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Abstract 

This thesis is concerned with validation of the models used for robust control. The­
ory is developed for validating the models used for robust control design and applied 
to data from a flexible beam and Harrier VSTOL aircraft. 

Results from Caratheodory-Fejer interpolation theory are used to extend pub­
lished results to a general class of models used for robust control. The computational 
tractability of these results is then examined using techniques from computational 
complexity. A large class of model validation problems are proved to be NP-hard, 
which means they are computationally at least as hard as a class of problems that 
are recognised to be computationally demanding. Conditions are also obtained for 
when the validity of a model can be tested by solving a convex feasibility problem. 

Two sets of models, that are equivalent for robust control, are shown to be 
different for the purposes of validation. This is shown to be a consequence of the 
difference between certain balls defined in the gap metric. A study of the gap 
metric provides an interesting interpretation of model validation and motivates the 
validation of models defined as balls in the v-gap metric. Recent results in the 
v-gap metric are used to prove validation results for the largest set of models that 
are stabilizable by a certain set of robust controllers. These may be considered as 
the best possible validation results for a certain set of robust controllers. 

The theoretical results are used to test the validity of models of a flexible beam 
and Harrier aircraft. It is shown that a model of the flexible beam cannot account 
for the observed data, but that a modified model can. Linear models of the Harrier 
are validated using data simulated by a nonlinear model. The same linear models 
are also validated using flight test data from the aircraft. 

Keywords: model validation, robust control, H-infinity, nu-gap metric, flight 
test data, flexible beam 
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Chapter 1 

Introduction 

This thesis is concerned with the relationship between physical systems and math­
ematical models l . The relationship is examined by testing whether or not a math­
ematical model could have produced data from the physical system. Testing math­
ematical models in this way is called model validation. 

A physical system can never be modelled exactly by a mathematical model; there 
is always uncertainty. Uncertainty can arise from two sources; unknown inputs (eg 
noise) and unknown dynamics (eg high frequency dynamics). Both of these sources 
of uncertainty can be included in the mathematical model. For example, consider 
a discrete-time, time-domain model described by a linear operator P, with additive 
uncertainty and output noise, as shown in figure 1.1. A typical assumption about 
the uncertainty Do is that Do is a linear operator with induced 2-norm, which we 
denote by 11·lli2, bounded by some positive number,. A typical assumption about 
the noise signal n is that it is a discrete-time signal with Ilnll oo ~ 0, for some positive 
real number O. The output y, depends not only on the known input u, but also the 

n 

v 

u __ -'-_~ p + + y 

Figure 1.1: Additive uncertainty model with sensor noise. 

noise signal n, and the uncertainty signal, v. Hence, for a single input there are a 
set of possible outputs, so it is more accurate to talk about a set of models. We will 
use the term model-set to describe the set of possible models. In this example we 
denote the model-set by Al (P,~, ')'), where ~ is the set of stable, rational, transfer 

functions and 

AI(P, ~,')') := {[I P + Do] : Do E~, IIDolli2 ~ ')'}. 

Hence an element of Al (P,~, ')') maps the inputs [:], to the measured output y. 

1 We will use the terms "mathematical model" and "physical system" with the same meaning 
as discussed in [DFT92, ch.I] 
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U sing model-sets, rather than a single model, enables a controller to be designed 
that is robust to modelling errors. A typical objective of robust controller design is 
to minimize the induced 2-norm of a closed loop transfer function. This is done to 
reduce the effect of unmeasured disturbances, or uncertainty, in the system dynam­
ics. Denote the closed loop transfer function by Tyu , then a controller will make 
IITyulli2 < , for the physical system if: 

1. IITyulli2 < , for every element of the model-set. 

2. The physical system can be modelled exactly by an element of the model-set. 

By saying a physical system can be modelled exactly by an element of the model­
set, we mean that for every possible input, the corresponding output of the model 
is identical to the "actual" output of the system. If noise is present then "actual" 
inputs and outputs cannot be measured exactly, so we can only require the output 
of the model to be close to the measured output. For example, suppose a physical 
system is modelled by AI(P,.6.,,), and (u,y) is a set of observed data. Then we 
say the physical system can be modelled exactly by an element of the model-set if 
there exists PI E Al (P,.6., ,), and n with Ilnll oo < 0, such that 

Clearly it is not possible to check that a physical system can be modelled exactly 
by an element of the model-set, since it is not possible to measure every possible 
input and output of the physical system. However, it is possible to check whether 
some data from a physical system can be modelled exactly by an element of the 
model-set. If an element of the model-set models exactly measured data, then our 
confidence in the model-set is increased. If no element of the model-set can account 
for the data, then the model-set must be modified. 

The design of controllers that are guaranteed to satisfy some performance objec­
tive for every element of a model-set, such as IITyulli2 < " has received considerable 
attention from the control community, and controllers can now be designed for many 
different model-sets, for example see [DGKF89]. However, testing whether or not a 
physical system can be modelled exactly by an element of the model-set has received 
less attention from the control community. This is the subject of the thesis, and 
the main contribution is: 

To develop techniques for testing the validity of model-sets used for 
robust control, and to apply these techniques to data obtained from a 
flexible beam, and Harrier VSTOL2 aircraft. 

Controllers have been designed, and tested successfully, for both the flexible beam 
[WWa] and the Harrier [HG93, Hyd93]. It is therefore tempting to conclude that the 
model-sets used for design contained an element that modelled exactly the physical 
system3 . However, this is not necessarily true, as a simple example illustrates. 

Suppose we must design a feedback controller to stabilize an unstable physical 
system, whose input-output behaviour is modelled by the transfer function P( s) = 

2Vertical and Short Take-Off and Landing. 
3If the controller did not satisfy the property that it was designed to achieve for the model-set, 

then the model-set is invalidated. An approach to model invalidation based on this observation is 
described in [LDF94]. 
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1.1. INVALIDATION 

s~l' Suppose the uncertainty in the model is thought to enter additively, so the 
model-set is A(P, A, 1'), where 

A(P, A,'Y) := {P + ~: ~ E A, 11~1100 ~ 'Y}. 

The set of controllers that robustly stabilizes4 A(P, A, 1') can be characterized using 
a well known result: 

Theorem 1.1 ([DFT92]) A controller C(s) robustly stabilizes A(P,A,'Y) if and 
only if 

11 

C(s) 11 1 
1 + P(s)C(s) 00 < 1'- . (1.1) 

Hence the simple controller C(s) = 2 will stabilize every element in A(A, ~). 
Now suppose that the controller C (s) is implemented on the physical system, 

and the resulting closed loop transfer function is stable. Can one conclude that 
the model-set contains an element that exactly models the physical system 7 The 
answer is no, which is demonstrated by taking, for a small positive number E, 

1 1 
~(s) = s - 1 - E - S - 1 

The closed loop transfer function from u to y is S+LE' which for E < ~ is clearly 

stable. A simple calculation also shows that the closed loop transfer function S+LE 
implies that ~(s) = S-LE - S~l' Hence, although the closed loop transfer function 
is stable, there is no element of the model-set that describes exactly the "true" 
system. 

The example motivates a more general question: "What is the largest set of 
linear, time-invariant systems that can, a priori, be guaranteed to be stabilized by 
any controller which stabilizes a nominal model and satisfies a specified 1ioo-norm 
bound on some closed loop transfer function 7" It turns out that in some specific 
cases, any 1£00 controller that is designed to tolerate a class of stable ~ will also 
stabilize some unstable ~ [Gl086, Vin92]. A characterization of the largest set of 
linear, time-invariant systems with this property is derived in [Vin92, ch.7]. These 
results are generalized in [Vina] to include certain sets of nonlinear and time-varying 
systems that are guaranteed to be stabilized. Validation of model-sets of this type 
will be a central theme in this thesis. 

1.1 Invalidation 

Model validation is a misleading phrase. A model can never be validated as data 
may be collected in the future which will invalidate it. This is exactly the situation 
in the physical sciences. A model of a system is conjectured, which remains con­
sistent with experimental observations until new experiments reveal discrepancies 
between the predicted, and actual, observations. Newtonian dynamics is a classic 
example of this. This model accurately described the dynamics of particles, until 
particles travelling at very high speeds were observed. Einstein's theory of relativity 
accurately explained these new observations, so Newtonian dynamics was replaced. 

4Robustly stabilize in the sense that every element of A(P, ~,1') is internally stabilized by C. 
See [DFT92] for a definition of internal stability. 

3 



1.2. CENTRAL THEMES 

A more correct term than model validation would be "not invalidated" , as a set 
of data can never validate a model, only invalidate it. Therefore a model is either 
invalidated or not invalidated. However, the phrase model validation is widely used 
throughout science and engineering. So to conform with the commonly accepted 
term "model validation" will be used, but should be interpreted as meaning not 
invalidated. 

1.2 Central themes 

Two central themes in this thesis are interpolation and convexity. We will use results 
from interpolation theory to prove virtually all model validation results, and will use 
the property of convexity to distinguish between problems that are computationally 
easy and difficult. 

1.2.1 Interpolation 

To see why interpolation theory is important for model validation consider a simple 
model validation problem: Suppose the model-set used to describe a SIS05 physical 
system is g , where 

g := {G()') : G()') = ho + hI). + h2).2 + ... ,). E <C, sup IG().)I < 1} . 
IAI<I 

Note that for)' = z-I, every element of g is now a transfer function, with z the 
variable in the standard Z-transform. Hence the coefficients hi are the Markov 
parameters of the system with transfer function G (z) [KaiSO]. 

Suppose some data has been recorded from the system being modelled by g. 
Let the input to the system be the sequence u = (uo, UI,." ,ul-d and the output 
Y = (Yo, Yl,' .. ,YI-l). Then the model is validated for this data if there exists an 
element of the model-set g, that produces the output Y when the input is u. 

The output of an element in the model-set is obtained by a convolution of the 
Markov parameters with the inputs [KaiSO]. This can be expressed, using a Toeplitz 
matrix formed from the Markov parameters, by the equation 

o 
ho 

hl- 2 Il [Il (1.2) 

This equation shows that, for Uo -::j:. 0, the inputs and outputs uniquely determine 
the first l Markov parameters of the transfer function G(z). The model is validated 
if the remaining Markov parameters can be chosen so that G(z) E g. 

CaratModory-Fejer interpolation is the branch of interpolation theory that is 
applicable to the model validation problem. The tangential Caratheodory-Fejer 
interpolation problem, as stated in [FF90], is: 

5Single Input and Single Output 
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1.2. CENTRAL THEMES 

Problem 1.1 (Tangential Caratheodory-Fejer) Let U and y be two matrices 
of the form, 

T [TT T] dT [TT T] U = Ul, U2 , ... , Un an Y = Yl, Y2 , ... ,Yn . 

Find necessary and sufficient conditions for the existence of an infinite contractive 
Toeplitz matrix Aoo satisfying Y = Anu, where An is the n by n analytic Toeplitz 
matrix in the upper left hand corner of Aoo. 

From the statement of this problem it is clear that the solution to the tangential 
Caratheodory-Fejer problem also solves the model validation problem just described. 

The tangential Caratheodory-Fejer problem has been solved, for example see 
[FF90, Thm.1.6] or [Dym89, Thm.6.4] , for MIM06 systems, where the hi are ma­
trices. The elegant solution is: 

Theorem 1.2 ([FF90J) There exists a solution to the tangential Caratheodory­
Fejer interpolation problem if and only if yTy ~ UTU, where 

u:= Y2 

o 

o 

;J 
Uo o o 

Ul-l UI-2 Uo YI-2 

This result is extremely important and we use it throughout the thesis. Toeplitz 
matrices with the structure in equation 1.2 correspond to time-invariant linear sys­
tems, and we will also use a similar interpolation result for time-varying systems. 

1.2.2 Convexity 

In the example shown in figure 1.1, the output Y depends on the known input U 

and the signals v and n. Given a set of measured data (u, y), and norm bounds 'Y 

and J, the model-set is validated if there exists a signal [~] satisfying the equality 

constraint 

Y = Pu+v+n, (1.3) 

and certain inequality constraints, eg Ilnll oo < J, VTV ~ 'Y2UTU, where V and U are 
block lower Toeplitz matrices formed from v and U respectively. In general there 

will be a set of possible [~] satisfying both equation 1.3 and the norm bounds 

(which may be empty), call this set V. The model will be validated if there exists a 

[~] E V. If V is a convex set then validating the model-set is equivalent to solving 

a convex feasibility problem. 
In the optimization community, convex feasibility problems are considered to be 

computationally tractable, in both theory and practice. The reasons are succinctly 
described in [Roc93, p.194]: 

6Multiple Input and Multiple Output 
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1.3. SUMMARY OF CONTENTS 

One distinguishing idea which dominates many issues in optimization 
theory is convexity ... An important reason is the fact that when a 
convex function is minimized over a convex set every locally optimal 
solution is global. Also, first-order necessary conditions turn out to be 
sufficient. A variety of other properties conducive to computation and 
interpretation of solutions ride on convexity as well. In fact the great 
watershed in optimization isn't between linearity and nonlinearity, but 
convexity and nonconvexity. 

It is also stated in [BBFE93]: 

In the past, a "solution to a problem" generally meant a "closed-form" 
or "analytic" solution. We believe that in the future, our concept of 
"solution" should be extended to include many forms of convex pro­
gramming. 

Experience has shown that although a problem can be solved by computing the 
solution to a convex programming problem, the reality of present day computer 
hardware and software deems the problem intractable. Consequently, the future is 
not yet here and convex problems can not be considered as "solved". 

1.3 Summary of contents 

Chapter 2: Foundations 
Here we lay the mathematical foundations upon which the thesis is built. Once 
the notation has been stated we define a class of signals and systems. All signals 
and systems are in discrete time since the interpolation results required to prove 
the results are for discrete time. The model-sets used in robust control are defined 
and the model validation problem stated. 

Chapter 3: Literature Survey 
Little has been published on model validation for the model-sets used in robust 
control, but there are two main approaches which may be distinguished by their 
setting; one is in the time domain and the other in the frequency domain. The 
frequency domain approach contains results for a general class of model validation 
problems and the results have implications for the computational complexity of 
model validation. The time domain approach is the one adopted in this thesis and 
is based on results in Caratheodory-Fejer interpolation theory. 

Chapter 4: General Model Validation 
We extend the results from [PKT+94] to a class of general model-sets used in 
robust control. The remainder of the chapter is devoted to testing the 
computational complexity of the various generalizations. We employ results from 
computational complexity theory to show that it is unlikely that a polynomial 
time algorithm will be found to solve a general model validation problem. Hence, 
important special cases of model validation problems are considered and their 
convexity analysed. Finally, we discuss issues relating to the computation of 
solutions. 
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1.3. SUMMARY OF CONTENTS 

Chapter 5: Gap Metric and v-Gap Metric 
The results from chapter 4 have an interesting interpretation in the gap metric 
[GS90]. This arises when considering the class of model-sets obtained by 
perturbing the normalized cop rime factors of the nominal model. This class of 
model is important in robust control and the chapter begins with results for this 
class of model-set. The gap metric is then described and results from [GS90] used 
to interpret model validation in the gap metric. Model validation is then 
considered in the v-gap metric [Vin93], which allows validation of the largest set of 
models than can be guaranteed to be stabilized by a certain set of 'Hoo controllers. 

Chapter 6: Flexible Beam 
A flexible beam is taken as a case study. The model is computationally simple, 
having one input and one output, but the beam provides a challenging robust 
control problem. Various practical issues are discussed, such as the effect on the 
results of the length of data and the effect of noise. The model is invalidated for a 
set of data before a modified model is validated. 

Chapter 7: Harrier VSTOL Aircraft 
In this chapter we consider the validity of models of a Harrier. In contrast to the 
flexible beam, the models of the Harrier are more complicated, having three inputs 
and three outputs. Details of the validation experiments are given and the linear 
model is validated using data obtained from a nonlinear model. Finally, flight-test 
data is used to validate the models used for robust controller design. 

Chapter 8: Conclusions 
We summarize the contributions and suggest possibilities for future work. 
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Chapter 2 

Foundations 

In this chapter we lay the mathematical foundations of the thesis and state the 
model validation problems examined. This requires definitions of the fundamental 
concepts of signals, systems and model-sets. All signals and systems will be in the 
time domain and over discrete time, since in the time domain causality is more 
easily imposed, and discrete time is natural for sampled measurements of a physical 
system. 

Toeplitz operators map the inputs to the outputs in the time domain [You88 , 
ZDG1. It is therefore not surprising that Toeplitz operators play a fundamental role 
in this thesis. When these operate over finite time, which is the case in validation 
problems as data is finite, Toeplitz operators simplify to Toeplitz matrices. Hence 
properties of Toeplitz matrices, and more specifically block lower triangular Toeplitz 
matrices, are important. 

The model-sets considered are those used for 1-£00 controller design. A general 
class of model-sets are those that can be expressed as a linear fractional transfor­
mation on a set of transfer functions with bounded norm [DGKF891. An important 
subset of these are the models that can be expressed as norm bounded perturbations 
to the normalized coprime factors of the nominal model [MG901. We will call these 
norm bounded perturbations the uncertainty in the model-set, which is consistent 
with its robust control interpretation. 

Different types of uncertainty may be considered, and allowing extra structure 
leads naturally to the structured singular value, M, introduced in [Doy821. This 
function, together with its associated theory, has important implications for model 
validation. Firstly, results from M-theory are used in the frequency domain approach 
to model validation described in the next chapter. This was the first approach 
to model validation from a robust control perspective. Secondly, results on the 
computational complexity of M have consequences for the computational complexity 
of model validation, which we will describe in chapter 4. 

2.1 Notation 

We will use JR, <C, iQ,]]'if and ~ to denote the spaces of real numbers, complex num­
bers, rational numbers, natural numbers and integers respectively. We will use the 
subscript + or - to denote the restriction to non-negative, or negative numbers re­
spectively, eg JR+ = {x : x E JR, x 2: O}, JR_ = {x : x E JR, x < O}. cP will denote the 
empty set. Calligraphic letters, for example Sand TI, denote sets and spaces. 
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2.2. SIGNALS AND SYSTEMS 

Roman upper case letters, for example A, B, X, denote operators or matrices, and 
Roman lower case letters, such as u, y, v, w, denote vectors or sequences. Greek 
letters, such as ,,(, J are reserved for scalars. 

The symbol : = should be read as "is defined to be", Ell denotes the direct sum, 
AT denotes the transpose of a vector or matrix, A, and A* the conjugate transpose. 
Also a-(A) will denote the largest singular value of the matrix A. For a system with 
transfer matrix G(z), G(z)* := G(l/z)T. ppxrn will denote the set of all rational 
transfer function matrices with m inputs and p outputs. 

Linear Matrix Inequality is abbreviated to LMI and is a matrix inequality of the 
form 

rn 

F(x) := Fo + LXiFi > 0, 
i=l 

where x E lR,rn is a variable and Fi = Fr E lR,nxn, i = 0,1, ... , m are given. 
The set of matrices {Fi : i = 0, 1, ... m} is called the LMI basis, as the LMI is a 
linear combination of elements of the basis. A key property of LMI's, that is used 
to prove convexity of model validation problems, is that the set {x : F (x) > o} is 
convex [BEFB94J. Note that LMI's should be more correctly called Affine Matrix 
Inequalities as expressions of the form Fo + L::l XiFi are affine in Xi and not linear. 
However, LMI has become the commonly accepted term. 

