinello and Rahman, 1984). However, the

dynamics of the ring polymers have no obvious connection with the exact

quantum dynamics described by the time-evolution operators e±iĤt/h̄, and

for example, interference effects are completely neglected because there is no

phase information.

Nevertheless, the Ansatz of the RPMD method is to take the artificial clas-

sical dynamics literally and to use them to approximate quantum-mechanical

real-time Kubo-transformed correlation functions (Craig and Manolopoulos,

2004). This procedure is of course exact in the t→ 0 limit where real-time

dynamics are suppressed and the statistics of the quantum Boltzmann op-

erator e−βĤ is captured exactly as described in Chapter 2, but at longer

times, it cannot be derived rigorously. However, there are a number of

arguments which support its validity. In the high-temperature limit, where

the beads collapse to a single point, classical mechanics is reproduced such

that the theory gives the correct result. A real-time correlation function

calculated by the RPMD approach has the same symmetry properties as

the exact Kubo-transformed correlation function, i.e. they are both real and

even functions of t. In a harmonic potential, the ring-polymer formulation of

a correlation function for which at least one of the two operators is linear

is also exact, and it is seen numerically that it is a good approximation for

short times in anharmonic potentials.

In particular, the dynamics of ring polymers seem to yield good approx-

imations to the Kubo-transformed flux-side correlation function and can

therefore be used, in the long-time limit, to compute approximate thermal

rate constants. Despite the non-linearity of both the flux and the side op-

erators, it has been shown that the RPMD method gives the exact rate

for a parabolic barrier at all temperatures for which a rate can be defined

(Craig and Manolopoulos, 2005a). In this formulation, the calculated rate is

independent of dividing surface and can be expected to be a good approxim-

ation in the shallow-tunnelling regime, i.e. for tunnelling through the top

of the barrier (which is nearly parabolic), as also has been shown numeric-

ally. The theory also appears surprisingly good for obtaining rates in the
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deep-tunnelling regime despite no long-time quantum coherence effects being

included. Because of the dividing-surface independence in the long-time limit,

the method was made more efficient without loosing accuracy by employing a

centroid- rather than a bead-pinned form (Craig and Manolopoulos, 2005b),

such that the short-time limit is equal to the centroid-based QTST of Voth,

Chandler and Miller (1989). RPMD, however, systematically improves upon

these centroid-based rate theories for asymmetric barriers at all temperatures,

and it was noticed that the error in the RPMD method only increased linearly

as a function of 1/T , although no justification could, at the time, be given

for such a good result. In this chapter, a link is provided between RPMD

and ImF theory which provides a justification for the use of RPMD rate

theory in the deep-tunnelling regime and solves this mystery.

Here, we consider only one-dimensional systems, but all the formulae

could be generalized for systems with more degrees of freedom. The definition

of the RPMD rate constant is equivalent to that of a formulation of classical

rate theory in the extended phase space of the ring polymers,

kRPMD(β)Qr(β) = lim
t→∞

1

(2πh̄)N


dp


dx e−βNHN (p,x)δ[σ(x)]vσ(p,x)h[σ(xt)],

(4.1)

where

vσ(p,x) =
dσ(x)

dt
=

1

m

N

i=1

∂σ(x)

∂xi
pi. (4.2)

The term δ[σ(x)]vσ(p,x) describes the flux of ring polymers through a

dividing surface σ(x) = 0 at initial time t = 0, σ(x) is known as the reaction

coordinate, and the Heaviside step function h[σ(xt)] picks out the real-time

trajectories for which the ring polymer ends on the product side of the

reaction σ(x) > 0 and discards those which do not. Like the classical

rate theory on which it is based, kRPMD(β) is invariant with respect to

changes in the position and form of dividing surface as long as the surface

correctly separates products and reactants in the long-time limit. However, a

reaction coordinate which follows the centroid of the beads, i.e. σ(x) = q̄ − σ0,
has almost always been chosen in previous implementations since it was

shown to be far more efficient that the original bead-pinned version (Craig

and Manolopoulos, 2005b). The location of the dividing surface along this

coordinate is determined by the parameter σ0, and the centroid coordinate

q̄ = 1
N

N
i=1 xi is related to the zeroth normal-mode coordinate by the simple
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relationship q̄ = q0/
√
N . However, a more general form of the dividing

surface will be used in this work, which systematically improves the short-

time limit of the RPMD rate, encourages faster convergence, and provides

a platform from which it is possible to make clear a justification for the

method.

4.2 Ring-polymer transition-state theory

In order to show the relationship between RPMD and the ImF rate theory,

it will be necessary to consider a TST-type approximation to Eq. 4.1 which

we name ring-polymer transition-state theory (RPTST) (Richardson and

Althorpe, 2009),

kRPTST(β)Qr(β) =
1

(2πh̄)N


dp


dx e−βNHN (p,x)δ[σ(x)]vσ(p,x)h[vσ(p,x)],

(4.3)

in which h[σ(xt)] is approximated by its t→ 0+ limit, h[vσ(p,x)]. We know

from classical rate theory that kRPTST(β) will depend exponentially strongly

on the form of the dividing surface and that it provides an upper bound to

kRPMD(β). The transmission coefficient, or dynamical correction factor, is

defined as

κtrans(β) =
kRPMD(β)

kRPTST(β)
≤ 1, (4.4)

and in order that RPTST give a good approximation to the RPMD rate,

the dividing surface σ(x) should be chosen such that κtrans(β) is as close as

possible to unity.

These concepts are already well-established as the RPMD rate can be cal-

culated by any classical rate method. To date, a two step Bennett-Chandler

approach (Frenkel and Smit, 1996, §16.2) has been used, i.e. kRPTST(β) is

computed with a centroid-based dividing surface followed by the propaga-

tion of trajectories starting from this dividing surface to obtain κtrans(β)

(Collepardo-Guevara et al., 2009). However, this dividing surface is not

necessarily optimal, and if we choose σ(x) sufficiently well, it may not be

necessary to perform the calculation of the transmission coefficient at all.

If the dividing surface is chosen to be σ(x) = q̄, it can be shown

that kRPTST(β) is equivalent to the method of Voth, Chandler and Miller

(1989). To prove this, we transform the momenta to normal-mode coordin-
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ates w = (w0, w1, w−1, . . . , wN/2) using the same transformation as was

used for the positional coordinates in Eq. 2.22, such that vσ = w̄/m where

w̄ = 1
N

N
i=1 pi is the momentum of the centroid. This gives

kRPTST(β)Qr(β) =
1

(2πh̄)N


dw


dx e−βNHN (p,x)δ[q̄]

w̄

m
h
 w̄
m



=
1

(2πh̄)N


dw

w0

m
√
N
h[w0]e

−βN


k w2
k/2m


dx e−βNUN (x)δ[q̄]

=


1

2πmβ


m

2πβN h̄
2

N/2 
dx e−βNUN (x)δ[q̄], (4.5)

where we have made use of the relation

 ∞

−∞
dp

p

m
h[p]e−βNp2/2m =

1

βN
. (4.6)

More generally, but assuming that the reaction coordinate can be written

as a normalized linear combination of coordinates, i.e. σ(x) = cixi, whereN
i=1 c

2
i = 1,∗ such that the Jacobian of the transformation is unity, the

RPTST rate is

kRPTST(β)Qr(β) =
1

(2πh̄)N


2πm

βN

N−1
2 1

βN


dx e−βNUN (x)δ[σ(x)]

=


1

2πmβN


m

2πβN h̄
2

N/2
dx e−βNUN (x)δ[σ(x)], (4.7)

which is the form that we shall employ.

4.3 Harmonic RPTST rate

In the same way that the steepest-descent approximation was applied to

the ImF rate in Chapter 3, a harmonic approximation to kRPTST(β) can

also be defined, which we name the h-RPTST rate. Here, we again choose

to take the steepest-descent integral about the instanton geometry x̃ with

its unstable mode s1 identified as the reaction coordinate σ(x). By nature

of the instanton geometry being a saddle point, it maximizes UN (x) in the

direction of the reaction coordinate even when the other modes take their

minimal values, as they must do in order to define the steepest-descent

∗Note that, according to this definition, the usual centroid-based dividing surface
is not normalized.
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integral. This approximately minimizes the RPTST rate, which, as explained

above, gives the result closest to that of RPMD. Using Eq. 4.7, transforming

to the instanton’s normal-mode coordinates {sk}, with the origin at x̃ and

applying the steepest-descent approximation gives

kh-RPTST(β)Qr(β) =


1

2πmβN


m

2πβN h̄
2

N/2

e−βNUN (x̃)

×
 ∞

−∞
ds1 δ[s1]N


BN

N

k=3

 ∞

−∞
dsk e

−βNmη2ks
2
k/2

= N


BN

2πmβN


m

2πβN h̄
2

N/2 N

k=3


2π

mβNη2k
e−βNUN (x̃)

=
N

2πβN h̄


mBN

2πβN h̄
2

N

k=3

1

βN h̄ηk
e−βNUN (x̃), (4.8)

where the factor N
√
BN comes from the integral over s2 (cf. §3.1.1).

Comparison with the ImF instanton rate (Eq. 3.25) shows that

kinst(β) = αh(β)kh-RPTST(β), (4.9)

where

αh(β) =
2π

βh̄|η1|
, (4.10)

and that the only disparity between the two methods is in the treatment of

the imaginary mode.

At the cross-over temperature, where the instanton is collapsed, η1 = ωb

and αh(βc) = 1. Therefore, the harmonic RPTST rate will be a good

approximation to the instanton rate just below the cross-over temperature,

but will degrade in quality as the temperature decreases further.

4.4 Connection between RPTST and ImF theory

To find the relationship between RPTST and ImF theory without making

the harmonic approximation of Chapter 3, we evaluate ImQ(β) by steepest

descent along just the reaction coordinate σ(x) but exactly in the other

degrees of freedom (Mills et al., 1997). It is still necessary to evaluate the

integral by the method of steepest descent in this direction because the

analytic continuation is not defined otherwise.
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First, we rewrite Eq. 2.14 as

Q(β) =

 ∞

−∞
du e−βNF (u), (4.11)

where the free energy is given by

F (u) = − 1

βN
lnQσ=u (4.12)

and the constrained partition function by

Qσ=u = A


dx e−βNUN (x)δ[σ(x)− u], (4.13)

where we have introduced a shorthand for the prefactor

A =


m

2πβN h̄
2

N/2

. (4.14)

As we intend to evaluate the analytic continuation of Eq. 4.11 by steepest

descent about u = 0, the reaction coordinate σ(x) should be chosen to

maximize the free energy at this point F (0). This is equivalent to requiring

that σ(x) = 0 is the optimal dividing surface in the RPTST calculation,

which can also be written in terms of F (0).

Expanding F (u) as a Taylor series about its maximum F (0) and truncat-

ing to second order gives

Q(β) ≈
 ∞

−∞
du e−βN [F (0)+ 1

2
F ′′(0)2u2], (4.15)

where the primes on F ′′(0) indicate differentiation with respect to u. This

expression for Q(β) is obviously extremely divergent, but we are able to

obtain an expression for its imaginary part by following the same procedure

used for kinst(β) in §3.1.2 to analytically continue the integral over the

reaction coordinate, i.e. by multiplying u > 0 by i. This yields

ImQ(β) ≈ 1

2


2π

βN |F ′′(0)| e
−βNF (0) (4.16)

=


π

2βN |F ′′(0)|


m

2πβN h̄
2

N/2 
dx e−βNUN (x)δ[σ(x)]. (4.17)
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Substitution of this expression into Eq. 3.9 yields the free-energy instanton

rate

kσ-inst(β)Qr(β) =
1

βh̄


2π

βN |F ′′(0)|


m

2πβN h̄
2

N/2
dx e−βNUN (x)δ[σ(x)],

(4.18)

and therefore, by comparison with Eq. 4.7 and assuming that σ(x) is nor-

malized to give unit Jacobian,

α(β) =
kσ-inst(β)

kRPTST(β)
=

2π

βh̄


m

|F ′′(0)| . (4.19)

This is the relationship that we have been seeking, and it shows that in

the deep-tunnelling regime and with the optimal dividing surface, RPTST

is an approximation to the free-energy instanton rate kσ-inst(β) obtained by

assuming α(β) ≈ 1. As discussed in §4.3, αh(β) tends to unity just below Tc,

and because it is the steepest-descent approximation to α(β) and therefore

quite similar, we expect that roughly the same properties hold for α(β).

Therefore, RPTST will be a good approximation to kσ-inst(β) just below

cross-over but will degrade in quality at lower temperatures. Of course,

above the cross-over temperature, this relationship does not hold; ImF has

a completely different form (see Appendix A), which is chosen such that

it is equivalent to RPTST. It is therefore very good at describing shallow

tunnelling through the parabolic top of the barrier and correctly tends to

the classical TST rate at high temperatures.

4.5 Connection between RPMD and ImF theory

The results derived above allow us to define the sought-after connection

between RPMD and the ImF rate theories in the deep-tunnelling regime,

kRPMD(β) =
κtrans(β)

α(β)
kσ-inst(β), (4.20)

where κtrans(β) is the transmission coefficient calculated through the optimal

dividing surface and is therefore close to unity. This expression explains

why RPMD rate theory has been found to perform so unexpectedly well

below Tc—because, in this regime, the RPMD rate is a good approximation
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to kσ-inst(β). However, because for complex systems the optimal dividing

surface can be difficult to calculate, it may still be preferable to compute

kRPMD(β) as this is dividing-surface independent.

Although at high temperatures, RPMD is likely to give the best ap-

proximation to the exact rate because it correctly describes classical or

parabolic-tunnelling recrossing dynamics, below the cross-over temperature,

kRPMD(β) has the more rigorous derivation and, as shown below, gives more

accurate results. However, if the system involves too much recrossing, neither

ImF nor RPMD will be a good approximation to the exact rate as the former

ignores the long-time effects and the latter employs artificial dynamics.

4.6 Numerical implementations of RPMD, RPTST

and free-energy instanton rate theories

Numerical tests were carried out on one-dimensional systems in order to

investigate the properties of κtrans(β) and α(β) and their effects on the

RPMD rate. We also investigated methods for locating the optimal dividing

surface needed to compute the RPTST and the free-energy instanton rates.

In this section we present the results and conclusions of these applications.

Two model systems were placed under study: one with a symmetric

barrier given in §3.2, and the other described by the same expression (Eq. 3.29)

but with the following parameters in reduced units (h̄ = m = 1): A = −18/π,
B = 13.5/π and a = 8/

√
3π (Craig and Manolopoulos, 2005b). The transition

state is at x‡ = −(a/2) ln 2 where the frequency is iωb = i, and therefore the

cross-over temperature is at βc = 2π. The exothermic reaction was studied,

i.e. the reactants are defined to be at x < x‡.

4.6.1 Locating the optimal dividing surface

In order to calculate the RPTST rate, we need to locate the optimal dividing

surface σ(x) = 0 on which the free energy is a maximum. It will be an almost

impossible task to search through a large ring-polymer space to find such a

free-energy maximum, especially since the optimal dividing surface may be

curved, but there is a standard procedure for achieving a good approximation

to σ(x) in variational transition-state theory (VTST) (Truhlar and Garrett,

1984), whereby the reaction is assumed to travel approximately along the
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−4 0 4 8
x

Figure 4.1 – Six snapshots of the minimum-energy pathway for a ring
polymer traversing an asymmetric barrier below the cross-over temperat-
ure. The instanton geometry is represented in the third schema from the

top.

minimum-energy pathway between reactants and products. The unstable

mode of the transition state is chosen as the reaction coordinate, the dividing

surface as the plane orthogonal to this, and the free energy is maximized in

this direction only.

The minimum-energy reaction pathway for a ring polymer with potential

UN (x) was computed by following the direction of steepest-descent down from

the transition state in both directions. Above the cross-over temperature,

the beads are collapsed all the way along this path such that there are no

significant deviations from a classical calculation and the reaction coordinate

is described by the centroid mode q0 alone. However, below Tc, the ring

polymer stretches as is shown by the example pathway in Figure 4.1 and the

higher modes are also excited. The transition state (and maximum of UN (x)

along the pathway) is of course the instanton geometry x̃ and the unstable

mode is s1.

As explained in §3.1.1, between the temperatures Tc and Tc/2, a collapsed

ring polymer at the top of the barrier xi = x‡ has three unstable modes, q0

and q±1. We therefore expect that in this regime, the geometry of a ring

polymer in the vicinity of the barrier will be dominated by only these three

62



normal modes, and that only they will significantly contribute to s1.

We shall attempt to construct a good approximation to the optimal

dividing surface, using only these modes, but because of the degeneracy of

the q±1 modes, it is expedient to convert to a cylindrical coordinate system

by defining a “stretching” mode

r =

q21 + q2−1, (4.21)

which is orthogonal to the centroid mode q0 and independent of cyclic

permutation of the beads, which is instead described by the angle θ such

that

q1 = r cos θ, q−1 = r sin θ. (4.22)

In the N →∞ limit, the ring-polymer potential UN (x), and hence the free

energy, are independent of θ.

In this coordinate system, we have explained that the optimal dividing

surface will approximately be a function of only q0 and r. As an illustration

to the problem, we can define a free-energy surface as

F (q∗, r∗) = − 1

βN
lnQ(q∗, r∗), (4.23)

where

Q(q∗, r∗) =


m

2πβN h̄
2

N/2 
· · ·


e−βNUN (x)

× δ[q0 − q∗] δ[r − r∗] dq0 rdr dθ dq2 dq−2 . . . dqN/2. (4.24)

This is computed by Monte Carlo importance sampling (see below) in the

cylindrical normal-mode coordinates with q0 and r fixed, whereas θ is selected

from a uniform distribution between 0 and 2π. The surfaces are plotted at

two different temperatures for both the symmetric and asymmetric barriers

(see Figures 4.2 and 4.3). For both systems, the saddle point moves away from

a collapsed r = 0 geometry to a stretched instanton when the temperature

drops below cross-over, as a consequence of ω±1 becoming imaginary. The

optimal dividing surface for the symmetric barrier is not affected by this

change, because of the symmetry in the free-energy surface. However, for
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Figure 4.2 – The free-energy surface for the symmetric Eckart barrier
above and below cross-over at β = 6 (upper) and β = 10 (lower). The
steepest-descent paths from the instanton geometry are depicted in yellow

and the dividing surfaces perpendicular to this in red.
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Figure 4.3 – As Figure 4.2 for the asymmetric Eckart barrier.
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Figure 4.4 – Approximate form of the optimal free-energy dividing
surface σ(x) for an asymmetric barrier. The conical surface is plotted
in the space of the modes q0 and q±1 and has circular symmetry in the
plane of (q1, q−1). Also shown are the directions of the normal modes s1

and s2 at one particular instanton geometry.

the asymmetric barrier below Tc, σ(x) must take on a strong dependence on

r in order to follow the free-energy ridge. In all cases, the optimal dividing

surface is approximately perpendicular to the minimum-energy path and

therefore the unstable mode of the saddle point.

Because the free energy is independent of θ, the dividing surface for the

low-temperature asymmetric case is not planar but conical in the space of the

ring-polymer normal modes, as shown in Figure 4.4. The set of equivalent

instanton geometries related by cyclic permutation lie on the circle which is

the intersection between the cone and a plane perpendicular to q0. Picking an

arbitrary point on this circle and calculating its normal modes yields s1 and

s2 which are depicted on the figure. The normal mode s1 is perpendicular to

the surface of the cone and s2 points tangentially around the circle.

65



4.6.2 Approximate dividing surfaces

The simplest form of ring-polymer dividing surface is based only on the

centroid mode,

σ(x) = q0 − σ0 = 0, (4.25)

where σ0 is chosen to maximize the free energy. This form has been frequently

used in previous path-integral calculations and with this definition, RPTST

reduces to VCM, and kσ-inst(β) to the rate derived by Gillan (1987) as shown

by Makarov and Topaler (1995).

As we have explained, above the cross-over temperature, the unstable

mode of the collapsed saddle point xi = x‡ is dominated by q0, and so we

expect the centroid surface to lead to an accurate rate. However, unless the

system is symmetric, the modes q±1 will also contribute at low temperatures.

Between βc and 2βc these are the only modes which are expected to be

important, and so a good approximation to the optimal dividing surface can

be written as a linear combination of these contributing modes,

σ(x) = q0 cosφ+ r sinφ− σ0 = 0, (4.26)

where r is defined in Eq. 4.21 and φ is a parameter which should be chosen

variationally to make Eq. 4.26 resemble as closely as possible the optimal

dividing surface. This dividing surface and all proceeding formulae reduce

to the centroid-based case (Eq. 4.25) if φ = 0.

In order to compute the rate with these dividing surfaces the constrained

partition function Qσ=0 from Eq. 4.13 was calculated by integrating over

all but one of the free-ring-polymer normal modes qk ̸=0 using importance

sampling.∗ The centroid mode q0, however, was chosen so as to make the

∗Monte Carlo importance sampling (Frenkel and Smit, 1996, §3.1.1) computes
integrals using the relation


dx f(x)w(x)
dxw(x)

= ⟨f(x)⟩w =
1

L

L

l=1

f(xl), (4.27)

where the values of xl are chosen randomly with a probability w(xl) and where L is
the sample size. The standard error in the result is computed as


⟨f(x)2⟩w − (⟨f(x)⟩w)2

L− 1
. (4.28)
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delta function non-zero.

Qσ=0 = A


dx e−βNUN (x)δ[q0 cosφ+ r sinφ− σ0]

=
A

cosφ


dq e−βN

N
i=1 V (xi)e−βN


k mω2

kq
2
k/2δ


q0 −

σ0 − r sinφ
cosφ



=


m

2πβN h̄
2

1

cosφ



k ̸=0

1

βN h̄ωk


e−βN

N
i=1 V (xi)

free
σ=0

=


m

2πβN h̄
2

1

N cosφ


e−βN

N
i=1 V (xi)

free
σ=0

, (4.29)

where the angular brackets ⟨· · · ⟩freeσ=0 describe a Monte Carlo average computed

over the modes qk ̸=0 randomly selected from a normal distribution with mean

0 and variance 1/βNmω
2
k but with a constraint on the centroid mode. The

frequencies ωk are those of a ring polymer in free space, i.e. Eq. 2.23 with

ωs = 0. In practical terms, we compute

Qσ=0 =


m

2πβN h̄
2

1

LN cosφ

L

l=1

e−βN
N

i=1 V (xl
i),

where xl is computed from ql by the inverse normal-mode transformation

and qlk ∼ N (0, 1/βNmω
2
k) for all k except k = 0 for which

ql0 =
σ0 −


ql1
2

+

ql−1

2
sinφ

cosφ
.

