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Abstract. We present a numerical methodology for three-dimensional large-scale
simulations of two-fluid flow for generalised Newtonian fluids exhibiting non-Newtonian
behaviour such as a non-zero yield stress and power-law dependency on strain-rate.
The incompressible continuity and Cauchy momentum equations, along with appropriate
rheological models, are solved using a computational framework initially developed at
Lawrence Berkeley National Laboratory. The solver uses second-order Godunov method-
ology for the advective terms and semi-implicit diffusion in the context of an approximate
projection method to evolve the system in time. We have extended the algorithm to en-
able the simulation of Herschel-Bulkley fluids by means of a mathematical regularisation
of the constitutive equation which describes the fluid rheology. Additionally, interfaces
between fluids with different properties are treated using a passively advected indicator
function. The performance of the software is validated for two-dimensional displacement
flow and tested on a three-dimensional viscoplastic dambreak.

1 INTRODUCTION

Fluid dynamics systems involving more than one fluid are countless, and many are so
heavily characterised by the interactions that their inclusion in the system description is
essential in order to understand it. For this reason, mathematical modeling and numerical
simulation of several fluids has been actively researched for the last half century. Noh
and Woodward [1] first introduced the advection of a scalar function used to indicate
the volume fraction of each fluid in a cell, a method which was named the Volume Of
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Fluid (VOF) method by Hirt and Nichols [2] in 1981. Further development of the method
by Sussman et al. allowed coupling to level-set methods [3], adaptive mesh hierarchies
[4] and three-dimensional flow [5]. Gueyffier et al. added the ability to deal with topol-
ogy changes through smoothed surface stress methods [6], while Ménard, Tanguy and
Berlemont combined VOF with the ghost fluid method for gas interactions [7]. As such,
the methodology is mature, versatile and well-documented, and is implemented in major
commercial software suites for CFD. However, the application to viscoplastic fluids is
limited, and, for the three-dimensional case, does not exist to the best knowledge of the
author.

Viscoplastic fluids are non-Newtonian fluids which are characterised by a minimum
induced stress necessary for flow to occur. For this reason they are also commonly referred
to as yield-stress fluids. When the imposed stress does not exceed the threshold value,
the material is modelled as a rigid solid. In regions where the yield stress is exceeded,
however, the material flows with a finite viscosity. The ability of the material to support
a stress under certain circumstances gives rise to phenomena such as non-flat surfaces at
rest under gravity and the coexistence of yielded (flowing) and unyielded (rigid) regions
within the fluid. The former can be demonstrated by distorting the surface of mayonnaise
in a jar: gravity alone is not strong enough to surpass the yield stress, and the surface
remains in its distorted state. In addition to being fundamentally interesting from the
perspectives of rheology, fluid mechanics and mathematical modelling, yield stress fluids
occur naturally and are paramount to the success of animals such as mudskippers [8] and
snails [9]. Their importance in industries ranging from medicine [10, 11, 12, 13] to oil and
gas exploration [14, 15, 16] has led to extensive research contributions in the field. For
further reading on developments in viscoplastic fluids, we refer the reader to the review
papers by Barnes [17] and Balmforth et al. [18].

Just as for Newtonian fluids, the pursuit of knowledge about viscoplastic fluids has
relied heavily on computational methods in the last fifty years. Compared to the New-
tonian case, however, the numerical simulations are much more computationally inten-
sive. In order to remedy this, we recently extended the state-of-the-art open-source code
IAMR to allow simulation of Herschel-Bulkley fluids evolving in time and three spatial
dimensions [19]. IAMR uses a second-order accurate, approximate projection method to
solve the incompressible Navier-Stokes equations [20]. The code is built on the AMReX
(https://amrex-codes.github.io) software framework for developing massively paral-
lel block-structured AMR applications. By using this as our software framework, we are
able to take full advantage of modern supercomputer architectures in our simulations.

