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Abstract: A complex-valued transmission matrix describing a scattering medium can be
constructed from a sequence of many interferometric measurements. A major challenge in such
experiments is to correct for rapid phase drift of the optical system during the data acquisition
process, especially when the phase drifts significantly between consecutive measurements.
Therefore, a new method is presented whereby the exact phase drift between two measurements
is characterised and corrected for using a single additional measurement. This approach removes
the need to continuously track the phase and significantly relaxes the phase stability requirements
of the interferometer, allowing transmission matrices to be constructed in the presence of fast
and erratic phase drift.

© 2022 Optical Society of America

1. Introduction

The interaction of light with a scattering medium such as white paint [1–4] or biological
tissue [5–7] severely distorts the incident wavefront. Similarly, light is distorted when travelling
through a multimode waveguide [8–10]. Wavefront shaping techniques allow this distortion
to be characterized and corrected for, permitting images to be acquired from the far side of
these scattering media. Recent advances in wavefront shaping are now enabling new imaging
techniques, such as hair-thin endoscopes [9,11,12] and microscopes capable of imaging at depths
beyond the scattering mean free path [3, 7, 13].
The distortion imposed by a scattering medium is linear, and can therefore be described by

a transmission matrix [14, 15]. The transmission matrix is usually constructed by coupling a
sequence of input fields through the scattering medium and observing the resultant output fields.
As the transmission matrix is complex-valued, the output field is typically measured using an
interferometer.

In interferometry, the relative phase offset between the object beam and the reference beam can
drift in time due to airflow, wavelength drift, temperature variations and mechanical vibrations.
Several approaches have been taken in different experimental contexts to correct for this phase
drift. For example, multiple reference channels can be used to isolate and correct the phase
drift in an optical sensor based on a Young’s interferometer [16]. In Mach-Zehnder-based
refractometers, a secondary reference beam that travels the same path as the object beam can be
used to correct drift [17]. Phase drift in a holographic recording system was monitored using
homodyne detection techniques and corrected by a piezo-controlled mirror [18]. Roztocki et
al. use two signals in quadrature to detect any phase shifts and dynamically correct for these
using a fiber stretcher [19]. Finally, it is also possible to mechanically isolate the system from its
environment to minimize any phase drift. This approach is taken in the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [20].
Many thousands of interferometer measurements are typically required when constructing a

transmission matrix. Therefore, the relative phase offset between the interferometer reference



beamand the interferometer object beammust be kept stable over an extended period. Alternatively,
periodic reference measurements can be used to correct the phase drift at intermediary intervals.
These requirements can become onerous in the presence of rapid phase drift. To overcome this
limitation, we present a new off-axis holography approach that guarantees that any phase drift
between the two interferometer arms is compensated for. Uniquely, even very rapid and erratic
phase drift can be corrected using the proposed technique.

2. Background

Considering only the forward propagation direction, light propagation in a scattering medium can
be described by a transmission matrix T that relates the input fields �8= to the output fields �>DC ,

�>DC = T�8=. (1)

To construct the transmission matrix, a sequence of input fields is projected onto the scattering
sample, and the resulting output fields are measured using an interferometer. Experimentally,
this involves mixing the object beam, which has travelled through the scattering medium, with
a reference beam. An interference pattern is formed, the intensity of which is captured using
a camera. Two approaches are commonly taken to determine the complex-valued field of the
object beam, namely phase stepping holography and off-axis holography.

2.1. Phase Stepping Holography

In phase stepping holography [1, 2, 10], the phase of the reference beam is stepped from 0 to
2c, and a sine curve fitted to the measured intensity values to infer the phase of the object beam.
For example, if the reference beam ' is stepped through four values 0, c/2, c, 3c/2; and the
corresponding intensities �0, � c/2, � c and �3c/2 are measured, then the complex-valued object
beam $ can be calculated from

$ =
�0 − � c

4
+ �

3c/2 − � c/2
4

8. (2)

A limitation of this technique is that multiple camera acquisitions are required to obtain the
phase variation across the object beam. This requires the phase drift of the system to be small
over multiple camera exposures.

