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Kinetics of Disordered Proteins and their Interactions

Thomas David Ferdinand Löhr

Disordered proteins and regions are highly prevalent in the human proteome, and
are often implicated in disease. However, methods to study these systems in detail
are lacking, and the potential for thermodynamic and kinetic characterisation using
experimental methods is limited. Molecular simulations and associated analysis
methods have advanced to the point where investigating disordered proteins and
their interactions with other (bio-)molecules on an atomistic scale is now possible.
Amyloid-β �� (Aβ��) is an aggregation-prone biomolecule implicated in Alzheimer’s
disease, and recent work has shown that small molecules can inhibit the aggregation
by dynamically binding to the monomeric form of this disordered protein.

In this work I performed long-timescale simulations of Aβ�� with and without the
addition of small molecules, and analysed the kinetics of the system using a neural
network and a probabilistic state definition. Without a small molecule, the system
occupies several states and transitions occur on the range of microseconds. With the
small molecule �����-G�, the dominant disordered state increases in population,
and transitions out of this state become slower. Additionally, the conformational
entropy of the protein backbone is increased, with the small molecule forming
nanosecond-lifetime π-stacking interactions with aromatic side chains. These find-
ings are consistent with nuclear magnetic resonance experiments, and indicate the
possibility of designing molecules with high specificity.

Another approach to targeting aggregation prone proteins such as Aβ�� consists
of using specially engineered single-domain antibodies (sdAbs) with a modified
complementarity determining region (CDR). These complementarity determining
regions (CDRs) are often disordered and their dynamics are poorly understood. I per-
formed enhanced sampling simulations of both an sdAb designed using a sequence-
matching method as well as one developed with a structural approach to better
understand their conformational space and provide information to improve selectiv-
ity and specificity of designed antibodies.

These results show that it is possible to provide a comprehensive characterisation
of the kinetics and thermodynamics of disordered proteins in terms of kinetic en-
sembles, which are defined by the structures and corresponding populations in their
different states together with the transition rates between these states.
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Abbreviations

Aβ�� amyloid-β ��
AMM augmented Markov model
CV collective variable
CDR complementarity determining region
CSP computational structure prediction
CASP Critical Assessment of protein Structure Prediction
cryo-EM cryo electron microscopy
DSSP Dictionary of Protein Secondary Structure
DMD dynamic mode decomposition
FAST fluctuation-amplification of specific traits
FRET Förster resonance energy transfer
haMSM history-augmented Markov state model
HDX hydrogen-deuterium exchange
LINCS Linear Constraint Solver
MFPT mean first-passage time
MD molecular dynamics
MDS multidimensional scaling
MSA multiple-sequence alignment
NMR nuclear magnetic resonance
NOE nuclear Overhauser effect
pre-mRNA pre-messenger ribonucleic acid
PCCA Perron cluster-cluster analysis
PCA principal component analysis
PDB Protein Data Bank
QM/MM quantum mechanics / molecular mechanics
RDC residual dipolar coupling
RMSD root-mean-square deviation
RNA ribonucleic acid
SAXS small angle X-ray scattering
sdAb single-domain antibody
TICA time-structure independent component analysis
TIC time-structure independent coordinate
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UMAP uniform manifold approximation and projection
VAMP variational approach to Markov processes
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Symbols

〈·〉 Ensemble average (Equations �.� and �.�).
‖·‖2F Frobenius norm of a matrix.
Et [·] Expectation value over t.
O(·) Error order.
Xn The set of all structures for an n-atom system

∏n
i R3 (Equation �.�).

x A single structure x ∈ Xn.
wi Probability of observing a structure i.
EmStruc Structural ensemble {(x1, . . . , xm) | xi ∈ Xn} (Equation �.�).
EmThermo Thermodynamic ensemble

(
EmStruc,w

)
(Equation �.�).

E
(m,k)
Kinetic Kinetic ensemble

(
EmStruc, (χ1, . . . , χm),P

)
(Equation �.�).

H(x,p) Hamiltonian operator (Equation �.�).
V(x) Molecular dynamics force field potential (Equation �.�).
F(x) Molecular dynamics forces −∇V(x).
p Momenta of the system.
v Velocities of the system.
a Accelerations of the system.
∆t Time step taken in molecular dynamics.
ξ Collective variable (CV) ξ : Xn → R (see Section �.�.�).
τ Lag time in a kinetic model.
S State space of a Markov model.
s Individual state of a Markov model s ∈ S.
χ Mapping from structure to states χ : Xn → S.
Z(τ) Count matrix in a Markov model.
P(τ) Transition matrix in a Markov model (Equation �.��).
π Equilibrium distribution of the kinetic model.
λi ith eigenvalue of a matrix (Equation �.��).
ri ith eigenvector of a matrix (Equation �.��).
ti ith implied timescale (Equation �.��).
C(τ) Feature covariance matrix (Equation �.��).
K Infinite-dimensional, linear Koopman operator.
K(τ) Finite-dimensional Koopman matrix (Equations �.�� and �.��).
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� Introduction

Happy families are all alike;
every unhappy family is unhappy in its own way.

— Leo Tolstoy, in Anna Karenina

Proteins are one of the most fundamental structures that make up life. They perform
an enormously diverse array of functions, from catalysing biochemical reactions, to
allowing cell replication, transporting ions and molecules across membranes, and
supporting intra- and extracellular structure. Proteins consist of amino acids, linked
by amide bonds (Figure �.�). There are �� proteinogenic, i.e. naturally occurring,
amino acids, and their combinations allow for such a wide range of behaviour and
structure. Indeed, the central dogma of structural biology is often stated as follows[�]:

Structure determines function.

Most proteins fold into single, unique structures that allow them to carry out
their functions. For example kinases will feature a pocket-like structure to allow the
transfer of a phosphate group to another biomolecule[�]. Keratin is a particularly
strong structural protein making up hair, nails, and similar materials - it gains its
strength through disulfide bonds and large hydrophobic patches allowing stable
polymerization[�]. On the other hand, some proteins feature flexibility as an intrinsic
component of their function. One such instance is the chaperone Hsp��, which
regulates it’s specificity through self-binding to a metastable region[�].

In the following sections I will dive deeper into protein disorder, it’s purpose and
biological implications. I will also talk about how to target disorder to potentially
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Figure �.�: The peptide bond with flexible (φ, ψ, χi) and mostly rigid (ω) dihedrals
shown.

treat disease, and methods to probe proteins with high flexibility, with a focus on
biomolecular simulation to recover kinetic information.

�.� Disordered structure?

Disorder in structural biology has been historically neglected and often glanced
over. This is despite the fact that approximately one third of the human proteome is
disordered in some fashion[�], and the precise function of many of those proteins
being poorly understood. Interestingly, the proportion of disordered regions is
increased in eukaryotic organisms as opposed to prokaryotes and archaea, and
varies as a function of different metrics of complexity[�]. A significant reason for
the neglect is certainly the difficulty in characterising these disordered proteins in
both their structure and function. Many are postulated to be promiscuous binders
and involved in many subtle interactions[�]. At the same time, their disordered
nature makes structural determination difficult, as many experimental techniques
will result in averaging over long timescales or over the full ensemble of structures,
thus obscuring less-populated states or processes occurring on short timescales.
Single-molecule techniques can allow more direct observation of conformations
with low populations, but are often limited by their requirement for some form of
label[�] or non-equilibrium conditions[�]. I will touch on common techniques to
characterise both folded and disordered proteins later in this chapter, but first I will
give some biological motivation for studying these systems.
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�.� Disordered structure?

�.�.� Function and dysfunction of protein disorder

One of the more commonly encountered examples of disorder in the human pro-
teome is as a flexible segment in a multi-domain protein complex. This can allow
two or more globular, folded protein domains to associate to temporarily form a
larger unit with some specific activity. This tether thus ensures that this process can
happen quickly, as the protein doesn’t have to wait to associate with a completely
separate protein. One example of a system like this is the U�AF splicing factor, part of
the human spliceosome assembly responsible for editing pre-messenger ribonucleic
acid (pre-mRNA)[��]. Upon encountering sequence variations in the ribonucleic
acid (RNA), the two RNA recognition motifs can undergo domain rearrangements
to modulate splicing activity[��]. The strength of this process is possible due to
precise evolutionary tuning of the disordered linker joining the two motifs. The
authors of the study were able to elucidate this mechanism using nuclear magnetic
resonance (NMR) spectroscopy.

An instance of extremedisorder can be seen in the interaction of the two disordered
proteins histone H� and prothymosin-α[��], both involved in key cellular functions.
Schuler and co-workers combined Förster resonance energy transfer (FRET) with
coarse-grained molecular dynamics simulations to reveal that both proteins remain
disordered when bound, and yet display picomolar affinity to each other. This is
possible due to their highly charged nature allowing strong electrostatic interactions
without a sacrifice of conformational entropy upon binding.

Another common interaction type is known as folding-upon-binding. Here, a dis-
ordered protein transitions into a structured form when binding to a folded binding
partner. This mechanism is exemplified in the measles virus between a disordered
motif on the C-terminal domain of the nucleoprotein and the phosphoprotein X
domain, recently studied using long-timescale molecular dynamics simulations[��].
In the transition state, only a few contacts are required to stabilise the intermediate,
which remains mostly disordered, and eventually leads to a fully folded complex.
Notably, if the disordered protein temporarily formed α-helices before binding, then
these would often unfold again before completing the association process.

Additionally, disordered proteins have been shown to be drivers of liquid-liquid
phase separation in multiple scenarios, allowing the resulting compartmentalization
to regulate and isolate cellular processes[��, ��]. In particular, a droplet state can be
stabilised by enthalpically-favourable non-specific side chain interactions and corre-
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� Introduction

spondingly high entropy, whereas an imbalance could lead to the formation of the
significantly more stable and dysfunctional amyloid (i.e. fibrillar) state. These droplet
states are thought to occur in a significant fraction of the human proteome[��].

Elongation

Fragmentation

Secondary nucleation

Primary nucleation

Primary nucleation

Monomer

Fibril

Oligomer

Figure �.�: Schematic of the aggregation process of amyloid-β. The aggregation
proceeds via numerous pathways and intermediates: Primary nucleation is the for-
mation of oligomeric and fibrillar species directly from the monomeric protein, with
a critical number of fibrils, they can catalyse the further formation of oligomers
through secondary nucleation. The fibrils themselves are in an equilibrium of frag-
mentation and elongation processes with the monomer.

Until now we have mostly talked about the function of disorder, but it can also
be prominently involved in disease. Many neurodegenerative illnesses feature the
abnormal formation of fibrils and plaques in the brain through the aggregation of
disordered proteins. A prime example of this process is the formation of oligomers
and fibrils by the disordered protein amyloid-β, associated with Alzheimer’s dis-
ease[��, ��]. This protein is the result of a cleavage process taking part on the cell
membrane, resulting in peptides of lengths between �� and �� amino acids with
different aggregation behaviours. The various aggregation intermediates form a
network of complex processes such as primary and secondary nucleation, elongation,
and fragmentation (Figure �.�)[��]. The kinetics of these processes – in the case of
amyloid-β at least – have been successfully modelled, so that the rate of the com-
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�.� Disordered structure?

ponent reactions can be estimated from only a readout of the total number fibrils
over time[��]. These kinetic aggregation assays have made it possible to study the
aggregation behaviour of amyloid-β under a diverse range of conditions such as the
addition of small molecules[��].

�.�.� Drug binding to disordered proteins

While the vast majority of small molecule drugs available today target specific struc-
tured binding pockets on folded proteins, there are few examples of small molecules
directly binding disordered regions. This is despite the fact that disorder makes up
so much of the human proteome and it’s involvement in disease[��]. Reasons for
this are the lack of understanding of the binding modalities, and the difficulty in
characterising them[��]. I will briefly summarise some examples of drugs binding or
interacting with disordered proteins.

A prominent system in this field is the interaction of the oncogenic proteins c-Myc
and Max. Overactivation of c-Myc by Max is associated with various cancers[��],
and this folding-upon-binding interaction has been investigated as a potential drug
target. Numerous studies used FRET to quantify the association of the two proteins
in the presence of various small molecules. Some of the subsequently discovered
binding compounds feature planar conjugated motifs and can insert themselves into
the interface, thus disrupting the interaction[��]. While some molecules in this and
other screenings showed good specificity for c-Myc/Max[��], many others also had
strong interactions with other related systems[��, ��] raising questions on specificity.

On the other hand, small molecules binding the monomeric disordered c-Myc pro-
tein, as opposed to interfering in it’s interactions directly, have also been discovered.
One such compound is �����-F�[��] (Figure �.�A), which has been studied both
experimentally[��] and computationally[��]. The molecule was found to exhibit
a ‘specific-diffuse’ binding mechanism, with a characteristic sequence specificity
when compared to urea as a control molecule, but no fixed binding mode or any
kind of folding-upon-binding behaviour. In addition, this interaction was shown to
be entropically favourable using isothermal titration calorimetry and fluorescence
titration experiments, with low enthalpic contributions[��].

Another example of molecules able to bind and favourably interact with disor-
dered proteins are so-called molecular tweezers. These are typically rigid molecules
featuring their own ‘binding pocket’ to accept a ligand, for example a positively
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Figure �.�: Interaction of �����-G� with Aβ��. Frames from a �� ns segment of a
molecular dynamics simulation are shown.

charged ion of a certain size. One instance is the tweezer CLR�� (Figure �.�B),
which can reversibly bind to exposed lysine residues as found in amyloid-β[��] or
Parkinson’s-associated α-synuclein[��].

Recently, my group elucidated the thermodynamics of the binding of the small
molecule �����-G� (Figure �.�C) – also characterised for the c-Myc/Max system[��]
– to Aβ��[��] (Figure �.�). Using the kinetic aggregation assays and mathemat-
ical model described above (Figure �.�), the compound could be shown to bind
monomeric amyloid-β as opposed to the oligomeric or fibrillar form, resulting in
the protein’s sequestration and a corresponding reduction in aggregation. Among
numerous other experimental techniques, the system was also studied in simulations
using the metadynamic metainference framework, again showing a highly dynamic
and entropically favourable binding process. Chemical shifts fromNMR experiments
were unperturbed upon binding, potentially consistent with a diffuse interaction
in which the protein remains disordered. However, the kinetics on the level of the
monomer could not be characterised using either simulations or experiments. I will
attempt to remedy this in chapter � and present a kinetic analysis of the interaction.
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Figure �.�: Small molecules known to bind monomeric disordered proteins. a
�����-F�, known to bind c-Myc[��], b molecular tweezer CLR��, binding exposed
lysine residues in amyloid-β and α-synuclein[��, ��], c �����-G�, known to bind
Aβ��[��].

�.�.� Disordered proteins as complex systems

Compared to folded proteins, disordered proteins show enormous spatial and tempo-
ral heterogeneity, not only in their structure, but also in their diverse interactions[��].
It is therefore natural to view them as complex systems, featuring non-linear and
emergent behaviour. Examples of the latter include the aforementioned protein
aggregation and liquid-liquid phase separation phenomena, while non-linearity can
sometimes be observed in their temperature dependence: Folded proteins generally
unfold with an increase in temperature, while some disordered proteins have been
observed to become more ordered[��, ��]. Behaviour consistent with self-organized
criticality – the tendency of some complex systems to converge to a ‘tipping point’[��]
– can also be observed in some proteins in the form of a power law distribution of
hydrophobicities[��, ��] or their tendency express to a point close to insolubility[��].
All these phenomena point to the possibility of using tools from dynamical systems
theory to effectively study and understand disordered proteins. I will introduce two
related ideas from this field, Markov models and the related Koopman operator later
in the chapter (Subsection �.�.�).
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�.� Probing disorder

�.�.� Limits of experimental methods

Over the last ~�� years, structure determination methods have evolved in massive
strides. Structural biologists now have a large arsenal of tools available to them,
covering various time- and length-scales (Figure �.�). Traditionally, the vast majority
of static structures have been solved using X-ray crystallography, with cryo electron
microscopy (cryo-EM) quickly catching up [��].

Characterising disordered proteins and regions is infinitely more difficult. In X-ray
crystallography, disordered regions are not resolved at all, whereas with cryo-EM
they form regions of low electron density[��], thus yielding very little information on
possible conformations. A folded protein is relatively static, with well-defined free
energy minima, and as a result, a long-timescale observation we make of it will be
subject to little variation. Attempting the same on a disordered protein will inherently
result in a noisy measurement, and we will generally have to be content with an
ensemble average. Thus many experimental approaches are unable to provide the
resolution necessary to draw structural conclusions, or aren’t applicable to disordered
proteins to begin with[��]. I will briefly summarize some approaches to study the
structure of proteins and their limitations with regards to disorder.

