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Abstract

Encoding and Decoding of Pain Relief in the Human Brain.

Suyi Zhang

The studies in this thesis explored how pain and its relief are represented in the human brain.
Pain and relief are important survival signals that motivate escape from danger and search for
safety, however, they are often evaluated by subjective descriptions only. Studying how humans
learn and adapt to pain and relief allows objective investigation of the information processing
and neural circuitry underlying these internal experiences.

My research set out to use computational learning models to provide mechanistic expla-
nations for the behavioural and functional neuroimaging data collected in pain/relief learning
experiments with independent groups of healthy human participants.

With a Pavlovian acute pain conditioning task in Experiment 1, I found that ‘associability’
(a form of uncertainty signal) had a crucial role in controlling the learning rates of different
conditioned responses, and can be used to anatomically dissociate underlying neural systems.

Experiment 2 focused on relief learning of terminating a tonic pain stimulus, in which the
priority for relief-seeking is in conflict with the general suppression of cognition and attention.
I showed that associability during active learning not only controls the relief learning rate, but
also correlates with endogenously modulated (reduced) ongoing pain.

This finding was confirmed in Experiment 3 using an independent active relief learning
paradigm in a complex dynamic environment. Critically, both experiments showed that associa-
bility was correlated with responses in the pregenual anterior cingulate cortex (pgACC), a brain
region previously implicated in aspects of endogenous pain control related to attention and
controllability. This provided a potential computational account of an information-sensitive
endogenous analgesic mechanism.

In Experiment 4, I explored the implications of endogenous controllability for technology-
based pain therapeutics. I designed an adaptive closed-loop system that learned to control pain



iv

stimulation using decoded real-time pain representations from the brain. Subjects were shown
to actively enhance the discriminability of pain only in the pgACC, and uncertainty during
learning again correlated with endogenously modulated pain and were associated with pgACC
responses.

Together, these studies (i) show the importance of uncertainty in controlling learning during
both acute and tonic pain, (ii) describe how uncertainty also flexibly modulates pain to maximise
the impact of learning, (iii) illustrate a central role for the pgACC in this process, and (iv) reveal
the implications for future technology-based therapeutic systems.



Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consideration
for any other degree or qualification in this, or any other university. This dissertation is my own
work and contains nothing which is the outcome of work done in collaboration with others,
except as specified in the text and Acknowledgements. This dissertation contains fewer than
65,000 words including appendices, bibliography, footnotes, tables and equations and has fewer
than 150 figures.

All neuroimaging experiments were performed by myself, with contributions and assistance
from collaborators and colleagues, at the Center for Information and Neural Networks, Japan,
and the Advanced Telecommunications Research Institute, Japan.

Suyi Zhang
December 2018





Acknowledgements

I would like to thank my supervisor Dr Ben Seymour. The work presented here would not exist
without his invaluable support and guidance. I would also like to express my gratitude to all
my colleagues and collaborators in Cambridge and Japan, especially the imaging teams at the
Center for Information and Neural Networks and the Advanced Telecommunications Research
Institute for their assistance in performing the studies. Thank you.

Financial support was generously provided by the WD Armstrong Fund and the Cambridge
Trust.





Table of contents

List of publications xi

List of figures xiii

List of tables xv

Nomenclature xvii

1 Introduction 1
1.1 Pain, relief, and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Learning through reinforcement . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The neurobiological basis of pain/relief motivation . . . . . . . . . . . . . . 14
1.4 Clinical implications and therapeutic potentials . . . . . . . . . . . . . . . . 22
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Methods 25
2.1 Functional magnetic resonance imaging (fMRI) . . . . . . . . . . . . . . . . 26
2.2 Physiological and behavioural measurements . . . . . . . . . . . . . . . . . 31
2.3 Pain stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Computational modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Experiment 1: Dissociable learning processes underlie pain conditioning 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



x Table of contents

4 Experiment 2: Comparing active and passive relief learning 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Experiment 3: Active relief learning in a dynamic environment 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Experiment 4: Endogenous controllability of brain-machine interfaces for pain 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Discussion 135
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

References 149



List of publications

Research articles

• Zhang S, Mano H, Ganesh G, Robbins T, and Seymour B. Dissociable Learning Processes
Underlie Human Pain Conditioning. Current Biology 26.1 (2016), 52-58.
(Experiment 1)

• Zhang S, Mano H, Lee M, Yoshida W, Robbins T, Kawato M, and Seymour B. The
Control of Tonic Pain by Active Relief Learning. eLife 7 (2018), e31949.
(Experiment 2 and 3)

• Zhang S, Mano H, Yoshida W, Yanagisawa T, Shibata K, Kawato M, and Seymour
B. Endogenous Controllability of Brain-Machine Interfaces for Pain. bioRxiv (2018),
369736.
(Experiment 4)

Review article

• Zhang S and Seymour B. Technology for Chronic Pain. Current Biology 24.18 (2014),
R930-R935.

Collaboration

• Mano H, Yoshida W, Shibata K, Zhang S, Koltzenburg M, Kawato M, and Seymour
B. Thermosensory Perceptual Learning Is Associated with Structural Brain Changes in
Parietal-Opercular (SII) Cortex. Journal of Neuroscience 37.39 (2017), 9380-9388.





List of figures

1.1 Introduction: Motivation and affective valence. . . . . . . . . . . . . . . . . 4
1.2 Introduction: The neural pathways of pain and pain relief. . . . . . . . . . . . 20

2.1 Methods summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Experiment 1: Task paradigm and example trial. . . . . . . . . . . . . . . . . 41
3.2 Experiment 1: Behavioural results. . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Experiment 1: Neuroimaging results. . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Experiment 1 Supplementary: Recording and stimulating apparatus placement. 55
3.5 Experiment 1 Supplementary: Heart rate, early/late trial SCRs, ROI betas. . . 57

4.1 Experiment 2: Task paradigm, contingency, and tonic pain/relief stimulation. 62
4.2 Experiment 2: Behavioural results. . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Experiment 2: Neuroimaging results. . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Experiment 2 Supplementary: Skin conductance raw data. . . . . . . . . . . 84
4.5 Experiment 2 Supplementary: Model protected exceedance probability. . . . 85

5.1 Experiment 3: Task paradigm, unstable relief probability traces. . . . . . . . 90
5.2 Experiment 3: Behavioural results. . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Experiment 3: Neuroimaging results. . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Experiment 3 Supplementary: Skin conductance raw data. . . . . . . . . . . 106
5.5 Experiment 3 Supplementary: Model protected exceedance probability. . . . 107
5.6 Experiment 3 Supplementary: Overlaying relief learning clusters. . . . . . . 108

6.1 Experiment 4: Task paradigm, rated trial example, and insula ROI. . . . . . . 112
6.2 Experiment 4: Behavioural results. . . . . . . . . . . . . . . . . . . . . . . . 123
6.3 Experiment 4: Whole brain comparison between days results. . . . . . . . . . 124
6.4 Experiment 4: Decoder comparison and searchlight analysis results. . . . . . 125
6.5 Experiment 4: Switch trials differences. . . . . . . . . . . . . . . . . . . . . 127
6.6 Experiment 4: Frequency learning evidence. . . . . . . . . . . . . . . . . . . 129





List of tables

3.1 Experiment 1: Model comparison. . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Experiment 1: Neuroimaging ROI analysis. . . . . . . . . . . . . . . . . . . 54

4.1 Experiment 2: Rating details. . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Experiment 2: Model fitting evidence and winning models. . . . . . . . . . . 81
4.3 Experiment 2: Model fitting results. . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Experiment 2: Neuroimaging ROI analysis. . . . . . . . . . . . . . . . . . . 83

5.1 Experiment 3: Rating details. . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Experiment 3: Model fitting evidence and winning models. . . . . . . . . . . 103
5.3 Experiment 3: Model fitting results. . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Experiment 3: Neuroimaging ROI analysis. . . . . . . . . . . . . . . . . . . 105

6.1 Experiment 4: Decoder testing performance. . . . . . . . . . . . . . . . . . . 121
6.2 Experiment 4: Neuroimaging ROI analysis. . . . . . . . . . . . . . . . . . . 134





Nomenclature

Roman Symbols
A Action
H Entropy
Q Value (action / state-action)
R Reinforcement / Outcome
S State
T Time (trial) or State transition function
V Value (state)
Greek Symbols
α Associability / Learning rate
δ Prediction error
ε Explore probability (ε-greedy rule)
γ Discount factor
π Policy
τ Temperature (softmax rule)
Acronyms / Abbreviations
A-O Action-Outcome
AAL Automated anatomical labelling (fMRI atlas)
ACC Anterior cingulate cortex
BIC Bayesian Information Criterion
BLA Basolateral component of amygdala
BMI Brain-machine interface
BMS Bayesian model selection
BOLD Blood oxygenation level dependent
CeA Central nucleus of amygdala
CHEPS Contact heat-evoked potential stimulator
CR Conditional response
CS Conditional stimulus



xviii Nomenclature

DBS Deep brain stimulation
DLPFC Dorsolateral prefrontal cortex
EMG Electromyography
EPI Echo-planar imaging
fMRI Functional magnetic resonance imaging
FWER Family-wise error rate
GLM General linear model
HMM Hidden Markov model
HRF Haemodynamic response function
ITI Inter-trial interval
MDP Markov decision processes
MLE Maximum likelihood estimation
MNI Montreal Institute of Neurology space (fMRI)
MPRAGE Magnetisation prepared rapid acquisition gradient echo
MVPA Multivariate pattern analysis
NAc Nucleus accumbens
OFC Orbitofrontal cortex
PAG Periaqueductal grey
PB Parabrachial area
PFC Prefrontal cortex
pgACC Pregenual anterior cingulate cortex
PH Pearce-Hall rule
RL Reinforcement learning
ROI Region of interest
rtfMRI Real-time functional magnetic resonance imaging
RMV Rostroventral medulla
RW Rescorla-Wagner rule
S-A-O Stimulus-Action-Outcome
S-R Stimulus-Response
SCR Skin conductance response
SEM Standard error of the mean
SII Secondary somatosensory cortex
SI Primary somatosensory cortex
SPM Statistical parametric mapping
STD Standard deviation
SUIT Spatially unbiased infratentorial template (fMRI atlas)



Nomenclature xix

SVC Small volume correction
TD Temporal difference learning
TE Echo time (fMRI)
TMS Transcranial magnetic stimulation
TR Repitition time (fMRI)
UR Unconditional response
US Unconditional stimulus
VAS Visual analogue scale
VBA Variational Bayesian analysis
VLPFC Ventrolateral prefrontal cortex
VMPFC Ventromedial prefrontal cortex
VTA Ventral tegmental area





Chapter 1

Introduction

Pain and pain relief are vital for survival. The sensory component of pain signals the presence
of danger, while its alleviation brings relief, which is associated with safety. To act as effective
survival aids, pain and relief need additional components to engage responses. The presence
of pain as a negative event is inherently aversive, as compared to the preferred state of relief
where pain is absent. The information conveyed by these sensations motivate the behaviour of
escaping danger and seeking safety respectively. Together, these distinct aspects of pain and
relief serve to maximise the chance of survival.