The rate is found by substituting this constrained partition function into

Eq. 4.7 or Eq. 4.18 as appropriate.

In previous implementations kRPTST(β) has been computed using thermo-

dynamic integration with a constraint on the centroid or umbrella integration

(Kästner and Thiel, 2005) with biased molecular dynamics. However, for

these one-dimensional test systems, it was even simpler to use the importance

sampling method described here. This situation will be reversed for larger

and more complex systems.

We consider first the centroid dividing surface Eq. 4.25 which has only

one parameter to be chosen. The value of σ0 is obviously equal to 0 for the

symmetric Eckart barrier because of the symmetry of the free-energy surface.

For the asymmetric case, however, it is not obvious in general where to place
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the dividing surface, and σ0 should be chosen so as to maximize the free

energy F (0). In the classical limit, the optimal location is at the barrier top

x‡, but it moves towards the reactants (defined such that the reaction is

exothermic) as the temperature is lowered. This is because the ring-polymer

beads spread out more at lower temperatures and would start to sample the

lower-energy product side if the dividing surface were not moved away.

With the improved form of the dividing surface given in Eq. 4.26, a method

already in common use for variational TST (Truhlar and Garrett, 1984) was

employed, in which a plane orthogonal to the unstable mode of the saddle

point is moved along the unstable mode to maximize the free energy on the

plane. A similar method can be applied to the ring-polymer potential surface

UN (x) although in this case there exists a ring of identical saddle points—

the instanton geometries. The following method was used: one particular

permutation of the instanton saddle point was located on the surface using

the stream-bed walk algorithm (Nichols et al., 1990). The resulting geometry

x̃ was transformed to normal-mode coordinates q̃ as defined by Eq. 2.22.

The eigenvector corresponding to the negative eigenvalue was taken to be

the local direction of the reaction coordinate, and the dividing surface cone

defined such that it was orthogonal to this direction at x̃. The angle φ is the

pitch of the conical dividing surface and can be computed using

φ = − tan−1


q̃21 + q̃2−1

q̃0
. (4.30)

This definition accounts for the degeneracy of q±1, which results in the zero-

frequency mode at the instanton geometry, and the conical shape describes

the optimal dividing surface well because this preserves the circular degree of

freedom linking all the cyclic permutations and therefore maximizes the free

energy. The free energy calculation will include ring polymers which either

lie collapsed near to the barrier or are stretched out but shifted towards the

reactants. On the other hand, a flat plane does not give a good approximation

to the optimal dividing surface and samples ring polymers which lie deep

into the low-energy product side leading to an unphysically low value of the

free energy.

To obtain the optimal value of σ0 which maximizes the free energy for a

given φ , we shall need to be able to compute the derivative with respect to

the reaction coordinate, for which a small mathematical aside is required.
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The chain rule gives

∂

∂σ
=
∂q0
∂σ

∂

∂q0
+
∂r

∂σ

∂

∂r
+
∂θ

∂σ

∂

∂θ
. (4.31)

The space spanned by (q0, r, θ) is also spanned by (σ, ρ, θ) where ρ is defined

to be orthogonal to the reaction coordinate,

σ = q0 cosφ+ r sinφ− σ0, (4.32)

ρ = −q0 sinφ+ r cosφ− ρ0. (4.33)

These simultaneous equations are solved for q0 and r to give

∂q0
∂σ

= cosφ,
∂r

∂σ
= sinφ,

∂θ

∂σ
= 0. (4.34)

Using Eq. 4.22, we also find

∂

∂r
=
∂q1
∂r

∂

∂q1
+
∂q−1

∂r

∂

∂q−1
= cos θ

∂

∂q1
+ sin θ

∂

∂q−1
, (4.35)

where θ = tan−1 (q−1/q1) and therefore

∂

∂σ
= cosφ

∂

∂q0
+ sinφ cos θ

∂

∂q1
+ sinφ sin θ

∂

∂q−1
. (4.36)

Finding the optimal value of σ0 is equivalent to locating the maximum of

F (u) defined with the more general form of the dividing surface (Eq. 4.26).

We therefore computed the mean force

− F ′(u) = −∂F (u)
∂u

=
1

βN

1

Qσ=0

∂Qσ=u

∂u
. (4.37)

Following Frenkel and Smit (1996, 16.2.1),

∂Qσ=u

∂u
= A


e−βNUN (q) ∂δ[σ − u]

∂u
dq (4.38a)

= −A

e−βNUN (q) ∂δ[σ − u]

∂σ
dq (4.38b)

= −A

· · ·


e−βNUN (q) ∂δ[σ − u]
∂σ

r dσ dρdθ dqN−3, (4.38c)

where dqN−3 is a shorthand for dq1−N/2 . . .dq−2 dq2 . . .dqN/2, and we have
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used the result that the Jacobian for the transformation from q to a set of

coordinates including the reaction coordinate σ is |J | = r. Integrating along

σ by parts gives

∂Qσ=u

∂u
= A


· · ·


∂

∂σ


re−βNUN (q)


δ[σ − u] dσ dρdθ dqN−3 (4.39a)

= A

 
∂r

∂σ
− rβN

∂UN

∂σ


e−βNUN (q) δ[σ − u]

r
dq (4.39b)

= A

 
sinφ

r
− βN

∂UN

∂σ


e−βNUN (q) δ[σ − u] dq. (4.39c)

There are (at least) two ways for computing integral in Eq. 4.39c. We

could use importance sampling as used on the constrained partition function

above, in which case

∂Qσ=u

∂u
=


m

2πβN h̄
2

1

N cosφ


sinφ

r
− βN

∂UN

∂σ


e−βN

N
i=1 V (xi)

free

σ=u

,

(4.40)

where the derivative of the ring-polymer potential is defined by Eq. 4.36.

However one can use a more efficient sampling procedure to obtain F ′(u)

directly,

− F ′(u) =
1

βN


sinφ

r
− βN

∂UN

∂σ



σ=u

, (4.41)

where the angular brackets ⟨· · · ⟩σ=0 denote a canonical average at reciprocal

temperature βN subject to the classical Hamiltonian in Eq. 2.16 with the

constraint σ = u. The ensemble average is taken over points selected from

a constant-temperature constrained molecular-dynamics simulation.∗ To

enforce the constraints, the RATTLE algorithm (Andersen, 1983) was found

to be simple to apply, especially as in this case iterative steps are not required,

whereas the energy was allowed to fluctuate according to the temperature

using the Andersen thermostat (Andersen, 1980), as described in Appendix D.

The root of F ′(u), and therefore the maximum of F (u) and minimum

of Qσ=u, was found using an algorithm based on Brent’s method (Press

et al., 1992, §9.3). In this way we obtain the value of σ0 which will give the

optimal dividing surface σ = 0 within our approximation and therefore give

the maximal value of κtrans(β) such that kRPTST(β) is the best estimate of

∗As we are assuming a linear reaction coordinate σ, no correction to the sampling
bias is required (Frenkel and Smit, 1996, §15.1.1).
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the RPMD rate and kσ-inst(β) of the ImF rate.

4.6.3 Computing α(β)

The factor α(β) defined in Eq. 4.19 converts the RPTST rate into kσ-inst(β).

It will only be necessary to include this factor when the temperature is below

cross-over because the RPTST rate is well defined above Tc and only needs

correcting in the deep-tunnelling regime.

The only non-trivial term in the definition is the second derivative of the

free energy which can be written as

F ′′(0) =
∂2F (u)

∂u2


u=0

= − 1

βN


Q′′

σ=0

Qσ=0
−

Q′

σ=0

Qσ=0

2

= − 1

βN

Q′′
σ=0

Qσ=0
, (4.42)

since F ′(0) = 0 for the optimal choice of σ. Taking the approximate conical

dividing surface in Eq. 4.26,

Q′′
σ=u = A

 
sinφ

r
− βN

∂UN

∂σ


e−βNUN (q) ∂δ[σ − u]

∂u
dq

= −A
 

sinφ

r
− βN

∂UN

∂σ


e−βNUN (q) ∂δ[σ − u]

∂σ
r dσ dρdθ dqN−3

= A


∂

∂σ


sinφ− rβN

∂UN

∂σ


e−βNUN (q)


δ[σ − u] dσ dρdθ dqN−3

= A

 
−rβN

∂2UN

∂σ2
− 2 sinφβN

∂UN

∂σ
+ r


βN

∂UN

∂σ

2


× e−βNUN (q) δ[σ − u]
r

dq,

(4.43)

such that

Q′′
σ=0 = A

 
−βN

∂2UN

∂σ2
− 2

sinφ

r
βN

∂UN

∂σ
+


βN

∂UN

∂σ

2

e−βNUN (q)δ[σ] dq.

(4.44)
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The result is computed using either Monte Carlo importance sampling from

Q′′
σ=0 =


m

2πβN h̄
2

1

N cosφ

×

−βN

∂2UN

∂σ2
− 2βN

∂UN

∂σ

sinφ

r
+


βN

∂UN

∂σ

2

e−βN


i V (xi)

free

σ=0

,

(4.45)

or directly from a canonical average,

F ′′(0) =


∂2UN

∂σ2
+ 2

sinφ

r

∂UN

∂σ
− βN


∂UN

∂σ

2


σ=0

. (4.46)

In either case, the second derivative of UN is computed by finite differences

of the first derivative.

4.6.4 RPMD transmission coefficient

The final step in the calculation of the RPMD rate is the transmission

coefficient

κtrans(β) =
limt→∞ cfs(t)

limt→0+ cfs(t)
, (4.47)

where the ring-polymer flux-side correlation function is

cfs(t) = ⟨vσ(w0,q0)h[σ(qt)]⟩σ(q0)=0 . (4.48)

The momenta and positions in normal-mode coordinates qt and wt are now

treated explicitly as functions of real time t and the flux through the conical

dividing surface is

vσ(w,q) =
1

m


w0 cosφ+

q1w1 + q−1w−1

q21 + q2−1

sinφ


. (4.49)

Note that there are two types of ring-polymer trajectories involved in

these expressions. The usual constant-temperature constrained molecular

dynamics algorithm is used to sample the space (Appendix D) but every so

often a real-time constant-energy unconstrained trajectory is computed from

one of the sampled configurational points. The initial momentum p0 for this

trajectory, however, is selected from the Maxwell-Boltzmann distribution
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N (0,m/βN ). The trajectories are calculated using a combination of the

velocity Verlet algorithm according to the Hamiltonian in Eq. 2.16 and an

exact iterator for the harmonic parts of the potential as described by the

procedure in Appendix C. The trajectories were propagated for long enough

such that a plateau appeared in the function cfs(t) and the ratio between

the final and initial values was taken to be the transmission coefficient.

4.7 Results and comparisons of the methods

The results from the calculations, on the symmetric and asymmetric barriers,

are presented in Tables 4.1 and 4.2 in the form of tunnelling-correction factors

c(β) = k(β)/kcl(β). (4.50)

Table 4.3 gives the parameters used for defining the optimal dividing surfaces.

As expected, kRPMD(β) provides a lower bound to both the VCM and RPTST

rates. However, RPTST is a significantly better estimate of the exact rate

than VCM for the low-temperature asymmetric reaction when the conical

dividing surface from Eq. 4.26 is used, and is almost equal to the RPMD

rate, implying that the dividing surface chosen is very close to optimal. The

h-RPTST calculations do a pretty good job of estimating the RPTST and

RPMD rates for a fraction of the effort. The only major discrepancy in this

harmonic approximation is just above the cross-over temperature when the

ring-polymer surface becomes very flat. This occurs when the beads are

collapsed, and the system is effectively treated as a parabolic barrier for

which the exact rate diverges at Tc. The effect of the α(β) factor improves

the results (relative to the exact rate) for both the harmonic instanton and

free-energy instanton for both potentials at all relevant temperatures.

The factor α(β) is seen to increase the rates for the symmetric barrier

but decrease the rates in the asymmetric case. To provide an explanation for

this, we examine the trend of the harmonic approximation to α(β) as this is

simpler but behaves in the same way. It is defined as, from Eq. 4.10,

αh(β) =
2π

βh̄|η1(β)|
. (4.51)

Figure 4.5 shows the variation of the parameter with decreasing temperature

for both potentials.
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Table 4.1 – Quantum correction factors c(β) for the symmetric Eckart
barrier. The cross-over temperature is given by βch̄ωb = 2π, and the
number of beads used in the calculations was N = 60. The exact quantum-

mechanical rate constant (QM) was given by Eq. 3.28.

βh̄ωb RPMD RPTSTa σ-inst QM Inst. h-RPTST

2 1.17 1.17 . . . 1.22 . . . 1.19
4 1.87 1.87 . . . 2.07 . . . 2.20
6 4.35 4.36 . . . 5.20 . . . 21.4
8 16.2 16.4 21.2 21.8 22.0 17.5

10 104 107 142 162 137 90.2
12 1110 1160 1670 1970 1620 931

a Using the dividing surface Eq. 4.25 because, owing to symmetry,
φ = 0. This is equivalent to the method of Voth et al. (1989).

Table 4.2 – As Table 4.1 for the asymmetric Eckart barrier with N = 256.

βh̄ωb RPMD VCMa RPTSTb σ-inst QM Inst. h-RPTST

2 1.18 1.18 1.18 . . . 1.20 . . . 1.19
4 1.96 1.98 1.98 . . . 2.01 . . . 2.20
6 5.28 5.61 5.61 . . . 5.32 . . . 21.3
8 28 36 30 28 26.1 28.1 33.1
10 320 540 330 260 251 232 321
12 5900 16000 6300 4200 4060 3690 5910

a Using the dividing surface Eq. 4.25. This is equivalent to the method of
Voth et al. (1989).

b Using the dividing surface Eq. 4.26.

Table 4.3 – Parameters characterizing the optimal dividing surface for
the asymmetric Eckart barrier with q‡ ≈ −0.90.

VCM RPTST

β σ0 φ/◦ σ0

2 −0.97 0 −0.97
4 −1.06 0 −1.06
6 −1.24 0 −1.24
8 −1.58 32 −0.77

10 −2.03 39 −0.70
12 −2.47 43 −0.71
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Figure 4.5 – Variation of αh(β) with temperature for the symmetric
(blue line) and asymmetric (green line) Eckart barriers.

The reason why α(β) increases with β for symmetric but not for strongly

asymmetric barriers can be examined by studying the variation of the ei-

genvalues and the centroid-only component of the Hessian, for which, see

Figure 4.6. With respect to the centroid coordinate, the only effect on the

Hessian is in the external potential V and so we write

∂2UN

∂q20
=

1

N

N

i=1

∂2V

∂x2i
, (4.52)

which is large and negative when the ring polymer is near the top of the

barrier and decreases sharply in magnitude∗ as the temperature is lowered

because the ring polymer spreads out into regions of positive curvature.

Because cross-terms between the centroid and first normal mode,

∂2UN

∂q0∂q1
=

√
2

N

N

i=1

∂2V

∂x2i
sin

2πi

N
, (4.53)

are forbidden by symmetry,† the centroid component of the Hessian dominates

∗For this system, it appears to go like 1/β4. This relationship, however, was not
found to hold for other symmetric systems.

†This is because beads i and i+N/2 contribute equally but with opposite signs.
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Figure 4.6 – Variation of the negative eigenvalue of the instanton with
β for the symmetric (solid blue line) and asymmetric (solid green line)
Eckart barriers. Also the variation of the second derivative of UN (x̃) with
respect only to the centroid coordinate (Eq. 4.52) for both barriers is

shown with dashed lines in the same colours.

for symmetric barriers and η1(β)
2 follows this trend. The second derivative

with respect to the centroid can become positive at low temperatures which

can cause problems for some centroid-based TST methods (Cao and Voth,

1996). However, the generalized method presented here has no such difficulty

since the higher (even-numbered) modes q±k come to the rescue and keep

η1(β)
2 negative.

In the case of the asymmetric barrier, the value of Eq. 4.52 also increases

sharply (towards zero). The difference is, however, that now the cross-terms

in Eq. 4.53 are allowed and mixing occurs with the first normal modes.

Because the coupling term is large and real for a strongly asymmetric barrier,

it dramatically reduces the eigenvalue η1(β)
2, forcing it to change slowly

with β such that α(β) ≈ βc/β as is seen in Figure 4.5.

This prediction that RPMD underestimates the rate for symmetric bar-

riers and overestimates the rate for strongly asymmetric barriers is borne

out by calculations on the symmetric reactions H + H2 and Cl + HCl and

on the asymmetric reaction F + H2 by Collepardo-Guevara et al. (2010) and

Stecher (2010).
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only in σ

Figure 4.7 – A schematic showing the relationships between the different
quantum rate theories mentioned in the text, where the arrows represent
the approximations made. This applies only in the deep-tunnelling regime.

4.8 Summary

By taking the short-time limit of RPMD, we have obtained a new quantum

transition-state theory named RPTST, equivalent to that of Voth et al. (1989)

for symmetric barriers, but greatly improved in the case of asymmetric

barriers in the deep-tunnelling regime. This was achieved by giving the

first normal modes of the ring polymer equal importance to the centroid

mode when the dividing surface was chosen. Using the improved dividing

surface does not of course affect the RPMD rate but it does, however,

improve the statistics necessary for convergence of the transmission coefficient

κtrans(β) enormously. For example, in order to accurately compute the second

significant figure for the β = 12 entry in Table 4.2, only 104 trajectories were

needed whereas full convergence was not quite reached even with 106 for the

centroid dividing surface.

An important consequence of this work is a derivation of RPMD from

ImF , explaining why RPMD performs so well in the deep-tunnelling regime.

Above the cross-over temperature, where RPMD accurately includes parabolic

tunnelling, RPTST is obviously an approximation to RPMD as it neglects

the classical recrossing effects. However, below Tc, the fictitious ring-polymer

dynamics cannot be expected to reproduce the quantum recrossing, and the

transmission coefficient should be regarded not as a dynamical correction

factor, but as a correction to the free energy owing to a poor choice of
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dividing surface. For diffusive dynamical systems below cross-over, fictitious

recrossing effects will also contribute to κtrans. In these cases, it will be useful

to compute the RPTST rate such that the two effects on the transmission

coefficient can be more clearly discerned.

Assuming that we have chosen the optimal dividing surface (to which

Eq. 4.26 seems very close), RPTST can be derived from the free-energy

instanton rate kσ-inst(β) and hence from ImF theory by taking the approx-

imation that α(β) ≈ 1 which introduces only a small error if the trends

in Figure 4.5 are held to be generally true. The concepts involved in this

derivation are summarized in Figure 4.7 which also shows relations between

RPMD, the centroid-based TST methods and the corresponding harmonic

approximations.
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Chapter 5

Instanton Calculation of

Tunnelling Splittings

The ring-polymer instanton formalism can also be used to compute an

approximation to the tunnelling splitting that occurs between two degenerate

wells (Richardson and Althorpe, 2011). In this chapter we derive this result,

first for one-dimensional and then multidimensional systems, giving examples

of applications to polyatomic molecules. In Chapter 6 we shall extend the

method for systems with more than two degenerate wells and present the

results of its application to water clusters. The one-dimensional derivation

follows similar steps to that used in the instanton literature (Benderskii et al.,

1994), but owing to the relative simplicity of the ring-polymer formulation,

it is far simpler to find a practical multidimensional generalization of the

method.

Unlike the instanton rate theory based on the ImF premise, the theory

presented here is founded on sounder principles. A system with two degener-

ate wells, such as is shown in Figure 5.1, has its zero-point energy levels E0

split by the mixing of the two states as a consequence of tunnelling through

the barrier. We define the partition function of the system Q(β) and that of

just one of the wells Q0(β), such that 2Q0(β) can be considered the partition

function of the system in the absence of tunnelling. In the low temperature
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Figure 5.1 – A schematic representation of a double-well potential energy
surface (solid red curve) with a tunnelling splitting ∆ between its energy
levels (solid blue lines) and the non-tunnelling system (dashed red curves)

with zero-point energy E0 (dashed blue lines).

limit at which only the zero-point energy level E0 is occupied,

lim
β→∞

Q(β)

2Q0(β)
= lim

β→∞
e−β(E0−∆/2) + e−β(E0+∆/2)

2e−βE0
(5.1)

= lim
β→∞

cosh


β∆

2


, (5.2)

where E0 ± ∆/2 are the energy levels resulting from the splitting. This

expression provides the link between the tunnelling splitting which we wish

to calculate and the partition functions of the system. It is valid as long as the

splitting is much smaller than the energy-level spacing in the non-tunnelling

system, which is true as long as the barrier is not too low or thin. The

problem has therefore been recast into a computation of the low-temperature

limit of partition functions.

5.1 Ring-polymer formulation

We choose to calculate Q(β) and Q0(β) in the same vein as in §3.1.1, by the

method of steepest descent. There are however a couple of differences between
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the earlier application of the method and this. For the rate calculation, a

ring-polymer formulation of the imaginary part of the partition function

was derived using an analytic continuation of the reaction coordinate into

the complex plane, such that it was necessary to locate the saddle point

on UN (x). This is not so for the tunnelling-splitting calculations where the

minima on the ring-polymer surface are needed to compute a real partition

function, and in order to formulate the steepest-descent expression for the

total partition function, we must take account of all such minima. We first

derive an expression for Q0(β), before describing the equivalent formulation

of Q(β), and thus obtain the splitting ∆.

5.1.1 Non-tunnelling system

The non-tunnelling system is that of two unconnected potential wells with

vibrational degrees of freedom and so the only ring-polymer minima which

exist are the trivial solutions with the beads collapsed in one of the wells.

