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8Berlin Institute of Health (BIH) and Charité Universit€atsmedizin, Clinical Study Center (CSC), 10117 Berlin, Germany
9Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4

2XU, UK
10Usher Institute, University of Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh EH16 4UX, UK
11MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
12MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
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SUMMARY

The COVID-19 pandemic is an unprecedented global challenge, and point-of-care diagnostic classifiers are
urgently required. Here, we present a platform for ultra-high-throughput serum and plasma proteomics that
builds on ISO13485 standardization to facilitate simple implementation in regulated clinical laboratories. Our
low-cost workflow handles up to 180 samples per day, enables high precision quantification, and reduces
batch effects for large-scale and longitudinal studies. We use our platform on samples collected from a
cohort of early hospitalized cases of the SARS-CoV-2 pandemic and identify 27 potential biomarkers that
are differentially expressed depending on the WHO severity grade of COVID-19. They include complement
factors, the coagulation system, inflammation modulators, and pro-inflammatory factors upstream and
downstream of interleukin 6. All protocols and software for implementing our approach are freely available.
In total, this work supports the development of routine proteomic assays to aid clinical decision making and
generate hypotheses about potential COVID-19 therapeutic targets.

INTRODUCTION

The ongoing SARS-CoV-2 pandemic has highlighted the press-

ing need for technologies that can accelerate our understanding

of emerging diseases in order to (1) find markers that define dis-

ease severity, have prognostic value, or define a specific phase

of the disease; (2) identify preventive strategies; and (3) discover

therapeutic targets. PCR-based diagnostics can be imple-

mented and scaled quickly but do not provide information about

severity of the disease as well as likely illness trajectories (Chen

et al., 2020; Corman et al., 2020). Furthermore, conventional

biomarker as well as serological assays depend on affinity re-

agents, such as antibodies. Developing these takes time and re-

quires prior knowledge of epitopes and the disease mechanisms

(Petherick, 2020). Indeed, the host response to each viral infec-

tion is significantly different, specifically, as several viruses can

evade the host immune system (Bussey and Brinkmann, 2018;

Kikkert, 2020). Each novel infective agent requires a new assess-

ment of the host response, aswell as requires a unique set of bio-

markers for predicting disease trajectories.

Mass spectrometry (MS)-based proteomics does not depend

on affinity reagents and can be set up in an untargeted fashion,
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such that it does not depend on prior knowledge of the disease.

It can quickly deliver substantial amounts of clinical and biolog-

ical information from accessible biological material, such as

blood plasma or serum. MS-based proteomics hence has the

potential to become an ideal technology to be applied

in situations when rapid responses are required. Currently,

MS-based proteomic workflows are well established in research

laboratories, where they are routinely used for biomarker discov-

ery and profiling (Bruderer et al., 2019; Geyer et al., 2016a,

2016b, 2017, 2019; Liu et al., 2015; Niu et al., 2019; Wewer Al-

brechtsen et al., 2018).

Increasingly, MS-based proteomics is also entering regulated

clinical and diagnostic environments (He, 2019; Mischak et al.,

2012; Crutchfield et al., 2016). It has the potential to yield com-

plex and predictive biomarker signatures that support clinical

decision making, as well as to enable the prediction of patient

trajectories via machine learning methods with datasets of suffi-

cient depth and size (Ahadi et al., 2020). However, in clinical

practice, its potential is yet to be completely realized. For routine

applications, MS-based proteomic methods must combine pre-

cision, reproducibility, and robustness with low cost and high

throughput, such that results can be routinely compared within

and between clinical studies and laboratories (Geyer et al.,

2017, 2019; Nilsson et al., 2010; Wright and Van Eyk, 2017).

These requirementsmight necessitate a compromise with prote-

omic depth, which has often been a key objective of proteomics

in research settings, but which has been, in turn, often achieved

through long measurement times and high cost (Bruderer et al.,

2019; Geyer et al., 2016a; Liu et al., 2015). A further hurdle is that

current MS-based proteomic workflows require, partially due to

their dependency on chromatographic flow rates in the range of

nanoliters or low microliters per minute, a high level of expert

knowledge to achieve the level of necessary robustness for im-

plementation in the clinical laboratory.

Here, we present a redesigned high-throughput MS platform

that enables the cost-effective (less than 10V for consumables

per sample) in-depth analysis of disease susceptibility and pro-

gression in patients as well as biomarker discovery. Our platform

is optimized at all steps from sample preparation, chromatog-

raphy, and data acquisition to data processing, in comparison

to existing research pipelines (Bache et al., 2018; Bekker-Jensen

et al., 2020; Bian et al., 2020; Bluemlein and Ralser, 2011; Bru-

derer et al., 2019; Geyer et al., 2016a; Liu et al., 2015; M€uller

et al., 2020; Vowinckel et al., 2018). It includes a semi-automated

sample preparation workflow that scales to high sample

numbers through the use of liquid handling robotics and mini-

mum hands-on-time and includes effective strategies tomitigate

longitudinal batch effects. It also makes use of short-gradient

high-flow liquid chromatography (LC), a technology that is the

basis of several FDA-approved clinical assays (Grebe and Singh,

2011; Nair and Clarke, 2016), applicable to high-throughput pro-

teomic experiments. Using this approach, we were able to

reduce measurements to 5-min gradient length, inter-runtime

to 3 min or less, as well as to use flow rates of 800 mL/min,

thereby substantially increasing sample turnover and reducing

costs, while increasing stability and precision.

We first benchmarked the platform on a cohort-based epide-

miological study, Generation Scotland (GS) (Smith et al., 2013),

and at considerably higher throughput, demonstrated a level of

precision and consistency that, to our knowledge, is yet un-

achieved in comparable large-scale proteomic studies. We

then employed this workflow in an immediate response to the

SARS-CoV-2 pandemic outbreak in Germany, by applying it to

a cohort that includes the first COVID-19 patients hospitalized

at the Charité Universit€atsmedizin Berlin. We measured samples

from a primary exploratory cohort comprising thirty-one COVID-

19 patients to identify clinical classifiers, candidate biomarkers

as well as potential targets that picture the host immune

response specific to a SARS-CoV-2 infection (Figure 4A). We

validated these on a smaller cohort of seventeen independent

patients and fifteen healthy volunteers (Table S1). We identified

protein expression signatures that can classify COVID-19 pa-

tients according to WHO grading, introduced as of April 2020

(World Health Organization, 2020).

Our analysis associates several proteins with COVID-19

severity that have not been previously associated with the infec-

tion and the host response. These are alpha-1B-glycoprotein

(A1BG), beta and gamma-1 actin (ACTB;ACTG1), monocyte dif-

ferentiation antigen and lipopolysaccharide co-receptor CD14,

lipopolysaccharide-binding protein (LBP), galectin 3-binding

protein (LGALS3BP), leucine-rich alpha-2-glycoprotein (LRG1),

haptoglobin (HP), protein Z-dependent protease inhibitor (SER-

PINA10), apolipoprotein C1 (APOC1), gelsolin (GSN), and trans-

ferrin (TF). Our results highlight the role of complement factors,

the coagulation system, several inflammation modulators as

well as pro-inflammatory signaling both upstream and down-

stream of interleukin (IL)-6. In addition, our study provided evi-

dence that proteomic signatures have the potential to outper-

form conventional clinical assays. Two individuals with differing

proteomic signatures were identified through a clustering

approach. In one case, a clinical re-assessment changed the

diagnosis (the patient was in fact suffering from an influenza

type B infection) and revealed in the other case a strong comor-

bidity caused by anti-cancer chemotherapy. None of the

currently applied clinical tests spotted this situation.

In total, our study demonstrates the value and power of robust

high-throughput MS in a global public health crisis. Very fast and

reliable proteome technologies can play a vital role both in clin-

ical classification as well as in the rapid identification of thera-

peutic targets against arising infecting agents.