2.2 Signals and systems 

As signals and systems will be in discrete time, it is natural to consider sequence 
spaces. Let srn denote the set of sequences with elements is lR,rn, that is 

srn := {( ... , U-l, UN, Ul,"') : Ui E lR,rn, i E ~}. 

The one sided sequence spaces, denoted by Sr: and S:!", consist of sequences of the 
form (uo, Ul, ... ) and ( ... ,U-2, u-d, respectively. We will deal almost exclusively 
with signals in Sr;:. 

Two elementary operations on elements of Sr: are given in the following defini­
tion: 

Definition 2.1 The k-step truncation operator, denoted by 7rk, is the map 

7rk : Sr;: --+ Sr;:, 

(UO,Ul, ... ) 1-7 (UO,Ul, ... ,Uk-l,O,O, .. . ). 

The right shift operator, denoted by S, is the map 

S: Sr;: --+ Sr;:, 

(uo, Ul,"') 1-7 (0, Un, Ul,· .. ). 

The notation 7rISr;: will be used as a concise way of denoting the set of sequences 
with l elements. This will often be used for denoting the set that contains input 
and output data, eg x E 7rISr;: means x = (XO,Xl, ... ,xl-d, where Xi E lR,m for 
i = 0,1, ... ,1-I. 

A linear system, H, will be regarded as a linear operator from Sr;: to S!, which 
is causal if, given any v and w in Sr;:, 7rkV = 7rkW implies 7rkH v = 7rkH w for all 
kEN. A linear system, H, is time-invariant if it commutes with the right shift 
operator, that is H S = SH. 
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2.2. SIGNALS AND SYSTEMS 

2.2.1 Signal spaces and function spaces 

One of the key properties of a signal is its' size. This can be quantified using norms, 
which naturally arise when considering inner-products. The notion of norm on a 
signal can also be used to define the notion of norm on a system, producing the 
concept of induced norm. 

An inner-product is defined as the map 

<.,. >: Srn x srn -7 JR, 
00 

(u,v) I--t L T 
Ui Vi, 

i=-oo 

when the series converges. This can be used to define the 2-norm, " . 112, of a 
sequence u E srn; IIul12 := J< u, u >. The infinity-norm, 11·1100, can also be defined 
for sequences in srn, but this is not induced by an inner-product [You88, p.23]. 
Define the infinity-norm of an element in JRrn as the maximum absolute value of its 
elements. Then for any u E srn, Ilull oo := sUPiE~ Iluilloo. 

The Hilbert space l2' is defined as 

l2':= {u E srn: IIul12 < oo}. 

The Hilbert spaces l~ and l~ are defined similarly for signals in S": and S:!" . The 
induced 2-norm of a system, H, is given by: 

IIHlli2 := IIHul12 
UE1~~~~O IIul12 ' 

if the supremum is finite. If IIHlli2 is finite, we will say H is stable. A stable system 
maps l~ into l~, which motivates the study of the set of systems that map l~ into 
l~. This set of systems turns out to be a Hardy space [You88] which we denote by 

tioo · 
The Hardy space tioo is usually defined in the frequency domain, and the time 

and frequency domains are related using the discrete Fourier transform [You88, 
ch.13]. The Fourier transform provides an isometric isomorphism, denoted by ~, 
between time and frequency domain spaces, 

l2 c:::< £2, 

l2+ c:::< ti2, 

l2- c:::< tit· 

The Banach space £00 denotes the space of essentially bounded matrix functions 
on the unit circle, with the norm of an element H given by 

IIHlloo := ess sup a(H(eiB
)). 

BE[O,27r] 

The Hardy space tioo is the subspace of £00 that contains those elements that are 
analytic inside the unit disc. 

The prefix n on any of these spaces will denote the subspace consisting of 
rational functions. For example if H (A) E n tioo , H (A) will consist of those elements 
of tioo that can be expressed as rational functions of A. Note that we will use the 
argument A when tioo corresponds to functions analytic inside the unit disc. This 
is in contrast to the standard Z-transform, here A = z-l. We will use the argument 
z to describe functions in numerical examples, eg P(z) = ~!=i is a stable transfer 
function analytic outside the unit disc. 
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2.2. SIGNALS AND SYSTEMS 

2.2.2 Systems over finite time 

One of the most frequently used objects in this thesis is the Toeplitz matrix. Each 
Toeplitz matrix is associated with a transfer function or vector: 

Definition 2.2 Let P E ppxm and H = (Ho, HI' ... ' Hl-d, where Hi E JRPxm 

(i = 0,1, ... , l - 1), be the finite impulse response of P. Then the block lower 
Toeplitz matrix of P, Tp, is defined as 

Tp := [ ~~ 
H l - I H I- 2 

o o 
Ho 

o 
Ho 

Definition 2.3 Let v = (Vo, VI,.·. ,VI-I) be a sequence of l vectors, where Vi E JRm 

for i = 0,1, ... ,l - 1. Then the block lower Toeplitz matrix of v, Tv, is defined as 

[ Vo 
0 

To.- VI Vo 
v·-

VI~1 VI-2 

We will use vec( V) to denote the vector in JRlm formed by stacking the elements of 
v, 

U sing these definitions we can neatly express the relationship between the input 
of a linear system and its output, in the time domain. Suppose the input to a 
system P E ppxm is the sequence U = (uo, UI, ... , Ul-I), then the output sequence 
Y = (Yo, YI,·· . ,Yl-d is obtained from the equation 

vec(y) = Tpvec(u) , 

assuming initial conditions are zero. For convenience vec will be omitted in most 
equations. This should not cause confusion as whenever an equation contains a 
sequence U it should be interpreted as being the vector vec(u). 

To illustrate the above notation consider the following example: 

Example 2.1 Consider a linear, time-invariant system described by the set of dis­
crete time, state space equations, 

xk+1 AXk + BUk, 

Yk CXk. 

The finite impulse response of this system is (0, CB, CAB, CA2 B, ... ,CAI-2 B). 
Hence the output of the system, with Xo = 0, is given by the equation 

rIl 
000 

CB 

CAB 

o 
CB 

11 
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2.3. LINEAR FRACTIONAL TRANSFORMATIONS 

For ease of notation we will allow the k-step truncation operator, 'Irk, to operate 
on Toeplitz matrices, the result being 

[ Ho 
0 

'lrkTp := 

:~1 
Ho 

Hk-2 1J 
This allows 'lrkTpU to be expressed as 'lrkTp'lrkU. Note that this is only possible be­
cause Tp is block lower triangular. For a full matrix V, 'Irk Vu can only be expressed 
as VkU where Vk consists of the first k rows of V. 

As the Toeplitz matrices in definition 2.2 correspond to linear time-invariant 
systems, the space of all matrices of this form will be denoted by TIfxm. The space 
of all Toeplitz matrices corresponding to time-varying systems will be denoted by 
TVfxm, which consists of matrices of the form 

o 

lJ , 

In both TI!(xm and TVf xm , l will be allowed to be infinite where TIP~m and 
TV~m denote the space of Toeplitz operators with the appropriate structure. 

2.3 Linear fractional transformations 

A general model-set used in robust control consists of models that can be represented 
as a linear fractional transformation (LFT) on an unspecified, but norm bounded, 
transfer function. Additive, multiplicative and coprime factor uncertainty descrip­
tions can all be expressed as an LFT on the uncertainty, with a suitable choice of 
the coefficient matrix. 

~ 

w v 

'--- Pu P 12 r"-

y P 21 P 22 U 

Figure 2.1: Upper LFT of P on ~ 

An upper LFT of the coefficient matrix P on the uncertainty matrix .6. is rep­
resented symbolically in figure 2.1. The diagram represents the equations 

W Pllv + P 12U, (2.1) 

Y P 21 V + P22U , (2.2) 
v ~w, (2.3) 
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2.3. LINEAR FRACTIONAL TRANSFORMATIONS 

where the Pij (i, j = 1,2) are compatibly dimensioned, possibly complex, matrices 
and u, y, wand v vectors. Let Ll also be a matrix, then if det(I - PnLl) i= 0 the 
map from u to y, denoted by Fu(P, Ll), can be calculated to be 

This definition of an LFT is useful as it can be used to define LFT's in the 
frequency domain or the time domain. In the frequency domain P and Ll are 
transfer functions and the LFT of P(>..) and Ll(>") is defined at each frequency using 
the matrices P(ejB ) and Ll(ejB ). In the time domain P and Ll are Toeplitz matrices 
so equations (2.1),(2.2) and (2.3) should be interpreted as 

y 

v 

T p21 V + Tp22 u, 

T/:;.w. 

(2.4) 

Which meaning is relevant will be made clear from the context in which it is used. 
Lower LFT's can be defined similarly with the Ll matrix feeding back "under­

neath" P. If det(I - P22 Ll) i= 0 then the map from u to y will be denoted by 
Fl (P, Ll) and can be calculated to be 

Fl(P, Ll) = Pn + P12 Ll(I - P22 Ll)-1 P21 . 

The LFT of figure 2.1 can be modified to account for noise, or other unknown 
inputs. This is accomplished by considering an extra input, n, which is unknown 
but bounded in some norm. The block diagram of this model is shown in figure 2.2, 
which represents the equations 

y 

v 

P21 V + P22n + P23U, 

Llw. 

Again these equations should be interpreted with their dual meaning. 

Ll 

w v 

~ fE--Pn P12 P13 
P21 P22 P23 

n 

y u 

Figure 2.2: Upper LFT with noise 

(2.5) 

The transfer function, or Toeplitz matrix, Ll is used to allow for the uncertainty 
in the model. If the only restriction placed on Ll is that it lies in some space, for 
example Rlloo or TV~m, and has norm bounded by some number then it is said 
to be unstructured. However, in some situations it is natural to impose additional 
structure on Ll, and it is then said to be structured. 
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2.3. LINEAR FRACTIONAL TRANSFORMATIONS 

2.3.1 Structured uncertainty 

The extra structure in the uncertainty can arise in a variety of ways and corresponds 
to uncertain parameters and unmodelled dynamics [Pac88]. In the frequency domain 
this gives rise to the repeated real, repeated complex and full complex blocks of the 
mixed /-l setup in [You93]. 

In [You93] the block structure is described by the triple of integers (mr, mc, me), 
where mr is the number of repeated real blocks, me the number of repeated complex 
blocks and me the number of full complex blocks. The dimensions of these blocks 
are given by the block structure JC(mr, mc, me) where 

Then the set of allowable perturbations, XK, is given by 

XK := {~ = blockdiag( 01" hll ... O~Jkmr ' of hmr+ll ... , O~Jkmr+mc' 
A e A e ). iT E JR '0 E <C A e E <ckmr+mc+i Xkmr+mc+i} Lll , ••• ,Llme . Uz ,UZ ,LlZ • 

Note that X K assumes that the uncertainty blocks are square. Given a system 
with non-square blocks, zero rows or columns can be appended to the blocks, and 
zero inputs and outputs added, to make every block square. This simplifies the 
notation and we will always assume structured blocks are square. 

Allowing structure in the time domain is similar but more difficult to write down 
precisely. When the uncertainty is time-invariant the ~ will be a block Toeplitz ma­
trix in TIfxm, but with each block possessing additional structure. This structure 
will change between the blocks on the diagonal of ~ and those off it; the memory less 
elements corresponding to the repeated real blocks will only appear in the diagonal 
blocks. 

Stating this formally let (mr, mc, me) denote the number of blocks with the 
different structures, as before. Also let JC(mr, mc, me) denote the block structure 
and SK the set of matrices corresponding to the repeated real blocks, where 

SK := { ~ = blockdiag( OlIkll ... , O~Jkmr ' Okmr+ll ... , Okmr +kmc +kme) : 

oi E JR}, 

and FK the set of matrices corresponding to the repeated complex and full blocks 
where 

FK := {~ = blockdiag(Okl'···' Okmr , 01 hmr+l'···' O~Jkmr+mc' ~l, ... , ~mf) : 
of E JR, ~i E JRkmr+mc+iXkmr+mc+i} . 

Then we denote the set of allowable structured time-invariant perturbations (over 
l time steps) by STIdl) where 

STIdl) Ill: 
o 

AZ-l 

Note that as for TI!(xm, we will allow the l in STI:T(l) to be infinite, to denote 
the space of operators of the same form. Also, the above notation can easily be 
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2.3. LINEAR FRACTIONAL TRANSFORMATIONS 

generalized to allow the perturbations to be time-varying (or a combination of time­
varying and time-invariant), but that will not be necessary for the thesis. 

Example 2.2 Let mr = l,mc = l,mc = 1 and K = (2,1,2) then 

151 0 0 0 0 
0 151 0 0 0 

SK = ~= 0 0 0 0 0 : 151 E JR , 
0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 

FK = ~= 0 0 152 0 0 : 152 E JR, ~ij E JR 
0 0 0 ~11 ~12 
0 0 0 ~21 ~22 

The class of allowable structured perturbations, STIK(l) , is the set of block lower 
Toeplitz matrices formed from both SK and FK on the diagonal and FK below the 
diagonal. 

A useful projection that is required to describe the results in [Smi90] is denoted 
by Ri. We will use it to split up the signals v and w compatibly with the block 
structure X K , that is Riw are the inputs to the i-th block and Riv are the outputs 
from the i-th block. It is defined as 

With time domain LFT models Ri is more difficult to write down, but will have the 
same action; of partitioning v and w conformally with the block structure STI :J(l). 

2.3.2 Model-sets 

Two model-sets often used for robust control design are a nominal model with addi­
tive uncertainty, A(P, A, 'Y), and a nominal model with multiplicative uncertainty, 
M(P, A, 'Y). Given P E ppxm 

A(P, A, 'Y) .- {P + ~ : ~ E A, 11~lli2 < 'Y} , 

M(P, A, 'Y) .- {P(I +~) : ~ E A, 11~lli2 < 'Y}. 

More general model-sets can be obtained using LFT's. Given PE p(nw+ny)x(nv+nu) 

the LFT on the uncertainty ~ is defined by equations (2.4). If I -Pl1~ is invertible 
for all ~ E A then the model-set, which we will denote by £FT(P, A, 'Y), is defined 
as 

£FT(P, A, 'Y) := {Fu(P,~) : ~ E A, 11~lli2 < 'Y} , 

with P partitioned appropriately. Similarly, to represent models with noise whose 
norm is bounded 15, given P E p(nw+ny)x(nv+nn+nu) the LFT on the uncertainty 
~ is defined by equations (2.5). Again, if I - Pl1~ is invertible for all ~ E A 
then the model-set can be defined, which we now denote by £FT(P, A, 'Y, 15). Note 
that in these definitions all the Pij are frequency domain transfer functions. In the 
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2.3. LINEAR FRACTIONAL TRANSFORMATIONS 

time domain P, for an impulse response of length l, will be in TI~nw+ny)x(nv+nu), 

TV
(nw+ny)x(nv+nu) TI(nw+ny)x(nv+nn+nu) TV(nw+ny)x(nv+nn+nu) Th d· 
l ' l or l . ese lmen-

sions will be assumed for the remainder of the thesis. 
An important subset of £FT(P,.6., ,) is the set of all models than can be 

expressed as perturbations in the normalized cop rime factors of the model, as in 
figure 2.3. Before defining this model-set, coprime factorizations must be defined. 

u u 

(a) (b) 

Figure 2.3: Left (a) and right (b) normalized coprime factor models 

Definition 2.4 Given M, N E 1loo with the same number of rows then M and N 
are left coprime if there exists X E 1loo and Y E 1loo satisfying 

Definition 2.5 (N, M) is a left coprime factorization of P E ppxm if 
i) M is invertible in ppxm, 

- 1-ii) P = M- N, 
iii) N and M are left coprime. 

Definition 2.6 (N, M) is a normalized left coprime factorization of P E ppxm if 
(N,M) is a left coprime factorization of P and 

NN*+MM* =1. 

Right NCF models are defined similarly and the precise definitions can be found 
in [Vid87]. Results from [Vid87] also ensure that any P E ppxm has a normalized 
right coprime factorization and a normalized left coprime factorization. Using this 
result the set of left and right normalized coprime factor models can be defined. 
For any P E ppxm let (N, M) be a right normalized coprime factorization of P and 
(N, M) be a left normalized coprime factorization. 

We will use NCF(N, £1,.6., ,) and NCF(N, M,.6., ,) to denote left and right 
NCF model-sets respectively. Given P E ppxm with normalized left coprime fac­
torization (N, M), normalized right coprime factorization (N, M) and, :S 1. 
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2.4. MODEL VALIDATION PROBLEMS 

NCF(N,M,a,'Y) .- {(M+~M)-l(N+~N):[~N ~MlEa, 

IJ[~N ~M llli2 < 'Y}, 

NCF(N,M,a,'Y) .- {(N+~N)(M+~M)-l: [~:] Ea, 

I/[~:] t < 'Y}. 

We will use Emax , as in [MG90], to denote the largest value of 'Y, such that there 
exists a single controller that stabilizes 1 every element of NCF(N, M, a, 'Y). It 
turns out that Emax has the same value for NCF(N, M, a, 'Y) [MG90l. 

The same as with the LFT model-sets, we distinguish sets with noise by the 
additional parameter, <5, which is the bound on the norm of the noise. The noise 
can enter at a variety of places in the model and the consequences for validation will 
be described in chapter 5. Considerations of convexity result in the NCF model-sets 
being restricted to a specific form. Given P E ppxm with normalized left coprime 
factorization (N, M) 

NCF(N,M,a,'Y, <5) := {[M-1 (M +~M)-l(N +~N)l: 

{~N ~M lEa, II[~N ~M llli2 < 'Y} 

Any element of NCF(N, M, a, 'Y, <5) will map the noise and input signal, [:], to 

the output, y. 
The model-sets A(P, a, 'Y), M(P, a, 'Y), and NCF(N, M, a, 'Y), where a = 

Tp~m or Tv~m, have been used for validation in [PKT+94, ZK92l and one of the 
contributions of this thesis is the generalization of the results in [PKT+94, ZK92l 
to the model-set CFT(P, a, 'Y). 

2.4 Model validation problems 

Now the notation has been defined we can state the validation problems studied in 
this thesis. The generic question is: 

Given a model-set and a set of input-output data, does there exist a 
model in the model-set that could have produced the data? 

We will consider different model-sets, a general one being formed from an LFT of 
P on ~. The model validation problem for models of this form, which we will call 
the LFT model validation problem, is 

Problem 2.1 Given a model P E p(nw+ny)x(nv+nu ), an uncertainty set a, a bound 

on the induced 2-norm of the uncertainty, 'Y, and a set of input-output data u E 

7rlS~u and y E 7rlS~y, does there exist ~ E a such that the following equations have 
a solution for w 

(/ - TPll 7rl~)W 

Y 

11~lli2 < 

T p12 U, 

Tp217rl~W + T p22 U, 

'Y? 

IFor precise definitions of stability see [MG90] or chapter 5. 
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2.4. MODEL VALIDATION PROBLEMS 

This problem does not consider the possible effects of noise. If this is included 
the question becomes 

Problem 2.2 Given a model P E p(nw+ny)x(nv+nn+nu ), an uncertainty set A, a 

bound on the induced 2-norm of the uncertainty, " a bound on the 2-norm of the 
noise, cS, and a set of input-output data u E 7flS~u and y E 7fIS~y, does there exist 
D. E A such that the following equations have a solution for wand n 

(J -TPll7fID.)W Tp12n+Tp13u, 

y Tp217fID.w + Tp22n + TP23 U , 

11D.lli2 < " 
IInl12 < cS? 

