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Abstract

Recent observations of protoplanetary disks, as well as simulations of planet–disk interaction, have suggested that
a single planet may excite multiple spiral arms in the disk, in contrast to the previous expectations based on linear
theory (predicting a one-armed density wave). We reassess the origin of multiple arms in the framework of linear
theory by solving for the global two-dimensional response of a nonbarotropic disk to an orbiting planet. We show
that the formation of a secondary arm in the inner disk, at about half of the orbital radius of the planet, is a robust
prediction of linear theory. This arm becomes stronger than the primary spiral at several tenths of the orbital radius
of the planet. Several additional, weaker spiral arms may also form in the inner disk. On the contrary, a secondary
spiral arm is unlikely to form in the outer disk. Our linear calculations, fully accounting for the global behavior of
both the phases and amplitudes of perturbations, generally support the recently proposed WKB phase argument for
the secondary arm origin (as caused by the intricacy of constructive interference of the azimuthal harmonics of the
perturbation at different radii). We provide analytical arguments showing that the process of a single spiral wake
splitting up into multiple arms is a generic linear outcome of wave propagation in differentially rotating disks. It is
not unique to planet-driven waves and also occurs in linear calculations of spiral wakes freely propagating with no
external torques. These results are relevant for understanding formation of multiple rings and gaps in
protoplanetary disks.
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1. Introduction

The gravitational interaction of young planets with their
natal disks is known to produce spiral density waves. Recent
high-resolution direct imaging has revealed spiral structures in
several protoplanetary disks, including MWC 758 (Grady et al.
2013; Benisty et al. 2015), HD 100453 (Wagner et al.
2015, 2018), and SAO 206462 (Muto et al. 2012; Garufi
et al. 2013; Stolker et al. 2016; Maire et al. 2017), which may
be produced by the gravitational influence of planets or binary
companions. A remarkable feature of these disks is that they
display pairs of spiral arms separated by approximately 180°,
which has not been expected.

Indeed, in the conventional picture of planet–disk interac-
tions, a planet is believed to give rise to only a single spiral arm
(Ogilvie & Lubow 2002; Rafikov 2002a). Gravitational
perturbations due to a planet excite many wave modes in the
disk, each described by an azimuthal number m and launched at
a corresponding Lindblad resonance—locations interior and
exterior to the orbit of the planet where orbital commensur-
abilities occur (Goldreich & Tremaine 1979). Ogilvie & Lubow
(2002) showed that these modes interfere constructively,
leading to a characteristic one-armed spiral pattern. In this
framework, two planets would be required to produce two arms
(Benisty et al. 2015). However, for pairs of arms with similar
azimuthal separations to be found in several unrelated
protoplanetary disks would require fortuitous configurations
of the orbital phases of the planets in these systems.

Recent three-dimensional simulations of planet–disk
interactions have demonstrated that some of the observed
multiple spiral features can, in fact, be produced by a single
orbiting companion (Dong et al. 2015b, 2016a; Fung &
Dong 2015; Zhu et al. 2015; Dong & Fung 2017). Notably,
the spirals seen in HD 100453 were demonstrated to be

consistent with the disturbances produced by the nearby M
dwarf companion (Dong et al. 2016b; Wagner et al. 2018). A
key finding of these numerical studies is that a single planet
can produce multiple spirals, so it is not necessary to invoke
the presence of multiple planets to explain the appearance of
several spiral arms. In some cases, more than two spiral arms
are produced. The number of arms, as well as the azimuthal
separation of the two strongest spirals, was found numeri-
cally to depend on planet mass (Fung & Dong 2015; Zhu
et al. 2015; Bae & Zhu 2018b). It was also shown (Bae et al.
2017) that multiple arms can be related to the formation of
annular gaps in millimeter-size dust distribution in proto-
planetary disks.
At the same time, Arzamasskiy & Rafikov (2018) recently

demonstrated numerically that formation of secondary spirals
does not necessarily require the presence of a planet (i.e., an
orbiting point mass perturber) driving density waves. In their
case, density waves were driven by an imposed boundary
condition at the outer edge of the simulation domain and then
freely propagated inward, without angular momentum injection
by external torques. Such passive propagation of the waves
sufficiently far into the inner disk was found to also naturally
result in the formation of a secondary arm.
Despite these numerical experiments, the origin of secondary

spiral arms has remained elusive. Some nonlinear mechanisms,
such as mode coupling (Fung & Dong 2015; Lee 2016), have
been proposed to explain their features. Recently, Bae & Zhu
(2018a, 2018b) argued that the formation of multiple spirals can
be explained by the radially dependent coherence of different
azimuthal harmonics of the perturbations driven by a planet,
essentially by an extension of the linear mode phase argument of
Ogilvie & Lubow (2002). In their work, the phases of the
multiple crests of each mode were shown to constructively
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interfere in different parts of the disk (at different azimuthal
locations) as the wave propagates away from the perturber. The
different regions of interference are identified as the primary
arm, secondary arm, tertiary arm, and so on. This argument was
laid out in terms of the local (WKB) approximation for mode
phases and essentially ignored the behavior of the mode
amplitudes. Nevertheless, these findings were corroborated by
two-dimensional numerical simulations, demonstrating that this
idea is a promising step toward understanding the formation of
multiple spirals. An important aspect of the work of Bae & Zhu
(2018a) is that the emergence of multiple arms was understood,
at least in part, within a linear framework.

In this paper, we directly apply the linear theory of density
wave evolution to self-consistently compute the full two-
dimensional structure of the response of a thin, locally
isothermal disk to an orbital companion. By properly
accounting for the global behavior of the mode amplitudes,
as well as their phases (i.e., going beyond the WKB
approximation), we show that multiple spiral arms are robustly
formed in the inner regions of protoplanetary disks; under
certain circumstances, they can also appear in the outer disk.
We characterize the morphology of the spirals (e.g., their
amplitudes, widths, and arm-to-arm separations) and its
dependence on the disk properties—its aspect ratio, as well
as profiles of the temperature and surface density.

The plan of this paper is as follows. In Section 2, we describe
our setup and the details of our calculations. In Section 3, we
present results on the formation of multiple spirals by a planet
and characterize the properties of the spirals and their
dependence on the disk parameters. In Section 4, we present
calculations of the passive propagation of a spiral wake in a
perturber-free disk, demonstrating that the emergence of a
secondary spiral is a generic property of wave propagation in
differentially rotating disks. In Section 5, we provide theor-
etical arguments based on linear mode phases in order to
understand some key aspects of our calculations. We discuss
our results in Section 6 and conclude with a summary of our
main results in Section 7.

2. Problem Framework

We consider propagation of density waves in a two-
dimensional fluid disk around a star of mass M* in the linear
regime. The foundations of the mathematical framework for
studying this phenomenon were laid out in Goldreich &
Tremaine (1979), and we heavily borrow from their results. We
explore both the inhomogeneous and homogeneous versions of
the problem.

In the inhomogeneous case (Section 3), the wave is explicitly
driven by the gravitational potential of a planet of mass
Mp=M* moving on a circular orbit with radius rp and
Keplerian frequency *W = ( )GM rp p

3 1 2. The torque due to the
planetary gravity both excites the wave in the first place and
modifies its subsequent propagation.

In the homogeneous case, the perturbation is imposed at the
edge of the disk with no external torques affecting subsequent
wave propagation (a setup analogous to Arzamasskiy &
Rafikov 2018). This regime is studied using the same
mathematical framework as the inhomogeneous case but with
the planetary source terms set to zero (Section 4).

2.1. Basic Setup

We consider a very general disk model in which the entropy
µ Sg( )S Pln is allowed to vary with radius r. Here Σ is the

disk surface density, g= SP cs
2 is the (height-integrated)

pressure, cs is the adiabatic sound speed, and γ is the adiabatic
index. We assume that in the unperturbed disk,
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where the value of Σp is arbitrary. As a result of specifying cs
and Σ independently, the entropy S can vary through the disk.
The orbital frequency of the disk fluid is modified from the

pure Keplerian value *W = ( )GM rK
3 1 2 by the pressure

gradient:
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The response of the disk is sensitive to the small deviations of
Ω and the radial epicyclic frequency κ, given by
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W
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r

d
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r

2
, 42 2

from the Keplerian frequency ΩK.

2.2. Equations and Numerical Procedure

The surface density perturbation produced in response to the
gravitational potential of the planet (or the externally imposed
perturbation in the homogeneous case) is described in polar
coordinates (r, f) by δΣ(r, f), which we decompose into
Fourier modes according to

åd f dS = S f f

=

¥
-( ) [ ( ) ] ( )( )r r e, Re , 5

m
m

im

1

p

where f = W tp p is the azimuthal position of the planet (in the
homogeneous case, f  0p ). Each δΣm(r) is a complex
quantity describing the radial variation of the amplitude and
phase of the mode with azimuthal number m. The radial
velocity and azimuthal velocity perturbations d f( )u r,r and
d ff ( )u r, are similarly expressed as sums of Fourier modes
d ( )u rr m, and d f ( )u rm, .