RESULTS AND DISCUSSION

A Platform for Clinical Proteomics Yields High
Quantitative Precision at Low Costs and High
Throughput
We addressed throughput, precision, costs, and practical hur-

dles in clinical implementation of MS-based proteomics, by

designing a proteomics platform, in which we refined sample

preparation, chromatography, mass spectrometric acquisition,

and data analysis. Our workflow reaches a high level of stan-

dardization and documentation, for which ISO 13485 was used

as a reference (Figure S1). After the transfer of the clinical plasma

or serum samples, obtained with standard operating proced-

ures, to 96-well plates, all pipetting and mixing steps are con-

ducted with liquid handling robots. The workflow has a total

hands-on time of around 3.5 h and is designed so that a single

person using a single liquid handling unit can start and complete
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every day one or two 4-plate batches. Effectively four to eight

plates containing up to 768 proteome samples exit the workflow

every day and are ready for the mass spectrometric analysis.

Among several improvements in handling (see STARMethods

for details), the preparation workflow includes a simple but effec-

tive handling improvement that mitigates batch variation in sam-

ple preparation reagents, which has proven so far a major and

prohibitive contributor to quantification inconsistencies in

(large-scale) proteomic experiments (Fu et al., 2018; Lowenthal

et al., 2014; Piehowski et al., 2013). Instead of pipetting reagents

on the samples at each step, initial common stock solutions

(urea and ammonium bicarbonate buffer, dithiothreitol, iodoace-

tamide, formic acid, and trypsin) are pre-filled into multi-well

plates and are then stored at �80�C for whole projects in perpe-

tuity. These plates enter the workflow at different stages (Fig-

ure 1), thereby not only reducing hands-on time but maintaining

the exact same reagents for projects of, in theory, unlimited

scale. A second key step concerns the cleanup of the digested

peptides, which is done with 96-well solid-phase extraction

plates (Bennike et al., 2018; Bruderer et al., 2019). In our work-

flow, four are processed in parallel to reduce technical variability.

Finally, the inclusion of sample preparation controls on each

plate enables cross-batch normalization, to correct batch effects

in case these emerge at the sample preparation or the acquisi-

tion step of the workflow (Figure 1).

Next, we developed a data acquisition scheme that could be

implemented in regulated environments without major hurdles

and maintains very low variability across large sample series.

Here, we focused on the implementation of a high-flow chro-

matographic regime in a proteomic workflow. The current stan-

dard technique for bottom-up proteomics, nano-flow LC, used

owing to its high sensitivity, is a main contributor to batch vari-

ability in LC-MS experiments (Gama et al., 2013; Shishkova

et al., 2016). Several recent studies have shown that run-to-run

variability improves by switching from nano-flow to micro-flow

regimes or to specialized chromatographic devices that operate

with pre-formed gradients. These allow faster runtimes and sam-

ple turnover, show better retention time stability, and improve

column lifetime (Bache et al., 2018; Bian et al., 2020; Bruderer

et al., 2019; Vowinckel et al., 2018).

Alternatively, high-flow LC (also known as analytical LC) in

conjunction with very fast chromatographic gradients, a technol-

ogy that reaches the requirements of regulated clinical labora-

tories, could further and substantially improve throughput and

chromatographic properties. However, typically it has not been

applied to short-gradient proteomics for two important reasons.

First, on this type of fast chromatography, conventional mass

spectrometric acquisition schemes do not reach sufficient sam-

pling velocity in data-dependent mode (as peaks elute too fast).

Second, when using data-independent acquisition (DIA)

schemes, which do not sample each peak individually, conven-

tional software cannot deconvolute the interference-rich short-

gradient data produced (Demichev et al., 2020; Messner

et al., 2019).

We overcame these issues and developed an acquisition

scheme based on 5-min water to acetonitrile chromatographic

gradients at a flow rate of 800 mL/min. Separating tryptic digests

of non-depleted human plasma using an 1290 Infinity II UPLC

(Agilent) or H Class UPLC systems (Waters) coupled to a Triple-

TOF 6600 (Sciex) mass spectrometer illustrates that total ion

chromatograms (TICs) are virtually unchanged over repeated

injections (Figure 2A). The nearly complete overlap of the TICs in-

dicates not only the stability of the applied chromatographic sys-

tem but also the stability of the electrospray, which is facilitated

by the gases that assist the desolvation process in high-flow ion

sources. By using a short 5-cm column and by increasing the

flow rate post-gradient to 1,200 mL/min and 1,000 mL/min during

washing and equilibration, respectively, we were able to reduce

the total runtime, including overhead, to less than 8 min. In this

particular test, the setup allows a theoretical throughput of 180

samples/day on a single mass spectrometer, an at least 5-fold

improvement compared with microLC or nanoLC platforms opti-

mized for throughput (Bruderer et al., 2019; Geyer et al., 2016a;

Vowinckel et al., 2018). Moreover, the columns used in high-flow

chromatography have higher capacities and thus are less prone

to carryover. Indeed, blank injection after 10 acquisitions of non-

depleted plasma tryptic digests shows no significant carryover

even with an applied wash time of less than 1 min (Figure 2A).

The separation of a K562 cell line tryptic digest (Promega) at

different gradient lengths illustrates the chromatographic prop-

erties achieved. The high-flow setup achieved a median peak

full width at half maximum (FWHM) of 3 s with a 20-min gradient

length. For comparison, an extensively optimized micro-flow LC

(Demichev et al., 2020; Messner et al., 2019), achieved a FWHM

of 5 s, at the same gradient length (Figure 2C). Furthermore, high-

flow gradients as fast as 5 min resulted in peak capacities com-

parable to the highly optimized 20-min micro-flow setup (Demi-

chev et al., 2020; Messner et al., 2019) (Figure 2D). In order to

achieve a sufficiently fast mass spectrometric duty cycle, we

used a q-TOF instrument with a very fast sampling rate (Schilling

et al., 2017) and applied SWATH-MS, a DIA method specifically

developed to minimize stochastic elements in data acquisition

(Gillet et al., 2012; Ludwig et al., 2018). To record sufficient

data points per chromatographic peak, we optimized the

method for duty cycles of 700 ms and scan a precursor mass

range of m/z 450–850 using 25 windows with variable window

size (Table S6) and with 25-ms accumulation time.

In order to deconvolute the complex data recorded, we built

on our recent developments of DIA-NN software, that includes

several algorithms that boost the number of true positive precur-

sor identifications in the short-gradient DIA-MS runs. DIA-NN

can handle complex short-gradient data as it contains algo-

rithms that correct for signal interferences and uses deep neural

networks to assign confidence scores to peptide-spectrum

matches and identify true positive signals (Demichev et al.,

2020). Applied to analyzing 5 mg of human cell line (K562) tryptic

digest, the short-gradient high-flow method yielded 2,829

unique proteins (at 1% FDR) in triplicate injections, while the

numbers of unique proteins quantified with a coefficient of vari-

ation (CV) less than 20% and less than 10% were 1,873 and

1,349, respectively (Figure S2E). Hence, despite the ultra-high

throughput and the use of high-flow chromatography, the analyt-

ical method is able to achieve proteomic depth even on complex

samples. Finally, we improved the DIA-NN (version 1.7.10) work-

flow for the high-throughput processing of plasma and serum

proteomes, through integration of the MaxLFQ protein quantifi-

cation algorithm (Cox et al., 2014) in a DIA-NN R-package. Orig-

inally, MaxLFQ was designed for shotgun-MS studies but was
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A

B

Figure 1. A High-Throughput Proteomics Platform for Large-Scale and Longitudinal Clinical Proteomic Studies
(A) Experimental part of the workflow. Receipt and storage (green boxes): clinical or epidemiological samples are collected using a standard operating procedure,

received, and stored at�80�C, then aliquoted to 96-well plates alongside control samples. For plasma and serum, 5 mL are processed and yield sufficient tryptic

digest for fivemeasurements on the high-flow rate LC-MS platform. Sample preparation (yellow boxes): the sample preparation workflow is designed for handling

384 samples per batch (four 96-well plates). Batch effects are mitigated by using pre-aliquoted stock solution plates—prepared for whole projects and stored at

�80�C—that enter the workflow at different steps, as well as by using a liquid handling robot for pipetting andmixing. Sample cleanup is done with 384 samples/

batch by using 96-well solid-phase extraction plates (BioPureSPE, the Nest Group) and a liquid handler for pipetting. The hands-on time for cleanup is <2 h and

although the digestion is done overnight, the total hands-on time for the sample preparation is <3.5 h. Data acquisition (blue boxes): ultra-fast measurements of

the digested samples are facilitated in 300-s chromatographic gradients using high-flow chromatography (800 mL/min) with a short reversed phase C18 column

(50 3 2.1 mm, 1.8 mm particle size) to accelerate equilibration and washing steps. A 700 ms duty cycle, required to record sufficient data points per chro-

matographic peaks that elute at FWHMof about 3 s is achievedwith an optimized SWATH data acquisitionmethod. The theoretical throughput of data acquisition

for one mass spectrometer is 180 samples/day.