In this thesis, pain and its relief are studied from a motivational perspective. Specifically,
they are explored in the context of learning: how behaviour and perception are modulated
as the association between environmental signals and pain/relief outcomes changes. The
purpose of this approach is twofold: firstly, the subjective internal experiences of pain and
relief can be represented as learning problems, where hypotheses can be tested objectively with
measurable behavioural and neural responses during learning. Secondly, learning processes
can be formalised using learning theory and mathematical models, producing quantifiable
predictors to allow the search for specific behavioural and neural correlates. Understanding the
ways humans learn and adapt to pain and relief can provide insights into the development of
pathological states such as chronic pain. It can also help to identify potential targets for pain
therapeutics.

This chapter provides a concise overview of the systems neuroscience of pain and relief in
relation to learning. A general introduction to pain, relief, and their motivational nature is given
in section 1.1. Section 1.2 introduces reinforcement learning theory and its formalised models,
with neurobiological evidence from previous pain and relief learning studies summarised in
section 1.3. Section 1.4 briefly discusses clinical implications of pain/relief learning and the
final section 1.5 outlines the remainder of the thesis.



2 Introduction

1.1 Pain, relief, and motivation

Pain and pain relief as biologically relevant signals motivate behavioural changes to maintain
bodily integrity (Navratilova and Porreca, 2014; Vlaeyen, 2015). These behaviours may vary
in their acquisition and expression, often depending on the knowledge of how pain and relief
are associated with the environment. In turn, these associations and their resulting motivational
states can affect the hedonic experience of pain and relief, forming a bidirectional relationship
between perception and motivation (Fields, 2000; Wiech and Tracey, 2013).

Pain and its relief

Pain is an unpleasant sensory and emotional experience associated with, or described in
terms of, actual or potential tissue damage (IASP, 1994). As a subjective experience, pain
is multidimensional: its sensory dimension is characterised by the stimulus that activates
nociceptors (i.e. sensory receptors that transduce and encode noxious mechanical, thermal,
or chemical stimulus), often described in terms of stimulus intensity, location, source, and
quality (Gold and Gebhart, 2010; IASP, 1994); the affective dimension of pain refers to its
aversiveness, which is tightly linked to the motivations underlying behaviour adjustment to
prevent further harm (Navratilova and Porreca, 2014; Wiech and Tracey, 2013); a cognitive
dimension influences pain perception, through factors such as attention, expectation, and
prior experience (Navratilova and Porreca, 2014; Wiech et al., 2008); and finally, a social
dimension of pain also exists, whereby communications and support from others may impact
an individual’s pain experience (KD Craig, 2015). A recently proposed update (Williams and
KD Craig, 2016) suggests the definition of pain should facilitate appreciation of these other
dimensions:

Pain is a distressing experience associated with actual or potential tissue damage
with sensory, emotional, cognitive and social components.

Consider the example of joint pain from running: the location and quality of the pain may
signal to the runner to adjust running distance or posture to avoid further injury. However, the
actual injury may not produce obvious pain, for example, in the context where the runner is
approaching the finishing line in an intense race. In other cases, the pain may persist even after
the injury has healed, such as in chronic pain. This multidimensional nature highlights the
complexity and subjectivity of pain.

Compared to pain, pain relief is relatively less well defined. Existing definitions of relief
vary in wording from source to source, but there is one common characteristic: relief derives
from situations where expected or previously experienced negative stimuli is stopped, reduced



1.1 Pain, relief, and motivation 3

or absent (Fig 1.1a) (Deutsch et al., 2015; Leknes et al., 2011). In the context of this thesis,
‘relief’ refers to the relief from noxious physical pain specifically, and the terms ‘relief’ and
‘pain relief’ are used interchangeably throughout the text.

In clinical settings, pain relief in humans is often measured using the reduction in global
pain ratings (Leknes et al., 2008). However, evidence suggests global ratings of pain relief
represent more than changes in pain intensity – other factors such as satisfaction with change
in pain, and previous maximum pain experienced, are shown to influence its perception (Jensen
et al., 2005). Relief is also hypothesised to be a contributing factor behind the addictive effects
of many analgesic drugs, and the formation of different phobic/avoidance behaviour (Deutsch
et al., 2015; Leknes and Tracey, 2008). This suggests that pain relief is more than a simple
sensory mapping of reduced pain, it possesses affective and motivational underpinnings that
should be considered in a wider context.

Motivational theories

Motivation has two fundamental components: action and learning (Rescorla and Wagner,
1972). A reinforcer can change the strength and probability of a response to be emitted in the
future (Skinner, 1938). A reinforcing event, such as pain or relief, is able to make an animal
willing to expend energy to elicit actions that will increase or decrease access to it; it also
supports learning of cues associated with these events so that the actions leading to them can be
repeated earlier in the future (Gerber et al., 2014; Pavlov, 1927; Thorndike, 1911). Secondary
reinforcers (e.g. cues) can elicit similar behavioural consequences after repeated pairing with
primary reinforcers (e.g. pain).

Many theories in human motivation and learning explore how stimuli reinforce behaviour
(Fig 1.1). The classic motivational assumption stipulates that people approach pleasure and
avoid pain. Approach/avoidance theories suggest that drive states, such as ‘fear’, regulate
different reactions to match the valence of reinforcing stimuli (Fig 1.1a) (Corr, 2013; JA Gray,
1987; Konorski, 1967; LeDoux, 2014; Mowrer, 1960). However, this dichotomy has been
criticised for being oversimplified, prompting the development of the opponent process theory
(Fig 1.1b) (Solomon, 1980; Solomon and Corbit, 1974). Opponent process theory suggests
that a primary affective or hedonic process A elicited by any deviation from homoeostasis (e.g.
pain) typically triggers an opponent process B with the opposite valence (e.g. relief) with a
slower temporal latency. Behavioural response is determined by the magnitude and orientation
of the net result of two processes A+B – if process A stops, process B will dominate because
of its slower rise and decay time. The major difference between the opponent process theory
and the drive theories is that the temporal dynamics of the two opposing processes are more
complex than the simple omission opponency of a fear state (Konorski, 1967; Mowrer, 1960).
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Other theories consider motivation from an adaptive perspective. Regulation theories
assume a feedback control loop where actions minimise discrepancies between actual behaviour
and desired goals, and affective valence dynamically reflects the progression of goal pursuit
(e.g. doing well in avoiding danger would bring relief) (Carver and Scheier, 1990; Higgins,
1997). Cognitive appraisal theory proposes the appraisal of controllability and certainty has
impacts on both affect and behaviour in order to cope with a changing environment (Lazarus,
1991). Behavioural responses can also be controlled by habit learning, where a reinforcer
serves to strengthen the stimulus-response (S-R) association through over-training, instead
of encoding a behavioural goal (Balleine and Dickinson, 1998; Everitt and Robbins, 2005).
Deutsch et al. (2015) has suggested that these theories can coexist to account for the different
features of motivated behaviour, which may vary depending on the procedural differences in
experimental paradigms.

(a) (b)

Fig. 1.1 (a) Affective valence and event effect. The diagram shows reward, punishment,
frustration, and relief in the valence-effect coordinate system. Event effects can either be
predicted (in the case of Pavlovian learning), or actual consequences of behaviour (instrumental
learning). Arrows inside the coordinates indicate approach/withdrawal in Pavlovian sign
tracking, or the increase/decrease in behavioural strength in instrumental learning following
Thorndike’s law of effect (adapted from Bouton, 2007; Gerber et al., 2014). (b) The opponent
processes of affective dynamics. Opponent process theory assumes that the onset of a negative
stimulus (e.g. pain, top panel) elicits a primary process A with negative valence, and an
opponent process B with positive valence (middle panel). The summation of the two (bottom
panel) reflects the positive effect of relief when the negative stimuli is removed (adapted from
Solomon and Corbit, 1974).
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Pavlovian conditioning

Two learning paradigms, Pavlovian and instrumental conditioning, have been used extensively
to study motivation – specifically, how animals adapt to the environment through experience
(Bouton, 2007). Pavlovian conditioning allows a previously neutral cue (conditional stimulus,
CS) to gain incentive values through association with an outcome (unconditional stimulus, US).
Food as a US can elicit an unconditional response (UR) such as drooling without learning. After
a CS-US association is established, the CS on its own can elicit a conditional response (CR),
allowing animals to act before US appears (Berridge, 2012; Bouton, 2007). While this response
may not directly have any impact on the outcome, Pavlovian conditioning is important for
animals to learn to predict and prepare for upcoming biologically significant events. Therefore,
Pavlovian conditioning can be crudely equated to prediction learning (Dayan and Balleine,
2002).

Establishing the cue-outcome association also depends on contingency, which refers to the
relative probability of an outcome occurring in the presence of a cue, as contrasted with the
probability in the absence of the cue (Rescorla, 1968). The temporal and spatial proximity
between cue-outcome pairing (contiguity) and the consistency of these events’ co-occurrences
have influence over the cue’s control over behaviour in learning (R Miller and Escobar, 2004;
Pavlov, 1927).