As a result of performing these steps, one arrives at the linear
equation describing the quantity3 d d= Sh Pm m (where δPm is
the pressure perturbation) of the mode with azimuthal number

3 For barotropic disks, δhm can be identified as the enthalpy perturbation.
However, in the presence of an entropy gradient, this association no longer
holds exactly. Instead, δhm simply serves as a convenient variable for which a
master equation can be found.
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m (Baruteau & Masset 2008; Tsang 2014; here we adopt the
notation of the latter),
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where w = W - W˜ ( )m p is the Doppler-shifted frequency of the
tidal forcing due to the mth harmonic of the planetary potential,
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is the inverse length scale associated with the radial variation of
entropy,
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2. Note that in the barotropic (uniform entropy) limit,

L1 0S and N 0r , Equation (6) reduces to the master
equation of Goldreich & Tremaine (1979). The surface density
perturbation δΣm can be computed using solutions of
Equation (6) according to
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The components of the gravitational potential of the planet
are
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For the softening parameter, we choose ò=0.6hp, a value that
is typically used in two-dimensional numerical simulations of
planet–disk interaction to mimic the vertical averaging of the
planetary gravity over the disk height. In our calculations, as in
Bae & Zhu (2018a), we ignore the “indirect” potential term,
d GM r rm,1 p p

2, which arises due to the motion of the central star
around the barycenter of the star + planet system. We motivate
this choice in the Appendix.
We solve Equation (6) for a sufficient number of modes to

fully capture the two-dimensional structure of the surface
density perturbations. The mode solution method closely
follows that of Korycansky & Pollack (1993, hereafter
KP93), as well as Petrovich & Rafikov (2012) and Rafikov
& Petrovich (2012), and is described in detail in the Appendix.
The solution is obtained on a logarithmic grid with rin=0.05rp
and rout=5.0rp, which, for our fiducial parameters, has
6×104 grid points, or a resolution of about 1300/H. All of
the modes are solved on the same grid to facilitate their
synthesis, and the grid resolution is set by the tight winding of
the highest m modes near the grid boundaries.
Examples of the surface density perturbation profiles δΣm(r)

for several low-order azimuthal modes are shown in Figure 1.
Note that modes with higher m are more tightly wound. Also
note that here the m=5 mode has the largest amplitude. This
is because the response of the disk is dominated by modes with
m close to * »

-( )m h2 p
1 (here hp=0.1 and m*=5). The

dominant role of this characteristic m is related to the torque
cutoff phenomenon (Goldreich & Tremaine 1980). The exact
form of m* (i.e., the factor of 1/2) is not fundamental, but this
choice is supported by our numerical calculations.

Figure 1. Radial profiles of the fractional surface density perturbation for
several low-order modes for the case of the fiducial parameters hp=0.1,
q=1, and p=1.
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Once the mode solutions are found, the two-dimensional
surface density perturbation is then synthesized according to

åd f dS = S f f

=

-( ) [ ( ) ] ( )( )r r e, Re , 14
m

m

m
im

1

max

p

where mmax is the value of m necessary to achieve a converged
perturbation structure; see the Appendix for details. The
velocity perturbations d f( )u r,r and d ff ( )u r, are computed
in the same manner. Note that the mode perturbation, δΣm(r), is
a one-dimensional, complex quantity (described by a radially
varying amplitude and phase), while the synthesized perturba-
tion, d fS( )r, , is a two-dimensional, explicitly real quantity.

2.3. Parameters

The results of our calculations are fully determined by four
dimensionless parameters: hp, the disk aspect ratio at the orbital
radius of the planet; q, the power-law index of the disk
temperature; p, the power-law index of the disk surface density;
and the adiabatic index, γ. For the fiducial parameters, we
choose hp=0.1, q=1 (corresponding to a constant disk
aspect ratio h), p=1, and γ=7/5. We find that our results are
almost completely insensitive to the value of γ (see
Section 3.3), so unless otherwise stated, we keep its value
fixed. We have explored the parameter space by performing
calculations for which two of the three remaining parameters
are fixed at their fiducial values and the third is varied over a
plausible range of values for protoplanetary disks:
0.05<hp<0.15, 0<q<1, and 0<p<3/2. We find that
the results are not sensitive to p, so we primarily focus our
analysis and discussion on the effects of varying hp and q.

3. Results for Planet-driven Spirals

We will start the presentation of our results with the case of a
spiral pattern driven by the gravity of an embedded planet
(forced or inhomogeneous case). To better highlight new
findings, we start by outlining the existing picture of wave
propagation in disks in Section 3.1. We then describe the
general properties of the linear planet-driven density waves
found in our linear calculations (Section 3.2) and provide a
comparison with the results of direct numerical simulations
(Section 3.4). These preliminaries form a basis for subsequent
in-depth discussion of the properties of multiple spiral arms
emerging in our calculations in Section 3.5.

3.1. Expectations Based on Simple Linear Theory

Existing linear calculations of the density wave propagation
in disks provide some guidance on the expected outcome of our
present calculation. Specializing to the inhomogeneous case,
the linear response of the disk is expected to take the form of
a one-armed spiral density wake (Ogilvie & Lubow 2002;
Rafikov 2002a). For - ∣ ∣r r Hp p, the position of the wake is
given approximately by4
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factor of order unity (Rafikov 2002a),
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Here

*= ( )M h M 17th p
3

is the thermal mass. The first (constant) factor on the right-hand
side of Equation (16) describes the initial amplitude of the
density wake formed within a few scale heights of the planet
(in the homogeneous case considered in Section 4, rp is
replaced with the radius at which the perturbation is imposed
and Mp/Mth with an arbitrary constant), while the other factors
indicate how the amplitude varies as the wake propagates away
from the planet. The radial scaling is dictated by the
conservation of angular momentum flux (AMF),

d f d f f= S f∮( ) ( ) ( ) ( ) ( )F r r r u r u r d, , , 18J r
2

which, in the absence of explicit dissipation (linear or
nonlinear), must be constant far from the planet, outside the
wave excitation region (Goodman & Rafikov 2001;
Rafikov 2002a). The characteristic scale of FJ, resulting from
the sum of the one-sided Lindblad torques, is (Goldreich &
Tremaine 1980; Ward 1997)

*
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2

p
3
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4
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These known linear results will be used as a reference for
comparison in our current calculations.

3.2. Results of Linear Calculations: General Properties

In Figure 2, we show two-dimensional maps of the perturbed
surface density (in polar coordinates fr, ) resulting from our
typical linear calculations. The case with the fiducial
parameters is shown (Figure 2(a)), as well as several other
cases, discussed in Section 3.6, in which each of the three
parameters (indicated at the top of the panel) is varied from its
fiducial value.
The same maps of the perturbed surface density are also

shown in Cartesian coordinates in Figure 3, in order to
demonstrate the true geometry of the spirals as seen by an
observer sensitive to the gas surface density perturbations. Note
that in Figure 3, only the part of the disk interior to the orbit of
the planet is shown, and the range of color scale for the
perturbations is smaller than in Figure 2, in order to focus on
the details of the perturbations in the inner disk.5

Also, to highlight the details of the spiral arm evolution, in
Figures 4(a) and (b), we display the azimuthal profiles of δΣ at
a fixed radius r, normalized by the linear wake amplitude δΣlin

4 Note that the analogous expression in Rafikov (2002a) has a different sign
for the second term.

5 We point out that radially narrow features seen at r≈rp in Figures 2 and 3
are perturbations in the corotation region that result from the presence of a
radial entropy gradient (i.e., due to terms depending on 1/LS in Equation (6)).
As they are very localized near the orbit of the planet and have no effect on the
global spiral structure of the disk, we do not examine these features in detail in
this work.
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given by Equation (16). These profiles can be thought of as
horizontal cuts in Figure 2.

Generically, in the outer disk (r>rp), a single strong
spiral arm, i.e., a narrow structure with a δΣ>0 peak, is
present. Its azimuthal profile remains relatively unchanged as
the arm winds up with increasing r; see Figure 4(a). It is
accompanied by a comparatively wider surface density
trough with δΣ<0, which trails behind the arm (in the
sense of the Keplerian rotation of the disk). The case with a
smaller disk aspect ratio, hp=0.05, represents an exception,
as it develops a weak additional spiral arm beyond r≈3rp,
although this is not clearly discernible in Figure 2 (see
Section 3.5 for details).

In the inner disk (r<rp), there is a single spiral arm (the
“primary spiral”) near the planet, accompanied by a trough
that leads the arm. However, farther from the planet, the
structure of the density wake deviates from the simple
behavior seen in the outer disk. For the fiducial parameters,
the presence of a second peak with δΣ>0 (the “secondary
spiral arm”) becomes apparent at r≈0.5rp, accompanied by
a deepening of the initial trough; see Figure 4(b). Toward
smaller radii, the strength of the secondary spiral increases,
and it also becomes accompanied by a leading trough. At
even smaller radii (r0.1rp), a third arm (the “tertiary
spiral”) forms. These multiple spirals are robustly present for
a variety of disk parameters. Note that the additional spirals
(secondary, tertiary, and so on) are always located ahead of
the primary spiral.

In Figures 4(c) and (d), we also show the azimuthal distribution
of AMF,

f d f d f= S f( ) ( ) ( ) ( ) ( )f r r r u r u r, , , , 20J r
2

at different radii. This quantity is related to the AMF according
to

f f= ∮( ) ( ) ( )F r f r d, . 21J J

The evolution of the azimuthal profile of fJ with r allows us to
trace the exchange of AMF between the multiple arms as the
wake propagates away from the planet.
The AMF is peaked near the locations of both the peaks

(δΣ>0) and the troughs (δΣ<0) of the surface density
perturbation, since the AMF is approximately proportional to
the square of δΣ far from the planet (Rafikov 2002a):

d»
W - W S

S
∣ ∣

( ) ( )f
rc

. 22J
s
3

p

2

In particular, in the outer disk, for r/rpa few, the trough
trailing the primary arm of the surface density perturbation
carries a significant fraction of the AMF.
We provide more in-depth discussion of the different

features of the density wake in Section 3.5.