(B) Data processing (red boxes): the analysis of the highly complex short-gradient DIA data is achieved with an optimized version (1.7.10) of DIA-NN (Demichev

et al., 2020). DIA-NN is based on neural networks to enable confident peptide identification with fast gradients and achieves a throughput of >2,000 samples/day

on a conventional PC. First, a spectral library is automatically ‘‘refined’’ using the dataset in question: only detectable peptide precursors are retained, and their

reference spectra and retention times are replaced with empirically observed. Reanalysis with this refined library is then followed by batch correction and, finally,

protein quantification using MaxLFQ (Cox et al., 2014). Abbreviations: ABC, ammonium bicarbonate; DTT, dithiothreitol; IAA, iodoacetamide; FA, formic acid.
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recently introduced to DIA proteomics (Pham et al., 2020) and

increased the quantification precision for serum and plasma

proteomes.

Benchmarking Acquisition Depth, Quality, and Data
Consistency in an Epidemiological Study
To assess the suitability of our high-throughput platform for

human blood plasma and serum proteomics, we generated pro-

teomes for undepleted serum samples derived from 199 random

individuals that participated in the GS epidemiological study

(Smith et al., 2013). GS is a family-based cohort of approximately

24,000 individuals in 7,000 family groups from across Scotland,

aged between 18 and 98 (Smith et al., 2013). We also included

a large number of commercial plasma (tebu-bio, 91 total) and

serum (tebu-bio, 79 total) samples as quality controls for the sam-

ple preparationworkflow, aswell as repeated injections of a single

sample every 11 samples (pooled from 32 prepared commercial

serum samples, 39 total) as a control for the LC-MS performance.

The sample preparation was done in four 96-well plates and the

experiment involved 409 non-blank injections.

For interrogating the raw data, we made use of a high-quality

spectral library (Bruderer et al., 2019) that was refined with DIA-

NN based on the actual data (Figure 1B). Upon protein extraction

and batch effect correction (STAR Methods), we assessed the

robustness and consistency of protein identification achieved

and herein illustrate the key quality parameters. The high-flow

LC setup yielded exceptional retention time stability across the

whole experiment (Figure 3A). As expected, due to the short

gradients, the total proteomic depth (total number of peptides

quantified) is lower than achieved with MS workflows that use

pre-fractionation and longer gradients with lower flow rates

and have a slower duty cycle to scan over a larger mass range.

In undepleted plasma, these typically detect 250 to 450 proteins

per injection (Bian et al., 2020; Bruderer et al., 2019; Geyer et al.,

2016a; Liu et al., 2015). However, with an average of ~270 pro-

tein groups detected per injection and 311 in total, our much

faster platform still covers most of the typical plasma proteins

(Anderson and Anderson, 2002) also seen by the other methods.

Indeed, this compendium of proteins quantified includes at

least 44 FDA-approved protein biomarkers (Table S5). More-

over, for large-scale experiments, the numbers of consistently

quantified peptides and proteins are more relevant than the

maximum number of protein groups identified, as only consis-

tent detection allows for quantitative comparison between indi-

viduals and is suitable for the development of clinical assays.

We consistently identified around 3,000 peptide precursors

(i.e., peptides ionized to a specific charge; Figure 3B) and 200

unique proteins (i.e., gene products identified with specific pro-

teotypic peptides; Figure 3C) across all 409 proteome acquisi-

tions. In total, we detected 311 protein groups, out of which 245

uniquely identified proteins were measured with 87% data

completeness and with at least five peptides. Among these,

182 unique proteins were quantified with 99% data complete-

ness (Figure 3D).

A

C D

B Figure 2. High-Flow LC and Its Application

to Short-Gradient MS-Based Proteomics

(A) A tryptic digest of human blood plasma was

injected 10 times. The peptides were separated

with a 300 s linear water to acetonitrile chro-

matographic gradient using an Agilent 1290 In-

finity II LC system coupled to a TripleTOF 6600

mass analyzer. The TICs of the first and last in-

jection were overlaid and colored with blue and

red, respectively. The time from the start of one run

to the next was reduced to 8 min (including in-

strument overheads), which enables a throughput

of ~180 samples/day. After the 10 plasma in-

jections, water was injected and the TIC (black

line) shows no significant carryover despite the

short washing time.

(B) Extracted ion chromatograms of 5 synthetic

peptides (AETSELHTSLK [m/z 408.55, black line],

LDSTSIPVAK [m/z 519.80, orange line], ALEN-

DIGVPSDATVK [m/z 768.90, blue line], AVY-

FYAPQIPLYANK [m/z = 883.47, green line], and

TVESLFPEEAETPGSAVR [m/z 964.97741, red

line]) from a synthetic peptide mixture (Pepcal,

Sciex) as separated on the 300 s linear gradient.

Chromatograms were extracted from TOF MS

data, width = 0.1 Da.

(C) A tryptic digest of K562 human cell lines was

separated with a 20-min linear gradient ramping

from 3% ACN 0.1% FA to 36% ACN, 0.1% FA on

high-flow (800 mL/min; C18 column 50 mm 3 2.1,

column length). Peak widths at FWHM of the

eluting peptides were compared to a 20-min micro-flow run (5 mL/min; 15-cm column; Demichev et al., 2020), analyzed on the same mass spectrometer (Sciex

TripleTOF 6600).

(D) Peak capacities (gradient length divided by FWHM) for 3, 5, 10, and 20-min linear gradients (3% ACN/0.1% FA to 36% ACN/0.1% FA) on high-flow compared

with 20-min micro-flow chromatographic gradients (red dashed line).
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To assess the quantitative precision, we first illustrated the

proteomic data using principal component analysis (PCA) (Fig-

ure 3E). The PCA data fully separate in PC1 all serum from

plasma samples, and in PC2, the control serum samples from

the GS serum samples. The difference between the GS samples

and the commercial samples might be explained by different

serum collection and/or storage procedures. Moreover, the bio-

logical variability across the randomly chosen individuals is

much higher than the technical variability (spread of GS samples

versus serum or plasma samples) and hence is detected with

high confidence by our platform. We further examined in detail

the ‘‘serum’’ cluster of points and did not detect any bias be-

tween different sample preparation plates (Figure 3F).

Finally, we evaluated the quantification precision by calcu-

lating the CV of protein quantities across the studies. Median

values obtained are 5.4% for repeat reference sample injections

(‘‘QC’’) after instrument drift correction, with high abundant pro-

teins being measured with a less than 2% CV of protein quanti-

ties (Figure S2B). Serum controls and plasma controls were

measured with 7.6% and 7.3% CV, reflecting the precision of

the entire workflow including sample preparation, acquisition,

and data analysis. These values are much lower than the biolog-

ical variation detected across the randomly chosen GS partici-

pants; when this biological variation is expressed as a CV value,

it corresponds to a variation of 25.6% (Figure 3G). The platform

hence confidently identifies biological variability in large-scale

serum proteomic experiments of randomly chosen and pre-

sumed healthy individuals. Indeed, to our knowledge, such

high precision values (<2% for high abundant proteins, 5.4%

CV for all proteins [in the LC-MS part of the workflow], 7.3%

for the entire workflow including sample preparation over

processing 409 proteomes) have not been achieved to date in

comparable large-scale proteomic studies.

