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We	describe	a	reference	panel	of	64,976	human	haplotypes	at	

39,235,157	SNPs	constructed	using	whole	genome	sequence	data	from	20	

studies	of	predominantly	European	ancestry.	Using	this	resource	leads	to	

accurate	genotype	imputation	at	minor	allele	frequencies	as	low	as	0.1%,	a	

large	increase	in	the	number	of	SNPs	tested	in	association	studies	and	can	

help	to	discover	and	refine	causal	loci.	We	describe	remote	server	

resources	that	allow	researchers	to	carry	out	imputation	and	phasing	

consistently	and	efficiently.		

	

Over	the	last	decade,	large	scale	international	collaborative	efforts	have	created	

successively	larger	and	more	ethnically	diverse	genetic	variation	resources.	For	

example,	in	2007	the	International	HapMap	Project	produced	a	haplotype	

reference	panel	of	420	haplotypes	at	3.1M	SNPs	in	3	continental	populations1.	

More	recently,	the	1000	Genomes	Project	has	produced	a	series	of	datasets	built	

using	low-coverage	whole	genome	sequencing	(WGS),	culminating	in	2015	in	a	

reference	panel	(1000GP3)	of	5,008	haplotypes	at	over	88M	variants	from	26	

world-wide	populations2.	In	addition,	several	other	projects	have	collected	low-

coverage	WGS	data	in	large	numbers	of	samples	that	could	potentially	also	be	

used	to	build	haplotype	reference	panels3-5.	A	major	use	of	these	resources	has	

been	to	facilitate	imputation	of	unobserved	genotypes	into	genome-wide	

association	study	(GWAS)	samples	that	have	been	assayed	using	relatively	

sparse	genome-wide	microarray	chips.	As	the	reference	panels	have	increased	in	

number	of	haplotypes,	SNPs	and	populations,	genotype	imputation	accuracy	has	

increased,	allowing	researchers	to	impute	and	test	SNPs	for	association	at	ever	

lower	minor	allele	frequencies.	A	succession	of	methods	developments	have	

provided	researchers	with	the	tools	to	cope	with	these	increasing	larger	panels	6-

11.	

	

We	formed	the	Haplotype	Reference	Consortium	(HRC)	(see	URLs)	to	bring	

together	as	many	WGS	datasets	as	possible	to	build	a	much	larger	combined	

haplotype	reference	panel.	By	doing	so,	our	aim	is	to	provide	a	single	centralized	

resource	for	human	genetics	researchers	to	carry	out	genotype	imputation.	Here	

we	describe	the	first	HRC	reference	panel	that	combines	datasets	from	20	



different	studies	(Supplementary	Table	1).	The	majority	of	these	studies	have	

low-coverage	WGS	data	(4-8X	coverage)	and	are	known	to	consist	of	samples	

with	predominantly	European	ancestry.	However	the	1000	Genomes	Phase	3	

cohort,	which	has	diverse	ancestry,	is	also	included.	This	reference	panel	consists	

of	64,976	haplotypes	at	39,235,157	SNPs	that	have	evidence	of	having	a	minor	

allele	count	(MAC)	greater	or	equal	to	5.	

	

We	took	the	following	approach	to	create	the	reference	panel.	We	combined	

existing	sets	of	genotype	calls	from	each	study	to	determine	a	‘union’	set	of	

95,855,206	SNP	sites	with	MAC	>=	2.		After	initial	tests,	we	decided	for	this	first	

version	of	the	HRC	panel	not	to	include	small	insertions	and	deletions	(indels),	

since	these	were	very	inconsistently	called	across	projects.	We	then	used	a	

standard	tool	to	calculate	the	genotype	likelihoods	consistently	for	each	sample	

at	each	site	from	the	original	study	BAM	files	(see	Methods)	and	make	a	baseline	

set	of	non-LD	based	genotype	calls.	We	next	applied	a	number	of	filters	to	

remove	poor	quality	sites	(see	Methods).	We	restricted	this	site	list	to	sites	with	

MAC	>=	5	based	on	the	calls	made	originally	by	the	individual	studies,	

corresponding	to	a	minimum	minor	allele	frequency	(MAF)	of	0.0077%,	then	

added	back	sites	that	are	present	on	several	commonly	used	SNP	microarray	

chips	in	GWAS.	Sites	with	lower	MAF	would	be	likely	to	be	poorly	imputed.	This	

site	list	consisting	of	44,187,567	sites	exhibited	improved	quality	compared	to	

the	unfiltered	MAC	>=	5	site	list	when	assessed	by	measuring	a	per	sample	

transition-to-transversion	(Ts/Tv)	ratio	(Supplementary	Figures	1-2).	We	also	

detected	and	removed	301	duplicate	samples	across	the	whole	dataset	(see	

Methods).	