X-ray Crystallography X-ray crystallography[��] is one of the most widely used
and also one of the oldest techniques to study the structure of proteins and their
binding pockets. It relies on the fact that many proteins can be crystallized and then
subjected to X-ray scattering, thus determining the overall structure. While most
structures deposited on the protein data bank have been found through some form
of X-ray crystallography[��], this approach is generally not applicable to disordered
proteins as their structure is essentially heterogeneous and they are not crystallizable
in their native disordered state. Furthermore, disordered regions in crystal structures
are often invisible due to their dynamic nature.

Cryo electron microscopy (cryo-EM) In recent years, cryo electron microscopy has
quickly advanced to yield structures of proteins and complexes of unprecedented
size and potentially atomistic resolution[��]. In short, a solution of the protein of
interest is applied to a fine grid and frozen within a very short time-frame before
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Figure �.�: Time- and length-scales explorable with modern biophysical tech-
niques, and the biological events that can be probed with them: molecular dynamics
(MD)[��], nuclear magnetic resonance (NMR)[��–��], quantum mechanics / molec-
ular mechanics (QM/MM)[��], small angle X-ray scattering (SAXS)[��–��], Förster
resonance energy transfer (FRET)[��, ��], cryo electron microscopy (cryo-EM)[��,
��], X-ray crystallography[��, ��] and computational structure prediction (CSP)[��,
��].

being imaged using electron microscopy. The acquired two-dimensional images are
then combined using computational methods to yield a detailed three-dimensional
map of the electron density and thus the structure[��]. However, as disordered
regions are highly dynamic and flexible, the electron density will appear to be very
low and spread out, thus making structural characterizations difficult. Furthermore,
not only can freezing coincide with major conformational changes[��], interactions
with surfaces and other interfaces can also cause significant structural changes[��,
��].

Förster resonance energy transfer (FRET) Förster resonance energy transfer[��] can
yield a fluorescence signal based on the proximity of two fluorophores, and thus
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indicate a binding event. Single-molecule FRET in particular can provide information
on non-equilibrium processes, rare states and events, and causal processes, such
as binding and unbinding events[��]. However, the labels used are typically large
and can interfere not only with the interactions being studied, but also with the
conformational ensemble of the disordered protein[��].

Nuclear magnetic resonance (NMR) Nuclear magnetic resonance[��] is one of
the most powerful and versatile structure determination and interaction probing
methodologies available. It can be used without bulky, hydrophobic labels and in
solution, two characteristics that are essential for the study of disorder. One of the
main types of information gained from NMR are the chemical shifts of certain atoms
of the protein, which are the resonance frequencies of the atom’s nucleus with respect
to a standard reference compound. They encode information on their chemical and
structural environment and thus allow the determination of topology and structure
of molecules[��]. This means we can still observe weakly-interacting regions, albeit
in an ensemble-averaged way.

An issue common with disordered proteins is the low dispersion of chemical shifts
due to the intrinsically uniform chemical and structural environment, making this
measure less useful for structure determination. Another possible problem is the
fast exchange of hydrogen at higher temperatures due to disordered proteins solvent-
exposed nature, losing proton information[��, ��]. This often limitsmeasurements to
lower, non-physiological temperatures. Further structural information can be gained
fromNMRexperiments, such as residual dipolar couplings (RDCs), which encode the
relative orientation of certain bonds to a reference frame[��], 3J-couplings[��], which
are able to yield information on the protein backbone dihedral angle distributions, or
utilising the nuclear Overhauser effect (NOE)[��], providing additional information
on the proximity of certain atoms.

Small angle X-ray scattering (SAXS) Small angle X-ray scattering[��] is another
scattering technique using hard X-rays, but recording significantly smaller scattering
angles. This makes it possible to obtain structural ensemble-averaged information
for systems in solution as opposed to a crystal, making it particularly useful for the
study of disordered proteins. It is also well suited to integrative approaches using
NMR and / or molecular simulations.
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Computational structure prediction (CSP) Computational structure prediction
methods based only on residue sequences and possibly multiple-sequence alignment
(MSA) data have recently made headlines. Predictors using deep learning such as
AlphaFold�[��] and RoseTTA fold[��] can achieve scores of �� and higher (with
��� being a perfect match) on competition datasets such as Critical Assessment of
protein Structure Prediction (CASP)[��]. They are however often limited to systems
with available MSA data and few disordered regions, and while their accuracy is
remarkable, the resulting structures are not generally highly-resolved enough to allow
computer-aided drug design. Additionally, as these predictors have been trained on
experimentally obtained structures, they will feature an inherent bias towards, for
example, easily-crystallizable proteins.

Molecular dynamics (MD) Molecular dynamics is another computational tech-
nique making it possible to gain atomistic insight into the behaviour of molecules
on varying timescales. While the computational expense grows with the simulated
time and size of the system, recent advances in processing speed and other auxiliary
algorithms have made it possible to study large systems and make predictions about
their behaviour. On the other hand, their accuracy is fundamentally limited by the
nature of the classical mechanics framework and the associated parameters – the
force field. As molecular simulations are my tool of choice to investigate disordered
proteins, I will dedicate the latter part of this introduction to them.

�.�.� Kinetic aspects

So far, we have focused mostly on the structural and thermodynamic aspects of using
experimental approaches to study disordered proteins. However, kinetic data – for
example transitions between different states, or relaxation rates – present a further
challenge for the structural biologist. In the experimental methods outlined above,
structural properties are often ensemble-averaged and gaining fast-timescale kinetic
information is therefore difficult.

NMR is one of the few technologies that allow the extraction of kinetic information.
One such method is hydrogen-deuterium exchange (HDX)[��]. This idea relies on
the fact that deuterium is invisible in NMR, we can thus subject our protein to a
solution containing a certain percentage of D2O. Over time, exposed regions will
exchange their hydrogen with deuterium, therefore losing their signal. If we have a
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system that can take on multiple states with different levels of exposure we will be
able to make inferences about the transition rates.

Rates in the range of pico- to milliseconds can also be deduced from nuclear spin
relaxation experiments[��], in particular relaxation dispersion[��]. The lattermethod
can – if the differences in chemical shifts are large enough – resolve transitions
between a ground and very low-population excited state. The obtained relaxation
rates can thus give important clues on dihedral angle rotations and loop movement.
This data has been successfully back-calculated from Markov models based on
molecular dynamics[��].

Outside of the world of NMR, FRET has been successfully utilised to obtain
relaxation and state lifetime estimates on the microsecond timescale, for example
for Aβ��[��]. On the other end of the timescale spectrum, SAXS has been used to
monitor conformational changes in real time on the minute timescale[��].

Despite these promising results, there remain large gaps in the obtainable kinetic
information from experimental methods. This is especially evident in NMR, as there
is a prominent lack of methods to cover the nano- to microsecond timescale range
(Figure �.�)[��]. This leaves us with molecular simulations as one of the most suitable
methods to provide atomistic information on kinetics for small- to medium-sized
systems. In the following I will continue with a more in-depth discussion of this
method and related analysis techniques.

�.� Molecular simulations

�.�.� The ensemble framework

To make our lives easier when defining the precise goals of a molecular simulation
and also aid in analysis, I will introduce the concept of ensembles. The following
definitions are distinct from those of statistical mechanics by Gibbs[��]. We will
restrict ourselves to the spatial coordinates only, as opposed to the classical view of
phase space including velocity vectors. We define the set of all structures Xn for an
n-atom system as:

Xn =

n∏
i

R3 = R3 × ...× R3︸ ︷︷ ︸
n

, (�.�)
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This means we have x, y and z coordinates for every atom, giving us a 3n-
dimensional space. This space will allow us to subsequently define our ensembles.

Structural ensembles

Historically, the singular protein structure was seen as the central entity in struc-
tural studies. However, with the increased interest in disorder, we need to extend
this framework to ensembles of structures. Instead of attempting to rely on a sin-
gle structure x ∈ Xn to explain the protein’s behaviour, we consider a structural
ensemble:

EmStruc =
{
(x1, ..., xm) | xi ∈ Xn

}
(�.�)

ofm conformations that can be explored by the protein. This allows us to illustrate
flexible regions by providing possible alternative structures. If we decide to calculate
an ensemble-averaged property 〈A〉 of our protein, we can do so by forming the
arithmetic average over allm structures:

〈A〉 = 1

m

m∑
i=1

A(xi) (�.�)

Note that while Equation �.� makes no assumptions about the probability of
encountering a certain structure, this probability is implied by how the conformations
were generated. In molecular dynamics simulations, this is typically by sampling
from the Boltzmann distribution. In the next section, we will expand this idea to
explicitly account for different sampling distributions.

Thermodynamic ensembles

An inherent problem with structural ensembles is that in practice we have no infor-
mation on the relative abundance of certain structures compared to others – or to put
it more mathematically, we would need an infinite number of structures to properly
encode their abundance. We would thus ideally associate a weight or probability to
each single structure in the ensemble1. Formally speaking, this entails associating to

�Alternatively, one could use measure theory to more rigorously define these ensembles.
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our subset ofm structures a vector w ∈ {(w1, ..., wm) | wi ∈ R+} withm elements.
Our thermodynamic ensemble then becomes a pair2:

EmThermo =
(
EmStruc,w

)
. (�.�)

If we further impose a normalisation condition, i.e.
∑m
i wi = 1, then w becomes

a probability distribution and pi becomes the probability of observing a particular
conformation xi

3. This probability is related to the free energy F with:

Fi = −kBT logwi (�.�)

where kB and T are the Boltzmann constant and the temperature, respectively. As
a consequence, if we now want to calculate an ensemble-averaged property of the
system, we need to use a weighted average:

〈A〉 = 1∑m
i=1wi

m∑
i=1

wiA(xi) (�.�)

This weighting needs to be taken into account generally, for example when cal-
culating probability distributions (using histograms), or when sampling a lower
number of structures from the ensemble. There is still a crucial dimension missing
in thermodynamic ensembles, time.

Kinetic ensembles

While we now know the conformations our protein can explore, and how likely those
conformations are compared to others, we do not have any information on how
these conformations are connected. In other words, we have no information on
the timescales and pathways of interconversion between structures. This temporal
information can be provided in a kinetic ensemble: we first assume that our structures
have some underlying time structure, i.e. that they have been generated by some
dynamicalmethod; wewill therefore now switch to using t as an index as opposed to i.
We also assume we have some way of grouping similar structures together into states.
We first associate a membership χt to each conformation xt. This membership can
take several forms, but to be as general as possible we will introduce it as a point on

�This definition is essentially equivalent to the concept of fuzzy sets[��].
�We can alternatively viewwi as a functionw : Xn → R+; w : xi 7→ wi
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a k-simplex χt ∈ ∆k defined as ∆k = {(q1, ..., qk) | qi ∈ R+;
∑k
i = 1}. Note that

k � m. Conceptually, this membership encodes the degree of membership – or
alternatively the probability – of finding our conformation xt in some state. I will
justify the use of this ‘soft’ membership compared to a more simple discrete state
assignment in section �.�.� and chapter �. In addition to these membership vectors,
I will also introduce the idea of a transfer operator P : ∆k → ∆k that can move the
membership of our system by some time τ: P : χt 7→ χt+τ. Our kinetic ensemble is
thus defined as:

E
(m,k)
Kinetic =

(
EmStruc, (χ1, ..., χm),P

)
(�.�)

We will explore this theme later in the form of Markov models and Koopman
operator theory (Section �.�.�).

�.�.� Molecular dynamics

In molecular dynamics, we model the system as a ball-and-stick model using classical
mechanics at an atomic level. In practical terms, this means first assigning spatial
coordinates and velocities to each atom of the system, resulting in 6n degrees of free-
dom for n atoms. Next, we need some way of calculating the energy and thus forces
of the system. These are dependent on a number of inter- and intramolecular interac-
tions and have generally modelled after experimental[��] or quantum-chemical[��]
results. This equation for the energy of a classical system is referred to as the force
field, and one of the most common functional forms is as follows:

V(x) =
∑
bonds

kd
2
(d(x) − d0)

2 +
∑
angles

kθ
2
(θ(x) − θ0)

2

+
∑

dihedrals

kφ

2
(1+ cos(nφ(x) − φ0)) +

∑
impropers

kψ

2
(ψ(x) −ψ0)

2

+
∑

non-bonded
pairs (i,j)

4εij

[(
σij

rij(x)

)12
−

(
σij

rij(x)

)6]
+

∑
non-bonded
pairs (i,j)

qi × qj
4εDrij(x)

(�.�)

In short, it describes the energetic contributions of various motions, such as bond
stretching (d(x)), angle bending (θ(x)), rotation about dihedrals and impropers
(φ(x) andψ(x)), and long-range interactions such as electrostatic and van der Waals
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a b c

Figure �.�: Types of boxes typically used for molecular dynamics simulations of
biomolecules. a cubic, b octahedron, c rhombic dodecahedron.

forces (dependent on the distance rij(x)). While the bonded components are also
dependent on certain force constants (kd, kθ, kφ, kψ) and equilibrium values (d0, θ0,
φ0, ψ0), the non-bonded interactions are based on Lennard-Jones parameters (σij)
and partial atomic charges (qi).

The long range interactions require particular attention to avoid introducing
artifacts at simulation boundaries. To correctly model these one makes use of
periodic boundary conditions and the particle mesh Ewald method[��]. The former
allows the system to interact with copies of itself, thus resolving artifacts originating
from abrupt cut-offs and other truncation effects. The latter method uses a fast
Fourier transform to efficiently calculate long range electrostatic interactions by
discretizing point charges on to a lattice.

By choosing a suitable box geometry, one can avoid having the system experience
an artificially high concentration and at the same time save computational cost by
reducing the amount of solvent molecules required. A simple cubic box might be the
easiest to conceptualize and implement, we however have to consider that the vast
majority of (not only disordered) protein systems explore an approximately spherical
volume. A suitable box choice therefore often takes the form of an octahedron or a
rhombic dodecahedron (Figure �.�).

Now that we have a way of evaluating the energy and corresponding forces F(x) =
−∇V(x) on each atom of the system at every time-step, we can use an integrator
to calculate new atomic positions xi and velocities vi (or equivalently momenta
pi = mivi). We will use the concept of Hamiltonian dynamics to find a suitable
integration scheme. A system is Hamiltonian if it satisfies the following property, in
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which H(x,p) (the Hamiltonian) is a functional representing the total energy and
time-evolution of the system:

dx
dt

= +
∂H
∂p

and
dp
dt

= −
∂H
∂x

(�.�)

This solution space is known as a symplectic manifold, embedded in the general
phase space (x,p) and defined by this special relationship between positions x

and momenta p. For a true Hamiltonian system, any trajectory traced on this
manifold will have constant energy. We now need to find a numerical form for
H(x,p) preserving this property, also known as a symplectic integrator. Because our
time step ∆t is not infinitesimally small we will incur a discretization error O(∆tn)

related to the order n of the integrator. Higher order integrators effectively use
fractional steps to reduce this error, but will incur a higher computational cost. One
of the simplest symplectic integrators is the symplectic Euler integrator, a first-order
method:

vt+1 = vt + at∆t+O(∆t) (�.��)

xt+1 = xt + vt+1∆t+O(∆t) (�.��)

We thus first calculate the new velocity vt+1 using our current estimate vt and the
acceleration (given by the force field and atomic masses m = [mi] with at =

F(xt)
m )

before using this new velocity to compute the next atomic positions xt+1. This
method results in an error on the order of the time step∆t. To improve our accuracy,
we can use a second-order method, such as the leapfrog integrator, in which the
positions and velocities are updated in an interleaved manner:

vt+1/2 = vt−1/2 + at∆t+O(∆t2) (�.��)

xt+1 = xt + vt+1/2∆t+O(∆t2) (�.��)

This particular integrator is popular in molecular dynamics due it’s symplectic
nature, time-reversibility and relatively low computational cost. Unlike the Eu-
ler integrator (Equation �.��), the leapfrog is stable for oscillatory motion such as
bond vibrations. If even higher accuracy is required a higher-order method with
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correspondingly lower error can be used, one example is the class of Runge-Kutta
integrators. One however needs to verify that symplecticity and time-reversibility
are preserved[��].