Presently, we further extend the capabilities of the IAMR code, to systems containing
multiple generalised Newtonian fluids. This necessitates the use of a passively advected
scalar to indicate the locations of each fluid as the system evolves in time. To ensure
that the two-fluid extension works as expected, we validate our code against the two-
dimensional displacement flow of a Bingham fluid by a Newtonian fluid along a plane
channel. When the yield stress of the Bingham fluid is high enough, this generates static
wall layers, as illustrated by Wielage-Burchard and Frigaard [21]. Moreover, we illustrate
the capabilities of our code by simulating the collapse of a three-dimensional cube of
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high-density Herschel-Bulkley fluid surrounded by a lower-density Newtonian.
A brief outline of the remainder of the paper is as follows. In section 2, we introduce

the governing equations and rheological model employed to describe our system, and
the methodology for modeling the immiscible flow of two fluids. Section 3 contains an
explanation of the numerical algorithm which we utilise. Our simulations are validated
through comparisons with reference displacement flows in a plane channel in section 4, in
addition to being further evaluated by computing a fully three-dimensional viscoplastic
dam-break. Section 5 concludes the paper.

2 MATHEMATICAL FORMULATION

We denote by ρ(x, t) the material density. The velocity field is introduced as u(x, t),
with components u, v and w. The Cauchy stress tensor σ is defined as a sum of isotropic
and deviatoric parts, σ = −pI+τ. Here, the pressure p(x, t) is multiplied by the identity
tensor, while the deviatoric part of the stress tensor is denoted τ(x, t). In order to describe
immiscible two-fluid flow, we introduce a passive scalar λ(x, t) ∈ [0, 1] which plays the role
of an indicator, and let the simulated fluid properties be a function of this indicator. The
fluid motion is then governed by

∂ρ

∂t
+ u · ∇ρ = 0, (1)

∂u

∂t
+ u · ∇u =

1

ρ
(−∇p+∇ · τ (|γ̇|, λ) + f) , (2)

∂λ

∂t
+ u · ∇λ = 0, (3)

∇ · u = 0, (4)

completed by a suitable constitutive equation τ (|γ̇|, λ). Here, we have introduced f
to describe external body forces such as gravity acting on the fluid, in addition to the
rate-of-strain tensor γ̇ = 1

2

(
∇u +∇u>

)
. Note that we take the tensor norm induced

by the Frobenius inner product, |γ̇| =
√

tr(γ̇γ̇>) (and similar for |τ|). Equations (1)-

(4) constitute variable density conservation of mass, Cauchy momentum balance, passive
advection of a fluid indicator and the incompressibility constraint. In general, (3) includes
a diffusive term proportional to ∇2λ on the right hand side, but for the case of immiscible
flow which we are studying the coefficient of proportionality is zero. Rheological behaviour
is captured by non-Newtonian equations of state where the stress response is dependent
on the rate-of-strain tensor γ̇ and the indicator λ.

Many fluids are accurately modelled by a non-Newtonian behaviour that captures
shear-dependency through a smooth increase or decrease in apparent viscosity. Such
fluids include pseudoplastics (shear-thinning) and dilatants (shear-thickening). A model
which captures this behaviour is the power-law fluid, characterised by its (dimensionless)
flow behaviour index n and consistency µ, which has units Pa sn). The Newtonian case
with n = 1 separates pseudoplastics (n < 1) from dilatants (n > 1).

Viscoplastic fluids have a stress threshold τ0 > 0 (the yield stress), below which they do
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not flow. The simplest type of viscoplastic fluid is the Bingham fluid [22], characterised by
zero strain rate below the yield stress. In the yielded region, however, the stress depends
linearly on the rate-of-strain magnitude, just like a Newtonian fluid. For Bingham plastics,
we note that the apparent viscosity has a singularity for γ̇ = 0.