	

Calling	genotypes	and	phasing	using	low-coverage	WGS	data	has	been	a	

computational	challenging	step	for	many	of	the	20	studies	providing	data.	To	

reduce	computation,	we	carried	out	this	step	on	genotype	likelihoods	from	all	

32,611	samples	together,	and	leveraged	the	original	separately	called	haplotypes	

from	each	study	to	help	reduce	the	search	space	of	the	calling	algorithm	(see	

Methods).	We	then	applied	a	further	refinement	step	by	re-phasing	the	called	

genotypes	using	the	SHAPEIT3	method12,	based	on	experience	from	the	UK10K	



project,	which	found	this	re-phasing	approach	produced	substantially	improved	

imputation	accuracy	when	using	the	haplotypes4.	After	final	genotype	calling,	we	

removed	a	further	123	samples	(see	Methods)	and	filtered	out	4,952,410	sites	

whose	MAC	after	refinement	and	sample	removal	was	below	5,	resulting	in	a	

final	set	of	39,235,157	sites	and	32,488	samples.		By	measuring	genotype	

discordance	of	the	called	genotypes	compared	to	Illumina	OMNI2.5M	chip	

genotypes	available	on	the	1000	Genomes	samples	we	showed	that	both	our	site	

filtering	strategy	and	the	increased	sample	size	of	HRC	led	to	improved	accuracy	

(Supplementary	Table	2).	For	example,	we	obtained	a	non-reference	allele	

discordance	of	0.39%	on	the	full	HRC	dataset	with	site	filtering,	compared	to	

0.67%	on	the	subset	of	1000GP3	samples.	

	

We	next	carried	out	experiments	to	assess	and	illustrate	the	downstream	

imputation	performance	compared	to	previous	haplotype	reference	panels.	To 

mimic	a	typical	imputation	analysis,	we	created	a	pseudo-GWAS	dataset	using	

high-coverage	Complete	Genomics	(CG)	WGS	genotypes	on	10	CEU	samples	(see	

URLs).	We	extracted	the	CG	SNP	genotypes	at	all	the	sites	included	on	an	

Illumina	1M	SNP	array	(Human1M-Duo	v3C).	These	were	used	to	impute	the	

remaining	genotypes	which	were	then	compared	to	the	held	out	genotypes,	

stratifying	results	by	MAF	of	the	imputed	sites.	Figure	1	shows	that	the	HRC	

reference	panel	leads	to	a	large	increase	in	imputation	performance	when	using	

a	1M	SNP	chip,	compared	to	the	1000GP3	(R2=0.64	vs	R2=0.36	at	MAF	=	0.1%)	

and	also	that	the	re-phasing	step	using	SHAPEIT3	is	worthwhile.		HRC	

imputation	at	0.1%	frequency	provides	similar	accuracy	to	1000GP3	imputation	

at	0.6%	frequency.	Supplementary	Figures	3	and	4	show	the	results	from	a	

denser	(Illumina	OMNI	5M)	SNP	chip	and	a	sparser	(Illumina	Core	Exome).	

To	illustrate	the	benefits	of	using	the	HRC	resource,	we	imputed	a	GWAS	study	of	

1,210	samples	from	the	InCHIANTI	study13,	including	534	that	did	not	contribute	

to	the	HRC	reference	panel	because	they	were	not	sequenced.	Imputing	using	the	

HRC	panel	resulted	in	15,501,516	SNPs	passing	an	imputation	quality	threshold	

of	r2≥0.5	compared	to	13,238,968	variants	(11,908,509	SNPs	and	1,330,459	

indels)	when	imputing	using	1000	Genomes	Phase	3,	an	increase	of	over	2	



million	variants.	Taking	the	intersection	of	variant	sites	between	the	two	panels	

to	account	for	the	filtering	applied	to	the	HRC	panel	resulted	in	13,364,795	SNPs	

and	10,728,322	SNPs	with	r2≥0.5	for	HRC	and	1000	Genomes	Phase	3	panel,	

respectively.	The	majority	of	these	additional	SNPs	occur	at	the	lower	frequency	

range	(Supplementary	Table	3).		