That is xi = ±x0, where ±x0 are the positions of the potential wells, and

in the steepest-descent approximation, it leads to two harmonic vibrational

partition functions (see §2.1.1), both of which are

Q0(β) ≃


k

1

βN h̄ωk
(5.3)

=


1

βN h̄

N 1√
detG0

, (5.4)

where ω2
k (Eq. 2.23) are the eigenvalues of the mass-weighted Hessian, the

elements of which are, from Eq. 2.18,

(G0)ii′ =
2δii′ − δi i′−1 − δi i′+1

(βN h̄)2
+ ω2

s δii′ , (5.5)

ωs is the harmonic frequency of each of the wells, and as before, the beads

are cyclic.

5.1.2 Full system

These two solutions also contribute to Q(β) as they are also minima in the full

system. However, in the low-temperature limit, there are also ring-polymer

minima which connect the two wells describing a periodic orbit passing back
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Figure 5.2 – The ring-polymer instanton minimum connecting two wells
±x0 (lower panel) is equivalent to a finite-difference approximation to the
unstable periodic classical trajectory on the upside down surface depicted

in the upper panel.

and forth between maxima on the upside down potential (see Figure 5.2).

As β →∞ and the amount of imaginary time available to the trajectories

increases, the trajectory spends longer and longer waiting almost stationary

at ±x0 for an arbitrarily long stretch of time before embarking on its short

journey to the other well. It is for this reason that instantons derive their

name: because they occur almost instantaneously compared with the long

wait between passes. Each pass called a “kink”, and all follow identical

trajectories. The number of kinks n in the periodic orbit must be even for

the trajectory to be closed. However, n can be infinitely big, and so there is

an infinite set of ring-polymer minima which contribute to Q(β). Figure 5.3

gives a depiction of some examples of these ring-polymer minima.

We note that, in the long imaginary-time limit, the location of the kinks

in the ring polymer is completely arbitrary, and that the instanton acts

somewhat like an ideal gas of kinks (Vainshtein et al., 1982). It has also been

compared to an infinite periodic Ising model where the system is either at x0

(spin up) or −x0 (spin down) and kinks exist between neighbouring sites of

opposite spins (Polyakov, 1977). In order to calculate the partition function

of such a system, one can enumerate over all the instantons with the same
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Figure 5.3 – The positions of the beads in a 2-kink (upper) and a 4-kink
(lower) ring-polymer instanton which contribute to Q2 and Q4 respectively.
One bead near the centre of each kink is labelled as is described in the

text.

number of kinks n because, as we shall show, they will all contribute equally

to the partition function. To proceed, we choose a particular n-kink ring

polymer and label the bead at the centre of the first kink N1, the bead at the

centre of the second kink N2, etc. In the infinite bead limit, the number of

equivalent n-kink ring polymers is equal to the number of ways of choosing

these n central beads from N in the correct order N1 < N2 < · · · < Nn.

We find therefore that, in the large-N limit, there are 2Nn/n! equivalent

n-kink ring-polymer minima which contribute to Q(β). The factor of 2 arises

because the first bead could be either in the left- or right-hand-side well.

Thus the steepest-descent partition function evaluated over all possible

minima can be written

lim
β→∞

Q(β) =

∞

n=0
even

2Nn

n!
Qn, (5.6)

where each Qn represents the contribution from any one of the ring-polymer

minima with n kinks in the β →∞ limit. As expected, the formula includes

the two n = 0 minima which correspond to 2Q0(β) in the low-temperature

limit. This has dramatically reduced the number of minima to be considered
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but the calculation is still not tractable in this form and we shall simplify it

further.

We would like to compute a steepest-descent approximation to the n-kink

partition function which would give something like

Qn = lim
β→∞


1

βN h̄

N 1√
detG

e−βNUN (x̃), (5.7)

where the mass-weighted Hessian matrix (defined in Eq. 2.18) is calculated at

the ring-polymer instanton geometry which minimizes Eq. 2.15 and describes

n passes through the barrier. However this expression is not correct because,

as explained previously in §3.1.1, some of the normal modes have a zero

eigenvalue. We deal with this in the next section and correct the result.

5.1.3 Zero-frequency modes

There were no zero-frequency modes of the instanton used in the calculation

of Q0(β) because all the beads were collapsed such that no permutational

modes existed. However, the 2-kink ring-polymer minimum can be thought of

as the β →∞ limit of the instantons of Chapter 3, which had one imaginary

mode and one zero-frequency mode corresponding to a cyclic permutation

of the beads. As the temperature is lowered, the imaginary mode reduces

in magnitude until it becomes zero at T = 0, leaving a degenerate pair of

zero-frequency modes.

In general, there are as many zero-frequency normal modes sk as kinks in

the instanton, where k = 1, . . . , n, which only appear in the large-N , large-β

limit such that, at the ends of the kink trajectory, there are many beads

collapsed in the wells. The normal modes describe permutations of beads

such that each bead in a kink takes on the position of its neighbour such

that the kink, in a similar way to the motion of waves, retains its shape and

moves such that a new bead is at its centre. The degenerate modes can be

written in any linear combination, one such choice being

sk =
1√
BM



i∈kink k
(x̃i+1 − x̃i)xi, k = 1, . . . , n, (5.8)

such that only beads in the kth kink contribute to the mode. The normaliza-
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tion constants for these modes are

BM =


i∈kink k
(x̃i+1 − x̃i)2. (5.9)

Because the energy from Eq. 3.15 is conserved along the instanton trajectory,

and we are free to set this to zero, the action from Eq. 3.16 can be written

Skink =

 τ+

τ−
m


dx

dτ

2

dτ (5.10)

= lim
N→∞

mBM

βN h̄
, (5.11)

where Skink is the action along just one kink and τ− and τ+ are imaginary

times just before and after this kink. Using this definition of the normalization

constant, the normal modes become

sk =


m

βN h̄Skink



i∈kink k
(x̃i+1 − x̃i)xi, k = 1, . . . , n. (5.12)

Rather than using steepest descent to integrate over these modes, we

integrate over them analytically. It is readily seen that integrating sk across

the interval 0 to

βN h̄Skink/m, moves the kink forward by one bead such

that each bead i moves from x̃i to x̃i+1. We have already enumerated all the

possible permutations of the beads in the kinks, and so we need only integrate

over this small interval. It is possible to do this analytically because no other

terms in the expression depend on these modes. Each zero-frequency mode

contributes a factor of

βN h̄Skink/m in place of the Gaussian integrals.

Therefore the correct formulation Eq. 5.7 is

Qn = lim
β→∞


m

2πβN h̄
2

N
2

βN h̄Skink

m

n
2 ′

k


2π

βNmη2k
e−βNUN (x̃) (5.13)

= lim
β→∞


Skink
2πh̄

n
2


1

βN h̄

N−n 1√
det′G

e−βNUN (x̃), (5.14)

where the primes indicate that the n zero frequencies have been removed

from the product of eigenvalues.
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5.1.4 Expression for the tunnelling splitting

Because the potential can be defined to be zero at ±x0 where the springs

are collapsed, the only contributions to UN (x̃) come from the beads in the

kinks. That is,

UN (x̃) =
nSkink
βN h̄

, (5.15)

where Skink is the action along the kink trajectory and can be calculated

from the minimum of some linear -polymer potential.

We introduce a linear polymer formed of M beads with the coordinates

x = (x1, . . . , xM ) described by the potential surface

UM (x) =
m

2(βN h̄)2

M−1

i=1

(xi+1 − xi)2 +
M

i=1

V (xi). (5.16)

Note that we use the same time step βN h̄ as in the N -bead ring-polymer,

but redefine β such that the imaginary time available for the instanton is

still βh̄ and therefore βN = β/M . The action along the kink is defined as

Skink = βN h̄UM (x̃), (5.17)

where x̃ is the position of the local minimum of Eq. 5.16 which describes one

pass through the barrier. This definition is equivalent to that of Eq. 5.11 in

the limit that β → ∞ and βN → 0. Checking that the two definitions are

equal is a good way of ensuring convergence, but unless specified otherwise,

we shall always use Eq. 5.17 as it comes directly from the minimization.

The end-points are not fixed to the bottom of the wells because, although

it is possible in one-dimension, one cannot know a priori what overall rotation

a multidimensional system will undergo along the kink, and therefore exactly

to which points to fix the ends. If the correct end points xA and xB are

known (±x0 in this case), the fixed-ended version can be defined as

Ufix
M (x) = UM (x) +

1

2(βN h̄)2

(x1 − xA)2 + (xB − xM )2


, (5.18)

which, when converged, gives the same action as the loose-ended version

because the beads are collapsed at the ends of the polymer.

We can also factorize the ratio of determinants of an n-kink ring-polymer

minimum and the collapsed ring polymer into contributions from single-kink
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linear-polymer minima. The proof is given in Appendix E, but it seems

reasonable that when the kinks are separated by long stretches of imaginary

time, i.e. when a large density of fully-relaxed beads exists between the kink

beads, the fluctuations are decoupled and can be separated out. We write

lim
β→∞

det′G
detG0

= Φ2n, (5.19)

where Φ is the ratio between the frequencies of the instanton and the collapsed

state, defined as

Φ =


det′ J
detJ0

 1
2

, (5.20)

and J is the mass-weighted Hessian of the fixed-ended linear-polymer potential

Ufix
N (x),

Jii′ =
2δii′ − δi i′+1 − δi i′−1

(βN h̄)2
+
δii′

m

∂2V (x̃i)

∂x̃2i
. (5.21)

Here the beads are not cyclic and so the corner elements J1M = JM1 are zero.

J0 is the equivalent Hessian for the non-tunnelling system and rather than

computing the determinant of this large matrix directly, we instead compute

the product of its eigenvalues ω2
k, which are taken from the exact expression

ωk =


4

β2N h̄
2 sin

2


πk

2M + 2


+ ω2

s , k = 1 . . .M, (5.22)

to save unnecessary computation.

It seems that Eq. 5.19 also holds if J and J0 are defined from the loose-

ended linear-polymer potential UN (x). However, in this case one looses the

ability to compute the eigenvalues of J0 analytically, making the proof and

the computation more complicated.

As M becomes large, numerically computing Φ without care can lead

to overflow errors. In practice, we compute the eigenvalues η2k of J using a

banded-matrix eigenvalue solver, remove the single zero frequency η1, and

use the formula

Φ =
1

ω1

M

k=2

ηk
ωk
. (5.23)

Using Eqs. 5.4 and 5.14, we are now able to separate the contributions
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from each kink to the partition function as

Qn

Q0
= θn, (5.24)

where

θ =
βN h̄

Φ


Skink
2πh̄

e−Skink/h̄, (5.25)

and thus the ratio of partition functions (from Eq. 5.6) is

lim
β→∞

Q(β)

2Q0(β)
=

∞

n=0,even

Nn

n!
θn (5.26)

= cosh (Nθ). (5.27)

Comparison with Eq. 5.2 gives

∆ =
2

βN
θ, (5.28)

and therefore the sought-after expression for the tunnelling splitting in terms

of the kinks

∆ =
2h̄

Φ


Skink
2πh̄

e−Skink/h̄. (5.29)

This formula gives the tunnelling splitting directly from the calculation of

just one kink calculated at β →∞ with a large number beads such that the

finite-difference step βN is small enough to describe the trajectory well.

5.2 Numerical implementation

Because the analytic form of the instanton trajectory on a general PES will

not be known and must be computed numerically, we shall need to check

that the method converges with finite values M and β. In order to show this,

numerical tests were performed on the one-dimensional double-well system

described by the potential energy surface

V (x) = V0


x2

x20
− 1

2

, (5.30)
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with mass m. The harmonic frequency in the wells is

ωs =


V ′′(x0)
m

=


8V0
mx20

. (5.31)

For this particular double-well potential, shown in Figure 5.1, the zero-

temperature kink is known exactly (Vainshtein et al., 1982):

x(τ) = ±x0 tanh
ωs

2
(τ − τc), (5.32)

and the action is

Skink =

 x0

−x0


2mV (x) dx =

4

3
x0


2mV0. (5.33)

The lowest eigenvalue of the operator corresponding to the Hessian is of

course zero, the next largest is 3ω2
s /4 and the remainder form a continuum

such that

Φ =


1

12ω2
s

. (5.34)

The tunnelling splitting is given by Eq. 5.29.

The ring-polymer instanton method was employed to reproduce these

values of the action, ratio and tunnelling splitting. The single-kink minima

on the loose-ended linear-polymer surface UN (x) were located using the

L-BFGS algorithm (Zhu et al., 1997) implemented in SciPy (Jones et al.,

2001–), starting from an initial geometry of beads evenly spaced between −x0
and x0. The L-BFGS optimizer had no problems regarding the presence of a

zero-frequency mode, which is of course a common situation for geometry

optimization of molecular clusters with translational and rotational degrees

of freedom. The convergence criterion for minimization was that the norm

of the linear-polymer gradient dropped below 10−5 (in reduced units).

When β is too small, the kink solution is no longer a minimum on the

surface and the optimization may force the linear polymer to collapse into

one of the wells. However, if the initial guess is exactly symmetric about the

point x = 0, and the optimization algorithm cannot break the symmetry, the

solution may be a saddle point with one negative eigenvalue, and the turning

points of the instanton orbit will be far from the wells. The correct instanton

can be found in either case: by lowering the temperature until the negative
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eigenvalue becomes close to zero and the minimum geometry is found. When

M is too small and the springs are weak, the linear polymer may find a

minimum (with no negative eigenvalues) where the beads cross the barrier in

one large jump. There is no zero-frequency mode because the imaginary-time

step βN h̄ is too large to approximate the trajectory’s dynamics. If this

occurs, the number of beads should be increased for convergence.

Results from these calculations (starting from a symmetric geometry) are

presented in Tables 5.1 and 5.2 where it can be seen that they converge in

the β →∞, βN → 0 limit to the results from the theory using the analytic

form of the instanton.

Once β is larger than a certain amount, there is a particular diagonal

convergence pattern, in which the values of Skink and Φ are dependent only

on βN . Here, doubling both β andM , which keeps βN = β/M constant, does

not change the linear-polymer minimum geometry at all, except that it adds

extra beads to the ends, where they collapse at the bottom of the wells and

contribute nothing to either the action or determinant. The computational

requirements increase in complexity linearly with M , so in order to find

the converged value whilst keeping the computation as small as possible,

we find the lowest value of β at which the diagonal convergence pattern is

apparent, and then increase M until the answer converges. In this example,

it is seen that βh̄ = 30 provides sufficient time for the kink to connect the

two wells whereas βh̄ = 15 is too short. Tunnelling splittings and the lowest

two eigenvalues of the Hessian J are given in Table 5.3 for βh̄ = 30 for a

range values of M . It is seen that the tunnelling splitting is converged to

three significant figures for M ≥ 256.

We have shown that the new ring-polymer instanton method can be

converged to the same result as the instanton theory defined analytically

at T = 0. However, in both cases there will be errors associated with

the steepest-descent approximation. The instanton method captures the

anharmonicity of the barrier but does not account for the anharmonicity of

the wells. It will be useful to compare the instanton results with the exact

solution of the Schrödinger equation. There are many ways of computing the

exact quantum results for a one-dimensional system; we chose to compute

the Hamiltonian matrix in a basis set of harmonic oscillator wave functions

φn centred at x = 0 with widths chosen manually to reduce the size of the

basis set needed for convergence. The tunnelling splitting was computed
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Table 5.1 – Kink actions Skink for the one-dimensional model of Eq. 5.30
with x0 = 5, V0 = 1 (in reduced units). The actions were calculated
using a flexible-ended linear polymer with different numbers of polymer
beads M and imaginary time durations βh̄. The analytic instanton result

(Eq. 5.33) gives Skink = 9.428.

βh̄

M 15 30 60 120 240

8 9.309 8.762 5.967 3.242 1.655
16 9.381 9.336 8.762 5.967 3.242
32 9.399 9.406 9.336 8.762 5.967
64 9.403 9.423 9.406 9.336 8.762

128 9.404 9.427 9.423 9.406 9.336
256 9.404 9.428 9.427 9.423 9.406
512 9.405 9.428 9.428 9.427 9.423

Table 5.2 – Determinant ratios Φ (in reduced units) corresponding to
the kink actions of Table 5.1. The analytic instanton result (Eq. 5.34)

gives Φ = 0.510.

βh̄

M 15 30 60 120 240

8 0.602 0.883 1.455 1.685 1.747
16 0.543 0.600 0.883 1.455 1.685
32 0.532 0.533 0.600 0.883 1.455
64 0.531 0.516 0.533 0.600 0.883

128 0.531 0.512 0.516 0.533 0.600
256 0.532 0.511 0.512 0.516 0.533
512 0.532 0.511 0.511 0.512 0.516
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Table 5.3 – Convergence of the tunnelling splitting ∆ (in reduced units)
obtained from the kink actions and determinant ratios in Tables 5.1 and
5.2 corresponding to βh̄ = 30. Also shown are the analytic instanton and

exact quantum results.

M η21 η22 ∆× 104

8 6.7(−2) 0.197 4.19
16 2.8(−4) 0.236 3.58
32 −5.0(−7) 0.239 3.77
64 −3.3(−8) 0.240 3.84

128 −1.4(−7) 0.240 3.85
256 1.2(−7) 0.240 3.86
512 −1.0(−7) 0.240 3.86

analytic 0 0.240 3.86
quantum . . . . . . 3.42

indirectly as the difference between the energies of the two lowest levels.

The lowest two wave functions of the system can be expressed as a linear

combination of the basis set functions,

Ψ±(x) =


n

c±nφn(x), (5.35)

where c
(±)
n are chosen variationally to minimize the energy resulting from

solution of the Schrödinger equation,

E± =


ij

c±i Hijc
±
j , (5.36)

where

Hij =

 ∞

−∞
φi(x)


− h̄2

2m

∂2

∂x2
+ V (x)


φj(x) dx. (5.37)

Following the variational approach of Hückel theory, the energies are min-

imized when they are eigenvalues of the matrix H. The integrals can be

calculated analytically for a basis set of harmonic oscillator eigenfunctions

and are used to construct H, which when diagonalized gives a spectrum of

energies of which the lowest is E+ and the next lowest E−. The difference

between these energies is the tunnelling splitting ∆.
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Table 5.4 – Comparison of the instanton tunnelling splittings ∆ (in
reduced units) with the exact quantum splittings for different barrier
heights V0 in the model of Eq. 5.30 (with x0 = 5

√
V0). Note that the

harmonic zero-point energy in the potential wells is 0.283 (reduced units).

V0

2 1 0.5 0.25

instanton 4.39(−8) 3.86(−4) 3.04(−2) 2.27(−1)
quantum 4.15(−8) 3.42(−4) 2.25(−2) 1.19(−1)
error 6% 13% 35% 91%

Table 5.4 shows the error implicit in the instanton approach caused by

the steepest-descent approximation for a series of values of the barrier height.

It is seen that for systems with high barriers, the instanton method performs

much better than for those with low barriers. This is because, in the latter

case, the well is more anharmonic over a short range and, for example,

fluctuations of the linear-polymer collapsed in a well may even include paths

which access the top of the barrier and visit the other well. This fluctuation

is obviously poorly represented in the steepest-descent approximation. One

could say that tunnelling was no longer a rare event, and that the validity

of Eq. 5.2 breaks down if we are unable to define a non-tunnelling system.

However, even for the lowest barrier tested, which is lower than the harmonic

zero-point energy of the wells, the instanton splitting is still within a factor

of 2 of the exact quantum result.

5.3 Extension to multiple dimensions

It is possible to generalize the ring-polymer instanton approach to calculate

the tunnelling splitting in polyatomic molecules or clusters. We assume that

the tunnelling occurs between two degenerate wells on the multidimensional

potential energy surface. Systems with more than two wells and more

complicated tunnelling-splitting patterns will be treated in Chapter 6.

A related multidimensional instanton method was derived by Mil’nikov

and Nakamura (2001) who also showed that the derivation could be repro-

duced by a WKB approach. They made use of a method to locate the

instanton using minimization techniques using a functional basis set to de-

scribe the trajectory, and because they did not make use of a ring-polymer
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formulation, the derivation of the prefactor included far more complicated

mathematics.

Molecules and clusters will also exhibit rotational spectra alongside the

vibrational spectra which includes the tunnelling splittings (Atkins and

Friedman, 2005, §10.3). In the case of a symmetric rotor, the rotational

energy levels are identified by the total-angular-momentum quantum number

J and the quantum number signifying the projection onto the principal axis,

K = 0,±1, . . . ,±J . The energy levels of spherical rotors, however, for which

the three principle moments of inertia are equal, do not depend on K and in

the case of linear rotors, only K = 0 is allowed. Each of these energy levels

EJ,K is degenerate and can take 2J + 1 values of MJ (the projection onto a

laboratory-fixed axis). An asymmetric rotor also has quantized energy levels

but it is not possible to describe them in such a general way. However, our

derivation below applies equally well to all types of rotor.

Because of Coriolis and centrifugal-distortion effects, the rotational and

vibrational modes will be coupled together, which will affect the tunnelling

splittings. There is therefore a progression of tunnelling splittings ∆(J,K)

for each rotational level. Since it is often true that the rotational energy

spacing is of the same order of magnitude as the tunnelling splitting, we

cannot neglect all but the lowest rotational level at low temperature as was

done for the vibrational levels. However, in most systems where we intend

to treat the rearrangements of hydrogen atoms but with an almost fixed

skeleton of heavier atoms, we expect the dependence on J and K to be small

at low energies, and assuming a constant value for ∆ over the required energy

range gives

lim
β→∞

Q(β)

2Q0(β)
=


J


K


e−β(EJ,K−∆/2) + e−β(EJ,K+∆/2)



2


J


K e−βEJ,K

(5.38)

= cosh


β∆

2


, (5.39)

which is exactly what was found before. The instanton approach does not

therefore require any modification in order to treat systems with rotational

spectra although it should be understood that it computes an average,

rotation-free tunnelling splitting.
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The multidimensional formulation of the linear-polymer potential is

UM (x) =

f

j=1

mj

2(βN h̄)2

M−1

i=1

(xi+1,j − xi,j)2 +
M

i=1

V (xi,1, . . . , xi,f ), (5.40)

and the fluctuation matrix corresponding to a single-kink minimum is given

by

Jiji′j′ =
2δii′ − δi i′+1 − δi i′−1

(βN h̄)2
δjj′ +

δii′√
mjmj′

∂2V (x̃i,1, . . . , x̃i,f )

∂x̃i,j∂x̃i,j′
. (5.41)

The minimization procedure automatically locates kinks with zero linear

and angular momentum. The centre of mass of the molecule, therefore, will

be fixed along the entire path. However, it is not possible to know a priori

the rotational arrangement of the end-point relative to the start without

first computing the entire pathway. It is for this reason that the loose-ended

linear-polymer potential is used in the minimization. The molecule performs

as little rotation as possible, and is stationary at the ends of the path. It

is simple to check the pathway using a molecular visualization package by

creating a movie of the trajectory in imaginary time with each frame showing

the M replicas in turn.