We will use two different norms to bound the noise, the 2-norm and the infinity­
norm. All results will be stated with a 2-norm bound on the noise but, with the 
exception of when computational issues are considered, the 2-norm can be replaced 
by the infinity-norm without changing convexity properties of the problem. Which 
norm is chosen is usually a matter of preference, but choosing the infinity-norm has 
some computational advantages, described in section 4.4. 

All of these problems are decision problems, as they have a yes or no answer. 
We will called them model validation decision problems (MVDP's). An alternative 
approach is to ask the question; 

Given a model-set (parameterized by,) and a set of input-output data, 
what is the smallest, such that there exists a model in the model-set 
that could have produced the data? 

We will call this type of problem a model validation optimization problem (MVOP), 
since, is optimized. For LFT model-sets including noise the MVOP is, 

Problem 2.3 Given a model P E p(nw+ny)x(nv+nn+nu), an uncertainty set A, a 

bound on the 2-norm of the noise, cS, and a set of input-output data u E 7fIS~U and 
y E 7fIS~y, what is the smallest value of, such that there exists D. E A such that 
the following equations have a solution for wand n 

(I - Tpll7fID.)W 

Y 

TP12 n + Tp13 u, 

TP21 7f1D.w + T p22 n + TP23 u, 

11D.lli2 < " 
IInl12 < cS? 

Clearly answering an MVOP provides an answer to the corresponding MVDP. 
Also by answering an MVDP, the corresponding MVOP can be solved by doing a 
bisection search over " and solving an MVDP at each iteration. Hence, from a 
computational viewpoint, MVDP's are equivalent to MVOP's, since being able to 
solve one enables the other to be solved. Consequently, we will use model validation 
problem to refer to both MVDP's and MVOP's, the distinction only being made 
when necessary. 
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Chapter 3 

Literature Survey 

In this chapter we review the approaches to model validation in the literature and 
describe the results that are relevant our problem. The main approach to model 
validation in the literature is from an identification viewpoint and model validation 
is a step in the identification process. However, identification methods are not as 
suitable for validating the model-sets we consider as recent work in the frequency 
domain [Smi90, SD90, SD92] and time domain [PKT+92, ZK92, ZK93, PKT+94]. 
These two approaches provide results for validating special cases of A(P,~, ,), 
M(P,~,,), NCF(N,M,~,,) and £FT(P,STIdoo),,). 

Many papers have been published on model validation, in fields ranging from 
engineering [KGED94, MFM94] to medicine [Bai94] and agriculture [WAK94]. The 
approaches taken vary with the field, depending on the type of models used and the 
physical data available. For example, the approach taken in [BT86a, BT86b] is to 
distort parameters in the model until the simulated data matches the actual data. 
If the distortion required was small then the model was considered validated, and if 
not it was considered invalidated. This is similar to the approach we adopt, where 
the model-set is searched for an element that matches the data exactly. However, 
the model-sets in this thesis are complicated by the fact that they have infinite 
dimensions. 

3.1 Identification 

Identification, as described in [Lju87J, is the method of constructing a mathematical 
model from a set of observations, or data. It is usually split into three phases: 

1. Obtaining the data record. 

2. Selecting a set of models from which the model of the system is to be chosen. 

3. Identifying the best model in the model-set, based on the data. 

The validation problems we consider clearly lie in phase 3 of this scheme. For 
example, when validating an LFT model-set, data is assumed to be given and the 
model-set is £FT(P,~, ,). Solving the MVOP for this model-set means finding 
the "best" model in the model-set, which is the one with the smallest uncertainty 
bound ,. 

Many papers have been published on system identification and it is stated in 
[AE71] that 
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"New methods" are suggested en masse, and, on the surface, the field 
appears to look more like a bag of tricks than a unified subject. 

We will distinguish between different approaches based on the assumptions about 
the noise in the physical system. The typical assumption [Lju87, Hja93] on a (SISO) 
physical system is that it is a linear system with the output corrupted by additive 
noise, 

y{t) = Go{z)u{t) + v{t), 

where u{t) is the input, y(t) the output, Go{z) the nominal model and v{t) the noise. 
We will call "standard identification" those techniques with stochastic assumptions 
on v (t), such as v (t) is a realization of a zero mean, stationary stochastic process 
with a given spectrum, and call "1{oo identification" those techniques with a bound 
on v{t), such as Iv{t)1 :S 5. For an interesting discussion on the relationship between 
stochastic and non-stochastic assumptions see [Hja93, ch.I]. 

Standard identification techniques [vdB93, SVdH92, Cor89, WL92, GGN92] are 
not suitable for validating the model-sets we consider because of the stochastic as­
sumptions on the noise. In LFT model-sets, the noise is assumed to be bounded in 
some norm, which is the assumption in "1{oo identification". Many papers have ap­
peared on "1{oo identification" [MR85, HJN9I, Mak9I, Par9I, RL92, GK92, Par93] 
with the main approach based on the problem introduced in [HJN9I]. In this ap­
proach models are identified based on a number of points in the frequency response, 
that are corrupted by additive noise which is bounded in magnitude. With the 
model comes an 1{oo-norm bound on the error between the identified model and 
"true" system, so "1{oo identification" may be considered as a method of identify­
ing model-sets of the form of A{P, a, '/'). 

"1{oo identification" techniques can be used as a method of model validation. 
Given a model-set and a set of points in the frequency response, "1{oo identification" 
can be used to identify a model-set. If there is a non-empty intersection between an 
identified model-set and the assumed model-set then the assumed model-set cannot 
be invalidated. The problem with identifying model-sets in this way, however, is 
that the data must consist of several points in the frequency response of the system. 
In our approach to model validation we would like to consider arbitrary data and 
more general model-sets. 

3.2 Frequency domain 

The first study of model validation for LFT model-sets was carried out by Smith 
and Doyle [Smi90, SD90, SD92]. The analysis was in the frequency domain and 
the model-sets included block structured uncertainty and noise {CFT{P, X}(, ,/,,5), 
with lC{O, 0, m)). The model validation problem was broken down into a series of 
"constant matrix" validation problems at each frequency. Each constant matrix 
problem was formulated as an optimization by minimizing the norm bound on the 
noise, subject to the constraint that an element of the model-set interpolated the 
data. For a small number of uncertainty blocks, the optimization was solved using 
Lagrange multiplier techniques. For a larger number of uncertainty blocks, upper 
and lower bounds were obtained using a generalization of the structured singular 
value, J-L. 
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The model validation problem analysed in [Smi90] has the same interconnection 
structure as figure 2.2, with the bounds on the uncertainty and noise are normalized 
to 1. This is achieved by scaling the signals and absorbing the scalings into the 
model. 

Problem 3.1 ([Smi90]) Let PE p(nw+ny)x(nv+nu), with t-t(Pll ) :::; 1, then given a 
model Fu(P, ~), and an input-output datum (u, y), does there exist (n,~), Ilnll :::; 1, 
~ E XK , II~lloo < 1, such that 

y = Fu(P,~) [:]? 
Any pair (n,~) meeting the conditions of this problem is said to be admissible. 

Smith expressed problem 3.1 as a feasibility problem by proving that an ad­
missible (n,~) exists if and only if there exists a noise signal n, and outputs from 
~, such that the model interpolated the data. Define the projection matrix, Ri, 
compatibly with the block structure, as in sub-section 2.3.1, and let Si := RI Ri. 
Then the main validation result in [Smi90] is 

Theorem 3.1 [Smi90] There exists an admissible (n,~) for the model validation 
problem: 

if and only if there exists x such that: 

1 * [Si • X 0 

2. x* [~ ~] x :::; l. 

3. y = [0 I] P [:] . 

It is easy to see how to prove this result; condition 1 corresponds to the constraints 
implied by the uncertainty structure, condition 2 the constraint implied by the 
norm bound on the noise, and condition 3 the constraint that the inputs produce 
the output. 

Any feasibility problem can be expressed as an optimization problem by treating 
a constraint as the objective function. In [Smi90] the norm bound on the noise was 
taken to be the objective function. The equality constraint (3), in theorem 3.1, was 

removed by parameterizing all solutions for x, ie y = [0 I] P [:] if and only if 

x E Xe. Inequalities (1) and (2) were then restricted to the set of x E Xe. This 
technique is also used in the following chapter to prove results in the time domain. 
Theorem 3.1 can thus be written as the following optimization problem: 
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Problem 3.2 ([Smi90]) 

min f(x) subject to gi(X) :S 0, i = 1,2, ... ,m, 
xEXe 

where 

f(x) x*[~i ~]x 

and 

( ) * [Si gi X = X ° ~] x - [x* 

For a single uncertainty block (m = 1) the optimization problem was solved using 
Lagrange multiplier techniques. For m > 1, the optimization problem is not nec­
essarily convex and Lagrange multiplier techniques are not guaranteed to find the 
optimum point. The conditions required to guarantee that an optimal point can be 
found are closely related to a generalization of J-l, called \I1 s (M, X). 

The structured singular value J-l can be difficult to calculate unless there are a 
small number of uncertainty blocks. However, good upper and lower bounds exist 
that are readily computable, see [BDG+]. This motivated Smith to try a similar 
method for the function \I1 s (M, X), a generalization of J-l. To define \I1 s (M, X) let 
X be a given set and let Is and is be two indexing sets that partition the set 
of uncertainty blocks, that is Is U is = {l, 2, ... ,m} and Is n is = <p. Define 

A:= {x: x EX, IIRiXl1 :S IIRiMxll,i E Is}, then 

{ 
{ 

IIRiXII:S IIRiMxl1 ,i EIs,} 'f A f: <p 
\I1 s(M, X) = 1,llx~~f,xEX 'Y: IIRiXII'Y :S IIRiMxl1 ,i Eis '~ _' 

0, If A - <p. 

Smith proved that computing \I1 s(M, X), for a specific choice of M and X, solves the 
LFT model validation problem in theorem 3.1. Not surprisingly it is not possible to 
compute \I1 s(M, X) for most model validation problems, but upper and lower bounds 
can be computed, the upper bound being expressible as an LMI [NS91]. 

3.3 Time domain 

A time domain approach to model validation has recently been carried out by Poolla 
et al [PKT+92, PKT+94], and independently by Zhou and Kimura [ZK92, ZK93]. 
In this approach, results from Caratheodory-Fejer interpolation theory are used 
to validate model-sets of the form A(P, a, 'Y), M(P, a, 'Y) and NCF(N, lVI, a, 'Y)' 
The results were proved by calculating the inputs and outputs to the uncertainty, 
from the input-output data, and applying interpolation results to show a suitable 
norm bounded uncertainty exists. In the noise free case, necessary and sufficient 
conditions for validation were expressed as a test on the positive definiteness of a 
matrix formed from the data. When noise is included the conditions involve the 
solution of a convex feasibility problem. 

We discussed the importance of interpolation results in chapter 1 and stated the 
solution to the tangential Caratheodory-Fejer interpolation problem. This result is 
also fundamental in [PKT+92, PKT+94, ZK92, ZK93] and was proved in [PKT+92] 
and , for SISO systems, [ZK92]. 

22 



3.3. TIME DOMAIN 

Theorem 3.2 [PKr+92j Given sequences U E 1["IS": and y E 1["IS~, and a posi­
tive real number" there exists a stable, causal, linear, time-invariant operator ~ 
satisfying 

if and only if 

T[Ty :::; ,2T'!;Tu. 

The analogous result for time-varying uncertainty, proved in [PKT+92], is: 

Theorem 3.3 [PKr+ 92, PKr+ 94j. Given sequences u E 1["IS": and y E 1["IS~, and 
a positive real number" there exists a stable, causal, linear, time-varying operator 
~ satisfying 

if and only if 

for all k = 1,2, ... ,l. 

The following remark was also stated in [PKT+94]. 

Remark 3.1 The above result for linear, time-varying operators also holds for non­
linear operators. 

This is an extremely important remark. It means that theorem 3.3 can also be used 
to validate model-sets that have nonlinear norm bounded uncertainty. As model­
sets of this form can be guaranteed to be stabilized by certain Hoo controllers (see 
chapter 5), it is important that these sets can be validated. 

Interpolation results are also described in [PKT+92, PKT+94] for time-invariant 
and time-varying operators with a bounded induced-infinity norm. These results 
are useful for model validation applied to II control problems [DP87]. However, we 
only consider the model-sets used in lloo-control so these results will not be needed. 

The interpolation results in theorems 3.2 and 3.3 are applied in [PKT+92, 
PKT+94, ZK92, ZK93, ZK94] to additive, multiplicative and normalized coprime 
factor model-sets. Additive noise was also considered, and model validation then 
becomes equivalent to a convex feasibility problem. The result for A(P, TIP~m, ,) 
IS 
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3.4. COMPARISON 

Theorem 3.4 [PKr+ 92} Given the model-set A(P, TI~xm, ,) and a set of input­
output data u E 7rlS-:;, Y E 7rlS~ with the output corrupted by an additive disturbance 
n, which comes from a convex set N, let 

U (UO,UI, ... ,Ul-I) :=7rlU, 

Y (fJo, YI, ... , Yl-r) := y - 7rlPu. 

Then there exists PI E A(P, TP~m, ,) satisfying 

if and only if there exists n E 7rlN such that 

3.4 Comparison 

It is difficult to compare the time and frequency domain approaches as they study 
different problems. The frequency domain approach of Smith and Doyle studies LFT 
model-sets with structured uncertainty, whereas the time domain approaches only 
consider additive, multiplicative and coprime factor uncertainty. It is therefore not 
surprising that the results in the time domain are stronger and easier to calculate. 

The fundamental difference between the time domain and frequency domain 
approaches is the causality of the uncertainty, D.. In the frequency domain approach, 
an admissible D. need not be causal. It is therefore possible for a model-set to be 
validated when no causal D. is admissible. This cannot happen in the time domain 
approach as causality is guaranteed. In fact, unless additional assumptions are made 
on the inputs for future time, causality is necessary in the time domain approach. 
This is because, given a finite set of input-output data, it is easy to construct a non­
causal operator of arbitrarily small norm that will interpolate the data, by assuming 
future inputs are very large. 

A limitation of both the frequency domain, and time domain approaches, is 
that they only consider stable uncertainty. It was demonstrated in the example 
in chapter 1 that realistic problems may be considered where the uncertainty can 
be unstable. We will derive results that enable us to validate unstable uncertainty 
when considering the v-gap metric in chapter 5. 
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Chapter 4 

General Model Validation 

In this chapter we consider generalizations of the time-domain validation results 
described in the previous chapter. The results in [PKT+94] are easily generalized 
to LFT model-sets with unstructured uncertainty and no noise, unstructured un­
certainty with noise and structured uncertainty. However, as the results are gener­
alized, convexity of the corresponding feasibility problem may be lost. We examine 
conditions under which convexity is preserved and prove that validating a general 
LFT model-set is NP-hard. This means that the problem of validating a general 
LFT model-set is computationally at least as hard as a class of problems that are 
recognized to be computationally demanding. 

4.1 LFT model-sets 

In this section we prove results for progressively more complicated model-sets. We 
begin with results for LFT model-sets with unstructured uncertainty, then obtain 
results for the same model-sets including noise, and finally state a result for LFT 
model-sets with structured uncertainty. The results are all proved in a similar 
fashion: 

For the model-sets considered in [PKT+94, ZK92], the inputs and outputs from 

~ 

w v 

'-- Pn P12 r-
y P21 P22 u 

Figure 4.1: LFT without noise 

the uncertainty are uniquely determined (in the absence of noise) from the input­
output data u and y. For LFT model-sets, shown in figure 4.1, signals v and ware 
only uniquely determined from u and y if Tp21 is square and invertible. If Tn is 

'21 
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4.1. LFT MODEL-SETS 

not square and invertible there are a set of v satisfying 

(4.1) 

and for each v there is a corresponding w, given by 

(4.2) 

Hence the model is validated if there exists a v in the solution space of equation 
(4.1), and a corresponding w, such that there exists a Ll, with IILllli2 :s; " that maps 
w to v. 

4.1.1 Unstructured uncertainty 

Proposition 4.1 Given a model PE p(nw+ny)x(nv+nu), a bound on the induced 2-

norm of the uncertainty, " and a set of input-output data u E 7rIS~u and y E 7rIS~Y, 
there exists Ll E TT;;; xnw such that the following equations have a solution for w 

(I - Tpll 7rILl)w 

Y 

Tp12 U , 

Tp211QLlw + Tp22 u, 

IILllli2 < " 

if and only if there exists v E IRfnv satisfying 

T P21 V Y - Tp22 u, 

T'/;'Tv < ,2TfllV+P12UTpllV+P12U' 

(4.3) 

Proof: Given the P", u and y in the proposition statement there exists a Ll E 
TI,:;;xnw such that equations (4.3) have a solution for w if and only if there exists 
v E Rln v

, and a corresponding w, where 

such that there exists a stable, causal, linear, time-invariant operator Ll satisfying 

From theorem 3.2, such a Ll exists if and only if 

• 
Remark 4.1 If I - T pll 7rILl is invertible for all Ll E TP:;,xnw, which would be 
ensured if, for example, , < (o-(Tpll))-l, then proposition 4.1 becomes: 
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4.1. LFT MODEL-SETS 

Given a model-set LFT(P, TIr:;; xnw ,,) and a set of input-output data 
u E 1rlS~U and y E 1rlS~y, there exists a PI E LFT(P, TI':.;,xnw,,) 

satisfying 

if and only if there exists v E JR,lnv satisfying 

Tp21 V Y - Tp22 u, 

T;Tv < ,2TfollV+P12UTpllV+P12U' 

In general the .6. that is implied by the existence of v E JR1nv satisfying 

Tp21 V Y - Tp22 U , 

T;Tv < , 2Tfoll V+P12U TpllV+P12U' 

is not guaranteed to ensure that I - Tpll1rl.6. is invertible so Fu (Tp, 1rl.6.) may not 
be well-defined. However, if the model is to be used in closed loop with a robustly 
stabilizing controller then the closed loop will be well-posed if we make assumptions 
about the existence of a robustly stabilizing controller. This is illustrated by the 
following proposition. 

Proposition 4.2 Given a model P E p(nw+ny)x(nv+nu ) and a bound on the infin­

ity norm of the uncertainty, " then if there exists a strictly causal controller K 
such that I - K P22 is invertible and IIFu(P, K) IIi2 < ,-I then the feedback loop in 
figure 4.2 is well-posed. 

w v 

P 

Figure 4.2: Closed loop of uncertain model and controller 

Proof: The closed loop equations of figure 4.2 are 

-.6. 0 
I 0 
o I 
o -K 
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4.1. LFT MODEL-SETS 

Let A be the matrix on the left hand side of this equation and partition A into four 
submatrices so that 

-P22 ] 
I . 

By assumption, A22 is invertible and using a Schur complement formula 

det A = det(I - P22K) det(I - b.FI(P, K)). 

Hence if IIFu (P, K) IIi2 < ,),-1 then the feedback loop in figure 4.2 is well-posed . • 
This result tells us that although we can use proposition 4.1 to test for the 

existence of b., 11b.lli2 :::; ,)" for any')' the answer only makes sense if ')' is small 
enough that a robustly stabilizing controller exists. This is true for all the results 
of this section. We continue by stating the result for validating models with time­
varying uncertainty. 

Proposition 4.3 Given a model PE p(nw+ny)x(nv+nu), a bound on the induced 2-

norm of the uncertainty, ,)" and a set of input-output data u E 1QS~u and y E 1fIS~y , 
there exists b. E TV~ xnw such that the following equations have a solution for w 

(I - Tpll 1f1b.)W 

Y 

11b.lli2 

Tp12 U, 

Tp211f1b.w + Tp22 u, 

< ,)" 

if and only if there exists v E IRlnv satisfying 

Tp21 V y-Tp22 u , 

II1fkVI12 < ')'111fk(TpllV+Tp12U)112, 

for all k = 1,2, ... ,l. 