We can thus, using our originally assigned atomic positions, velocities, and the
force field (Equation �.�) calculate the positions and velocities after an arbitrary time
t. This process is repeated until the desired simulation length has been reached. An
important constraint here is that the time step ∆t needs to be chosen in such a way
as to fully resolve the fastest motion of the system. In the case of proteins this will
typically be C-H bond vibration on the order of �� fs, we therefore need to choose a
time step of � fs or lower 4.

Once we have calculated a sufficient number of steps, we will be left with a trajec-
tory of our system showing the time-evolution of the coordinates x and velocities v.
This leads us to the next question: How long is sufficient?

This question is as much a philosophical as it is a technical one. Given long enough
timescales, even proteins that are considered as having an exceptionally stable fold
will eventually visit an unfolded state. However, we often aren’t interested in states
so far away from equilibrium. We thus need to consider which specific question we
are trying to answer.

To obtain data with adequate statistical significance, our (equilibrium) trajectories
should be several times longer than the process of interest (Figure �.�), so that it
can be observed multiple times, or at least have sampled that process through other
means, for example with enhanced sampling methods (section �.�.�). This in turn
often requires that we know the reaction coordinate (or collective variable) that we
are trying to probe, so that we can evaluate our progress.

A necessary, but not strictly sufficient method to assess convergence in this case
is by splitting our trajectory into two or more parts, and calculating a probability
distribution of our coordinate of interest for each part. If both probability distribu-
tions match within a certain threshold, we can consider the simulation as fulfilling
an important convergence criterion. Additionally, any kind of grouping or state
definition should be stable, i.e. state populations should not be changing over time.
Finally, we can also look at temporal effects: in a converged simulation we would
expect state transitions to be constant and not fluctuate over chunks. The latter is a

�We can use longer time steps using the hydrogen mass repartitioning technique, in which the mass
on the C-H bond is distributed equally on to both atoms. This has the effect of significantly slowing
the vibration and thus allowing time steps of up to � fs with little loss in accuracy[��].
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strong convergence criterion as it ensures that (possibly rare) state transitions have
been sampled adequately, in contrast to the former two methods which only strictly
require consistent sampling of the state itself and not the transition.

�.�.� Increasing sampling efficiency

I will now take a brief detour into the field of enhanced sampling. Because we will be
adding additional energy to our system, we will no longer be sampling the Boltzmann
distribution and thus won’t be able tomake use of the time dimension for our analysis.
This is because the rates depend not only on the free energy barrier between states,
but also on the route taken. These enhanced sampling methods thus generally5

sacrifice our ability to extract kinetic information from the system. However, we
will be able to gain massive increases in sampling speed, provided we have some
basic intuition about the behaviour of our system. The general idea behind most
enhanced sampling methods is the modification of the potential energy function
V(x), either by changing parameters for non-bonded interactions (Equation �.�), or
by introducing an additional energy term to drive the system to new states.

Metadynamics

As one of the latter methods, metadynamics[��, ��] adds an additional time-
dependent biasing potential VMetaD to the force field VFF:

V(x) = VFF(x) + VMetaD(ξ(x), t) (�.��)

The idea is to keep track of the system’s location along a collective variable (CV)
ξ : Xn → R, a function of the system coordinates x, by depositing a small gaussian
‘hill’ every time period τG. Each hill will reduce the probability of the system revisiting
the same location on this CV. Once enough gaussians have been accumulated, the
system can escape a local free energy minimum and explore less favourable states
(Figure �.�). The metadynamics potential VMetaD(ξ, t) thus takes the following form
for several CVs ξ = [ξi]:

�Recent advances have allowed the recovery of kinetics from biased simulations, for example infre-
quent metadynamics.
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Figure �.�: A schematic representation of the metadynamics algorithm. The system
(purple dot) is subjected to a bias potential. After several iterations, the bias accu-
mulates and allows the system to escape the minimum, exploring the full free energy
surface. Adapted from Bussi et al.[��].

VMetaD(ξ, t) =

t/τG∑
i=1

wG exp

−

NCV∑
j=1

(ξj − ξj(xt))2

2σ2j

 (�.��)

wherewG, σj are the height and width of the gaussian, andNCV is the number of
collective variables. The number of CVs that can be biased is limited due to the curse
of dimensionality, the more dimensions that are added, the more gaussians need to
be deposited to fill the same space. Additionally, for computational efficiency these
gaussians are stored on a grid, which needs exponentially more memory for higher
dimensions.

One of the countless flavours based on the originalmetadynamicsmethod, Parallel-
bias metadynamics[��], solves this dimensionality problem by instead depositing
multiple one-dimensional gaussians instead of a high-dimensional single one. This
allows dozens of CVs to be biased at once.

�.�.� Kinetics from simulation

Obtaining kinetic information from simulations imposes an additional requirement:
We need to be sampling from the Boltzmann distribution with no additional modifi-
cations for enhanced sampling methods or other restraints. While it is not generally
required, a way to discretize space and time can also be immensely helpful in the
model building process. This usually entails a clustering of similar structures – yield-
ing a discretization in space – and the choice of a lag time τ, which represents our
temporal resolution. I will first discuss the Markov model as a simple way to get
useful kinetic information out of dynamic systems[��], and then introduce Koop-
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man models[��], which represent a generalisation of the former with some useful
properties.

Markov models

The state space of our molecular system is continuous, but with a discrete time
dimension. The central assumption making this process Markovian is that the
future state xt+τ of our system depends only on the current state xt, and not on any
previous states[��]. While a continuous state space treatment is mathematically
appropriate, discrete states are more suitable to build an actual model[��]. Practically
speaking, this entails first classifying structures into discrete states, and then counting
transitions between states within a lag time τ. These counts can be represented in a
matrix Z(τ) in which each entry zij represents the number of transitions from state
i to state j. In the limit of an infinitely long trajectory, the transition matrix P(τ) can
be obtained by simply normalising the rows of this count matrix Z:

pij =
zij∑
j zij

(�.��)

We now have a transition matrix P(τ) giving us the probability of observing
a state transition from state i to j within a time period τ. However, with finite
trajectories, there are a number of different transition matrices that can generate
the same trajectory. In fact, the probability p(Z(τ) | P(τ)) that a certain transition
matrix P(τ) generates a particular count matrix Z(τ) can be seen as the product
of the individual transition probabilities. We can thus formulate this probability as
follows:

p(Z(τ) | P(τ)) =
∏
i,j

p
zij
ij (�.��)

Equation �.�� represents a likelihood function, and by using Bayes’ theorem and
imposing a suitable prior6, we can indeed show that Equation �.�� is the maximum
likelihood solution to this equation[��]. A common constraint, especially useful to
us when analysing equilibrium simulation data, is the detailed balance or reversibility
condition:

�In the simplest case this can be the uniform prior with zpriorij = 0, making the posterior p(P(τ) | Z(τ))
equal to the likelihood.
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πipij = πjpji (�.��)

This means that at equilibrium, each microscopic transition is in equilibrium with
it’s reverse process. Notably, Equation �.�� does not include this constraint, it thus
has to be explicitly included when determining the maximum likelihood solution to
Equation �.��.

How do we find and / or classify the states to be able to count transitions? For
molecular systems we will typically need some grouping criterion. Formally, we
need to find a function χ : Xn → S, with S = s1, s2, ..., sm being our m-state
space. Molecular simulations are often approached as follows: first, a suitable set of
system coordinates is chosen, this could be suitably transformed atomic coordinates
or some kind of internal, translation- and rotation-invariant coordinates such as
residue-residue contact maps or backbone dihedral angles. Then, a dimensionality
reduction technique is used to move from the typically high-dimensional space to a
lower dimensional one more suitable for clustering algorithms. Common methods
are principal component analysis (PCA), time-structure independent component
analysis (TICA)[��, ��], multidimensional scaling (MDS)[��] or uniform manifold
approximation and projection (UMAP)[��]. The system frames are then clustered
in this low-dimensional embedding, for example using k-Means[���], k-Medoids,
agglomerative[���], or density-peak clustering[���]. This procedure gives us the
function χ to map from structures to states.

The next critical parameter choice we have to make is the model lag time τ. It
should ideally be small enough to resolve fast processes, but also avoid introducing
errors into the estimation of slower processes. The choice can be made by first
building trial models using the general approach outlined above and then visualizing
the dependence of the timescales ti – a function of the eigenvalues of the transition
matrix P – on the lag time τ. We would like these timescales to be independent of
the chosen and longer lag times.

What information can we acquire from our model? The decomposition of the
transition matrix P into the eigenvalues λi and eigenvectors ri can give us valuable
information about system properties:

P(τ)ri = λiri (�.��)
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Each eigenvalue/eigenfunction pair (λi, ri) corresponds to a dynamical process,
the superpositions of the latter form the slow dynamics of the system. The maximum
eigenvalue is λ0 = 1, and it’s associated eigenvector is the stationary (equilibrium)
distribution of the system, commonly denoted by π. If we were to observe our
system for an infinitely long time, the system would tend towards this distribution.
All other eigenvalues λi < 1 correspond to finite decay times, with higher values thus
representing slower processes. These eigenvalues λi can be expressed as relaxation
timescales ti by relating them to the model lag time τ:

ti =
−τ

log |λi|
(�.��)

As we can see, with λi → 1, ti → ∞, thus providing an intuitive basis for the
stationary distribution π. We can further study the eigenvalues to reveal the number
of slow processes involved in our system: Apart from λ1 = 1, a two-state system
would feature a second eigenvalue λ2 ≈ 1 very close to 1, but all subsequent eigen-
values λi � λ2 will be considerably smaller. This spectral gap can thus in some sense
indicate the dimensionality of our kinetic landscape and help us find an ideal state
decomposition.

Koopman models

I will now present a generalisation of Markov models that will become especially
useful for disordered proteins. I will mostly be following the work of Mardt[���],
Wu[���] and Klus[��].

We would like to find a linear operator K that can (approximately) propagate our
system in time. This process can be described as follows:

E[χ(1)(xt+τ)] = K>E[χ(0)(xt)] (�.��)

Here, E denotes a time average to account for random fluctuations in the dynam-
ics, while χ(1) = (χ

(1)
1 (x), ..., χ

(1)
k (x))> and χ(0) = (χ

(0)
1 (x), ..., χ

(0)
k (x))> represent

transformations χ : Rl → S from the original space – in which the dynamics may
be non-linear – into some feature space S with approximately linear dynamics7.
In molecular simulations we will also have a function h : Xn → Rl giving us an
intermediate space, typically with l� n, for example some kind of dimensionality
�For practical purposes, we will consider both transformations to be identical, i.e. χ(1) = χ(0) = χ.
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reduction. In the limit of an unlimited number of feature transformations χ we
recover the exact dynamics. To reproduce our Markov model introduced above, we
first need to partition our original space into sub-states Si ⊂ Rl, we can then define
indicator functions yielding state membership:

χ
(1)
i (x) = χ

(0)
i (x) =

1 if x ∈ Xi
0 if x /∈ Xi

(�.��)

This allows us to retain a probabilistic interpretation of the model. This means
that χ(1) = χ(0) become probability vectors encoding state membership, and the
entries of the matrix Kij become transition probabilities. Alternatively, we can define
χ(1)(x) = χ(0)(x) = x, this identity transformation forms the basis of approaches
such as dynamic mode decomposition (DMD)[���] and TICA[��, ��] and assumes
linearity in the original state.

Our goal now is to find the best possible transformations χ. From the variational
approach to Markov processes (VAMP) theory[���], these should be equal to the top
k left and right singular functions of the infinite-dimensional, but linear Koopman
operator K[��]. This is equivalent to solving the following minimization problem:

min
χ(0),χ(1)

Et
[∥∥∥χ(0)(xt+τ) −K>χ(1)(xt)

∥∥∥2] (�.��)

Mardt et al. first define the following covariance matrices[���]:

C00 = Et
[
χ(0)(xt)χ

(0)(xt)
>
]

(�.��)

C01 = Et
[
χ(0)(xt)χ

(1)(xt+τ)
>
]

(�.��)

C11 = Et+τ
[
χ(1)(xt+τ)χ

(1)(xt+τ)
>
]

(�.��)

The solution for K to �.�� then becomes:

K = C−1
00C01 (�.��)

We would now like to find the best possible functions χ(0) and χ(1), but due to
technical reasons we can not find the solution by minimizing Equation �.��[���].
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Using the VAMP variational principle[���] and the previously defined covariance
matrices (Eqs. �.��) we obtain the VAMP-� score R̂2:

R̂2

[
χ(0),χ(1)

]
=

∥∥∥∥C− 1
2

00 C01C
− 1

2

11

∥∥∥∥2
F

(�.��)

We now have a scoring function that we can utilise to evaluate the suitability of
our choice of transformation functions χ(0) and χ(1). We can in fact use it to score
Markov models built using the approach outlined in the previous section, and thus
select the most appropriate clustering algorithm, the number of clusters, the type of
dimensionality reduction, and so on.

Alternatively, we can use a system that can act as a universal function approxi-
mator, namely a neural network. For this, the VAMP� score gets converted into
a loss function, and two lobes of the neural network can learn the corresponding
transformation functions[���]. This elegantly allows us to ignore the intricacies of
any clustering and dimensionality reduction methods, because the neural network
learns the most optimal transformation for the system of interest. This idea has
been recently expanded to account for detailed balance – the requirement that when
stationary, each process is in equilibrium with it’s reverse process (see Equation �.��)
– and the avoidance of negative values in the Koopman matrix K, making it a correct
transition matrix[���].

Note that at no point have we required that our transformations χ(0) and χ(1) take
the form of indicator functions (Equation �.��). This means that, with certain con-
straints to our basis functions or neural network, we can view these transformations
as probabilistic state assignments. This has profound implications for disordered
proteins, which feature an inherently shallow energy landscape and low free energy
barriers, as we can now classify their state as a mixture of substates instead of a
single discrete one. I will, together with a novel neural network architecture, make
extensive use of this methodology in chapters � and �.

�.�.� Limits of simulation

In the preceding sections, I have introduced molecular simulations and advanced
analysis techniques from the area of dynamical systems as useful tools to study
disordered proteins. We have seen that simulations are ideally suited to covering
the ‘experimentally awkward’ nano- to microsecond timescale range and can in
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principle provide atomistic resolution. Nevertheless, it is important to keep in mind
that simulations present a simplified model of the world, and we are making many
implicit assumptions about the interactions of our systems. I will outline some
prominent sources of error and possible solutions.

Systematic error

The first problem we have is that of systematic error, i.e. the approximations we
make in modelling our physical system based on the complex laws of quantum
mechanics as a classical system. With the use of a force field, we ignore the electronic
structure and thus chemistry of our system, making it impossible to study reactions
and catalytic processes. We also generally assume that atomic charge is statically
distributed in our system instead of being polarized8. Traditionally, force fields
were optimized for folded systems, and disordered proteins thus often showed
high modelling errors[���]. The increased interest in disorder, better experimental
and quantum-mechanical fitting data, and improved fitting procedures means that
modern force fields are now more optimized for a wider variety of systems[���].
Recently, much work has been put into machine learned potentials[���].

Methods using experimental restraints or a posteriori re-weighting approaches
present an alternative solution to this issue. Molecular simulations can be subjected
to a bias potential that can force the system to explore the region of state space most
compatible with experimental data for that particular system. One such method,
metainference[���, ���] takes into account the maximum entropy principle and
potential errors in the experimental data or forward model to allow the use of many
heterogeneous datasets. As an alternative, re-weighting approaches[���, ���] can
provide a new weight vector w for the thermodynamic ensemble (Equation �.�).
Because with restraining methods we are no longer sampling from the Boltzmann
distribution, we cannot use the resulting trajectories to build a kinetic ensemble.
However, re-weighting approaches for Markov models exist, for example in the
form of augmented Markov models[���], or a recent extension to the VAMPNet
approach[���].

�So called polarizable force fields[���] can overcome this problem to a certain degree, with a corre-
sponding steep rise in computational cost.
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Even if re-weighting or restraining are not possible, we can at the very least estimate
the impact of systematic error on our ensemble by backcalculating observables and
comparing them to the experimentally determined values.