The greatest approximation involved in this method is probably still that

of only including the harmonic fluctuations. The anharmonicity is of course

included along the kink pathway (without it, no tunnelling splitting could

exist) but perpendicular to this, the harmonic approximation is used. Note

that this separation of degrees of freedom is performed automatically by the

optimization and is not an a priori reduction of dimensionality.

5.4 Numerical applications

Here we apply the multidimensional theory to the standard test cases of the

hydroperoxyl radical HO2 and malonaldehyde to compare results with the

method of Mil’nikov and Nakamura (2001). There have been many studies

made of the tunnelling splitting in malonaldehyde by a variety of methods.

Tautermann et al. (2002a) located the optimal semi-classical pathway using

a simulated annealing approach. The splitting was calculated on an ab initio

surface by the method of DMC (Wang and Bowman, 2008) and also by using
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an exact method on a one-dimensional Hamiltonian in the imaginary-mode

of the saddle point (Wang et al., 2008). MCTDH has also been used to

compute the tunnelling splitting (Hammer et al., 2009) but was not able

to employ an ab initio PES owing to the numerical effort which would be

required.

The ring-polymer instanton approach which we shall apply is able to

treat large systems in full dimensionality with expensive potentials. However,

here we just apply the method to the same empirical malonaldehyde surface

as was used by Mil’nikov and Nakamura (2001) in an attempt to reproduce

their results, and leave applications to ab initio surfaces to the treatment of

water clusters in the following chapter.

For both systems, we used Cartesian coordinates and included all degrees

of freedom. The initial instanton geometry guess was chosen to be a linear

interpolation between the two wells but once an instanton had been computed

for a small number of beads, to reduce the number of iterations needed in

each optimization, starting geometries based on previous optimized solutions

were used, in the same way as was described in §3.4.2. This was done

by forming a 2-kink ring polymer from the single-kink linear polymer by

inserting a new bead in the position of each bead in the kink such that it

doubles back on itself. The ring was transformed from Cartesian to free-ring-

polymer normal-mode coordinates (Eq. 2.22), the array doubled in length by

padding the high-frequency normal modes with zeros, multiplied by
√
2 (for

the normalization), and transformed back to Cartesian coordinates to give a

ring polymer which follows the same path as before but has half the time

step βN h̄ between beads. The single-kink is easily extracted from this ring

polymer by removing the doubled-back beads, and it is this linear polymer

which is used as the starting geometry for the next minimization.

Using this method for choosing starting geometries dramatically reduces

the number of iterations needed for high-M calculations. The minimizations

were again performed using the L-BFGS algorithm.

The Hessian∇2V at the geometry of each bead was computed numerically

and these were used to construct the mass-weighted Hessian or fluctuation

matrix J of the linear-polymer. A banded-matrix linear algebra routine

was used to compute the eigenvalues of which only one should be zero. In

this case, the translational and rotational modes are not zero because it is

the Hessian of the fixed-ended linear polymer which is computed. These
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Table 5.5 – Kink actions Skink and determinant ratios Φ in atomic units
calculated for HO2, as a function of the number of beads M and the

imaginary-time duration βh̄.

βh̄ / a.u.

M 1200 2400 3600 4800

Action 32 28.63 28.47 27.53 25.86
64 28.67 28.69 28.61 28.47

128 28.68 28.74 28.72 28.69
256 28.69 28.75 28.74 28.74
512 28.69 28.75 28.75 28.75
1024 28.69 28.75 28.75 28.75

Ratio 32 46.4
64 45.8 44.5 45.9

128 45.8 43.7 44.1 44.6
256 45.8 43.6 43.7 43.9
512 45.8 43.4 43.6 43.7
1024 45.8 43.5 43.6 43.6

instead form M discernible sets of six degenerate modes spaced throughout

the eigenvalue spectrum. Only one eigenvalue, that of the permutational

mode, should be lower than the lowest of these degenerate sets, and unless

this was found to be true, the instanton was deemed not to be converged,

and the value of Φ was not computed.

5.4.1 HO2

The HO2 calculations were performed on a double many-body expansion

surface (DMBE) (Pastrana et al., 1990). The minimum-energy geometry

for this molecule has a bent HOO configuration and the tunnelling pathway

is well known to consist mainly of motion of the hydrogen atom from one

oxygen to the other. This is accompanied by a small movement of the heavier

oxygen atoms, which is necessary to conserve linear and angular momentum.

Table 5.5 gives the actions Skink and determinant ratios Φ computed for

different values of M and β. The same diagonal convergence pattern appears

as in the one-dimensional case (§5.2), namely that once β is sufficiently large

that the kink has sufficient imaginary time to connect the two wells, the

results depend only on the imaginary-time step βN h̄ = βh̄/M . Table 5.5

shows that this stage is reacted when βh̄ ≥ 3600 a.u. and that βN h̄ ≤ 7 a.u.
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Table 5.6 – Tunnelling splittings ∆ for HO2 as a function of the number of
beads M , obtained from the actions and ratios of Table 5.5 corresponding
to βh̄ = 3600 a.u. Also shown are the instanton and exact quantum

results of Mil’nikov and Nakamura (2001).

M ∆× 109/cm−1

64 7.6
128 7.2
256 7.1
512 7.0

1024 7.0

inst. 6.3
quantum 6.2

is sufficient for numerical convergence.

As shown in Table 5.6, the tunnelling splitting ∆ was calculated as

7.0× 10−9 cm−1 in good agreement with the exact quantum result for the

DMBE surface of 6.2× 10−9 cm−1. This level of agreement is excellent, given

the approximations made in the instanton approach. Our calculated value

of ∆ differs from the instanton result of Mil’nikov and Nakamura (2001)

by about 10%. However, the latter was obtained using the exact J = 0

Hamiltonian, whereas our value, as mentioned above, is obtained by making

the approximation that the rotation and tunnelling dynamics are separable.

This may account, at least in part, for the difference between these two

instanton results.

5.4.2 Malonaldehyde

The calculations were performed on the full-dimensional surface of Sewell

et al. (1995), with the planar part of the surface modified to be equal to

that of Guo et al. (1994) as was done by Mil’nikov and Nakamura (2001).

Figure 5.4 shows the minimum-energy geometry calculated for this molecule.

One of the instantons calculated is plotted in Figure 5.5 in which it can

be seen how the potential varies along the pathway. Unlike for the system

described in §5.2, the potential is very flat at the ends of the pathway owing

to a skeletal rearrangement of the heavier carbon and oxygen atoms which

is necessary to ensure that the pathway starts and ends at the degenerate

well minima. This makes the calculations more challenging as many beads
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Figure 5.4 – The minimum-energy geometry of malonaldehyde which is
planar. The tunnelling involves the hydrogen transferring between the

two oxygen atoms.
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Figure 5.5 – The two plots represent the beads in linear-polymer in-
stantons calculated for malonaldehyde with βh̄ = 6000 a.u. and M = 128
(blue circles) and 1024 (all beads merged into a solid black curve). The
upper panel shows the Cartesian positions of the tunnelling hydrogen
atom, with the origin located at the centre of mass of the molecule and
the coordinates x and y located in the plane of all the atoms. The lower
panel shows the spread of the beads along the kink trajectory and the

value of potential V (xi,1, . . . , xi,f ) at each bead.
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Table 5.7 – Kink actions Skink and determinant ratios Φ in atomic units
calculated for malonaldehyde as a function of the number of beads M

and the imaginary-time duration βh̄.

βh̄ / a.u.

M 3000 6000 9000 12000

Action 64 8.03 7.82 7.40 6.98
128 8.06 8.07 7.98 7.82
256 8.06 8.10 8.09 8.07
512 8.06 8.10 8.10 8.10
1024 8.06 8.11 8.11 8.11

Ratio 64
128 2.97
256 2.92 3.04
512 2.92 2.99 2.98
1024 2.91 2.98 2.95 2.94

are needed for numerical convergence. For instance, Figure 5.5 shows that

even with 128 beads, only a handful are located near the barrier top and

cannot therefore describe the zero-frequency normal mode s1 correctly. In

malonaldehyde, this normal mode describes two types of motion with different

timescales: the slow rearrangement of the CCO bond angles and the ends of

the kink, and the rapid transfer of the hydrogen atom in the middle section.

It is a noticeably different pathway from that of the minimum-energy path

which passes through a transition state of only 10 kcal/mol but involves far

more skeletal rearrangement leading to a wider effective barrier and a higher

action than the instanton pathway.

There are a number of ways that this convergence could be improved by

analogy with methods used to separate timescales in molecular dynamics

simulations. To reduce the number of beads needed, one could use larger time

steps at the ends of the pathways as has been done for the saddle-point (ImF

rate theory) instantons (Rommel and Kästner, 2011). A related approach

which enforces the beads to be evenly spaced in position rather than time

is a reformulation of the action (cf. §1.2) in Hamilton-Jacobi form (Faccioli

et al., 2006). The difficulty here arises because one needs a penalty function

to force the beads to be evenly spaced, but because the length of the path,

and hence the spacing of the beads, is not known before optimization, the

penalty depends on the average spacing and therefore couples all the beads
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Table 5.8 – Tunnelling splittings ∆ for malonaldehyde as a function of
the number of beads M , obtained from the actions and ratios of Table 5.7
corresponding to βh̄ = 6000 a.u. Also shown is the instanton result of

Mil’nikov and Nakamura (2001).

M ∆/cm−1

256 50
512 50
1024 51

inst. 58

together (rather than just nearest neighbours) which decreases the efficiency

of the minimization algorithm. Calculation of the determinant is no easier as

the zero-frequency mode is not an eigenvector of the Hessian unless the beads

are just as closely spaced as in the original formulation. These problems and

ideas are left for future work.

However, despite this difficulty, it is still possible to converge the actions

and determinant ratios by adding enough beads, as is shown in Table 5.7,

and the calculations reported here were fairly quick, even using 1024 beads in

each degree of freedom (and therefore a minimization with 27 648 degrees of

freedom). As was seen for the one-dimensional and HO2 calculations above,

the diagonal convergence pattern appears for βh̄ ≥ 6000 a.u., and only an

imaginary-time step of βN h̄ ≤ 24 a.u. describes the s1 mode sufficiently well

that its eigenvalue is lower than all the other modes such that it can be

identified and removed. The tunnelling splitting ∆ was calculated to be 51

cm−1 (see Table 5.8) which is in reasonable agreement with the value of 58

cm−1 obtained in the instanton calculation of Mil’nikov and Nakamura (2001).

The disagreement between these two sets of instanton results is probably

the result of the different ways in which the two calculations treat the

overall rotation of the molecule. Our calculations assume that the rotational

parts of the partition functions cancel in the ratio Q(β)/2Q0(β) whereas the

calculations of Mil’nikov and Nakamura (2001) use an approximate J = 0

Hamiltonian, obtained by fixing the axes with respect to the two oxygen

atoms and the tunnelling hydrogen.

The results are in reasonable agreement with the experimental value of

the tunnelling splitting, 21.6 cm−1 (Firth et al., 1991), given the approximate

quality of the potential surface. The isotope ratio of the proton-transfer to
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the deuteron-transfer tunnelling splittings is calculated to be 6.8, in good

agreement with that of Mil’nikov and Nakamura (2001) which was 6.7 and

with the experimental result of 7.4 (Baughcum et al., 1984). Exact quantum

results are not available for this surface, but we note that instanton results

(Mil’nikov et al., 2004) obtained on a different potential surface (Yagi et al.,

2001) are within a factor of 1.5 of accurate quantum results (Hammer et al.,

2009). Similar agreement could thus be expected between the results of

Table 5.8 and exact quantum results on the same surface.
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Chapter 6

Tunnelling Splittings in

Water Clusters

The derivation of the ring-polymer instanton method outlined in the previous

chapter was based on a system where tunnelling occurred between two

degenerate wells. In order to make a study of the tunnelling splitting in

water clusters, it is necessary to extend the method to treat tunnelling

between any number of wells (Richardson et al., 2011). The result is that

the splitting pattern can be calculated as the eigenvalues of a Hückel-type

matrix, each element of which corresponds to an instanton calculated as

before between two wells. In the author’s knowledge, this generalization has

not been done before using any form of instanton or path-integral theory.

In this chapter, the generalization of the method is described and applied

to the specific examples of water dimer, trimer and octamer in turn. Other

methods which have been applied to computing tunnelling splittings in water

clusters are also reviewed in the following sections.

6.1 Generalization of the ring-polymer instanton

method

The zero-point energy E0 for a molecular system with G degenerate wells,

between which tunnelling takes place, splits into a set of G levels {Eν} which
cannot in general be described by a single tunnelling splitting ∆. Following
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A =




0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0




Figure 6.1 – Example graph of potential wells connected by kinks and
the associated adjacency matrix A.

this definition, Eq. 5.2 generalizes to

lim
β→∞

Q(β)

GQ0(β)
= lim

β→∞
1

G

G

ν=1

e−β(Eν−E0). (6.1)

As in the previous chapters, we intend to take the steepest-descent

approximation of the ring-polymer formulation of the partition functions.

The low-temperature limit of the partition function of the tunnelling system

Q(β) evaluated by the method of steepest descent can be divided into

contributions from each ring-polymer minimum (see §5.1.2). This set of

minima, or periodic orbits, includes a subset which start (and end) in each of

the wells ν but may take any number of kinks and pass through any number

of the other wells on the way, as they have an infinite amount of imaginary

time available.

For enumerating these ring polymers, it can be useful to make an analogy

with some standard results of graph theory. Figure 6.1 shows the graph

representation of an example system where the potential wells are depicted by

vertices and kinks by edges (Wilson, 1996). The sequence of kinks and wells

visited by the ring-polymer minima are described by closed walks taken along

the edges between the vertices. As before, there is also a factor of Nn/n!

(which is neglected in the graph-theory representation) to account for the

number of ways of arranging the beads in the ring-polymer minimum while

still tracing the same sequence of kinks. If we define Qn,ν as the contribution
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of the closed paths of n kinks which start and finish at well ν, we may write

lim
β→∞

Q(β) =

G

ν=1

∞

n=0

Nn

n!
Qn,ν . (6.2)

To count the total number of different sequences of n kinks, that is in the

parlance of graph-theory, the number of distinct walks which start and finish

at a particular vertex, we use the adjacency matrix A which is defined such

that Aλµ is equal to the number of edges between vertices λ and µ. Therefore

the elements of the adjacency matrix Aλµ give the number of single-kink

pathways which directly connect the wells λ and µ.∗ In the same way, it

is seen that
G

κ=1AλκAκµ provides the number of sequences of two kinks

which connect the wells λ and µ via any intermediate κ. And indeed (An)λµ

is the number of possible sequences connecting these wells in n kink-steps

(Bondy and Murty, 1976, §1.6). We require only pathways that start and

end in the same well for the partition function and therefore use the formula

(An)νν to count them.

Following the arguments given in §5.1, we can factorize the contribution to

Qn,ν made by each n-kink orbit into a product of n weights θλµ each associated

with a different kink in the sequence. The θλµ are defined analogously to

θ in Eq. 5.25, such that the action Skink is that of the kink joining λ to µ

and the ratio Φ is obtained from the normal mode frequencies of the linear

polymer representing this kink, as described by Eq. 5.20. To obtain the total

weight associated with all the n-kink orbits which contribute to Qn,ν , we

define the tunnelling matrix W by

Wλµ = Aλµhλµ, (6.3)

where

hλµ = − 1

βN
θλµ. (6.4)

It then follows that
Qn,ν

GQ0,ν
=

1

G
[(−βNW)n]νν , (6.5)

∗When Aλµ > 1, we shall assume that these kinks can be mapped onto one another
by symmetry operations. The treatment could be generalized for systems where
more than one kink joined a pair of wells along pathways unrelated by symmetry.
However, it will probably be common that one kink will have a low action and will
dominate, in which case the other higher-action kinks can be neglected.
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since the adjacency matrix element Aλµ in Wλµ ensures that the quantity

[(−βNW)n]νν is the sum over the weights θλµ associated with all orbits

contributing to Qn,ν . We thus obtain

lim
β→∞

Q(β)

GQ0(β)
=

1

G

∞

n=0

Nn

n!

G

ν=1

[(−βNW)n]νν

=
1

G
tr

e−βW


. (6.6)

Comparison with Eq. 6.1 reveals that the eigenvalues of W give the desired

approximations to the energy splittings Eν − E0.

This general formulation is consistent with the method presented in

Chapter 5 for a G = 2 system, for which

A =


0 1

1 0


(6.7)

and

W = − 1

βN
θA. (6.8)

Substitution into Eqs. 6.1 and 6.6 then yields the same identity as was found

before:

lim
β→∞

1

2

2

ν=1

e−β(Eν−E0) =
1

2
tr

eNθA


(6.9)

lim
β→∞

e−β(E1−E0) + e−β(E2−E0)

2
=

1

2
tr

∞

n=0

(Nθ)n

n!
An (6.10)

lim
β→∞

cosh (β∆/2) = cosh (Nθ), (6.11)

since tr [An] is equal to 0 when n is odd and to 2 when n is even and

∆/2 = E2 − E0 = E0 − E1 (see Figure 5.1). The eigenvectors of W are

(1,±1)/
√
2, demonstrating that the wells contribute symmetrically in the

lower state and antisymmetrically in the upper state as expected.

For more complex systems with more than two wells, the molecular

symmetry group comprising all feasible permutation-inversion operations,

that is those which can be achieved without passing over insuperable energy

barriers (Longuet-Higgins, 1963), can be used to find the set of G wells

between which kinks can be computed. This is kept low by excluding all
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pathways which are compelled to break strong bonds or rearrange heavy

atoms as the kinks describing these rearrangements will have large actions

and a negligible effect on the tunnelling-splitting pattern. There are G2

elements of W but only a few matrix elements hλµ need be computed because

many of them are related by symmetry and thus contribute identical factors.

Because by definition all the wells are degenerate and have the same topology,

we only have to consider kinks between any one well and each of the others.

This implies that the maximum number of matrix elements which must be

calculated is only G− 1.

If more than one symmetrically-equivalent kink joins a pair of wells,

only one need be computed and the adjacency matrix is defined to account

for this degeneracy. In general it is necessary to perform a linear-polymer

minimization before one can know whether kinks will have symmetric partners.

Creating a plot of the potential at the geometry of each bead, viewing the

kink in a molecular visualization package (with each bead represented by a

time step) and identifying the symmetry elements of the molecular geometry

both in the wells and along the pathways can be useful to check for this.

A further use of symmetry is that the eigenvectors of W span the same

irreducible representations as the corresponding wave functions (since they

give the signs and magnitudes of the contributions made by the various

wells), and can hence be used to assign the symmetry labels to the energy

levels Eν .

This completes the extension of the ring-polymer instanton method of

Chapter 5 to treat tunnelling between more than two wells. A similar ap-

proach to define the tunnelling matrix W has been used previously (Coudert

and Hougen, 1988; Wales, 1993b), in particular in conjunction with the

WKB method (Watanabe et al., 2004; Takahashi et al., 2005) starting from

an a priori model of the tunnelling. The difference is that these methods

compute the matrix elements along one-dimensional predefined tunnelling

paths, unlike the ring-polymer instanton method which obtains W com-

pletely from first principles. In the author’s knowledge, this is the first time

that the path-integral (Marchi and Chandler, 1991) or instanton approach,

in either its functional-determinant (Vainshtein et al., 1982; Mil’nikov and

Nakamura, 2001) or ring-polymer form (Chapter 5), has been generalized to

treat tunnelling splittings in systems with more than two wells.

In the following sections, this extended ring-polymer instanton approach

107



is applied compute the tunnelling-splitting patterns of a selection of water

clusters including the dimer, trimer and octamer. The other water clusters,

on which we reflect briefly below, are left for future work.

6.2 Application to water dimer

The water dimer (H2O)2 and its isotopomer (D2O)2 provide ideal test cases

for the ring-polymer instanton method as the splitting pattern is non-trivial

but well understood (Dyke, 1977; Coudert and Hougen, 1988), and the various

tunnelling splittings span four orders of magnitude. The dimer has been

studied extensively by spectroscopy to quantify the experimental splitting

pattern (Fraser et al., 1989; Zwart et al., 1991) as well as its deuterated

form (Suenram et al., 1989; Karyakin et al., 1993; Paul et al., 1998). Many

theoretical studies have also computed the tunnelling splittings for the dimer

using a range of techniques including the direct solution of the Schrödinger

equation with either fixed monomers (Althorpe and Clary, 1994, 1995; Fellers

et al., 1999; Chen et al., 1999; Groenenboom et al., 2000; Huang et al., 2008)

or an adiabatic separation of the intermolecular and intramolecular modes

(Leforestier et al., 2002). There have also been approaches based on model

Hamiltonians (Coudert and Hougen, 1988), diffusion Monte Carlo (Gregory

and Clary, 1995a), and the WKB approximation (Watanabe et al., 2004). We

were able to use a selection of different potential energy surfaces and compare

the ring-polymer instanton results to these experimental and theoretical

splittings, providing a good test for the quality both of the method and of

the potentials.