	

We	next	tested	the	HRC	imputed	genotypes	for	association	with	93	circulating	blood	

marker	phenotypes,	including	many	of	relevance	to	human	health	such	as	lipids,	

vitamins,	ions,	inflammatory	markers	and	adipokines14,15.This	analysis	highlighted	

potential	novel	associations	at	the	nominal	GWAS	significance	threshold	of	5e-8	

(Supplementary	Table	4).	When	we	repeated	the	imputation	using	the	HRC	panel	

without	the	overlapping	InCHIANTI	samples,	we	obtained	similar	results	

(Supplementary	Table	4).	We	took	these	SNPs	forward	for	replication	in	the	SHIP	

and	SHIP-TREND	cohorts	(see	Methods)	and	found	that	two	of	the	SNPs	replicated	

(Supplementary	Table	5).	Specifically,	we	found	that	SNP	rs150956780	(MAF=	0.6%)	

was	associated	with	the	Lactic	Dehydrogenase	phenotype	(meta-analysis	p-value	=	

3.779E-29)	and	SNP	rs147142246	(MAF=	0.6%)	was	associated	with	the	Potassium	

phenotype	(meta-analysis	p-value	=	8.7E-09).	We	also	found	that	it	is	possible	for	

HRC	imputation	to	refine	signals	of	association.	For	example,	Figure	2	shows	the	

association	results	of	HapMap2,	1000GP3	and	HRC	based	imputation	for	the	α1-

antitripsin	phenotype	at	the	SERPINA1	locus.	HRC	imputation	gives	a	clear	

refinement	of	the	signal	at	the	rare	causal	SNP	rs28929474	(MAF=0.5%)	

(Supplementary	Table	6),	known	to	predispose	to	the	alpha	1	antitrypsin	

deficiency	lung	condition	emphysema	16,17.	Similar	results	were	obtained	when	

using	the	HRC	panel	that	excluded	the	InCHIANTI	samples		(data	not	shown).	

	

Since	the	HRC	reference	panel	combines	data	from	many	different	studies	with	a	

range	of	restrictions	on	data	release	we	have	developed	centralized	imputation	

server	resources	(see	URLs).	Under	this	model	researchers	upload	phased	or	

unphased	genotype	data	and	imputation	is	carried	out	on	central	servers.	Once	

completed	researchers	can	download	imputed	datasets.	Along	similar	lines,	we	

have	also	developed	a	lower	throughput	phasing	server	for	haplotype	estimation	



of	clinical	samples	with	genotypes	from	high-coverage	WGS	data	that	takes	

advantage	of	rare	variant	sharing	18	(see	URLs).	A	limited	subset	of	HRC	

haplotypes	will	be	made	available	for	researchers	via	the	European	Genome-

phenome	Archive	(EGA)	for	the	sole	purpose	of	phasing	and	imputation.	

	

This	first	release	of	the	HRC	is	the	largest	human	genetic	variation	resource	to	

date	and	has	been	created	via	an	unprecedented	collaboration	of	data	sharing	

across	many	groups.	We	envisage	continuing	to	expand	the	HRC	and	are	

currently	planning	a	second	HRC	release	differing	from	the	first	release	in	two	

ways.	Firstly,	we	aim	to	substantially	increase	the	ethnic	diversity	of	the	panel,	

by	including	data	from	sequencing	studies	in	world-wide	sample	sets	such	as	the	

CONVERGE	study19,	AGVP20	and	HGDP21		Secondly,	we	aim	to	include	short	

insertions	and	deletions	in	addition	to	SNP	variants.		In	the	limit	of	a	reference	

panel	consisting	of	the	whole	human	population	except	the	person	being	

imputed,	then	imputation	would	likely	be	almost	perfect	for	alleles	at	any	

frequency,	since	the	panel	would	contain	close	relatives	that	share	long	and	

almost	identical	tracts	of	sequence.	Therefore,	we	do	expect	to	be	able	to	make	

future	gains	in	imputation	performance.	In	some	populations	that	have	

experienced	isolation	(like	Sardinia	or	Iceland)	we	expect	to	approach	this	limit	

much	faster.	Thinking	further	ahead,	we	hope	to	work	closely	with	efforts	under	

way	to	collect	large	samples	of	high-coverage	sequenced	samples	such	as	the	UK	

100,000	Genomes	Project	(see	URLs).	