While Pavlovian conditioned responses generally reflect the valence of the CS, for example,
approaching good CSs and withdrawing from bad CSs (‘sign tracking’, Fig 1.1a), CRs can
have a wide range of behavioural manifestations. Specific responses may be elicited to prepare
for food consumption, taste avoidance, reproduction, and territory defence; while more general,
systemic responses, for example, freezing and other fight/flight physiological responses can
also occur during fear conditioning (Bouton, 2007). Pavlovian responses to aversive events
are relatively more diverse than those to appetitive ones, as more details of the stimulus are
taken into account (DC Blanchard and RJ Blanchard, 1988). The dissociation of these different
manifestations of conditioned responses and the representations of their learning processes are
investigated within the context of Pavlovian pain conditioning in Chapter 3.

Instrumental conditioning

During instrumental conditioning, animals learn associations between actions and outcomes
in order to behave in ways that improve their chances of survival (Bouton, 2007). Unlike
Pavlovian conditioning, instrumental responses can have a direct impact on the probability
of outcome occurrence, which permits animals control of the environment (Skinner, 1938).
Instrumental conditioning is therefore considered to be active learning, as opposed to passive
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learning in Pavlovian conditioning (Deutsch et al., 2015). Since repeating learned actions in
similar situations in the future helps to accumulate reward or avoid punishment, instrumental
conditioning can often be equated to action learning (Dayan and Balleine, 2002; Thorndike,
1911, 1932).

Instrumental actions can either be goal-directed or habitual (Balleine and O’Doherty,
2010). Goal-directed actions involve planning ahead, for example, simulating all possible
consequences from all action sequences in an exhaustive tree search for action evaluation.
Habitual actions, on the other hand, rely on the past and use previous experience to guide
behaviour (Huys, 2007). These two modes of action evaluation can be distinguished using
outcome devaluation and contingency degradation. The goal-directed system will exhibit
reduced sensitivity to a particular reward (e.g. sucrose), when the previously rewarding
substance is devalued by association with a negative outcome (e.g. illness). Conversely, an
association initially learned by the habit system will not be sensitive to such devaluation as it
does not involve representation of the specific outcome. Similarly, degrading the contingency
between response and reinforcer by including unpaired outcomes in training also promotes
habitual actions (Balleine and Dickinson, 1998; Dickinson and Balleine, 2002; Yin et al., 2004).

The above examples showed that an outcome and the actions leading to it can be valued
differently depending on changing motivational state, which suggests the process of decision-
making can be framed as a value comparison problem. Subjective values are assigned to
events (e.g. stimuli, actions, outcomes), where they can be compared on an ordinal scale of
preference to produce a decision on action, similar to using a ‘common currency’ for evaluation
(McNamee, 2015; Montague and Berns, 2002). This concept has been used extensively in
machine learning (Sutton and Barto, 1998) and psychology (Schultz, 2006). Since value
allows direct comparison between events of different modalities, and is able to capture the
temporal dynamics of motivational shifts, it is hypothesised to have biological relevance in
decision-making and learning. The formal representation of value is discussed in section 1.2.

Predictability and controllability

The inherently probabilistic relationships between cues, actions, and outcomes introduce
uncertainty in an environment, making it difficult to prepare properly for future events (Grupe
and Nitschke, 2013). Learning paradigms have been used to study pain and relief motivation by
manipulating the predictability and controllability of pain or relief outcomes, usually through
changing the paradigm contingency. Predictability concerns the estimated likelihood of stimuli
predicting outcome occurrences, while controllability refers to the perception of responses
changing outcome probabilities – both are relevant to the estimation of uncertainty, and can
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be distinguished in different contexts of learning (Grupe and Nitschke, 2013; Maier and LR
Watkins, 2005).

Pavlovian conditioning mainly focuses on learning about stimuli that predict danger and
safety. CS+, a stimulus that is repeatedly paired with experimental pain to signal impending
aversive events, can act as a cue for escape or avoidance. ‘Safety signal’ CSs on the other hand
can either be associated with the omission of aversive stimuli (e.g. in backward conditioning,
a safety CS+ appears after a painful US, Andreatta et al., 2013), or the absence of onset
of aversive stimuli (e.g. unpaired CS− as conditioned inhibitor in discrimination training,
Fernando et al., 2013). Instrumental conditioning paradigms usually investigate the effects
of operant behaviour, where instrumental responses during CS presentation directly control
escape or avoidance of the US. Paradigm variations include active avoidance, where performing
a certain response (e.g. choices in humans, Kim et al., 2006; conditioned place preference
in rodents, Navratilova et al., 2012, 2015) results in the omission of the aversive US; passive
avoidance, where withholding a specific response leads to US omission (e.g. go/no go actions
in humans, Huys et al., 2011; Levita et al., 2012); and active escape from negative tonic stimuli
(e.g. self administration of analgesic drugs in rats, Navratilova and Porreca, 2014).

Predictability and controllability of the environment not only affect motivation, but also
hedonic experience. The importance of controllability was first demonstrated experimentally
through studies on ‘learned helplessness’, where exposure to uncontrollable shocks during
aversive Pavlovian conditioning was shown to impair later instrumental learning of escape,
when comparing subjects exposed to escapable and inescapable shocks (Maier and Seligman,
1976; Overmier and Seligman, 1967). Apart from poor escape behaviour, uncontrollable shocks
also produced exaggerated fear conditioned responses, reduced appetitive learning, and other
behavioural signs of depression and anxiety (Maier and LR Watkins, 2005). The detection
and learning of control over aversive events have now been found to be important to overcome
the passive failure to escape (Maier and Seligman, 2016). Various studies have manipulated
predictability and controllability to show their modulatory effects on pain and relief perception,
including perceived control over analgesia (Salomons et al., 2004; Wiech et al., 2006, 2014c),
cue-evoked expectation (Atlas et al., 2010), and uncertainty over the probability of pain delivery
(Yoshida et al., 2013). In Chapter 4, relief motivation is explored in the context of learning
to escape ongoing tonic pain, where we investigated the impact of relief controllability and
predictability on pain behaviour and perception by comparing active and passive relief learning
in instrumental and Pavlovian conditioning respectively.
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Inference and measurement

Inferring motivation underlying behaviour depends largely on the experimental design and
research question. In humans, subjective ratings and choices are commonly used to assess pain
and relief experience, where experimental variables – such as stimulus intensity and outcome
probability – are manipulated to induce motivational change (Leknes et al., 2013, 2008). For
non-verbal animals, reinforced behaviour such as avoidance, escape, approach, are attributed to
preference and motivation, in lieu of explicit self-reports (Navratilova et al., 2012, 2015).

A combination of overt behaviour, physiological parameters, and neural substrates can be
measured to characterise inferred learning. Conditioned responses, either instrumental (e.g.
choice preferences and reaction times, Kim et al., 2006; Prevost et al., 2013) or Pavlovian (e.g.
startle modulation, facial musculature activations, autonomic/physiological signals, Andreatta
et al., 2013; Lang et al., 1990), can reflect changes in the conditioned valence and motivational
orientation of both CSs and USs following learning. Neuroimaging techniques, such as
functional magnetic resonance imaging (fMRI), can provide insight into the neural mechanisms
and circuitry underlying motivation at a systems level, an approach which has been used
extensively in pain and decision-making research (Apkarian, 2011; O’Doherty et al., 2007).
These methods are described in more detail in Chapter 2.

To summarise, pain and relief motivate action and learning, and motivational changes in
turn have impacts on their hedonic experience. Associative learning paradigms have been
used to study this reciprocal relationship, with the help of behavioural, physiological, and
neuroimaging data for motivational inference. Crucially, the concept of value is able to
formalise these experimental paradigms to allow a computational representation of learning.

1.2 Learning through reinforcement

When motivated to change the environment, learned knowledge from previous experience
is essential to guide actions. The learning process may include components such as making
associations between cue and reinforcers, assigning values to actions, constructing control poli-
cies, and prioritising actions. This section introduces reinforcement learning, a computational
framework that formally captures the mechanical procedures of information processing during
learning, and shows how value and uncertainty abstraction guide decision-making.
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Reinforcement learning models

Reinforcement learning (RL) studies how agents learn to maximise reward and minimise
punishment (Maia, 2009; Sutton and Barto, 1998). Actions are reinforced when they produce
higher rewards, or lower punishment, than previously expected, meaning that the same actions
are likely to occur again in similar future situations. The opposite happens to actions that
produce worse than expected outcomes, leading to their diminished occurrences. It is believed
that animals learn by comparing expected and experienced outcomes, and use errors from their
predictions to guide future actions (Rescorla and Wagner, 1972). Hence RL involves using
this prediction error to solve an optimisation problem, either to learn predictions of impending
reward/punishment delivery, or to learn to adapt course of actions to achieve maximum reward
and/or minimum punishment (Dayan and Balleine, 2002; Sutton and Barto, 1998).

Learning to predict reward/punishment outcomes and control actions to achieve such
outcomes belongs to the Pavlovian and instrumental conditioning frameworks respectively
(Dayan et al., 2000; O’Doherty et al., 2007; Seymour et al., 2004; AJ Yu and Dayan, 2005). RL
uses value abstraction as a formal computational approach to the problems of action control
in instrumental learning and reward/punishment predictions in Pavlovian learning. Different
RL variations can accommodate the distinction between habit and goal-directed learning in
instrumental conditioning. In addition, different types of uncertainty during learning can be
incorporated to explain behavioural and perceptual changes. Therefore, RL is an essential
framework that formalises conditioning paradigms computationally.

Basic elements of RL

The fundamental elements of RL include:

• State S – set of states referring a combination of external (e.g. context) and internal (e.g.
physiological) variables to an agent

• Action As – set of actions available in state s ∈ S that moves an agent to a new state s′

• Reinforcement R – set of reward/punishment the agent may receive in new state s′

It is the agent’s goal to learn a control policy (π , a mapping from states to actions) that
maximises expected long-term rewards received. This involves discounting future reinforcement
in favour of those more proximal to the present, such as with exponential temporal discounting:

V (t) = E
[
rt + γ

1rt+1 + γ
2rt+2 + ...

]
(1.1)
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V (t) = E

[
∑

i
γ

irt+i

]
(1.2)

where t represents time, rt is the reinforcement at time t, and γ is the discount factor where
γ ∈ [0,1]. This gives the value V (t) at time t, taking into account the current and future
reinforcements (Maia, 2009; McNamee, 2015).