Figure 2. Two-dimensional fractional surface density perturbation (scaled by the ratio of the planet mass to the thermal mass), shown in polar coordinates, for the case
of the fiducial parameters ( = = =h q p0.1, 1, 1;p panel (a)) and several other cases, demonstrating the effect of varying each parameter: the disk aspect ratio, hp
(panel (b)); the temperature power-law index, q (panel (c)); and the surface density power-law index, p (panel (d)). The positions of the primary, secondary, and
tertiary arms are indicated in panel (a).
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3.3. Dependence on Adiabatic Index

In the calculations presented in this section, we have adopted
γ=7/5 as the fiducial adiabatic index. We have also carried
out calculations for hp=0.1, q=1, and p=1 with different
values of γ, the results of which are shown in Figure 5. Here
the azimuthal profiles of δΣ are shown at different radii for
several values of γ in addition to γ=7/5. The case γ=1.001
corresponds to an almost (locally) isothermal disk. The case
γ=4/3 represents the effective two-dimensional adiabatic
index corresponding to a three-dimensional adiabatic index
Γ=7/5. These different adiabatic indices are related accord-
ing to γ=(3Γ−1)/(Γ+1) (Goldreich et al. 1986; Ostriker
et al. 1992) in the low-frequency limit, w W˜ (valid for
r≈rp). For γ=2, the disk has a uniform entropy profile (see
Equation (7)), and we recover the barotropic limit.

The surface density profiles shown in Figure 5 demonstrate
that our results are remarkably insensitive to the value of γ.6

Mathematically, this is because γ-dependent contributions
appear in Equation (6) only through terms varying on scales of
∼rp. In Section 5, we show that the formation of multiple
spirals is well described by considering the phases of different

modes in the local (WKB) limit, in which the globally varying
terms in Equation (6) with explicit dependence on γ are
unimportant. Therefore, it is sufficient to only consider the
fiducial γ=7/5 in our subsequent discussion.

3.4. Numerical Validation

To validate and understand the limitations of our semi-
analytical linear calculations, we have also carried out a set of
direct numerical simulations of planet–disk interaction in the low-
mass regime using FARGO3D (Benítez-Llambay & Masset 2016).
These simulations will be discussed in detail in a future work.
Here we describe only the basic setup, as well as the results for
the fiducial disk parameters, hp=0.1, q=1, and p=1.
We choose a planet mass *= -M M10p

5 , or 0.01Mth. Since
Mp=Mth, the linear regime is appropriate for describing the
disk response, except far (6Hp) from the planet, where
nonlinear effects (fully captured in simulations)—wake evol-
ution into a shock and subsequent dissipation—become
nonnegligible (Goodman & Rafikov 2001). A softening length
of 0.6Hp is applied to the potential of the planet. We use a
logarithmically spaced radial grid extending from =r r0.05in p
to =r r5.0out p with Nr=4505 grid cells and a uniformly
spaced azimuthal grid with Nf=6144 grid cells. The
resulting grid cells have a roughly square shape with a
resolution of 98 cells per scale height. Wave damping zones

Figure 3. Two-dimensional fractional surface density perturbation for the fiducial parameters and several cases with varied parameters, as in Figure 2, but in Cartesian
coordinates and focusing only on the spiral structure in the inner disk, interior to the orbit of the planet. The positions of the primary, secondary, and tertiary arms are
indicated in panel (a).

6 The perturbation structure in the immediate vicinity of rp (within about
H0.1 ) has a strong dependence on γ, but this is not important for our present

study of spiral arms far from the planet.
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(e.g., de Val-Borro et al. 2006) are implemented for r<0.06rp
and r>4.5rp in order to minimize wave reflection at the
boundaries (note that direct comparison with the results of our
linear calculations is not possible in the damping zones).

We adopt an ideal equation of state with γ=1.001. This value
of γ close to unity is chosen in order to avoid any significant
heating of the disk due to wave dissipation during our simulations.
Note that although this setup resembles that of a locally isothermal
disk, the two cases are physically distinct. In locally isothermal
disks, nonaxisymmetric perturbations are known to exchange
angular momentum with the background flow (Lin & Papaloizou
2011; Lin 2015), which can lead to anomalous results.7 No
explicit viscosity is included in the simulation.

We compare the results of the numerical simulation after 10
orbits (when a steady state is reached) with our linear calculations
(using γ=1.001 in order to facilitate direct comparison) in
Figure 6. The profiles of the surface density perturbation δΣ are
shown at several different disk radii in the inner disk, highlighting
the multiple spiral arm structure. The profiles are rotated by flin(r)
and scaled by δΣlin(r), as in Figure 4.

The numerical results exhibit very good agreement with the
linear prediction. The positions of the primary, secondary, and
tertiary arms are closely reproduced, differing by 0.05 rad
from the linear prediction even at the smallest radii. In
particular, the initial secondary-to-primary arm separation is
≈60°, and this separation decreases toward smaller radii, in
agreement with our calculations (see Section 3.5). This is a
unique feature of the secondary spiral in the linear regime,
which should be contrasted with the 180° separation that arises

when Mp>Mth (e.g., Zhu et al. 2015). The amplitudes of the
arms and troughs in the numerical simulation also show good
agreement with the linear prediction, exhibiting essentially
negligible differences, except for at small radii (r0.1rp),
where differences of ≈20% arise due to nonlinear effects
(especially in the amplitude of the trough between the primary
and secondary spirals). Notably, the amplitude of the secondary
arm overtaking that of the primary for r0.1rp is well
reproduced in the simulation. The agreement between the
numerical simulation and linear theory supports full applic-
ability of our results to low-mass planets.
We note that no shocks are present in Figure 6, in contradiction

to the results of Rafikov (2002a), which predict shock formation
at about 0.3rp. However, the calculations of Rafikov (2002a)
were carried out for the case of a single spiral arm propagating in
a self-similar fashion. In our calculations, there is an exchange of
AMF from the primary spiral arm to the secondary spiral arm,
which modifies this picture. Evidently, this exchange lowers the
amplitude of the primary arm and suppresses shock formation for
the planet mass (Mp=0.01Mth) that we have considered here.

3.5. Structure of the Multiple Spirals

We now characterize the morphological properties—ampl-
itude, width, and arm-to-arm separation—of the spiral arms, the
radial dependence of these properties, and how they vary with
the disk parameters. We first briefly describe the procedure for
identifying and characterizing the spiral arms, the results of
which are illustrated in Figures 7 and 8. We emphasize that the
procedure for decomposing δΣ into discrete spiral arms and
troughs is heuristic and not unique; in practice, this decom-
position can be done using different criteria than the ones we

Figure 4. Top panels: profiles of the surface density perturbation δΣ, scaled by δΣlin (see Equation (16)) to facilitate comparison between the profiles at different radii.
Bottom panels: profiles of the azimuthal distribution of AMF fJ, in terms of the characteristic AMF FJ,0 (Equation (19)). Profiles are shown for several different radii in
the outer disk (left panels) and inner disk (right panels) for the fiducial disk parameters.

7 We look into this issue in more detail in R. Miranda & R. Rafikov (2019, in
preparation).
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used. Therefore, the results should be taken as semiquantitative
descriptions.

3.5.1. Identification and Characterization of Spiral Arms

At r=rp, δΣ has a single (global) maximum, located at
≈fp, which we identify as the primary arm. By following the
position of this maximum across different radii, we obtain the
position of the primary arm as a function of r. If at some r, a
second (local) maximum with an amplitude equal to at least
10% of the amplitude of the primary arm is present, it is
identified as the secondary spiral arm. This relative amplitude
threshold is necessary in order to avoid spurious “detections” of
additional spirals. The position of the secondary is then
followed across different radii in the same manner as the
primary. The emergence of subsequent (e.g., tertiary, quatern-
ary) arms is determined by a similar criterion, except we
require the amplitude to be at least 10% of the strongest spiral
arm at a given r, which may not necessarily be the primary
(since its amplitude decays with distance from the planet). The
positions of the spiral arms are denoted fP, fS, and so on.

We also identify the troughs, i.e., local minima of dS. We
associate each trough with a spiral arm at each r, since features
tend to appear in arm/trough pairs (see Figure 4). The troughs
are therefore designated as the “primary trough,” “secondary
trough,” and so on. Note that near the planet, the primary arm is
accompanied by two troughs, one leading and one trailing.

Toward the outer disk, the trailing trough becomes the stronger
of the two, so it is identified as the primary trough. In the inner
disk, the leading trough becomes stronger, so it is identified as
the primary trough instead. This is the origin of the
discontinuity in the position of the primary trough in
Figures 7(a)–(c) and 8(a) and (b). Multiple arms formed in
the inner disk are each similarly accompanied by a leading
trough. In the outer disk, when multiple arms are present (we
find at most two, and only for our thinnest disk), they are
instead accompanied by trailing troughs.
Using the profiles of δΣ in the vicinity of the peaks and

troughs, we quantify the amplitudes and widths of the arms/
troughs using the maximum and FWHM of δΣ for arms and
−δΣ for troughs. The arm amplitudes are denoted by δΣP, δΣS,
etc.
Note that since troughs are simply identified as local minima,

it is sometimes the case (for high-order troughs, e.g., tertiary
and beyond) that δΣ>0 at the trough location. In this case, the
width of the trough is undefined, since the amplitude is
measured relative to zero. But as the trough evolves,
eventually, δΣ at the minimum becomes negative, so the
trough has a well-defined (but narrow) width. The trough width
increases as its amplitude grows, until it resembles the initial
widths of lower-order troughs, and then it becomes more
narrow toward the inner disk, in accordance with the behavior
of the other arms/troughs. This explains the anomalous
behavior of some of the high-order trough widths seen in, e.g.,
Figures 7(f) and 8(c) and (d).
We also keep track the AMF FJ carried by each arm or

trough by integrating the AMF distribution (Equation (20))

Figure 5. Surface density perturbation profiles in the inner disk for the fiducial
disk parameters, hp=0.1 and q=p=1, and different values of the adiabatic
index γ.