	

URLs	

	

Haplotype	Reference	Consortium	

http://www.haplotype-reference-consortium.org/	

Michigan	Imputation	Server	

https://imputationserver.sph.umich.edu/		

Sanger	Imputation	Server	

https://imputation.sanger.ac.uk/	

Oxford	Phasing	Server	

https://phasingserver.stats.ox.ac.uk/	



Genotype	Likelihood	calculation	scripts	

https://github.com/mcshane/hrc-release1	

GLPhase	

http://www.stats.ox.ac.uk/~marchini/software/gwas/gwas.html	

ligateHAPLOTYPES	

https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html	

Complete	Genomics	high-coverage	WGS	genotypes	

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130524_cgi_c

ombined_calls/	

1000	Genomes	Project	OMNI	genotypes	

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_ge

notype_chip/ALL.chip.omni_broad_sanger_combined.20140818.snps.genotypes.

vcf.gz	

100,000	Genomes	Project	

http://www.genomicsengland.co.uk/the-100000-genomes-project/	

GEMMA	

http://www.xzlab.org/software.html	

LocusZoom	

http://locuszoom.sph.umich.edu/locuszoom/	

1000GP3	related	samples	

ftp://ftp.1000genomes.ebi.ac.uk//vol1/ftp/release/20130502/20140625_relat

ed_individuals.txt	

SNP	chip	site	lists	

http://www.well.ox.ac.uk/~wrayner/strand/	
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Figure	Legends	

	
Figure	1:	Performance	of	imputation	using	different	reference	panel.	The	x-

axis	shows	the	non-reference	allele	frequency	of	the	SNP	being	imputed	on	a	log	

scale.	The	y-axis	shows	imputation	accuracy	measured	by	aggregate	r2	when	

imputing	SNP	genotypes	into	10	CEU	samples. These results are based on using 

genotypes from sites on Illumina OMNI 1M SNP array was used as pseudo-GWAS 

data.	

	

	
Figure	2	:	Association	signal	𝜶𝟏-antitripsin	phenotype	at	the	SERPINA1	

locus.	Association	test	statistics	on	the	–log10	p-value	scale	(y-axis)	are	plotted	

for	each	SNP	position	(x-axis).	Three	different	imputation	panels	were	used	:	

HapMap2	(left),	1000GP3	(middle),	HRC	release	1	(right).	The	SNP	rs28929474		

is	shown	as	a	purple	and	other	SNPs	are	coloured	according	to	the	levels	of	LD	

(r2)	with	this	SNP	(see	r2	legend	in	each	subplot)	
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Online	methods	

	

Union	site	list		

Every	study	provided	us	with	their	most	recent	version	of	their	haplotypes	in	

VCF	format	with	one	VCF	for	every	autosome.	For	every	cohort,	bcftools	(v0.2.0-

rc12)	was	used	to	create	an	entire-autosome,	SNP-only	site	list	with	alternate	

and	total	allele	count	information	from	these	per-chromosome	haplotypes.	

Multiallelic	SNPs	were	broken	into	biallelics	using	‘bcftools	norm’.	These	per-

cohort	site	lists	were	merged	into	a	single	file	using	an	in-house	Perl	script	that	

correctly	merges	alternate	and	total	allele	counts.	We	created	site	lists	called	

MAC2	and	MAC5	containing	only	sites	with	a	minor	allele	count	(MAC)	across	all	

studies	of	>=	2	and	>=5,	respectively,	using	bcftools.	These	sites	lists	contained	

95,855,206	and	51,060,347	sites,	respectively.	