However, in most cases, the reinforcement R has different values depending on contexts and
internal states, and the environment in general is more complex, with transitions between states
being probabilistic instead of deterministic. Formally, a Markov decision process (MDP) defines
such a probabilistic sequential decision-making environment. In addition to the elements state
S, action As, and discount factor γ mentioned above, MDP also has a state transition probability
function T (s,a,s′) that describes the probability p(s′|s,a) of arriving in new state s′ after
performing action a in state s, and a reward function R(s,a,s′) that describes the reinforcement
the agent receives after the state transition of T (s,a,s′). Very often in neuroscience experiments,
contingencies are designed to be deterministic so that T (s,a) and R(s,a) are sufficient for
description, given that s and a unequivocally determines s′. The resulting MDP is also called a
deterministic MDP (Maia, 2009; Sutton and Barto, 1998).

Temporal difference (TD) learning

A credit-assignment problem exists within the MDP framework: when a sequence of actions
results in an outcome, which one of the actions should get credit for the outcome? The
consequences of an action can be spread over time, therefore it is not sufficient to know only
the immediate reinforcement, but the expected sum of future reinforcement from that state –
the state value. This bypasses the need to look infinite steps ahead for delayed consequences of
an action. The state-value function is given by the Bellman equation (Bellman, 1957):

V π(st) = E

[
∑

i=0,...
γ

irt+i | st = s

]
(1.3)

V π(st) = E

[
rt + ∑

i=1,...
γ

irt+i | st+1 = s′
]

(1.4)

V π(s) = E [rs]+ γV π(s′) (1.5)

The above derivation lays the foundation for temporal difference (TD) learning, which is defined
as:

V̂ π(s)← V̂ π(s)+αδ (1.6)
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δ = rs + γV̂ π(s′)−V̂ π(s) (1.7)

where V̂ π represents the estimate of state value under current policy π , and δ is called the
prediction error, representing the difference between the estimated outcome for a particular
state V̂ π(s) and the actual outcome received plus the discounted outcome from the next state
rs + γV̂ π(s′).

A positive δ indicates a better than expected outcome, while a negative one signals the
opposite. The prediction error can also be regarded as the reinforcement rs, plus the value
difference between two states γV̂ π(s′)−V̂ π(s), hence if the state value difference is not zero,
updating can still occur despite having no reinforcement (e.g. in extinction where r = 0), and
over time as learning progresses, the error will become smaller as prediction becomes more
accurate. When δ = 0, the state value difference also reaches zero, and no more learning occurs
since the reinforcement becomes fully predicted (Maia, 2009; Sutton and Barto, 1998).

TD learning and conditioning

In the Pavlovian case, the TD learning rule is often used for state-value learning, summarised
as the Rescorla-Wagner (RW) rule (Rescorla and Wagner, 1972):

Vt+1(s) =Vt(s)+α(rt−Vt(s)) (1.8)

where α represents the learning rate (α ∈ [0,1]), V as values and r as reinforcement outcomes.
Generalising to instrumental conditioning, a Q value represents the value of an action in a

particular state, and it can be learned in two different ways. The first is Q learning, also known
as an off-policy TD control algorithm, where the decision error is determined by the Q value
of the better option instead of the one actually chosen. In this way, learning is independent of
the actual choice, and exploring suboptimal alternatives may speed up convergence to optimal
action (CJCH Watkins, 1989). Formally:

Qt+1(s,a) = Qt(s,a)+α(rt + γ max
a

Q(st+1,a)−Qt(s,a)) (1.9)

where Q(s,a) represents approximated optimal action-value of action a in state s.
The alternative, SARSA (state-action-reward-state-action), is an on-policy TD control algo-

rithm, where the action value Qπ(s,a) for the current behaviour policy π is estimated. The Q
value here comes from a prediction error calculated using the actual chosen action (Niv et al.,
2006; Sutton and Barto, 1998).

Qt+1(s,a) = Qt(s,a)+α(rt−Qt(s,a)) (1.10)
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Action selection aims to decide on an action that maximises both immediate and future
rewards. Always selecting the action with the greatest value is referred to as a greedy strategy.
However, constantly exploiting a single action results in a lack of exploration over other possible
options, potentially leading to diminished future rewards. The ε-greedy action selection rule
exploits the highest value action most of the time, but explores randomly with a probability of
ε , in order to balance the exploit-explore trade-off (Sutton and Barto, 1998).

The softmax rule ranks actions so that higher value actions have higher probability of being
chosen, unlike the random choice in ε-greedy. A softmax distribution is often used to calculate
the probability of choosing an action a in state s (Sutton and Barto, 1998):

p(a|s) = exp(Qt(s,a)/τ)

∑b∈As exp(Qt(s,b)/τ)
(1.11)

where τ is a temperature parameter governing the competition between actions. The policy
π(s,a) can be represented using the preference p(s,a), updated similarly to state-values using
prediction error, with the same softmax rule (Maia, 2009).

Value function and action selection rules are also referred to as critic and actor, which
divides RL algorithms into three groups: actor-only, critic-only, and actor-critic (Grondman
et al., 2012). The actor-critic method tries to simultaneously find the best policy and estimate
the state-value for the current policy (Dayan and Balleine, 2002). The critic learns and stores
the state-values using prediction errors (Equations 1.6 and 1.7), providing the actor with low-
variance knowledge of the overall performance. In turn, the actor selects action based on the
expected values (e.g. Equation 1.11), updating a parameterised policy to provide a spectrum of
likely actions. Actor-critic converges faster and reduces the cost for action-space optimisation
from a machine learning perspective (Grondman et al., 2012; Maia, 2009).

Model-free and model-based RL

The TD learning-based algorithms introduced above are examples of the model-free RL method.
‘Caching’ is the foundation of this method, where state or action values are the scalar summary
of long-run values in time. The optimal policy is learned directly from these cached values,
where accumulated past rewards guide future actions (Daw et al., 2005). Biologically, midbrain
dopaminergic neurons exhibit prediction error-like spiking patterns, supporting the feasibility
of model-free methods (Schultz, 1998).

In contrast, model-based methods attempt to learn the MDP first, i.e. by constructing a
cognitive model of the environment that predicts long-run outcomes, in order to find an optimal
policy. This usually involves a mental simulation of various possible future outcomes, such
as in a tree-search, as well as computing the reinforcement and state transition function (Daw
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et al., 2005; Maia, 2009). Predicted values from model-based methods have been found to
correlate with prefrontal cortical activities in human decision-making experiments (Daw et al.,
2011; Gläscher et al., 2010).

Model-free RL is often associated with habit learning of stimulus-response (S-R) asso-
ciations, while model-based RL is associated with goal-directed learning of more complex
action-outcome (A-O) or stimulus-action-outcome (S-A-O) contingencies (Maia, 2009). Al-
though functionally and computationally separable, the two systems interact, e.g. through
Pavlovian-instrumental transfer (where Pavlovian cues strengthen separately trained instru-
mental actions that lead to the same reward), which has been shown to manifest behaviourally
(Holmes et al., 2010; Huys et al., 2011). In Chapter 5, active relief learning is extended from a
static to a dynamic environment, where the relief probabilities of potential actions change over
time, and model-free and model-based RL models are compared in order to determine whether
learning changes as a result of this environmental shift.

Uncertainty

With estimation comes imprecision. Uncertainty forms an inherent part of decision-making,
generated within all processing levels ranging from the internal state of the agent to the
environment it interacts with. The classification of uncertainty varies according to the criteria
chosen, which can be its main sources (sensory, state, rule, or outcome uncertainty, Bach and
Dolan, 2012), probabilistic hierarchical levels (uncertainty of environment volatility, observed
outcome probability, or outcome category, de Berker et al., 2016; Mathys et al., 2011), reliability
(expected or unexpected uncertainty, arises from previously known unreliability of predictive
relationships within an environment, AJ Yu and Dayan, 2005), or in the decision-making field,
the distinction between ambiguity and risk (not knowing whether a coin is fair or biased, as
opposed to knowing the coin is fair but cannot predict the outcome of a particular coin toss,
also referred to as reducible or irreducible uncertainty, Kobayashi and Hsu, 2017).

Depending on the design of a learning experiment, uncertainty can be computationally
represented using either entropy (e.g. when the uncertain variable is nominal and varies across
discrete states), distribution variance (e.g. when the uncertain variable can be described with a
probability distribution), or prediction surprise (e.g. when the uncertain variable is subjected
to bootstrap updating in RL) (Bach and Dolan, 2012; Le Pelley, 2004; Mathys et al., 2011).
It is likely that uncertainty estimates are used to guide behaviour, possibly through directing
attention, so that the learning of predictive associations in the environment can be boosted,
while irrelevant information is suppressed. Associability estimates the uncertainty of associative
predictions during learning and adjusting learning rate accordingly – high uncertainty during
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learning commands increased attention, so that learning can occur more rapidly (Dayan et al.,
2000; Le Pelley, 2004; Pearce and Hall, 1980; AJ Yu and Dayan, 2005).

In summary, value abstraction provides the basis for RL frameworks, in which decision-
making processes can be represented with value function updating, action selection rules, and
uncertainty estimation. These computational measures can be used to better dissect learning
associated with pain and relief, by identifying the behavioural and neural correlates of these
internal model qualities.

1.3 The neurobiological basis of pain/relief motivation

Combining learning paradigms and the RL framework allows the computational mapping from
pain/relief stimuli to responses in the brain (referred to as neural encoding, as opposed to its
reverse of neural decoding) (Dayan and Abbott, 2001). Localising this functional mapping
neurally and behaviourally is important for understanding how information about pain and
relief is represented and processed. Neurobiological evidence related to pain/relief motivation
identified in previous studies, with emphasis on the central nervous system, are outlined in this
section.