Figure 6. Profiles of the surface density perturbation at several radii in the inner
disk, comparing the results of our numerical simulation (solid curves) and
linear calculation (dashed curves) for the fiducial parameters (with γ=1.001).
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over its azimuthal extent, which is delineated by the zeros of
δΣ. These roughly correspond to the zeros of fJ, since the latter
is approximately proportional to (δΣ)2 (see Figure 4 and
Equation (22)). Note that the AMF is divided up and assigned
to the arms and troughs in a conservative manner, so that the
sum of the AMF associated with all of the peaks and troughs at
a given radius is equal to FJ(r).

The extracted properties of the arms and troughs (position,
width, amplitude, and AMF) are shown for the fiducial case
and cases with different disk aspect ratios in Figure 7 and for
cases with different temperature power-law indices in Figure 8.
Note that the arm/trough positions are shown relative to the
position of the primary arm, fP, which is well approximated by
Equation (15) (although it may differ by ∼10° far from the
planet; see Figure 4). Also note that the amplitudes are scaled
by δΣlin, in order to remove the simple variation of amplitude
with r resulting from AMF conservation. The AMF (lower
panels) is scaled by the characteristic AMF due to the one-sided
Lindblad torques given by Equation (19).

3.5.2. Outer Disk

The structure of the surface density perturbation (see
Figures 7(g)–(i) and 8(e) and (f)) in the outer disk is fairly
simple. Typically, the perturbation consists only of a primary
arm, with a width of about 10°, and its associated trough, which
is about four times wider. Their amplitudes vary slowly, with
the gradual decay of the arm amplitude accompanied by the

gradual growth of the trough amplitude. The amplitude of the
trough remains small relative to the arm (a few tenths at most),
although it carries a significant fraction of the AMF (see
Figures 7(j)–(l) and 8(g) and (h)) due to its large width. For
hp=0.1 and smaller (with q= 1), the trough carries most of
the AMF (i.e., more than the peak) for r(1.5–2.0)rp.
For the thinnest disk we have considered ( =h 0.05p ), a

secondary arm does form at about 3rp (see Figure 7(g)), which
is explained in Section 5.2.2. Its amplitude grows very slowly
with r and is only about 12% of that of the primary at 5rp. Note
that we have solved for the structure of the perturbations only
out to 5rp, so it is possible that a secondary arm emerges
beyond this radius for larger hp as well (although our analytic
estimates indicate that this is unlikely; see Section 5.2.2). If so,
it forms very far from the planet in comparison to the inner
disk, where a secondary arm always forms at about half of the
orbital radius of the planet. And as demonstrated by the
hp=0.05 case, the outer secondary spiral is very weak, even
when it exists. Therefore, we do not devote much attention to
secondary spirals in the outer disk.

3.5.3. Inner Disk

In the inner disk, multiple (three to five) spiral arms are
robustly formed for a variety of parameters. For the fiducial
parameters (Figures 7(b), (e), (h), and (k)), the secondary arm
first appears at 0.46rp, with an initial separation of about 70°
from the primary arm and an initial width of 45°. At smaller

Figure 7. Properties of the multiple spiral arms (solid curves) and their associated troughs (dashed curves) as functions of radius for different values of the disk aspect
ratio near the planet, hp (left, right, and middle panels), and with fixed values of the temperature and surface density power-law indices q=1 and p=1. First row:
positions of the arms and troughs relative to the primary arm. Second row: FWHMs of the arms and troughs. Third row: absolute values of the surface density
perturbations associated with the arms and troughs, scaled by δΣlin (Equation (16)). Fourth row: AMF FJ associated with each arm or trough, as well as the sum of the
AMF of each arm and its associated trough (dotted curves) and the total AMF (sum over all of the arms and troughs; dotted–dashed curves).
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radii, its separation relative to the primary arm decreases to
about 30°, and its width decreases to about 20°. The amplitude
of the secondary arm increases as that of the primary decreases.
At r=0.17rp, the amplitude of the secondary is about half that
of the primary, and at r=0.06rp, the secondary amplitude
exceeds the primary amplitude.

A weak tertiary arm forms at about 0.3rp, and a weak
quaternary arm forms at about 0.1rp. The tertiary and
quaternary arms each form at ≈135° from the previous arm
(roughly twice the secondary-to-primary separation), with an
initial width of about 60°; see Figures 7(b) and (e). After the
quaternary arm forms, roughly the entire 2π extent of the disk
is populated with spirals, so it is unlikely that any more well-
defined arms would form.8 Nonetheless, we emphasize that the
tertiary and higher-order arms have very small amplitudes
relative to the primary and secondary even at r=0.05rp (see
Figure 7(h)) and thus are relatively unimportant features.

As in the outer disk, the primary trough carries a significant
portion of the total AMF (see Figures 7(j)–(l) and 8(g) and (h))
and typically carries more AMF than the primary arm at
r(0.5–0.8)rp, which is a larger radius than the one at which
the secondary arm forms or the secondary arm amplitude
becomes stronger than the primary (in terms of amplitude). The
AMF of the secondary arm exceeds the primary-arm AMF for
r(0.4–0.5)rp. Far inside the inner disk (r≈0.1rp), the AMF
is primarily carried by the secondary arm, secondary trough,

and primary trough, while contributions from the other peaks
and troughs are negligible.

3.6. Dependence on Disk Parameters

Figures 2(a) and (c) show that lowering hp results in more
tightly wound spiral arms. For such colder and thinner disks,
the secondary arm (in the inner disk) forms closer to the
primary (in azimuthal angle), with a smaller initial width and
smaller initial arm-to-arm separation, and it also becomes
stronger than the primary at a larger radius; see Figures 7(a),
(d), (g), and (j).
For temperature profiles with q different from unity,

Figures 2(a) and (b) show that the pitch angles of the spirals
vary with radius. For q<1, the initial properties of the
secondary arm are relatively unchanged, but its amplitude
becomes larger than the primary amplitude at larger radii
(similar to the case of lower hp); see Figure 8. Additional
(tertiary and beyond) arms also form closer to the planet for
thinner disks, and more arms are formed—as many as five for
hp=0.05 (however, the full azimuthal extent of the inner disk
is not fully populated with spirals in this case, as it is for larger
aspect ratios).
The development of the secondary arm in the inner disk is

summarized in Figure 9 for different disk parameters. It shows
the radial location at which the amplitude of the secondary arm,
δΣS, relative to the amplitude of the primary, δΣP, is equal to
0.2, 0.5, and 1. In each panel, two of the three disk parameters
(hp, q, and p) are held fixed, while the third one is varied. These
properties depend most strongly on hp, with the arm forming

Figure 8. Same as Figure 7, but for different values of the temperature power-law index q, with hp=0.1.

8 Although, since the arms become more narrow toward the inner disk, there
may possibly be room for additional arms at even smaller radii.
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closer to the planet for smaller hp. For values of q smaller than
the fiducial q=1, i.e., for more flared disks, the secondary arm
forms somewhat closer to the planet. However, its amplitude
grows with radius faster than the case with q=1, reaching
50% and 100% of the primary amplitude at significantly larger
radii.

The development of the secondary spiral is relatively
insensitive to the slope of the surface density profile for a
plausible range of values (0<p<3/2). This is evident in the
structure of the 2D surface density maps in Figures 2 and 3,
which show the cases p=1 and 0 (note that the overall scaling
of the amplitude of the perturbations with r differs between the
two cases, but this is trivially described by AMF conservation;
see Equation (16)). This is shown quantitatively in Figure 9(c).
The radius at which the secondary spiral forms differs by only
about 5% between the cases p=0 and 3/2.

4. Results for Passively Propagating Spiral Waves

As will be shown in Section 5, the formation of the
secondary spiral can be described fairly well by the local
(WKB) approximation, which is valid far from resonances,
where multiple spiral arms emerge and the gravitational
influence of the planet is negligible. This indicates that the
external potential of the planet plays a minimal role in this
process. Therefore, motivated by the results of Arzamasskiy &
Rafikov (2018), we may expect that any spiral wake formed by
the phase coherence of a series of modes launched in a
companion-free disk will also break up into multiple spirals.

To this end, we investigate the passive linear propagation of a
spiral wake (not subject to the external potential of a planet). More
specifically, we perform a calculation representing a linear analog
of the nonlinear calculation of Arzamasskiy & Rafikov (2018),
closely following their setup. In this setup, a surface density
perturbation δΣ(f) rotating with a pattern frequency ωp is imposed
at a radius rout and allowed to propagate toward the disk center
(only inward propagation is allowed provided that ωp<Ωout).