Statistical error

On the other side we have the issue of statistical error, most commonly in the form
of insufficient sampling. To make accurate predictions from our simulations, it is not
enough to use a physically suitable framework, but we also need to make enough ob-
servations to have our predictions carry weight. However, computational resources
are limited, and accessing high microsecond timescales – required to observe many
important biological phenomena – can be very demanding for large systems. En-
hanced sampling approaches such as metadynamics[��] (Subsection �.�.�), together
with wise collective variable choices, can alleviate this problem somewhat and pro-
vide order-of-magnitude increases in sampling efficiency. Unfortunately we are then
generally unable to recover kinetic information from our system, as we are again no
longer sampling the Boltzmann distribution. A possible compromise is adaptive sam-
pling, in which we can influence the sampling direction of a system by running many
short trajectories and frequently resampling a set of new starting conformations
according to some criterion. The system can thus be driven to new states without
interfering with its equilibrium distribution. Two such ideas are termed weighted
ensemble[���] and fluctuation-amplification of specific traits (FAST)[���], the latter
of which I will make use of in chapters � and �.

Statistical error sources are not limited to the simulation methodology itself, but
also to the analysis methods used on the resulting data. One of the main points of
Markov models is to discretize the system in time and space, thus introducing a cor-
responding discretization error that will influence any rates and relaxation constants
calculated from the model. Maximum entropy approaches, like the metainference
method mentioned above, rely on ensemble averages from a limited number of
simulation replicas to calculate an experimental value, thus introducing statistical
error[���]9.

To estimate the error incurred by limited sampling, we can perform strict con-
vergence checks for our ensemble. For instance, monitoring the change of state
populations for random subsets of our ensemble can yield important information
�This error is usually explicitly accounted for in the calculation of the restraint potential.
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on the correctness of the thermodynamics. To evaluate the quality of our sampled
state transitions, we can build multiple kinetic models on subsets of our data and
compare fundamental features of the transition matrix P orK, such as the relaxation
timescales.

�.� Aims

So far I have introduced disordered proteins, their role in biology and disease, po-
tential drug targeting approaches, and methods to study them, with a focus on
computational methods. The behaviour and interactions of disordered proteins in
terms of kinetics is poorly understood, due to the previous lack of experimental and
computational methods able to cover the fast timescales involved. New develop-
ments in dynamical systems theory, specifically the VAMPNet approach[���, ���],
now enable us to lift the veil on nano- and microsecond kinetics with high accuracy.
I will use this methodology to answer some key questions about the Alzheimer’s-
associated disordered protein amyloid-β �� (Aβ��):

�. Does monomeric Aβ�� feature distinct states?

�. How fast are the transitions between these states?

�. What are the structural origins of the kinetic barriers?

�. What timescales are involved in the dynamic interactionwith a small molecule?

In chapter � I use the VAMPNet approach to construct kinetic ensembles of Aβ��
and it’s methionine-oxidized variant. I found that the protein occupies distinct states
with transitions on the microsecond timescale involving the folding and unfolding of
transient secondary structure. The highest-population state is more extended, and
transitions mostly move through this state, giving it a hub-like importance. With
oxidation of methionine at residue ��, the population is shifted towards the hub
state, with transitions toward it correspondingly increased. The less-folded hub state
has analogies to the proposed inverted free-energy landscape[���] and the kinetic
hub model of protein folding[���].

In chapter � I use the same methodology to study the interaction of the previ-
ously[��] thermodynamically characterised small molecule �����-G� with Aβ��
in terms of the kinetics, with urea as a control molecule. I discovered that this
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interaction is governed by many transient nanosecond-scale π-π contacts with key
residues. The global effect of this is a drastic population increase for the main hub
state, with corresponding acceleration of transitions into it. In addition, while the
backbone entropy of the protein is increased, side-chain dihedral autocorrelations
indicate local enthalpic stabilisation. These results suggest a binding mode that is
both enthalpically and entropically favourable and hint towards the possibility of
obtaining drug specificity.

Disorder is of course not limited to entire sequences, but also occurs regionally.
sdAbs often feature partially disordered areas in the form of CDRs, parts of the
protein that determine their binding behaviour. Developing antibodies for specific
targets involves carefully designing a suitable CDR to obtain high affinities, using
either purely experimental techniques or computational sequence- or structure-
matching approaches. I sought answers to the following two questions:

�. How does a structurally-designed sdAb antibody differ from an sequence-
matching based design?

�. Is reduced binding affinity the result of lower or higher conformational entropy
in the CDR?

In chapter � I attempt to answer these questions by performing metadynamics
simulations of a designed antibody based on a sequence-matching approach targeting
oligomers (‘rational design’) and a structurally-designed one. The rationally-designed
antibody showed considerably higher flexibility in the CDR, despite the shorter
sequence. This shows that the sequence of the CDR may have to be carefully chosen
to obtain a certain number of CDR — scaffold contacts acting as ‘anchors’, thus
reducing the conformational entropy and potentially improving affinity.
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� Akinetic ensemble of the
Alzheimer’s Aβ peptide

If it’s a good idea, go ahead and do it.
It’s much easier to apologize than it is to get permission.

— Grace Hopper

This chapter has been adapted from my first-author publication of the same title[���].
I designed the study and performed the analysis. Kai Kohlhoff and I ran the simu-
lations. Kai Kohlhoff, Gabriella Heller and Carlo Camilloni assisted with analysis.
Michele Vendruscolo supervised the work. Michele Vendruscolo and I wrote the
manuscript with assistance from my co-authors.

�.� Summary

The conformational and thermodynamic properties of disordered proteins are com-
monly described in terms of structural ensembles and free energy landscapes. To
provide information on the transition rates between the different states populated
by these proteins, it would be desirable to generalize this description to ‘kinetic
ensembles’. Approaches based on the theory of stochastic processes can be partic-
ularly suitable for this purpose. Here, we develop a Markov state model and apply
it to determine a kinetic ensemble of amyloid-β �� (Aβ��), a disordered peptide
associated with Alzheimer’s disease. Through the Google Compute Engine, we gen-
erated ��� µs all-atom molecular dynamics trajectories. Using a probabilistic-based
definition of conformational states in a neural network approach, we found that Aβ��
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� A kinetic ensemble of the Alzheimer’s Aβ peptide

is characterized by inter-state transitions on the µs timescale, exhibiting only fully
unfolded or short-lived, partially-folded states. Our results illustrate how kinetic
ensembles provide effective information about the structure, thermodynamics, and
kinetics of disordered proteins.

�.� Introduction

Proteins that are fully or partially disordered make up approximately one third
of the human proteome, perform a variety of biological functions and are closely
involved with many major human disorders[��, ���]. The existence of disordered
proteins is making it necessary to extend the structure-function relationship that has
driven major advances in protein science in the last �� years to a structure-dynamics-
function relationship, in order to account for the essential role of structural disorder
in determining the normal and aberrant behaviours of these proteins[��, ���, ���].

Because of their conformational heterogeneity, it is typically insufficient to charac-
terize disordered proteins using one or a few specific structures, as it is standard for
folded proteins[��]. Instead, it has become common to describe these proteins in
terms of structural ensembles, which in turn are often represented through free en-
ergy landscapes[���–���], when the statistical weights of the states in the ensemble
are available, for example, through the use of enhanced sampling techniques[���].
This is a powerful description, which concisely captures information about the struc-
ture and thermodynamics of disordered proteins. Here, we refer to these ensembles
here as ‘thermodynamic ensembles’. It has also been recently observed, however, that
a more complete description should include information about the kinetics, which
can be achieved by adding the transition rates between different conformational
states[��]. We refer to these ensembles here as ‘kinetic ensembles’. This task requires
a characterisation of the kinetic properties of disordered proteins, which remains a
challenging task, both experimentally and computationally.

In this work, we describe an approach to generate kinetic ensembles, which con-
tain information about the molecular structures of proteins, the populations of
their metastable states, and the transition rates between these different metastable
states (Figure �.�). While acquiring structural and population information is already
possible with molecular dynamics simulations alone, gaining interpretable kinetic
information can be more effectively achieved by exploiting the theory of stochas-
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tic processes[���] during the analysis, and it is typically done using Markov state
models[��, ���].

In contrast to thermodynamic ensembles, constructing kinetic ensembles requires
a state decomposition. To define the states in these models, one can choose a set of
features from a trajectory, such as backbone dihedral angles or the root-mean-square
deviation to some reference structure, and then use a clustering algorithm to obtain
a state assignment for each frame. One can then count the transitions between states
and normalize these counts to obtain a transition matrix[��, ���]. An additional
coarse-graining step can then be performed to obtain a more interpretable model
with fewer states. Alternatively, clustering can be preceded with an additional di-
mensionality reduction step. One such example particularly relevant for building
Markov models is time-structure independent component analysis (TICA)[��, ��]
which projects conformations into a space where distances have a kinetic mean-
ing. Clustering in this space thus has the potential of naturally preserving kinetic
separation.

This particularmodel-building approach presents unique challenges for disordered
proteins, due to the heterogeneous nature of their conformations. In disordered
proteins, transitions between the short-lived states are typically fast and not neces-
sarily characterized by large variations in the overall shape of the protein. This is
in contrast to folded proteins, where states can often readily be classified on global
structural properties alone[��, ���, ���], such as the open and closed states of a
G-protein binding receptor[���]. For disordered proteins, even with suitable struc-
tural measures, because these transitions are fast, dividing this space into discrete
areas is exceedingly difficult (Figure �.�b), and many clustering algorithms may fail
to consistently separate states. Consequently, it would be ideal to obtain a type of
clustering, which we can describe as ‘soft’, such that state assignments can have a
probabilistic nature. In this approach, every frame is assigned a discrete probability
distribution encoding its membership in a certain state. This information can be used
to build a soft Markov state model, which can be interpreted in much the same way
as one built from individual transition counts[��]. To optimize for kinetic separation
and allow for probabilistic state assignments, we employed the VAMPNet technique
with physical constraints (Figure �.�c)[���, ���] to construct a soft Markov state
model (or Koopman model, see Methods). The resulting stochastic matrix allows
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us to compute the equilibrium distribution of the ensemble as well as the transition
rates between metastable states.

We illustrate this approach to determine a kinetic ensemble of amyloid-β �� (Aβ��),
using ��� μs of explicit solvent molecular dynamics simulations. We chose Aβ��
because of its associationwithAlzheimer’s disease, which is among the leading causes
of death in the developed world, with no disease-modifying treatments available[���].
One of the characteristics of Alzheimer’s disease is the formation of neurotoxic
aggregates of Aβ��[��, ��, ���]. This complex process can be divided in to a set
of non-linearly coupled microscopic steps, for all of which the monomeric state
of the protein plays a key role[���]. It is therefore of great importance to better
understand the structural and kinetic properties of the monomeric state of Aβ��,
as the dynamic properties in particular are key to determine the effects of small
molecule drug candidates on the aggregation behaviour of this peptide[��, ���].
Because of the ensemble-averaged nature of most experimental measurements of
Aβ��, molecular simulations can provide a uniquely precise, atomistic description of
its kinetic ensemble. Previous computational studies to characterize Aβ��[��, ���,
���–���] have focused mainly on the thermodynamic properties of this peptide,
but less so on the kinetics of state transitions. It is therefore still debated as to
whether this peptide ever adopts long-lived (i.e. more than hundreds of µs) states
associated with its aggregation behaviour. We validate the kinetic ensemble using
independent experimental data obtained from nuclear magnetic resonance (NMR)
spectroscopy. The resulting kinetic ensemble provides the structural properties and
the populations of the states of Aβ�� and the transition rates between them. It also
allows us to make predictions of involved timescales and is especially informative in
terms of the kinetics of secondary structure formation. We believe that this approach
offers a unique perspective into the structure, thermodynamics, and kinetics of
disordered proteins towards an increased understanding of their dynamic behaviour.
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Figure �.�: Illustration of a kinetic ensemble of a protein and the training method-
ology. a, A kinetic ensemble consists of three components: (�) structures, (�) their
statistical weights (populations) and (�) interconversion rates between groups of
related structures (states). Structural and thermodynamic ensembles have only the
first or first two components, respectively. b, The free energy landscape of disor-
dered proteins is flatter and more heterogeneous than that of folded proteins, making
a state decomposition difficult, and thus the determination of a kinetic ensemble
challenging. c, Architecture and function of the constrained VAMPnet (Methods).
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�.� Results

Molecular dynamics simulations on the Google Compute Engine. We performed
explicit solvent molecular dynamics simulations in � rounds with ���� trajectories
each, using the fluctuation-amplification of specific traits (FAST) approach[���] to
accelerate the exploration of conformational space. Cloud architectures, such as the
Google Compute Engine are especially well suited to generate Markov state models,
as the individual simulations can be run independently from one another, with no
communication between machines required[���]. We chose the CHARMM��×
over the CHARMM��m force field due to the better agreement with macroscopic
observables such as radius of gyration for the closely related Aβ�� peptide[���, ���].

Standard Markov model techniques. We first attempted to build discrete Markov
state models using existing state-of-the-art techniques. We used TICA[��, ��] as
a preliminary dimensionality reduction step with inter-residue nearest-neighbour
heavy atom distances, followed by clustering with various algorithms, different
numbers of input dimensions, and varying amounts of clusters. We used the cross-
validated generalized matrix Rayleigh coefficient technique[���] to score the indi-
vidual models (see Methods, Supplementary Figure �.�). Despite an extensive hyper-
parameter search, we were unable to construct a model with converging timescales
(Extended Data Figure �.� a). Nevertheless, we used the best-performing hyperpa-
rameters, specifically the minibatch k-Means clustering algorithm using �� dimen-
sional input and ��� clusters to build discrete coarse-grainedmodels using the hidden
Markov state model[���] (Extended Data Figure �.� b-d) and Perron cluster-cluster
analysis approaches[���] (Extended Data Figure �.� e-f ). These models, however,
also suffered from non-converging or overly fast timescales, suggesting the presence
of significant problems in this particular approach for state-space discretization. We
therefore decided to pursue an approach based on a probabilistic state description.

Soft Markov state models. We next attempted to build a neural network for the
disordered ensemble of Aβ�� with soft state assignments. To this end we employed
the VAMPNet technique with physical constraints[���, ���]. VAMPNet is a two-
lobed, unsupervised neural network, only taking as input two frames separated
by a lag time τ, and yielding a soft state assignment vector χ(xt) for each frame
xt (Figure �.� b). The loss function is given by the variational approach to Markov
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processes (VAMP) score[���], allowing the learning of a state decomposition without
explicit state labelling. The dimensionality reduction and clustering steps are thus
performed in a single procedure, allowing for highly non-linear state membership
functions to be learned. A recent addition[���] to this approach allows the use of
constraints to keep the elements in the learned transition matrix positive, and the
model reversible. This is accomplished by training two auxiliary weights u and S
and using the VAMP-E loss function. The transition matrix can then be learned by
first training the unconstrained VAMPNet, followed by the constraint vectors and
finally all trainable parameters together. We adopted this constrained framework
but employed a self-normalising neural network architecture[���] to improve the
hyperparameter search (see Methods). As input, we used inter-residue nearest-
neighbour heavy atom distances, resulting in an input dimension of ���, with a
network lag time of � ns. We used � to � output states, finding that the �-state model
struck the best balance between interpretability, detail, and state assignment errors
(Extended Data Figures �.� and �.�). Outputs with increased numbers of states
resulted in larger errors and a lack of interpretability.
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Figure �.�: Determination of the states in the kinetic ensemble of Aβ��. a, Depen-
dence of the three longest relaxation timescales (green, cyan and purple, respectively)
on the lag time τ. These timescales are derived from the eigenvalues of the transition
matrix (Methods). The gray shading indicates the timescales for which the Koop-
man model can no longer resolve the relaxation timescales. Shaded colored areas
indicate ��th percentiles of the bootstrap sample of the mean over all �� models. b,
Dependence of the relaxation timescales on the number of trajectories used to build
the kinetic ensemble as a four-state model. Shaded areas indicate ��th percentiles
of the bootstrap sample of the mean over all �� models. c, Shift of equilibrium
distributions and state assignments over different output sizes. Gray lines indicate
state decomposition across multiple models with varying numbers of states, showing
consistency across different output sizes.