In many applications, it is desirable to capture both the yield stress of viscoplastic
fluids and the power-law dependency occurring once the fluid starts flowing. A widely
used rheological model for such fluids is due to Herschel and Bulkley [23]. The Herschel-
Bulkley fluid facilitates a very general description of non-Newtonian fluids, as it is a yield
stress fluid with a nonlinear stress-strain dependency in the yielded region. As such,
it can be thought of as a hybrid between Bingham plastics and power law fluids. The
constitutive equation is{

γ̇ = 0 if |τ| ≤ τ0

τ = 2
n+1
2 µ|γ̇|n−1γ̇ + τ0

|γ̇| γ̇ if |τ| > τ0
, (5)

where the singularity for zero strain-rate is apparent. Computational schemes such as
that in IAMR cannot be used in the presence of such singularities. Regularisation deals
with the problem by replacing the ill-behaved apparent viscosity with a function that
approximates the rheological behaviour, but which stays bounded for arbitrarily small
γ̇. This is done by introducing an additional parameter ε to the apparent viscosity,
which describes how big the effect of the regularisation is. A large value of ε allows
for inexpensive computations even near unyielded flow, while the limit ε → 0 recovers
the unregularised description. We employ the popular Papanastasiou regularisation [24],
which utilises an exponential relaxation. Introducing the apparent viscosity η(|γ̇|) through
the relation τ = 2ηγ̇, the regularised Herschel-Bulkley model satisfies

η(|γ̇|) =
(

2
n−1
2 µ|γ̇|n +

τ0
2

) 1− e−|γ̇|/ε
|γ̇| . (6)

Finally, we need to ensure that the model encapsulates the dependency of the apparent
viscosity on which fluid is present at a given point. The extension of viscoplastic flow in
the IAMR framework to incorporate several fluids is the main motivation for the present
work. For Newtonian fluids, whose viscosity is given by a constant dynamic coefficient µi
in the fluid i, this is done by linear interpolation based on λ. For a system of two fluids,
i ∈ {1, 2}, we therefore take

µ(λ) = λµ1 + (1− λ)µ2, (7)

so that µ = µ1 when λ = 1 and µ = µ2 when λ = 0. For Herschel-Bulkley fluids, which
use two additional parameters to describe the apparent viscosoity, we simply take similar
averages to obtain the apparent flow index and yield stress:

n(λ) = λn1 + (1− λ)n2, (8)

τ0(λ) = λτ0,1 + (1− λ)τ0,2. (9)
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3 NUMERICAL ALGORITHM

An approximate projection method for solving the variable-density incompressible
Navier-Stokes equations on an adaptive mesh hierarchy has been implemented in the
IAMR code. The algorithm was described for the constant viscosity case by Almgren et
al. [20], and the extension to generalised Newtonian viscoplastics is described in Sverdrup
et al. [19]. In addition to solving the mass and momentum equations for velocity and
pressure, the IAMR code allows for the (conservative or passive) advection of any number
of scalar quantities. The implementation is such that the code can be run on architectures
from single-core laptops through to massively parallel supercomputers.

In the approximate projection method as implemented in IAMR, an advection-diffusion
step is used to advance the velocity in time; the solution is then (approximately) projected
onto the space of divergence-free fields. In the advection-diffusion step, (2), is discretized
in time to construct a new-time provisional velocity field, u∗, without enforcing (4). i.e. we
define u∗ using

u∗ − uk

∆t
= −[uMAC · ∇ũ]k+

1/2 +
1

ρk+
1/2

(
−Gpk−1/2 +

1

2

(
∇ · τ(uk) +∇ · τ(u∗)

)
+ fk

)
,

(10)

where Gpk−
1/2 is a lagged approximation to the pressure gradient ∇p and the density ρk+

1/2

is the average of times tk and tk+1.
The time-centered advective update term, [uMAC · ∇ũ]k+

1/2 is constructed using an
unsplit second-order accurate upwind scheme. All velocity components are predicted from
cell centers at time tk to faces at time tk+

1/2 using Taylor series approximations to define
ũ. The face-centered normal velocities are then projected to be divergence-free to define
uMAC. These velocities are also employed to advect the scalars, for which separate Taylor
approximations are computed. Equations (1) and (3) are therefore advanced through
solving

ρk+1 − ρk
∆t

= −[uMAC · ∇ρ̃]k+
1/2, (11)

λk+1 − λk
∆t

= −[uMAC · ∇λ̃]k+
1/2. (12)

In order to compute the explicit viscous term, τ(uk), we must first evaluate the viscosity
parameters according to (7)-(9), taking λk as input. Subsequently, we evaluate the stress
using velocity components at time tk, i.e. we define γ̇k = γ̇(uk), ηk = η(|γ̇k|) and write
τ(uk) = 2ηk γ̇k.