We solve for the structure of the modes of the homogeneous
wave (Equation (6)) with Φm=0 by shooting solutions inward
from rout in order to satisfy the outgoing wave boundary
condition at rin=0. 05rout. For simplicity, here we choose a
mode pattern frequency ωp=0 (so that the wave pattern is
fixed in the inertial frame), which corresponds to waves
launched at a radius ?rout. Once the mode profiles are

obtained, any azimuthal profile δΣ can be constructed from an
appropriate linear combination of the different δΣm.
The perturbation imposed at rout is chosen to be a Gaussian,9
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Thus, there are four parameters in our setup. These are the three
disk parameters hout and q that define the sound speed profile,
now parameterized by = W -( ) ( )c r h r r r q

s out out out out
2, and the

surface density power-law index p, as well as the initial
azimuthal width σ of the surface density perturbation. For the
fiducial parameters, we choose hout=0.1, q=1, p=1, and
σ=0.06. The fiducial σ is chosen to produce a surface density
profile similar to the one produced near the planet for the case
of the fiducial parameters in the inhomogeneous problem.
Figure 10 shows two-dimensional maps of the fractional

surface density perturbation for the fiducial parameters and
several cases with varied parameters. In all of these cases, the
initial, single-peaked perturbation profile breaks up into
multiple arms, in agreement with the findings of Arzamasskiy
& Rafikov (2018). The azimuthal profiles of δΣ at different
radii are shown in Figure 11 for the fiducial parameters. They
are qualitatively very similar to the profiles that develop in the
inner disk in the case of the spiral wake driven by a planet; see
Figure 4. The azimuthal distribution of the AMF similarly
becomes divided up into several different peaks. We emphasize
that the appearance of multiple spirals in this setup, in which
there are no resonances in the disk, indicates that the formation
of multiple spirals is not connected to resonances.
Figure 12 summarizes the dependence of secondary-arm

amplitude on the disk parameters and initial width of the spiral
wake. The dependence on the surface density profile index p is
extremely weak. In fact, it is much weaker than in the case with
a planet: the radius at which the secondary spiral emerges

Figure 9. Radii at which the amplitude of the surface density perturbation associated with the secondary spiral arm, δΣS, relative to the amplitude of the primary arm,
δΣP, is equal to 0.2 (red points), 0.5 (blue points), and 1 (green points). In each panel, two of three disk parameters (aspect ratio hp, temperature power-law index q,
and surface density power-law index p) are fixed at their fiducial values, while the value of the third parameter is varied. The dashed curves indicate the theoretical
predictions given by Equations (38) and (39), calibrated to the fiducial disk parameters (i.e., using =h 0.1p ).

9 The actual profile imposed at rout differs slightly from the form specified by
Equation (23). Specifically, the actual profile is “missing” the m=1 Fourier
component. This is because the m=1 mode is evanescent interior to its outer
Lindblad resonance (OLR) (which is assumed to be located at r?rout) and
exterior to its inner Lindblad resonance (ILR) (which is formally located at
r = 0). Therefore, the amplitude of the m=1 mode is assumed to be zero at
rout as a result of its evanescent propagation from large r. Note that if we had
instead chosen the amplitude of the m=1 mode to be finite at rout (so that δΣ
is given exactly by Equation (23)), it would decay away toward small r
anyway, and it would not strongly affect our results.
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changes by less than 1% when the value of p is varied between
zero and 1. This lack of sensitivity to the Σ profile is explained
in Section 5.

On the other hand, the properties of the secondary spiral
depend strongly on the initial width of the perturbation; see
Figure 12(c). Wider initial perturbations lead to the develop-
ment of the secondary spiral at larger radii, which is discussed
in Section 5. In this experiment, we have isolated the effect
of the initial perturbation width, as it is controlled by the
parameter σ, which is unrelated to the disk parameters. In
the case of a density wave launched by a planet, the width of
the spiral wake near the planet is set by the disk aspect ratio,
since the perturbation is dominated by modes with m∼1/hp,
so thinner disks produce narrower initial wakes. In the
homogeneous case, by separating these two effects, we see
that variation of the disk aspect ratio has an even stronger effect
on the emergence of the secondary spiral than it does in the case
with a planet: changing hout by a factor of 3 changes the radius
at which the secondary emerges by a factor of 2. Evidently,
these two effects somewhat cancel out in the case with a planet.

5. Analytical Understanding of Our Results

In this section, we present theoretical arguments, following
those made by Ogilvie & Lubow (2002) and Bae & Zhu
(2018a), that interpret spiral arm formation as resulting from
constructive interference among different azimuthal modes. We

Figure 10. Two-dimensional fractional surface density perturbations for the propagation of a passive spiral wake with an initially specified profile at rout (see
Section 4). The left panel shows the case of the fiducial disk parameters hout=0.1, q=1, p=1, and σ=0.06. In the other panels, the disk aspect ratio, temperature
power-law index, and initial width are varied. In all cases, the single spiral arm imposed at rout splits up into two or more arms as it propagates inward.

Figure 11. Profiles of the surface density perturbation (top panel) and
azimuthal distribution of AMF (bottom panel) at different radii, as in Figure 4,
but for the homogeneous problem of a passive spiral wake.
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then use these arguments to explain and interpret the results of
our numerical calculations.

5.1. Mode Phases and Interference

The surface density perturbation of the mode with azimuthal
number m is

d f d yS = S( ) ∣ ( )∣ [ ( )] ( )r r i r, exp , 24m m m

where

y d f f= S + -( ) [ ( )] ( ) ( )r r mArg . 25m m p

The phase of δΣm can be expressed as (Ogilvie & Lubow 2002)
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Note the distinction between fp (with a lowercase subscript),
the position of the planet, and fP (with an uppercase subscript),
the position of the primary spiral arm. Also, in Equations (26),
(31), and (32), note the different limits of integration.
The perturbation δΣm has a maximum found by setting

ψm=0. For modes with m?1, the last two terms in
Equation (31) become negligible, so that the maxima of these
modes have positions f≈fP. For general m, the maximum of
δΣm interferes constructively with these modes if
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where Δf0 is the maximum phase difference that results in
constructive interference. In general, this criterion is indeed
satisfied (for some range of r and values of m), resulting in the
formation of the primary spiral arm. Therefore, fP gives the
approximate position of the primary spiral (Ogilvie &
Lubow 2002; Rafikov 2002a). To understand the origin of
higher-order arms (secondary, tertiary, etc.), let us note that
maxima of dSm are also attained at y p= n2m , where
= ¼ - -n m m1, 2, , 2, 1 is an integer. Maxima in this

range of n are distinct in a sense that, at a given r, each of them
corresponds to a well-defined azimuthal location f f= m n, (in a
frame corotating with the planet), where

f f d p= + - S +( ) [ ( ( )) ] ( )r
m

r n
1

Arg 2 . 34m n m, p

Values of n outside the interval -[ ]m1, 1 yield fm n,
coinciding with one of the azimuthal locations inside this
interval.

Figure 12. Radii at which the amplitude of the secondary arm reaches 0.2 (red points), 0.5 (blue points), and 1 (green points) relative to that of the primary arm, as in
Figure 9, but for the homogeneous problem. In the different panels, the aspect ratio, temperature power-law index, and initial perturbation width are varied, while the
other parameter values are held fixed. Note that “missing” points indicate that the secondary amplitude did not reach the specified threshold anywhere for
r>rin=0.05 for the specified parameter value. The dashed curves show the theoretical predictions given by Equations (38) and (44), calibrated to the fiducial
parameters.

10 Note that this expression neglects ( )hp
2 terms due to radial pressure

support and nonzero Nr.

11 Note that fP is equivalent to flin as defined in Equation (15). Here it has
been redefined to emphasize that it gives a theoretical prediction for the
azimuthal position of the primary spiral arm.
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As pointed out by Bae & Zhu (2018a), these locations may
define additional curves along which constructive interference
occurs. In their formulation, a spiral arm may be formed as a
result of constructive interference among the fm n, peaks with
different values of m (but a fixed value of n). The primary spiral
is a result of constructive interference of peaks with n=0. In
the inner disk, the secondary spiral is a result of interference of
peaks with n=1, the tertiary spiral is associated with n=2,
and so on. In the outer disk, = -n m 1 peaks are associated
with the formation of a secondary spiral, = -n m 2 with a
tertiary spiral, and so on.

The argument of Bae & Zhu (2018a) is based on the WKB
approximation for the phases of the modes, and no account is
given to the behavior of the mode amplitudes. In our
calculations, the mode phases (as well as amplitudes) are
computed exactly by solving for the global mode structure (i.e.,
not using WKB approximation). To illustrate how the mode
interference idea works in our fully self-consistent calculation,
in Figure 13, we show the phases of different crests of the
modes defined by Equation (34), which were numerically
computed using our full linear solutions. In agreement with
Ogilvie & Lubow (2002), this figure indicates that the mode
phases with n=0 are tightly clustered in phase, and these
phases closely follow that of the primary arm. But, in addition
to that, one also sees that the phases with n=1, which are
initially very spread out (over a range of ∼π), become more
clustered toward the inner disk. The phases of these modes
follow the phase of the secondary spiral arm, indicating that the

constructive interference of n=1 mode crests is indeed
responsible for the emergence of the secondary arm.
The n=2 phases also start out very spread out in azimuth at

r=rp. They slowly converge as r decreases, although they still
span a range of ∼π/2 even at r=0.05rp. These phases are
approximately coincident with that of the tertiary arm, although
this correspondence is not as tight as it is for the cases of the
primary and secondary arms. This highlights the fact that
the phase information of the modes, while suggestive of the
structure of the spiral arms, is not sufficient to fully capture
their structure. Rather, a full consideration of the mode phases
and amplitudes is required, which is done in this work.
None of the phases behind the n=0 phases (i.e., n=m−1,

n=m−2) are as tightly clustered as those with n=0.
Correspondingly, no spiral arm forms behind the primary in the
inner disk (for the fiducial parameters).

5.2. Analytic Estimates

We now try to predict the radius at which the secondary arm
emerges, as well as its location and width, using a phase
interference argument. We do this by estimating the spread in
the relevant fm n, ’s, and identifying the regions in which they
are appropriately clustered as the locations of the different
spiral arms. In order to do this, we make use of the WKB
approximation, which we find reproduces the mode phases
(fm,n’s) found in our numerical calculations with reasonable
accuracy. For modes with m close to * »

-( )m h2 p
1, the error in

the WKB phases is ∼20% in the vicinity of the Lindblad

Figure 13. Phases of different surface density peaks associated with modes with different azimuthal numbers. Each fm,n corresponds to the nth peak associated with
the mode of azimuthal number m. Constructive interference between peaks with different values of m but the same value of n may be responsible for the formation of
the multiple spiral arms. The different colored curves correspond to different azimuthal numbers, and the different panels correspond to different values of n. In panels
(a)–(c), the phases of the n=0, 1, and 2 peaks, which are associated with the primary, secondary, and tertiary arms, respectively, are shown, along with diamonds
indicating the actual location of these arms. In panels (d) and (e), the phases of peaks with n=m−1 and m−2 are shown. These peaks are not relevant to secondary
spiral arm formation in the inner disk, as they are located behind, rather than in front of, the primary arm.
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resonances and an order of magnitude smaller far from the
resonances, where secondary spiral arm formation occurs.