The afferent nociceptive pathways

The afferent nociceptive pathways are involved in the reception, processing and transmission
of nociceptive input that signals potential tissue damage. Peripheral nociceptors are widely
distributed in the body, both externally (e.g. the skin, mucosa) and internally (e.g. muscles,
joints, tendons, connective tissues of visceral organs) (Almeida et al., 2004). Nociceptors are
activated when mechanical, thermal, or chemical stimuli exceed their threshold for response.
However, they can also be sensitised as a result of tissue insult and inflammation, which
causes their excitatory threshold to reduce and response magnitude to increase, and in some
cases, eliciting spontaneous activation without stimulus (Gold and Gebhart, 2010). The action
potentials generated from these receptors are conducted through the nociceptive afferent
nerves – mainly the larger, thinly myelinated, fast-conducting A-delta fibres, or the smaller,
unmyelinated, slow C fibres. A-Delta fibres mostly correspond to the acute, first-phase ‘sharp’
pain from high intensity mechanical and heat/cold stimuli, while C fibres are responsible
for the slower, second-wave ‘dull’ ache from most stimulus types as well as inflammation
(Millan, 1999). These primary afferents conducting nociceptive information reach the dorsal
horn of the spinal cord, before ascending to higher cerebral structures in the brain through
different spinal pathways, which include the spinothalamic, spinoparabrachial-amygdaloid,
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spinoreticulo-thalamic, and spinomesencephalic (periaqueductal grey, PAG) tracts (Fig 1.2)
(Almeida et al., 2004; Bushnell et al., 2013).

The primary processing of nociceptive information and the organisation of these afferent
tracts in the spinal cord are outside the scope of this thesis, and have been reviewed in details
elsewhere (Almeida et al., 2004; Millan, 1999; Schaible and Grubb, 1993).

The ‘pain matrix’

A network of brain regions responds consistently to transient or acute painful stimuli across
human neuroimaging studies, according to meta-analysis (Apkarian et al., 2005). Often referred
to as the ‘pain matrix’, these regions involve both cortical and subcortical structures encom-
passing sensory, limbic, and associative areas (Bushnell et al., 2013; Tracey and Mantyh, 2007).
The common areas revealed in pain studies include the primary and secondary somatosensory
cortices (SI and SII), insula, thalamus, anterior cingulate cortex (ACC), prefrontal cortex
(PFC), and periaqueductal grey (PAG); while more variable activation has been observed in
the striatum (dorsal and ventral), orbitofrontal cortex (OFC), the amygdala and cerebellum
(Fields, 2004; Geha and Waxman, 2016; Navratilova and Porreca, 2014; Wiech and Tracey,
2013). Recently, a ‘neurologic signature of pain’ derived from the weighted fMRI activity
pattern of many regions from the pain matrix has been shown to predict pain intensity in test
subjects, as well as differentiating thermal pain from innocuous warm stimulus and social
rejection pain (Wager et al., 2013). However, the assumption that the pain matrix mediates
the conscious experience of pain is challenged by other evidence – for example, activations
of similar brain regions have been identified using other non-nociceptive sensory modalities
(Mouraux et al., 2011), in patients who have congenital insensitivity to pain (Salomons et al.,
2016), and paradoxically, in pain relief studies (Andreatta et al., 2012; Leknes et al., 2011;
Navratilova et al., 2012). These findings lead to the view that the pain matrix could be involved
in the processing of multimodal, salient sensory information, or perhaps reflects the results of
pain-related learning (Geha and Waxman, 2016). The lack of a specialised ‘pain cortex’ in the
brain also suggests that simple stimulus mapping is unlikely to sufficiently inform the central
processing of pain.

Impact of chronic pain

Neuroimaging studies of chronic pain patients have revealed distinct brain activity patterns
from transient pain in the clinical population (Apkarian et al., 2005). Pain is considered to
be chronic when it persists past the healing phase following injury, usually 3-6 months after
its initial onset depending on the injured site (Apkarian et al., 2009; IASP, 1994). Brain
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correlates of acute/subacute (6-12 weeks) pain shift towards the amygdala and medial PFC as
the pain becomes chronic (Hashmi et al., 2013). In addition, prefrontal-striatal connectivity
has been found to predict pain persistence in a longitudinal study (Baliki et al., 2012), and
significant anatomical alterations and disruption in functional connectivity have been identified
in the prefrontal and limbic regions in chronic pain patients (Fritz et al., 2016; R Yu et al.,
2014). Many of the changes observed in chronic pain involve the corticolimbic circuitry
responsible for encoding motivational, affective, and cognitive aspects of pain and relief
(Porreca and Navratilova, 2017; Wiech and Tracey, 2013). Brain regions including the striatum,
amygdala, ACC and PFC, have been previously found relevant to the encoding and evaluation of
motivational and affective information in decision-making, particularly for reward processing.
Hence they are also collectively known as the reward motivation and decision mesocorticolimbic
pathways (motivation/decision pathways for short, Fig 1.2, Navratilova and Porreca, 2014;
Rushworth et al., 2011).

The motivation/decision pathways

The motivation/decision pathways have been linked to pain and relief motivation and process-
ing. Previous evidence suggests the striatum contributes directly to decision-making involving
reward and punishment (Salamone, 1994). The ventral striatum, which include the nucleus ac-
cumbens (NAc), ventral caudate and putamen, is often considered related to appetitive/aversive
motivations and behaviour. The NAc receives projections from dopaminergic neurons in the
ventral tegmental area (VTA), as well as inputs from the PFC, ACC, amygdala, hippocampus,
and spinal dorsal horn neurons. This makes it a potential site for motivational and affective
signals to translate into adaptive behaviour by ways of dopamine neurotransmission (Levita
et al., 2009; Navratilova and Porreca, 2014). The dorsal striatum is suggested to be involved in
action selection and initiation, integrating sensorimotor, cognitive, and motivation information
from other subdivisions of the striatum (Balleine et al., 2007).

NAc activation has been identified in pain relief neuroimaging studies (Andreatta et al.,
2012; Leknes et al., 2011; Navratilova et al., 2012), which led to the interpretation that relief
from pain can be rewarding. While mainly associated with reward processing, the striatum also
encodes aversive prediction signals (Schultz, 2013; Seymour et al., 2004), as well as general
motivational relevance or stimulus salience (Becerra and Borsook, 2008; Deutsch et al., 2015;
Levita et al., 2012). Furthermore, relief related cues have previously been found no more
reinforcing than a control stimulus (Fernando et al., 2013), or even perceived to be aversive
when these cues signal passive prevention relief (Andreatta et al., 2013; Mallan and Lipp, 2007).
Based on existing evidence, pain relief therefore does not simply appear to be equal to reward
or the direct opposite of pain.
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The ACC has been implicated in the encoding of affective features of pain and relief
(Bushnell et al., 2013; Vogt, 2005). Heavily connected with premotor, prefrontal, and limbic
regions, the ACC also expresses high levels of opioid receptors and endogenous opioid activity
that mediate pain suppression (Zubieta et al., 2005). Dissociation between conditioned place
aversion and pain-evoked startle responses has been shown in ACC lesion studies, stressing its
role in pain related affect evaluation (Johansen et al., 2001). In human neuroimaging studies,
the ACC has been found to represent pain unpleasantness (Roy et al., 2009), showing reduced
activation during relief compared to a control pain context (Leknes et al., 2013), and modulating
responses to reward anticipation in the presence of pain (Wiech and Tracey, 2013), which acts
to integrate the ‘cost’ of pain into decision-making. Despite consistent appearances in pain
and pain modulation studies, the ACC exhibits bivalent activations to pain and relief (Becerra
et al., 2013; Etkin et al., 2011), as well as other survival-critical processes including attention,
foraging, motor and emotional functions, which cautions against the simplistic assumption
of the ACC’s selectivity for pain (Lieberman et al., 2016; Lieberman and Eisenberger, 2015;
Wager et al., 2016).

Closely connected to the adjacent ACC, the PFC and OFC have important roles in value
encoding that guides decision-making, as reviewed in Kringelbach (2005) and Rushworth
et al. (2011). These regions are also important for action-outcome contingency detection,
instrumental behaviour selection, and goal valuation in reward and avoidance learning (Cardinal
et al., 2002; Kim et al., 2006). In addition, the medial PFC plays an important role in threat
controllability, as its inhibitive control of the dorsal raphe nucleus is necessary to protect against
passive helplessness (Amat et al., 2005; Maier and Seligman, 2016). The lateral PFC has also
been implicated in analgesic effects related to perceived pain controllability (Salomons et al.,
2007; Wiech et al., 2006; Zubieta et al., 2005).

The insula is believed to be involved in many somatosensory and emotional processes (AD
Craig, 2009; Geuter et al., 2017; Wager and Barrett, 2017). The anterior/posterior divisions
of insula appear to reflect different aspects of pain processing. The anterior insula has strong
connection with prefrontal regions and is shown to encode pain predictions and evaluations
(Geuter et al., 2017; Ploner et al., 2010). The posterior insula receives direct spinothalamic
input and is heavily connected to SI/SII, and appears to encode pain perception such as intensity
(AD Craig, 2009; Wiech et al., 2014a).

Closely connected to the ventral striatum and PFC/OFC, the amygdala also contributes
to emotion, motivation, learning and attention (Murray, 2007). Previously associated mainly
with danger/fear learning (Andreatta et al., 2012; McHugh et al., 2014) and negative affect
processing (Balleine and Killcross, 2006), current evidence supports the amygdala’s role
in encoding reward, punishment, and relief (e.g. safety stimuli, Genud-Gabai et al., 2013;
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avoidance cues, Schlund et al., 2010; or relief signals, Sangha et al., 2013). The amygdala has a
central role in Pavlovian conditioning, as its basolateral component (BLA) is necessary for a CS
to access the motivational values of its predicted US, influencing both instrumental behaviour
and autonomic conditioned responses which are normally controlled by its central nucleus
(CeA) (Cardinal et al., 2002). In particular, the close connection and interaction between
amygdala and the PFC are important for animals to make advantageous choices when facing
multiple competing cues, possibly through amygdala updating and PFC/OFC storing of the
expected values of reward outcomes (Holland and Gallagher, 2004; Murray, 2007).