(4.4) 

(4.5) 

(4.6) 

Proof: The proof is similar to the proof of proposition 4.1, using theorem 3.3 to 
obtain necessary and sufficient conditions for the existence of a suitable time-varying 
b.. • 

4.1.2 Including noise 

We state results for LFT model-set validation with a 2-norm bound on the noise, 
but the results are identical if the 2-norm is replaced by a different norm throughout. 
Results using an infinity-norm bound on the noise will be used in chapter 5. 

Proposition 4.4 Given a model PE p(nw+ny)x(nv+nn+nu ), a bound on the induced 

2-norm of the uncertainty, ,)" a bound on the 2-norm of the noise, J, and a set of 
input-output data u E 1fIS~u and y E 1fIS~y, there exists b. E T~ Xnw such that 

the following equations have a solution for wand n 

(I - TPll1f1b.)W 

Y 

11b.lli2 
IInl12 

Tp12 n + TH3 u, 

Tp211f1b.w + T P22 n + T P23 u, 

< ,)" 
< J 
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4.1. LFT MODEL-SETS 

if and only if there exists [~] E JRl(nv+nn) satisfying 

TJTv < ,2TPllv+P12n+P13uTpllv+P12n+P13u, 

IInll2 < J. 

Proof: Given the P", 15, u and y in the proposition statement there exists a .6. E 
TIr;;;xnw such that equations (4.7) have a solution for wand n if and only ifthere 
exists v E JRlnv, and a corresponding w, where 

such that there exists a stable, causal, linear, time-invariant operator .6. satisfying 

11.6.lli2 < " 

'Trl.6. [ ~~ ] [ ~~ ] . 

Wl~l Vl~l 
From theorem 3.2, such a .6. exists if and only if 

• 
Proposition 4.5 Given a model PE p(nw+ny)x(nv+nn+nu ), a bound on the induced 

~-norm of the uncertainty, " a bound on the 2-norm of the noise, 15, and a set of 
znput-output data u E 'TrlS~u and y E 'TrlS~y, there exists .6. E= TV~ Xnw such that 
the following equations have a solution for wand n 

Tp12 n + Tp13 U, 

Tp21 'Trl.6.w + Tp22 n + TP23 u, 

11.6.lli2 < " 
IInl12 < 15 

if and only if there exists [~J E JRl(nv+nn) satisfying 

for all k = 1,2, ... ,l. 

II'Trk V I12 < ,11'Trk([Tpl1 Tp12l[~J+Tp13U)112' 
IInl12 < 15, 

(4.9) 

(4.10) 

Proof: The proof is again similar to the previous one, with theorem 3.3 used to 
obtain necessary and sufficient conditions for the existence of a suitable time-varying 
.6.. • 
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4.1. LFT MODEL-SETS 

4.1.3 Structured uncertainty 

If the uncertainty in the model-sets has additional structure, such as that described 
in sub-section 2.3.1, the model-sets can be validated by partitioning v and W con­
formally with the block structure. The projection operator Ri, defined in sub­
section 2.3.1, can be used for this. 

Abusing notation for the statement for the following result only, let Vi := Riv 

and Wi := Riw. Note that Vi and Wi are now vectors. For simplicity only the 
result for time-invariant uncertainty without noise is stated here. It is assumed 
that there are no repeated scalar complex blocks, so the block structure is defined 
by K(mr, 0, mc). This simplifies the problem, but still allows for real parameter 
variations and structured dynamic uncertainty. The result is: 

Proposition 4.6 Given a model PE p(nw+ny)x(nv+nu), a bound on the induced 2-

norm of the uncertainty, " and a set of input-output data u E 7rIS~u and y E 7rIS~y, 
there exists ~ E STId (0) such that the following equations have a solution for W 

(I - Tpl17rI~)W 

Y 

Tp12U, 

TP21 7r1~W + TP22 u, 

11~lIi2 < " 

if and only if there exists v E IRlnv and 61,62 , ... ,6mr E IR satisfying 

Vmr 

TJ:,.r+l T Vmr +1 

TJ:,.r+2 T Vmr+2 

where W = Tpl1 V + Tp12 u. 

y - TP22U, 

61W1, 1611~" 

62W 2, 1621 ~ " 

6mr wmr ' 16mr 1 ~ " 
< ,2TJmr +l TWmr+l' 

< ,2TJmr +2Twmr +2' 

Proof: The result can be proved by considering each section of v and w, partitioned 
conform ally with the block structure, separately. _ 

Note that this result can easily be generalized to include noise, using the method 
of proof for proposition 4.4. 

These results have generalized the validation results in [PKT+94, ZK92] to in­
clude LFT model-sets. Proposition 4.6, after being extended to include noise, solves 
a more general problem than is considered in [Smi90], since real uncertainty is in­
clUded. The result is also less conservative than the results in [Smi90], since the 
uncertainty is guaranteed to be causal. We will now consider the computational 
complexity of the various generalizations. 
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4.2. COMPUTATIONAL COMPLEXITY 

4.2 Computational complexity 

The main result of this section is that validating a general LFT of P on .6. is at 
least as hard as solving a class of problems for which it is commonly believed no 
efficient algorithm exists. We prove this result using techniques from computa­
tional complexity theory. In the language of computational complexity we prove 
that solving an MVDP for a general LFT of P on .6. is NP-hard in the size of un­
certainty and number of noise signals. An NP-hard problem is widely recognized to 
be computationally demanding. 

Certain problems in mathematics, such as linear programming problems, can 
be solved quickly by computer even if the problem has a large number of variables. 
Problems like these have efficient algorithms that will solve any instance of the 
problem. For other problems however, it can be proved that no general algorithm 
exists. These problems are be said to be undecidable. An important example of this 
was shown by Turing [GJ79]; "that it is impossible to specify any algorithm which, 
given an arbitrary computer program and an arbitrary input to that program, can 
decide whether or not the program will eventually halt when applied to that input." 

Unfortunately proving that a given problem has an efficient algorithm, or that 
one does not exist, is often difficult. Usually, to prove that a problem has an efficient 
algorithm, it is necessary to construct the algorithm itself. There are many problems 
for which no efficient algorithm has been found, but proving that no algorithm 
exists has also proved unsuccessful. A large proportion of computational complexity 
theory is centred on proving that problems are equivalent in their complexity. This 
means that if an algorithm can be found for one, one can be found for the rest, 
and if no algorithm can be found for one, then no algorithm can be found for the 
remainder. 

4.2.1 Central concepts 

The ideas described above have been formalized mathematically, using Turing ma­
chines as the idealization of a computer (see [GJ79]), but this level of abstraction is 
not necessary to prove model validation is NP-hard. All the problems considered in 
complexity theory are decision problems, which means that have a binary answer 
"yes" or "no". A famous problem studied in complexity theory is the Thavelling 
Salesman problem. It is stated as, "Given n cities, and the distances between them, 
what is the shortest path such that every city is visited once only?" This is expressed 
as a decision problem by asking the question, "Is there a path passing through each 
city once whose total length is less than some given number k?" Answering either 
of these problems will enable the other to be answered. The relationship between 
these two versions of the Thavelling Salesman problem is the same as between the 
MVDP and MVOP, described in section 2.4. 

One of the key notions from complexity theory is that of a polynomial time 
algorithm and exponential time algorithm. A polynomial time algorithm is an al­
gorithm whose execution time is bounded by a polynomial function of the number 
of variables, for example the time could be bounded by 106n 5 + 1O-3n lO, where 
n is the number of variables. An exponential time algorithm is one whose execu­
tion time cannot be bounded by a polynomial function, for example bounded by 
1O-5en + 108n 42. Polynomial time algorithms are considered to be efficient whereas 
exponential time algorithms are not. This notion is also used to define what is 
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4.2. COMPUTATIONAL COMPLEXITY 

tractable and what is not. If there exists a polynomial time algorithm for a prob­
lem then it is said to be tractable l

. If a polynomial time algorithm does not exist 
then the problem is said to be intractable. No polynomial time algorithm has been 
found for the Thavelling Salesman problem, but neither has it been proved that a 
polynomial time algorithm does not exist. However, it is widely believed that no 
polynomial time algorithm exists. 

To describe the sets of problems that are considered intractable, let P denote the 
class of problems solvable in polynomial time, and NP the class of problems solv­
able by a non-deterministic Turing machine in polynomial time. Non-deterministic 
Turing machines are mathematical idealizations of computers that cannot be built. 
Roughly speaking the class NP contains all the problems whose solution can be 
checked in polynomial time. For example, the Thavelling Salesman problem is an 
element of NP, since given a number k, and a sequence of n cities, it can clearly be 
"checked" in polynomial time whether or not the total distance is less then k. NP 
also contains many other problems for which it is widely believed no polynomial 
time algorithm exists. 

The two concepts used to determine how different problems are related in their 
computational complexity are polynomial reducibility and polynomial equivalence. 
A polynomial reduction is a transformation from one problem to another, that takes 
polynomial time. Thus if problem A is polynomially reduced to problem B, and a 
polynomial time algorithm exists for problem B, then a polynomial time algorithm 
must also exist for problem A. If problem A can be polynomially reduced to problem 
B, and vice versa, then problems A and Bare polynomially equivalent. 

Within NP are the class of NP-complete problems. These are the class of prob­
lems that are polynomially equivalent to each other, and such that every problem in 
NP can be polynomially reduced to an NP-complete problem. Hence if a polynomial 
time algorithm is discovered for any NP-complete problem, then all the problems 
in NP can be solved in polynomial time. Also if any problem in NP is proved to 
be intractable, then so is every NP-complete problem. The Thavelling Salesman 
problem is NP-complete. 

Closely related to the class of NP-complete problems is the class of NP-hard 
problems. These are the problems that, whether or not they belong to NP, may be 
polynomially reduced from an NP-complete problem. Thus NP-hard problems are 
at least as hard as NP-complete problems. If a problem is proved to be NP-hard 
and a polynomial time algorithm is found for it, then there exists a polynomial 
time algorithm for every problem in NP. However, if a polynomial time algorithm is 
found for every element of NP, there is not necessarily a polynomial time algorithm 
for the NP-hard problem. 

4.2.2 Model validation is NP-hard 

We will now prove that the general model validation problem with unstructured 
uncertainty and noise bounded in its infinity-norm is NP-hard in the size of the 
uncertainty and number of noise signals. We prove the result in a similar way to 
which Braatz et al proved that calculating J-l is NP-hard in the number of repeated 
real uncertainty blocks in [BYDM94J. They proved the result by showing that a 
general set of non-convex quadratic programming problems, which are known to 

IThis definition of intractable is taken from [GJ79]. It is only a rough approximation of the 
dictionary meaning. 
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be NP-hard from [MK87], are a special case of a /-l problem with repeated real 
uncertainty blocks. We show that the special set of non-convex quadratic pro­
gramming problems proved to be NP-hard in [MK87] are a special case of a model 
validation problem with unstructured uncertainty and sensor noise with bounded 
infinity-norm. 

The key result from [MK87] is 

Theorem 4.1 ([MK87]) The following problem is NP-hard: 

Given positive integers do; d1 , ... ,dn , is 

With the following definitions, 

1 
Zi := Xi - 2' 

we get the corollary 

Corollary 4.1 The following problem is NP-hard: 

Given positive integers do; d1 , ... , dn , is 

The set of quadratic programs in this corollary are a special case of a model 
validation problem, which proves model validation is NP-hard. This is demonstrated 
by the main result of this section: 

Theorem 4.2 Let A = lRm then the following problem is NP-hard: 

Given positive integers do; d1 , ... ,dm let 

[ Pu P12 P13] [0 I I I 0 ] 
P := P21 P22 P23 = -1 rP' ~c1'd - do ' 

u:= 1, y:= 0, 

does there exist n E <Qm, ~ E A, "~lli2 :'S 1, Ilnlloo :'S ! satisfying 
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Proof: Given the P, u and y of the theorem statement there exists n E <qm,.6. E 

A, //.6./li2 :s: 1, /In//oo :s: ~ satisfying 

if and only if //v/l§ :s: //w/l§ and /In//oo :s: ~, where w = n and v = dT n + ~cT d - do. 
This inequality is true if and only if 

Solving this minimisation is clearly equivalent to the quadratic program in the 
corollary, which implies the result. • 
4.2.3 Comments 

Theorem 4.2 is a powerful result and means any generalization of the model valida­
tion problem in theorem 4.2, which is a large class of model validation problems, is 
also NP-hard. Hence it is unlikely that a polynomial time algorithm can be found 
to solve a general LFT model validation problem. This means that if we want to 
solve model validation problems efficiently, we should look at approximate meth­
ods, or special cases of the general model validation problem. Some approximate 
methods for this problem, based on the function W s (M, X) defined in section 3.2, 
are described in [Smi90J. 

We have already seen by the results in [PKT+94J that there exist model val­
idation problems that are equivalent to convex programming problems so are not 
NP-hard. We will concentrate on these model validation problems for the remainder 
of the thesis. 

4.3 Convexity 

In this section we derive conditions under which the results in section 4.1 are equiv­
alent to convex feasibility problems. In the discussion following these results, we 
indicate why many model validation problems may automatically be convex. The 
motivation for using convexity as a method of assessing the computational proper­
ties of a problem was discussed in chapter 1. 

Before deriving the results it is useful to define a convex set, function and prob­
lem. A set C is convex if for every Xl, X2 E C, and every t E [0,1], the point 
tXI + (1 - t)X2 E C. A function j, defined on a convex set C, is convex if for every 
xI,X2 E C, and every t E [0,1], 

A feasibility problem is convex if the set of feasible points is convex. Note that if 
j is a convex function, then the set of X satisfying j(x) :s: c, for some constant c, 
is a convex set. Hence, a sufficient condition for a feasibility problem to be convex, 
is that the functions defining the constraints are convex. We will use this sufficient 
condition for the results in this section. 
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4.3. CONVEXITY 

4.3.1 Unstructured uncertainty 

Deriving conditions for the convexity of model validation problems is easier when 
the uncertainty is time-varying. The following result gives sufficient conditions for 
proposition 4.5, which includes proposition 4.3 as a special case, to be equivalent to 
a convex feasibility problem. 
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Theorem 4.3 Given a model-set CFT(P, TV~xnw", J) and a set of input-output 
data u E 7rtS::'u and y E 7rtS~Y, define the matrix Vk as follows: 

If equation (4.11) has no solution let Vk be the k(nv + nn) x 1 matrix of zeros. 
Otherwise let V ~ the matrix whose columns span the nullspace of [Tp21 Tp22 J. 
Partition V as [~] where Vi has lnv rows and V2 has Inn rows. Let Vik be the 

first knv rows of VI, and V2k be the first knn rows of V2, then Vk := [~:] . 

The the set of [~] E lR,t(nv+nn) satisfying 

l17rk V ll2 < ,1I 7rk([Tp11 Tp12 ] [~] + T p13 U)1I2, 

IInll2 < J, 

for all k = 1,2, ... ,I, is convex if 

v;T [,-2 hnv - 7rkT foll 7rkTpll 

k -7rkTA27rkTpll 

for all k = 1,2, ... ,I. 

(4.11 ) 

(4.12) 

(4.13) 

Proof: The result is proved by deriving necessary and sufficient conditions for the 
inequalities (4.12) to be convex on the space of all solutions to equation (4.11). 

If equation (4.11) has no solution then no [~] satisfies the feasibility problem. 

In this case Vk is a matrix of zeros and the proposition is vacuously true as the set 
offeasible points is empty. Consequently assume that equation (4.11) has a solution 

and let [~~] be the minimal norm solution that is orthogonal to the nullspace of 

[Tp21 T P22 J. Then all the solutions of equation (4.11) are of the form 

[~~] EB Vtx, 

where x is a vector with dimensions the same as the nullspace of [Tp21 T P22 J. 
Substituting the solution of equation (4.11) into inequalities (4.12), the quadratic 

term in the k-th inequality is 

The set of x satisfying each inequality is convex if the matrix sandwiched between 
the xT and x is positive semi-definite (apply the results in [Lue84, p.176-178]). As 
the inequality (4.13) is always convex the result is proved. _ 

The conditions for convexity given by this theorem appear to be very restrictive, 
but meaningful model validation problems automatically satisfy the sufficient con­
ditions, as is demonstrated by the following example. Before stating the example it 
is necessary to recall two facts about block triangular matrices. Firstly, the inverse 
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of a block triangular matrix is itself block triangular, ie if A E Rnxn and C E Rmxm 
are both invertible, 

[
A 0] -1 [ A-1 

B C - -C-1BA-1 

Secondly, if X E Trr xm , then for k :::; l, 7rkX-1 = (7rkX)-1. 

Example 4.1 Consider NC:F(N, M, A, ,)" J), as defined in sub-section 2.3.2. This 
can be written as an LFT on [~N ~M] by taking 

Using this P, equation (4.11) becomes 

[TM- I TM-d [~] =y-TM-INU. 

The matrix V, defined in theorem 4.3, spans the nullspace of [T M-I T M-I], so a 
possible V is 

Hence a simple calculation, using the two facts about the inverses of block triangular 
matrices, means the necessary and sufficient conditions of theorem 4.3 become ')'21::::: 
O. This is clearly satisfied for any')', so validating NC:F(N, M, A, ,)" J) can be 
achieved by solving a convex feasibility problem. 

A simple sufficient condition for proposition 4.3, the case with time-varying 
uncertainty and no noise, to be equivalent to a convex feasibility problem is given 
by the following corollary of theorem 4.3. 

Corollary 4.2 Given a model-set £:FT(P, TV~xnw, ')') and a set of input-output 
data U E 7rIS~U and y E 7rIS~Y, the set of v E Rlnv satisfying 

TP2IV y-TP22 u , 

II7rkVll2 < ')'117rk (Tpll V + TpI2U)112, 

for all k = 1,2, ... ,l, is convex if 0-( 7rITpll) < ,),-1. 

The sufficient condition given by this corollary is also a sufficient condition for the 
LFT Fu(P,~) to be well-posed, and will be discussed later in this section. 

Determining conditions for LFT model-sets with time-invariant uncertainty, 
stated in propositions 4.1 and 4.4, to be equivalent to a convex feasibility problem 
is more difficult. Recall the necessary and sufficient conditions in proposition 4.1 

for validation; the existence of r v] E Rl(nv+nn) satisfying 
L n 

[Tp2I Tp22] [~] y - TP23 U, 

rTT < ",2TT T v v I PllV+P12n+PI3U Pll v+P12n+PI3 u, 

IInl12 < J. 
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It is clear that this set of [~] will be convex if and only if inequality (4.15) forms 

a convex constraint on the set of solutions to equation (4.14). However, it is not 
clear how to express this condition as a simple condition in terms of V, as it was in 
theorem 4.3. Consequently only sufficient conditions are obtained for convexity of 
the result in proposition 4.1: 

Proposition 4.7 Given a model-set CFT(P, TV~ xnw
, ,) and a set of input-output 

data u E 7rlS~u and y E 7rlS~Y, the set of v E IRlnv satisfying 

1'P21 V Y -1'P22 U , 

1';1'v < ".,?1'fllV+P12W1'PllV+P12W, 

is convex if a(7rl1'pll) < ,-I. 