We solve for u∗ with the same ηk, i.e.(
u∗ − ∆t

ρ
∇ · (ηk γ̇∗)

)
= uk −∆t[uMAC · ∇ũ]k+

1/2 +
∆t

ρk+
1/2

(
−Gpk−1/2 +∇ · (ηkγ̇k) + fk

)
.

(13)

Note that all velocity components are solved for simultaneously.
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The final part of the algorithm is the projection step and subsequent pressure update.
The velocity field u∗ does not in general satisfy the divergence constraint as given by (4).
We solve

Lρφ = D

(
1

∆t
u∗ +

1

ρ
Gpk−

1/2

)
(14)

where D is a discrete divergence and G a discrete gradient. Lρ is a second-order accurate
approximation to ∇ · 1

ρk+1/2∇. The new-time velocity is then defined by

uk+1 = u∗ −∆t
1

ρk+
1/2
Gφ (15)

and the updated pressure by

pk+
1/2 = φ . (16)

4 SIMULATION RESULTS

4.1 Validation: plane channel displacement

As a validation problem, we consider the displacement of a Bingham fluid by a Newto-
nian in a plane channel, as described by Wielage-Burchard and Frigaard [21]. Our domain
is a two-dimensional duct of width 2W and length L. Through the duct, there is a flow
with mean x-velocity U across its width. In the absence of external forces, this corre-
sponds to a plane Poiseuille flow, for which analytical solutions exist both for Newtonian
and Bingham fluids. Initially, the domain is filled with a Bingham fluid, indicated by
λ = 1. The properties of this fluid are µ1 = 1 Pa s and τ0,1 = 100

√
2 Pa. We initialise the

velocity profile as the steady-state analytical solution for Bingham fluids, given by

u(y) = umax,1 ·

1, |y| ≤ y0,

1−
(
|y|−y0
W−y0

)2
, y0 < |y| ≤ W ,

(17)

where

umax,1 =
(W − y0)2

2y0
· τ0,1√

2µ1

(18)

is the maximum velocity of the fluid, occurring in the plug region |y| < y0. The char-

acteristic distance y0 is found by demanding 1
W

∫W
0
u(y)dy = U , resulting in the cubic

equation

( y0
W
)3
− 3

(
1 +

2
√

2µ1U
3τ0,1W

)
y0
W + 2 = 0. (19)
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Figure 1: Snapshots of the plane channel displacement flow at t = 3.4 s, depicting the in-
dicator (top, dimensionless), x-velocity (middle, m/s) and strain-rate magnitude (bottom,
s−1). In each case, the distribution in the full duct [0,L]× [−W ,W ] is shown.

At time t = 0, we inject a Newtonian fluid with dynamic viscosity µ2 = 10 Pa s at the
left-hand side of the duct. This is achieved through an inflow boundary condition where
λ = 2 and the velocity profile is

u(y) = umax,2

(
1−

( y
W
)2)

(20)

with umax,2 = 3
2
U .

We setW = 1 m, L = 10 m, U = 1 m/s, ε = 1/200 and use 128 cells across the channel
width to obtain high-resolution heatmaps. Figure 1 shows the resulting distributions of
the indicator λ, velocity u and strain-rate magnitude |γ̇| after 3.4 s. Note that due to the
high Bingham number, residual wall layers of fluid 2 remain along the top and bottom
walls. The velocity profile follows the Bingham profile downstream of the displacement
front (for this case, we have y0 ≈ 0.86W), while a quadratic profile develops between the
stationary residual wall layers upstream of the front.