Rapid and Precise High-Flow Rate Proteomics Identifies
Biomarkers for COVID-19
Weapplied the developedworkflow for the analysis of serumand

citrate plasma samples for two independent COVID-19 cohorts

that included patients who were among the first that were hospi-

talized at Charité Universit€atsmedizin Berlin, between March 1st

and March 26th 2020. Thirty-one SARS-CoV-2 infected patients

were included in the exploratory cohort to identify biomarkers

(Figure 4A; Table S1). 11/31 (35%) patients were female and

20/31 (65%) were male, median age was 54 years (range 21–

81). Severity of COVID-19 was graded using the WHO ordinal

outcome scale of clinical improvement (score 3 = hospitalized,

no oxygen therapy; score 4 = oxygen by mask or nasal prongs;

score 5 = non-invasive ventilation or high-flow oxygen; score

6 = intubation and mechanical ventilation; score 7 = ventilation

and additional organ support) (World Health Organization,

2020) (Table S2). Four patients (13%) died from COVID-19, and

4 patients remain hospitalized at the time of writing. All other pa-

tients have been discharged in good health from hospital. Suc-

cessively, a control group, consisting of 15 healthy volunteers

Figure 3. Robustness and Quantitative Precision of the Proteomic Platform Applied to a Population-Based Epidemiological Cohort
409 serum proteomes were analyzed for characterizing 199 participants of the GS study. The sample series are composed of 39 repeat injections (‘‘QC’’), 79

serum and 91 plasma commercial sample preparation controls, and 200 serum samples derived from the 199 participants of the GS study (‘‘GS’’).

(A) Overlaid aligned retention times (Biognosys iRT scale) of all peptide identifications in the whole experiment. Median iRT standard deviation (SD) was 0.22

(relative SD = 0.0009) and correlation between the observed iRT and library iRT was 0.99995, indicating very high retention time stability.

(B and C) (B) Numbers of peptide precursors and (C) unique proteins identified in control samples.

(D) Data completeness in the whole experiment plotted against the number of proteins identified. The data completeness for all 245 unique proteins was 87%,

whereas 182 proteins were identified with data completeness 99%.

(E) PCA using consistently identified proteins (log-transformed quantities).

(F) The ‘‘serum’’ cluster on the PCA plot, with samples prepared on different 96-well plates colored differently. No bias between the plates can be detected.

(G) CV. After accounting for instrument drift, median CV values are 5.4% for replicate injections (‘‘QC’’), 7.6% for serum controls, 7.3% for plasma controls, and

25.6% for the participants’ samples.
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Figure 4. Protein Signatures Indicate Clinical Severity in COVID-19

(A) Study design. 199 random individuals from theGS studyweremeasured to assess the performance of the platform and to obtain a population baseline. Protein

responses based on COVID-19 severity were obtained from a cohort of 31 hospitalized SARS-CoV-2 infected patients. Severity of COVID-19 was graded using

the WHO ordinal outcome scale of clinical improvement (World Health Organization, 2020).

(B) PCA based on proteins found differentially expressed depending on COVID-19 severity. Median quantities across all time points were calculated for each

patient and 29 proteins without missing values were used to generate the PCA plot (quantities were standardized). Cases with the severity ‘‘3’’ on the WHO scale

(hospitalized, no oxygen therapy) are well separated from cases with the severity ‘‘7’’ along the first principle component, with ‘‘4’’–‘‘6’’ cases in between.

(legend continued on next page)
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and 17 further patients suffering from COVID-19, was recruited

at the same hospital and used for validation of the biomarkers

discovered (Table S1).

Because of the rapid action required in an early phase of a

pandemic, we sampled depending on the first patients hospital-

ized (i.e., there was no other inclusion criteria than a hospitaliza-

tion due to a SARS-CoV-2 infection). Such a cohort certainly

differs from a long-term planned epidemiological cohort such

as the GS study. With samples collected as part of the hospital

routine by different medical professionals, the level of sample

variability is expected to be higher. Moreover, it is difficult to

assemble a control cohort that is matched for the key confound-

ing factors, like age. Nonetheless, our proteomic platform

yielded only slightly inferior values compared to the ideal-case

scenario of the GS study. In the exploratory cohort, which

included 104 serum samples obtained from the 31 of the earliest

COVID-19 patients, we quantified 297 protein groups among

which 229 unique proteins were detected with 75% data

completeness. We surmise that this somewhat lower data

completeness was caused by the massive changes in levels of

a number of proteins upon severe SARS-CoV-2 infection as

well as by the decrease in total serum protein content, also

observed previously in patients hospitalized in ICU units (Nie

et al., 2020). To account for this biological limitation, we applied

very strict filtering to the dataset, namely, we only tested for dif-

ferential abundance of proteins which had at least five different

peptide precursors identified at least in one of the acquisitions.

We identified 37 protein groups with either increasing or

decreasing levels, depending on the severity of the disease

(0.05 significance, multiple testing corrected, Theil-Sen test

against the WHO severity score; see STAR Methods for testing

methodology) (Figure S7). Next, to validate the biomarkers, we

processed the validation cohort (Table S1) and recorded 96 pro-

teomes in triplicates for 15 healthy volunteers and 17 COVID-19

patients (Table S1). The experiment quantified 319 protein

groups among which 248 unique proteins were detected with

85%data completeness. Despite being conducted on a different

matrix (citrate plasma), this independent study confirmed 27 of

the protein groups with either increasing or decreasing levels

(A1BG, ACTB;ACTG1, ALB, APOA1, APOC1, C1R, C1S, C8A,

CD14, CFB, CFH, CFI [complement factor I], CRP, FGA, FGB,

FGG [fibrinogen alpha, beta, and gamma chains], GSN, HP,

ITIH3 [inter-alpha-trypsin inhibitor heavy chain 3], ITIH4 [inter-

alpha-trypsin inhibitor heavy chain 4], LBP, LGALS3BP, LRG1,

SAA1 [serum amyloid A1], SAA1;SAA2 [serum amyloid A1 and

A2 protein group], SERPINA10, TF; 0.05 significance, multiple

testing corrected, Figure S4). This set of proteins thus represents

potential biomarkers of disease severity. Out of the remaining 10

proteins, 9 (AGT [Angiotensinogen], AZGP1 [Zinc-alpha-2-

glycoprotein], C2 [Complement C2], C7 [Complement compo-

nent C7], C8B [Complement component C8 beta chain], CLU

[Clusterin], CPN1 [Carboxypeptidase N catalytic chain], PLG

[Plasminogen], and VTN [Vitronectin]) did not reach statistical

significance in the smaller validation group, whereas the

IGHG2;IGHG3 (Immunoglobulin Heavy Constant Gamma 2 and

3) protein group showed the opposite trend. We illustrate the

quantitative variability of the validated biomarkers for COVID-

19 severity on a heatmap (Figure 4C) and as boxplots (Figures

4D) as well as summarize their potential connection to COVID-

19 in Table S3.

To exclude the possibility that concentration changes in these

markers are due to frequent confounders, like age, we have

plotted the variability of the same proteins in the GS cohort,

with age spanning from 37 to 79, on samples that have been

collected before the COVID-19 outbreak. We note that for iden-

tified proteins the change between mild and severe COVID-19

substantially exceeds the variation seen in the general popula-

tion (Figure 4D). Moreover, plotting the protein abundance

values against the age did not reveal significant correlations

across the GS population baseline (Figure S8).

A PCA categorizes the individuals according to the severity of

COVID-19 (Figure 4B). This shows that plasma proteomes, as

measured with our platform, suit as clinical classifiers. Moreover,

we illustrate the concentration changes of the biomarkers vali-

dated in the control cohort, upon grouping of the patients ac-

cording theWHO severity criteria, ranging from scale 3 (hospital-

ized, no oxygen therapy) to the most critical (scale 7) in a

heatmap (Table S1 for the grading of each patient), which graph-

ically illustrates how level changes in these proteins reflect a pro-

gression from mild to severe COVID-19 (Figure 4C). Of note,

WHO criteria consider patients up and including category 4 as

‘‘mild,’’ a classification that orients on the situation, that until

this point, clinical care does not include invasive treatments

that are difficult to provide, like intubation. However, our prote-

ome data indicate the most substantial changes between cate-

gories 3 and 4, upon which a patient is put on oxygen supply.