(4.17) 

(4.18) 

Proof: Assume a(Pll ) < ,-1, then (,-21 - Pr;. Pll) is invertible and using Schur 
complements ([HJ85, p.472]) inequality (4.18) can be written as 

[ 
1';1'fll 1'P12 1'u - 1'J1'A21'Pll 1'v - 1'J1'A2 1'P12 1'u 

1'v 

TT ] 
(",-2 I _ 1'~ l' )-1 2: o. 

I Pll Pll 

This is an LMI and forms a convex constraint on the set of possible v's, [BEFB94] . 

• 
The sufficient condition for convexity, a( 7rl 1'Pll) < ,-1, may often be assumed 

when the model P includes a robust controller, since Fu(P,~) is stable for all ~, 
a(~) ~ " if and only if a(Pll ) < ,-I. We would usually require that Fu(P,~) is 
stable for all ~, a(~) ~ , so one may argue that we would not want to validate a 
model when a(7rl 1'pll ) 2: ,-I. 

When noise is included, assuming a(7rl1'pIJ < ,-I is no longer sufficient to 
ensure convexity of model validation. There is no easy solution to this problem 
and it also occurs when considering validation in the /I-gap metric in chapter 5. 
Convexity is ensured in this problem by assuming an LFT model where the equations 
are 

W PllV + Plln + P13u, 

y P21V + P21 n + P 23U, 

and P21 is square and invertible. However, these assumptions may not be realistic 
for many problems. 

4.3.2 Structured uncertainty 

Allowing uncertainty with additional structure can make model validation difficult, 
as was demonstrated by proving that structured model validation is NP-hard. Not 
surprisingly the extra structure can easily destroy the convexity properties possessed 
by the unstructured case: 

Proposition 4.8 There exists a model-set CFT(P,STIK(oo),,), and a set of 
input-output data u E 7rlS~u and y E 7rlS~Y, such that the set of v E JR,lnv sat­
isfying the necessary and sufficient conditions of proposition 4.6 is not convex. 
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Proof: Let the model P be 

[ O~5 
0 0 

~ 1 
P = [Pll P12

] = 
0 0 E TI(3+1)X(3+1) 

P21 P22 0.5 0 1 , 

0 0 

the uncertainty of the form diag(J1 , 152 ,153 ), for 151 ,152 and 153 E R, and the input 
u = 1 and output y = O. Let "( = 1 then the equality constraint TP21 v = Y - T P22 U 

is 

Hence VI = 0 and V2 and V3 are not constrained. Calculating w, 

w = TPll V + TP12U = [0.5V~ + 1]. 
0.5V2 

The model-set is valid, for this uncertainty structure, if IVil ::::; IWil for i = 1,2,3. 
For i = 1, 2 these inequalities form convex constraints but for i = 3 the constraint 
IS 

A simple sketch shows that the set of v satisfying this constraint is not convex, 
which proves the result. • 

Note that in this proof o-(Pll ) = 0.5, which is less than ,,(-1, so the sufficient 
conditions for unstructured uncertainty in proposition 4.7 and corollary 4.2 are 
satisfied, yet the problem with structured uncertainty is still not convex. 

4.4 Computational Issues 

In this section we describe how the feasibility problems implied by different model 
validation problems can be implemented on a computer. The discussion is restricted 
to LFT model-sets. The special case of NCF model-sets is discussed in chapter 5 
and further problem specific refinements are discussed in chapters 6 and 7. 

Only convex feasibility problems are considered, for the reasons discussed in 
chapter 1. Hence the model-sets are assumed to have unstructured uncertainty and 
to satisfy the conditions for convexity described in the previous section. Despite this 
assumption, experience has shown that validating a model-set by solving a convex 
feasibility problem does not necessarily imply a solution can be computed with 
present computer resources. Fortunately, however, in many useful cases it does. 

We defined the two fundamental validation problems, MVDP and MVOP, in 
section 2.4. All of programs used to calculate the numerical results in the thesis have 
solved the MVOP, the problem of finding the smallest "(. The smallest "( that solves 
an MVOP will be denoted by "(min(TI), when the uncertainty is time-invariant, 
and "(min(TV) when the uncertainty is time-varying. For LFT model-sets, "(mine) 
is calculated with a bisection search on ,,(, solving an MVDP at each iteration. 
For NCF model-sets it is possible to calculate "(min(-) without iterating on ,,(, see 
sub-section 5.1.2. 
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4.4.1 Time-varying uncertainty 

When the uncertainty is time-varying, LFT model-set validation (including noise) 

can be accomplished by testing the existence of [~] E IRJ(nv+nn) satisfying 

[Tp21 T p22 ] [~] Y - T p23 U, (4.19) 

II7rkVI12 < ,11 7rk ([ TPll Tp12] [~] + Tp13U)112, (4.20) 

IInl12 < 6, (4.21) 

for all k = 1,2, ... ,l. Using the definition of the 2-norm, (4.20) can be expanded, 
on the space of all solutions to equation (4.19), into a quadratic inequality of the 
form 

(4.22) 

A sufficient condition for the feasibility problem to be convex is that all the Qk are 

positive semi-definite. If this is the case, the set of [~] satisfying expressions of the 

form of (4.22) are hyperellipsoids, ie ellipsoids in IRl(nv+nn). The constraint on n, 
(4.21), is also restricts n to lie in a hyperellipsoid, but it is more naturally thought 
of as a ball2 in IRlnn. Hence the MVDP is equivalent to testing whether or not the 
intersection of a series of hyperellipsoids is empty. 

This type of feasibility problem can be solved using a cutting plane algorithm 
[Lue84, p.416]. This is an iterative method that approximates the convex con­
straints, which are hyperellipsoids in the above problem, by hyperplanes and solves 
a linear program at each iteration. Under mild assumptions on the constraints, 
this algorithm is globally convergent [Lue84, p.419] and will converge whether the 
problem is feasible or not. This is ideal for the model validation problem. 

A cutting plane algorithm has been implemented to solve MVDP's for LFT 
model-sets without noise. This has worked well with simulated data. It requires 
few iterations to converge (typically less than 10) and will solve problems with up 
to 500 variables in under an hour when programmed in MATLAB on a SPARC-lO. 
Using this algorithm ,min(TV) can be calculated using a bisection search. 

4.4.2 Time-invariant uncertainty 

When the uncertainty is time-invariant, LFT model-set validation (including noise) 

can be accomplished by testing the existence of [~] E IRl(nv+nn) satisfying 

TJ'Tv < ,2Tfllv+P12n+P13uTpllv+P12n+P13u, 

IInl12 < 6. 

(4.23) 

(4.24) 

2Note that if the 2-norm was replaced by the infinity-norm the same would be true. However, 
the set of n satisfying this constraint would be more intuitively thought of as a hypercube. 
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Let w(v, n) := Tpuv+P12n+P13u, then it has been noted in [PKT+94], that if the first 
element of w(v, n) =1= 0, (4.24) is equivalent to 

a(Tv(TJ(v,n)Tw(v,n))-t) ~ I· (4.25) 

If this forms a convex constraint on the set of solutions to equation (4.24), then it 
is equivalent to the LMI 

Hence the MVDP is equivalent to finding a point that satisfies an LMI feasibility 
problem. 

Both a cutting plane algorithm, and the MATLAB toolbox LMI-lab [GN93], 
have been used to solve MVOP's for NCF model-sets with noise. The cutting plane 
algorithm works well for simulated data, with few iterations required to converge 
wi thin 5 percent of Imin (T J). It is however much slower than the cutting plane 
algorithm used to calculate Imin(TV), as an eigenvalue decomposition is necessary 
at each iteration. 

Using LMI-lab to solve MVOP's for NCF model-sets with noise has also been 
implemented. This software uses interior point methods which are more efficient 
than cutting plane algorithms. However, the software itselfrequires the basis of the 
LMI to be stored in memory. Hence the memory required grows as l3, where l is 
the length of the data. This means that length of data is restricted, on a 500Mb 
machine, to approximately 250 variables, which if often insufficient. 
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Chapter 5 

Gap Metric and v-Gap Metric 

In this chapter we show that left and right NCF model-sets are not equivalent 
for validation and show the equivalence between validating NCF model-sets and 
certain balls in the gap metric. We also derive necessary and sufficient conditions 
for validating model-sets defined as balls in the v-gap metric. Validation in the 
v-gap metric is important as the v-gap metric provides an elegant characterization 
of the largest set of models that can a priori be guaranteed to be stabilized by a 
certain set of 11.00 controllers. 

The v-gap metric is closely related to the gap metric, which was introduced 
into the control literature in [ZES80], and results in [GS90] provide an interesting 
interpretation of NCF model-set validation. In fact validation of NCF model-sets 
can be interpreted as model validation in the gap metric, where validation in the 
gap metric means answering: 

Given a nominal model, a set of input-output data and a positive real 
number {J, does there a exist a model in a gap ball, centred on the 
nominal model with radius {J, that interpolates the data? 

Having obtained a connection between NCF model-sets and the gap metric, it is 
natural to consider model validation in the v-gap metric. Results for validating 
model-sets that are defined as balls in the v-gap metric provide the best possible 
validation results for a certain class of 11.00 controllers. 

In addition to providing an interpretation of model validation in the gap metric, 
NCF model-sets are important in their own right. They are well suited to robust 
controller design, [MG90] and are the model-sets used to design controllers for the 
flexible beam and Harrier, studied in chapters 6 and 7. 

5 .1 Normalized coprime factor models 

In this section we consider the validation results for different NCF model-sets, with 
the conclusion being that NC:F(N, M,~, ,,(, J), defined in sub-section 2.3.2, is the 
easiest to validate. Necessary and sufficient conditions for validating this model-set 
are proved in [PKT+92, PKT+94]. However, many variations of this model-set are 
possible, such as taking a right coprime factorization, or assuming the noise enters 
at different points. 

Left and right NCF model-sets, shown in figure 5.1, are equivalent for robust 
controller design [MG90, p.58], so it is surprising that they are not equivalent for 
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model validation. They are equivalent in the sense that there exists a controller to 
stabilize every element of NCF(N, M,~, ')'), if and only if there exists a controller 
to stabilize every element of NCF(N, M,~, ')'). They are not equivalent in the sense 
that validating left NCF model-sets (without noise) can always be accomplished by 
testing the positive definiteness of a matrix formed from the data, whereas validating 
right NCF model-sets (without noise) may require a search over a non-convex set. 
Also, there exists a model P, such that if (N, M) is a left NCF of P and (N, M) 
is a right NCF of P, there exists PI E NCF(N,M, ~,')') such that y = 7rzPI U but - - , 
there does not exist PI E NCF(N,M,~,')') such that y = 'lfIPIU. 

U y U 

(a) (b) 

Figure 5.1: Left (a) and right (b) normalized coprime factor models 

5.1.1 Left and right factorizations 

Necessary and sufficient conditions for validating left NCF model-sets are proved in 
[PKT+92], but right NCF model-sets are not mentioned. The techniques described 
in [PKT+92] can be used to derive necessary and sufficient conditions for validating 
right NCF model-sets, but these conditions may give non-convex feasibility prob­
lems. 

Before stating the result for NCF(N, M,~, ')') we define a permutation matrix 
U, to allow a concise statement of the result. Define matrices Fi E IRnuxlnu and 
Gi E IRny xlny by 

Fi .- [Onux(i-I)nu 

Gi .- [Ony x(i-I)ny 

Inu Onux(l-i)nu] ' 

Iny Ony x (l-i)n y ]. 

Then define the permutation matrix U, where 

FI 0 
0 GI 

F2 0 

U .- 0 G2 E IRI(nu +ny)xI(nu +ny). 

FI 0 
o G1 

This matrix is used to permute the elements of a vector formed from the input-
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output data; given input-output data U E 1qS~u and y E 1qS~Y, then 

Uo 
Uo 

UI 
Yo 

UI 

YI =u Ul-I 

Yo 

YI 
Ul-l 

Yl-I 
Yl-I 

Using this matrix, the validation result for left NCF model-sets is: 

Proposition 5.1 ([PKT+92]) Given a model-set NCF(N, £1,~, ,), 
of input-output data U E 'TrlS~u and Y E 'TrlS~Y, let w := U [~:~~~j] 
T Mvec(y) - Tilvec(u). Then 

i) If ~ = TI~x(ny+nu), there exists PI E NCF(N, £1,~, ,) satisfying 

if and only if 

ii) If ~ = TV~x(ny+nu), there exists PI E NCF(N, £1,~, ,) satisfying 

if and only if 

for all k=1,2, . .. ,l. 

and a set 

and v := 

The situation for right NCF models is entirely different, which is illustrated by 
the following example I : 

Example 5.1 Given P = (~) 3:~31,l = 1,u = 1,y = [~], let (N,M) be a nor­

malized right coprime factorization of P and (N, M) be a normalized left coprime 
factorization of P. Then 

1. Emax = 0.9129. 

2. There does not exist PI E NCF(N, M, TI?:;3, 0.56) satisfying y = 'TrIPI u. 

3. There does exist PI E NCF(N, M, TI~ I, 0.56) satisfying y = 'TrIP1 u. 

IThe model P in this example is obtained by a bilinear transform of an example system in 
[GS90j. 
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4· If '"'I > 0.923, then the set of [~~] satisfying 

y [-NM-I I] [~~] + NM-Iu, 

11 [~~] 11: < '"'I
2
1IM-

I
u - M-IvIII~, 

is not convex. 

We can calculate that Emax = 0.9129 using MATLAB and the MU- TOOLS toolbox 
[BDG+ j. To show (2) we will calculate the smallest '"'I such that there exists PI E 
NC:F(N, M, TI·~:/, '"'I) satisfying y = 7rIPIU. Using theorem 3.2, the necessary and 
sufficient conditions for the existence of a suitable PI are that 

// [
0.9839] // < 
3.9071 2 - '"'I [i], 

Hence the smallest value of '"'I is 0.5941. 
To show (3) and (4) we calculate the smallest '"'I such that there exists PI E 

NC:F(N, M, TI~ I, '"'I) satisfying y = 7rIPI u. Necessary and sufficient conditions 

for there to exist a suitable H are that there exists [~~] satisfying 

Y V2 + NM-Iu - NM-IvI, 

// [
VI] //2 < '"'I21IM-Iu _ M-IvIII~. 
V2 2 

(5.1) 

(5.2) 

Solving equation (5.1) for V2 and substituting into inequality (5.2), the necessary 
and sufficient conditions become that there exists VI satisfying 

(5.3) 

From this equation we can calculate the smallest '"'I, such that a suitable VI exists, to 
be 0.5484. It is also clear that the set of VI satisfying equation (5.3) is not convex 
for '"'I > 0.923. 

The example illustrates two important points. Firstly, left and right NCF model­
sets are not equivalent for validation, as they contain different elements. We will see 
in the next section that this is because of the difference between gap balls and T -gap 
balls. Secondly, validating right NCF model-sets may involve a search over a non­
convex set. Searching over non-convex sets causes computational problems since 
there may be non-trivial local minima, so we cannot guarantee global optimality. 
Consequently, we will only consider left NCF model-sets for the remainder of the 
thesis, which is acceptable since they are equivalent to right NCF model-sets for 
controller design. 

5.1.2 Including noise 

In any practical problem data is corrupted by noise, which means the set of pos­
sible v's, in figure 5.2, may not be convex. It is stated in [PKT+94] that if noise 
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is cons~der_ed to enter at position 3 of figure 5.2, then validating the model-set 
NCF(N, M, a", J), with a = Tpc:m or Tv~m, is equivalent to solving a con­
vex feasibility problem. However, noise may also be considered at positions 1 24 , , 
and 5 of figure 5.2, with positions 1 and 5 the natural places to consider sensor noise 
at the inputs and outputs. The convexity of corresponding validation problems can 
be analysed using the results in section 4.3. 

+ 

6.fIr 6.M 

WI v W2 

+ + 
u N M-I y 

+ + + + + 

1 2 3 4 5 

Figure 5.2: Left NCF model-set with possible places for noise. 

If the uncertainty is time-varying, ie the model-set is NCF(N,!VI, Tvr:xm" J), 
we can use theorem 4.3 to determine sufficient conditions for convexity. The results 
are summarized in the following table: 

I Position of noise I Conditions for convexity 

1 (1rkN)l1rkN - ,Lh ~ 0 V k = 1,2, ... ,l 
2 Always convex 
3 Always convex 
4 Always convex 
5 (1rkM)l1rkM _,L h ~ 0 V k = 1,2, ... ,l 

The table shows that for the model validation problem to be convex, noise can 
only be allowed to enter at positions 2,3 or 4. However, to account for sensor noise, 
it is more natural to consider noise at positions 1 and 5. To try and balance these 
conflicting requirements we will make the following assumption: 

Assumption 5.1 When considering a left NCF model-set for validation, the noise 
will be considered to enter at position 3 in figure 5.2. 

This is an approximation but is not unreasonable since noise at position 3 can be 
considered as a sum of the noise at the inputs and outputs, after being filtered by 
N and !VI respectively. 

Having discussed both left and right NCF model-sets, and the possible places 
noise can enter, the best NCF model-set for validation is a left NCF model-set with 
noise entering at position 3 of figure 5.2. This is the model-set used to model the 
Harrier in chapter 7 and, after a slight modification, the flexible beam in chapter 6. 
The set of models was defined in section 2.3.2 to be NCF(N,!VI, a", J). It can be 
validated using the following result: 
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Theorem 5.1 ([PKT+92]) Given a model-set NCF(N, M,~, 'Y, S) and a set 

of input-output data u E 7rIS~u and y E 7rIS~y, let w = U [vec(u)] and b .­
vec(y) 

T Mvec(y) - TNvec(u). Then 

i) If ~ = TI":,5x(n
y
+nu), there exists PI E NCF(N, £1,~, 'Y, S) satisfying 

y = 7rITpl [:] , 

if and only if there exists n E lRfny , with IInll2 ::; S, satisfying 

ii) If ~ = TV":,5 x(ny+nu), there exists PI E NCF(N, £1,~, 'Y, S) satisfying 

if and only if there exists n E IR1ny, with IInll2 ::; S, satisfying 

for all k=1,2, . .. ,l. 

5.1.3 Computational issues 

Since NCF model-sets have more structure than LFT model-sets, we can exploit 
the additional structure to yield more efficient algorithms for validation. For left 
NCF-model sets both 'Ymin(TI) and 'Ymin(TV) can be calculated without iteratively 
solving an MVDP, and if the infinity-norm of the noise is bounded, 'Ymin (TV) has an 
explicit solution. We have used these observations to analyse larger sets of data for 
the flexible beam and Harrier than would be possible for more general model-sets. 

The following proposition shows that 'Ymin(TI) and 'Ymin(TV) can be calculated 
without an iterative search over 'Y. 

Proposition 5.2 Given a model-set NCF(N, £1,~, 'Y, S) and a set of input-output 

data u E 7rIS~u, Y E 7rIS~y then 'Ymin (T I) and 'Ymin (TV) can be calculated by finding 
the minimum of linear function subject to LMI constraints. 

Proof: Firstly let w = U [::~~~j] and b := T Mvec(y) - TNvec(u). To prove 

'Ymin (T I) can be calculated as described, by theorem 5.1 the model-set is validated 
if and only if there exists n E IR1ny, with IInll2 ::; S, satisfying 

(5.4) 

Using Schur complements (5.4) can be written as an LMI in [~]; 
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Hence the smallest r2 can be calculated as linear function of [~], subject to LMI 

constraints in [~]. 
Proving rmin(TV) can be calculated without an iterative search is similar. By 

theorem 5.1 the model-set is validated if and only if there exists n E lR,iny with , 
IInl12 ~ 8, satisfying 

(5.5) 

Using Schur complements (5.5) can be written as an LMI in [:2]; 

Hence the result is proved. • 
Minimizing a linear function subject to LMI constraints is called Positive Def­

inite Programming [BVG94]. It is a generalization of linear programming and in­
terior point algorithms have been developed that solve large problems efficiently 
[BVG94]. There are also routines in LMI-Iab that solve this type of problem. 