	

Genotype	likelihood	calculations	

The	'samtools	mpileup'	command	was	used	to	generate	genotype	likelihoods	

(GLs)	at	all	MAC2	sites	on	a	per	sample	basis	from	each	sample’s	BAM	file.	The	

pipeline	and	software	versions	have	been	made	available	online	(see	URLs).	The	

resulting	BCF	files	were	merged	using	the	'bcftools	merge'	command	and	the	

MAC2	sites	and	alleles	extracted	using	the	'bcftools	call'	command.	The	use	of	

'bcftools	call'	here	made	a	baseline	set	of	non-LD	based	genotype	calls	for	each	

site	across	all	samples.	These	calls	were	used	for	some	initial	sample	QC	(see	

Sample	filtering	section).	We	calculated	GLs	on	33,070	samples	in	total.	

	

Site	filtering	

We	used	an	ad-hoc	method	for	initial	variant	filtering	which	enabled	us	to	

identify	variants	that	had	been	filtered	out	‘quite	often’	by	our	submitting	

studies.	For	each	site	and	for	each	cohort,	we	labelled	the	site	as	“called”	in	that	

study	if	the	putative	calls	from	bcftools	based	on	GLs	exhibited	more	than	one	

allele	in	that	cohort,	or	“not	called”	if	it	showed	no	variation.	We	also	used	the	

haplotype	sets	provided	by	each	study	to	determine	whether	each	study	had	

filtered	out	each	site	or	not	using	their	own	internal	calling	pipeline.	To	

determine	a	threshold	of	“number	of	times	filtered	out”,	we	stratified	the	sites		



according	to	their	called	status	versus	their	filtered	status	(Supplementary	

Figure	5).	We	also	measured	the	Ts/Tv	ratio	of	the	set	of	SNPs	for	each	of	these	

stratified	combinations.	SNPs	corresponding	to	the	cells	above	the	red	line	in	the	

figure	were	filtered	out,	removing	all	cells	which	had	been	filtered	out	by	more	

than	4	studies	or	have	Ts/Tv	ratio	less	than	1.7. 	

	

We	also	applied	a	set	of	additional	site	filters	as	follows.	We	filtered	out	sites	not	

on	the	MAC5	site	list	to	restrict	the	site	list	to	those	that	could	be	imputed	well.	

We	also	filtered	out	sites	if	(i)	any	study	(apart	from	1000	Genomes)	had	a	

Hardy-Weinberg	Equilibrium	(HWE)	p-value	<	10-10,	(ii)	any	study	(apart	from	

1000	Genomes)	had	an	overall	inbreeding	coefficient	<	-0.1,	(iii)	a	MAF>0.1	with	

the	site	being	called	in	fewer	than	3	of	the	studies	and	not	called	in	1000	

Genomes	(the	latter	restriction	kept	sites	present	at	high	frequencies	in	non-

European	populations	that	were	only	called	in	1000	Genomes).		We	also	filtered	

out	sites	called	only	in	the	GoNLstudy	or	IBD	cohort.	We	completely	excluded	

GPC	haplotypes	from	this	step	of	the	site	list	creation	process.		

	

After	applying	these	filters,	the	site	list	comprised	of	44,038,997	sites.	Finally,	we	

made	sure	that	4,914,335	sites	found	on	a	selection	of	common	SNP	genotyping	

arrays	and	those	used	in	the	GIANT	consortium	and	the	Global	Lipids	

Consortium	(Supplementary	Table	7)	were	included	in	the	final	site	list.		The	

final	site	list	after	this	filtering	contained	44,187,567	sites.	

	

Sample	filtering	

Having	used	'bcftools	call'	to	extract	sites	and	alleles,	we	had	a	set	of	baseline	

non-LD	genotype	calls	(see	Genotype	likelihood	calculations	section).	Based	on	

these	calls	for	chromosome	22,	some	outlier	samples	were	evident	and	we	

removed	150	samples	showing	evidence	for	fewer	than	10,000	non-reference	

SNPs	or	more	than	10	singletons	across	the	chromosome.	This	left	a	total	of	

32,920	samples.	