2.2. Off-Axis Holography

In off-axis holography [9, 21, 22], a slight angle is introduced between the object beam and
reference beams. We consider the following mathematical expression for the intensity recorded
by the camera �, which can be expanded out:

� = |$ + ' |2 = |$ |2 + |' |2 +$'∗ + '$∗. (3)

In the Fourier plane, the DC components |$ |2 and |' |2 remain at the origin, but the tilted
reference beam causes the first-order components $'∗ and '$∗ to be spatially offset from the
origin. Taking a Fourier transform of the interferogram, cropping out the desired first-order
component $'∗, translating this to the center, and taking the inverse Fourier transform allows
the object beam to be recovered (Fig. 1). This approach relies on the reference beam having a
uniform magnitude and flat phase profile, obtained by expanding the Gaussian beam emitted by a
single-mode fiber. While computationally more demanding, this technique requires only a single
camera acquisition, making it less sensitive to fast phase drift.

In the case of transmission through a multimode fiber (MMF) discussed here, the fiber’s limited
numerical aperture restricts the spatial frequency content of the light transmitted through the
MMF. A smaller Fourier space domain can hence be used, and a more concise representation
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Fig. 1. Processing steps for off-axis holography. The captured image (a) is Fourier-
transformed (b). The feature of interest, indicated by the $'∗ square, is extracted and
moved to the center of the field before an inverse Fourier transform is taken, giving
the final complex field (c). The image used is that of an !%2,3 mode, but aberrations
have not been compensated for. Larger amplitudes in Fig (b) have been clipped so that
features such as the +1 and −1 orders can be seen.

obtained. This provides an alternative to downsampling [11] without leading to information loss,
and gives transmission matrices of a more manageable size.

2.3. Common Path Reference

Phase stability between the object and reference beam can usually be achieved by ensuring that
the reference beam and the object beam follow a common path, such that both are affected in the
same manner by any physical effects [23–26]. However, when transmitted through a scattering
system, the reference beam will form a non-uniform speckle pattern unsuitable for off-axis
holography. Furthermore, it is not possible to characterize the object beam using either off-axis
holography or phase stepping holography in regions where the reference beam has zero intensity.

2.4. Separate Path Reference

Alternatively, the reference beam can be delivered via a physically separate path [22, 27, 28].
While this makes it easier to create a reference field that is both large enough and uniform enough
to characterize the entire object beam, the separate paths make it more challenging to maintain
phase stability between the object beam and the reference beam. As a result, periodic reference
measurements must be taken to account for any phase drift. These measurements must be taken
frequently enough such that the phase drift can be reliably interpolated to any intermediary time
intervals.

3. Experimental Setup

3.1. Overview of Experimental Setup

The proposed phase correction method is demonstrated using the experimental setup of Fig. 2. A
collimated Gaussian beam from a single-mode fiber (SMF) is divided into a reference beam and
an object beam. A second SMF delivers the reference beam to the interferometer at the output
side. The object beam is modulated by a spatial light modulator (SLM) and is projected onto
the input facet of the fiber under test, a 2m long , 50`m core diameter step-index MMF with a
numerical aperture of 0.22. The spatial light modulator (SLM) used is a Jasper JD8714 nematic
liquid crystal on silicon device capable of 256-level phase modulation. It has a resolution of 4k ×
2k with a pixel pitch of 3.74`m. The SLM display is subdivided into an array of macro pixels for



these measurements. The sequence of lenses at the proximal side of the fiber is positioned such
that the light field projected onto the fiber facet is a scaled Fourier transform of the light field in
the SLM plane. This configuration allows the SLM to be tilted such that the unmodulated zeroth
order is not incident on the fiber core. A phase ramp is applied to the hologram such that the
modulated first order is directed to the fiber core. It is helpful to picture the modulation range of
a single macro pixel as a circle on an Argand diagram in addition to the origin point.
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Fig. 2. Schematic of experimental setup. BS = Beam splitter; PBS = Polarizing beam
splitter; SLM = Spatial light modulator; SMF = Single mode fiber; MMF = Multimode
fiber; CAM = Camera; POL = Polarizer; $ = Object Beam; ' = Reference beam.
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Fig. 3. The phase drift between the two arms of the interferometer is observed to be
quickly varying and erratic.