Another useful observation is that rmin (TV) can be calculated explicitly if a 
bound is known on the infinity-norm of n, which can be seen from (5.5). The right 
hand side of this inequality is independent of n, so rmin (TV) can be calculated by 
minimizing l11rk(b - n)lb subject to IInll oo < 8. Hence the i-th component of n can 
be chosen as 

if Ibil < 8, 
if bi 2: 8, 
if bi ~ -8. 

We will use this fact in the calculation of rmin(TV) for the flight-test data in chapter 
7. 

5.2 The gap metric 

In this section we will show that validating NCF model-sets is equivalent to val­
idating balls defined in the gap metric. The gap metric, as described in [GS90], 
is defined for continuous time systems, whereas the results of this thesis are for 
discrete time systems. Hence the relevant results from [GS90] need to be restated 
in discrete time. This can be achieved with the bilinear transform that replaces s 
by i~~, which maps the closed right half plane into the closed unit disc. For more 
details see [Par88]. 

Before defining the gap between two systems it is necessary to define the graph 
of an operator. Let P E ppxm then Mp, the associated multiplication operator on 
1{2, is defined as 
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The graph of the operator Mp, denoted by Gp, is defined as 

where (M, N) is a right normalized cop rime factorization of P. This is guaranteed to 
exist, as in the continuous time case, by results in [Vid87], and is a closed subspace. 

The gap between two systems is defined as the distance between their respective 
graph spaces. If the gap between two subspaces is denoted by t5(KI' K 2), then 

where ilK is the orthogonal projection operator onto K. Standard operator theo­
setic techniques_can be used to show that this is the maximum of two directed gaps, 
t5(KI' K 2) and t5(K2' Kt), where 

%(KI' K2) := 11(1 - ilK2)ilK111· 

This can be calculated for two given systems using a result in [Geo88J: 

Proposition 5.3 ([Geo88]) : For i = 1,2, let the system Pi have a transfer func­
tion with NCF Pi(z) = Ni(z)Mi(z)-I. Then 

5.2.1 Implications 

The connection between model validation and the gap metric occurs when balls in 
the gap metric are considered. Define the directed gap ball, B(P, (3), and the gap 
ball, B(P, (3), as 

B(P, (3) .- {PI E Ppxm : %(P, Pt) < (3 } , 

B(P, (3) .- {PI E Ppxm : t5(P, Pt) < (3} . 

Then the important result in [GS90J, connecting gap balls and NCF model-sets, is: 

Lemma 5.1 ([GS90]) Let P have a NCF P = NM- I. Then for all 0 < (3:::; 1, 

Hence asking if a right NCF model-set is consistent with a set of data, is the same 
as asking if a directed gap ball is consistent with the same set of data. 

Similar results exist for left NCF model-sets by defining the transpose gap (T­
gap); 

br(PI, P2) .- %(P,{, pi), 

t5T (PI , P2) .- t5(P'{, Pi). 

The corresponding result is: 
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Lemma 5.2 ([GS90]) Let P have a NCF P = M-I N. Then for all 0 < (3 :S 1, 

BT(P, (3) = {PI E Ppxm : PI = (M +~M)-I(N +~N) where 

~N' ~M E RHoo and II( ~M ~N )11 00 < (3}. 

Hence asking if a left NCF model-set is consistent with a set of data, is the same as 
asking if a directed T -gap ball is consistent with the same set of data. 

It was demonstrated in section 5.1 that left and right NCF model-sets are not 
equivalent for model validation, so it is natural to ask about the relationship between 
gap balls and T-gap balls. The relationship is described by a result in [GS90j. Before 
stating the result it is necessary to define two quantities, >..(P) and bopt(P). Firstly, 
define >..(P) and >..(pT ) by 

>..(P) inf amin (MN«Z))) , 
Izl<1 Z 

inf amin (M(z) N(z)). 
Izl<1 

Secondly, let bopt(P) denote the supremum over all I, such that there exists a 
controller C which stabilizes every element of the model-set NCF(N, M, rv:xm,), 
Then a lemma relating these two quantities is 

Lemma 5.3 ([GS90]) bopt(P) :S >..(P). 

The result showing the relationship between gap balls and directed gap balls is 

Lemma 5.4 ([GS90]) If (3 < >"(P), then B(P, (3) = B(P,(3). 

The same result is also true in the T-gap, ie B;'(P, (3) = BT(P, (3) provided (3 < 
>..(pT ) [GS90j. Hence if the uncertainty in the NCF model-set is small enough to 
be stabilized, the directed gap ball and gap ball are equal. 

The relationship between gap balls and T-gap balls is not as clear. The only 
result about this relationship in [GS90j is that for SISO systems B(P, (3) = BT(P, (3), 
which is because for SISO systems the transfer functions commute. However, in the 
MIMO case gap and T-gap balls may be different, which is demonstrated by a 
counterexample in [GS90j. 

We can use these results to prove the main results of this section; that validation 
of left N CF models provides a lower bound for the directed T -gap between the model 
and system. A similar result also holds for right NCF models and directed gap balls. 

Theorem 5.2 Given a "real system" Po, a nominal model PI and a set of input­
output data from the "real system" u E 1rzS~u and y E 1fIS~Y (y = 1fIPou), let 
(M, N) be a left NCF of PI and Imin be the smallest 1 such that there exists P2 E 

N - - n x(n +n ) .... CF(N, M, TIel, Y u, I) satisfying y = 1fITp2u. Then Imin :S OT(PI , Po). 

Proof: The result is a consequence of lemma 5.2. • 
Corollary 5.1 If Imin < >"(PI) then Imin :S OT(PI, Po). 

Corollary 5.2 If nu = ny = 1 and Imin < >"(Pd then Imin:S o(PI,PO). 

The difference between Imin and the gap between the model and system depends 
on the model and the length, and quality, of data used for validation. 
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Remark 5.1 For SISO systems, if the input to the uncertainty Wo is non-zero, rmin 

is guaranteed to converge to the directed T-gap between the systems as the length of 
data tends to infinity. This is clear from the following equation, which relates the 
inputs and outputs of the uncertainty, wand v respectively, via the impulse response 
of the uncertainty (ho, hI,··· ,hl-t}; 

[h l - 1 hl- 2 

WI-2 

o 

~ 1 = [Vl-l 

Wo 

VI-2 
Wo 

vol· 

Clearly, the impulse response of the uncertainty is uniquely determined by the v and 
w. Hence, as the length of this data tends to infinity, the infinite impulse response 
will be uniquely determined for all time, so rmin will converge to the directed T­
gap between the model and system. Note that this argument falls down for systems 
with multiple inputs as the uncertainty is no longer uniquely determined, although 
convergence may still occur. 

The following simple example shows how rmin varies with the length of data for 
a simple system with simulated data. 

Example 5.2 Let Po be the "real system" and PI the model, where the transfer 
functions are Po = I;=i and PI = 1~;=il. Input-output data can be obtained using 
a random input signal u, with y being the corresponding output from Po. Using 
this data and PI, rmin (T 1) can be calculated and the results, for different lengths of 
data, are shown in figure 5.3. 

0.44 r-------,-----~.-------___r_---___.---___, 

0.42 

0.4 

~().38 

~ 
~ 0.36 

~0.34 
0.32 

0.3 

o 10 15 20 25 

length of data 

Figure 5.3: Variation of rmin (T 1) with the length of data 

5.2.2 Limitations 

Results on the gap metric provide an interesting interpretation of model validation 
but, since gap balls and T-gap balls are not equal, problems may occur. 

[
I _C]-1 

Let P E ppxm, C E pmxp, then say that rp, Cl is stable if _p I E 

R1-loo . This is the same as the standard feedback configuration of P and C being 
internally stable. Then a result of [GS90l is: 
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Theorem 5.3 ([GS90]) The following statements are equivalent: 

a) [PI, C] is stable for all PI such that o(P, Pd < (3. 

b) [PI, C] is stable for all PI such that OT(P, Pd < (3. 

This theorem says that a controller, C, that stabilizes a gap ball around P will also 
stabilize a T-gap ball around P, and vice versa. However gap balls and T-gap balls 
are not necessarily the same. Hence a situation may arise, like in example 5.1, where 
validation of the left NCF model yields 'Ymin(T1) bigger than some number (3. If 
validation of the right NCF model gives 'Ymin(T 1) less that (3 then theorem 5.3 says 
that all left cop rime factor uncertainty of size (3 are still stabilizable even though 
'Ymin (T 1) was greater than (3. This is not acceptable if model validation is for robust 
controller design. 

5.3 The v-gap metric 

In the previous sub-section we indicated a problem that may arise when validating 
model-sets in the gap metric. The problem arose because a gap ball does not 
contain every system that can be guaranteed to be stabilized by a certain set of Hoo 
controllers. The largest set of systems that can be guaranteed to be stabilized can 
be described neatly in the v-gap metric [Vin93]. 

The v-gap (in continuous time) is defined as follows: 

Definition 5.1 ([Vin92]) Let Pi E ppxm have normalized right and left coprime 
factorizations denoted by (Ni, M i ) and (Ni, Md respectively. Define a function 
ov(-,·) : ppxm X ppxm -+.IR as follows. 

if det(N:JN1 + M:JM1 )(jw) =1= ° \fw 
and wno det (N:J NI + M:J Md = 0, 
otherwise, 

where wno(g) denotes the winding number about the origin of g(s), as s follows the 
standard Nyquist D-contour. 

To state the key result on the v-gap metric, that shows that it describes the 
largest set of systems to be stabilized by a set of Hoo controllers, let bp,c be defined 
as 

(I - CP)-1 [-C I] 
-1 

[ ~J , if rp, C] is stable 
00 

0, otherwise 

Then the result is: 

Theorem 5.4 ([Vin92]) 
i) Given a nominal system PI E ppx q, a compensator C E pqxp and a number (3, 

then: 
[P2 , C] is stable for all systems P2 satisfying Ov (PI, P2 ) :S (3 if, and only if, 

bp),c > (3. 
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ii) Given a nominal system PI, a perturbed system P2 E Ppxq and a number (3 < 
bopt(PI ) then: 
[P2 , C] is stable for all compensators C satisfying bpl,c > (3 if, and only if, 

Jv (PI , P2 ) ~ (3. 

Note that condition i) of this theorem also holds for the gap metric. 
The importance of this result is succinctly described in [Vin92]: 

So, as for the gap metric, any plant at a distance less then (3 from the 
nominal will be stabilized by any compensator stabilizing the nominal 
with a stability margin of (3. Furthermore, any plant at a distance greater 
then (3 from the nominal will be destabilized by some compensator that 
stabilizes the nominal with a stability margin of at least (3. The only 
metric that has both these properties is Jv (., .). So, a ball in this metric 
is the largest set of linear, time-invariant plants that can be guaranteed 
to be stabilized a priori by a compensator solving the following 1£00 
problem: find a C satisfying bp,G > (3. 

Hence the controller C, satisfying bp,G > (3, is closely related to a ball in the v­

gap metric. In fact we will use a parameterization of all C satisfying bp,G > (3 to 
parameterize a ball in the v-gap. 

A general 1£00 problem has been solved, under mild assumptions, in [DGKF89, 
GD88]' Given a plant C, partitioned conformally with the block structure as follows; 

C = [Cn 
C21 

define a set of 1£00 controllers as: 

C(C, (3) := {C: [C22 ,C] is stable ,IIFI(C,C)lloo < 1/(3}. 

Then from [GD88], if there exists a C such that FI(C, C) E 1£00, and C I2 (jW) has 
full column rank, and C 21 (jW) full row rank, for all w, then 

C(C, (3) = {C : C = FI(J, Q), Q E Rl£oo , IIQlloo < (3-1}. 

The 1£00 problem of finding a C satisfying bp,G > (3 can easily be solved using 
this result for a suitable choice of C. An obvious choice for C is 

[ 

0 0 I] 
PIP , 

PIP 

but other C are possible, eg one corresponding to a right NCF model [GS90]. 

5.3.1 Implications 

Using the observation that " ... a ball in this (v-gap) metric is the largest set of 
linear, time-invariant plants that can be guaranteed to be stabilized a priori by a 
compensator solving the following 1£00 problem: find a C satisfying bp,G > (3," and 
the parameterization of all sub-optimal 1£00 controllers from [GD88], a parameter­
ization of a v-gap ball can be obtained. This provides a method of doing model 
validation in the v-gap. 
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Firstly define a v-gap ball, 

Bv(P, /3) := {PI E ppxm : J(P, Pr) ~ /3} . 

Then a parameterization of a v-gap ball, recently obtained in [Vina], is: 

Theorem 5.5 ([Vina]) Suppose that bopt(P) > /3 and let J be the coefficient ma­
trix in the parameterization of all sub-optimalHoo controllers in [GD88] correspond­
ing to the generalized plant, G, where G is partitioned as 

= [[0 _M-I] I M-I] 
G [1 _P] P , 

and (M, N) is a right normalized coprime factorization of P. Then 

Proof: Suppose bopt(P) > /3, then the standard assumptions for G in [GD88, 
DGKF89] are satisfied and the set of all robustly stabilizing controllers can be 
parameterized as 

Furthermore, if J is partitioned as 

J = [Jll 
hI 

then from [GGLD90] it can be shown that Jl2 and hI are invertible in RHoo , and 
that the free parameter Q may be written as 

Hence, by application of the Small Gain Theorem, the set of all systems stabilized 
by all the controllers C satisfying bp,G < /3, can be parameterized as 

{Fl(J-I,~) : ~ E RHoo,ll~lloo ~ /3} . 

Theorem 5.4 states that this set of systems is the same as a v-gap ball, of radius /3, 
centred on P, so the result is proved. • 

This theorem can be used to do model validation in the v-gap, which is the main 
result of this section: 

Theorem 5.6 Given a model-set Bv(P, ')') and a set of input-output data u E 7rlS~u, 
Y E 7rlS~Y, suppose bopt(P) > ')' and let J be the system defined in theorem 5.5 and 

K its inverse partitioned as 

K := J- I = [Kll 
K2I 

Then there exists PI E Bv(P, ')') satisfying 

if and only if 

KI2] 
K22 . 

TJ'Tv ~ ')'2 TJ;Tw , 

where v = T K-1 (y - TKll u) and w = TK21 U + TK22 v. 
12 
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Proof: The result follows by a straightforward application of theorems 3.2 and 5.5 . 

• 
Note that this result is only valid if the size of the uncertainty is less than bopt(P). 
This is a limitation of the result, as there may exist a controller that stabilizes a 
model which is outside the v-gap ball. However, if a model lies outside the v-gap 
ball there exists an Hoo sub-optimal controller that will destabilize it. So, from 
an Hoo viewpoint, the v-gap ball is the largest set of systems that would ever be 
required to be validated. 

Theorem 5.5 is extremely powerful and provides an elegant parameterization of 
the largest set oflinear, time-invariant systems that can be stabilized by a certain set 
Hoo controllers. However, a stronger result was also proved in [Vina], that the same 
set of controllers will also stabilize a set of possibly nonlinear / time-varying operators 
whose norm is bounded by (3. Let B denote the space of possibly nonlinear/time­
varying operators on l2+ with bounded incremental norm 

Then from [Vina], with the same assumptions as theorem 5.5, any element of C( G, (3) 
will also stabilize the set, 

This model-set can be validated using interpolation results for time-varying opera­
tors: 

Theorem 5.7 Given a model-set Bi: LTV (P, 'Y) and a set of input-output data u E 

7rlS~U, Y E 7rlS~Y, suppose bopt(P) > 'Y and let J be the system defined in theorem 5.5 
and K its inverse partitioned as 

Then there exists PI E Bi: LTV (P, 'Y) satisfying 

if and only if 

where v = T K -1 (y - TKl1 u) and w = TK21 U + TK22 V . 
12 

Proof: The result follows by a straightforward application of theorems 3.3 and the 
result from 5.5. • 

As for validation in the gap, the smallest 'Y that satisfies the necessary and 
sufficient conditions of theorem 5.6, is a lower bound on the gap between the model 
and real system. Denote this smallest 'Y by 'Y~in(TI), then the result of repeating 
example 5.2 is shown in figure 5.4. This clearly shows 'Y~in (T I) converging to the 
v-gap between the nominal model and the model that produced the data. This is 
guaranteed for scalar systems for the same reasons as remark 5.1. 
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Figure 5.4: Variation of rmin (T I) and r~in (T I) with the length of data 

5.3.2 Including noise 

Theorem 5.6 provides a method of doing model validation in the v-gap metric, but 
it does not allow the data to be corrupted by noise. Allowing sensor noise on the 
inputs and outputs can make model validation equivalent to a non-convex feasibility 
problem. However, making similar assumptions to those in sub-section 5.1.2, the 
model validation problem is convex. 

A sufficient condition for making the model validation problem convex is making 
the input to the uncertainty, w, independent of the noise. This can be accomplished, 
as in sub-section 5.1.2, by only allowing noise to enter the model at the same point 
as the uncertainty input, v, as in figure 5.5. This appears unnatural but is no more 

y u 

n 

w v 

Figure 5.5: LFT parameterization of v-gap ball with noise 

unnatural than assumption 5.1. Assumption 5.1 considered the noise to be a sum 
of noise at the inputs and outputs, filtered by N and M respectively. The noise 
in figure 5.5 may also be considered as a sum of noise at the inputs and outputs, 
but filtered by Kj} Kll and Ky} respectively. This is equivalent to the case for left 
NCF model-sets, as if K is chosen so that figure 5.5 is a left NCF model-set, then 

-1 - -1-
K12 Kll = Nand K12 = M. 

To state these ideas formally denote the set of systems in figure 5.5 by Bv(P, (3), 
where 

Then the result for validating model-sets of this form is: 
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Theorem 5.8 Given a model-set BAP, ,) and a set of input-output data U E 7rIS nu 
n + , 

y E 7rIS+ Y
, suppose bopt(P) > , and let J be the system defined in theorem 5.5 and 

K its inverse partitioned as 

Then there exists PI E Bv(P, ,) and a vector n E JR,lnv satisfying 

y 7rITp1 [~] , 

IInl12 < 15, 

if and only if there exists n E JR1nv satisfying 

T[ -T!] 
I 

> 0, 

IInl12 < 15, 

Proof: The proof follows easily from the structure of the elements in the set 
Bv(P, ,) using Schur complements to expand the necessary and sufficient conditions . 

• 
This result clearly shows that the model validation for models of this kind results in 
a convex feasibility problem, as the necessary and sufficient conditions are LMI's. 
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Chapter 6 

Flexible Beam 

In this chapter, and the following one, we apply the theory developed in the previous 
chapters to model-sets and data from a flexible beam and Harrier VSTOL aircraft. 
A flexible beam and Harrier are very different, but both provide challenging control 
problems. We study the flexible beam first, since it has a less complicated model 
(having only one input and one output) than the Harrier. 