It is well-known that the water dimer’s minimum geometry has a “trans-

linear” geometry with Cs symmetry (Dyke et al., 1977) as depicted in

Figure 6.2. The water molecule whose hydrogen atom forms a hydrogen

bond is called the donor monomer; the other is the acceptor. The molecular

symmetry group of the water dimer predicts that there are G = 8 degenerate

isomers connected by feasible pathways, i.e. those which do not break covalent

bonds (Dyke, 1977), and that only five of these pathways are not related

by symmetry. These permutation-inversion isomers are usually labelled

ν = 1, . . . , 8 (Coudert and Hougen, 1988), with the geometry of well ν = 1

taken to be that of Figure 6.2. The geometries of the other seven wells can be

generated from this by applying elements of the molecular symmetry group
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Figure 6.2 – The minimum-energy geometry of the water dimer labelled
so as to represent well ν = 1.

(Longuet-Higgins, 1963).

Only five elements of the tunnelling matrix W are independent and need

to be calculated by the instanton method. They are by convention taken to

correspond to tunnelling between wells 1→ν, with ν = 2, 3, 4, 5, 7 (Coudert

and Hougen, 1988).

The three most important (for the splitting pattern) low-lying transition

states of the water dimer were first studied by Smith et al. (1990) using

ab initio potential energy surfaces, and the unconstrained minimum-energy

pathways for these rearrangements were calculated by Wales (1999). The

instanton approach, however, is able to locate the minimum-action pathways

for all five rearrangements, some of which are similar but not equivalent to

the minimum-energy pathways, as we shall show.

6.2.1 The potential energy surface

The correct water dimer potential energy surface is known to be difficult to

reproduce (Millot et al., 1998) so before attempting to calculate kinks, it is

expedient to test for the correct topology of the potentials.

We attempted to locate the minimum-energy geometry and the lowest

four transition states using the following potentials:

HBB2

This recently-developed water dimer PES (Shank et al., 2009) is based

on a fitting of about 30 000 CCSD(T) ab initio single-point energies with

a correction at long range to reproduce the experimental dissociation

energy. Invariance with respect to permutations of identical atoms is

built in fundamentally to the definition. Quantum calculations on the

HBB1 surface (Huang et al., 2008), of which HBB2 is a refinement,
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give a splitting pattern in close agreement with experiment. This is

the most accurate, and also the most computationally expensive, of

the potentials described here.

CC-pol-8s

Cencek et al. (2008) fitted this rigid-monomer water dimer potential to

2510 ab inito points using a functional form to describe the interactions

between eight sites on each of the monomers. Quantum calculations

on this PES are also in close agreement with experiment. However, a

flexible-monomer version has not yet been constructed.

TTM3-F

The flexible, polarizable, Thole-type model potential of Fanourgakis

and Xantheas (2008) was parameterized to describe the vibrational

spectra of a selection of water clusters and also of liquid water.

VRT(MCY-5f)

This empirical potential is designed only to describe the water dimer and

is based on the rigid-molecule MCY functional form (Matsuoka et al.,

1976) and a flexible-monomer potential. It was parameterized such that

a pseudo-spectral Hamiltonian method, using an adiabatic separation

between the slow and fast modes, would produce the experimental

vibrational-rotational energy levels including the tunnelling-splitting

pattern (Leforestier et al., 2002).

q-TIP4P/F

This is a flexible version of the commonly-used four-site empirical

TIP4P water potential which has been parameterized by Habershon

et al. (2009) to give the correct liquid structure, diffusion coefficient

and infrared absorption frequencies in the bulk from ring-polymer

simulations.

RWK

This multipolar empirical dimer potential described by Coker and

Watts (1987) is based on very simple functions, and can be used in a

flexible or rigid form. It was commonly used for computations of the

tunnelling-splitting pattern before the potentials described above were

developed.
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The HBB2 potential is expected to be the most accurate but is also

considerably slower to compute than the others. However, most optimizations

were still completed in less than 24 hours on a single CPU. All the potentials

tested located a global minimum with the correct structure and symmetry.

Nonetheless, there were noticeable differences in the calculated transition

states. The saddle points calculated by the HBB2 potential are shown in

Figure 6.3 and their energies according to the three of the potentials are

given in Table 6.1.

The energies and symmetries of the stationary points calculated by HBB2

are, by nature of the way the surface was defined, very close to those of

accurate ab initio calculations, whereas TTM3-F has the wrong topology

and an unrealistic local minimum along the 1→5 pathway. CC-pol-8s is the

only other potential which correctly identifies the symmetry of the lowest

saddle point as C1. However, as it is defined only for rigid water molecules, it

may not be an appropriate choice of PES for a study of tunnelling splittings.

The optimization algorithm can easily be extended to locate instantons on

these surfaces, but the fluctuation matrix becomes difficult to define except

in Cartesian coordinates. The VRT(MCY-5f) potential describes most of the

surface correctly, but has an incorrect plane of symmetry in the transition

state along the 1→ 4 pathway. As well as incorrectly including a plane

of symmetry in the (34) transition state, no transition state for the 1→ 7

permutation was located at all on either the q-TIP4P/F or RWK surfaces.

There is no transition state for the (12) permutation according to any of the

potentials. The minimum-energy pathway for this rearrangement, calculated

using the nudged-elastic-band method, goes instead via the ν = 5 well using

the permutation (AB)(1324) twice followed by (34).

Nonetheless, the instanton approach does not necessarily fail if a transition

state is non-existent or wrongly assigned, because a minimum-action pathway

between two wells can exist even without a transition state. In this work, we

concentrate on the three potentials included in Table 6.1: HBB2, probably

the most accurate surface currently available; TTM3-F which is a commonly-

used cheaper potential and will provide a strong test of the method as it

has incorrect topology; and VRT(MCY-5f), because we shall be able to

compare our instanton results with more accurate methods previously used

on this system (Keutsch et al., 2003b). Despite differences in topology, all

five instantons were successfully located on each of the three surfaces.
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Figure 6.3 – Key saddle-point geometries on the HBB2 potential energy
surface for the water dimer labelled by their point-group symmetry. Note
that the Cs saddle point is second order, whereas the others are first

order.

Table 6.1 – Saddle points of the water dimer calculated for three different
potential energy surfaces. The pathways linked by the first-order saddle
points are indicated along with the permutation which is described with
respect to the labels in Figure 6.2. The point group of the saddle point is

given along with the calculated barrier height V ‡ (in kJ/mol).

HBB2 TTM3-F VRT(MCY-5f)

Permutation 1→ν Sym. V ‡ Sym. V ‡ Sym. V ‡

(34) 4 C1 2.2 Cs 0.9 Cs 1.7
. . . . . . Cs 2.5a . . . . . . . . . . . .
. . . . . . . . . . . . Ci 0.9b . . . . . .
(AB)(1324) 5 Ci 3.1 C1 1.7 Ci 1.8
(AB)(14)(23) 7 C2 4.2 C1 2.5 C2 3.0
(12)(34) 2 C2v 7.5 C2v 10.4 C2v 7.0
(12) 3 . . . . . . . . . . . . . . . . . .

a Second-order saddle point
b Minimum
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6.2.2 Details of the calculation

It was straightforward to find the five kinks using the techniques of Chapter

5, whereby the linear polymer is allowed to move freely, i.e. the ends are not

fixed to the wells. The initial position of the polymer was taken to be the

minimum-energy path between the wells, computed by steepest descent from

the transition state. However, in the case of the 1→3 path, for which no

transition state exists, the polymer was placed with half of its beads in each

of the wells and a fixed-ended linear-polymer minimization (cf. Eq. 5.18) was

run first before the geometry relaxed using the loose-ended version (Eq. 5.40).

The optimization had no problems in locating the kink even in this difficult

case.

All minimizations were carried out using the slightly modified L-BFGS

algorithm (Nocedal, 1980; Liu and Nocedal, 1989) in OPTIM (Wales), for

which the line search has been removed. This approach has the advantage

that the Hessian matrix need only be calculated and diagonalized once per

kink, that is, in order to determine the ratio of eigenvalues Φ, and it can

be done efficiently because the matrix is banded. One can parallelize the

optimization quite simply by computing the potential and gradient of each

bead on separate CPUs. However, for large systems with a large number

of beads, the eigenvalue calculation can become the slowest part of the

algorithm, and this is not so easy to parallelize.

We started the searches for the kinks with a small number of beads at

relatively high temperatures (typically M = 32 and β = 10 000 a.u.), and

then increased β and M until a table of the weights θλµ versus M and β was

numerically converged along the diagonal (see Table 5.1); β was increased in

steps of 5000 a.u. and M by factors of 2, starting from M = 32 and finishing

with M = 4096. When increasing M , the search was started from the

geometry obtained by interpolating M beads along the minimum geometry

kink found in the previous M/2 run as explained in §5.4. A very small

amount skeletal rearrangement was necessary to ensure that the cluster

did not gain linear or angular momentum, which may explain why is was

necessary to use such large values of M for convergence. However, as the

action tends to converge faster than the determinant, one could obtain a very

similar result with far fewer beads, the error being less than that already

implicitly present in the method.

Symmetry labels were assigned to the energy levels by inspecting the
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components of the eigenvectors of the tunnelling matrix W and compar-

ing them with the permutation-inversion group table (Dyke, 1977). For

example the atomic permutation P = (12) effectively permutes the wells

1, 2, 3, 4, 5, 6, 7, 8 → 3, 4, 1, 2, 8, 7, 6, 5. To find the symmetry of the energy

level Eν corresponding to the eigenvector v, where Wv = Eνv, we computed

⟨v|Pv⟩ for each permutation P , and compared the results with the characters

from the group table.

6.2.3 Instanton tunnelling paths and the adjacency matrix

We located a kink connecting well 1 to each of the wells 2, 3, 4, 5 and

7, following the procedure described above. Some properties of the kinks,

including the computed values of h1ν (Eq. 6.4) are given in Tables 6.2 and

6.3 and the five kinks calculated here can be visualized as movies, which can

be downloaded from the supplementary material to Richardson et al. (2011).

The 1→4 path is referred to as acceptor tunnelling and corresponds to

an exchange of the hydrogen atoms 3 and 4 (in the notation of Figure 6.2).

Previous work (Wales, 1999) found that this motion does not correspond

to a simple internal rotation of the acceptor water molecule but rather to

a concerted twist of the donor monomer and wag of the acceptor. The

computed 1→ 4 kink is entirely consistent with this type of motion. The

kink differs, however, from the minimum-energy path used in the WKB

calculations of Watanabe et al. (2004) in that it passes through a point with

a plane of symmetry close to the second-order Cs saddle point instead of going

through the first-order C1 saddle point (see Figure 6.3). This occurs because

the action is smaller for the kink pathway which, although it passes through

regions of higher potential energy, is shorter than the minimum-energy path,

just as in the case of malonaldehyde. One effect of this difference which must

be considered is that there are two symmetrically-equivalent kinks between

wells 1 and 4, but four symmetrically-equivalent minimum-energy paths. As

a result, the instanton calculations find that A14 = 2, whereas Taketsugu

and Wales (2002) and Watanabe et al. (2004) use A14 = 4, which is the

appropriate number for their calculation. The same situation was found

using the CC-pol-8s potential.

The instanton predictions for the 1 → 5 and 1 → 2 tunnelling paths

agree with previous work (Taketsugu and Wales, 2002), both in terms of the

adjacency matrix (A15 = A12 = 1), and in terms of the tunnelling dynamics
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Table 6.2 – Instanton tunnelling pathways (kinks) located on the HBB2
potential surface for (H2O)2. The pathways are numbered by the well ν in
which the kink ends. The actions Skink, eigenvalue ratios Φ and tunnelling
matrix elements h1ν were calculated from the kinks as described in the

text.

−h1ν/cm−1

Pathway 1→ν Skink/h̄ Φ/a.u. inst. expt.a

Acceptor tunnelling 4 5.74 120 5.5 2.3
Geared interchange 5 7.48 720 0.19 0.18
Anti-geared interchange 7 11.17 140 0.029 0.01
Bifurcation tunnelling 2 12.04 51 0.035 0.02
Donor exchange 3 15.94 18 0.0023 . . .

a Zwart et al. (1991)

Table 6.3 – Same as Table 6.2 for (D2O)2.

−h1ν/cm−1

Pathway 1→ν Skink/h̄ Φ/a.u. inst. expt.a

Acceptor tunnelling 4 7.75 170 6.0(−1) 4.5(−1)
Geared interchange 5 10.44 900 9(−3) 9.4(−3)
Anti-geared interch. 7 15.54 170 4(−4) 3.7(−4)
Bifurcation tunnelling 2 16.82 67 2.7(−4) 2.3(−4)
Donor exchange 3 22.22 24 4(−6) . . .

a Suenram et al. (1989); Karyakin et al. (1993); Paul et al. (1998)
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along the paths. The most important of these paths is the 1→5 path, which

corresponds to a geared interchange of the acceptor and donor monomers.

The anti-geared interchange (1→ 7) behaves similarly, but also performs

an extra hydrogen permutation during the pathway and has A17 = 1. Its

existence has been predicted from experimental measurements (Fraser et al.,

1989), but is frequently neglected in theoretical studies because although its

inclusion shifts the energy levels, it does not cause an extra splitting. The

1→2 pathway is called either donor or bifurcation tunnelling and exchanges

the hydrogen atoms on the donor molecule accompanied by a wag of the

acceptor. Unlike the minimum-energy paths that were obtained in previous

work, the instanton paths for 1→ 5, 1→ 7 and 1→ 2 do not pass directly

through the various saddles identified in Figure 6.3, but do pass close to

them through points of Ci, C2 and C2v symmetry respectively.

The remaining 1→3 path has been little studied in the literature, and is

thought to contribute only a small amount to the tunnelling pattern (Coudert

and Hougen, 1988). No transition state leading to wells 1 and 3 exists and so

the corresponding minimum-energy path does not connect the wells directly.

Nevertheless a minimum-action path does exist and we were able to find

an instanton kink describing this tunnelling pathway, which we call donor

exchange. Unlike the other four paths, the 1→3 kink does not pass through

a point with any symmetry, and for this reason (and also because the donor

could rotate either clockwise or anticlockwise) there are other degenerate

pathways such that A13 = 4.

All five kinks were located on each of the three potentials studied, and

despite difference in the surface topologies, the instantons all followed similar

pathways passing through points of the same symmetry. We can therefore

conclude that the ring-polymer instanton method can be less sensitive to

minor defects in the PES than methods based on steepest-descent pathways,

but remains of course sensitive to major defects such as barrier height and

shape, as it must be or it would not be able to make good estimates of the

splitting pattern.

When arranged from largest to smallest, the tunnelling matrix elements

retain the same order as was found by the WKB analysis. This is because

the action of a pathway is still loosely connected to the height of the barrier,

and the pathways did not deviate too strongly from the minimum-energy

pathways. The instanton method will not therefore predict a qualitatively
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different splitting pattern for the water dimer from those obtained by previous

studies. However, this will not necessarily be true for other systems (see

§6.3).

6.2.4 Tunnelling matrix elements and splitting pattern

The adjacency matrix obtained from the kinks gives rise to the following

tunnelling matrix:

W =




0 h12 4h13 2h14 h15 h15 h17 h17

h12 0 2h14 4h13 h15 h15 h17 h17

4h13 2h14 0 h12 h17 h17 h15 h15

2h14 4h13 h12 0 h17 h17 h15 h15

h15 h15 h17 h17 0 h12 4h13 2h14

h15 h15 h17 h17 h12 0 2h14 4h13

h17 h17 h15 h15 4h13 2h14 0 h12

h17 h17 h15 h15 2h14 4h13 h12 0




. (6.12)

This matrix has exactly the same form as a tunnelling matrix first derived

by Coudert and Hougen (1988) on the basis of an analysis of the minimum-

energy paths, and which has been widely used for describing tunnelling in

water dimer.∗ Their calculated minimum-energy paths actually gave rise to

the same adjacency matrix as the instanton kinks because they also pass

through the Cs saddle point, which was thought at the time to be first order.

We emphasize that no reference was made to the Coudert and Hougen model

when constructing W, which was done entirely using the symmetry and

connectivity of the wells and kinks.

The values of the elements h1ν , computed from the actions Skink and

eigenvalue ratios Φ of the kinks located on the HBB2 surface were given

in Tables 6.2 and 6.3. These elements span four orders of magnitude, and

it is clear from comparison with the experimental data that the instanton

calculation has correctly predicted each of these magnitudes. Since the form

of the tunnelling matrix W is correct, it follows that instanton calculations

are likely to predict the correct splitting pattern (obtained by diagonalizing

W) which is shown in Figure 6.4. Tables 6.4 and 6.5 show that the instanton

splitting patterns agree well with experiment, especially for the best potential

∗Note that Coudert and Hougen (1988) employ the notation hνv in place of h1ν .
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Figure 6.4 – Water dimer tunnelling-splitting pattern, obtained by
diagonalizing the instanton tunnelling matrix W of Eq. 6.12. The values
of the tunnelling elements h1ν and of the splittings are given in Tables 6.2–

6.5.

surface HBB2.

6.2.5 Quantitative comparison with quantum results and ex-

periment

We do not expect the ring-polymer instanton method to give quantitat-

ive agreement with experiment because, as mentioned above, the method

neglects anharmonicity perpendicular to the tunnelling path and assumes

that the splittings depend only weakly on the rotational quantum numbers.

Nevertheless, the agreement of the HBB2 instanton results with experiment

and with the quantum results of Huang et al. (2008) is within a factor of two

for (H2O)2, and even closer for (D2O)2, although the excellent agreement of

the latter may be partly caused by a fortuitous cancellation of errors.

Two pieces of evidence suggest that most of the quantitative errors in the

HBB2 instanton splittings result from the neglect of anharmonicity. First, the

errors are a lot smaller for (D2O)2 than for (H2O)2, which is consistent with

the expectation that deuteration reduces the fluctuations of the polymers

around the wells. Second, the interchange splittings (those dependent mostly

118



T
a
b
le

6
.4

–
T
u
n
n
el
li
n
g
sp
li
tt
in
g
s
(i
n
cm

−
1
)
fo
r
(H

2
O
) 2

o
b
ta
in
ed

fr
o
m

th
e
in
st
a
n
to
n
ca
lc
u
la
ti
o
n
s
o
n
th
re
e
d
iff
er
en
t
p
o
te
n
ti
a
l

su
rf
ac
es
,
co
m
p
ar
ed

w
it
h
q
u
an

tu
m

re
su
lt
s
an

d
w
it
h
ex
p
er
im

en
t.

S
ee

F
ig
u
re

6
.4

fo
r
a
d
ia
g
ra
m

o
f
th
e
ov
er
a
ll
sp
li
tt
in
g
p
a
tt
er
n
.

H
B
B
2

T
T
M
3-
F

V
R
T
(M

C
Y
-5
f)

S
p
li
tt
in
g

in
st
.

q
u
an

tu
m

a
in
st
.

in
st
.

q
u
an

tu
m

b
ex
p
t.
c

A
cc
ep

to
r
sp
li
tt
in
g

4
|h

1
4
v
|

22
13

42
50

11
.7
25

9.
4

In
te
rc
h
a
n
g
e
(l
ow

er
)

4
|h

1
5
+
h
1
7
|

0.
86

0.
75

0.
73

0.
61

0
.6
02

0.
75

In
te
rc
h
a
n
g
e
(u
p
p
er
)

4
|h

1
5
−
h
1
7
|

0.
63

0.
65

0.
45

0.
38

0
.6
09

0.
65

B
if
u
rc
at
io
n
(l
ow

er
)
|h

1
2
+
4
h
1
3
|

0.
04

4
..
.

0.
01

5
0.
17

0.
11

6
0.
02

B
if
u
rc
a
ti
o
n
(u
p
p
er
)
|h

1
2
−
4
h
1
3
|

0.
02

6
..
.

0.
00

04
1

0.
12

−
0
.0
04

0.
02

a
H
u
an

g
et

al
.
(2
00
8)

b
K
eu
ts
ch

et
al
.
(2
00
3
b
)

c
Z
w
ar
t
et

al
.
(1
99
1)

119



T
a
b
le

6
.5

–
S
a
m
e
a
s
T
a
b
le

6
.4

fo
r
(D

2 O
)
2 .

H
B
B
2

T
T
M
3-F

V
R
T
(M

C
Y
-5f)

S
p
littin

g
in
st.

q
u
an

tu
m

a
in
st.

in
st.

q
u
an

tu
m

b
ex
p
t. c

A
ccep

tor
sp
littin

g
4|h

1
4 |

2.4
2.4

10.6
7.1

2.14
1.8

In
terch

a
n
g
e
(low

er)
4|h

1
5
+
h
1
7 |

0.037
0.040

0.039
0.054

0.52
0.039

In
terch

an
ge

(u
p
p
er)

4|h
1
5 −

h
1
7 |

0.035
0.036

0.034
0.048

0.51
0.036

B
ifu

rcation
(low

er)
|h

1
2
+
4
h
1
3 |

2.8(−
4)

...
6(−

5)
1.4(−

3)
...

2.3(−
4)

B
ifu

rcation
(u
p
p
er)

|h
1
2 −

4h
1
3 |

2.5(−
4)

...
3(−

5)
1.3(−

3)
...

2.2(−
4)

a
H
u
a
n
g
et

al.
(200

8
)

b
L
eforestier

et
al.

(20
0
2)

c
S
u
en
ram

et
al.

(198
9
);
K
arya

k
in

et
a
l.
(1
9
9
3
);

P
a
u
l
et

a
l.
(1
9
9
8
)

120



on h15) agree much better with experiment than the acceptor splittings do.

This is because the barrier height (210 cm−1) along the acceptor-tunnelling

path is close to the change in harmonic zero-point energy (204 cm−1), and

the calculations on the model double-well system (see Table 5.4) showed

that there are large errors for similarly low barriers. This effect is almost

certainly why the instanton acceptor splitting is a factor of two too large

in (H2O)2. This error is of course much smaller in (D2O)2, as deuteration

decreases the fluctuations.