The components at the distal side of the MMF form an interferometer. The field exiting the
multimode fiber is magnified and imaged onto a camera to form the object beam. The reference
beam exits the SMF and is collimated and mixed with the object beam in BS2. Both beams pass
through a PBS to ensure a single polarization is incident on the camera. The reference beam is
tilted at a slight angle relative to the object beam such that fringes are formed on the camera.

The Jasper JD8714 SLM uses pulse-width modulation to achieve 256-level phase modulation,



leading to some flicker of the projected image. This is resolved by triggering the camera off the
SLM clock signal, ensuring that each image is acquired at the same point in the SLM clock cycle.

3.2. Phase Stability of Experimental Setup

The phase stability of the experimental system is evaluated by displaying a single hologram on
the SLM and repeatedly measuring the phase observed at the interferometer. The measurement
results are shown in Fig. 3, where it is seen that the phase drift is erratic, varying by up to 1
radian per second. The reasons for these fluctuations are that the experimental system was not
covered, leading to airflow over the system, unisolated floor vibrations, and the fact that the object
and reference arms were not of precisely equal length.

Such rapid phase drift velocities are very difficult to track by periodic phase-stepping reference
measurements, as they would require a very high sampling frequency for a linear or quadratic
spline interpolation of reference measurements to give a suitable approximation to intermediary
time instants.

4. Phase Drift Correction Method

Here we demonstrate a new approach for phase-drift correction in off-axis holography. This
technique is used to acquire the complex-valued fields at the output of an optical waveguide, and
build the transmission matrix that describes this scattering system. To achieve this, we combine
elements of a common path and a separate path reference setup. The benefits of both approaches
are combined in that the reference beam is spatially uniform, while the phase stability of the
measurement is preserved. As a result, off-axis interferometry becomes possible without the
requirement of a slowly varying phase drift.

First, a hologramH1 is displayed on the SLM and a light field �1 = �>1 9,14
8q1 is observed at

the fiber output, where 48q1 describes an unknown phase drift (Fig. 4a). A second hologramH2
is then displayed, and a different light field �2 = �>1 9,24

8q2 is observed, where 48q2 describes
the phase drift at the instant where the second light field was recorded (Fig. 4b). 48q1 may or
may not be different to 48q2 , as the phase stability of the system may have drifted over time. The
zero-phase datum is arbitrary, and so q1 may be set to zero, but it is not possible to eliminate both
phase drift terms in this manner. The challenge is to find a way of also eliminating the unknown
phase drift term 48q2 applied to the second measurement such that �>1 9,1 and �>1 9,2 can both be
known.

It is proposed that an additional measurement be taken. A hologramH1 + H2 is displayed on
the SLM, and a light field �3 = (�>1 9,1 + �>1 9,2)48q3 is observed at the fiber output. An overall
unknown phase drift 48q3 has again been incorporated, but the relative phase between �>1 9,1 and
�>1 9,2 is zero (Fig. 4c).
The recorded light fields �1 and �2 can be computationally superimposed with a phase

correction 48q2>AA applied to �2, such that �20;2 = �1 + �24
8q2>AA = �>1 9,1 + �>1 9,248q248q2>AA

is calculated. When the phase correction term 48q2>AA corrects for the phase drift 48q2 then
48q248q2>AA = 1 and we denote this specific phase correction term 48q

∗
2>AA . In this case the

computational superposition should match the measured field �3 to within a global phase shift
48q3 . Applying this phase correction 48q∗2>AA to �2 allows �>1 9,2 to be obtained (Fig. 4d).
Fig. 4 illustrates the phase correction process for a single pixel measurement, in which case it

seems possible to solve for q∗2>AA using a geometric approach, but an ambiguity exists as two
solutions are possible. A geometric approach is no longer available if an output image with more
than one pixel is considered, but the observed ambiguity is lifted. Instead, the overlap integral
can be used as a metric to determine what phase correction q2>AA is appropriate:
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(a) �1 is captured when H1 is displayed on
the SLM. This measurement defines the phase
datum and consequently the phase of �1 can be
considered known.