Our unbiased analysis hence indicates that at a molecular level,

the requirement of oxygen supply coincides with a progression

to severe disease.

Case studies indicate the clinical utility of the proteome signa-

tures. First, two patients (#13 and #32) in the group of critical pa-

tients, which later died from COVID-19, clearly clustered in the

heatmap and indeed had one of themost pronounced proteomic

signatures (Figure 4C), implying that proteomics bears the po-

tential to support predictions of clinical trajectories. Moreover,

two case studies indicate that systematically recorded

(C) Heatmap shows protein signatures that report on COVID-19 severity. Visualization was performed using the ComplexHeatmap R package (Gu et al., 2016).

Black ‘‘squares’’ indicate missing values. Patients labeled with an asterisk (*) had a fatal outcome of the disease.

(D) Proteins upregulated (top panel) and downregulated (lower panel) depending on COVID-19 severity (WHO grade; SS, standard serum; GS, Generation

Scotland), as well as the population spread of the protein abundance in 199 randomly selected individuals of an independent cohort (Generation Scotland; GS).

As the absolute quantities from the COVID-19 andGS studies cannot be compared directly (samples were obtained in a different manner), we simplified the visual

assessment of the population spread, by normalizing by the median of GS quantities to the median of WHO grade 3 (no oxygen support) COVID-19 cases (the

normalized valueswere used for illustration purposes only and not used for testing for statistical significance). The boxes show first and third quartile aswell as the

median (middle) and the whiskers extend to the most extreme data point, which is no more than 1.5 times the interquartile range from the box. Proteins upre-

gulated with increasing severity of COVID-19: A1BG, ACTB;ACTG1, C1R (complement C1r), C1S (complement C1s), C8A (complement C8 alpha chain), CD14

(monocyte differentiation antigen CD14), CFB (complement factor B), CFH (complement factor H), CFI, CRP, FGA, FGB and FGG, HP, ITIH3, ITIH4, LBP,

LGALS3BP, LRG1, SAA1, SAA1;SAA2, and SERPINA10; proteins downregulated with increasing severity of COVID-19: ALB, APOA1, APOC1, GSN, and TF.
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proteomes provide information that is beyond that of currently

applied clinical assays. When we first obtained the dataset,

two individuals (patients 4 and 6) initially clinically assessed as

severe (Kurth et al., 2020) clustered with patients that suffered

from the mild form of COVID-19 (Figure S3). These results trig-

gered a retrospective assessment, which revealed that patient

4 turned out to be suffering from type B influenza rather than a

SARS-CoV-2 infection, whereas patient 6 was classified as se-

vere due to recent chemo-immunotherapy due to a hematolog-

ical malignancy, applied just ten days before his COVID-19-

related hospitalization. We have, as a consequence, excluded

patient 4 from the COVID-19 dataset (all results shown in

Figure 4). Both clinical case findings indicate however a high

prognostic precision of the proteomic biomarker signatures

and demonstrate that proteomes may very well outperform con-

ventional clinical assays: no current clinical assays would have

identified this type of outliers in the clinical assessment of the

two individuals.

Proteome Signatures of Inflammation and Acute-Phase
Response in Severe COVID-19
Each virus triggers its own host response, with some effectively

evading the innate immune system (Kikkert, 2020). Some viral in-

fections are hence causing only minor inflammatory responses,

for example, HIV or many herpesviruses (Beachboard and

Horner, 2016; Ongrádi, 2016; Sauter and Kirchhoff, 2016). Other

viruses elicit dramatic inflammation and dysregulated coagula-

tion, for example hemorrhagic fevers, e.g., Ebola virus (Baseler

et al., 2017). The host immune response to SARS-CoV-2 is so

far largely unknown. We detected consistent activation of both

the classical complement pathway (C1R, C1S, and C8A) as

well as the alternative pathway factor B (CFB) and the comple-

ment modulators: factors I (CFI) and H (CFH). Other differentially

expressed proteins included the common acute-phase reac-

tants, such as C-reactive protein (CRP) (upregulated), albumin

(ALB) (downregulated), or serum amyloid proteins SAA1 and

SAA2 (upregulated).

We observed upregulation of a number of proteins implicated

in IL-6 signaling (Figure 4; Table S3). In addition to SAA1 and

SAA2, these include inter-a-trypsin inhibitor heavy chain 4

(ITIH4), which plays an important role in extracellular matrix orga-

nization and is implicated in inflammation (Bost et al., 1998; Yang

et al., 2012), HP, an acute-phase response protein (Jain et al.,

2011), LRG1, a promoter of cell proliferation and angiogenesis,

implicated in local inflammation and fibrosis (Honda et al.,

2017), monocyte differentiation antigen CD14, primarily involved

in bacterial LPS recognition (Kielian and Blecha, 1995), and the

LBP, as well as LGALS3BP, a pro-inflammatory factor, which

is known to induce IL-6 expression (Silverman et al., 2012).

Thus, the proteomic approach surprisingly revealed a very IL-

6-centered response. With the caveat that the depth of plasma

proteomes is limiting, we found little evidence of involvement

of other common inflammatory mediators (e.g., tumor necrosis

factor (TNF), interferon (IFN) gamma, and their targets). Our

study thus puts further emphasis on the importance of studying

IL-6 function in relationship to new proteins and as therapeutic

and diagnostic candidates.

We also observe upregulation of fibrinogen, a coagulation fac-

tor, and SERPINA10, an inhibitor of the F10a coagulation factor,

further highlighting the importance of coagulation in SARS-CoV-

2 infection, established by previous observations of elevated

coagulation in severe COVID-19 cases (Zhou et al., 2020a).

A parallel study by (Shen et al., 2020) used a more conven-

tional and time consuming (1203 pre-fractionation consoli-

dated in 40 fractions with TMT-16 plex) proteomics method

to characterize plasma samples from 99 study participants,

including 46 samples from patients with COVID-19 diagnosed

in China. Despite the different cohorts and different technolo-

gies used, the proteomes implicate similar biological mecha-

nisms in the differentiation of mild, severe, or critical disease

progression. Many of the proteins that differentiate the groups

in both studies belong to the complement system, acute-

phase, and inflammatory response. For example, both studies

agree with independently conducted clinical investigations on

a number of differentially expressed proteins, in particular,

ALB, the complement factors, serum amyloid proteins, ITIH3

and ITIH4 (Nie et al., 2020; Shen et al., 2020). Despite these

similarities, we note important differences. For instance, we

cannot confirm the downregulation of pro-platelet basic

protein (PPBP) and platelet factor 4 (PF4) in severe COVID-

19 as highlighted by Shen et al. We can offer several potential

explanations. We note that different SARS-CoV-2 clades

might exhibit different degrees of pathogenicity (Yao et al.,

2020) and thus elicit different physiological responses, espe-

cially in different populations. However, when examining

the response of PF4 and PPBP at the peptide level, we

discovered that although several peptides maintain a relatively

stable level, other PF4- and PPBP-specific peptides increase

or decrease in concentration (Figure S5). This situation

might indicate that instead of being differentially expressed,

PF4 and PPBP might be differentially post-translationally

modified.