	

To	detect	possible	duplicates	we	used	the	original	genotype	calls	submitted	by	

the	individual	studies.	We	selected	1000	random	sites	that	(1)	were	biallelic;	(2)	



had	European	minor	allele	frequency	>	5%	in	1000GP3;	and	(3)	had	no	missing	

data	in	any	of	the	individual	studies.	Using	the	'bcftools	gtcheck'	command,	we	

counted	the	number	of	genotypes	that	differed	between	each	sample	pair.	There	

was	a	clear	set	of	269	sample	pairs	with	very	few	genotypes	differing	over	the	

1000	sites.	We	identified	these	samples	as	duplicates	either	within	or	between	

studies	and	removed	one	of	the	samples	in	the	pair	as	described	in	

Supplementary	Table	8.	Due	to	some	samples	being	represented	more	than	

twice,	there	were	a	total	of	261	samples	removed	due	to	duplicates.	Before	

genotype	calling,	we	also	removed	(i)	9	samples	for	which	we	had	Complete	

Genomics	data	so	that	we	could	use	these	samples	for	testing	purposes,	(ii)	31	

samples	from	1000GP3	that	were	related	samples	(see	URLs),	(iii)	8	samples	

from	the	HELIC,	AMD	and	ProjectMinE	studies	with	sample	labeling	

inconsistencies.	These	filters	resulted	in	32,611	samples	being	used	for	the	

genotype	calling	and	phasing	steps.	

	

In	addition,	after	the	phasing,	83	samples	from	the	AMD	study	were	removed	as	

the	consent	for	these	samples	had	been	removed.		We	also	repeated	the	

duplicate	detection	process	on	the	final	HRC	genotype	calls,	since	some	studies	

increased	in	size	late	on	within	the	analysis	process.	This	resulted	in	an	extra	40	

samples	being	removed	and	a	total	of	32,488	samples	in	the	final	phased	

reference	panel.	

	

Genotype	calling	method	leveraging	existing	haplotype	calls	

We	called	genotypes	from	the	genotype	likelihoods	computed	on	the	HRC	

samples	by	extending	the	SNPTools22	algorithm	to	leverage	pre-existing	

haplotypes	available	from	each	cohort.	Like	other	phasing	and	calling	

approaches8,10,	SNPTools	is	an	MCMC	approach	in	which	each	sample's	

haplotypes	and	genotypes	are	iteratively	updated	using	the	current	estimates	of	

all	other	samples.	A	low-complexity	Hidden	Markov	Model	(HMM)	with	just	four	

states	is	used	to	update	each	sample,	where	the	states	are	a	set	of	four	"surrogate	

parent"	haplotypes.	The	MCMC	sampler	employs	a	Metropolis-Hastings	(MH)	

step	to	sample	the	set	of	surrogate	parents.	In	large	sample	sizes	the	search	

space	for	these	surrogate	haplotypes	is	huge	and	results	in	low	acceptance	rates	



for	the	sampler.	Our	extension,	called	GLPhase	(see	URLs)	uses	pre-existing	

haplotypes	to	restrict	the	set	of	possible	haplotypes	from	which	the	MH	sampler	

may	choose	surrogate	parent	haplotypes.	For	each	individual,	we	restrict	the	

search	space	to	200	haplotypes	that	most	closely	match	the	two	pre-existing	

haplotypes	of	the	individual	using	a	Hamming	distance	metric	(100	for	each	

haplotype).	We	run	the	method	on	chunks	of	1,024	sites	at	a	time,	which	is	the	

default	setting	for	SNPtools.	Since	the	pre-existing	haplotypes	from	each	study	

do	not	contain	exactly	the	same	set	of	sites	we	filled	in	missing	alleles	in	the	pre-

existing	haplotypes	at	our	site	list	using	the	major	allele	at	each	site.	

	

Restricting	the	search	space	in	this	way	allows	us	to	reduce	the	number	of	burn-

in	iterations	from	56	to	5,	the	number	of	sampling	iterations	from	200	to	95,	and	

the	number	of	MH	steps	taken	at	each	iteration	for	each	individual	from	2N	to	

100,	where	N	is	the	number	of	samples	being	phased.	This	reduces	the	

complexity	of	our	phasing	algorithm	from	O(N2)	to	O(N).	Although	our	

implementation	of	the	Hamming	distance	search	has	complexity	O(N2),	for	N	=	

30,000,	the	impact	of	the	search	on	run	time	is	small	(~5%	of	run	time	on	each	

chunk).	A	chunk	of	1024	sites	can	be	phased	in	~200	minutes	using	~1.3GB	of	

RAM.	Once	sample	sizes	are	encountered	where	the	Hamming	distance	search	

begins	to	dominate,	our	implementation	could	be	replaced	with	O(N	log	N)	

clustering	algorithms	that	we	have	implemented	within	the	SHAPEIT3	

algorithm12.		