Computational validation of the Aβ�� kinetic ensemble. To construct a kinetic
model, a suitable lag time τ between successive conformations along a trajectory
needs to be chosen. This lag time should be small enough for the model to effectively
resolve fast degrees of freedom, but large enough to not introduce a significant
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statistical error in the prediction of longer timescales. To choose this parameter and
evaluate the general quality of themodel it is helpful to visualize the longer timescales
— a kinetic property of the model — as a function of the lag time itself. To this end,
we assessed the dependence of the relaxation timescales, ti, (also called implied
timescales in this approach, see Methods) on the model lag time τ (Figure �.� a),
while keeping the network lag time constant at τ = 5ns. Weobserved that amodel lag
time τ = 12.5 ns can resolve longer timescales well. To further validate this choice
for the model lag time, we used the Chapman-Kolmogorov test (Supplementary
Figures �.� to �.�), a stringent measure of the predictive abilities of our model. To
evaluate the quality of sampling in the context of the final model, we estimated
Koopman operators with a limited number of trajectories (Figure �.� b) from the
existing full model. We would expect the relaxation timescales to accelerate and
converge with the number of trajectories utilized as we improve the sampling of each
state transition. The timescales indeed converge to within the error of the model.
To understand how the choice of the number of states impacts the corresponding
state assignments of individual frames, we illustrate the state decomposition as a
tree (Figure �.� c). States can be seen to be mostly consistent across different output
sizes.

Experimental validation of the Aβ�� kinetic ensemble. We compared experimental
NMR chemical shifts[��] to values back-calculated from the simulations (Extended
Data Figure �.� a). We found that the root-mean-square deviation between experi-
ments and simulations is within the error of the forward model[���]. Additionally,
we directly compared the distributions of the radius of gyration between the kinetic
ensemble derived here and of a thermodynamic ensemble determined previously
using metadynamic metainference[���, ���] simulations[��], using the same force
field and experimental restraints in the form of chemical shifts (Extended Data
Figure �.� b). Previous chemical shift, 3J-coupling, and nuclear Overhauser effect
(NOE) measurements[���] imply fast relaxations faster than �� µs consistent with
our results (Figure �.� a). However, acquiring more precise data on state transitions
of disordered proteins using NMR spectroscopy is limited by the vast structural
variance of those proteins on short timescales and ensemble-averaged nature of the
experiments[���].
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Unconstrained model comparison. We compared the transition matrices, relax-
ation timescales and state lifetimes generated by constrained and unconstrained
VAMPNets (Supplementary Figure �.�). We found that all timescales and transi-
tion probabilities are consistently slower in the unconstrained case. This is to be
expected, as the estimation of the eigenfunctions is impeded by the constraints on
non-negativity and reversibility[��]. However, as we are performing equilibrium
simulations, we should expect detailed balance to hold. We therefore consider the
constrained model to be better suited to this analysis.
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Figure �.�: Structural properties of Aβ�� in the kinetic ensemble. a, Populations
of α-helical and β-sheet content per residue in each of the four states in the kinetic
ensemble, as calculated using the secondary structure predictor DSSP. The equilib-
rium percentage of each state is given above, with the ��th percentile in parentheses.
b, Contact probability maps of each of the four states with a cutoff of �.� nm. Error
bars indicate ��th percentiles of the bootstrap sample of the mean over all �� models.

Structural diversity of the Aβ�� states. To characterize the local structural features
and long-ranged self-interactions of the states in the kinetic ensemble, we calculated
the α-helical and β-sheet content per residue (Figure �.� a, Supplementary Figures �.�
and �.� a) and inter-residue contact probabilities (Figure �.� b, Supplementary Fig-
ures �.� and �.� b) in each state. We observed unique structural properties in each
state and found that the C-terminal region of the peptide is generally more structured
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than the N-terminus. Specifically, each state is characterized by varying degrees
of α-helix formation in localized areas, while the region between residues �� and
�� generally remains completely disordered. The β-sheet content is also concen-
trated towards the C-terminal region with state � being a notable exception, partially
forming an end-to-end contact. Moreover, many conformations identified by the
predictor Dictionary of Protein Secondary Structure (DSSP) as being rich in β-sheet
content are characterized more by strong backbone interactions and less by explicit
β-like structures, as can be seen in the contact probability maps. Using a cut-off
of �.�� nm we find an ensemble-wide proportion of �.�� ± �.�� � of end-to-end
contacts, comparable to the ensemble reported by Meng et al[��].

µs transitions between Aβ�� states. The overall kinetic properties of a protein are
primarily given by the inter-state transition probabilities (Figure �.� a), the slowest
relaxation timescales (Figure �.� b), and mean state lifetimes (Figure �.� c). We
observe mean first-passage times (MFPTs) between ~� and ~�� µs, with no observa-
tion of longer-lived folded states. Instead, we observe the formation of a disordered
hub-like state �, to which other structured states transition relatively quickly. On
the other hand, transitions into structured states, i.e. direct formation of secondary
structural motifs, are significantly slower. Transitions bypassing the hub-state are
rare, such as transitions between states � to �. It may appear counter-intuitive that
most MFPTs between states are slower than the equilibrium relaxations (Figure �.�
b). This apparent discrepancy was previously investigated for the fast-folding pro-
teins Trp-cage[���] and NTL�[���] by investigating the kinetics of their respective
unfolded states. It was found that for these states, the MFPTs are significantly slower
than the relaxations to unfolded equilibrium. Specifically, the MFPTs to a particular
state can be seen to be approximately equal to the relaxation to equilibrium divided
by the population of that state, implying slower MFPTs for finer discretizations.
This observation is consistent with our ensemble with MFPTs between � and �� µs
(Figure �.� a) and equilibrium relaxations on the order of � µs (Figure �.� b). With
coarser and finer discretizations we see acceleration and deceleration of MFPTs
respectively (Supplementary Figure �.��).
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Figure �.�: Populations andmean first-passage times in the kinetic ensemble of Aβ��.
a, Mean first-passage times and their standard deviations between states in the kinetic
ensemble. Thicker arrows correspond to higher transition probabilities. The state
location is projected on to the two slowest time-structure independent coordinates
(TICs) and the structures shown are �� high-weight conformations fromall ��models
aligned on the most prominent secondary structure motifs (Figure �.�). Transitions
with mean first-passage times slower than �� μs are not shown (Supplementary
Figure �.� a, c). b, The slowest relaxation timescales of the four-state model. c, Mean
lifetime of each state in the four-state model. The whiskers, boxes and horizontal
lines indicate ��th percentiles, quartiles and the median values over all �� models,
respectively. The labels show the mean values over all �� models.
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Methionine-oxidized Aβ�� kinetic ensemble. To contextualize our findings and
demonstrate the transferability of this approach, we also performed additional sim-
ulations of the methionine-oxidized form of Aβ�� (Aβ��-MetSO). These were car-
ried out in three rounds of ���� trajectories each, using the same FAST procedure
reported above. We validated our model using the same approach, i.e. plotting
the dependence of the relaxation timescales on the model lag time and number of
trajectories (Supplementary Figure �.�) and using the Chapman-Kolmogorov test
(Supplementary Figure �.��). We found that the state decomposition remains largely
identical (Supplementary Figure �.��), with a population shift away from the ordered
states �, �, and � towards the more extended state �. This shift is also evident in the
relaxation timescales and state transitions towards state �, which are accelerated in
the Aβ��-MetSO ensemble as compared to that of Aβ�� (Supplementary Figure �.��
a, b). Additionally, the lifetime of state � is also vastly prolonged, from ~� µs in the
Aβ�� ensemble to ~� µs for Aβ��-MetSO (Supplementary Figure �.�� c). These
findings are consistent with nuclear magnetic resonance studies on both forms, in
which Aβ��-MetSO was shown to exhibit higher backbone mobility than Aβ��[���]
and overall lower β-sheet content[���]. These results coincide with higher solubility
and reduced aggregation propensity[���].

�.� Discussion

In this work we determined the kinetic ensemble of Aβ�� using a neural network
approach. We observed that the choice of the number and quality of inputs is crucial.
In particular, we observed a large increase in the VAMP� scores upon switching
from inter-residue Cα distance matrices to nearest-neighbour heavy atom distances.
These results suggest that using more sophisticated and higher resolution features
could further improve the state decomposition. One such method could be the use
of convolutional layers[���–���], either acting on distance matrices or on the �D
protein structure itself.

Our study also identifies the importance of developing robust mathematical tools
to handle theKoopmanmatrix and corresponding error estimations. There have been
numerous developments in the Markov model literature for these problems, such
as the use of Bayesian methods to estimate both state discretization and statistical
sampling uncertainties[���] or the use of additional experimental data to improve
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the transition matrix estimation[���]. These tools are, however, all based on the
availability of discrete transition counts, and there are no direct analogs for Koopman
models so far.

Aβ�� has been studied extensively using molecular simulations in the context of
thermodynamic ensembles, commonly using enhanced sampling techniques such as
replica-exchange molecular dynamics or variants thereof[��, ���, ���–���]. These
and related studies suggest that this peptide is extremely sensitive to the choice of
force field and water model[���] as well as the amount of sampling[���]. These
studies used higher simulation temperatures, making a quantitative comparison with
our study difficult. The work by Lin et al.[���] is especially notable as the authors
used a Markov state model to analyze their ��� µs simulation. They, however, did not
report on the kinetic properties of the system and focused on ensemble-averaged
structural features instead. Meng et al. also identified a large disordered population
of �� � and an end-to-end contact population of � � in their analysis[��], consis-
tent with our analysis. Rosenman et al. found many highly diverse clusters with
populations of ~� �, comprising both extended and locally structured conforma-
tions[���]. Sgourakis et al. used a spectral clustering technique based on contact
maps to identify many locally structured conformations[���]. Overall, given that
it is challenging to obtain atomic-level information about the kinetic ensemble of
Aβ�� directly from experimental data due to the disordered nature of this peptide,
computational approaches such as the one described here offer important structural,
thermodynamic and kinetic insights into possible drug discovery approaches for
Alzheimer’s disease aimed at stabilizing the native state of Aβ��[��].

Our results are particularly relevant when viewed in context of the kinetic hub
model of protein folding[���]. In this model, the native state of a folded protein is the
most populated state, quickly reachable from other partially or completely unfolded
states. This model can be seen as the kinetic complement of the thermodynamic
funnel concept of protein folding[���]. We may therefore propose an analogous
model for disordered proteins, i.e. a kinetic counterpart to the recently proposed
inverted funnel concept[���]. Aβ�� clearly adopts a highly populated disordered
state, with slow transitions into less populated, partially folded states. We can thus
view this kinetic geometry as an ’inverted kinetic hub’.

Overall, the ability to capture accurately the structural and kinetic differences
between the Aβ�� and Aβ��-MetSO peptides, which only differ by a single atom, in

��



�.� Methods

a way that is consistent with independent experimental data demonstrates the ability
of the soft Markov state model method for studying the complexity of disordered
proteins.

�.� Methods

Simulation details. All simulations were carried out with GROMACS ����.�[���]
using �,��� individual Virtual Machine instances on Google Compute Engine. All in-
stances used the compute-optimized n1-highcpu-8 machine type, each configured
with � Intel Haswell CPU cores, �.� GB of RAM, and ��� GB of disk space. �,���
Aβ�� starting conformations were chosen from a previous metadynamics-biased
molecular dynamics simulation by sample-weighted k-Means clustering on the space
of backbone dihedral angles and picking a random conformation from each of the
���� clusters. Each conformation was solvated separately in a rhombic dodecahe-
dron boxwith a volume of ��� nm3 using between ��,��� and ��,��� watermolecules.
The system was minimized using the steepest descent algorithm to a target force of
less than ���� kJ / (mol / nm). Equilibration was performed over a time range of
��� ps in the NVT ensemble using the Bussi thermostat[���] and ��� ps in the NPT
ensemble using Berendsen pressure coupling[���] while applying a position restraint
on all heavy atoms. Production simulations were carried out at ��� K using the
CHARMM��* force field[���] and the TIP�P water model[���] using a � fs timestep
in the NVT ensemble. Electrostatic interactions were modelled using the Particle-
Mesh-Ewald approach[��] with a cut-off for the short-range interactions of �.� nm.
Constraints were applied on all bonds with the Linear Constraint Solver (LINCS)
algorithm[���] using a matrix expansion on the order of � and � iteration per step.
Simulations were carried out with the initial �,��� starting conformations, the re-
sulting trajectories were then used with the fluctuation-amplification of specific
traits (FAST) approach[���] to choose �,��� new starting structures. The clustering
for FAST was conducted by first performing time-structure independent component
analysis (TICA)[��, ��] with a lag time of � ns using Cα-distance matrices as input
and the k-Means algorithm in this reduced space to create ��� clusters. We chose to
both maximize the deviation to the mean Cα-distance matrix for each cluster and
maximize the sampling of existing clusters using a balance parameter of α = 1.0.
All amino acids were weighted equally. This procedure was repeated three times to

��



� A kinetic ensemble of the Alzheimer’s Aβ peptide

yield a total of �,��� trajectories, with an aggregated simulation time of ��� μs. The
shortest and longest trajectory lengths were �.�� and ��.� ns respectively. The trajec-
tories were subsampled to ��� ps time steps to yield �,���,��� frames. Simulations
of methionine-oxidized Aβ�� were performed analogously in three rounds using the
same FAST scheme and simulation parameters yielding ���� trajectories with an
aggregated simulation time of ��� µs and �,���,��� frames. Oxidized methionine
parameters were constructed based on the parameters for dimethyl sulfoxide from
the CHARMM generalized force field[���]. Initial conformations were created by
sampling ���� structures from the Aβ�� ensemble and mutating the methionine
residues to the oxidized form.

Neural network. State decompositionwas performed using theVAMPNet approach
with physical constraints[���, ���]. The two-lobed neural network takes as input a
pair of frames separated by some lag time and yields a state assignment vector as
output. We chose inter-residue nearest-neighbour heavy atom distance matrices
with first- and second-degree off-diagonals removed as input (��� dimensions) and
used between � and � output nodes with softmax activation. The architecture of
the χ layers of the neural network follows the self-normalizing setup described by
Klambauer et al.[���], using scaled-exponential linear units, normal LeCun weight
initialization, and alpha dropout. The constrained part is composed of two additional
layers u and S which are trained with and without the χ layers, successively. The
training procedure is based on the VAMP� score:

R [χt, χt+τ] =

∥∥∥∥C− 1
2

χχ CχτC
− 1

2
ττ

∥∥∥∥2
F

(�.�)

where

Cχχ = E[χ(xt)χ(xt)>] (�.�)

Cχτ = E[χ(xt)χ(xt+τ)>] (�.�)

Cττ = E[χ(xt+τ)χ(xt+τ)>] (�.�)

The maximum value of Equation �.� is reached when the subspaces spanned by
the left and right singular functions of the Koopman operator K are identical to the
ones spanned by χt and χt+τ. Because the first singular functions are always equal
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to the constant function 1, we can simply add 1 to the score for it to become more
suitable for training the χ(xt) network:

R
[(

1
χt

)
,
(

1
χt+τ

)]
=

∥∥∥∥C− 1
2

χχ CχτC
− 1

2
ττ

∥∥∥∥2
F
+ 1 (�.�)

The constrained network is trained using the VAMP-e score[���] R:

R = tr(S>CχχSCγγ − 2S>Cχγ) (�.�)

where

Cχγ = E[χ(xt)γ(xt+τ)>] (�.�)

Cγγ = E[γ(xt+τ)γ(xt+τ)>] (�.�)

γ(x) = χ(x)χ(x)>u (�.�)

and S and u are the trainable reversibility and non-negativity constraints, respec-
tively. Error estimates were obtained through bootstrap aggregation (bagging), i.e.
by training �� independent neural networks with independently randomized and
shuffled �:� train-validation splits, and, to prevent overfitting, stopping training
when the validation score no longer improved. The model was implemented using
Keras �.�.�[���] with the Tensorflow �.�.�[���] backend. The neural network param-
eters were chosen through two successive random grid searches with scikit-optimize
�.�.�[���], first using a coarse grid spanning a large parameter space, then a finer grid
over a local space around the optimum parameters. We found the best parameters
to be a network lag time of 5 ns, a layer width of 256 nodes, a depth of 5 layers, an
L2 regularization strength of 10−8 and no dropout. Training was performed on a
single Google Compute Engine instance with an NVidia Tesla V��� GPU, �� Haswell
cores, and �� GB of RAM. Training of the χmodel was performed using batch sizes
of 10000 frame pairs and the Adam minimizer with a learning rate of 0.05, β2 = 0.99
and ε = 0.0001. Overfitting was addressed through early stopping, i.e. training
was stopped when the VAMP validation set score did not increase by at least 0.001
over the previous � epochs. The constraint layers u and S as well as the full network
including the χ layers were trained with the Adam minimizer with a learning rate of
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0.0005. The constraint layers were trained with batches the size of the full dataset,
with early stopping with no improvement in the loss after 10 epochs.