Plasma Proteomes Provide Insights into the Virulence
Mechanisms and Potential Therapeutic Targets for
COVID-19
Extensive worldwide efforts have been directed recently into

finding drug targets for COVID-19 treatment. As most of the

damage associated with severe SARS-CoV-2 infection ap-

pears to be indirect and caused by excessive inflammation

in the lungs, it is of crucial importance to seek opportunities

not only to target the pathway of entry and the replication

mechanism of the virus but to also identify and examine the

possibilities for targeting host factors responsible for harmful

inflammatory responses to both alleviate the severity of the

infection and to reduce the chance of long-lasting complica-

tions (Huang et al., 2020). Some preliminary results in that di-

rection appear promising. For example, pro-inflammatory

signaling via IL-6 has been determined to be a marker of se-

vere COVID-19 (Chen et al., 2020; Ruan et al., 2020) and pre-

liminary results on the inhibition of IL-6 receptor (IL-6R) with

tocilizumab seem to indicate clinical improvement (Coomes

and Haghbayan, 2020). Here, we discovered several proteins

that are differentially expressed with the severity of COVID-19

that are linked to IL-6-mediated proinflammatory cytokine

signaling: (1) the CD14-LBP LPS recognition system, (2) upre-

gulation of LRG1, an angiogenesis and anti-apoptotic factor

associated with inflammation, and (3) upregulation of the
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LGALS3BP, an inducer of IL-6. Below, we discuss the poten-

tial significance of these findings.

Coronaviruses are known to actively disrupt the host

immune response (Enjuanes et al., 2016). For example, their

papain-like proteases (PLPs) act as interferon antagonists

(Niemeyer et al., 2018), causing delayed type-I interferon

response, macrophage-mediated inflammation, and lung

damage (Channappanavar et al., 2016). Here, we observed

upregulation of both monocyte differentiation antigen CD14

(~2.73) and LBP (~3.93) in severe COVID-19. As the

response to bacterial LPS is one of the primary functions of

both CD14 and LBP, which can act in complex to sensitize

toll-like receptor-mediated LPS recognition (Ranoa et al.,

2013), this observation reflects the dysregulation of the innate

immune response by SARS-CoV-2, leading to the activation of

the anti-bacterial defense and sensitization to LPS, thus

contributing to excessive inflammation, with effects likely

more pronounced in case of a concomitant secondary bacte-

rial infection. Interestingly, CD14 and LBP upregulation has

been observed in viral pneumonia before (Van Gucht et al.,

2005), while CD14 is one of the primary mediators of lung

inflammation (Anas et al., 2010). Of note, the glycosylphos-

phatidylinositol (GPI)-anchored form of CD14 is primarily dis-

played by monocytes and macrophages (Marcos et al.,

2010), while the proportion of CD14+CD16+ inflammatory

monocytes in the peripheral blood increases along with

COVID-19 severity (Zhou et al., 2020b). At the same time,

IL-6 induces soluble CD14 production in the liver (Bas et al.,

2004) as well as, along with other cytokines, release of

CD14 from monocytes upon their activation (Shive et al.,

2015). Given that CD14 is a potent activator of pro-inflamma-

tory cytokine signaling (Zanoni and Granucci, 2013), it might

present a potential therapeutic target for COVID-19.

LRG1 is another pro-inflammatory factor induced by IL-6

(Shirai et al., 2009), which is known to promote angiogenesis

and cell proliferation, while inhibiting apoptosis (Meng et al.,

2016; Naka and Fujimoto, 2018; Wang et al., 2013). Some

recent findings indicate its role in promoting skin fibrosis

and lung fibrosis in transforming growth factor beta (TGF-b)-

mediated fashion (Gao et al., 2019; Honda et al., 2017). Given

the previously reported association of the Middle East respira-

tory syndrome (MERS) infection with lung fibrosis (Zhao et al.,

2008) and emerging reports (British Thoracic Society, 2020) of

lung fibrosis in a substantial proportion of COVID-19 survivors,

we hypothesize that the ~2.13 elevation of serum LRG1

levels we observe in critical COVID-19 cases in comparison

with the mild cases might indicate the increased risk of

fibrosis, highlighting LRG1 as yet another potential therapeu-

tic candidate for COVID-19 treatment. Furthermore, we de-

tected about ~3.43 upregulation of LGALS3BP, which is

known to induce the expression of IL-6 by stromal cells in ga-

lectin-3-dependent manner (Silverman et al., 2012). Of note,

Galectin-3 has long been considered an attractive drug target

in combating various forms of TGF-b-mediated fibrosis and

pathological inflammatory conditions (Brinchmann et al.,

2018; Mackinnon et al., 2012; Shen et al., 2018; Yu et al.,

2013). Inhibition of galectin-3-mediated signaling pathways

hence represents another potential therapeutic target against

COVID-19.

Tissue Injury and Dysregulation of Modulators of
Inflammation
We report substantially decreased (~2.63) levels of GSN (Fig-

ures 4C and 4D). Plasma GSN is a part of the extracellular actin

scavenger system (EASS), which removes toxic F-actin fila-

ments that have been released from necrotic cells to the blood-

stream (Piktel et al., 2018). Low levels of plasma GSN are asso-

ciated with inflammation: it is believed that GSN is recruited to

the sites of tissue injury to handle the released actin, depleting

its plasma levels. Interestingly, we do observe the increase in

serum actin concentration (beta and gamma-1 actin, ~23),

indicative of tissue injury (DiNubile, 2008), which could explain

the GSN depletion from the blood. Importantly, plasma GSN is

a powerful modulator of inflammation, which carries a protective

function (DiNubile, 2008; Li et al., 2012). Low plasma GSN is a

marker of poor prognosis in various pathological conditions,

including diabetes (Khatri et al., 2014), cancers (Asare-Werehene

et al., 2019; Stock et al., 2015), and sepsis (Lee et al., 2007), lead-

ing to suggestions and animal tests for its therapeutic use. Going

forward, it will be important to assess GSN levels in at-risk pop-

ulations for severe COVID-19, e.g., patients with diabetes. Of

note, treatment with GSN has been observed to decrease IL-6

levels in mice (Cheng et al., 2017) and has been suggested to

promote epithelial repair (Wittmann et al., 2018). The develop-

ment of therapies to stabilize the GSN levels could hence be of

direct therapeutic value for treating COVID-19.

Notably, we observed a decrease in the expression levels of

APOA1 (APOA1; ~33). APOA1 is a major component of the

high-density lipoprotein (HDL) complex, which is a modulator

of innate immune response and inflammation (Fotakis et al.,

2019; Gordon et al., 2011; Macpherson et al., 2019; White

et al., 2017). We also observe decreased levels of APOC1

(~3.23), a component of several lipoprotein complexes (Fuior

and Gafencu, 2019). Based on the GS study, we note that the

serum levels of APOA1 are correlated with those of HDL choles-

terol (Figure S6). Although decreased APOA1 levels have been

observed in systemic inflammatory response (Kumaraswamy

et al., 2012; Sirniö et al., 2017), including in COVID-19 (Nie

et al., 2020), a potential explanation of the downregulation we

observe here would also be provided, if naturally lower APOA1

and hence a different metabolic condition of the individual

were associated with a higher risk of severe SARS-CoV-2 dis-

ease progression.

In conclusion, SARS-CoV-2, SARS, and MERS constitute a

class of emerging coronaviruses of high public health concern.

It is likely that other viruses will emerge in the future for which

at time of outbreak insufficient biochemical knowledge will be

available to identify biomarkers and to define point-of-care clin-

ical classifiers. Serum and plasma proteomics can present valu-

able and unbiased information about disease progression and

therapeutic candidates, without prior knowledge about the etiol-

ogies and biomolecules involved. We present a workflow for

rapid and large-scale clinical proteomics that is re-designed in

comparison to previous platforms. The sample preparation

workflow scales to high sample numbers, enables high quantifi-

cation precision, and reduces batch effects for large-scale and

longitudinal studies, while the data acquisition and processing

workflow is able to exploit the advantages of high-flow chroma-

tography in short-gradient proteomics. Our platform improves
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throughput, data quality, and greatly simplifies implementation in

regulated laboratories, as it builds on ISO13485 standardization

as a reference. We demonstrate a quantification precision and

acquisition robustness that, to our knowledge, has not previ-

ously been shown in large-scale proteomic experiments. We

then applied the technology to a cohort of early hospitalized

cases of the SARS-CoV-2 pandemic. We identify a series of pro-

teins that are differentially expressed depending on the severity

of COVID-19 and demonstrate the potential of proteome signa-

tures to act as clinical classifiers. The proteome signatures cap-

ture the host response to COVID-19 infection, highlighting the

role of complement factors, the coagulation system, and indi-

cate a high specificity of several inflammation modulators as

well as pro-inflammatory signaling both upstream and down-

stream of IL-6. The proteomic signatures and biomarkers identi-

fied pave the way for the development of routine assays to

support clinical decision making, as well as provide hypotheses

about potential COVID-19 therapeutic targets.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human Serum Sigma-Aldrich Cat# S7023-50MB