In order to obtain a quantitative comparison with the results of Wielage-Burchard and
Frigaard [21], we run the simulation until steady-state with 32 cells across the channel
width. Slices through the centre of the domain are shown in figure 2, with their results
superimposed. As is evident, there is excellent agreement between our model and the
reference.
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Figure 2: Comparisons of plane channel displacement results with Wielage-Burchard and
Frigaard [21] for validation of our code. We look at the variation at x = 5. Our indicator
function is sharper than the reference, but we obtain the same static layer width, as is
evident from the profiles of x-velocity and strain-rate magnitude.

4.2 Evaluation: three-dimensional viscoplastic dam-break

As a more severe test case of our software’s capabilities, we consider the collapse of a
square prism of heavy, viscous fluid under a downward-acting vertical force, inspired by
the two-dimensional system studied by Liu et al. [25]. The square prism is initialised with
side lengths S = 1 m and height H = 1 m in the centre of our domain, within which the
fluid properties are ρ1 = 1000 kg/m3 and µ1 = 10−2 Pa s. Surrounding the heavy mass
is a lighter fluid with ρ2 = 1 kg/m3 and µ2 = 10−3 Pa s. We introduce a forcing term
f = ρf ẑ and let f = 0.004 m/s. Results for the Newtonian case are shown in figure 3.
A second simulation is performed where the collapsing prism is a Herschel-Bulkley fluid
with n1 = 0.5 and τ0,1 = 5 · 10−3 Pa. The corresponding results are shown in 4. Note how
much slower the flow is, and how the mass retains its shape to a much greater degree.
Due to the yield stress, the heavier will eventually cease to flow, without obtaining a
flat surface. This initial dambreak test shows expected behaviour qualitatively, but the
system certainly warrants further investigation.

5 CONCLUSIONS

We have successfully implemented a numerical model for two-fluid flows for generalised
Newtonians within the highly parallelisable software framework IAMR, and validated our
results against a benchmark test of two-dimensional displacement flow in a plane channel.
The non-Newtonian rheology, which is described using the Herschel-Bulkley model, is
handled using mathematical regularisation, while the fluid-fluid interfaces are tracked us-
ing a passively advected indicator function. Further to the brief validation study, we have
started initial experiments with the more demanding test case of viscoplastic dambreaks
in three dimensions. Future work will focus on thorough verification of the code, and util-
isation of adaptive mesh refinement (readily available in IAMR) to enhance simulation
accuracy and efficiency.
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(a) t = 1 s (b) t = 15 s

(c) t = 30 s (d) t = 46 s

Figure 3: Three-dimensional Newtonian dambreak. The contour surface λ = 0.5 shows
the interface between the heavier, more viscous fluid and the surrounding lighter one. On
the back left wall, a slice through x = 0 is depicted of the stress, while the back right wall
shows the velocity magnitude in the slice y = 0.
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(a) t = 1 s (b) t = 81 s

(c) t = 269 s (d) t = 386 s

Figure 4: Three-dimensional viscoplastic dambreak. The contour surface λ = 0.5 shows
the interface between the heavier Herschel-Bulkleyand the surrounding Newtonian. On
the back left wall, a slice through x = 0 is depicted of the stress, with the yield surface
|τ| = τ0 shown as a single white line. The back right wall shows the velocity magnitude
in the slice y = 0.

10



Knut Sverdrup, Nikolaos Nikiforakis and Ann Almgren

Knut Sverdrup would like to acknowledge the EPSRC Centre for Doctoral Train-
ing in Computational Methods for Materials Science for funding under grant number
EP/L015552/1. Additionally, he acknowledges the funding and technical support from
BP through the BP International Centre for Advanced Materials (BP-ICAM) which made
this research possible.

REFERENCES

[1] Noh, W. F. & Woodward, P. SLIC (simple line interface calculation). In Proceedings
of the fifth international conference on numerical methods in fluid dynamics June 28–
July 2, 1976 Twente University, Enschede, Netherlands, 330–340 (Springer, 1976).

[2] Hirt, C. W. & Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free
boundaries. Journal of Computational Physics 39, 201–225 (1981).

[3] Sussman, M., Smereka, P. & Osher, S. A level set approach for computing solutions
to incompressible two-phase flow. Journal of Computational Physics 114, 146–159
(1994).