Analysis. The output of a single neural network is a state assignment vector χ(xt)
of each frame xt of the simulation. The ensemble averaged value of an observable
A(xt) for a state i is therefore an average weighted by the state assignment for T time
steps:

〈Ai〉 =

(
T∑
t=1

χi(xt)

)−1 T∑
t=1

χi(xt)A(xt) (�.��)

Ensemble averaged quantities can be calculated by first computing a weightwt
for each frame of the simulation based on the state assignment χ(xt) at time t and
the equilibrium distribution π:

wt =
〈χ(xt)|π〉∑T
t=1〈χ(xt)|π〉

(�.��)

The ensemble averaged observable 〈A〉 can then be calculated as the weighted
average:

〈A〉 =
T∑
t=1

wtA(xt) (�.��)

To estimate the error, we sort each state assignment vector, as multiple trained
neural networks do not necessarily conserve the order of identified states. To do so,
we calculate the mean inter-residue nearest-neighbour heavy atom distance matrix
for each identified state and sort the states based on the lowest root-mean-square
deviation between these matrices. We also ensure that the sorting is unique, i.e. we
are never duplicating state assignments. The KoopmanmatrixK(τ) is then estimated
directly from the constrained neural network. Internal model validation is performed
with the Chapman-Kolmogorov test (Supplementary Figures �.� to �.� and �.��):

K(nτ) ≈ Kn(τ) (�.��)

i.e. we expect a model estimated at some lag time τ to behave the same way as one
estimated at a multiple nτ of it. The correct lag time τ for the model is estimated
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by plotting the relaxation (also known as implied) timescales ti (Figure �.� a and
Supplementary Figure �.� a):

ti =
−τ

log|λi|
(�.��)

where λi is the ith eigenvalue of the Koopman matrix K(τ):

K(τ)ri = λiri (�.��)

As the Koopman matrix is row-stochastic, the largest eigenvalue is �, and its
associated eigenvector is the stationary distribution π of the system. The state
lifetimes ti are given by[���]

ti =
−τ

log (K(τ)ii)
(�.��)

where K(τ)ii are the diagonal entries of the Koopman matrix1.
Chemical shifts were back calculated with CamShift[���] as implemented in

PLUMED �.�.�[���, ���] using the full trajectories, averaged as described above
and compared to previously recorded NMR data[��]. Time-structure independent
component analysis was performed with inter-residue nearest-neighbour heavy atom
distances as input, using a lag time of � ns and using kinetic maps[���].

Conventional Markov state model. Markov state models based on discrete states
were constructed as follows: time-structure independent component analysis was
performed with inter-residue nearest-neighbour heavy atom distances as input, with
a lag time of � ns. Various clustering methodologies were then evaluated using the
�-fold cross-validated generalized matrix Rayleigh quotient score using every ��th
frame of the full trajectory (����� frames) and a lag time of ��.� ns[���]. Evaluation
was performed over the number of time-lagged independent components, clusters,
and algorithm (minibatch k-Means[���], minibatch k-Medoids, Gaussian mixture
model) using MSMBuilder[���] (Supplementary Figure �.�). ��� Markov models
with the highest scoring parameters were then sampled and the timescales evaluated
for the conventional Bayesian (Extended Data Figure �.� a)[��, ���], hidden Markov

�This relation can be derived from the probability pi(t) = Kt
ii of observing a state i for a duration t

in continuous time by computing the expectation: t = τ
∫∞
0

K(τ)tiidt = −τ
log (K(τ)ii)
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model (Extended Data Figure �.� b-d)[���] and Perron cluster-cluster analysis[���]
(Extended Data Figure �.� e-f ) cases.

Errors. Observable errors for each state were calculated by taking a trajectory
sample based on the training data for a neural network sample. All statistics were
then calculated on the bootstrap sample, and the errors reported in the figures show
the ��th percentile of this sample unless noted otherwise.

Data availability. Subsampled trajectory and intermediate data, as well as the
trained neural network weights, analysis notebooks, and source data for figures �-�
and extended data figures �-� are available from Zenodo.

Code availability. Analysis notebooks, code, and example data are available from
GitHub and Zenodo.
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�.� Extended data

Extended Data Figure �.�: Relaxation (implied) timescales for conventional
discrete-state Markov state models, showing inability to construct a model with
converging timescales. a, Relaxation timescales for a ���-microstate model as a
function of model lag time. b-d, Relaxation timescales for hidden Markov state
models using �, �, and � output states respectively, as a function of model lag time.
e-f, Relaxation timescales for � and �-state Markov state models built using Perron
cluster-cluster analysis (PCCA) from the ���-microstate model as a function of
model lag time. The gray shading indicates the timescales for which the Koopman
model can no longer resolve the relaxation timescales. Shaded areas indicate �� �
confidence intervals of the sample mean of the �� models.
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�.� Extended data

Extended Data Figure �.�: Equilibrium distributions of the models. a, �, (b) �, (c)
�, (d) �, and (e) �-state model equilibrium distributions. The whiskers, boxes and
horizontal lines indicate ��th percentiles, quartiles, and the median values over all
�� models, respectively, the labels show the mean model values.
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Extended Data Figure �.�: Relaxation (implied) timescales as a function of model
lag time. a, �, (b) �, (c) �, and (d) �-state model timescales. The gray shading indicates
the timescales for which the Koopman model can no longer resolve the relaxation
timescales. Shaded areas indicate ��th percentiles of the sample mean over ��
models.
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�.� Extended data

Extended Data Figure �.�: Experimental validation and comparison to an existing
ensemble. a, Root-mean-square deviations between experimentally determined
NMR chemical shifts and those back calculated using CamShift[���]; the deviations
are smaller than the intrinsic CamShift errors. b, Comparison of the probability
distributions of the radius of gyration computed for the current Markov state model
(MSM, green) and the previously performedmetadynamicmetainference simulations
(MI, purple)[��].
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� Asmall molecule stabilises the
disordered native state of the
Alzheimer’s Aβ peptide

Time is a drug. Too much of it kills you.
— Terry Pratchett, in Hogfather

This chapter has been adapted from a manuscript currently in preparation for sub-
mission to a peer-reviewed journal. I designed the study, performed the analysis
and wrote the manuscript. Kai Kohlhoff and I ran the simulations. Kai Kohlhoff,
Gabriella Heller and Carlo Camilloni assisted with analysis. Gabriella Heller and I
parameterized the small molecule. Michele Vendruscolo supervised the work.

�.� Summary

The stabilisation of native states of proteins is a powerful drug discovery strategy.
It is still unclear, however, whether this approach can be applied to intrinsically
disordered proteins. Here we report a small molecule that stabilises the native state
of the Aβ�� peptide, an intrinsically disordered protein fragment associated with
Alzheimer’s disease. We show that this stabilisation takes place by a highly dynamic
binding mechanism, in which both the small molecule and the Aβ�� peptide remain
disordered. We then characterise the forces responsible for this binding mechanism,
revealing nanosecond lifetime π-stacking interactions as major contributors to the
stabilisation of the bound state. These results indicate that the disordered binding
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of small molecules and proteins requires transient non-specific interactions that
provide enthalpic gain while simultaneously increasing the conformational entropy
of the protein.

�.� Introduction

Drug development for Alzheimer’s disease has been distinguished by countless fail-
ures and setbacks in past decades[���]. Advances have primarily focused on the
treatment of symptoms rather than the underlying mechanism. The illness is charac-
terised by the formation of protein aggregates, such as fibrillar forms of amyloid-β
�� (Aβ��)[��, ��, ���]. This protein is intrinsically disordered, i.e. it does not form a
single stable folded structure as a monomer, but instead exists in a dynamic equilib-
rium of states with transient local structure and fast transitions[��, ��, ���, ���–���,
���, ���, ���]. Many drug development efforts focused on aggregation-prone pro-
teins such as Aβ�� attempt to target the already-formed fibril, the structurally elusive
oligomeric species[��, ���, ���], or attempt to bind the monomer into a single stable
conformation[��]. In contrast, there have been few efforts to design drugs directly
targeting monomeric disordered proteins[��, ��]. The lack of success in this area is
partially due to the difficulty in characterizing the binding mode on an atomistic level.
While some experimental methods such as nuclear magnetic resonance can provide
sparse information, it is often not sufficient to clearly understand the interactions
and kinetics underlying the binding[��].

Molecular dynamics is one of the few tools that can provide the necessary spatial
and temporal resolution to study the interaction between disordered proteins and
small molecules[��]. Together with Bayesian restraints from experimental data,
simulation has been used to thermodynamically characterize these binding modes
in the case of the oncoprotein c-Myc[��] and Aβ��[��]. In the former study, urea
was used as a control molecule to assess the sequence-specificity of the drug. In
the latter case of Aβ��, we studied the interaction with the small molecule �����-
G�, and showed it was able to inhibit Aβ�� aggregation in various models. In both
cases the binding mode was found to be highly dynamic, a quantitative study of
the kinetics was however not possible. The microscopic kinetics in form of contact
lifetimes and autocorrelations can be especially instructive to fully understand the
origin of entropic and enthalpic stabilisation (Figure �.�)[��]. The binding of small
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Figure �.�: Native state stabilisation of disordered proteins. The interaction with a
small molecule can result in a reduction or increase of conformational space of the
protein, thus resulting in a positive or negative entropic contribution to the binding
free energy. A loss of entropic native state stabilisation will often be compensated
with a stronger enthalpic binding affinity, while an increase in conformational entropy
often requires more dynamic and thus weaker binding.

molecules to monomeric disordered proteins was also explored for the case of the
Parkinson’s disease related α-synuclein using long-timescale molecular dynamics
simulations[���]. The authors found that the interactions were predominantly driven
by π-π stacking, in a process they refer to as ’dynamic shuttling’.

A quantitative study of the kinetics of these interactions may allow a more targeted
approach to the design of both drugs and better experiments to probe their binding
modalities. However, even with atomistic computational approaches, gaining insight
into the kinetics, i.e. transition rates, relaxation constants, autocorrelations, and
state lifetimes can be challenging. This is because in contrast to folded systems,
the definition of states for disordered proteins is not always clear: due to the gen-
erally shallow free energy landscape state transitions may be fast, but not always
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distinct[���]. New developments in the theory of dynamical systems now allow an
optimal state decomposition and transition operator to be ’learned’ using deep neural
networks, for example using the VAMPNet framework[���, ���]. To acquire kinetic
information for a system one would traditionally use a Markov state model[���, ���]:
One first finds a suitable low-dimensional embedding of the system coordinates,
followed by using a clustering algorithm to define microstates. Transitions between
these can then be counted to build up statistics and thus construct a transitionmatrix.
This matrix can then be coarse-grained to obtain macroscopic kinetics[���, ���].

Koopman-operator[��, ���] based models such as VAMPNet combine these two
steps into a single function that can be approximated by a neural network and also
yield a probabilistic state assignment in lieu of a discrete one[���, ���]. The former
feature has the advantage of both simplifying the model construction process, as
the hyperparameter search over various dimensionality reduction and clustering
techniques is replaced by a simplified search over neural network parameters, and
allowing a more accurate model due to the use of a single arbitrarily non-linear
function compared to two steps that are heavily restricted in terms of search space.
Probabilistic state assignments are inherently well suited to disordered proteins,
as the typically shallow free energy basins and low barriers can be encoded with
some ambiguity. This constrained VAMPNet approach was recently utilized by us to
determine the kinetic ensemble of the disordered Aβ�� monomer (Chapter �).

Here, we use this technique to build kinetic ensembles of Aβ�� with �����-G� and
urea as a control molecule to expand on our previous thermodynamic ensembles[��].
We compare the transition rates, lifetimes, and state populations with the previous
kinetic ensemble of the Aβ�� monomer (Chapter �), and further characterize the
atomic-level protein-drug interactions.

�.� Results

Molecular dynamics simulations and soft Markov state models. We performed two
explicit-solvent molecular dynamics simulations of Aβ�� with one molecule of urea
and one molecule of �����-G�, respectively. Both simulations were performed in
multiple rounds of �,��� trajectories on the Google Compute Engine as described
previously[���]. As before we used a soft Markov state model approach using the
constrained VAMPNet framework[���] to construct kinetic ensembles. The major
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advantages of this method, compared to regular discrete Markov state models, are
the soft state definitions and the use of a single function mapping directly from
arbitrary system coordinates to a state assignment probability, allowing for more
optimal models. To aid our analysis, we added our previous simulation of Aβ�� with
no additional molecules to our dataset, we refer to it as the apo ensemble[���]. We
compared all ensembles using a decomposition into two states. This allows for an
easier evaluation and comparison of the slowest timescales in contrast to higher
state-count models.

Computational and experimental validation. Constructing a kinetic ensemble
using the constrained VAMPNet approach requires choosing the number of states
and the model lag time. The latter is a critical parameter that needs to be chosen such
that the model can accurately resolve both long and short timescales. This can be
done by plotting the dependence of the slowest relaxation timescales on the lag time
(Extended Data Figure �.�). A stricter measure is the Chapman-Kolmogorov test,
comparing multiple applications of the Koopman operator estimated at a certain lag
time τwith a Koopman operator estimated at amultiple of this lag timenτ (Extended
Data Figure �.�, Methods)[��]. To evaluate sampling convergence, we visualized the
dependence of the mean relaxation timescales on the number of trajectories used
to evaluate these timescales (Extended Data Figure �.�). With sufficient sampling
of kinetics, we would expect the global timescales to be unchanged within error.
Experimental validation was performed by comparing back-calculated chemical
shifts to ones from experiment[���]. Because the small molecule �����-G� has no
effect on the chemical shifts of Aβ��[��], we used the chemical shift dataset from
the apo ensemble as a point of comparison (Extended Data Figure �.�).

�����-G� has minor impact on ensemble-averaged structural properties of Aβ��.
To evaluate the influence of �����-G� and urea on the structural conformations of
Aβ��, we calculated state-averaged contact maps and secondary structure content
for each state of all ensembles (Extended Data Figure �.�A-C). In all cases we find a
state decomposition into a more extended state with few inter-residue contacts, and
a slightly more compact form with a higher number of local backbone interactions.
We will refer to these as the compact and extended states, respectively. The addition
of a small molecule has little effect on the formation of contacts and other structural
motifs. This finding is consistent with our recent experimental thermodynamic and
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Figure �.�: Impact of small molecules on the state transition rates, state lifetimes,
and populations. The arrows indicate the mean state transition rates, the number
below the representative structures is the mean state lifetime, the pie charts show the
mean state populations. Errors are the standard deviations of the bootstrap sample
of the mean over all �� models.

kinetic characterization of this interaction, and the absence of strong chemical shift
perturbations in the holo ensemble[��].

Small molecules decelerate the formation of more compact states. Compared to
the previously published apo ensemble, the kinetic ensembles with both urea and
�����-G� show a deceleration of more compact state formation (Figure �.�). Notably,
the transition from the more compact form to the more extended state is unaffected.
This change is also mirrored in the state populations, which exhibit a strong shift
towards the extended state. We note that even though there are strong changes in the
state populations, the ensemble-averaged contact maps are very similar (Extended
Data Figure �.�A-C).This is likely due to the high sensitivity of the VAMPNetmethod
tominor changes in free energy barrier regions. These will have a significant effect on
the kinetics and thus state populations, but not on the ensemble averaged structure
due to the relatively low thermodynamic weight[���]. While the lifetimes of the
extended states increase, the ones for the more compact form are unchanged within
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model error. We can thus conclude that within our model, the small molecule has a
strong effect on the contact-formation rates, but no influence on the reverse.

Small molecules shift the system to more entropically stable states by short-lived local
interactions. To evaluate the impact of �����-G� on the conformational space of
Aβ��, we calculated the Ramachandran and state entropy for all ensembles, as well as
the autocorrelation of sidechain χ1 dihedral angles (Figure �.�). The Ramachandran
entropy can indicate relative flexibility of the backbone, thus revealing potential
regions of dynamic changes as a result of interactions between the peptide and small
molecule[��]. Resolving this change in the entropy over residues (Figure �.�A) indi-
cates strong increases in the relatively hydrophobic C-terminal region of Aβ��. This
conformational entropy increase is confirmed globally by the sum of the entropies
over all residues (Figure �.�B). As an alternative metric, we also calculated the en-
tropy in the state assignments (Figure �.�C), this can be thought of as indicating the
overall ambiguity in the state definition. Again, we find a relatively strong increase
in the conformational entropy of Aβ�� for the ensemble with �����-G�, and only
minor increases for urea. These results are in strong agreement with our previous
observations from simulations of the equilibrium (non-dynamic) ensembles in that
the presence of �����-G� increases the conformations available to Aβ��, via the
‘entropic expansion’ mechanism[��].