H2 Displayed

Re

Im

Eobj,2

E2 φ2

(b) �2 is captured when H2 is displayed on the
SLM.An unknown phase drift 48q2 has occurred,
and so the desired �>1 9,2 (blue dotted line) is a
rotation of �2, but it is not known which rotation
(blue circle).
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(c) �3 is captured when H1 + H2 is displayed
on the SLM. An unknown phase drift 48q3 has
occurred, and so �>1 9,1 + �>1 9,2 (dotted line)
is a rotation of �3, but it is not known which
rotation (green circle).
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(d) �1 and �2 can be computationally superim-
posed with different phase corrections applied to
�2 (blue circle). The phase correction that cor-
rectly yields �>1 9,2 gives a superposition that
coincides with a rotation of �3 (green circle).

Fig. 4. Proposed phase correction method applied to measurements with unknown
phase drift. (a), (b) and (c) show the three captured measurements. (d) shows that
an appropriate superposition of �1 and a phase drift-corrected �2 agrees with the
measurement of �3 to within a global phase rotation around the origin.
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Fig. 5. Varying the phase drift correction and observing the overlap integral allows the
correct phase drift correction q∗2>AA to be found (dotted line).

���∫ ∞∞ (�1 + �24
8q2>AA )�∗3

���2∫ ∞
∞ |�1 + �2 |2

∫ ∞
∞ |�3 |2

. (4)

This metric has been chosen as it is agnostic to the global phase shift 48q3 , giving a simpler
situation where only a single parameter is to be optimized. The overlap integral metric will
take on a value of 1 when q2>AA = q∗2>AA and it perfectly corrects for the phase drift between
measurement measurements �1 and �2. q∗2>AA can then be applied to �2 to obtain two ‘in-phase’
measurements. Eq. 4 is non-linear, but is well-behaved in that it does not have any discontinuities,
local minima or local maxima (Fig. 5). As such, a Golden Section search [29] has been used to
maximize this function, although other more elaborate approaches could be implemented.

It has been shown here that the single additional measurement of the superimposed holograms
allows the relative phase offset between the two individual holograms to be characterized. Notably,
both �1 and �2 are now known, and can be used as part of the transmission matrix calculation.
A sequence of = phase-corrected measurements is built up using a hologramH2,= that changes at
each iteration and a hologramH1 that is kept the same for each iteration. In this manner, each
phase-corrected output �2,= has a correct phase relative to �1 and hence a correct phase relative
to each other phase-corrected output �2,=.
The output �1 only needs to be measured a single time. Each phase-corrected �2 is then

characterized using two measurements - one with H1 on and one with H1 off. As such, =
phase-corrected input-output relationships can be characterized using 2= measurements, or 2=− 1
measurements if �1 forms one of the input-output relationships used to calculate the transmission
matrix. By comparison, standard off-axis holography would require only = measurements,
whereas phase-stepping requires 4= measurements.