	

To	illustrate	how	important	GLPhase	was	to	genotype	calling	and	phasing	on	

such	a	large	sample	size,	we	carried	out	a	comparison	to	Beagle	3.1,	Beagle	4.1	

and	the	original	SNPTools	method.	We	ran	all	four	methods	on	five	randomly	

selected	1024	site	chunks	from	chromosome	20	on	the	cluster	using	increasing	

sample	sizes	and	measured	run	time.	Supplementary	Figure	6	shows	that	

GLPhase	is	approximately	100	times	faster	than	the	next	quickest	method	at	the	

full	HRC	sample	size.	

	

Final	phasing	and	haplotype	estimation	



We	estimated	haplotypes	from	GLPhase	genotype	calls	using	SHAPEIT312.	

Chromosomes	were	phased	in	chunks	consisting	of	16,000	variants	plus	3,300	

variants	overlapping	with	neighboring	chunks	on	either	side.		The	non-default	

command	line	option	-w	0.5	was	used	for	SHAPEIT3.		Chunks	were	ligated	using	

the	ligateHAPLOTYPES	program	(see	URLs).	SHAPEIT3	does	not	handle	multiple	

variants	at	the	same	genomic	coordinate,	so	multiallelic	sites	(SNPs	with	3	or	4	

alleles)	were	shifted	by	one	or	two	base	pairs	for	rephasing,	and	then	moved	

back	to	their	original	position	after	chunk	ligation.	

	

Evaluation	of	genotype	calling	process	

We	tested	the	genotype	calling	process	on	data	from	chromosome	20	with	

different	combinations	of	site	lists	and	sample	sets	to	assess	both	the	effects	of	

site	filtering	and	the	benefits	of	increasing	samples	size.	We	evaluated	3	different	

site	lists:	the	1000	Genomes	Phase	3	set	of	sites	(775,927),	our	HRC	MAC5	site	

list	(1,128,114)	and	our	HRC	MAC5	site	list	with	additional	site	filtering	

(1,006,559).	We	ran	the	genotype	calling	method	on	3	different	sets	of	samples	:	

the	2,525	original	1000	Genomes	Phase	3	samples,	a	subset	of	13,309	HRC	

samples	that	we	used	at	an	early	stage	of	HRC	testing	(HRC	Pilot)	from	studies	

1000GP3,	AMD,	GoNL,	GoT2D,	ORCADES,	SardinIA,	FINLAND	and	UK10K,	and	the	

near-final	full	set	of	32,905	HRC	samples.	We	called	genotypes	using	GLPhase	on	

each	of	these	9	datasets	and	examined	genotype	discordance	compared	to	

Illumina	OMNI2.5M	genotypes	produced	by	the	1000	Genomes	Project.	For	this	

comparison,	we	focused	only	on	genotypes	from	365	samples	shared	across	the	

3	sample	sets	and	at	42,244	SNP	sites.	We	calculated	percentage	discordance	for	

the	3	possible	genotypes	consisting	of	reference	(REF)	and	alternate	(ALT)	

alleles	as	well	as	an	overall	non-reference	allele	discordance	rate	(NRD).	Results	

are	shown	in	Supplementary	Table	2.	

	

Downstream	imputation	performance	

We	assessed	imputation	accuracy	of	4	different	reference	panels	:	1000	Genomes	

Phase	3,	UK10K,	and	two	versions	of	the	HRC	reference	panel,	with	and	without	

re-phasing	with	SHAPEIT3.	To	do	this	we	used	high-coverage	WGS	data	made	

publicly	available	by	Complete	Genomics	(CG)	(see	URLs).	For	the	pseudo-GWAS	



samples	we	used	data	from	10	CEU	samples	that	also	occur	in	the	1000	Genomes	

Phase	3	samples.	These	samples	were	removed	from	the	various	reference	

panels	before	using	them	to	assess	imputation	performance.		

Three	pseudo-GWAS	panels	were	created	based	on	three	chip	lists	(see	URLs)	:	

The	Illumina	Omni	5M	SNP	array	(HumanOmni5-4v1-1_A),	the	Illumina	Omni	1M	

SNP	array	(Human1M-Duo	v3C),	and	the	Illumina	Core	Exome	SNP	array	

(humancoreexome-12v1-1_a).	For	these	comparisons	we	only	used	sites	in	the	

intersection	of	the	reference	panels	to	enable	a	direct	comparison.	