The motivation for studying a flexible beam stems from interest in verifying 
theoretical models of violin bows [Woo93a, Woo93b]. To verify these models, ex­
periments must be performed where the force between the string and bow is precisely 
controlled. Uncertainty about the true parameters of the system, and the precise 
dynamics, makes this is a challenging control problem, for which a robust controller 
is ideal. The design of robust controllers for this problem have been studied in 
[WWa, WWb], and this chapter is based on the apparatus, and models, described 
in [WWa, WWb]. 

Rigid Hub 

Motor housing 

Air table 

Force transducer 

Flexible beam 

~", _____ t I I 

Permanent magh~t : 
: I : 

Electromagnet 

Figure 6.1: Experimental setup of a flexible beam 

A diagram of the apparatus is shown in figure 6. It consists of a O.67m long flex­
ible beam, mounted on an aluminium hub, which is in turn attached to a brushless 
DC motor. The beam comes into contact with the force transducer through a low 
friction ball bearing, and the force transducer is free to move along the beam, since 
it is mounted on an airtable. The end of the beam is fixed using an electromagnet. 
The system is treated as having a single input; the current to the motor, and a single 
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output; the force exerted on the force transducer at the point of contact between 
the beam and transducer. The controllers are implemented, and outputs measured, 
using a PC with dSPACE hardware and software [dSPj. This hardware samples the 
outputs and holds the inputs before being recorded. 

6.1 Model 

Hamilton's principle was used in [WWbj to obtain a mathematical model of the 
beam. Several simplifying assumptions were made, such as the hub at the end 
of the beam was perfectly rigid, all displacements were small and that friction 
was negligible. Key parameters in this model, such as the hub inertia and modal 
damping factors, were then identified using data from the beam. Finally the infinite 
dimensional model was approximated by a finite dimensional model and written in 
state space form, with ten states, one input and one output, for control design. 

The dynamics of the model vary significantly with the distance between the 
motor axis and the contact point between the beam and force transducer. Conse­
quently the model was parameterized by the contact point. A Bode magnitude plot 
of the continuous time transfer function of the model, G (s), with the contact point 
at O.35m, is shown in figure 6.2. 

10-' L----'--'--'----'----'-__'_---'----'-~--'__'_~~--'---'~~-'------'----'---'-'--'-'-'-'-
10-1 10° 10 10 10 10 

Frequency (rad/sec) 

Figure 6.2: Bode magnitude plot of G(s) 

6.1.1 Model-set 

In [WWa], Wood describes how controllers were designed with the Hoo-Ioopshaping 
techniques described in [MG90], and extended in [Vin92j. These techniques require 
the model to include weighting functions, which increased the number of states in the 
model to fourteen. A Bode magnitude plot of the continuous time transfer function, 
with the contact point at O.35m, including the weighting functions, G (s) W (s), is 

shown in figure 6.3. 
To account for uncertainty about the true dynamics, the model-set was pa­

rameterized as perturbations in the normalized coprime factors of the nominal 
model. Hence the model-set chosen was NC:F(N,.!VI, a, ,), with a = Tpc: m 
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10 

10 10 10 10 

Frequency (rad/sec) 

Figure 6.3: Bode magnitude plot of G{s)W{s) 

or a = Tvr;:m. Recall that an Hoo-controller, which is guaranteed to stabilize 
NC:F{N,£1, Tp'~m,,), will also stabilize NC:F{N,£1, TVr;:m,,). In fact it will 
also stabilize NC:F{N, M, a, ,), if a is a set of nonlinear operators, bounded in 
norm by" as a consequence of the Small Gain theorem [Zam81J. 

In NC:F{N, M, a,,) the uncertainty is unstructured, which may be conservative 
if it is used to cover uncertainty in the parameters of the system. However knowledge 
of how parameter variations affect the model can be included by weighting the ball 
of uncertainty, as described in [Vin92J. This results in a left NCF model-set with an 
additional uncertainty weight, Wu, as shown in figure 6.4. Since Wu is invertible in 

+ -

~ !1iV 1 !1M r=-
v 

'¥ 
WI 

WU 
W2 

+J + u y 
f.1 M-I 

+ 
n 

Figure 6.4: Left NCF model-set with weighted ball of uncertainty and noise 

RHoo , the model validation problem is convex. Using the notation of section 5.1, 

the equation for the uncertainty input, w, is unchanged (w = U [::~~~j]) but the 

uncertainty output, v, now becomes 

v = Twu-l{TMy - Tftu - n). 

As w is still independent of n, the model validation problem remains convex for any ,. 
60 



6.2. EXPERIMENT DESIGN 

One feature not explicitly considered in Wood's model was noise. If model val­
idation is to be accomplished by solving a convex feasibility problem, the noise can 
only be allowed to enter at certain positions, as was noted in section 5.1. Conse­
quently assumption 5.1 is made, and noise is only considered to enter at the same 
point as the uncertainty signal v. This is shown, together with the uncertainty 
weight in figure 6.4. This is an approximation but, as was noted in section 5.1, is 
not unreasonable. 

In the previous chapter it was shown that testing the validity of NCF model­
sets is equivalent to model validation in the gap metric, and that 'Ymin (T I) is a 
lower bound on the gap between the model and system. If 'Ymin (T I) is close to 
this gap, then a plot of how 'Ymin (T I) varies as the model changes with contact 
point, should be the similar to a plot of how the gap between different models 
varies with the contact point. A plot showing the variation of the gap, and v-gap, 
between a weighted model and the weighted model at O.35m contact point is shown 
in figure 6.5. This plot indicates that the beam may be difficult to robustly control, 

0.9 

~O.B 
""Cl 
0°.7 
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~ 
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.D 0.3 ~m.!Lx _ ____ '.~.~'~ _'_'._ ~'_.' __ .'~ _'_.'._.~ ~ __ ... ~ .. ~,_ .. __ '. 

~ bQO.2 

0.1 

82~5~--------~0~.3~--------~~--------~0~.4~--------~O.45 

Figure 6.5: Variation of gap and v-gap (identical) between linear models 

as a controller that stabilizes the model at O.35m may destabilize a model with 
a contact point less than 2cm away. However, this is not the case as controllers 
have been designed that are robust over a much larger set of contact points [WWa]. 
The gap, and v-gap metrics, require every element of their respective balls to be 
stabilized by every Hoo controller that satisfies a certain Hoo norm bound. However, 
for the beam, the Hoo central controller achieves poor robustness to variations in 
the contact point of the beam [WWaJ. This is due to the transfer function zero 
appearing just before the first mode. Including Wu helps to overcome this problem, 
for further discussion see [Vinb]. 

6.2 Experiment design 

The model used in [WWaJ for controller design was in continuous time, but a discrete 
time model-set is required for validation. This was obtained by assuming the inputs 
and outputs were sampled and held (with a zero order hold) at 100Hz. This is 
justified as the hardware used to implement the controllers does exactly this. 

To obtain data for model validation it was decided to input a swept sinusoid 
Whose frequencies covered the first two modes of the beam. Due to the problems of 
analysing long lengths of data the sweeps were accomplished in 1 second. Hence the 
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sinusoid swept from 0.1 to 30Hz in 1 second, with sampling at 100Hz. The actual 
input was 

sin(21f(0.lt + l4.95t2
)), 0::; t ::; 1. 

6.2.1 Data length 

To test how 'Ymin (T I) converges to the gap between the model and system for the 
chosen input, data was simulated using a linear model. The output of the discrete 
linear model at 0.35m (obtained by a sample and hold at 100Hz) was simulated with 
the input sin(21f(O.lt + l4.95t2

)), 0 ::; t ::; 1. Portions of this data were then used 
to try and validate models at different contact points and the results are shown in 
figure 6.6. 'Ymin(TI) was calculated exactly as the data was not corrupted by noise 
and the results of section 5.1 could be applied. The plot shows good convergence 

c;'o.o 
h 
~O.5 

JO.4 

Emax 
0.3 -'''.~.·.7.·.~. ,-, 

0.2 

0.1 

82L5-----------0.~3--------~O~.3~5----------~--------~0.45 

contact point (m) 

Figure 6.6: Variation of 'Ymin (T J) with data length and contact point 

between 'Ymin (T J), and the gap between the model and "real system" , for the chosen 
input. This does not imply anything about the convergence between 'Ymin(TJ) and 
the gap between the model and physical system, but gives some confidence that the 
input is suitable. 

6.2.2 Computational issues 

We calculated the results for 'Ymin (T I) and 'Ymin (TV) using the results in sub­
section 5.1.3. However, the noise was assumed to be bounded in the 2-norm so 
'Ymin(TV) could not be calculated analytically. Instead a cutting plane algorithm 
was used as described in section 4.4. This worked well on the 100 points of data , 
analysed, converging in under 10 minutes on a SPARC-lO when coded in MATLAB. 

We calculated 'Ymin (T J) without iteratively solving an MVDP for different 'Y, 
using the result in sub-section 5.1.3, by minimizing a linear function subject to LMI 
constraints. The MATLAB toolbox LMI-Iab was used for this and the algorithm 
was far slower than the cutting plane algorithm used to calculate 'Ymin(TV). It 
typically took 3 hours on a SPARC-lO, again using MATLAB, and consumed over 
50Mb of RAM. Hence it was the speed, and memory requirements, of this algorithm 
that limited the number of data points to be 100. 
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6.3 Experimental data 

The data, together with the simulated output from the discrete linear model is , 
shown in figures 6.7 and 6.8. Examining the plot of the actual output and the 
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Figure 6.7: Input to power amplifier 

0.5 ,----,----.,-------r---,------,---..,-------,----r------,.---, 

0.4 

,--... 0.3 

> 
-----Q) 0.2 

b.O 
CIl 
~ 0.1 

~ o 

-0.1 

-0.2 
11 ii 

"ii" ii 

-0.3 L-..._--L.. __ --'--_-..-L,---_-'--_~ __ ~_--,-'..,___-.".-L----,:-'---' 
o 0.1 0.2 0.4 0.5 0.6 0.7 

time (secs) 

Figure 6.8: Output from force transducer (solid) and simulated output from 
discrete-time model (dash-dot) 

simulated output reveals some marked differences. The model predicts that the first 
mode is excited after approximately 0.2s and the second mode after 0.7s. Around 
the first mode the simulated output is close to the actual output but this is not true 
for the second mode. This could be because the predicted position of the second 
mode is at a lower frequency than it really is. 

This observation is borne out by doing another experiment, with the input a 
swept sinusoid sweeping over the same frequency range, but taking five seconds 
to do so. The plot of this data is shown in figure 6.9. As this input sweeps over 
frequency more slowly, there are more cycles at each frequency to excite the modes 
of the system. From this plot the predicted second mode appears approximately 
0.25s before the actual second mode. This only corresponds to a difference in the 
frequencies of the modes of 1.5Hz. So although the actual and simulated outputs 
appear very different, the difference may be accounted for by a difference between 
the predicted and actual position of the second mode of 1.5Hz. 
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Figure 6.9: Output from force transducer (solid), and simulated output from model 
( dotted), for 5 second sine sweep 

It is misleading to compare the open loop responses of two systems when com­
paring their difference in the gap or v-gap. It is shown in [Vin92] that two systems 
can have a small gap, or v-gap, between them and yet have very different open 
loop responses. Also two systems that appear to have similar open loop responses 
may have a large gap between them. So although the actual and simulated outputs 
appear different, this does not imply that the validation results will be poor. 

6.3.1 Measuring noise 

To calculate rmin (.) it is necessary to bound the norm of the noise. The norm 
bound was obtained by measuring the output of the force transducer, and power 
amplifierl, with no input. The norm bound was then obtained by measuring the 
norm of these outputs after filtering through M and El respectively2. Plots of the 
filtered signals are shown in figures 6.10 and 6.11. 

We took the norm bound on the noise to be the sum of the 2-norms of the signals 
shown in figures 6.10 and 6.11, which for 500 data points was 0.2454. Hence we 
took the norm bound, for data of length I, to be 

6.3.2 Invalidation 

Using the noise bounds described, we calculated the smallest norm bound on the 
time-invariant uncertainty in the gap and v-gap metrics, denoted by rmin (T I) and 
r~in (T 1) respectively, for different lengths of data and the model at 0.375m con­
tact point. This was done because of the behaviour shown in figure 5.4, where 
rmin(T 1) tended towards the gap between the model and system as the length of 

IThe noise on the power amplifier was initially considered negligible. However the resulting 
invalidation of the model led to a careful measurement of this source of noise! 

2It should be emphasized that the bound has been taken from a single set of data and that 
the noise is assumed to be independent of the input signal. Given more sets of data statistical 
techniques could be used to give greater confidence in the noise bound and to estimate the noise 
bound for the specific choice of input. 
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Figure 6.10: Output noise after being filtered by NI 

Figure 6.11: Input noise after being filtered by N 

data increased. Therefore to increase our confidence that rmin (T 1) is a good ap­
proximation to the gap between the model and system, and that r~in (T I) is a good 
approximation to the v-gap between the model and system, we would like to see a 
convergence of rmin (T 1) as the length of data increases. This convergence appears 
to be happening in figure 6.12, but cannot be guaranteed. Note that Emax is nor­
malized to 1, as it is in all of the plots in this chapter. We repeated the calculation 
for time-varying uncertainty, and the results are shown in figure 6.13. 

Figure 6.12 is interesting, showing that the model at O.375m contact point is 
invalidated for time-invariant uncertainty in the gap metric, but validated for time­
invariant uncertainty in the v-gap metric. Therefore, for this data, the difference 
between gap balls and v-gap balls is crucial for the validity of the model-sets. 

Figure 6.14 shows how rminO varies with the contact point of the beam in the 
gap metric3. Note that rmin(T1) is always greater than 1 whereas rmin(TV) always 
less than 1. This poses a dilemma. If it is thought that the uncertainty is time­
varying then the model cannot be invalidated for this set of data. However, if it is 
thought that the uncertainty is time-invariant then this set of data invalidates the 
model. There is no reason to consider uncertainty to be time-varying, but there are 

3We did not obtain results for how ,min (-) varies with the contact point in the v-gap metric since 
validation in the v-gap requires an iterative search over " which is prohibitively time consuming 
for a number of contact points. 
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Figure 6.12: Variation of rmin (T 1) and r~in (T 1) with length of data 
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Figure 6.13: Variation of rmin(TV) and r~in(TV) with length of data 

certainly nonlinear effects that will not accurately be modelled by the linear model, 
such as back emf's in the motor. It may therefore be appropriate to consider these 
effects as being modelled by linear time-varying uncertainty. 

6.3.3 Modifying the model 

Having invalidated the model-set for time-invariant uncertainty in the gap metric, 
the model was reviewed. The input and output from the power amplifier were 
measured and plots of these signals are shown in figure 6.15. This clearly shows 
that the power amplifier introduces a 20ms delay that is not included in the model. 
Using this observation the continuous time model of the beam was modified by pre­
mUltiplying the model by a second order Pade approximation of the 20ms delay. 
The discrete model was then obtained using a sample and hold at 100Hz of the 
continuous time model. 

6.3.4 Validation 

With the modified model/min (T 1) and rmin (TV) were recalculated and the results 
shown in figures 6.16 and 6.17 . The plots show that both rmin(TI) and rmin(TV) 
are now both less than Emax = 1 for a set of models. Hence the set of models with 
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Figure 6.15: Input (solid) to, and output (dash-dot) from, power amplifier 

contact points between about O.34m and O.38m, and with time-invariant uncertainty, 
cannot be invalidated for the given set of data. It is interesting to note that the 
results indicated by the plots in figure 6.17 match closely the observed behaviour. It 
was observed in [WWbJ that controllers designed to stabilize the beam at a contact 
point of O.35m became unstable more quickly when the contact point was decreased, 
than when it was increased. This is to be expected from the plot in figure 6.17. 

It is interesting to note the model that gives the smallest 'Ymin (T I) for the given 
set of data has a contact point of approximately O.36m. This is 1cm longer than the 
actual contact point of the beam. It has already been noted that the second mode 
predicted by the model occurs at a frequency approximately 105Hz lower than is 
observed in the input-output data. As the contact point of the model is increased, 
the frequency of the first mode increases and the frequency of the second mode 
decreases. Hence it is not surprising that a model with a longer contact point than 
the actual contact point accounts for the data better, as the second mode will be 
modelled better. 
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Figure 6.16: Variation of 'Ymin(-) with length of data, for modified model 
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Figure 6.17: Variation of 'Ymin(-) with contact point, for modified model 

6.4 Conclusions 

We have demonstrated that the modified model of the beam was validated for the 
given set of data. Even though the model was relatively simple, having only one 
input and one output, and the data relatively short, the computations required for 
validation were very demanding. It is therefore reasonable to ask if the model can be 
validated by using standard identification techniques to obtain a model and seeing 
if this model lies inside a gap ball. To test this we used the experimental data to 
identify different models and calculated their gap, and v-gap, from the the nominal 
model. 

We used the identification toolbox in MATLAB to identify various parametric 
models [Lju86]. The results are summarized in the following table: 
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Model structure Coeffs. Fit I Gap I v-Gap I 
ARX 13,7,4 0.252 0.026 1 1 
ARX 10,8,4 0.246 0.025 1 1 

ARMAX 5,5,5,5 0.321 0.031 1 1 
Box Jenkins 5,4,5,4,5 0.382 0.038 1 1 

Output Error 9,5,5 0.286 0.028 1 1 
State-space can. form 7 0.308 0.030 1 1 

Optimized nominal model 16 0.227 0.020 1 1 

The different model structure are those used in the identification toolbox, with the 
exception of the optimized nominal model. The optimized nominal model was the 
modified discrete time state space model, validated in the previous section, with 
the C and D matrices optimized to minimize the prediction error. The coefficients 
are the standard coefficients used in [Lju86] to define the model structure, which is 
the order of the model for state-space models. The noise, n, was taken to be the 
difference between the simulated output and the measured output and the fit is the 
mean square error, ie if y is the measured output (of length l) and Ys the simulated 
output then the fit is Ily - Ys 112/0. 

The results in the table show that we were unable to obtain a valid model, or 
even get close. This is not surprising as the identification procedures attempted to 
minimize the prediction error, whereas we were looking for a model that minimizes 
the gap between the model and the nominal model. In fact the noise levels obtained 
by the identified models were considerably less than the levels we assumed, where 
IInl12 on the output4 was approximately 0.8. Therefore we conclude that standard 
identification tools do not provide a solution to the computational difficulties of our 
model validation problem. 

Validating and invalidating different models of the beam has illustrated some 
important points. 

• It must be stressed that the ,min (-) calculated are only lower bounds on the size 
of uncertainty in the system. Our confidence is possibly increased by taking as 
long a set of input-output data as possible, and checking that ,min (.) appears 
to converge to a limit as the length of data is increased. However, it is still 

only a lower bound. 

• The validation results obtained for the first model of the beam raise impor­
tant philosophical questions. The model was modified as the smallest time­
invariant uncertainty, consistent with the data, was larger than could be sta­
bilized. However for this model, the smallest time-varying uncertainty was 
considerably less than could be stabilized. This leaves the control designer 
with a dilemma. If he believes that the uncertainty is time-varying, or nonlin­
ear, then the model will not be invalidated by the given set of data. However, 
if he believes the uncertainty is time-invariant then the model is invalidated by 
the data. It may be best to compromise and assume the true uncertainty lies 
between these two limits. It is probably unlikely that the uncertainty behaves 
as a linear, time-invariant system and it is equally unlikely that it behaves as 
a possibly arbitrarily fast time-varying or nonlinear system. 