[4] Sussman, M. et al. An adaptive level set approach for incompressible two-phase flows.
Journal of Computational Physics 148, 81–124 (1999).

[5] Sussman, M. & Puckett, E. G. A coupled level set and volume-of-fluid method
for computing 3D and axisymmetric incompressible two-phase flows. Journal of
Computational Physics 162, 301–337 (2000).

[6] Gueyffier, D., Li, J., Nadim, A., Scardovelli, R. & Zaleski, S. Volume-of-fluid interface
tracking with smoothed surface stress methods for three-dimensional flows. Journal
of Computational Physics 152, 423–456 (1999).

[7] Ménard, T., Tanguy, S. & Berlemont, A. Coupling level set/VOF/ghost fluid meth-
ods: Validation and application to 3D simulation of the primary break-up of a liquid
jet. International Journal of Multiphase Flow 33, 510–524 (2007).

[8] Pegler, S. S. & Balmforth, N. J. Locomotion over a viscoplastic film. Journal of
Fluid Mechanics 727, 1–29 (2013).

[9] Denny, M. W. A quantitative model for the adhesive locomotion of the terrestrial
slug, ariolimax columbianus. Journal of experimental Biology 91, 195–217 (1981).

[10] Apostolidis, A. J. & Beris, A. N. Modeling of the blood rheology in steady-state
shear flows. Journal of Rheology 58, 607–633 (2014).

[11] Apostolidis, A. J., Armstrong, M. J. & Beris, A. N. Modeling of human blood
rheology in transient shear flows. Journal of Rheology 59, 275–298 (2015).

[12] Apostolidis, A. J. & Beris, A. N. The effect of cholesterol and triglycerides on the
steady state shear rheology of blood. Rheologica Acta 55, 497–509 (2016).

11



Knut Sverdrup, Nikolaos Nikiforakis and Ann Almgren

[13] Apostolidis, A. J., Moyer, A. P. & Beris, A. N. Non-newtonian effects in simulations
of coronary arterial blood flow. Journal of Non-Newtonian Fluid Mechanics 233,
155–165 (2016).

[14] Bittleston, S. & Guillot, D. Mud removal: research improves traditional cementing
guidelines. Oilfield Review 3, 44–54 (1991).

[15] Taghavi, S., Alba, K., Moyers-Gonzalez, M. & Frigaard, I. Incomplete fluid–fluid
displacement of yield stress fluids in near-horizontal pipes: experiments and theory.
Journal of Non-Newtonian Fluid Mechanics 167, 59–74 (2012).

[16] Frigaard, I. A., Paso, K. G. & de Souza Mendes, P. R. Bingham’s model in the oil
and gas industry. Rheologica Acta 56, 259–282 (2017).

[17] Barnes, H. A. The yield stress – a review or παντα ρει – everything flows? Journal
of Non-Newtonian Fluid Mechanics 81, 133–178 (1999).

[18] Balmforth, N. J., Frigaard, I. A. & Ovarlez, G. Yielding to stress: recent develop-
ments in viscoplastic fluid mechanics. Annual Review of Fluid Mechanics 46, 121–146
(2014).

[19] Sverdrup, K., Nikiforakis, N. & Almgren, A. Time-dependent viscoplastic fluid flow
simulations in two and three dimensions. arXiv preprint arXiv:1803.00417 (2018).

[20] Almgren, A., Bell, J., Colella, P., Howell, L. & Welcome, M. A conservative adaptive
projection method for the variable density incompressible Navier–Stokes equations.
Journal of Computational Physics 142, 1–46 (1998).

[21] Wielage-Burchard, K. & Frigaard, I. Static wall layers in plane channel displacement
flows. Journal of Non-Newtonian Fluid Mechanics 166, 245–261 (2011).

[22] Bingham, E. C. An investigation of the laws of plastic flow. Bulletin of the Bureau
of Standards 13, 309–353 (1916).

[23] Herschel, W. H. & Bulkley, R. Konsistenzmessungen von gummi-benzollösungen.
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