From Equations (26) and (34), we have
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(see Bae & Zhu 2018a). The planet-induced density wake is
dominated by modes with m≈m*. Therefore, defining

*
f fºn m n, , we follow the ansatz of Bae & Zhu (2018a) and
identify in the inner disk the position of the secondary spiral as
f f=S 1, the position of the tertiary spiral as f f=T 2, and so
on. The positions of the secondary and higher-order spiral arms
relative to the primary arm are then given approximately by
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see Equations (32) and (35).
However, in order for a spiral arm to exist at f=fn, the

appropriate fm n, ’s must be sufficiently clustered. The spread in
fm n, for values of m in the vicinity of m* is
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where Δm represents the range of azimuthal numbers that
contribute to the arm. We assume that this range is comparable
to the critical m itself, taking *zD =m m , with ζ∼1.12 In
order for the fm n, to constructively interfere and form a spiral
arm, we require that *df f< D mm n, 0 (where, as in
Equation (33), Δf0 is a critical separation required for
constructive interference, so that the variation of ψm is less than
Δf0). Evaluating the derivative in Equation (37) and
simplifying, we find the condition for spiral arm formation

*df z df fº < D- ˜ ( )m , 38n m n
1

, 0

where f f zD = D -˜
0 0

1 is a new “phase-spread” constant and13
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Note that δfn represents the spread in mode phases, while

*df mn gives the approximate spiral arm width (provided that a
spiral arm exists). The integral in Equation (39) is positive
(negative) in the outer (inner) disk. Therefore, a necessary
condition for δfn to become small enough to form a spiral arm is
that n�0 (n�0) in the outer (inner) disk. Hence, secondary

and higher-order spirals can only be attributed to constructive
interference of fm,n with n>0 in the inner disk and fm,n with
n<0 (or, equivalently, n=m−1, m−2, etc.) in the outer
disk, should spiral arms be present there (Bae & Zhu 2018a).
Note that Equation (39) can be used to estimate the phase spread
of the primary spiral arm by taking n=0. From this, we see that
the formation of the secondary spiral is coincident with the
dissolution of the primary spiral, since δf0 necessarily becomes
large as δf1 becomes small. This explains a trend seen in
Figures 7(g)–(i) and 8(e) and (f): the decrease in δΣP toward the
inner disk is accompanied by an increase in δΣS.
Up to this point, we have left the value of fD ˜

0 arbitrary.
Roughly speaking, we expect that taking f pD »˜

0 in
Equation (38) should qualitatively predict the presence of a
spiral arm (Ogilvie & Lubow 2002). In practice, we can use our
full numerical results to calibrate this criterion. We compute
values of fD ˜

0 corresponding to different relative strengths of
the secondary (and tertiary) spiral arm. We do this by
calculating, using Equation (39), for example, df ( )r1 S20 , where
rS20 denotes the location at which d dS S = 20%S P , inferred
from our numerical results. These values are given in Table 1.

5.2.1. Passive Spirals

The same formalism can also be applied to our numerical
experiments for passively propagating spirals presented in
Section 4. In this setup, we assume that all modes are exactly in
phase at rout. We also assume that the (inner) Lindblad
resonances for all modes are located exterior to rout. Therefore,
in Equation (26), we drop the π/4 term (associated with the
resonance) and take rout as the lower limit of the km integral.
Therefore, we have
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In the expression for the radial wavenumber (Equation (28)),
the orbital frequency of the planet Ωp should be replaced by the
specified pattern frequency ωp. Additionally, the initial width σ

of the spiral launched at rout is explicitly specified rather than
being set by the disk aspect ratio, as it was for a wake launched
by a planet. Therefore, we take * s» -( )m 2 1 as an approx-
imation of the dominant azimuthal mode number in the
homogeneous case. We then have, for the arm-to-arm
separations and phase spreads,
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Table 1
Values of δfn at Locations Corresponding to Several Relative Amplitudes of
the Secondary/Tertiary Spiral Arm (Where, for Example, rS50 Indicates a 50%

Relative Amplitude of the Secondary to the Primary)

hp q p df ( )r1 S20 df ( )r1 S50 df ( )r2 T20

0.05 1 1 2.46 0.62 5.75
0.07 1 1 2.39 0.53 5.92
0.10 1 1 2.27 0.62 5.70
0.15 1 1 2.05 0.52 5.08
0.10 1/2 1 2.19 0.44 5.59
0.10 0 1 2.12 0.28 5.50
0.10 1 0 2.12 0.33 5.43
0.10 1 3/2 2.36 0.78 5.85

12 This is a reasonable assumption for the narrow primary and secondary
spirals. However, the broader widths of the tertiary and higher-order spiral arms
may indicate that they are dominated by modes with a smaller range of m,
indicating that ζ<1 may be appropriate for these spirals.
13 In Equation (39), n should take on the values 0,±1,±2, etc. While the
definition of fm,n (Equation (34)) also permits values such as =n

- - ¼m m1, 2, , note that, e.g., f f=- -m m m, 1 , 1.
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For the case ωp=0, as adopted in Section 4, the expressions
for f f-n P and δfn take on simple forms,
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5.2.2. Inner/Outer Disk Asymmetry

Our numerical results for planet-driven spirals indicate that
multiple spirals robustly form in the inner disk, while only a
single spiral forms in the outer disk (except for small hp, for
which a weak secondary spiral is present). Evidently, this
asymmetry is related to the behavior of the integral in
Equation (39) for small versus large r.

In the outer disk, the integral remains bounded. For q=1,
its value for  ¥r is exactly
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For q<1, the value of the integral is even less than given
above, since the integrand is proportional to -( )r q 6 2 for large r.
Therefore, for q=1 and setting » -( )m h2 p

1, we have

df p
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Consider δfn with n=−1. If this quantity becomes suffi-
ciently small in the outer disk, a secondary spiral may form.
For the fiducial parameters (hp=0.1), df ¥ »- ( ) 3.951 . Since
this is larger than the critical phase spread necessary for
secondary spiral arm formation given in Table 1, no such spiral
forms in the outer disk.

However, Equation (47) also indicates that δf−1 may
become small enough to produce a secondary spiral if hp is
small enough. Indeed, in our numerical calculations, a weak
secondary spiral is found for hp=0.05. But the weak
(logarithmic) dependence on hp in Equation (47) indicates that
δf−1 can become small enough to produce a strong secondary
spiral only if hp is very small.

On the other hand, in the inner disk, for r=rp, one can
show that
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where η is an order unity constant. For q�1, g(r/rp)?1 for
small r, so δfn (Equation (39)) must cross zero (indicating
constructive interference) before diverging as r 0. In other

words, it is always possible to find a sufficiently small r such
that δfn<Δf0 (n�1) for any Δf0, so secondary arm
formation is unavoidable in the inner disk.

5.3. Application of Theory to Our Numerical Results

We now apply the analytical results derived above to
understanding certain features of the linear calculations
presented in Sections 3 and 4. In Figures 14(a) and (b), we
display the theoretical spiral arm phase spreads given by
Equation (39) for two different values of hp. The critical radii
rS20, rS50, and rT20 found in our linear calculations are also
indicated. We see that the values of the relevant δfn at these
critical locations are relatively insensitive to hp (as well as to
the other disk parameters; see Table 1). Therefore,
Equation (38) with properly calibrated fD ˜

0 can be used to
reliably predict the location at which the secondary spiral
forms. The phase spreads estimated from the numerical spiral
arm widths (FWHM for the nth arm, FWHMn), *df = ´mn
FWHMn, which can be compared to the theoretical δfn, are
also shown. The theoretical and numerical spiral arm phase
spreads show qualitative agreement. They both vary similarly
with r, although the exact values differ. This may be due in part
to the ambiguity in quantifying the width of a spiral arm found
in the numerical calculation (e.g., using the FWHM instead of
some other metric). Figures 14(c) and (d) show the theoretical
arm separations (Equation (36)), as well as the arm separations
from our numerical results. The theoretical calculation
accurately predicts the azimuthal separation between the
primary and secondary spirals but only roughly predicts the
separation of the tertiary and primary spirals. This discrepancy
is possibly due to the fact that the tertiary spiral is not
dominated by modes with m≈m*, as assumed in
Equation (36), but rather by modes with mm*.
The theoretical predictions of the critical radii for secondary

spiral formation (for the case of planet-driven spirals) obtained
using Equations (38) and (39) are shown in Figure 9. These
predictions are calibrated using the values of fD ˜

0 found for the
fiducial parameters (i.e., for hp=0.1). That is, the critical
values of δf1 corresponding to different secondary/primary
amplitude ratios given in Table 1 for the fiducial parameters are
taken to be universal values applicable for all parameters.
These predictions based on simple phase arguments give
excellent agreement with the numerical results over a range of
disk parameters.
The equivalent predictions for the case of passive spirals are

shown in Figure 12. These predictions also agree well with the
numerical results. There are, however, some discrepancies for
wide spirals (Figure 12(c)). This may be due to the fact that
wide spirals are dominated by a small number of azimuthal
modes, diminishing the accuracy of the approximation
(Equation (37)) for the spread in fm,n.
Given the success of our analytic arguments in explaining

some key features of our numerical calculations, we can use
them to interpret some features of secondary and higher-order
spiral arms found in this work. The weak dependence of the
characteristics of multiple arms on the surface density slope p
found in both the inhomogeneous (Section 3) and homo-
geneous (Section 4) cases is easily understood in the context of
mode interference. We showed that this process is well
described by the WKB approximation, in which the mode
phases are independent of the Σ profile. Rather, they depend
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only on h(r), which in our parameterization is fully described
by the parameters hp and q.