To better understand the impact of the small molecule on local kinetics we cal-
culated the autocorrelation of the sidechain χ1 dihedral angles (Figure �.�). We see
an increase in the autocorrelation, specifically for aromatic residues and MET��,
indicating a slowing of side chain rotations. This suggests that despite an increase in
the backbone entropy, the peptide is able to visit many locally stable states, resulting
in local enthalpic stabilisation.

Interactions of �����-G� with Aβ�� are dominated by π-stacking and other elec-
trostatic effects. To better understand the origin of the global and local effects of
the small molecule on the ensemble we analysed the interactions on a residue and
atomistic level (Figure �.�). While the probability of forming a contact between the
small molecule and a residue shows certain mild preferences (Figure �.�A), these
become more evident when looking at the lifetimes of these contacts (Figure �.�B).
Here, the longest contacts are formed by π-stacking with certain aromatic residues
(F�, Y��, F��, F��) and by interactions with MET��. This result also explains the
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reduction in side-chain rotations for these residues (Figure �.�D). On an atomistic
level the π-π interactions exhibit some anisotropy (Extended Data Figure �.��), how-
ever fully resolving these interactions is beyond the capabilities of the force field. The
importance of the nitro- and benzofurazan fragments is also highlighted. Finally, we
also investigated the conditionality of π-π interactions, i.e., if we see an interaction
between the molecule and residue i, what is the probability of also observing an
interaction with residue j (Figure �.�E-G)? The probabilities here are uniformly low
but indicate a slight preference (�� �) for a triple π-stack involving the terminal
aromatic ring of �����-G� and residues F�� and F�� of Aβ��. The importance of π-π
stacking interactions was also noted in a computational study on the interactions of
small molecules with α-synuclein[���].

These results indicate that this disordered binding mechanism operates on two
levels: local enthalpically favourable interactions coupled with global entropically
advantageous effects. The local interactions are predominantly of electrostatic nature
and result in a reduction of sidechain rotations on specific residues. At the same
time, these interactions also allow the exploration of more backbone conformations,
thus resulting in a net conformational entropy increase for Aβ��. This influence
expands into the global kinetics of the system, significantly slowing the formation of
local structure.

�.� Discussion

The results outlined above present a possible example of the previously proposed
entropic expansion mechanism for the binding of small molecules to disordered pro-
teins[��, ���]. This idea stands in contrast to the heavily explored theme of entropic
collapse or folding-on-binding mechanism[��, ���]. The concept of disordered bind-
ing is notoriously difficult to probe, as the tools suitable to detecting small changes
in the conformational ensemble of disordered proteins are lacking[��]. Nuclear
magnetic resonance experiments can potentially provide sparse information, but it
must usually be interpreted in a structural framework, necessitating molecular simu-
lations with ensemble-averaged restraints[���], or re-weighting approaches[���].
This constraint causes issues whenever we’re also interested in kinetics, as we are
no longer sampling the Boltzmann distribution. Nevertheless, an approach to in-
corporate ensemble-averaged experimental measurements into Koopman models
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has recently been proposed[���]. Neither is it generally possible to use enhanced
sampling methods to study kinetics without having some a priori knowledge of the
system states. A framework allowing the incorporation of experimental data into
a kinetic model and also allowing the use of enhanced sampling methods such as
metadynamics[��], without prior knowledge of states, would make the study of these
systems easier and more accurate.

As we have shown, a kinetic model is crucial to fully explain the nature of these
binding interactions. This is in part due to the ability to use the slowest timescales
of the system to reliably define metastable states, something that is notoriously
difficult for disordered proteins without access to the time dimension. This clustering
alone is already sensitive enough to reveal differences between systems that are
nearly invisible when comparing ensemble-averaged results and more conventional
clusteringmethods[��]. Increases in local autocorrelation and global state transitions
might be seen as indicators of both local enthalpic stabilisation and global entropic
expansion. The former result hints at the possibility of designing small molecules
that exhibit high specificity, as the global entropic stabilisation effect may be due
to transient, local, enthalpically-favourable interactions[��]. The two level global
conformational entropy – local enthalpy effect becomes especially visible when
looking at the timescales: The protein’s slowest state transitions are on the order of
microseconds, while the local, enthalpically-favourable π-π interaction lifetimes are
no longer than tens of nanoseconds.

The observed binding mechanism also throws a spotlight on π-π stacking interac-
tions as a major driving force. Similar effects have been observed for small molecules
and the disordered α-synuclein protein[���]. π-π stacking also plays a major role in
liquid-liquid phase separation[���], suggesting a possible link between the effect of
these small molecules and the hypothesized state of some proteins in a crowded envi-
ronment. For molecular simulations, the force field may present a barrier in studying
π-π interactions in more detail. This is because these interactions are not explicitly
part of the potential, but only approximated with a combination of electrostatic
and hydrophobic terms[���]. Polarizable force fields may offer a computationally
affordable alternative that could more accurately model this type of binding[���].
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�.� Methods

Simulation details. All simulations were performed on theGoogle Compute Engine
with n1-highcpu-8 virtual machine instances, equipped with eight Intel Haswell
CPU cores and �.� GB of RAM. Molecular dynamics simulations were performed
with GROMACS ����.�[���], with ���� starting structures sampled from the pre-
viously performed apo simulation[���] using the Koopman model weights. Each
conformation was placed in the center of a rhombic dodecahedron box with a volume
of ��� nm3, and the corresponding small molecule was placed in the corner of the
box. The force field parameters for urea were taken from the CHARMM��* force
field[���] and the ones for �����-G� were computed using the Force Field Toolkit
(FFTK)[���] and Gaussian ��[���], as described previously[��]. The systems were
then solvated using between ����� (�����) and ����� (�����) water molecules. Both
systems were minimized using the steepest descent method to a maximum target
force of 1, 000 kJ/mol/nm. Both systems were subsequently equilibrated, first over a
time range of 500 ps in the NVT ensemble using the Bussi thermostat[���] and then
over another 500 ps in the NPT ensemble using Berendsen pressure coupling[���].
In both equilibrations position restraints were placed on all heavy atoms. All produc-
tion simulations were performed using 2 fs time steps in the NVT ensemble using
the CHARMM��*[���] force field and TIP�P water model[���] at 278 K and LINCS
constraints[���] on all bonds. Electrostatic interactions were modelled using the
Particle-Mesh-Ewald approach[��] with a short-range cutoff of 1.2 nm. We again
used the fluctuation-amplification of specific traits (FAST) approach[���] to adaptive
sampling, with clustering performed through time-structure independent compo-
nent analysis (TICA)[��, ��] using a lag time of 5 ns and Cα distances fed to the
k-means clustering algorithm[���] to yield 128 clusters. 1, 024 new structures were
then sampled from these clusters based on maximizing the deviation to the mean Cα
distance matrix for each cluster and maximizing the sampling of the existing clusters,
using a balance parameter of α = 1.0, with all amino acids weighted equally. This
approach was performed once for each ensemble, however we also chose to perform
32 additional long-trajectory simulations for the �����-G� ensemble, yielding a total
of 2, 079 trajectories for the latter, and 2048 trajectories for the urea ensemble. The
total simulated times were 306 μs and 279 μs for the �����-G� and urea ensembles,
respectively. The shortest and longest trajectories for �����-G� (urea) were 21 (24)
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ns and 1134 (196) ns. All trajectories were subsampled to 250 ps timesteps for further
analysis.

Neural network. State decomposition and kinetic model construction was per-
formed using the constrained VAMPNet approach[���, ���], using the same method
described previously[���]. We again chose flattened inter-residue nearest-neighbour
heavy-atom distance matrices as inputs, resulting in ��� input dimensions. We
used the self-normalizing neural network architecture[���] with scaled-exponential
linear units, normal LeCun weight initialization and alpha dropout. We chose an
output dimension of 2, thus yielding a soft two-state assignment. The datasets were
prepared by first creating a test dataset by randomly sampling �� � of the frames. In
the case of �����-G� we excluded all frames in which the closest distance between
the small molecule and peptide was higher than 0.5 nm. We then created 20 ran-
domized �:� train-validation splits to allow a model error estimate. Training was
performed by using three trials for each train-validation split and picking the best
performing model based on the VAMP� score[���] of the test set. We implemented
the model using Keras �.�.�[���] with the Tensorflow �.�.�[���] backend. We chose
the following model hyperparameters based on two successive coarser and finer
grid searches: A network lag time of 5 ns, a layer width of 512 nodes, a depth of
2 layers, an L2 regularization strength of 10−7 and a dropout of 0.05. Training was
performed in 10000 frame pairs using the Adam minimizer with a learning rate of
0.05, β2 = 0.99 and epsilon of 10−4, and an early stopping criterion of a minimum
validation score improvement of 10−3 over the last five epochs. For the constrained
part of the model, we reduced the learning rate by a factor of 0.02. We used a single
Google Compute Engine instance with �� Intel Haswell cores, �� GB of RAM, and
an NVidia Tesla V��� GPU.

Analysis. After training, VAMPNet yields a state assignment vector χ(xt) for each
frame xt of the ensemble. Based on this vector, we can calculate state averages 〈Ai〉
for any observable A(xt):

〈Ai〉 =

(
T∑
t=1

χi(xt)

)−1 T∑
t=1

χi(xt)A(xt) (�.�)
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Here, i is the corresponding state and the sum runs over all time steps. To calculate
an ensemble average 〈A〉, one first calculates a weightwt for each frame using the
model equilibrium distribution π:

wt =
〈χ(xt)|π〉∑T
t=1〈χ(xt)|π〉

, (�.�)

which leads to the ensemble average

〈A〉 =
T∑
t=1

wtA(xt). (�.�)

Because each trained model will classify the states in an arbitrary order, we need to
sort the state assignment vectors based on state similarity. We did this by comparing
the state-averaged contact maps using root-mean-square deviation as a metric, and
grouping states based on the lowest value. Any deviations are thus accounted for in
the overall model error.

Model validation. TheKoopmanmatrixK(τ) is given directly by the neural network
model, along with the equilibrium distribution π. We validated our models using
the Chapman-Kolmogorov test:

K(nτ) ≈ Kn(τ) (�.�)

where τ is the model lag time, and nτ is a low integer-multiple of the lag time. The
model should therefore behave the same way whether we estimate it at a longer lag
time or repeatedly apply the transfer operator. We first estimate a suitable lag time τ
by plotting the relaxation timescales over the chosen lag time. The lag time τ should
be chosen to be as small as possible, but large enough to not have any impact on
the longer relaxation timescales, which represent the slowest motions of the system.
The temporal resolution of the model is thus given by this lag time. The relaxation
timescales ti are calculated from the eigenvalues λi of the Koopman matrix K(τ) as
follows:

ti =
−τ

log |λi|
(�.�)
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We can similarly compute the state lifetimes ti from the diagonal elements of the
Koopman matrix K(τ)ii using[���]:

ti =
−τ

log(K(τ)ii)
(�.�)

Experimental validation. Webackcalculated the nuclearmagnetic resonance chem-
ical shifts using the CamShift algorithm[���] as implemented in PLUMED �.�.�[���,
���]. We again used the same ensemble averaging procedure described above.

Errors. Errors are calculated over all trained neural network models. To obtain a
more meaningful estimate, we only consider frames that were part of the bootstrap
training sample of the corresponding model, i.e., one of the �� models described
above. The reported averages are the mean, and the errors the ��th percentiles over
all �� models, unless reported otherwise.
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�.� Extended data
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� Conformational entropy in a
designed antibody

You fail ’cause you [take the] average
— Del the Funky Homosapien, Press Rewind

This chapter details ongoing work of understanding the behaviour of binding regions in
antibodies designed using computational approaches. Pietro Sormanni and I designed
the study. I carried out the simulations and performed the analysis. Pietro Sormanni
provided the initial single-domain antibody structures. Michele Vendruscolo super-
vised the work.

�.� Summary

In recent years, in silico antibody design has become a viable alternative to more
traditional in vivo and in vitro approaches. However, the structural features of the
complementarity determining region, specifically the role of rigidity and conforma-
tional entropy, are still unclear. We used enhanced-sampling molecular dynamics
simulations to compare the free energy landscapes of single-domain antibodies de-
signed using structure-based (VHH) and sequence-based approaches (DesAbO).
Our results indicate that the CDRs of both VHH and DesAbO explore similar states,
but that DesAbO is more conformationally heterogeneous. This difference under-
lines the challenges in the rational design of antibodies by revealing the presence of
substates likely to have different binding properties and implicate a forced loss of
entropic stabilisation upon binding.
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�.� Introduction

Designed antibodies have become essential tools in the fields of biological chemistry,
medical diagnostics and therapeutics. Their ease of development has spawned
numerous applications, for example in cancer treatment[���] and diagnostics[���],
medication for autoimmune diseases[���] or lateral flow tests for the detection of
SARS-CoV�[���].

Antibody productionmethodologies can be grouped into three general techniques.
In vivo approaches utilise the immune system of a living animal to generate them;
this idea has been extended to allow the use of transgenic mice to generate human
antibodies[���, ���]. In vitro techniques typically use screening libraries to identify
antibodies binding the desired target sequence with high affinity. However, isolating
these identified antibodies is difficult, and their biophysical properties can be lacking
compared to ones found with in vivo methods. One example of this approach is the
use phage display[���] techniques.

These in vivo and in vitro methods become difficult if the target is only weakly
immunogenic, as is often the case for disordered proteins and regions. Today, in
silico approaches to antibody design can provide an attractive alternative[���] and
circumvent this issue. Moving the time-consuming work of developing the correct
sequence in silico can significantly accelerate the development time and allow a more
efficient search of sequence space.

One such method was developed by Sormanni et al.[���]. The general idea is
to identify a peptide with complementarity to an epitope on the target antigen.
This peptide can then be grafted on to a suitable antibody scaffold as a CDR. The
complementarity is achieved by mining the Protein Data Bank (PDB)[��] for β-
strand conformations and identifying suitable fragments with part of the epitope
sequence. By cascading along the sequence and identifying further fragments, the
complementary peptide sequence can be constructed. This approach has been
successfully used to design single-domain antibodies (sdAbs) targeting the elusive
and mostly disordered oligomers of amyloid-β found in Alzheimer’s disease[���].
Different epitopes were selected, and the correspondingly designed antibodies caused
both a reduction in primary and secondary nucleation aggregation events, depending
on the location of the epitope.

Despite these successful uses, the structural and dynamical features of designed
sdAbs are still mostly unknown. Gaining a deeper insight into the behaviour of the
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CDR in solution could enable further improvements in the computational design
stage, yielding higher affinities and improved biophysical properties. In particular, it
is unknown what role the conformational entropy plays in sdAbs ability to bind a
potentially disordered target with high affinity. To better understand the dynamics
of the CDR, I performed molecular dynamics simulations with enhanced sampling
of an sdAb targeting amyloid-β oligomers (DesAbO)[���] – generated using the
rational design approach outlined above – and one targeting human serum albumin
(VHH) – using a the D� scaffold, with the CDR created using a novel fragment-based
structural design approach[���]. Both sdAbs thus represent examples of orthogonal
design approaches, with potentially different conformational properties.

�.� Results
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Figure �.�: Results of the GROMOS clustering algorithm for different cut-off values.
Populations for the top �� clusters for DesAbO a and VHH b with the mean informa-
tion entropy over the normalised populations indicated. c Number of found clusters
for varying cut-off values. Error bars indicate the ��th percentile of the bootstrap
sample-of-the-mean over all �� samples consisting of ����� frames sampled from
the ensemble based on the metadynamics weights.

Metadynamics simulations of sdAbs. We performed all-atom, explicit water, par-
allel-bias metadynamics[��] simulations of DesAbO, designed using the rational
sequence-basedmethod[���], and VHH, built using a novel structural approach[���].
After �.� µs both simulations were found to be largely converged for cluster popula-
tions larger than �� (out of �����) frames (Figure �.�).
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loop coloured and the cluster percentage of the ensemble indicated below.