The instanton prediction for the acceptor splitting of (D2O)2 agrees

to within 2% of the quantum result for the HBB2 potential. Whilst this

extremely good agreement is probably fortuitous, it is not unreasonable that

these two results should be close. In the quantum calculations, the OH

bond-lengths were held fixed at their monomer equilibrium geometries, and

this constraint (rather than deficiencies in the potential surface) is thought

to explain the deviation from experiment (Huang et al., 2008). The instanton

calculations allow the system to relax, such that the OH distances vary

correctly along the instanton path. However, Huang et al. (2008) argue that

the main error produced by fixing the OH bonds (in the quantum calculation)

is neglect of zero-point energy along the tunnelling path. Effectively, the

instanton calculations are also neglecting a large proportion of this zero-

point energy difference, through their neglect of anharmonicity. Hence both

calculations make a similar approximation, and it is not surprising that the

results are very close.

The values of h1ν are known to depend only weakly on rotational quantum

numbers, except for h14 (Coudert and Hougen, 1988; Huang et al., 2008).

The 1→4 pathway involves an effective internal twist of the two monomers,

which causes h14 to depend strongly on the rotational quantum number

K. In Tables 6.2 and 6.3, we have quoted the K = 0 experimental values

for h14. The instanton results may therefore include errors resulting from

“contamination” from K ̸= 0. We shall not attempt to analyse these errors

here, which, from the discussion above, would seem to be minor in comparison

with the errors caused by the neglect of anharmonicity.

Results from the other two potentials are not quite so promising, although

they do still produce the correct qualitative splitting pattern. For the same

reason as explained above, the acceptor splittings are overestimated, but the

remaining errors are consequences of problems with the potential surfaces.
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The VRT(MCY-5f) potential was fitted to give the correct values of the

acceptor and interchange splittings calculated by a pseudo-spectral split

Hamiltonian method (Leforestier et al., 2002). However, the bifurcation

splittings are an order-of-magnitude out, showing that the PES does not

correctly describe the true water dimer. The TTM3-F potential also performs

surprisingly well seeing as it was designed to reproduce the thermodynamics

of large clusters and of liquid water. For this potential, the interchange

splittings are closer to the experimental results than the bifurcation splittings,

presumably because the surface is more accurate at lower energies.

Spurred on by the good agreement with experimental and fully-quantum

theoretical results, we can use the same techniques to apply the ring-polymer

instanton method to systems for which the spectra is not so well understood

experimentally and which are too large for the application of accurate

quantum calculations.

6.3 Application to water trimer

The next system to which we apply the ring-polymer instanton method is

(H2O)3 and its deuterated form (D2O)3. The splitting pattern of the water

trimer has been measured both experimentally (Pugliano and Saykally, 1992;

Liu et al., 1994) and in theoretical studies using DMC (Gregory and Clary,

1995a) and WKB (Takahashi et al., 2005). A good review can be found in

Keutsch et al. (2003a). It is not possible to apply exact DVR-type approaches

to systems with this many degrees of freedom, even if rigid monomers were

used, as the size of the basis set needed would be too large.

These theoretical approaches were not however able to explain the exist-

ence of “anomalous” quartets in the spectrum, which we show is a consequence

of a number of competing bifurcation pathways. In the DMC study, the

nodal planes were defined such that there was no differentiation between

the six possible excited states corresponding to the different bifurcation

rearrangements. In this way, the information necessary for explaining the

appearance of the spectrum was lost. In the WKB study, depending on

the potential energy surface used, different minimum-energy rearrangement

pathways were found such that two types of splitting pattern were suggested

(Walsh and Wales, 1996), neither of which agreed completely with experiment.

The method gives no way of calculating which of the many mixed patterns
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Figure 6.5 – The minimum-energy geometry of the water trimer.

suggested was correct (Keutsch et al., 2002). Seeing as the instanton method

does not rely on predefined nodal planes or on the minimum-energy pathways

between two isomers, it is able to resolve some of these problems as is shown

below.

The stationary points of the water trimer were located using ab initio

potentials by Fowler and Schaefer (1995). The equilibrium geometry is found

to be a cyclic arrangement with C1 symmetry where each monomer acts as

a single hydrogen-bond donor and single acceptor as shown in Figure 6.5.

The dangling hydrogen atoms on two of the monomers point up (u) relative

to the plane: these are called the majority monomers, and are referred to

individually as the acceptor and the donor, depending on their relation to

the remaining minority monomer, in which the loose hydrogen points down

(d).

There are 96 permutation-inversion isomers for the water trimer equi-

librium geometry if covalent bonds are conserved (Wales, 1993a). The

permutations include combinations of flipping a majority u to d and vice

versa, exchanging the two hydrogen atoms in one monomer and changing

the direction of the cyclic formation of hydrogen bonds. There are also

higher-energy crown-shaped wells with uuu or ddd geometries (Fowler and

Schaefer, 1995), but these have only a minor effect on the tunnelling-splitting

pattern (Takahashi et al., 2005), which is dominated by tunnelling between

the degenerate uud wells (and the equivalent ddu, udu, etc. wells).

6.3.1 Locating the kinks

Instantons were located using three different potential energy surfaces, two

based on HBB2 combined with three-body terms, and a third, TTM3-F
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(Fanourgakis and Xantheas, 2008). Of the former type, one will be called

“PES(1,2,3)” (Wang et al., 2009; Wang and Bowman, 2010) and the other,

which is less accurate but computationally less expensive, uses an efficient

three-body fit based on an approximate form derived by Kumar and Skinner

(2008), and is called “PES(1,2,KS/WB)”. In both cases, the potentials were

fitted to about 30 000 ab initio electronic energies.

The permutation-inversion isomers transform into one another under

operations of the G96 molecular symmetry group. We ran preliminary

calculations using a fixed-ended optimization on the best surface available,

PES(1,2,3), to obtain a preliminary estimate of the relative importance of

the 95 possible kinks connecting one well with each of the others. This

was performed with 32 beads at a temperature of β = 15 000 a.u., and the

end-points were chosen such that the oxygen atoms remained stationary. We

found that many of the kinks were unimportant to the tunnelling-splitting

pattern, as expected, because they had large actions owing to the breaking of

many hydrogen bonds, and therefore would give matrix elements which were

too small to affect the splitting pattern significantly. However, we identified

a total of seven kinks per well which could feasibly make a significant

contribution. These kinks were then located precisely using the flexible-

ended potential, following very similar procedures to those described in

§6.2.2. Convergence was reached for each of the pathways with M = 512 and

β = 20 000 a.u., and all but one was found to contribute to the tunnelling-

splitting pattern.

6.3.2 Properties of the instanton tunnelling paths

Various properties of the calculated kinks are summarized in Table 6.6, using

the notation of Walsh and Wales (1996). Conflated series of snapshots,

showing the motion along each of the these kinks, are shown in Figure 6.6

and movies of the kinks can be downloaded from the supplementary material

to Richardson et al. (2011). The tunnelling paths described by the kinks

replicate qualitatively the major tunnelling pathways as those previously

identified in WKB calculations (Walsh and Wales, 1996; Takahashi et al.,

2005), from where we borrow the notation. However, we emphasize that

no prior assumptions were made about the nature of the kinks, which were

found by minimizing the linear-polymer potential energy surface as described

above. The resulting tunnelling matrix elements for (H2O)3 and (D2O)3 are
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Figure 6.6 – Conflated snapshots of instanton tunnelling paths (kinks)
obtained using the PES(1,2,3) surface for (H2O)3. The paths shown are
(a) the flip, (b)–(g) the A1, A2, A3, B1, B2 and B3 bifurcations, and (h)
the cwccw path. The arrows show the direction of motion of the hydrogen
atoms. Note that the B2 path (f) does not contribute to the tunnelling
because it is a saddle point on the linear-polymer surface (see text).
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Table 6.6 – Instanton tunnelling pathways (kinks) located on the
PES(1,2,3) potential surface for (H2O)3. Properties of the kinks are
summarized in the first column, using the notation of Walsh and Wales
(1996) for the bifurcations (min=minority monomer, don=donor monomer,
acc=acceptor monomer, with the slash separating the forward and reverse
paths where these differ). The actions Skink and eigenvalue ratios Φ were

calculated from the kinks as described in the text.

Pathway Shorthand Skink/h̄ Φ/a.u.

Flip flip 2.35 300
Min + acc flip/don + min flip A1 13.44 100
Min + don flip/acc + min flip A2 14.85 11
Don + no flips/acc + no flips A3 12.92 130
Min + double flip B1 14.99 9
[Don + double flip B2 16.13 . . . ]
Acc + double flip B3 16.57 2
Clockwise-counterclockwise cwccw 42.93 3

given in Table 6.7, and the splitting patterns, obtained by diagonalization of

W, in Table 6.8 and Figures 6.7 and 6.8.

The flip pseudo-rotation

Figures 6.7 and 6.8 show that the instanton splitting pattern has an overall

quartet structure. This result agrees with previous experimental and theoret-

ical studies of the trimer, in which this pattern has been shown to result from

the flipping of one of the dangling hydrogen atoms. When this operation is

performed six times in succession, two of the principal moments of inertia

complete a full 360◦ rotation. For this reason the flipping process is dubbed

a pseudo-rotation (Liu et al., 1994) and assigned pseudo-rotational quantum

numbers k = 0,±1,±2, 3. The kink that was calculated for this pathway is

shown in Figure 6.6a.

Since the (harmonic) zero-point energy in the wells is slightly greater

(by 27 cm−1) than the barrier height, the flip is not a tunnelling processes.

Nevertheless, the instanton splitting agrees with experiment to within a

factor of 2.3 for (H2O)3 and 1.8 for (D2O)3. This relatively good agreement

should come as no surprise, since Eq. 6.1 is clearly still applicable to the

flipping motion, provided one can define a Q0(β) from which paths that flip

onto or over the barrier are excluded. The ability of the instanton approach

to describe the flip is thus very similar to its ability to describe the acceptor
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Table 6.7 – Instanton tunnelling elements −hλµ in cm−1, calculated for
(H2O)3 and (D2O)3 using three different potential energy surfaces.

(H2O)3 (D2O)3

Pathway PES(1,2,3) PES(1,2,KS/WB) TTM3-F PES(1,2,3)

flip 50 60 47 18
A1 0.005 0.007 0.0019 2.0(−5)
A2 0.011 0.02 0.0024 3.1(−5)
A3 0.006 0.007 0.0010 3.5(−5)
B1 0.011 0.02 0.0053 3.0(−5)
B3 0.009 0.02 0.0055 1.7(−5)
cwccw 5(−14) 2(−13) 1.1(−13) 5.6(−21)

Table 6.8 – Calculated tunnelling-splitting pattern in cm−1 for both
isotopomers of the water trimer using PES(1,2,3).

(H2O)2

Energy level Irrep

100.0000 T−
1

100.0000 T−
2

100.0000 A−
1

100.0000 A−
2

50.0129 T+
1

50.0116 T+
2

50.0020 E+
2

49.9980 E+
1

49.9884 T+
1

49.9871 T+
2

−49.9669 T−
1

−49.9700 E−
2

−49.9869 T−
2

−50.0131 T−
1

−50.0300 E−
1

−50.0331 T−
2

−99.9360 A+
2

−99.9787 T+
2

−100.0213 T+
1

−100.0640 A+
1

(D2O)2

Energy level Irrep

36.000015 A−
1

36.000005 T−
1

35.999995 T−
2

35.999985 A−
2

18.000048 T+
1
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Figure 6.7 – Tunnelling-splitting pattern for (H2O)3, obtained by diag-
onalizing the instanton tunnelling matrix W of Eq. 6.3. The first set of
lines is unscaled, and only the overall quartet splitting produced by the
flip is visible. Magnification by a factor of 400 produces the second set
of lines, which show the bifurcation splitting pattern. The values of the
tunnelling elements h1ν are given in Table 6.7. There is an accidental
degeneracy for the k = 3 levels which disappears within the numerical
errors of the calculation. The energy levels used to plot this figure are

tabulated in Table 6.8.
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Figure 6.8 – Same as Figure 6.7 for (D2O)3. The second set of lines
showing the bifurcation splittings have been magnified by a factor of

40 000.
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tunnelling in water dimer (see §6.2.5), for which the zero-point energy of the

wells is only slightly below the barrier. In fact, there is no clear distinction

between these two types of process and they will both contain significant

errors arising from the neglect of anharmonicity, because paths that have

both ends fixed in one well can describe fluctuations onto or over the barrier.

The relatively good agreement of the flip with experiment indicates that only

a small proportion of the paths in Q0(β) manage to reach or cross the barrier.

There would be a larger proportion of such paths if the flip were even more

facile, which would lead to a breakdown of the instanton approximation.

Pathways also exist which describe double flips where two dangling

hydrogen atoms flip at the same time. However, it was found that the actions

were, as expected, about equal to twice that of the single-flip kink and would

not therefore make a significant effect to the overall splitting pattern.

Bifurcation tunnelling

The more detailed structure in the instanton splitting patterns (Figures 6.7

and 6.8) is produced by the kinks labelled A1, A2, A3, B1 and B3 (see

Figure 6.6 and Table 6.6). Each of these kinks gives the same qualitative

description of the tunnelling as one of the paths identified in previous WKB

calculations (Walsh and Wales, 1996; Takahashi et al., 2005), from where we

have taken the notation.

These paths describe bifurcation tunnelling (previously known as donor

tunnelling), meaning that the dangling hydrogen on one of the monomers

swaps roles with the bonding hydrogen, such that the geometry of the cluster

passes through a bifurcated structure rather than performing a C2 rotation

(Wales, 1993a). There are six possible bifurcation rearrangements unrelated

by symmetry which differ in the choice of bifurcated monomer and also the

number of accompanying flips (see Figure 6.6 and Table 6.6). Three of these

pathways are self-reversible, i.e. the monomers have the same roles within

the cluster at the start and finish of the path, and are given the label B (as

opposed to A for the others).

The contributions of the various bifurcation kinks to the splitting pattern

are difficult to disentangle. Tables 6.6 and 6.7 show that the actions of these

paths differ significantly, but that these differences are roughly compensated

by changes in the values of the eigenvalue ratio Φ of Eq. 5.20. As a result,

the five bifurcation paths make contributions to the splitting pattern of
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roughly equal importance. This leads to a far more complex splitting pattern

than would appear if tunnelling only occurred along one bifurcation pathway

(Keutsch et al., 2002), and explains the appearance of the “anomalous”

quartets with varying line-widths.

Previous studies (Walsh and Wales, 1996) identified an additional bifurca-

tion path, denoted B2. There is in fact a stationary point corresponding to B2

on the linear-polymer surface (see Figure 6.6f and Table 6.6), but it is a first

order saddle; linear polymers set to this geometry relax into combinations of

the flip and the A1 path. As a result, semi-classical tunnelling between the

wells connected by the B2 path proceeds via combinations of the flip and A1,

not via B2. We therefore set the corresponding elements of W to zero. No

changes needed to be made to incorporate the combined flip and A1 paths,

since these are already included individually in W, and the treatment of

§6.1 ensures that all possible combinations of individual paths are included

in Q(β). We note that the other two potential energy surfaces tested also

returned first-order saddles for B2, so we can be quite confident that the

B2 path does not contribute significantly to the splitting pattern in water

trimer.

Clockwise-counterclockwise tunnelling

No combination of the six instanton paths described above is able to convert

a minimum-energy geometry of water trimer into the permutation-inversion

isomer corresponding to reversal of the hydrogen-bonding pattern in the

ring in Figure 6.5. The generator for this operation is (35)(46)(BC)*. As a

result, the tunnelling can be described adequately using the G48 molecular

symmetry group instead of G96 (Wales, 1993a), and the wells split into two

sets, which are not coupled by W. This finding is consistent with all recent

studies of the water trimer (Keutsch et al., 2003a), in which tunnelling

between these subsets is thought not to contribute to the splitting patterns.

Nevertheless, the possibility of a tunnelling path corresponding to this

rearrangement in water trimer has been discussed in the literature (Pugliano

and Saykally, 1992), and we applied the instanton method to locate the

kink. The mechanism is a concerted breaking and reforming of all three

of the hydrogen bonds in a motion described as clockwise-counterclockwise

(cwccw) tunnelling. It was straightforward to locate the cwccw kink, which

is shown in Figure 6.6h. As expected, the action of this kink is very large
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(Table 6.6), and the tunnelling matrix element negligibly small (Table 6.7).

For the purposes of calculating the tunnelling-splitting pattern, this pathway

is considered unfeasible. Based on the preliminary tests (see §6.3.1), other
pathways similar to this but accompanied by flips or even bifurcations will

have similarly large actions and are also expected to have a negligible effect

on the tunnelling-splitting pattern.

6.3.3 Construction of the tunnelling matrix

With six different feasible tunnelling pathways, the 48× 48 tunnelling matrix

W is quite a complicated object. However, it was not difficult to write a

stand-alone algorithm which was able to construct the matrix using the

values of hλµ from Table 6.6.

It was first necessary to label each of the 48 wells with a three letter word

where each letter represents the state of one of the monomers and can take

the following values: ‘u’ or ‘d’ depending on when the dangling hydrogen is

up or down, or ‘U’ or ‘D’ if the monomer has bifurcated and the hydrogen

atoms are swapped relative to the geometry shown in Figure 6.5. The words

which include three ups or three downs were excluded and the remaining

words labelled with a number from 1 to 48 and assigned to rows and columns

of the matrix.

For each well λ, the following permutations were performed in turn:

the flip of the majority acceptor and of the majority donor monomer, the

bifurcations A1, A2 and A3, both forwards and backwards, and the B4

and B6 bifurcations. In each case, the index of the resulting well µ was

determined, and the value of hλµ inserted into the position Wλµ. Because it

was not found in any of the cases that more than one kink pathway connected

a pair wells, all the adjacency matrix elements Aλµ for these permutations

were equal 1. This was repeated for the (D2O)3 results and these matrices

diagonalized to retrieve the spectra given in Table 6.8 and Figures 6.7 and

6.8.

The symmetry labels were obtained by inspecting the symmetry of the

eigenfunctions of W, using the same procedure as for water dimer, although

it was only necessary to consider the (12), (34), (56) and E∗ permutations to

collect enough information to be able to assign all the levels. The appropriate

group table can be found in the study by Wales (1993a).
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6.3.4 Comparison of splitting patterns with experiment

The instanton splitting patterns of Figures 6.7 and 6.8 are in good overall

agreement with the results of experiment, (Pugliano and Saykally, 1992; Liu

et al., 1994; Suzuki and Blake, 1994; Liu et al., 1996; Olthof et al., 1996;

Viant et al., 1997; Keutsch et al., 2003a) in which far-infrared spectra for

(H2O)3 and (D2O)3 and other isotopomers have been interpreted in terms of

an overall quartet structure caused by the flip pseudo-rotation, each branch

of which is further split by bifurcation tunnelling. The latter gives rise to

quartets in the spectrum, which are either regular (equally spaced with equal

line-widths) or “anomalous” (similar but inconstant spacing with varying

line-widths) (Keutsch et al., 2002). The former are associated with the

outer k = 0, 3 branches; the latter with the k = ±1,±2 inner branches (for

rotational quantum number K = 0).

Previous studies based on the WKB approximation, which define the

tunnelling pathways to lie along minimum-energy paths (Takahashi et al.,

2005), assumed that only one bifurcation pathway would contribute to the

spectrum. If this were true, and the pathway was one of A1, A2 or A3,

one would obtain a qualitatively different spectrum from that if it were one

of B1, B2 or B3. By analysing the known experimental spectrum, it was

shown that the A-type pattern was incorrect (Keutsch et al., 2002) because

it leads to unevenly spaced k = ±1,±2 quartets, whereas the experimental

“anomalous” quartets are roughly evenly spaced. Although the B-type pattern

does reproduce the evenly spaced quartets, it is not necessarily the only

possible explanation. Our results in Figures 6.7 and 6.8, calculated from a

combination of the five tunnelling pathways (of both A and B type), also show

approximately evenly spaced patterns, provided one assumes that the inner

sextets give rise to what appear to be quartets in the experimental spectrum.

This case would also explain the varying line-widths of the “anomalous”

quartets (Keutsch et al., 2002).

A more detailed comparison with experiment is difficult for the trimer,

owing to complexities in the rovibrational spectrum caused by, amongst

other things, a dependence of the k = ±1,±2 bifurcation splitting pattern

on Coriolis coupling (Keutsch et al., 2002). As mentioned above, the ring-

polymer instanton method assumes that dependence of the splitting on

overall rotation can be neglected, but the effects of rotational coupling are

expected to be much weaker here than in the water dimer acceptor splitting
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Table 6.9 – Tunnelling splittings in cm−1, obtained from the instanton
calculations, from previous DMC (Gregory and Clary, 1995a) and WKB
(Takahashi et al., 2005) calculations, and from experiment (Liu et al.,
1994; Keutsch et al., 2003a). The comparison of the bifurcation splittings

is intended only as a rough guide (see text).

Pathway instanton DMC WKB expt.

(H2O)3 flip 100 22 37.93 43.52
(D2O)3 flip 36 9 30.84 20.54
(H2O)3 bifurcation 4.3(−2) 1.7(−2) 6.50(−3) 9.63(−3)
(D2O)3 bifurcation 1.4(−4) 4.0(−3) 2.54(−5) 1.66(−4)

(see §6.2.5).
Details of the k = ±1,±2 bifurcation splitting pattern are sensitive to

small changes in the elements hλµ, since the pattern results from the interplay

of several competing paths of roughly equal weight. It might be that neglect

of anharmonicity in the instanton method introduces some small errors into

the contributions made by some of the bifurcation paths. An attempt to

replicate this pattern in detail would go therefore beyond the capabilities of

the method.

One property, however, which the instanton approach should be able

to describe well is the overall dependence of the bifurcation splitting on k.

The instanton calculations predict that this splitting decreases markedly

with increase in k (see Figures 6.7 and 6.8). This is contrary to the results

which would be gained if only one B-type pathway dominated the spectrum

(Takahashi et al., 2005). The disagreement arises because the instanton

calculations predict that five of the bifurcation tunnelling paths contribute

roughly equally to the splitting (see Table 6.7). Further work will be needed

to decide if an analysis of the experimental data is consistent with Figures

6.7 and 6.8.