4This norm was obtained by filtering the input noise by the plant model P and adding it to the 
measured output noise. 
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• It must be emphasized that our validation results depend on the assumptions 
on the noise. We make the standard assumption in Hoo theory, that the noise is 
bounded in norm. This can be considered as the worst case, where the noise 
is allowed to act in the worst possible way on the system [Hja93]. Hence, 
in model validation we can choose the best possible noise, within the norm 
bound, that minimizes the bound on the uncertainty. Typically the resulting 
noise sequence does not "look like noise" or appear white. Assuming that the 
noise is white is a stronger assumption and requires stochastic assumptions 
on the noise. 
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Chapter 7 

Harrier VSTOL Aircraft 

In this chapter we use flight test data to validate models of a Harrier VSTOL 
aircraft. Together with the results of the previous chapter, and results in [WWa] 
and [Hyd93], this demonstrates the applicability of robust control model-sets to 
physical systems. 

The Harrier is the first production aircraft to have the ability to take-off and 
land vertically. It accomplishes this by directing the engine thrust through rotatable 
nozzles. While making the Harrier capable of incredible manoeuvres, the nozzles 
make it difficult to fly. For example, when decelerating from wingborne flight to the 
hover, the pilot has to control the pitch of the aircraft with his right hand, and both 
the engine thrust and nozzle angle with his left hand. Every time the nozzles are 
rotated downwards, there is a large kick in the pitch which must be compensated 
by the pilot. 

The Harrier can be made easier to fly using feedback control, and in 1990 the 
Ministry of Defence sponsored the Defence Research Agency's VAAC Harrier air­
craft research programme, to assess different methods of improving the transition to 
hover of a Harrier like aircraft [SFAH94]. Several organizations designed controllers 
for this project but the only approach to use multivariable techniques is described 
in [Hyd91, HG93, Hyd93]. In this approach Hoo theory was used for the controller 
design and in this chapter we consider the validity of the model-sets used in [Hyd93]. 

7.1 Model 

The controller was designed for the Harrier using linearizations of a nonlinear model. 
Only the longitudinal dynamics were controlled, as these were the critical dynamics 
in the transition to the hover. The linearizations were at airspeeds of 105, 175, 245 
and 345 ft/sec, and the model had three inputs and three outputs. The inputs were 
longitudinal thrust, vertical thrust, and tailplane angle, and the outputs longitudinal 
acceleration, vertical acceleration and pitch rate!. The vertical thrust component is 
obtained using the nozzles to direct the engine thrust downwards, but in level flight 
with the nozzles fully back, this is zero. The gains of the controllers designed for 
these linearizations were scheduled to obtain a controller valid for the whole flight 
envelope. 

The controllers were designed in [Hyd93], as for the flexible beam in chapter 
6, using Hoo loopshaping techniques. Consequently the linearized models, which 

IFor a discussion of why these variables were chosen for feedback see [Hyd91). 
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are all in discrete time, were weighted to incorporate performance objectives. With 
these weighting functions each linearization had twenty states, and a plot of the 
singular values of the linearization at 380 ft/sec and 100 Hz sampling frequency is 
shown in figure 7.1. The smallest singular value is zero. This plot shows that the 
critical frequencies for the model lie between 0.1 and 20 rad/sec. 
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Figure 7.1: Two largest singular values of weighted linearized model 

The model-sets used for controller design were NCF(N,.!VI, d, 1'), with d 
TIPc: m or d = TVf:;m, the same as for the flexible beam. We assumed noise 
entered the model at the same place as the uncertainty output, as in assumption 5.1. 
Hence we used the same model-set as for the flexible beam, shown in figure 6.4, but 
without the uncertainty weight2 , Wu. 

We calculated the gap and v-gap between linearizations at different airspeeds 
and the linearization at 380ft/sec, and the results are shown in figure 7.2. This 
plot is very different to the corresponding plot for the flexible beam, in figure 6.5. 
Whereas the flexible beam only had a small set of contact points where the gap 
between model was less than Emax , the Harrier linearizations have gaps less than 
Emax for a large set of airspeeds. This demonstrates that a certain set of Hoc 
controllers are guaranteed to be robust to changes in the airspeed. 

7.2 Experiment design 

The data we used for validation was obtained by adding additional inputs into 
the closed loop of the aircraft and controller. To do this we used a facility in the 
controller software designed for testing disturbance rejection. A block diagram of 
the interconnection between the model (or aircraft), represented by the weighted 
model W 2GW1 , and the controller K is shown in figure 7.3. This block diagram 
shows how disturbance signals, d1 and d2, can be injected into the closed loop, and 
the effects monitored by recording the signals e1 and e2. All of these signals have 
three separate channels. 

2No uncertainty weight was used as its' theory was not known when the controllers were initially 
designed. 
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Figure 7.3: Interconnection of controller and model 

To provide data for validation we decided to inject a swept sinusoid on each 
channel of dl and d2 separately, whose frequencies covered the bandwidths of the 
model. The sinusoid swept from 0.1 to 20 rad/sec and was 

19.9 4 
sin(O.lt + 108000 t), O:S t :S 30. (7.1) 

This sinusoid was used, rather than a more conventional sinusoid of the form 
sin( at + bt2), to ensure that the low frequencies were more fully excited. On a semi­
logarithmic plot, this means the frequency varies more linearly with time. This 
is demonstrated by the plots in figure 7.4, which shows how the frequency of two 
sinusoids, that cover the same frequency range, one of the form sin(alt + b2t2

) and 
the other sin(a2t + b2t4 ), vary with time on a semi-logarithmic plot. Both sinusoids 
begin at a frequency of 0.1 rad/sec and sweep up to 20 rad/sec, but it is clear that 
the sinusoid used to obtain data for validation, of the form sin(a2t + b2t4), spends 
more time at low frequency. 

We intended to implement the sine sweeps for each channel at three different 
airspeeds; 85, 255 and 425 ft/sec. With six channels for each airspeed this would 
have produced nine minutes of data. However, problems with the flight test meant 
that data was only obtained for two disturbance channels with the Harrier flying at 
380 ft/sec. 
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7.2.1 Computational issues 

Computing rmin (T 1) proved difficult for the Harrier data because of the length 
of the data. A complete sine sweep at 100Hz produces 3000 data points, which 
cannot be handled by present software. Resampling the data at 6.25Hz, which is 
the smallest possible before aliasing occurs, reduces the number of data points to 
190, on three channels. Hence it is necessary to solve LMI problems for a minimum 
of 570 data points. This proved impossible using LMI-lab, due to the memory 
required to store the LMI basis. 

A cutting plane algorithm was implemented instead, which was far more efficient 
with memory storage, but for flight test data took prohibitively many iterations to 
converge. The problem was with the upper bound, which is used to decide when 
rmin (T 1) has been determined to a sufficient accuracy. The upper bound calcu­
lation requires the matrix TJTw to be inverted. For flight test data, the diagonal 
elements of Tw are often small relative to the off-diagonal elements, so TJTw is 
ill-conditioned. This makes the upper bound poor and convergence of the cutting 
plane algorithm slow. 

Our solution to this problem was to calculate an upper bound for rmin(TI), 
which is denoted by rub(TI). Recall from section 4.4 that rmin(TI) is the smallest 

r such that there exists [~J satisfying 

Let [~~ J be the value of [~J that minimizes the Frobenius norm3 of 

1 

Tv (TJ(v,n)Tw(v,n))-2 , 

subject to an infinity norm bound on n. This is a positive definite quadratic pro-

3If A is a matrix then the F'robenius norm is defined as IIAIIF := vtrace(AT A). 
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gram, which can be solved efficiently [Lue84]' and 

'Yub(TI) := iJ(Tv(TJ(vo,no)Tw(vo,no))-t) 

is clearly an upper bound on 'Ymin (T I). 
The upper bound turns out to be surprisingly good. For short lengths of flight 

data, 'Ymin(TI) and 'Yub(TI) can be calculated (with an infinity-norm bound on n 

of 0.02) using a nonlinear optimization routine. The results are summarized in the 
following table: 

I Length of data 11 'Yub(TI) 1 'Ymin(TI) 1 

5 0.1458 0.1365 
10 0.1558 0.1510 
15 0.2327 0.2218 
20 0.3096 0.2761 

Note that we can calculate 'Ymin(TV) analytically, using the observation in sec­
tion 5.1.3, since we use the infinity-norm to bound the noise. 

7.3 Simulated data 

Before the test flight, we simulated the outputs for the swept sinusoid input using a 
nonlinear FORTRAN model implemented on a PC. There were several reasons for 
this: 

1. We adjusted the amplitude of the injected sinusoid to give good data for 
validation. The amplitude was made as large as possible, to ensure good signal 
to noise ratios, but not as large as to affect the airworthiness of the aircraft, 
or to hit saturation and rate limits. In practice the maximum amplitude is 
that which the test pilot will tolerate. 

2. We used data from the nonlinear model to calculate likely results from vali­
dation. 

3. The nonlinear simulated data provides an indication of the validity of the 
linearization. If the linear models were invalidated using simulated data, then 
controller design based on linear models is unlikely to be successful. 

7.3.1 Measuring noise 

We estimated the noise, for both the nonlinear model and aircraft, by recording 
the signals e1 and e2 for the input on d1(2). The channel d1(2) corresponds to 
the vertical thrust of the engine, which with the nozzles fully back is zero. Hence 
the outputs are a realization of the noise on each channel. For the data from the 
nonlinear simulation, the appropriate signals are shown, after resampling at 12.5Hz 
(from 100Hz), in figure 7.5. The dimensions of the output are omitted, as in all the 
plots of this chapter, as the data is classified. 

The amplitude of noise is surprising for data from a simulation model. The 
main source of this noise is thought to be the analogue joystick, used to input the 
pilot's commands. Although no pilot commands are used during any of the flight 
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Figure 7.5: Input on dl(2) to nonlinear model, and corresponding outputs on el(·) 
and e2(.) 
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7.3. SIMULATED DATA 

test, except for the initial flight to the suitable airspeed, the joystick produces a 
considerable amount of electrical noise. 

The output el(2) shows that the vertical acceleration output from the con­
troller is zero. The signals el(l), el(3), e2(2) and e2(3) appear to contain significant 
amounts of noise but this cannot be said for e2(1). This is the longitudinal acceler­
ation of the aircraft and would probably be more accurately modelled as an initial 
condition. However, the amplitude, relative to the amplitude of dl(2), is small and 
it will be considered as noise. 

To obtain bounds on the noise, we consider noise at the input and output to be 
filtered by if and M respectively. The maximum amplitude of these filtered signals 
is then taken as an infinity-norm bound on the noise. The bounds are shown in the 
following table: 

Channel number I Infinity-norm bound I 

~ I ~.~~~ I 
The relatively large bound on the noise on the first channel is due to the relatively 
large signal on e2(1). 

7.3.2 Validation 

Using the norm bounds on the noise described, we used the data from the nonlinear 
simulation to test the validity of linearizations as different airspeeds. The data and 
validation results are only shown for inputs on dl, as these correspond to the results 
from the flight test data. The data from a simulation, at an airspeed of 430 ft/sec, 
is shown in figures 7.5, 7.7 and 7.8, and the validation results in figures 7.6 and 7.9. 
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Figure 7.6: Variation of rmin(TV) and rub(TI) with data length for data from 
nonlinear model 

The plots in figure 7.6 shows how rub(TI) and rmin(TV) vary with data length. 
Both rub (T I) and rmin (TV) appear to be converging to an upper bound giving some 

77 



7.3. SIMULATED DATA 
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Figure 7.7: Input on dl(l) to nonlinear model, and corresponding outputs on e1(.) 
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7.3. SIMULATED DATA 
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Figure 7.8: Input on dl(3) to nonlinear model, and corresponding outputs on el(·) 
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7.3. SIMULATED DATA 
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7.3. SIMULATED DATA 

confidence that 'Yub (T I) and 'Ymin (TV) are good lower bounds on the gap between 
plant and system. 

In all of the plots in figure 7.9, both 'Yub(T J) and 'Ymin (TV) are considerably 
smaller than Emax for most of the airspeeds considered. This a good validation result 
and indicates that there is no evidence that the linear model-sets to not adequately 
describe the behaviour of the nonlinear model. 

The plot in figure 7.9 for an input on dl(2) is to be expected, with many lin­
earizations matching the data. This is because the outputs were assumed to be 
noise. 

The plot in figure 7.9 for an input on dl(3) is more interesting. The shape of 
the plot seems reasonable, with a linearization close to 430 ft/sec best accounting 
for the data, but one may expect 'Ymin(TV) to get closer to zero at 430 ft/sec. The 
difference between 'Ymin (TV) and zero may be due to the nonlinearities. If this is 
the case then one would expect the difference to get smaller if the size of the inputs 
is decreased. A plot of the variation of 'Ymin (TV) for an input of half the size is 
shown in figure 7.10, which shows a gap between 'Ymin(TV) and zero of about half 
the size of the original input. This indicates that the discrepancy may be due to 
the nonlinearities in the model. 
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280 300 320 340 360 380 400 420 
airspeed (ft/sec) 

Figure 7.10: Variation of 'Ymin(TV) and 'Yub(TI) for smaller input signal 

The plot in figure 7.9 for the input on dl(l) is a little surprising. Although 
the true airspeed is 430 ft/sec the results in this plot indicate that the 480 ft/sec 
linearization accounts for the data better. The reason for this poor match may 
be the poor signal to noise ratio on this set of data. The approximate size of the 
noise can be estimated from figure 7.5 and this can be compared with the signals 
in figure 7.7. This shows that noise can account for between 10% and 50% of the 
signal, which is clearly poor. However, with the signals shown in figure 7.8 the noise 
only accounts for between 1 % and 20% of the signal. Hence results based on the 
data shown in figure 7.8 should be expected to be more reliable than for the data 
in figure 7.7. 

Together these results support the design of controllers using linearizations of a 
nonlinear model. The model-sets derived from the linearizations have been shown to 
contain elements that exactly describe the data obtained from the nonlinear model. 
This supports the approach to controller design in [Hyd91] and the subsequent work. 
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7.4. FLIGHT-TEST DATA 

7.4 Flight-test data 

Several Harrier test flights have been flown at the Defence Research Agency, Bed­
ford, England between December 1993 and March 1994. The final one of these test 
flights included the validation tests described in the previous section. Unfortunately 
not all of the planned tests were completed and only two complete sets of data were 
obtained; for inputs on d1(2) and d1(3), and at an airspeed of 380 ± 10 ft/sec. 

7.4.1 Measuring noise 

We again assumed that the outputs on e1 and e2 for the input on d1(2) were a 
realization of the noise, and the signals are shown in figure 7.11. It is clear from 
these plots that there is considerably more noise in the flight-test data than in the 
data taken from the nonlinear model. This is not surprising as there were many 
disturbances acting on the plane that were not modelled in the nonlinear model, 
for example wind gusts. Again we filtered the signals e1 and e2 by N and NI 
respectively, to obtain bounds on the noise. The norm bounds are shown in the 
following table: 

I Channel number I Infinity-norm bound I 

I ~ I Hi: I 
These bounds are all at least twice as large as the norm bounds assumed for the 
nonlinear model. 

7.4.2 Validation 

The only successful flight test was for the input on channel d1(3). Only the first 
27 seconds of this sweep was recorded, but this still covers frequencies up to ap­
proximately 15 rad/sec. The original data was sampled at 102.4Hz and this was 
resampled at 12.8Hz to provide a manageable length of data. This resampled data 
is shown in figure 7.12. 

The results of validation are shown in figures 7.13 and 7.14. The results are 
good with a large range of airspeeds giving lub(TI) and Imin(TV) less than Emax. 
The minimum of ,ub(T I) does occur at an airspeed of 405 ft/sec when the true 
airspeed is closer to 380 ft/sec. However, lub(TI) is only an upper bound and the 
number of linearizations used was not great enough to determine the airspeed to a 
greater accuracy than plus or minus 35 ft/sec. 
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Figure 7.11: Input on dl(2) to the aircraft, and corresponding outputs on e1(.) and 
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Chapter 8 

Conclusions 

We conclude the thesis by summarising the contributions and suggesting possibil­
i~ies for further research. The contributions fall into three main areas; extending 
tIme domain validation results to include more general model-sets, providing a new 
interpretation of existing validation results in the gap metric and deriving results 
for validation in the v-gap metric, and applying the theory to the model and data 
from a flexible beam and Harrier. 

8.1 Contributions 

• The time domain results described in [PKT+94, ZK92] have been extended to 
include LFT model-sets with noise and structured uncertainty. LFT model­
sets with structured uncertainty were considered in the frequency domain 
approach of Smith and Doyle, but the uncertainty was not necessarily causal. 
In our time domain results the uncertainty is guaranteed to be causal. 

• We have proved that the general model validation problem is NP-hard in 
the number of uncertainty blocks. This indicates that it is unlikely that we 
will find a computationally tractable algorithm that solves the general model 
validation problem. 

• We have derived conditions for various model validation problems to be con­
vex. This is useful when deciding the model validation problems that are likely 
to be computationally tractable, especially as realistic problems are likely to 
have a lot of data . 

• In chapter 5 we analysed left and right NCF models and showed that they 
are not equivalent for model validation. This was shown to be because of the 
difference between balls defined in the gap and T-gap metrics. The gap metric 
also provides an interesting interpretation of NCF model-set validation. 

• The most important theoretical result of the thesis is the extension of the 
validation results to include model-sets defined as balls in the v-gap metric. 
Results for validating balls in the v-gap can be considered as the best possible 
validation results for robust control, since a v-gap ball characterizes the largest 
set of systems that can a priori be guaranteed to be stabilized by a certain set 
of 'Hoo controllers. 
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8.2. FURTHER RESEARCH 

• The validation of models of the flexible beam and Harrier, in chapters 6 and 
7, demonstrates the applicability of the model-sets used for robust design to 
real systems. Validation of the flexible beam revealed deficiencies in the model 
which were overcome by a modifying the model. The behaviour predicted by 
validation was also born out in practice. 

8.2 Further Research 

There is much scope for further research, with the two obvious areas being in the 
application of current validation techniques, and the theory. There is much that 
can be done in the algorithms for model validation. The amount of data that was 
analysed in chapters 6 and 7 was severely restricted by computational limitations , 
but this should not be the case. The validation problems solved for the model-sets 
and data from the flexible beam and Harrier were all convex feasibility problems, 
for which interior point algorithms are claimed to work very well. It is claimed in 
[BVG94] that interior point algorithms have been developed for which 

... we are able to solve convex optimization problems with over 1000 
variables and 10000 constraints in around 10 minutes on a workstation. 

We have achieved no where near this level of performance for the model-sets and 
data for the flexible beam and Harrier, but this work indicates that significant 
improvements are possible. 

Recent work in [RP] has solved model validation problems for sample-data un­
certainty models. The models included additive uncertainty and additive noise, so 
a natural extension of this work is to include more general uncertainty descriptions. 

A useful theoretical result would be necessary and sufficient conditions for val­
idating model-sets where the uncertainty has a bounded rate of time variation. 
Theoretical results for systems where the uncertainty has a bounded rate of varia­
tion have recently been obtained in [WP, PT], and it may be possible to apply these 
results to model validation problems. A way of measuring the rate of variation of 
an operator ~ is to measure the norm of the commutant of ~ and the right shift S, 
ie IIS~ - ~SII. Therefore the interpolation result that would allow results similar 
to this thesis is: 

Given sequences u E 7q S': , Y E 7flS~, and positive real numbers 'Y and 
6, when does there exists a stable, causal, linear, time-varying operator 
~ satisfying 

11~lli2 < 'Y, 

IIS~-~SII < 6, 

y 7fl~U? 
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