Apart from receiving nociceptive inputs, the cerebellum has been suggested to have a role
in nociceptive processing (Moulton et al., 2010). fMRI activations in the cerebellum have been
consistently identified with both experimental and pathological pain, as well as in placebo and
learning studies (Ploghaus et al., 1999; Seymour et al., 2004; Wager et al., 2004). Furthermore,
the primary motor cortex and the DLPFC are parts of the cerebrocerebellar loop, suggesting the
cerebellum may be involved in sensorimotor integration in addition to pain sensory processing
(Kelly and Strick, 2003; Moulton et al., 2010).

The descending modulatory pathways

The brain regions introduced above are not only involved in the motivation/decision pathways,
but also the descending pain modulatory pathways – a set of systems consisting of cortical
and brainstem projections to the spinal cord to regulate or inhibit ascending nociceptive
information (Tracey and Mantyh, 2007). These systems involve multiple neural pathways
and neurotransmitters, and they jointly regulate the affect, perception and behaviour of pain.
Amongst them, the endogenous opioid system occupies a central role, and has been directly
implicated in placebo analgesia (the pain reduction that can be attributed to treatment contexts,
referring to discrete elements or their combinations that signify the occurrence of pain relief)
(Levine et al., 1978; Wager and Atlas, 2015). Important brainstem structures in the opioidergic
pathway include the periaqueductal grey (PAG) and rostroventral medulla (RVM), both of
which govern the route to/from the spinal cord, in addition to receiving inputs from the VMPFC,
VLPFC, amygdala, NAc and hypothalamus (Fields, 2004; Linnman et al., 2012; Wager and
Atlas, 2015). Other neurotransmitters, including dopamine, serotonin, cholecystokinin and
oxytocin, have also been implicated in placebo analgesia (Benedetti et al., 2005; Wiech and
Tracey, 2013).

This complex prefrontal-subcortical circuitry appears to directly modulate pain perception,
influencing the sensory aspect of pain via descending modulation of nociceptive processing
in the dorsal horn, and the motivational/affective aspect of pain through interactions with
the amygdala and striatum (Tracey and Mantyh, 2007; Wager and Atlas, 2015). Conversely,
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alterations in pain perception have impacts on this neural network – placebo effects, emotional
appraisal/regulation of pain, and the development of chronic pain, all appear to change the
functional connectivity among the principal structures in these pathways (Bushnell et al., 2013;
Etkin et al., 2011; Wager and Atlas, 2015).

A complete review of other relevant brain structures and pathways in the network is outside
the scope of this thesis. For a more comprehensive review see (Bushnell et al., 2013; Etkin
et al., 2011; Navratilova and Porreca, 2014; Tracey and Mantyh, 2007; Wager and Atlas, 2015;
Wiech and Tracey, 2013). Critically, the converging pathways of pain/relief motivation and
modulation further illustrates the importance of computational characterisation of these brain
structures in order to understand their individual contribution and interactions.

Reinforcement learning in the brain

In more general decision-making studies, RL has been used to formalise information processing
and to identify correlates of different learning processes in the brain. First demonstrated
with reward conditioning in monkeys, dopamine neurons have been found to exhibit phasic
activations that resemble reward prediction errors (δ ) – with a CS predicting reward evoking
dopamine neuron firing before the appearance of US, but a CS followed by the omission of US
evoking lower than baseline firing at the time of the expected US (Schultz, 1998; Schultz et al.,
1993). Typically, a better than predicted reward (δ > 0) elicits dopamine activations, a fully
predicted reward (δ = 0) elicits no response, and a worse than predicted reward (δ < 0) causes
depressions. This pattern can be found in 60-75% of dopamine neurons across the brain, with
even higher percentage in the midbrain (Schultz, 2013).

The neural correlates of RL prediction errors have also been observed in human neuroimag-
ing studies (Garrison et al., 2013; Schultz and Dickinson, 2000). Brain regions with dense
connection to dopaminergic neurons, especially the striatum and surrounding structures, have
been shown to encode reward prediction errors (O’Doherty et al., 2004). Similar activities
have also been observed in other areas within the motivation/decision network, including
prefrontal regions OFC, medial PFC and ACC, as well as insula, amygdala, PAG, and cere-
bellum (Garrison et al., 2013; Geuter et al., 2017; Roy et al., 2014). However, some of these
reported neural correlates might reflect their dopaminergic input, warranting the need for the
more stringent axiomatic test to ensure the encoding of actual prediction errors (Maia, 2009;
Niv and Schoenbaum, 2008). Neural signals in candidate regions cannot in principle encode
prediction errors if they falsify one or more axioms. Specifically, the three testable axioms are:
(i) consistent outcome ordering (i.e. response to reward is larger than that of no reward), (ii)
consistent prediction ordering (response decreases as predicted probability of reward increases),
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Fig. 1.2 The neural pathways involved in pain and relief information representation and pro-
cessing span a wide range of cortical and subcortical structures. The afferent nociceptive
information enters the brain from the spinal cord, through connections to the rostroventral
medulla (RVM), parabrachial area (PB), periaqueductal grey (PAG), amygdala, and the thala-
mus, which is further projected to the anterior cingulate cortex (ACC) and insula (red arrows),
as well as to the primary and secondary somatosensory cortices (SI/SII) and cerebellum (not
shown). The motivation/decision pathways in the corticolimbic areas, involving the prefrontal
cortex (PFC), ACC, amygdala, striatum, and insula, integrate motivationally salient information,
e.g. pain and pain relief, and makes relevant action decisions. The descending modulatory
systems share the many structures of the motivation/decision pathways, along with the PAG and
RVM, this system contribute to affective, emotional and cognitive control of pain perception
and decision-making (black arrows) (adapted from Bushnell et al., 2013; Navratilova and
Porreca, 2014; Wager and Atlas, 2015).
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and (iii) no surprise equivalent (response to fully predicted reward is equivalent to no reward)
(Roy et al., 2014; Rutledge et al., 2010).

Apart from reward, aversive prediction errors derived from punishing reinforcers have been
shown to evoke robust activations in the insula and habenula, and diminished activations in the
ventral striatum and ACC (Garrison et al., 2013; Matsumoto and Hikosaka, 2007). Aversive
prediction errors have also been linked with the serotonin system, with some theories proposing
that serotonin and dopamine underpin the motivational opponency between the appetitive and
aversive systems (Daw et al., 2002; Maia, 2009; Seymour et al., 2012). Recent experimental
evidence with sub-second in vivo measurement of serotonin concentration has provided initial
support for this theoretical model (Moran et al., 2018).

Variations of RL algorithms have been derived to account for the computations underlying
different learning systems in the brain. Model-free approaches, especially the actor-critic model
(section 1.2), have been associated with habit (S-R) learning, since the model-free ‘caching’
is not flexible enough to reflect immediate changes in action or state-values when outcomes
are being manipulated (Daw et al., 2005; Maia, 2009). Imaging evidence has suggested a
functional differentiation between the actor and critic components: the ventral striatum tracks
prediction errors in both instrumental and yoked Pavlovian reward conditioning, while activity
in the dorsal striatum correlates only with those from instrumental learning, where action
evaluation and selection are required (O’Doherty et al., 2004). However, a recent meta-analysis
has found that the ventral and dorsal striatum were activated similarly in both instrumental and
Pavlovian conditions (Garrison et al., 2013), and other brain regions such as OFC and amygdala
are also proposed as potential critics (Maia, 2009). The SARSA algorithm has been found
to describe dopamine neuron firing in monkeys during a learning task, as compared to other
more sophisticated actor-critic or Q learning models (G Morris et al., 2006; Niv et al., 2006).
Model-based RL approaches have been associated with more complex goal-directed learning,
where reward and state transitions are tracked, and have been linked to the evolutionarily more
advanced prefrontal cortex (Daw et al., 2005; Gläscher et al., 2010). Findings from these
studies support the coexistence of distinct model-free and model-based learning processes in
the brain, with prediction reliability being a potential basis for arbitration between the two
systems (Daw et al., 2005; Lee et al., 2014).

To conclude, brain regions associated with both the motivation/decision and descending
pain modulatory pathways have been consistently implicated in pain and relief, as well as in
reinforcement learning. A clearer theoretical and computational characterisation of pain and
relief learning can increase the understanding of this particular neural network, and its role in
pain motivation, perception, and potential therapeutics.
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1.4 Clinical implications and therapeutic potentials

The increased engagement of the motivational and emotional circuits of the brain when transi-
tioning from acute to chronic pain has long been suspected to contribute to pain ‘chronification’
(Apkarian, 2011). Chronic pain has an average prevalence of 20% in the adult population of
Europe and North America, and the current medications available fail to meet the need of
patients – with two thirds of the European respondents reporting unsatisfactory pain control
(Andrew et al., 2014; Breivik et al., 2006). Therefore, understanding the mechanisms behind
pain chronification, including the involvement of the motivation/modulatory neural network,
and by extension, pain and relief motivation, may help to provide insights for novel therapeutics.

Numerous studies comparing chronic pain patients to healthy controls have revealed func-
tional, anatomical, and molecular changes to the brain, with many of these changes observed in
structures of the motivational circuit described above, detailed in the previous section (Apkarian
et al., 2009). Accumulating evidence points to a bidirectional relationship between the morpho-
logical reorganisation of this circuit and pain chronification, possibly also the many affective
and cognitive comorbidities of chronic pain. The computational characterisation of pain/relief
learning in the brain could therefore help elucidate the mechanism behind this transition.

The challenge of objectively and reliably measuring pain experience is an important issue
surrounding translational research and drug development. Since reflexive pain behaviour
measured in rodents cannot readily capture human affective pain, motivational measures
involving learning paradigms (e.g. conditioned place preference measured in rodents) have
shown promise as an alternative, with rat pain models being used to validate analgesic outcomes
in humans (Navratilova et al., 2013). Indeed, motivation/affective components may be useful
supplements to fMRI-based decoders for human pain measurement (‘neural pain signature’,
Wager et al., 2013), a technique currently restricted to experimentally induced pain but not
clinical pain (Salomons et al., 2016). Being able to computationally characterise pain/relief
also serves to deepen the understanding of pain-related behaviour and brain activities, so that
their limitations as pain measures can be evaluated more clearly.