These	pseudo-chip	genotypes	were	used	to	impute	the	remaining	genotypes	

which	were	then	compared	to	the	held	out	genotypes,	stratifying	results	by	MAF	

of	the	imputed	sites.	

Imputation	was	carried	out	using	IMPUTE27	which	chooses	a	custom	reference	

panel	for	each	study	individual	in	each	2	Mb	segment	of	the	genome.	We	set	the	

khap	parameter	of	IMPUTE2	to	1000.	All	other	parameters	were	set	to	default	

values.	We	stratified	imputed	variants	into	allele	frequency	bins	and	calculated	

the	squared	correlation	between	the	imputed	allele	dosages	at	variants	in	each	

bin	with	the	masked	CG	genotypes	(called	aggregate	r2	in	Figure	1).	Non-

reference	allele	frequency	for	each	SNP	was	calculated	from	HRC	release	1	GLs	at	

MAC>=5	sites.	Figure	1	shows	the	results	for	the	Illumina	Omni	1M	chip.	

Supplementary	Figures	3	and	4	show	the	results	from	the	Illumina	Core	Exome	

chip	and	the	Illumina	Omni	5M	chip	respectively.	

Details	of	imputation,	association	testing	and	replication	in	the	InCHIANTI	study	

A	total	of	1,210	individuals	from	the	InCHIANTI	study	were	genotyped	using	the	

Illumina	Infinium	HumanHap550	genotyping	array13,14	.	Individuals	were	pre-

phased	using	autosomal	SNPs	after	filtering	out	SNPs	with	MAF	<1%,	Hardy-

Weinberg	p-value	<10-04,	and	missingness	>1%.	SNPs	were	also	removed	if	they	

could	not	be	remapped	to	the	GRCh37	(hg19)	human	reference.	This	resulted	in	

483,991	SNPs	available	for	pre-phasing.	Phasing	was	performed	locally	using	

SHAPEIT2	10. 	



	

Imputation	was	performed	remotely	using	the	Michigan	Imputation	Server	(see	

URLs).	A	total	of	39,235,157	SNPs	and	47,045,346	variants	were	imputed	from	

the	HRC	and	1000	Genomes	Phase	3	(v5)	reference	panels,	respectively.	An	

imputation	quality	threshold	of	r2	>0.5	was	subsequently	applied	to	both	

imputation	datasets	prior	to	association	testing.	This	resulted	in	15,501,516	and	

13,589,949	variants	available	for	association	analysis	derived	from	HRC-	and	

1000	Genomes-based	imputation,	respectively.	

	

A	total	of	93	circulating	factors	available	in	the	InCHIANTI	study	were	double	

inverse-normalised,	while	adjusted	for	age	and	sex,	prior	to	association	testing	
14,15.	Association	analysis	was	performed	using	a	linear	mixed	model	framework	

as	implemented	in	GEMMA	(see	URLs).	Plots	of	association	in	Figure	2	were	

produced	using	LocusZoom	(see	URLs).	

	

We	attempted	to	replicate	the	associations	reported	in	Supplementary	Table	3	in	

the	SHIP	and	SHIP-TREND	cohorts23.	The	SHIP	samples	were	genotyped	using	

the	Affymetrix	Genome-Wide	Human	SNP	Array	6.0.	The	SHIP-TREND	samples	

was	genotyped	using	the	Illumina	Human	Omni	2.5	array.	Prior	to	imputation,	

duplicate	samples	(by	IBS),	samples	with	reported	vs.	genotyped	gender	

mismatch	or	samples	with	a	very	high	heterozygosity	rate	were	excluded.	

Additionally,	all	monomorphic	SNPs,	SNPs	with	duplicate	chromosomal	position,	

SNPs	with	pHWE	<0.0001	and	SNPs	with	a	callrate	<95%	were	filtered.	

Imputation	was	performed	on	the	Sanger	Imputation	Service	(see	URLs)	against	

the	HRC	panel.	In	total,	4,070	SHIP	samples	and	986	SHIP-TREND	samples	were	

included	in	the	imputation	of	genotypes.	Association	analyses	were	conducted	

using	SNPTEST	v2.5.224.	
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