Table 6.9 gives numerical comparisons of the instanton tunnelling split-

tings with experiment and with the results of previous DMC and WKB

calculations. Comparison of the flip splittings is straightforward, but com-

parison of the bifurcation splittings requires us to take into account the

variation with k, which is present in the instanton results, but is not found

in the WKB analysis (Takahashi et al., 2005), where only one pathway is

considered. The DMC study treats all bifurcations in the same simulation,

which gives an average splitting but not the spectral pattern. Table 6.7
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gives the instanton bifurcation splittings corresponding to the k = 0 quartet,

which is probably also where the experimental results are measured.

The instanton splittings are in good agreement with the experimental

results and behave as we should expect from the derivation of the theory. As

mentioned above, the (H2O)2 flip results are about a factor of two too large

because of the low barrier, but the errors decrease for the deuterated case.

The bifurcation splittings are also seen to be too large. This is probably

because the surface is known to be very flat near the bifurcation transition

state; it is for this reason that the number of flips in the minimum-energy

pathways depend strongly on the PES. In particular, the values of Φ are

very low for the A2, B1 and B3 pathways, and anharmonic effects are likely

to be stronger in these cases. The results are seen, once again, to improve in

the deuterated case.

The WKB results seem in excellent agreement for the (H2O)2 calculations.

Indeed the reason why the WKB method does not particularly suffer from

problems of anharmonicity for low barriers is because it neglects fluctuations

about the pathway entirely. It is seen that they decrease in accuracy in the

deuterated case, and that therefore the good agreement must have been at

least partly fortuitous.

The DMC method is, by definition, exact but because of the necessity of

sampling, the study used a significantly less accurate potential energy surface

than PES(1,2,3) and enforced rigid monomers. This explains the observed

error in the measurement of the flip and k = 0 bifurcation splitting.

The major advantage of the ring-polymer instanton method over the

WKB and DMC methods is that no a priori model of the tunnelling needs

to be determined such that the entire pattern is computed in a general way.

6.3.5 Comparison between different potential energy surfaces

We also took the opportunity to compare tunnelling splittings obtained from

two less accurate (but computationally cheaper) potential energy surfaces

with those obtained using PES(1,2,3). Table 6.7 gives the values of hλµ

calculated using the PES(1,2,KS/WB) surface (Wang and Bowman, 2010)

and the Thole-type model TTM3-F surface (Fanourgakis and Xantheas, 2008).

It is seen that the PES(1,2,KS/WB) surface gives an adequate description

of the tunnelling in water trimer, yielding values of hλµ that are within a

factor of two of those obtained using PES(1,2,3).
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The TTM3-F surface is designed to be inexpensive to evaluate in simula-

tions of liquid water, and cannot realistically be expected to compete with

PES(1,2,3) in accuracy. Nevertheless, this surface gives qualitatively the

same prediction of the tunnelling dynamics as PES(1,2,3), yielding the same

set of instanton paths as those shown in Figure 6.6 (including the B2 path,

which is a first-order saddle, as for the other two surfaces), and yielding

splitting patterns with the same overall structure as Figures 6.7 and 6.8. The

splittings disagree with those obtained from PES(1,2,3) by at most a factor

of six.

6.4 Application to water octamer

A number of theoretical investigations have been carried out on (H2O)8 but

its tunnelling-splitting pattern has not before been computed. Stillinger and

David (1980) performed the first geometry optimizations on the cluster using

their polarizable water model (Stillinger and David, 1978). However, it was

shown that with better potentials, the global minimum was found to have

different structures (Brink and Glasser, 1984; Tsai and Jordan, 1991). It

is now well accepted that the octamer has two low-lying minima with cage

structures, i.e. a water molecule at each corner of a cuboid, and point groups

D2d or S4, and that other minima have significantly higher energies (Wales

and Ohmine, 1993; Xantheas and Aprà, 2004; Maeda and Ohno, 2007). This

has also been confirmed by the experimental measurement of the infrared

spectrum (Gruenloh et al., 1997).

For this study, the TTM3-F flexible water potential (Fanourgakis and

Xantheas, 2008) was used which was shown to give order-of-magnitude

estimates of tunnelling splittings in the previous applications (cf. §6.2 and

§6.3). It is a refinement of TTM2-F which was shown to closely reproduce

the ab initio binding energies and harmonic frequencies of the two lowest

water octamer minima (Xantheas and Aprà, 2004). TTM3-F also correctly

identifies these minima with point groups D2d and S4, where the latter

isomer is only 0.005 kJ/mol higher in energy than the former. The harmonic

frequencies ζj were calculated in both isomers which gave almost exactly the

same harmonic zero-point vibrational energy of 509.2 kJ/mol of which 92.9

kJ/mol is in the intermolecular bonds.

In order to compute the tunnelling spectrum at low temperature, we need
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only consider the D2d and S4 minima as these will be the only structures

with any significant occupancy. There are an enormous number of possible

tunnelling pathways between these wells, and we analyse the number of

symmetry-related wells using the molecular symmetry group. This is the

subgroup of permutation-inversion operations corresponding to pathways

that are deemed feasible. Because of the mass terms in Eq. 5.16, any pathway

which involves large displacements of oxygen atoms will correspond to large

values of the action Skink. The same is true for pathways which break covalent

bonds, leading to high barriers. Such pathways are deemed unfeasible, will

not lead to observable tunnelling splittings, and are excluded from the study.

The only pathways which can be considered feasible in water octamer

are those which rotate individual monomers, exchanging the two hydrogen

atoms. There are 28 = 256 wells connected by these permutations for each

isomer. Because of the presence of the S4 symmetry element in both isomers,

there are only two H2O monomer environments: one in which the monomer

donates two hydrogen bonds and accepts one (daa), the other in which it

accepts two and donates one (daa) (Buck et al., 1998). Because of this

symmetry, only four distinct pathways need to be calculated, two for D2d

and two for S4.

6.4.1 Instanton pathways

These four pathways were optimized using the methods outlined in §6.2.2
with M = 32 and β = 5000 a.u. The initial starting point for each of the

instanton tunnelling paths was taken to be the path in which half the beads

were placed at the equilibrium geometry of well λ and the other half in well

µ. A fixed-ended linear-polymer potential was used and the optimizer had

no problems in pulling the central beads out of the wells and distributing

them over the barrier as required. The computation was quite simple for this

system because no skeletal rearrangement of the oxygen atoms was necessary.

The resulting instanton pathways are illustrated in Figure 6.9 and some

results of the calculations are given in Table 6.10. The values of the tunnel-

ling matrix elements obtained are too small to give rise to experimentally-

measurable splitting patterns, and thus we did not try to obtain more

accurate value of hλµ by converging M and β. We expect a fully-converged

calculation to give slightly smaller actions but the matrix elements to re-

main at this order of magnitude. M and β were increased, along with a
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Figure 6.9 – Conflated snapshots of instanton tunnelling paths (kinks)
for water octamer. The paths show the (a) D2d (dda), (b) D2d (daa),

(c) S4 (dda) and (d) S4 (daa) rearrangements.

Table 6.10 – Actions, ratios and tunnelling matrix elements for the four
pathways considered with M = 32 and βh̄ = 5000 a.u.

Pathway Skink/h̄ Φ/a.u. −hλµ/cm−1

D2d (dda) 33.98 23 3.9(−11)
D2d (daa) 28.67 118 1.4(−9)
S4 (dda) 33.93 25 3.7(−11)
S4 (daa) 28.99 123 9.8(−10)
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releasing of the end-points of the linear polymer, only for the case of D2d

(daa) but this resulted in very little change from the above figures. Further

improvement could also be gained by using a better potential energy surface

such as PES(1,2,3) which although it is a three-body potential and doesn’t

include higher-order terms, would still have provided a good description of

the system (Wang et al., 2009). However, this is not expected to change the

results by enough to make the pattern visible to experiment.

The reason for these small tunnelling splittings is obvious. In all four

cases, at least two hydrogen bonds have to be broken along the tunnelling

path which leads to a high action and therefore an unobservable tunnelling

splitting. The daa transitions are more labile probably because they do not

bring their free hydrogen atoms so deep into the centre of the cluster. The

pathways are similar to the bifurcations in the water trimer, except that the

latter only break one hydrogen bond, and thus have an action about half of

those for the octamer.

6.4.2 Tunnelling-splitting pattern

Although the tunnelling splittings are too small to be measured in current

experiments, it may be useful for future studies to describe the resulting

pattern, which is obtained by diagonalizing the tunnelling matrix W.

Considering only the two feasible pathways described above leads to a

sparse adjacency matrix A and therefore W has a simple structure which

can be constructed using the following logic. Each of the 256 wells can

be labelled by an eight-digit binary number where each bit describes the

orientation of one of the monomers. Wells λ and µ are linked by a kink if

and only if their binary codes differ in only one bit and in this case Wλµ is

set to −2hλµ (the factor of 2 is present because the rotation can be clockwise

or anticlockwise). The splitting pattern is easily derived from diagonalizing

this matrix, but is laborious to notate. However, since the dda pathways

are less-potent, the splitting pattern for each isomer is approximately

8hdaa (1), 4hdaa (4), 0 (6),−4hdaa (4),−8hdaa (1),

where the degeneracies are in brackets.

Using the values of the matrix elements given in Table 6.10 for either

isomer yields a tunnelling-splitting pattern for which the difference between
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the highest and lowest energy levels is on the order of 2× 10−8 cm−1. This

is far too small to be resolved by existing experimental techniques and so

we expect both the D2d and the S4 isomers to exhibit spectra corresponding

only to rotations and vibrations.

6.5 Other water clusters

Although the water dimer and trimer have been quite well studied, There

is far less understanding of larger water clusters and application of the

instanton method to these clusters would be very useful. The study of the

octamer was inspired by difficulties in assigning the experimental spectrum

(Saykally, 2012), and work is currently in progress on the heptamer and

nonamer. Based on what we have learnt from the applications in this thesis,

it is possible to make some predictions about the other water clusters (see

Lee et al. (2000) for the relevant structures).

The tetramer forms a four-membered ring similar to the trimer’s, but

with point group symmetry S4. Because there are an even number of

dangling hydrogen atoms and therefore equal numbers of u and d, single flips

are not degenerate rearrangements. Minimum-energy pathways describing

bifurcations have not been found either (Keutsch and Saykally, 2001), and the

expectation is that tunnelling motions occur in a concerted fashion, passing

through second-order saddle points. However, minimum-action paths may

exist where minimum-energy paths do not, and it has already been shown

that the ring-polymer instanton method is able to pass through second-order

saddles. We expect that a detailed study of this system will clarify the

tunnelling dynamics.

Because the water pentamer’s global minimum is a puckered ring geometry,

it is necessary for the heavy oxygen atoms to move during the kinks (Keutsch

and Saykally, 2001). This skeletal rearrangement means that many beads

are needed to converge the instanton geometries and it may be necessary to

develop new methods to space the beads more evenly before the splittings

can be computed accurately. The asymmetry of the geometry also means

that there will be a large number of kinks which contribute to the spectrum,

for example there may be three different flips and a huge number of different

bifurcations accompanied by zero, one, two, three or four flips (Wales and

Walsh, 1996).
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The hexamer global minimum is a cage structure, and there are four such

structures very close (but not equal) in energy. No low-energy minimum-

energy pathways corresponding to degenerate rearrangements have been

found but only non-degenerate rearrangements including flips and bifurcations

(Wales, 1999). The ring-polymer instanton theory may need to be extended

to treat non-degenerate rearrangements before it can be applied to this

system.

Water clusters larger than the hexamer also have cage structures for their

global minima (Kim et al., 1999), which are less likely to require skeletal

rearrangements than ring structures, and may only have few kinks which

contribute. The action for a bifurcation in the octamer, where two hydrogen

bonds were broken, was found to be roughly twice that of the bifurcation

in the trimer, where one hydrogen bond was broken. This implies a very

simple relationship between the number of hydrogen bonds broken and the

magnitude of the tunnelling splitting such that it should be easy to guess

which water clusters will give an observable splitting pattern and which will

not. Following this premise, we conclude that the global minima of the water

heptamer and nonamer should show a doublet in their tunnelling splittings,

and the “butterfly” structure of the decamer a triplet, but it is unlikely that

any splittings of the decamer’s prism structure will be visible.
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Chapter 7

Conclusions and Future

Work

We have, in this work, shown how the application of RPMD rate theory can

be justified in the deep-tunnelling regime by providing a link between its

transition-state-theory limit (RPTST) and a free-energy version of the ImF

instanton rate. We have explained why, for asymmetric reaction in the deep-

tunnelling regime, a cone is the appropriate shape for the optimal dividing

surface in the space of the ring-polymer normal modes, and shown that

RPTST using this dividing surface leads only to a minor discrepancy (about

5%) from the RPMD rate for the one-dimensional systems tested. As a result

of these findings, we have explained why CMD and QTST methods which

use planar dividing surfaces based only on the centroid greatly overestimate

the rate for these asymmetric reactions. It is shown that the only remaining

difference between the two methods, RPMD and the free-energy instanton,

is in the treatment of the unstable mode. This explains why RPMD has

been seen to perform so well in the deep-tunnelling regime, and shows that

RPMD is expected to underestimate the rate for symmetric barriers and

overestimate it for strongly asymmetric barriers.

The saddle point on the ring-polymer surface is a finite-difference ap-

proximation to a periodic orbit in imaginary time—known as an instanton.

These saddle points can be located using standard transition-state searches,

and this provides a practical method for locating instantons in multidi-

mensional systems. We followed the derivations in the standard instanton

literature (Benderskii et al., 1994), but found that using the discretized
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ring-polymer formulation from the start greatly simplified the derivation,

avoiding functional determinants, and lead directly to a practical method

for computing the rate of reactions. We call this the ring-polymer instanton

method, and it is equivalent to the harmonic QTST developed simultaneously

and independently by (Andersson et al., 2009).

We have performed numerical tests of the ring-polymer instanton method

by computing the rates for the Eckart barrier and the collinear H + H2

reaction, where the results compared very favourably with the exact quantum

rate constants. The method was also applied to hydrogen exchange reactions

in the water dimer and trimer. These applications were inspired by a

prediction made by Bove et al. (2009) that concerted proton transfer occurs

in the hexagonal rings in ice. However, we could not continue to study larger

water systems because accurate potential energy surfaces which treat proton

transfer were not available. For example, the polarizable surface of Stillinger

and David (1978) and its derivatives (Halley et al., 1993) have unphysical

minima either side of the transition states for the concerted transfer which

makes it impossible to locate instantons. However, with better potentials,

there is no intrinsic reason why the method cannot be used to calculate

rates for proton transfer in a six-fold ring embedded in a ice structure with

periodic boundary conditions, especially if the beads described only six of the

molecules while the remainder are held fixed. However, the rates calculated

for the trimer appear very low, and it is doubtful that the rate of a similar

concerted proton transfer in a six-membered ring is large enough to have

been the rearrangement observed by their experiment.

Work is in progress to link the method to the electronic-structure package

MOLPRO (Werner et al., 2010) such that the potential could be computed

“on the fly” and these systems could be treated; preliminary results show

that this goal is feasible. With such a tool, one could easily apply the

method to many problems. For example, it has recently been discovered

that methylhydroxycarbene makes an unexpected rearrangement at low

temperature, choosing to tunnel through a high barrier rather than pass over

a lower barrier (Schreiner et al., 2011; Carpenter, 2011). This is the type of

problem to which the ring-polymer instanton method could easily be applied

and would be able to identify the pathway preferred at low temperature.

A related ring-polymer instanton method has also been derived for com-

puting the tunnelling-splitting patterns of polyatomic molecules and molecu-
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lar clusters. The most important application of these calculations has been

on water clusters, for which there is considerable interest in gaining a better

understanding of the interatomic forces. Theoretical calculations can aid the

assignment of experimental spectra and the construction of higher quality

potentials. In this work the water dimer, trimer and octamer were treated.

The results on the dimer reproduced the experimental patterns well except

for the tunnelling splitting through the smallest barrier. We have shown that

this error, which was only about a factor of two, arises from a breakdown in

the validity of defining a non-tunnelling system, and is to be expected for

tunnelling through low barriers.

Although other techniques, including WKB and DMC, have been used

to compute the splitting pattern for the water trimer, they had not been

able to correctly identify the tunnelling pathways and hence describe the

experimental spectrum. The WKB approaches, which used the minimum-

energy pathways to describe the tunnelling, found that only one of the

bifurcation pathways contributed to the spectrum, although the particular

rearrangement depended on the PES used. The DMC approach fixed the node

of the excited-state wave function to include all bifurcation rearrangements

together and is therefore unable to describe the splitting pattern. The

instanton method does not rely on a priori knowledge of the tunnelling

pathway or the nodal planes of the wave function, and was therefore able to

show that five, of the possible six, bifurcation pathways contribute to the

pattern; this provides an explanation for the appearance so-called “anomalous”

quartets.

Tunnelling splitting calculations on the octamer were prompted by recent

experiments (Saykally, 2012), in the hope a theoretical approach would

improve the understanding of the spectrum. In this case, no splittings which

would be visible to experiment were found, but based on our experiences with

this example, we expect that it will be possible to compute visible splittings

in many other water clusters, including the heptamer and nonamer for which

work is in progress. Water clusters have been studied up to (H2O)22 using

the PES(1,2,3) potential (Wang et al., 2011) and there is no reason why the

ring-polymer instanton method could not be applied to all of them.
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Appendix A

TST and shallow-tunnelling

corrections

There are a number of forms of classical TST which treat the modes perpen-

dicular to the reaction coordinate in different ways. All, however, assume

that the system does not recross the dividing surface σ(x) = 0 and that no

tunnelling takes place along the reaction coordinate.

For an f -dimensional system described by Eq. 2.33,

kTST(β)Qr(β) =
1

(2πh̄)f


dp


dx e−βH(p,x)δ[σ(x)]vσ(p,x)h[vσ(p,x)].

(A.1)

Converting to mass-weighted coordinates and taking the steepest-descent

approximation gives harmonic transition-state theory (hTST):

khTST(β)Qr(β) =
1

2πh̄β

f

j=2

1

βh̄ζj
e−βV ‡

, (A.2)

where we have assumed the reaction coordinate follows the imaginary mode

corresponding to ζ1 at the saddle point x‡. If there are translational and

rotational degrees of freedom at the transition state, these modes are excluded

from the product, and the rate is multiplied by the appropriate factors (cf.

§2.2.1).
Eyring’s TST separates the integral along its normal modes and treats

the modes perpendicular to the reaction coordinate using approximations

to the quantum-mechanical partition functions. For a transition state with

149



vibrational modes only,

kEyring(β)Qr(β) =
1

2πh̄β

f

j=2

1

2 sinh (βh̄ζj/2)
e−βV ‡

, (A.3)

and for a non-linear geometry with three translational, three rotational and

f−6 vibrational degrees of freedom,

kEyring(β)Qr(β) =
1

2πh̄β


M

2πβN h̄
2

3/2


8π det I

β3N h̄
6

f

j=8

1

2 sinh (βh̄ζj/2)
e−βV ‡

,

(A.4)

where M , I and ζj are defined in §2.2.1.

Above Tc where classical thermodynamic fluctuations dominate, the ImF

premise takes a different form. We assume that the rate can be determined

by (Affleck, 1981)

k(β) ≈ −βωb

π
ImF ≈ ωb

π

ImQ(β)

ReQ(β)
, (A.5)

and that we can calculate an analytic continuation of the integral by steepest

descent about the collapsed-bead saddle point xi,j = x‡j in the same way as

in Chapter 3. The only difference is that there is no zero-frequency mode.

After converting to normal-mode coordinates (Eq. 2.22),

ImQ(β) =
1

2


1

2πβN h̄
2

N/2

k,j


2π

βN |ωk,j |2
e−βNNV ‡

(A.6)

=
1

2



k,j


1

βN h̄ωk,j

 e−βV ‡
, (A.7)

such that

k(β)Qr(β) ≈
1

2πβN h̄

′

k

f

j=1

1

βN h̄ωk,j
e−βV ‡

, (A.8)

where the imaginary frequency ω0,1 = ωb is excluded from the product. This

reduces to khTST(β) for N = 1 and gives the rate constant equivalent to

Wigner’s TST correction for tunnelling through a parabolic barrier (Wigner,
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1932) in the large N limit:

k(β)Qr(β) ≈
ωb

2π




k

1

βN h̄ωk,1




k

f

j=2

1

βN h̄ωk,j
e−βV ‡

(A.9a)

=
ωb

2π

1

2 sin (βh̄ωb/2)

f

j=2

1

2 sinh (βh̄ζj/2)
e−βV ‡

(A.9b)

=
h̄βωb/2

sin (h̄βωb/2)
kEyring(β)Qr(β), (A.9c)

where we have used the same relation as was used to derive Eq. 2.27 but with

ωs = iωb. This is correct for a parabolic barrier and hence only applicable

to systems above the cross-over temperature and explains the rationality

behind Eq. A.5.
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Appendix B

Optimization methods

There have been many methods developed for the optimization of functions

going back at least to Newton; we shall discuss some of the most useful

specifically in relation to locating instantons. By optimization, we mean

both minimization of functions and transition-state searches as both of

these are necessary for locating the instantons described in this thesis. It is

generally accepted that minimization is a far easier because one only has to

travel downhill in each degree of freedom (Wales, 2003). Note that global

minimization, which is known to be a difficult problem in general, is not

necessary for the work in this project. Indeed we know the global minimum

from the outset: a collapsed ring-polymer at the bottom of the well, but the

loose-ended instanton in a double well system is a local minimum. With

expensive potentials, all the algorithms can be greatly sped-up by computing

the ring-polymer potential in a parallelized way with each bead geometry

assigned to a separate CPU. Unfortunately, however, there is no simple way

of performing the diagonalizations needed to calculate the determinant in a

parallel manner. Any number of the following methods could be used in the

optimization, including manually prodding the geometry, because once the

gradient goes to zero and the correct number of negative eigenvalues appear,

the geometry must be correct.