Existing treatments for patients with intractable chronic pain have targeted brain regions
within the motivation/modulatory network – either through surgical lesions, internal stimulation
such as deep brain stimulation (DBS), or external stimulation such as transcranial magnetic
stimulation (TMS) (for a review see Zhang and Seymour, 2014). The latest methods, for
example the non-invasive decoded neurofeedback based on fMRI measured activations or con-
nectivity (Megumi et al., 2015; Shibata et al., 2011), and genetic-based control techniques such
as optogenetics (Deisseroth, 2011), can provide controllable intervention with high temporal
and spatial precision. In addition, they have the potential to form part of a brain-machine
interface, ‘closed-loop’ pain control system, which aims to adjust intervention according to
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the real-time pain-related brain activities – hence minimising the hazards of over-stimulation
and the need for battery replacement (Zhang et al., 2013; Zhang and Seymour, 2014). Apart
from identifying appropriate targets for therapeutic stimulation, studying how the brain learns
and adapts during pain and relief can also reveal its impacts on the performance of these
technology-based therapeutics. In Chapter 6, a proof of concept closed-loop system is built
to control experimental pain delivery based on real-time decoded pain-evoked fMRI brain
activity. This is the first attempt to assess the influence of such systems on the representation
and subjective experience of pain in human.

In summary, characterising pain and relief motivation and understanding the role of the
motivation/decision neural circuit involved can be useful for elucidating the mechanisms behind
pain chronification and improving the design of technology-based pain therapeutics.

1.5 Thesis structure

This chapter introduced the idea of studying pain and relief from a motivational perspective, and
reviewed theoretical, computational, and neurobiological evidence that support its importance.
Specifically, the reinforcement learning computational framework emerges as a potential
approach to bridge experimental learning paradigms with the resulting behavioural and neural
responses. This also raises practical research questions regarding the nature of pain and relief
experience:

• How do humans learn and adapt behaviourally and neurally in the presence of pain and
relief, from a computational perspective?

• How does learning influence the subjective experience of pain and relief, as well as their
representations in the brain?

• How does the understanding of pain/relief motivation inform the development of future
technology-based pain therapeutics?

The remainder of this thesis aims to explore these questions with a series of human func-
tional neuroimaging experiments. In Chapter 2, the methods for behavioural and neural data
collection and analysis are briefly reviewed. The main body of the thesis consists of four
experiments focusing on pain and relief learning. Chapter 3 uses a Pavlovian acute pain condi-
tioning task to dissociate the different learning processes underlying the different conditioned
responses from learning. Chapter 4 and 5 focus on relief learning through terminating tonic pain,
investigating how this modulates the motivational and hedonic aspects of pain, and whether
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learning differs for active and passive learning paradigms. Chapter 6 explores the feasibility
and potential impacts of a brain-machine interface pain control system where real-time decoded
information from the brain is used to control future experimental pain delivery. Finally, a
summary of the contributions from these experiments is given in Chapter 7, with a discussion
on the potential directions for future research.



Chapter 2

Methods

The main objective of computational neuroscience is to derive mathematical models that
formalise the mechanical procedure of information manipulation and processing implemented
through the collective activities of a population of neurons (Bermúdez, 2014). For a system
like the brain, any mathematical models proposed need to strike a balance between biological
plausibility and computational tractability. Specifically, these models need to conform with the
electrical and chemical properties of neurons, and should be simple and efficient in dealing
with the given information-processing tasks (Bermúdez, 2014; RC O’Reilly and Munakata,
2000).

The problem of pain and its relief can be approached from a motivational perspective. Using
pain and/or relief as reinforcing outcomes in conditioning experiments allows the complex
behaviour and subjective perception to be analysed in the context of learning. Hypothesised
computational learning models then generate dynamic predictions that can be compared with
actual neural and behavioural data acquired during these experiments. This comparison serves
to assess the explanatory power of the proposed models for realistic biological processes, as
well as discriminating between competing hypotheses (Cohen et al., 2017; Daw and Doya,
2006; O’Doherty et al., 2007).

In this chapter, an overview of the methods used to achieve the above goal and their relevant
background are given. A variety of neural and behavioural responses in experiments can be
recorded non-invasively in healthy human participants in the forms of functional neuroimaging
and physiological measurements. Overviews of data collection, processing, and analysis are
described in sections 2.1 and 2.2. Stimulation used to elicit pain and relief is reviewed in section
2.3. Finally, the procedures of computational model fitting and comparison are summarised in
section 2.4.
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2.1 Functional magnetic resonance imaging (fMRI)

Functional magnetic resonance imaging (fMRI) has become the most commonly used method
for studying human brain function over the past two decades. It is proposed to measure
indirectly the local excitatory neuronal activities. Through a series of signal processing and
statistical analyses, raw fMRI data can be transformed into statistical maps showing responses
in particular brain regions related to experimental stimuli, which are often manipulated to alter
mental or perceptual functions (Penny et al., 2011). fMRI has become a prominent technique
in cognitive neuroscience due to its demonstrated safety, non-invasiveness, and relatively high
spatial resolution (Cohen et al., 2017; Poldrack et al., 2011).

Theoretical overview

The most common method of fMRI is measuring the blood oxygenation level dependent
(BOLD) signal change, which reflects indirectly the changes in local neural activity through
changing blood oxygenation, often as a result to external stimulus (Kwong et al., 1992; Ogawa
et al., 1992; Ogawa et al., 1990). Determinants of the BOLD signal include: (i) the neuronal
activity that responds to an external stimulus, (ii) the process that converts neuronal activity
to haemodynamic responses (‘neurovascular coupling’), (iii) the haemodynamic response
driven by the increased local blood flow and oxygen metabolism, and (iv) the MR signal
change detected by the MRI as a result of haemodynamic responses altering the magnetic
field properties (Arthurs and Boniface, 2002; Buxton, 2013). Specifically, metabolically active
tissues have increasing demand for oxygen, which increases local cerebral blood flow and
therefore regional concentration of freshly oxygenated blood. As oxygenated and deoxygenated
haemoglobin have different magnetic properties, the BOLD signal effectively uses this as
an endogenous contrast to reflect tissue differences in concentration of these molecule types.
The decreasing concentration of deoxygenated blood observed in local vasculature decreases
paramagnetism and increases the MR signal strength observed locally (Huettel et al., 2014).

fMRI BOLD measures the haemodynamic activity associated with a population of neurons.
Since BOLD relies on detecting blood oxygenation, its spatial resolution is limited by the lower
density of microvasculature compared to neurons (Arthurs and Boniface, 2002). The typical
size of a voxel (the building block of a 3D image) in fMRI studies is a cube with 2-3 mm
edges. A voxel can span multiple cortical columns and vasculature elements, containing at
least 106 neurons. Numerous studies have shown that the BOLD signals correlate strongly to
local field potentials (LFPs) and evoked potentials, which represent population synaptic activity
instead of neuronal spikes (Arthurs and Boniface, 2002; Goense et al., 2016; Logothetis et al.,
2001). Comparing to other functional imaging methods such as positron emission tomography
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(PET), fMRI has superior spatial resolution and allows activity localisation without invasive
procedures or ionising radiations (Buxton, 2013).

As the cerebral blood flow response has a relatively slow rise and recovery time, the
temporal resolution of BOLD fMRI typically spans 1-3 seconds, significantly slower than
that of actual neural activity and hence many other electrophysiological modalities (Buxton,
2013). As the delay between sensory input and haemodynamic response is relatively constant,
the BOLD response can be approximated as a linear time invariant system for events that are
separated sufficiently in time. This property allows the use of statistical techniques such as
statistical parametric mapping (SPM) to assess the significance of correlations between sensory
input stimuli and haemodynamic responses measured with MRI, both spatially and temporally,
which forms the basis of activation mapping studies in the human brain (Friston et al., 1994a;
Friston et al., 1994b; Poldrack et al., 2011).

Experimental designs

To identify the brain region responding to a particular sensory stimulus, fMRI experiments
are designed to assess the modulatory effects of a stimulus as it varies in time (Buxton, 2013).
A typical block design alternates periods of time in which different stimuli are given – for
example, a participant receives painful thermal stimuli for 30s, and then non-painful warm
stimuli for 30s, repeated multiple times in sessions for statistical power. In comparison, an
event-related design has different stimuli being presented interleaved in time, taking advantage
of fMRI’s relatively fine temporal precision. This type of design allows changing responses to
the same stimulus to be captured, for example, to detect the effects of learning (Dale, 1999).
In addition to determining the response to specific stimuli, fMRI can also be used to explore
functional connectivity between various brain regions based on their temporal signal correlation,
either with or without applying external stimuli (task- or resting-state functional connectivity)
(Friston, 2011; JX O’Reilly et al., 2012). With increasing computational power and algorithm
efficiency, real-time fMRI is able to acquire experimental images approximately in real-time,
providing the option of incorporating advanced design features such as providing real-time
feedback or exerting external controls based on the detected brain activations (deCharms, 2008).

Data analysis

Producing statistical parametric maps of brain activations from raw fMRI data obtained in an
experiment usually involves (i) preprocessing, and (ii) statistical modelling. Preprocessing
aims to correct any spatial or temporal confounds from data acquisition, before transforming
the images into a standard space for activation reporting. Statistical modelling estimates the
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statistical significance of brain responses within and across subjects to produce statistical maps
(Penny et al., 2011).

Preprocessing

Motion is a major source of artefacts for fMRI images. Despite the use of head restraints,
movement in subjects introduces a spatial mismatch between images acquired sequentially in
time. Spatial realignment performs a rigid body transformation that minimises the difference
between the reference image (usually the first one) and all others subsequently acquired (Friston
et al., 1995). The rigid body transformation is defined in three translational and three rotational
directions, and the realignment process produces a six-parameter estimate for each image,
forming a matrix that can be incorporated in statistical modelling and for data quality inspection.
In addition, artefacts from cyclic physiological fluctuations (e.g. cardiac or respiratory) can
be corrected using principal component analysis focusing on the noise susceptible regions
(Behzadi et al., 2007).