Human Plasma (EDTA, Pooled Donor) Genetex Cat# GTX73265

Human Serum, Normal off-the-Clot, Frozen tebu-bio Cat# 088SER

Human Recovered Plasma, Pooled- frozen

K2EDTA

tebu-bio Cat# 088SER-PLP200-EDTA

Chemicals, Peptides, and Recombinant Proteins

Water (Optima LC-MS Grade, Fisher

Chemical)

Fisher Scientific Cat# W6500

Acetonitrile (Optima LC-MS Grade, Fisher

Chemical)

Fisher Scientific Cat# A955-500

Methanol (Optima LC-MS Grade, Fisher

Chemical)

Fisher Scientific Cat# A456-212

DL-Dithiothreitol (BioUltra) Sigma-Aldrich Cat# 43815

Iodoacetamide (BioUltra) Sigma-Aldrich Cat# I1149

Ammonium Bicarbonate (Eluent additive for

LC-MS)

Sigma-Aldrich Cat# 40867

Urea (puriss. P.a., reag. Ph. Eur.) Honeywell Research Chemicals Cat# 33247H

Acetic Acid (Eluent additive for LC-MS) Honeywell Research Chemicals Cat# 49199

Trypsin (Sequence grade) Promega Cat# V511X

Mass Spec-Compatible Human Extract Promega Cat# V6951

Retention time peptides Biognosys iRT kit Biognosys Cat# Ki-30002-b

MS synthetic peptide calibration kit SCIEX Cat# 5045759

Deposited Data

Raw data (commercial plasma and serum

control samples within the GS study)

This study Pride:PXD018874

Software and Algorithms

Proteomics data analysis via Deep Neural

Networks, DIA-NN

Demichev et al., 2020 https://github.com/vdemichev/DiaNN

Spectronaut 13 (Version

13.12.200217.43644)

Biognosys Product number:

Sw-3001

PeakView (Version 2.2) SCIEX N/A

DIA-NN R package Demichev et al., 2020 https://github.com/vdemichev/diann-

rpackage

ComplexHeatmap R package Gu et al., 2016 https://github.com/jokergoo/

ComplexHeatmap

EnvStats R package Millard, 2014 https://CRAN.R-project.org/

package=EnvStats

Zoo R package https://CRAN.R-project.org/package=zoo

Other

Zorbax RRHD Eclipse Plus 95A C18, 2.1 x

50mm, 1.8 um, 1200 bar

Agilent Cat# 959757-902

BioPureSPE Macro 96-Well,

100mg PROTO 300 C18

The Nest Group, Inc. HNS S18V-L
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Markus

Ralser (markus.ralser@charite.de).

Materials Availability
This study did not generate new materials.

Data and Code Availability
The raw data of the acquired commercial plasma and serum control samples within the GS study have been deposited to the Pro-

teomeXchange Consortium via PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier Pride:PXD018874. Ac-

cording to the terms of consent for GenerationScotland participants, access to individual-level data (omics and phenotypes) must be

reviewed by theGSAccess Committee. Applications should bemade to access@generationscotland.org. TheDIA-NN software suite

and DiaNN R package are open source and are freely available for download at https://github.com/vdemichev/DiaNN and https://

github.com/vdemichev/diann-rpackage respectively.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical Samples of COVID-19 Patients
Sampling was performed as part of the Pa-COVID-19 study, a prospective observational cohort study assessing pathophysiology

and clinical characteristics of patients with COVID-19 at Charité Universit€atsmedizin Berlin (Kurth et al., 2020). All patients with

SARS-CoV-2 infection proven by positive PCR from respiratory specimens and willing to provide written informed consent are

eligible for inclusion. Exclusion criteria are refusal to participate in the clinical study by patient or legal representative or clinical

conditions that do not allow for blood sampling. The study assesses epidemiological and demographic parameters, medical history,

clinical course, morbidity and quality of life during hospital stay of COVID-19 patients. Moreover, serial high-quality bio-sampling con-

sisting of various sample types with deep molecular, immunological and virological phenotyping is performed. Treatment and med-

ical interventions follow standard of care as recommended by current international and German guidelines for COVID-19. Severity of

illness in the present study follows the WHO ordinal outcome scale (Tables S1 and S2). The Pa-COVID-19 study is carried out ac-

cording to the Declaration of Helsinki and the principles of Good Clinical Practice (ICH 1996) where applicable and was approved

by the ethics committee of Charité- Universit€atsmedizin Berlin (EA2/066/20).

Generation Scotland Study
199 serum samples from random individuals that participated in the Generation Scotland (GS) epidemiological study (Smith et al.,

2013) were used. GS is a family-based cohort of approximately 24,000 individuals in 7,000 family groups from across Scotland,

aged between 18 and 98 (Smith et al., 2013). All components of Generation Scotland received ethical approval from the NHS Tayside

Committee onMedical Research Ethics (RECReferenceNumber: 05/S1401/89). All participants provided broad and enduringwritten

informed consent for biomedical research. Generation Scotland has also been granted Research Tissue Bank status by the East of

Scotland Research Ethics Service (REC Reference Number: 15/0040/ES), providing generic ethical approval for a wide range of uses

within medical research. This study was performed in accordance with the Helsinki declaration.

METHOD DETAILS

Plasma and Serum Sample Preparation
The protocol was designed for preparing four 96-well plates in parallel and that a single person using a single liquid handling unit can

start and complete every day up to two 4-plate batches. The total hands-on time per batch is 3.5 hrs only and the workflow fits within

the 8hr time-window. All liquid transfer and mixing except the addition of serum/plasma to the denaturing buffer was carried out by

the liquid handling robot, either a Beckman Coulter Biomek NXp (Crick laboratory) or Biomek i7 liquid handling robot (Charité Uni-

versit€atsmedizin Berlin). There are slight differences between the protocols due to the two different laboratories. To our knowledge,

these have no detectable influence on the results. Where applicable these differences are indicated as ‘‘Biomek NXp’’ or ‘‘Biomek i7

protocol’’, respectively.

Before starting the sample preparation, 96-well plates were prefilled with Trypsin (12.5ml, 0.1mg/ml solution; four plates/batch),

denaturation/reduction buffer (55ml 8M Urea, 100mM ammonium bicarbonate (ABC) and 4.5mM dithiothreitol (DTT) (Biomek NXp

protocol) or 50mM DTT (Biomek i7 protocol); four plates/batch) and iodoacetamide (IAA) (100mM, > 20 ml, one plate/batch) and

stored sealed at -80�C until the day of the experiment. These stock solutions are thawed/brought to room temperature just before

adding them to the sample, which prevents evaporation.

5ml of thawed serum/plasma samples were transferred to the pre-made denaturation/reduction stock solution plates. Subse-

quently the plates were centrifuged for 15s at pulse setting (Eppendorf Centrifuge 5810R), mixed and incubated at 30�C for 60 mi-

nutes. The mixing in this step was done either 30s at 1000rpm on a Thermomixer (Eppendorf Thermomixer C) (Biomek NXp protocol)
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or by resuspension (Biomek i7 protocol). 5ml IAA was then transferred from the respective stock solution plate to the sample plate and

incubated in the dark at 23�C for 30 minutes before dilution with 100mM ABC buffer (340ml). 220ml of this solution was transferred to

the pre-made trypsin stock solution plate and incubated at 37�C for 17 h (Memmert IPP55 incubator). The trypsin/total protein ratio

was ~1/40 as this provided high and reproducible identification numbers (Figure S2D). The digestion was quenched by addition of

formic acid (10% v/v, 25ml). The digestion mixture was cleaned-up using C18 96-well plates (BioPureSPE Macro 96-Well, 100mg

PROTO C18, The Nest Group). For the solid phase extraction, 1 minute of centrifugation at the described speeds (Eppendorf Centri-

fuge 5810R) was used to push the liquids through the stationary phase and the liquid handler was used to pipette the liquids onto the

material in order to make four 96-well plates/batch feasible. The plates were conditioned with methanol (200ml, centrifuged at 50g),

washed twice with 50%ACN (200ml, centrifuged at 150g and flow through discarded), equilibrated twice with 0.1% FA (200ml, centri-

fuged at 150g and flow through discarded). Then 200ml of digested and quenched samples were loaded (centrifuged at 150g),

washed twice with 0.1% FA (200ml, centrifuged at 150g). After the last washing step, the plates were centrifuged another time at

200g before the peptides were eluted in 3 steps with 110ml 50% ACN (200g) into a collection plate (1.1ml, Square well, V-bottom).