All the methods are iterative, moving the system closer to the solution

one step at a time. Newton-like methods, also known as mode-following

methods, employ a local quadratic approximation and use the Hessian to

choose a direction in which to make a step. One example is the stream-bed

walk algorithm (Nichols et al., 1990) for which the Hessian is computed and
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diagonalized at each iteration and a step chosen downhill in the direction of

all eigenvectors for minimizations but uphill in the direction of the lowest

eigenvector only for transition-state searches. The step length depends on

the signs and magnitudes of the first two eigenvalues. This routine can be

quite slow when applied to expensive potentials, especially if the Hessian

must be computed by finite-differences. However, when applied to the half

ring-polymer form in Eq. 3.40, the ring-polymer Hessian can be diagonalized

efficiently as a consequence of its banded nature. The algorithm for computing

transition-states was modified slightly for situations where the geometry had

two negative eigenvalues (as is quite common in ring-polymer searches where

the second eigenvalue is often close to zero). That is, in the notation of the

paper:

• take α = 1.0 and λ = (h1 + 2h2)/4 if h2 > h1/2;

• take α = (h1 − h2)/h2 and λ = (h1 + 3h2)/4 otherwise.

Quasi-Newton methods avoid the computation of the Hessian at each

step altogether by using an update formula∗ to give an approximation based

on the previous geometries and gradients. Many update formulae have been

suggested but the BFGS method seems to have been deemed the best for

minimization problems. A variant of this is the limited-memory version

L-BFGS (Nocedal, 1980), which avoids even storing the Hessian in memory

and saves time by not performing the diagonalization. For transition-state

searches, there is no obvious winner. In this project, we have tested a

few alternative methods including the method of Baker (1986), the stream-

bed walk algorithm with a Powell update, and the update scheme of Bofill

(1994) which was found to be the most efficient for locating instantons in

molecules with about ten atoms in the study by Rommel et al. (2011).

However, this may not be the most efficient in all cases, because even

when exploiting a banded-matrix eigenvalue solver, diagonalization can be

the bottleneck in the algorithm for systems with very large numbers of

atoms. It is sometimes necessary to project out the zero-eigenvalue modes

corresponding to translation, rotation and permutation of the ring polymer,

especially for Bofill’s scheme, which involves inverting the Hessian. For

these algorithms, an initial guess for the Hessian must be supplied. We

∗See Fletcher (1987) for the definitions of the various update formulae mentioned.
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have found that it is often more efficient to use the correct Hessian rather

than an approximation in this case. The updated Hessian resulting from the

optimization algorithm is usually not accurate enough for use to compute

the ring polymer’s fluctuations, and so it should be recalculated.

To avoid diagonalization of the Hessian, one can employ a modified

eigenvector-following algorithm which uses an iterative method to compute

the lowest eigenvalue and its associated eigenvector. Alternatively, one does

not need to calculate the Hessian at all, but can still estimate the lowest

eigenvector using a conjugate-gradient approach (Munro and Wales, 1999).

These methods are related to the dimer method (Henkelman and Jónsson,

1999) and its improved version (Kästner and Sherwood, 2008), with which

transition states can be located using minimization algorithms on a pair of

geometries separated by a fixed “bond”, along which the gradient is reversed.

It is no surprise that these methods are less stable than the Newton and

quasi-Newton algorithms, but we predict that they will nonetheless become

more useful as instanton theory is applied to larger and larger systems.

Minimizations can also be performed without any reference to a Hessian

using methods based on molecular dynamics with friction terms designed to

stop the trajectory at the bottom of a well. These inertial engines, which

include quick-min (Henkelman and Jónsson, 1999) and FIRE (Bitzek et al.,

2006), have very little overhead per iteration, but typically take more steps

than the Newton-type methods. In cases where the ring-polymer surface is

rough, they have been beneficial, as they are able to jump over small barriers

in order to fall into the correct well (a Beccara et al., 2010). However, for

the uses of instantons in this work, the surfaces are smooth, and this is not

a problem.

The nudged elastic band and string methods (Sheppard et al., 2008)

are excellent for computing minimum-energy paths and thereby locating

unknown transition states between two minima. However, these double-ended

searches are less useful for finding instantons, as we already have a pretty

good idea of where the instanton is—near the classical transition state. It

may be possible, however, to apply them to locate minimum-action paths,

i.e. instantons in double wells used to compute tunnelling splittings.
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Appendix C

RPMD velocity Verlet

The ring-polymer trajectories were calculated using a symplectic integrator

based on alternating free harmonic ring-polymer and external-force steps

(Craig and Manolopoulos, 2004). The velocity Verlet algorithm was used to

calculate the Newtonian dynamics in normal-mode phase space (w,q), using

the following (python-like) pseudo-code:

w += dt * Fext / 2

q[0] += dt * w[0] / mass

z[1:] = (q[1:]-1j*w[1:]/mass/omega[1:]) * exp(1j*omega[1:]*dt)

q[1:] = z[1:].real

w[1:] = - mass * (z[1:].imag * omega[1:])

q *= sqrt(N/2)

q[0] *= sqrt(2)

q[N-1] *= sqrt(2)

for j in range(f):

x[:,j] = irfft(q[:,j])

Fextx = externalForce(x)

for j in range(f):

Fextq[:,j] = rfft(Fextx[:,j])

Fextq *= sqrt(2/N)

Fextq[0] /= sqrt(2)

Fextq[N-1] /= sqrt(2)

w += dt * Fext / 2

where dt is the time step, omega[:] the frequencies of a free ring polymer,

rfft the forward real Fourier transform and irfft its inverse. The function
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externalForce(x) returns the force according to the PES for each bead

geometry. NB in this code, the normal modes are arranged in order of

increasing values of ωk, i.e. q[:]= (q0, q1, q−1, q2, q−2, . . . , qN/2).
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Appendix D

Constrained RPMD

Following the method of RATTLE (Andersen, 1983), the σ = 0 constraint

(Eq. 4.26) on the dynamics of the ring polymer, represented by normal-

mode phase-space coordinates (w,q), is applied at each time step using the

constraint force

G(q) = −λ∇σ(q) = −λ

cosφ,

q1
r
sinφ,

q−1

r
sinφ, 0, . . . , 0


. (D.1)

The first part of the RPMD velocity Verlet step (cf. Appendix C) is taken to

give q′
t and the constraint force added to give

qt+∆t = qt +
∆t

m
wt +

∆t2

2m
[F(qt)−Gq(qt)] (D.2)

= q′
t −

∆t2

2m
λq∇σ(qt), (D.3)

where λq is chosen to solve the constraint at time t+∆t:

σ(qt+∆t)
2 = (q21 + q2−1) sin

2 φ− (σ0 − q0 cosφ)2 = 0, (D.4)

which is solved to give the correct root of the quadratic equation (Press et al.,

1992, §5.6)
λq =

2c

−b+
√
b2 − 4ac

, (D.5)
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where

a =
∆t4

4m2


(∇1σ)

2 + (∇−1σ)
2

sin2 φ− ∆t4

4m2
(∇0σ)

2 cos2 φ, (D.6a)

b = −2∆t
2

2m
(q′1∇1σ + q′−1∇−1σ) sin

2 φ− 2

σ0 − q′0 cosφ

 ∆t2
2m
∇0σ cosφ,

(D.6b)

c = (q′21 + q′2−1) sin
2 φ−


σ0 − q′0 cosφ

2
. (D.6c)

There is a second constraint on the momenta

wt+∆t = wt +
∆t

2
[F(qt) +Gq(qt) + F(qt+∆t) +Gw(qt+∆t)] (D.7)

= w′
t −

∆t

2
λw∇σ(qt+∆t). (D.8)

λw is chosen to force

m
dσ(qt+∆t)

dt
= w′

0 cosφ+
q1w

′
1 + q−1w

′
−1

r
sinφ = 0, (D.9)

which gives

λw = 2
w′
0 cosφ+ (q1w

′
1 + q−1w

′
−1) sinφ/r

∆t∇0σ cosφ+∆t(q1∇1σ + q−1∇−1σ) sinφ/r
. (D.10)

Constant temperature dynamics are provided by the Andersen thermostat

(Andersen, 1980) which resamples the momenta of the beads at random

intervals, choosing new values for all modes wk except k = 0 from the

Maxwell-Boltzmann distribution N (0,m/βN ) and choosing w0 to ensure the

constraint expressed in Eq. D.9.
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Appendix E

Factorization of the ratio of

determinants in the

tunnelling-splitting

calculations

We wish to prove Eq. 5.19,

det′G
detG0

=


det′ J
detJ0

n

, (E.1)

where G is the Hessian for an n-kink minimum on an N -bead ring-polymer

potential surface, J is the Hessian for a single-kink minimum on the cor-

responding M -bead fixed-ended linear-polymer surface, and N = nM . G0

and J0 are the corresponding Hessians that are obtained when all the beads

are located at one of the wells. The proof holds in the M → ∞ limit and

is developed first for the simplest case of an instanton with n = 2 kinks in

a one-dimensional system, from which we generalize to n > 2 and then to

multidimensional systems.

We first expand detJ along the kth row in terms of of its first and second

square minors using the shorthand αk = 2 + (βN h̄)
2V ′′(xk)/m. For example
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with M = 7 and k = 4,

(βN h̄)
14 detJ =



α1 −1 · · · · ·
−1 α2 −1 · · · ·
· −1 α3 −1 · · ·
· · −1 α4 −1 · ·
· · · −1 α5 −1 ·
· · · · −1 α6 −1
· · · · · −1 α7



=



α1 −1 · · · ·
−1 α2 · · · ·
· −1 −1 · · ·
· · −1 α5 −1 ·
· · · −1 α6 −1
· · · · −1 α7


+ α4



α1 −1 · · · ·
−1 α2 −1 · · ·
· −1 α3 · · ·
· · · α5 −1 ·
· · · −1 α6 −1
· · · · −1 α7


+



α1 −1 · · · ·
−1 α2 −1 · · ·
· −1 α3 −1 · ·
· · · −1 −1 ·
· · · · α6 −1
· · · · −1 α7



=



α1 −1 · · ·
−1 α2 · · ·
· · α5 −1 ·
· · −1 α6 −1
· · · −1 α7


+



α1 −1 · · ·
−1 α2 · · ·
· −1 · · ·
· · −1 α6 −1
· · · −1 α7


+ α4


α1 −1 ·
−1 α2 −1
· −1 α3



α5 −1 ·
−1 α6 −1
· −1 α7



+



α1 −1 · · ·
−1 α2 −1 · ·
· · · −1 ·
· · · α6 −1
· · · −1 α7


+



α1 −1 · · ·
−1 α2 −1 · ·
· −1 α3 · ·
· · · α6 −1
· · · −1 α7


. (E.2)

The second and fourth terms are 0 because the columns are not linearly

independent. This is most easily seen by considering adding scalar multiples

of the third column to the others so as to make two columns identical within

a constant factor. Therefore,

(βN h̄)
14 detJ =

 α1 −1
−1 α2



α5 −1 ·
−1 α6 −1
· −1 α7

+α4


α1 −1 ·
−1 α2 −1
· −1 α3



α5 −1 ·
−1 α6 −1
· −1 α7

+

α1 −1 ·
−1 α2 −1
· −1 α3


 α6 −1
−1 α7

 ,
(E.3)

and more generally,

(βN h̄)
2M detJ ≡ p1:M = αkp1:k−1pk+1:M − p1:k−2pk+1:M − p1:k−1pk+2:M ,

(E.4)

where pi:j is the determinant of the submatrix of (βN h̄)
2J starting at row and

column i and ending at row and column j. The N -bead cyclic determinant

of G can be expanded in the same way along the first row; for example, with
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N = 5, this gives

(βN h̄)
10 detG =



α1 −1 · · −1
−1 α2 −1 · ·
· −1 α3 −1 ·
· · −1 α4 −1

−1 · · −1 α5



= α1


α2 −1 · ·
−1 α3 −1 ·
· −1 α4 −1
· · −1 α5

+

−1 −1 · ·
· α3 −1 ·
· −1 α4 −1

−1 · −1 α5

−

−1 α2 −1 ·
· −1 α3 −1
· · −1 α4

−1 · · −1



= α1


α2 −1 · ·
−1 α3 −1 ·
· −1 α4 −1
· · −1 α5

−

α3 −1 ·
−1 α4 −1
· −1 α5

+

−1 · ·
α3 −1 ·
−1 α4 −1



+

−1 α3 −1
· −1 α4
· · −1

−

α2 −1 ·
−1 α3 −1
· −1 α4

 (E.5)

and therefore, more generally,

(βN h̄)
2N detG = α1p2:N − p3:N − p2:N−1 ± 2. (E.6)

The final term is positive or negative depending on whether N is even or

odd. However, it is negligible in comparison with the other terms which grow

exponentially with N .

The determinant of J0 and its submatrices can be evaluated in closed

form (Kleinert, 2006, §2.3.2) by writing them as a product of eigenvalues

and using 1.391.1 and 1.396.1 from Gradshteyn and Ryzhik (2000) to give

qA =
sinh (A+ 1)ω̃

sinh ω̃
, ω̃ = 2 sinh−1 βN h̄ωs

2
, (E.7)

where ωs =

V ′′(±x0)/m, and qA is the determinant of the first A rows and

columns of (βN h̄)
2NJ0. In what follows A will correspond to a substantial

fraction of the M beads, and hence we shall have

lim
M→∞

qA =
exp (A+ 1)ω̃

2 sinh ω̃
. (E.8)

Now, almost all of the elements of the Hessian J are identical to those of

J0, since, in theM →∞ limit, most of the beads in the linear polymer corres-

ponding to J are at ±x0, and there is just a tiny section of the polymer along

which the beads follow the kink trajectory linking ±x0. We can thus partition

the polymer into three stretches in the intervals 1 < A < M −B < M . The

middle stretch contains K =M−A−B beads, and contains the tiny fraction

of beads extending between ±x0, which we take to be a much smaller number
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than M . It then follows that, in the M →∞ limit,

p1:A = qA, (E.9)

pM−B+1:M = qB, (E.10)

and that cutting p1:M twice, using Eq. E.4, at rows A and M −B + 1 gives

p1:M = (αAqA−1 − qA−2) pA+1:M − qA−1pA+2:M

= (αAqA−1 − qA−2) (αM−B+1pA+1:M−BqB−1 − pA+1:M−B−1qB−1 − pA+1:M−BqB−2)

− qA−1 (αM−B+1pA+2:M−BqB−1 − pA+2:M−B−1qB−1 − pA+2:M−BqB−2)

= e(M−K)ω̃ × (linear combination of pA+i:M−B−j), i, j ∈ {1, 2}.
(E.11)

One can therefore move the position of the kink along the the linear polymer

without changing the value of p1:M . We label all determinants that have

A rows and columns and that contain at least one kink by pA. Many rules

follow from Eq. E.11, of which the most useful are (in the M →∞ limit):

pMpM = pM+1pM−1, (E.12)

pMqM−1 = pM−1qM , (E.13)

pN = αp1:k−1pk+1:N − 2p1:k−2pk+1:N , (E.14)

(βN h̄)
2N detG = αpN−1 − 2pN−2, (E.15)

where α = 2+(βN h̄ωs)
2 and the kth bead is located in one of the wells. From

these relations, it follows that, for n = 2, i.e. N = 2M ,

q2M (βN h̄)
2N detG = q2M [αpN−1 − 2pN−2]

= q2M [α(αpM−2pM − 2pM−3pM )− 2(αpM−3pM − 2pM−4pM )]

= qMpM [α(αpM−2qM − 2pM−3qM )− 2(αpM−3qM − 2pM−4qM )]

= qMpM [α(αqM−2pM − 2qM−3pM )− 2(αqM−3pM − 2qM−4pM )]

= p2M [α(αqM−2qM − 2qM−3qM )− 2(αqM−3qM − 2qM−4qM )]

= p2M (βN h̄)
2N detG0. (E.16)

This final expression is almost a proof of Eq. E.1 in the case of n = 2, except

that the latter involves det′G and det′ J, in which the zero-frequency mode
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s1 of Eq. 5.12 has been projected out. However, since we can write

det′ J = det

J+ vvT


, (E.17)

where the elements are v are vi = (x̃i+1 − x̃i)

m/βN h̄Skink (from Eq. 5.12),

and v is zero at ±x0, the above proof applies also to det′G and det′ J. Hence

we have proved Eq. E.1 for a one-dimensional system in the case that n = 2.

To extend the proof to n > 2, we can generalize Eq. E.16 for the case

qnM (βN h̄)
nN detG. The determinant detG can be split in exactly the same

way into p-terms, and when these are exchanged for q-terms using Eq. E.13,

the expression is equal to pnM (βN h̄)
nN detG0.

To extend the proof to multiple dimensions, one transforms the Hessians

to the coordinate system q of the normal modes at the well minimum. These

are obtained by computing the eigenvectors of the Hessian at the position

x0 or from the formulae in Eq. 2.22. As a result the Hessian matrix contains

no coupling terms between different components of q, except along the

kinks. The relations derived above can then be applied independently to

each component of q.
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importance of an accurate CH4 vibrational partition function in full dimensionality
calculations of the H+CH4 → H+CH4 reaction.” J. Chem. Phys. 114(21), 9683
(2001).

B. J. Braams and D. E. Manolopoulos. “On the short-time limit of ring polymer
molecular dynamics.” J. Chem. Phys. 125, 124105 (2006).

G. Brink and L. Glasser. “Studies in hydrogen bonding: The octamers of water.”
J. Phys. Chem. 88(16), 3412 (1984).

U. Buck, I. Ettischer, M. Melzer, V. Buch and J. Sadlej. “Structure and spectra of
three-dimensional (H2O)n clusters, n = 8, 9, 10.” Phys. Rev. Lett. 80(12), 2578
(1998).

C. G. Callan, Jr and S. Coleman. “Fate of the false vacuum. II. First quantum
corrections.” Phys. Rev. D 16(6), 1762 (1977).

166



J. Cao and G. A. Voth. “A unified framework for quantum activated rate processes.
I. General theory.” J. Chem. Phys. 105(16), 6856 (1996).

B. K. Carpenter. “Taking the high road and getting there before you.” Science
332, 1269 (2011).

W. Cencek, K. Szalewicz, C. Leforestier, R. van Harrevelt and A. van der Avoird.
“An accurate analytic representation of the water pair potential.” Phys. Chem.
Chem. Phys. 10, 4716 (2008).

D. M. Ceperley. “Path integrals in the theory of condensed helium.” Rev. Mod.
Phys. 67(2), 279 (1995).

D. M. Ceperley and G. Jacucci. “Calculation of exchange frequencies in bcc 3He
with the path-integral Monte Carlo method.” Phys. Rev. Lett. 58(16), 1648
(1987).

S. I. Chan and D. Stelman. “Oscillators perturbed by Gaussian barriers.” J. Chem.
Phys. 39(3), 545 (1963).

D. Chandler. Introduction to Modern Statistical Mechanics (New York: Oxford
University Press, 1987).

D. Chandler and P. G. Wolynes. “Exploiting the isomorphism between quantum
theory and classical statistical mechanics of polyatomic fluids.” J. Chem. Phys.
74(7), 4078 (1981).

H. Chen, S. Liu and J. C. Light. “Six-dimensional quantum calculation of the
intermolecular bound states for water dimer.” J. Chem. Phys. 110(1), 168 (1999).

D. F. Coker and R. O. Watts. “Structure and vibrational spectroscopy of the water
dimer using quantum simulation.” J. Phys. Chem. 91(10), 2513 (1987).

S. Coleman. “Fate of the false vacuum: Semiclassical theory.” Phys. Rev. D 15(10),
2929 (1977a).

S. Coleman. “The uses of instantons.” In Proc. Int. School of Subnuclear Physics
(Erice, 1977b). Also in S. Coleman, Aspects of Symmetry, chapter 7, pp. 265–350
(Cambridge: Cambridge University Press, 1985).

R. Collepardo-Guevara, I. R. Craig and D. E. Manolopoulos. “Proton transfer in
a polar solvent from ring polymer reaction rate theory.” J. Chem. Phys. 128,
144502 (2008).

R. Collepardo-Guevara, Y. V. Suleimanov and D. E. Manolopoulos. “Bimolecular
reaction rates from ring polymer molecular dynamics.” J. Chem. Phys. 130,
174713 (2009).

R. Collepardo-Guevara, Y. V. Suleimanov and D. E. Manolopoulos. “Erratum:
“Bimolecular reaction rates from ring polymer molecular dynamics” [J. Chem.
Phys. 130, 174713 (2009)].” J. Chem. Phys. 133, 049902 (2010).

L. H. Coudert and J. T. Hougen. “Tunneling splittings in the water dimer: Further
development of the theory.” J. Mol. Spectrosc. 130, 86 (1988).

167



I. R. Craig and D. E. Manolopoulos. “Quantum statistics and classical mechanics:
Real time correlation functions from ring polymer molecular dynamics.” J. Chem.
Phys. 121(8), 3368 (2004).

I. R. Craig and D. E. Manolopoulos. “Chemical reaction rates from ring polymer
molecular dynamics.” J. Chem. Phys. 122, 084106 (2005a).

I. R. Craig and D. E. Manolopoulos. “A refined ring polymer molecular dynamics
theory of chemical reaction rates.” J. Chem. Phys. 123, 034102 (2005b).

D. di Domenico, M. I. Hernández and J. Campos-Mart́ınez. “A time-dependent
wave packet approach for reaction and dissociation in H2 + H2.” Chem. Phys.
Lett. 342, 177 (2001).

A. N. Drozdov. “Improved Feynman’s path integral method with a large time step:
Formalism and applications.” J. Chem. Phys. 108(16), 6580 (1998).

R. J. Duchovic, Y. L. Volobuev, G. C. Lynch, A. W. Jasper, D. G. Truhlar, T. C.
Allison, A. F. Wagner, B. C. Garrett, J. Espinosa-Garćıa and J. C. Corchado.
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D. Marx and M. H. Müser. “Path integral simulations of rotors: Theory and
applications.” J. Phys.-Condens. Mat. 11, R117 (1999).

D. Marx and M. Parrinello. “Ab initio path integral molecular dynamics: Basic
ideas.” J. Chem. Phys. 104(11), 4077 (1996).

O. Matsuoka, E. Clementi and M. Yoshimine. “CI study of the water dimer potential
surface.” J. Chem. Phys. 64(4), 1351 (1976).

B. J. McClelland. Statistical Thermodynamics (London: Chapman and Hall, 1973).
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