The weak remaining dependence on p in the planet-driven
case (see Figure 9(c)) is likely due to the shift of the Lindblad
resonances at which the modes are launched. In the
homogeneous case, our choice of ωp=0 effectively places
Lindblad resonances far outside the computation domain
suppressing any sensitivity to p, as stated in Section 4.

We can also explain why, in the homogeneous case,
(azimuthally) narrower patterns of δΣ produce secondary arms
at smaller radii; see Figure 12(c). Narrower perturbations have
their power concentrated in modes of higher m (i.e., they have
larger values of m*≈(2σ)−1) compared to azimuthally wider
perturbations. Equation (44) then predicts that δfn becomes
small (resulting in phase coherence for n=1, 2, and so on)
at lower r/rout as σ is decreased (and m* is increased
correspondingly). Note that g(x)<0 in the inner disk; see
Equation (45). Therefore, narrower perturbations produce high-
order spiral arms at smaller radii than the wider ones do.

6. Discussion

The calculations presented in this work (except for Section 3.4)
are explicitly linear. At the same time, it is well known that
nonlinear effects play an important role in the propagation and
damping of spiral waves, as well as the evolution of the disk (e.g.,
Goodman & Rafikov 2001; Rafikov 2002a, 2016; Arzamasskiy
& Rafikov 2018). A planet-driven spiral wake begins to shock at
a distance of ~ -( )L M M Hsh p th

2 5
p from the planet (in the

local approximation), evolving into a wide “N”-shaped wave
(Goodman & Rafikov 2001). In the process, it deposits its
angular momentum into the disk material, so that the AMF of the

wave is no longer conserved (as it is in linear theory). This
process is modified by the presence of a secondary spiral
(Arzamasskiy & Rafikov 2018). Injection of angular momentum
originally carried by the spiral wave into the disk material drives
the evolution of the disk (Arzamasskiy & Rafikov 2018) and
causes gap opening (Rafikov 2002b).
Our linear calculations are strictly valid only as long as the

appearance of the secondary spiral is not preceded by the
shocking of the primary arm. This condition sets an upper limit
on the allowed planet mass. Indeed, if the secondary spiral
emerges after the wake travels a distance ζHp in the inner disk,
then the condition LshζHp implies that  z-M Mp th

5 2. In
our hp=0.1 calculation, the secondary arm forms at ≈5Hp

interior to the planet, meaning that ζ≈5 and Mp0.02Mth

are needed for our linear calculation to capture the formation of
multiple spirals in quantitative detail. However, at the
qualitative level, our calculation should remain valid at
substantially higher values of Mp (e.g., because nonlinear
evolution has only a marginal effect on the analytical phase
coherence calculation presented in Section 5).
Nonlinear evolution also affects the morphology of the

spirals in the high-Mp regime. Numerical simulations have
shown that the azimuthal separation of the secondary and
primary arms is » 60 for low-mass (Mp=Mth) planets, in
agreement with our prediction from linear theory, but increases
up to ≈180° for massive (Mp?Mth) planets (Dong et al.
2015b; Fung & Dong 2015). This transition is caused by the
steady azimuthal broadening of the spiral wake due to its
nonlinear evolution in the “N-wave” regime (Goodman &
Rafikov 2001; Rafikov 2002a; Zhu et al. 2015). Therefore, the
secondary spirals that we find to form by linear processes

Figure 14. Secondary/tertiary phase spreads (Equation (39); top panels) and positions (Equation (36); bottom panels) predicted by our theoretical phase argument
(solid curves) and estimated using numerical calculations (dotted curves). Two different cases are shown, hp=0.1 (left) and hp=0.05 (right), both with q=p=1.
In the top panels, the dashed vertical lines indicate the radii corresponding to several critical relative amplitudes of the secondary/tertiary spirals. The values of the
theoretical phase spreads at these critical radii, highlighted by the filled points, are insensitive to the disk parameters. Note that the “reflection” feature of the theoretical
δfS in panels (a) and (b) corresponds to a sign change of the quantity inside the absolute value symbol in Equation (39). This feature is not seen in the numerical δfS,
possibly due to the breakdown of the expansion (Equation (37)) when the spread in the mode phases is small, as a result of the discreteness of m.
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should be regarded as just precursors to the fully fledged
secondary spiral arms/shocks (see Section 6 of Arzamasskiy &
Rafikov 2018). In our linear calculations, the tertiary/
quaternary arms are always very weak, so it is unclear how
they are affected by nonlinear effects. However, note that Dong
& Fung (2017) reported the presence of these higher-order
arms in nonlinear simulations, although they found them to be
destroyed by moderate viscosity.

We note that the global treatment, i.e., accounting for the
cylindrical geometry (as opposed to the local, shearing sheet
approximation), is critical for capturing the formation of
multiple spiral arms. We find that the distance from the planet
at which the secondary arm forms (which we have defined as
the point at which its amplitude is 10% of the primary),
measured in terms of Hp, is a decreasing function of hp: the
secondary arm forms at a distance of » H5 p from the planet for
hp=0.1 and ≈7.5H from the planet for hp=0.05. In the local
(shearing sheet/box) approximation, corresponding to the limit

h 0p , in which Hp is the characteristic length scale, this
implies that secondary spirals form at -  ¥∣ ∣r r Hp p . In
other words, higher-order spirals would not be captured in the
shearing sheet approximation. Furthermore, secondary spirals
form almost exclusively in the inner disk, not in the outer disk,
an asymmetry that cannot arise in the shearing sheet
framework.

6.1. Comparison with Other Work

The numerical calculations presented in this paper largely
follow those of Ogilvie & Lubow (2002), although we give a
more detailed analysis of the results. However, Ogilvie &
Lubow (2002) did not report the presence of multiple spirals in
their calculations. We find two main reasons for this. First, they
only solved for the perturbation structure down to a radius of
0.3rp (unlike our calculations, which extend to 0.05rp, allowing
the secondary arm to be fully captured). From our Figure 7, we
see that for our fiducial parameters, the secondary arm is still
quite weak at that radius, with an amplitude about four times
smaller than that of the primary arm. In their Figure 5, the first
hint of a secondary arm becomes visible near the inner disk
edge; however, it went unnoticed in their discussion. Second,
the calculations by Ogilvie & Lubow (2002) were restricted to
the case of a constant disk aspect ratio, i.e., q=1 in our
notation. For flared disks with q<1, the secondary arm
emerges and overtakes the primary in amplitude closer to the
planet (see Figures 8 and 9), making its presence more
apparent. Finally, we note that Ogilvie & Lubow (2002) did
point out that the phases ψm of modes with different m
eventually diverge (logarithmically for the case q= 1) toward
the inner disk so that their constructive interference fails,
resulting in the partial dissolution of the primary arm.
However, they missed the fact that the same process also
results in convergence of ψm to an integer multiple of 2π
(implying the same value of δΣm) at different azimuthal
locations in the disk, giving rise to higher-order spirals (see
Section 5).

Rafikov (2002a) arrived at the one-armed spiral solution
using a method different from that of Ogilvie & Lubow (2002).
In his case, the inability to capture the formation of higher-
order arms is likely caused by a certain assumption used in the
derivation of the linear wake shape, namely, the conservation
of the Riemann invariant along the characteristics that cross
(rather than follow) the wake. Small changes of this invariant at

the wake crossings, neglected in Goodman & Rafikov (2001)
and Rafikov (2002a), could be responsible for the eventual
emergence of the secondary spiral. This conjecture is supported
by the fact that the secondary spiral emerges closer to the planet
in disks with lower hp: the number of wake crossings by
characteristics (per fixed radial interval) grows as hp goes
down, facilitating the breakdown of the one-spiral solution.
Some other ideas for the origin of secondary spirals have

been advanced, in particular, nonlinear effects related to
ultraharmonic resonances with the planet (Fung & Dong 2015).
We do not find these explanations persuasive. First, we
reproduce multiple spirals in the framework of a purely linear
calculation. Second, our calculations of passive propagation of
a wake with w = 0p in Section 4 do not feature any resonances,
yet they do result in secondary spirals.

6.2. Applications

A possible connection between the multiple spirals driven by
a planet and the multiple gaps and rings seen in some
protoplanetary disks was suggested by Dong et al. (2017, 2018)
and Bae et al. (2017). In the picture put forth by these authors, a
low-mass planet in a low-viscosity disk produces multiple
spiral arms, each of which shocks, dissipates, and opens a gap
at some distance from the planet. The location of the secondary
gap, attributed to the dissipation of the secondary spiral, was
given by Dong et al. (2018) as a function of planet mass and
disk thickness. Our linear prediction for the location at which
the secondary spiral forms is exterior to their predicted gap
location for small planet masses ( M M0.2p th). This is
consistent with the scenario in which the secondary spiral first
forms in a linear fashion at some distance from the planet and
then propagates inward, evolving nonlinearly, before shocking
and opening a gap. For larger planet masses, Dong et al. (2018)
predicted a secondary gap at a location too close to the planet
for a secondary spiral to have formed in linear theory. In this
case, nonlinear effects clearly play a role not just in the
dissipation of the spiral but also in its formation.
The multiple spiral features observed in some protoplanetary

disks may be produced by planets (Dong et al. 2015b). The
180° separation of these spirals requires massive planets to
produce, so nonlinear effects cannot be neglected in these
cases. We nonetheless expect the linear mechanism described
in this work to play an important role in providing the
conditions necessary for the formation of these structures
(Arzamasskiy & Rafikov 2018).
However, planets are not the only possibility. As we showed

in Section 4, any spiral arm, regardless of its origin, inevitably
evolves into multiple spirals as it propagates through the
differentially rotating disk (note that the assumption of a
Keplerian profile for Ω(r) is not essential for the arguments
advanced in Section 5). Therefore, any mechanism capable of
producing at least one spiral arm necessarily produces multiple
spiral arms. Possible mechanisms include gravitational instabil-
ity (e.g., Dong et al. 2015a), accretion from an infalling
envelope (Lesur et al. 2015; Hennebelle et al. 2017), shadows/
nonaxisymmetric illumination (Montesinos et al. 2016), and
vortices (Paardekooper et al. 2010). We only require that
density waves with a range of azimuthal mode numbers are
excited and at least somewhat in phase with one another, so
that one or a few well-defined spiral arms (rather than many
flocculent spirals) are produced.