It is unnecessary to refresh the output �1 corresponding to the hologramH1. Any change in �1
likely indicates that the measurement system or scattering medium has been perturbed and that the
measurements taken are no longer valid. Here, every twentieth measurement recharacterized �1,
and overlap integrals with the first �1 measurement of more than 0.98 are consistently obtained,
indicating that the system is not being altered other than by phase drift.
For the presented approach to work, it must be possible to displayH1 andH2 as well as the

superposition ofH1 + H2 on the phase-only SLM. This can be achieved by spatially separating



H1 andH2 on the SLM. In this case, the inner region of the SLM is used forH2, the and outer
region is used forH1 (top row of in Fig. 6). In some cases an alternative approach can be used.
For example, if a Hadamard basis were to be used where pixel values are allocated based on the
rows of a Hadamard matrix, the hologram pixel values only take on values of +1 or -1. Pixels of
the superimposedH1 + H2 hologram can then only take on values of +2, 0 and -2. Rescaling
these, pixel values of +1, 0 and -1 are obtained, which can be displayed on the SLM (bottom row
of Fig. 6). Hence, using a Hadamard basis would allow this phase correction approach to be
used without sacrificing large parts of the SLM to display a second hologram. Practically, this
means that larger holograms can be used, allowing higher spatial frequencies to be projected
onto the fiber facet. Other bases that superimpose H1 and H2 without forfeiting space on the
SLM could also be envisaged, for example the matrix of randomly allocated +1, 0 and -1 pixels
used by Matthès et al. [30] could equally be used.

(a) Random H1 (b) Random H2 (c) Random H1 + H2

(d) Hadamard H1 (e) Hadamard H2 (f) Hadamard H1 + H2

Fig. 6. A selection of holograms displayed on the SLM

5. Results

A 800 × 800 region of the SLM is subdivided into 20 × 20 macropixels to constitute the input
plane. A region of 448 × 448 camera pixels is acquired and downsampled in the Fourier domain
to yield an output plane of 60 × 60 values. A sequence of 1000 random patterns has been used to
characterize a 400 × 3600 transmission matrix describing propagation between the SLM input
plane and the distal fiber facet output plane. Random input patterns form H2 and change at
each iteration. H1 is formed by the outer 1250 × 1250 region of the SLM, effectively forming a
boundary aroundH1 as illustrated in the top row of Fig. 6.
The acquired transmission matrix is used to reconstruct images displayed on the SLM from

the complex-valued speckle patterns recorded at the distal end of the fiber (Fig. 7). Poor
agreement is observed between the displayed images and the reconstructed images when no phase



correction is employed, as the measurement has been perturbed by the substantial phase drift of
the experimental system (Fig. 3). Excellent agreement is observed when the proposed phase
correction algorithm is used, indicating that this approach corrects for any experimental phase
drift and that the transmission matrix is correctly acquired. Imaging error has been quantified
using a phase-error metric Errphase, comparing the displayed pattern �displayed with the estimated
pattern �estimated,

Errphase =
∑ |∠�estimated − ∠�displayed |

#
. (5)

(a) Spade Target (b) Club Target (c) Diamond Target (d) Heart Target

(e) No Correction -
Errphase = 1.50 rad.

(f) No Correction -
Errphase = 1.48 rad.

(g) No Correction -
Errphase = 1.44 rad.

(h) No Correction -
Errphase = 1.46 rad.

(i) Corrected -
Errphase = 0.20 rad.

(j) Corrected -
Errphase = 0.19 rad.

(k) Corrected -
Errphase = 0.21 rad.

(l) Corrected -
Errphase = 0.22 rad.

0 :/2 :

Fig. 7. The top row shows the phase pattern displayed on the SLM. Without phase
drift correction the transmission matrix is incorrectly acquired and the images cannot
be faithfully reconstructed (middle row). The proposed phase drift correction algo-
rithm allows the transmission matrix to be correctly acquired, and the images to be
reconstructed (bottom row).

6. Conclusions

We have presented a method for phase correction in off-axis holography experiments. The
proposed technique works even if the phase drift is exceptionally fast, as long as the phase



does not drift significantly within a single camera exposure. Our method allows the stability
requirements of the interferometer setups to be relaxed and more challenging measurements to
be performed. While we have demonstrated proof of principle using a multimode fibre, other
scattering media such as titania or biological tissue could equally be considered. This approach is
hence more widely applicable, and will be pertinent to the development of hair-thin endoscopes
and microscopes capable of imaging deep into scattering tissue.
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