Higher conformational entropy in a designed antibody. To evaluate conformational
flexibility of the CDR, we performed a clustering analysis using the GROMOS al-
gorithm[���] (Figure �.�). We evaluated several different cut-off values for the Cα
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root-mean-square deviation (RMSD) and found that the number of identified clus-
ters was consistently higher in the DesAbO ensemble (Figure �.�C). To obtain a
reasonable number of clusters we chose a cut-off of �.�� nm for both systems. The
per-cluster population decays faster for the VHH ensemble (Figure �.�B), indicating
lower structural heterogeneity and a more compact conformational landscape in
this naturally occurring antibody. Based on the normalized cluster populations we
calculated the information entropy over all clusters (Figure �.�A, B), again indicating
higher conformational flexibility in the DesAbO ensemble.
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Figure �.�: Structural properties of the sdAbs. Maps for a DesAbO and b VHH for
CDR – scaffold contacts, indicating the probability of forming a contact between
two residues.

Conformational flexibility in the complementarity determining region. To better
understand the specific conformational changes of the rationally-designed sdAb
(DesAbO) compared to the structurally-designed one (VHH), we projected the
free energy on to collective variables encoding the number of intra-CDR and CDR-
scaffold contacts (Figure �.�). While the VHH ensemble is compact and maintains
a large number of CDR-scaffold contacts, the DesAbO ensemble shows a loss of
contacts not only with the scaffold, but also internally within the CDR. Even in the
lowest energy state, the DesAbO system forms relatively fewer contacts with the
scaffold than VHH. The origin of this higher flexibility in the sequence-based design
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can be seen in a loss of contacts with residues ��-�� of the scaffold (Figure �.�).
We further see a reduction in the contact probability between the first part of the
CDR and residues ��-�� in the scaffold, thus allowing for higher conformational
heterogeneity.

�.� Discussion

The simulations indicate clear structural differences between both antibodies on an
ensemble level. Notably, despite the increased length of the VHH CDR theoretically
allowing more flexibility, this CDR is in fact more structured, with stronger CDR-
scaffold contacts. As the design process for this sdAb specifically optimises for
structure, this is not necessarily surprising. However, both antibodies share many of
the same contacts, with DesAbO only missing interactions between the first half of
the CDR and residues �� to �� in the scaffold. The lack of these particular contacts
may be sufficient to decrease the rigidity of the CDR, and potentially impact binding
affinities. On the other hand, higher conformational entropy in the loop might be
beneficial in binding disordered targets such as oligomers. In that case, the necessary
structural rearrangements to form a β-sheet structure with the epitope might present
a significant entropic barrier.

The effect of CDR-scaffold interactions might have to be taken into account in
the sequence-based antibody design procedure. These interactions might even be
tunable to make the formation of β-sheets easier, for example by arranging the
residues of the CDR appropriately, or creating anchor points on either side of the
CDR to force a particular arrangement. However, the general role of rigidity in
antibody — antigen binding remains unclear, with some results indicating only a
slight reduction in antibodies produced through affinity maturation compared to
naïve antibodies[���], and others suggesting an increase in rigidity together with
an increase in affinity[���]. Other studies hint at the role of water in the binding
process and the entropically favourable formation of salt bridges[���, ���].

Comparing my results to an ensemble of a naturally occurring antibody could be
especially instructive to understand the precise benefit of CDR-scaffold interactions
(or a lack thereof ) in general. Finally, experimental data on the interaction of the CDR
loop with the scaffold, as well as detailed information on the binding mode would be
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instructive. Unfortunately, elucidating the binding of multiple disordered proteins /
regions – as would be required for an sdAb such as DesAbO – is notoriously difficult.

�.� Methods

Simulation details. Both simulations were performed using GROMACS ����.�
[���] and a development version of PLUMED �.�[���, ���] (git commit �������).
We chose CHARMM��m[���] as the force field, together with the TIP�P[���] water
model. Starting conformations were created using MODELLER[���]. The structures
were solvated in a rhombic dodecahedron box with a volume of ��� nm3 (VHH:
��� nm3) using ���� (VHH: ����) water molecules. Each system was minimized
using the steepest descent algorithm to a target force of ���� kJ / (mol / nm) and equi-
librated over a time of ��� ps in the NVT ensemble with the Bussi thermostat[���],
and over � ns in the NPT ensemble using Berendsen pressure coupling[���], while ap-
plying a position restraint on all heavy atoms, at a temperature of ��� K. The systems
were then each simulated at ��� K for � ns in the NVT ensemble and �� new starting
structures were then sampled from the respective trajectories at random, to pro-
duce a set of diverse CDR conformations. Each conformation was then equilibrated
using the same procedure outlined above, at a temperature of ��� K. Production
simulations were performed at ��� K in the NPT ensemble using Parrinello-Rahman
pressure coupling[���] with a timestep of � fs. Constraints were applied using the
LINCS algorithm[���] with a matrix expansion on the order of � and � iteration per
timestep. Modelling of electrostatic interactions was performed using the Particle-
Mesh-Ewald[��] approach with a cut-off for short-range interactions at �.� nm.
Both simulations were performed using Parallel-Bias metadynamics[��], using the
well-tempered[���] and multiple-walkers[���] protocols with �� replicas. Chosen
collective variables were �) the sum of all backbone dihedral angles (ALPHABETA
action in PLUMED) in the CDR, �) the sum of side chain χ1 dihedral angles in the
CDR, �) the root-mean-square deviation of consecutive residues in the CDR to an
ideal α-helix (ALPHARMSD in PLUMED), and �) the root-mean-square deviation
of consecutive residues in the CDR to an antiparallel β-sheet (ANTIBETARMSD in
PLUMED). Gaussians were deposited every ��� steps (� ps) using an initial height
of �.� kJ / mol, a bias-factor of �� and widths of �) �.� rad, �) �.� rad, �) �.� and �)
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�.�. For both systems simulations were run for ��� ns per replica, totalling �.� μs of
cumulative sampling.

Analysis. The individual replica trajectories were concatenated and the statistical
weight for each frame was calculated using the approach by Torrie and Valleau[���].
All observables were calculated as weighted ensemble averages. Convergence was
assessed by clustering �� bootstrap samples of each trajectory and comparing the
populations of each cluster in the case of the first and second halves of the respective
simulations (Figure �.�). We chose the GROMOS clustering algorithm[���] based
on Cα RMSDs, as implemented in GROMACS ����.� with a cut-off of �.�� nm based
on the evaluation of several different values (Figure �.�C). Convergence was assessed
by clustering the whole trajectory using the same method, discarding the first �� �
of frames, and comparing the cluster populations between the remaining first and
second halves of the simulation (Figure �.�).
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�.� Extended data
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Extended Data Figure �.�: Simulation convergence for a the designed antibody
DesAbO and b the VHH antibody. After discarding the first �� � of frames, simula-
tions were split into equal blocks and the cluster populations compared. Error bars
indicate the ��th percentile of the bootstrap sample-of-the-mean over all �� samples
consisting of ����� frames sampled from each block based on the metadynamics
weights.
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� Conclusion

I have come to believe that the whole world is an enigma,
a harmless enigma that is made terrible by our own mad attempt

to interpret it as though it had an underlying truth.
— Umberto Eco, in Foucault’s Pendulum

In the preceding chapters, I have outlined how one can use methods from dynamical
systems theory to make sense of simulations of disordered proteins. In chapter �
I performed long-timescale molecular dynamics simulations of amyloid-β �� and
constructed a kinetic ensemble using a probabilistic state definition, given by a
neural network. This approach revealed state interconversion times on the range of
microseconds, with the network of states forming an ’inverted kinetic hub’.

In chapter � I utilised the same methods to study the interaction of Aβ�� with a
small molecule known to bind the monomeric form of the protein. While data on
the thermodynamic behaviour of the interaction is already available – showing only
minor changes to the ensemble upon binding[��] – detailed data on the atomistic
kinetics was not. I discovered the presence of transient, highly localized π-π stacking
interactions lasting only nanoseconds. The interaction however seems to increase
the conformational entropy of the protein, suggesting both a favourable enthalpic as
well as entropic effect.

Finally, in chapter � I departed from Aβ�� and utilized traditional enhanced
sampling techniques to study the behaviour of complementarity determining regions
(CDRs) – the binding motifs on (designed) single-domain antibodies (sdAbs). I
compared an sdAb designed using a sequence-matching method with one utilising a
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structural matching approach. The latter sdAb features a more compact free energy
surface, with a less structurally heterogeneous CDR compared to the former sdAb.

What is the bottom line? The behaviour of disordered proteins is complex and
presents new angles of attack for target identification, experiment design, and drug
development. However, studying them at a highly resolved level presents significant
difficulties to structural biology, and challenges assumptions underlying many mod-
elling techniques. I will first summarize some of the limitations of my computational
models before moving on to the context of their behaviour.

�.� Newmodels

An obvious limitation of the approach presented in chapters � and � is the use of
pure molecular dynamics simulations to generate the data necessary to build kinetic
ensembles. While approaches using ensemble-restrained simulations have become
important tools in integrative structural biology[���, ���–���], their use is sadly
not possible when one is also interested in kinetics. However, there have been
developments to allow re-weighting methods to be used with kinetic models, notably
augmented Markov models (AMMs)[���] and and an extension to VAMPNets[���].
Especially interesting is the option of using experimental data directly encoding
kinetic properties such as relaxation times[��]. Beyond experimental data we have
the option of moving tomore resolving physical models. While quantum-mechanical
approaches are an unrealistic option due to their large resource use, polarizable force
fields[���] may present an attractive option to study the often subtle electrostatic
interactions of disordered proteins.

There are also statistical considerations when using Markov models, our temporal
and spatial resolution is limited by the lag time and state discretization. The former
has recently been addressed in the form of history-augmented Markov state models
(haMSMs)[���], allowing the use of very short lag times to build accurate models.
The issue of limited state space can be argued to be beneficial, as this could somewhat
aid interpretability. On the other hand, an ideal state definition is often difficult to
achieve, and limited by the clustering procedure, the input data, and in the case
of VAMPNet, the neural network architecture. The problem of how to effectively
represent molecules and three-dimensional protein structures for neural networks
has seen significant interest in the past few years, with graph-convolutional networks
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and other methods showing great promise[���, ���, ���]. Generally, providing a
more information-dense molecular representation to the network may substantially
improve performance, while potentially also accelerating training times.

�.� Universality

Chapter � raises the question of universality. Is an ‘inverted kinetic hub’ a general
phenomenon seen in disordered proteins, or is Aβ�� an exception? α-synuclein,
implicated in Parkinson’s disease, has also enjoyed computational interest. A major
problem in terms of simulation is the increased length of ��� residues, not only vastly
increasing the required box size, but also the potential space of transient folds and
other intramolecular interactions. Aβ�� in some way represents an excellent middle
ground as a model system, as it is large enough to exhibit highly complex behaviour,
but not too large to be unrealistic to simulate effectively. Another obvious step is
studying the intermolecular behaviour of these aggregation-prone proteins. This
poses the same problems as α-synuclein, as the increase in number of monomers
interacting is similar to an increase in sequence length. The combinatorial complexity
of these interactions can quickly get out of hand and require extremely long sampling
times.

In chapter � I discussed the interaction of Aβ�� with a small molecule. We can
once again ask if this interaction is unique to this particular combination, or if some
more universal theme is at play. Simulations on α-synuclein suggest comparable
mechanisms[���] with differences observed between small molecules, potentially
allowing a structure-activity relationship to be established. The authors however also
observed chemical shift perturbations, hinting at strong ensemble modulation – this
is in contrast to our previous findings on Aβ��[��] and small molecules. Generally,
previous findings on small molecule binding to disordered proteins[��, ��, ���, ���]
hint at the possibility of achieving somewhat specific binding, and thus an attractive
avenue to novel drugs.

Finally, in chapter � I studied the behaviour of complementarity determining
regions (CDRs) in designed antibodies. Again, the question of universality is a given,
but it is also as of yet unclear whether some flexibility could be beneficial to binding
certain targets, or if high affinities can only be reached with a rigid binding motif
and correspondingly strong enthalpic interactions. Exploring other types of sdAbs
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would help to shed light on this phenomenon and could eventually aid in the design
of novel therapeutics.
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Supplementary Figure �.�: Hyperparameter scan for a conventional discrete-state
Markov state model. Clustering algorithms evaluated include Gaussian mixture
models, minibatch k-Means, and minibatch k-Medoids using between �� and ����
microstates and between � and �� input dimensions. The mean cross-validation
score (MCV) is shown in the bottom left.
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Each panel indicates the transition probability for one matrix entry for successive
applications and estimations of the Koopman matrix. Shaded areas and error bars
indicate ��th percentiles of the mean over all �� models.
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Supplementary Figure �.�: Comparison of the �-statemodel constrained to feature
reversibility and positive transition matrix elements and the unconstrained �-state
model. (a- b) Mean transition matrix elements (state transition probabilities). (c-d)
Relaxation timescales of the constrained and unconstrained �-state models. (e-f)
State lifetimes for the constrained and unconstrained models. The whiskers, boxes
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all �� models, respectively, the labels show the mean model values.
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Supplementary Figure �.�: Structural properties of Aβ�� in the two-state model.
a Populations of a-helical and b-sheet content per residue as calculated using
DSSP[���]. The equilibrium percentage of each state is given above, with the ��th
percentile in parentheses. b Contact probability maps with a cut-off of �.� nm. Error
bars indicate ��th percentiles of the bootstrap sample of the mean over all �� models.
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Supplementary Figure �.�: Structural properties of Aβ�� in the six-state model.
a Populations of a-helical and b-sheet content per residue as calculated using
DSSP[���]. The equilibrium percentage of each state is given above, with the ��th
percentile in parentheses. b Contact probability maps with a cut-off of �.� nm. Error
bars indicate ��th percentiles of the bootstrap sample of the mean over all �� models.
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Supplementary Figure �.��: Chapman-Kolmogorov test for the �-state model of
Aβ��-MetSO. Each panel indicates the transition probability for one matrix entry
for successive applications and estimations of the Koopman matrix. Shaded areas
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���



� Appendix

0.00 4.93

1.29 0.00

MFPT [µs]

0.00 2.25

0.40 0.00

σ(MFPT)

σ(MFPT)MFPT [µs]

State
0 1

0 1 0 1

2

0 1 2 0 1 2

3 4

0

1

0

a

b

c

1

2

0

1

2

3

4

0 1 2 3 4
State

St
at
e

St
at
e

St
at
e

σ(MFPT)MFPT [µs]

0.00 4.89 13.08

1.25 0.00 13.42

1.29 5.27 0.00

0.00 2.21 9.90

0.42 0.00 9.72

0.71 2.30 0.00

0.00 5.33 10.05 15.71 335.41

1.21 0.00 10.68 15.81 334.28

0.94 5.70 0.00 16.25 335.88

1.29 5.52 10.94 0.00 334.65

11.45 14.45 21.03 25.11 0.00

0.00 1.79 4.60 16.88 1056.55

0.29 0.00 4.83 17.09 1055.76

0.34 1.90 0.00 17.22 1056.86

0.62 1.93 5.19 0.00 1057.34

42.76 42.14 46.82 59.80 0.00

Supplementary Figure �.��: Full mean first-passage times for Aβ�� with (a) �
states, (b) � states and (c) � states in µs. Standard deviations are shown for the mean
first-passage times in μs, across all �� models.

���


	Introduction
	Disordered structure?
	Function and dysfunction of protein disorder
	Drug binding to disordered proteins
	Disordered proteins as complex systems

	Probing disorder
	Limits of experimental methods
	Kinetic aspects

	Molecular simulations
	The ensemble framework
	Molecular dynamics
	Increasing sampling efficiency
	Kinetics from simulation
	Limits of simulation

	Aims

	A kinetic ensemble of the Alzheimer's Aβ peptide
	Summary
	Introduction
	Results
	Discussion
	Methods
	Extended data

	A small molecule stabilises the disordered native state of the Aβ peptide
	Summary
	Introduction
	Results
	Discussion
	Methods
	Extended data

	Conformational entropy in a designed antibody
	Summary
	Introduction
	Results
	Discussion
	Methods
	Extended data

	Conclusion
	New models
	Universality

	Bibliography
	Appendix
	Supporting information for chapter 2