18

The Astrophysical Journal, 875:37 (21pp), 2019 April 10 Miranda & Rafikov



7. Summary

We explored the origin of multiple spiral arms, which are
often observed in protoplanetary disks and found in numerical
simulations of disks with massive perturbers. The two-
dimensional structure of surface density perturbations induced
by a planet (as well as that of a passive spiral) was computed
using a linear theory of density wave excitation and
propagation (Goldreich & Tremaine 1979) in the low planet
mass (low-amplitude) regime.

We find that, in addition to the strong single spiral arm
excited by the planet in agreement with past studies (Ogilvie &
Lubow 2002; Rafikov 2002a), a secondary spiral arm (and
often a tertiary arm, quaternary arm, and so on) robustly forms
in the inner disk in the linear regime. The secondary arm first
appears at about r=(0.4–0.6)rp and, though initially weak,
becomes stronger and narrower toward the center of the disk,
eventually exceeding the strength of the primary arm at ≈0.1rp.
As the primary arm propagates into the inner disk, the AMF it
carries gets steadily transferred to these higher-order spiral
arms. In the outer disk, we find that a secondary spiral arm
typically does not form, except for the coldest disk we
considered, with hp=0.05.

We provide analytical arguments extending the reasoning of
Ogilvie & Lubow (2002) that show that secondary spiral arms
form as a result of the constructive interference among different
azimuthal modes in the inner disk. Our treatment, which
implicitly takes into account the global variation of both the
phases and amplitudes of different linear modes in a self-
consistent manner, thus corroborates the semiquantitative phase
coherence picture previously put forth by Bae & Zhu (2018a)
in the WKB limit. The gravitational potential of the planet does
not play a role in this process. Rather, the planet only seeds the
initial perturbation, which then propagates passively and
spawns higher-order spiral arms. This is confirmed by the
persistent emergence of multiple spirals in our linear calcula-
tions of the passive inward propagation of an imposed spiral
wake, free from the influence of an external potential
(following the setup of Arzamasskiy & Rafikov 2018).

Our results clearly demonstrate that the formation of
secondary spirals is an intrinsically linear process that serves
as a precursor for subsequent nonlinear evolution resulting in a
formation of multiple shocks in the disk. These calculations
should help us better understand the planet-driven evolution
of protoplanetary disks (Goodman & Rafikov 2001;
Rafikov 2002a), including the formation of multiple gaps in
such disks (Bae et al. 2017; Dong et al. 2017, 2018). We use
them to understand the details of the global distribution of the
torque exerted by an embedded planet on a disk in R. Miranda
& R. Rafikov (2019, in preparation).
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of this paper and a number of useful suggestions.

Appendix
Numerical Procedure

A.1. Mode Solutions

Here we give a detailed description of the numerical method
used for producing the solutions of Equation (6). We compute

the values of the Laplace coefficients, as well as their
derivatives required for Equation (6) (by first differentiating
the integrand of Equation (13) with respect to α) using
numerical quadrature. We remove the corotation pole (w =˜ 0)
in Equation (6) by replacing w̃ with w d+˜ i , where δ is a small
positive real constant (KP93). We choose δ=10−6.
The solution method closely follows the technique described

in detail by KP93, with several small differences. We first
produce two linearly independent solutions, d ( )hH

1 and d ( )hH
2 , of

the homogeneous version of Equation (6) by integrating
outward from corotation starting from arbitrary initial values,
as well as an inhomogeneous solution, δhIH. The desired
solution, which satisfies any pair of specified boundary
conditions at the boundaries rin and rout, can be expressed as

d d d d= + + ( )( ) ( )h a h a h h , 49m 1 H
1

2 H
2

IH

where a1 and a2 are constants determined by the specific form
of the boundary conditions. We choose outgoing wave
boundary conditions with

d d d d¢ = ¢ =( ) ( ) ( ) ( ) ( )h r C h r h r C h r, , 50m m m min in in out out out

where

= +
S

⎜ ⎟⎛
⎝

⎞
⎠ ( )C ik

d

dr

D

r k

1

2
ln , 51S

representing an outgoing wave in the WKB limit (e.g., Tsang &
Lai 2008). Here = -( )k D cS

1 2
s is the radial wavenumber.

Note that the second term in Equation (51), describing the slow
change in amplitude of the wave, was not included by KP93 at
this step (although they took it into account in an approximate
fashion at a later step). Now that we have specified the
boundary conditions, we have a system of equations that can be
solved for a1 and a2:

d d

d d

d d

-

+ -

= -

⎡
⎣⎢

⎤
⎦⎥

⎡
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⎤
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( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

d

dr
h r C h r a

d

dr
h r C h r a

C h r
d

dr
h r , 52
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out 1
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2

out out H
2

out 2

out IH out IH out

As in KP93, once we have found the values of a1 and a2 and
constructed a solution satisfying the boundary conditions, we
generate a new inhomogeneous solution δhIH using the
“correct” values of δh and δh′ at corotation (i.e., the ones
found from the previously constructed solution). The system of
Equations (52) and (53) is then resolved for new values of a1
and a2. This process ensures that the final solution is robust
with respect to the specific choice of (arbitrary) homogeneous
solutions used in its construction (Equation (49)), because it
tends to reduce the absolute values of a1 and a2 so that the
contributions to the correct solution from the homogeneous
solutions are small.
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As a final refinement step, also described in KP93, we
minimize the amplitude of the oscillations of the “phase
gradient error” near the boundaries. The phase gradient error,
defined as

 d= ¢ -( ) ( )h kArg , 54

serves as a diagnostic of how close the solution is to an
outgoing WKB wave. The phase gradient error of the initial
solution exhibits oscillations, representing contamination by an
incoming wave, near the boundaries. We seek to minimize the
amplitude of these oscillations by slightly adjusting the
constants Cin and Cout (so that they are no longer given exactly
by Equation (51)) characterizing the boundary conditions. In
principle, there are a variety of ways to achieve this (note that
the exact procedure used by KP93 is not specified). We choose
to minimize the peak-to-peak amplitudes of the phase gradient
error ò within one local scale height of each boundary:

 = - < < +[ ( ) ( )] ( )( )X max min , 55r r r H rin in in in

 = - - < <[ ( ) ( )] ( )( )X max min . 56r H r r rout out out out

Note that we also tried minimizing the derivative of the phase
gradient error ò′ at rin and rout but found that this was not as
effective at getting rid of the oscillations. We numerically
compute the Jacobian describing the derivatives of =X
( )X X,in out with respect to = ( )C C C,in out and use its inverse
to perform one step of the secant method to find the root of X
(C). This greatly reduces the amplitude of the oscillations of the
phase gradient error; see Figure 15 for an example of this
process. In practice, this refinement only requires changing the
values of Cin and Cout by a very small amount (1%). Also
note that this refinement produces only very imperceptible
changes in the form of δh(r) and δh′(r) but is potentially
important for ensuring that different modes have the correct
phase when the interference of many modes is considered.
As noted in Section 2, we do not include the indirect

potential term d GM r rm,1 p p
2 in our calculations. This term is

proportional to r and so becomes large for r?rp, in contrast
to the direct terms (Equation (12)), which become small for
r rp (note that they both become small for r=rp).

Therefore, for ¹m 1, Equation (6) becomes effectively
homogeneous for r?rp. Our solution method exploits this
fact by using knowledge of the asymptotic behavior of the
homogeneous equation to set the outer disk boundary condition
(and similarly for the inner boundary condition). However, for
m=1, when the indirect term is included, its anomalous
behavior at large r calls into question the validity of setting
the outer boundary condition in this way. We nonetheless
carried out several tests in which the indirect potential was
included and the outer boundary condition was set under
the homogeneous assumption. We verified that including
the indirect potential in this way only slightly modifies the
profile of the density wake in the outer disk and does not
otherwise affect our main results.

A.2. Mode Synthesis

The two-dimensional surface density perturbation δΣ(r, f) is
synthesized from the mode solutions δhm using Equations (9)
and (14). In order to produce an accurate solution, a sufficient
number of modes (up to some mmax) must be used. The
solution must be converged with respect to mmax; i.e., the
perturbation structure should not change as more modes are
added. The value mmax required for convergence of the two-
dimensional surface density is several times larger than the
cutoff parameter » -m hcut p

1. Figure 16 illustrates this point by
revealing spurious features in the distribution of d fS( )r, for

Figure 15. Fractional error in the phase gradient before and after refinement for
the m=10 mode, with the fiducial parameters hp=0.1, q=1, and p=1.
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low = - -( )m h1 2max p
1 (panels (a) and (b)). Therefore, in all

of our calculations, we choose »m m8max cut, for which
Figure 16(d) demonstrates convergence.
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