Collected material was completely dried on a vacuum concentrator (Eppendorf Concentrator Plus (Biomek NXp protocol) or Fisher

Scientific, SPD300P1 (Biomek i7 protocol) and redissolved in 50ml 1% ACN, 0.1% formic acid (Biomek NXp protocol) or 50ml 0.1%

formic acid (Biomek i7 protocol), then stored at -80�C until data acquisition. The samples for the SARS-CoV-2 studies were analysed

without freezing. QC samples for repeat injections were prepared by pooling commercial serum samples and were spiked with iRT

peptides (Biognosys).

Liquid Chromatography-Mass Spectrometry Setup
Liquid chromatography was established on two complementary and exchangeable ultra-high-pressure high-flow LC-MS systems,

an Agilent 1290 Infinity II (Crick laboratory) andWaters H-Class (Charité Universit€atsmedizin Berlin) system, both coupled to a Triple-

TOF 6600 mass spectrometer (SCIEX) equipped with IonDrive Tubo V Source (Sciex). In both cases, the peptides were separated in

reversed phase mode using a C18 ZORBAX Rapid Resolution High Definition (RRHD) column 2.1mm x 50mm, 1.8mm particles at a

column temperature of 30�C. A linear gradient was applied which ramps from 3%B to 36%B in 5 minutes (Buffer A: 0.1% FA; Buffer

B: ACN/0.1% FA) with a flow rate of 800ml/min. For washing the column, the organic solvent was increased to 80% B in 0.5 minutes

and was kept for 0.2 minutes at this composition before going back to 1% B in 0.3 min. The equilibration times were 2.8 minutes

(Water H Class protocol) or 4.2 minutes (Agilent Infinity II protocol). Data was acquired in high sensitivity mode and the amount of

total proteins injected was 5mg (GS study) and 10mg (SARS-CoV-2). The sample load was optimised (Figure S2A) and is a balance

between how frequently one needs to clean the instrument and the identification numbers. The DIA/SWATH method consisted of

an MS1 scan from m/z 100 to m/z 1500 (20ms accumulation time) and 25 MS2 scans (25ms accumulation time) with variable pre-

cursor isolation width covering the mass range from m/z 450 to m/z 850 (Table S6). Ion source gas 1 (nebulizer gas), ion source

gas 2 (heater gas) and curtain gas were set to 50, 40 and 25 respectively. The source temperature was set to 450�C and the ion spray

voltage to 5500V.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass Spectrometry Data Processing, Batch Correction and Quality Control
The raw data were processed using DIA-NN 1.7.10 in the ‘‘robust LC (high precision)’’ mode with RT-dependent median-based

cross-run normalisation enabled. MS2 and MS1 mass accuracies were set to 20 and 12 ppm, respectively, and scan window size

set to 6. Although DIA-NN can optimise such parameters automatically, we fixed them to these values to ensure comparability.

For all the experiments, we used a project-independent public spectral library (Bruderer et al., 2019). Human UniProt (UniProt Con-

sortium, 2019) isoform sequence database (3AUP000005640) was used to annotate the library. The library was first automatically

refined based on the dataset in question at 0.01 global q-value (using the ‘‘Generate spectral library’’ option in DIA-NN). DIA-NN per-

forms such refinement by finding the highest-scoring identification for each library precursor, across all runs in the experiment, and

then replacing the library data with the empirically observed spectrum and retention time. The purpose of the refinement step is

twofold: (i) retain only those peptide precursors in the library that are detectable in the experiment of interest; (ii) make sure that

the library spectra and retention times are optimised specifically for the experimental setup in question, thus improving identification

performance. The refined library was then used to reanalyse the data. The resulting report was stringently filtered at 0.01 precursor-

level q-value, 0.005 precursor-level library q-value and 0.05 protein group-level q-value. Intra-batch correction was performed for

each peptide precursor separately: based on repeat injection controls in ‘‘GS’’ and sample preparation controls in the coronavirus

cohorts. Log-transformed peptide precursor quantities were adjusted using linear regression (‘‘GS’’) or running median smoothing

(coronavirus cohorts). Linear regression was applied only for at least 10 data points. If the p-value for non-zero slope was below

0.01, the slope multiplied by the centered injection number (i.e. the injection number in the given run minus its mean value in all

runs) was subtracted from the precursor quantities for all runs. Running median smoothing was performed in two steps using the

‘runmed’ function with the algorithm set to ‘Stuetzle’. First, a 5-point running median smoothing was performed on the quantities

in the control samples, to remove outliers. Second, interpolation of the resulting values to all runs was performed using the ‘na.ap-

prox’ function (with ‘rule’ set to 2) from the ‘zoo’ R package. Finally 41-point running median smoothing was applied. Protein quan-

tification was performed using the MaxLFQ algorithm (Cox et al., 2014) as implemented in the diann R package (https://github.com/

vdemichev/diann-rpackage, version 1.0, commit ‘‘eb4607a’’). Data completeness was defined as the proportion of non-missing
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values in the proteins x samples quantities matrix. The coefficient of variation (CV) was calculated for each protein as its empirical

standard deviation divided by its empirical mean. PCA analysis was always performed only on ubiquitously identified proteins: impu-

tation was not used.

Differential Expression Analysis
In the exploratory cohort, differential expression was tested only for proteins quantified using at least five peptide precursors in one of

the acquisitions. Further, protein groups were quantified using only precursors detected in at least 10% of patient samples (both co-

horts). As we were specifically interested in proteins which could serve as biomarkers of COVID-19 severity, the test was performed

using the Kendall’s Tau test for the Theil-Sen trend estimator (as implemented in the EnvStats R package (Millard, 2014)) against the

disease severity as classified according to the WHO ordinal scale (Table S1). The input for the test was obtained by calculating, for

each patient, median protein levels across the timepoints or replicatesmeasured (Table S4 for timepoint information). Multiple testing

correction was performed using the Holm-Bonferroni method for FWER control, as implemented in the p.adjust R function, and the

significance threshold was set to 0.05. The choice of a nonparametric test (Theil-Sen) was dictated by the fact that such widespread

methods as ANOVA or linear regression are only valid under the assumption of Gaussian errors with the same variance across all

conditions. In the case of this dataset, however, we observed very significant differences in the variance, e.g. many proteins

seem a lot more variable between patients with severe and critical COVID-19 than mild COVID-19. For such a situation a nonpara-

metric test is ideal: although it would typically have less power (less proteins detected as differentially expressed), the p-values pro-

duced are reliable.

Chromatographic Peaks Full Width at Half Maximum (FWHM) Estimations
Median peak FWHM was estimated using Spectronaut 13 (version 13.12.200217.43644; Biognosys). Only precursors ubiquitously

identified in all runs (3 minutes, 5 minutes, 10 minutes and 20-minute high-flow as well as with the 20-minute micro-flow run) and

with a q-value of < 0.001 were considered (804 precursors total).

Total Ion and Extracted Ion Chromatograms
Total ion chromatograms and extracted ion chromatograms were generated with the PeakView software (Version 2.2, SCIEX), ex-

ported and plotted in R (R core team, www.R-project.org).
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