In order to extrapolate results from across subjects, brain images are often transformed
to a common geometrical space. Spatial normalisation transforms images to fit a standard
brain-space template, for example the Montreal Institute of Neurology (MNI) space derived
from hundreds of healthy subjects. The process usually involves (i) coregistering fMRI images
to higher resolution anatomical images so that both are in the subject space, (ii) normalising
subject’s anatomical image to match the template image through affine transformation (adding
scaling and shearing to rigid body transformation), (iii) applying the warping parameters
obtained from (ii) to the fMRI images (Holden, 2008). To increase signal to noise ratio,
smoothing can be applied to images through convolution with a 3D Gaussian kernel, usually
with 8-12 mm diameter, to reduce noise and the inter-subject differences that cannot be
accounted for by normalisation (Penny et al., 2011).

Various software packages are available for fMRI data processing, including SPM (Statisti-
cal Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm/software/), FSL (https://fsl.fmrib.ox.
ac.uk/), and many others. Preprocessing pipelines may vary for different software in terms of
implementation and additional processing steps. Recent software packages such as fmriprep
(https://github.com/poldracklab/fmriprep, Esteban et al., 2017) aim to incorporate prepro-
cessing steps from different software to establish a generalised pipeline in order to increase
reproducibility.

http://www.fil.ion.ucl.ac.uk/spm/software/
https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
https://github.com/poldracklab/fmriprep
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Statistical modelling

The purpose of statistical modelling of fMRI data is to detect statistically significant and
regionally specific correlations between stimulus input and physiological responses in the brain.

The general linear model (GLM) approach to fMRI (Friston et al., 1994a; Friston et al.,
1994b) models observed data (dependent variable, e.g. voxel time-series from images) as a
linear combination of predictor variables (independent variables, e.g. experimental stimuli or
conditions). Specifically, a GLM for i observations modelled by j predicting variables can be
summarised as:

yi = β1xi1 +β2xi2 + · · ·+β jxi j + εi (2.1)

where y is the observed time series of voxel i, xi j the ith value of predictor variable j, β j the
parameter estimate for predictor variable j, and εi the error of observation i. The GLM can also
be expressed in matrix and vector form:

Y = Xβ + ε (2.2)

where X (referred to as the design matrix) is an i× j matrix where each column corresponding
to a predictor x j, β is a j×1 column vector of coefficients, and Y is the observation column
vector of length i (Poldrack et al., 2011). X can include experimental manipulations proposed
to modulate brain activities (i.e. regressors of interest), and other nuisance predictor variables
such as subject movement (regressors of no interest). The design matrix is usually represented
as a series of boxcar functions (ones at events with varying durations and zeros otherwise), and
convolved with a canonical haemodynamic response function (HRF) to account for the 4-6s
delayed peak time of BOLD effects.

The model parameters β are then estimated from the BOLD signals to test the hypothesis
of whether an experimental manipulation has significant effect on a particular brain region. β

values can be estimated using the classical or the Bayesian approach by minimising residuals
(Penny et al., 2011). Iterating over all voxels yields a series of beta images, each representing
the partial correlation between a predictor variable and the brain response, taking into account
all other predictors specified in the model. Finally, the model parameters estimated are tested
using t or F statistics to produce statistical parametric maps. A contrast vector c consisting of
weights for predictors of interest is used to compute t statistics:

t =
c⊺β̂√

σ̂2c⊺(X⊺X)−1c
(2.3)



30 Methods

where β̂ is the estimated model parameters, σ̂2 the variance of data residuals, X the design
matrix (Pernet, 2014). F statistics are computed similarly with a contrast matrix c to test effects
and/or differences across conditions.

GLMs typically use the massive univariate approach by fitting a separate model for each
individual voxel. The large number of voxels and subsequent hypothesis tests can lead to a
high risk of false positives (Type I errors). For example, a typical brain with ∼100,000 voxels,
and a voxel-wise Type I error rate of 0.05 implies potentially 5000 false positive results. False
positives can be controlled by thresholding the height of t or Z statistics for voxel activation with
more stringent approaches. Random field theory is used for multiple comparison correction
in the software SPM, which considers the likelihood of individual voxel exhibiting spatial
correlation with each other, or the smoothness of the statistical map. This approach can reduce
the effective number of independent observations across voxels when determining appropriate
thresholds (Worsley et al., 2004), as compared to the overly conservative Bonferroni correction
where all voxels are assumed independent. Given that in many neuroimaging studies there
exists a priori hypotheses regarding the brain regions activated, it is possible to restrict multiple
comparison correction within a smaller volume of interest instead of using the whole brain.
Small volume correction (SVC) adjusts the activation p value taking into account the shape
and size of the mask of volume provided, which is usually defined with anatomical atlases
or coordinates from related activations in previous studies, when considering the activation’s
statistical significance (Worsley et al., 1996).

Model-based fMRI incorporates specific predictors generated from candidate computational
models as GLM regressors by including them as parametric modulators (O’Doherty et al., 2007).
Instead of examining activations directly resulting from experimental stimuli, the model-based
method aims to probe how these activations might be generated, usually by testing competing
hypotheses regarding their underlying computations. This method allows the use of fMRI to
explore the higher level aspects of cognition such as learning and decision-making, with the
added advantage that a parametric design also increases statistical power compared with the
simple subtractive methods across different experimental conditions (Cohen et al., 2017).

Finally, multivoxel pattern analysis (MVPA), or ‘decoding’, examines the spatial activation
patterns from ensembles of voxels to determine the information they collectively represent
(Haxby et al., 2001). Classifier- or similarity-based MVPA learns different neuronal patterns
corresponding to different cognitive states, potentially revealing how information can be
represented distributedly across the whole brain (Cohen et al., 2017). MVPA classifiers are
routinely used in neuroimaging-based neurofeedback, a technique that has seen increased
attention with the development of the field of brain-machine interface. Using real-time fMRI,
measured neural activity patterns can be decoded in real-time, and immediate perceptual
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feedback are presented to participants based on their classified brain states (deCharms et al.,
2004, 2005). Real-time feedback supposedly facilitates or guides self-regulation of the neural
substrates underlying a particular behaviour or cognitive process (Sitaram et al., 2017). While
the mechanism behind this regulation remains unclear, a neural network including the basal
ganglia and insula has been found to be involved in the process, which suggests that learning
may play an important role (Emmert et al., 2016).

To summarise, fMRI provides a safe, non-invasive way of studying brain function in actively
behaving human participants. The unique combination of temporal recording and anatomical
localisation in fMRI is particularly useful for investigating learning effects and their underlying
computations.

2.2 Physiological and behavioural measurements

Physiological and behavioural measures are routinely used for validating and fitting com-
putational models, helping to bridge the gap between functional theories and brain mapping
(O’Doherty et al., 2007). In this thesis, additional physiological and behavioural data is acquired
alongside fMRI measures to study the multiple facets of pain/relief learning.

Skin conductance responses (SCRs)

Skin conductance responses (SCRs) have been widely used as peripheral indicators of sympa-
thetic arousal through sweat gland activities (Staib et al., 2015). Similar to a set of variable
resistors connected in parallel, the sweat ducts are filled with varying amount of sweat depend-
ing on the sweat gland activity, which is controlled by the activation level of the sympathetic
nervous system. The variable resistors become more conductive with higher amount of sweat
produced, and the change in conductance can be measured by passing a small current through
two electrodes attached to the surface of the skin (Dawson et al., 2007).

SCRs have been used in aversive conditioning studies as an indicator of learning success,
and preparatory responses to upcoming events (Boll et al., 2013; Li et al., 2011; JS Morris
and Dolan, 2004; Schiller et al., 2008). There are two ways to infer conditioning from SCRs.
First, it is possible to look at the anticipatory SCR following a conditioning cue (CS), which is
typically done during the trials in which the US, such as pain, is omitted, because of the slow
rise time of the SCR (time-to-peak is usually several seconds). Alternatively, one can look at
the SCR to the US to see how it is modified as a direct measure of conditioning.

SCR analysis involves extracting data features from the continuous recording. The conven-
tional analysis approach involves band-pass filtering to reduce observation noise, defining a
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response time window after stimulus events (0-5s used in studies cited above), and detecting the
peak amplitude within this window following predefined criteria (Bach et al., 2009; Dawson
et al., 2007). A more recent model-based approach is implemented in the software PsPM
(Psycho-physiological Modelling; http://pspm.sourceforge.net/). Its linear model approach
assumes sympathetic nervous responses follow stimulus onset with constant latency, and esti-
mates SCR amplitudes with a GLM approach similar to that of fMRI analysis; or alternatively,
it estimates SCR amplitudes with a non-linear model, assuming variable onset and latency for
event-related SCRs, such as the anticipatory effects in conditioning (Bach et al., 2010, 2009).
SCR amplitudes are usually transformed for normalisation before statistical testing since its
distribution skews towards lower values (Schiller et al., 2008).

Electromyography (EMG)

Surface electromyography (EMG) offers the opportunity to study a range of motor-related
conditioned responses. Limb EMG has been used to study limb withdrawal reflexes during
aversive conditioning, allowing analysis of response incidence and magnitude on a trial-by-trial
basis with millisecond precision (Kaulich et al., 2010; Timmann et al., 2000). Facial EMG
measures are sensitive to changes in spontaneous facial expressions, which has been used to
assess response to nociception during anaesthesia and emotional conditioning experiments
(Criswell, 2011; Littlewort et al., 2009). Choosing the specific muscles to record EMG from
often requires considerations of the movement range of possible conditioned responses, muscle
function and size, the ease of electrode attachment, as well as posture constraints (Criswell,
2011).

Heart rate

Changes in heart rate compared to baseline can also be used to assess conditioning. Specifically,
cardiac deceleration is thought to be an index of perceptual processing of sensory information
through parasympathetic activity, and unpleasant stimuli are associated with more pronounced
deceleration (Bradley, 2009). Cardiac acceleration has been interpreted as evidence of mo-
bilisation for avoidance, and is related to muscle preparation (Hamm et al., 1993). These
characteristics make heart rate a suitable measure in aversive conditioning, however, it has been
observed to be less sensitive to changes in stimulus information compared to SCRs (Peri et al.,
2000).

http://pspm.sourceforge.net/
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Subjective ratings

For internal events that cannot be directly observed, self-reporting as a means of communicating
sensory experience is frequently used for assessment (Turk and Melzack, 2011). To examine the
influence of learning on perceptual experience, ratings of pain and relief are typically collected
repeatedly in conditioning experiments to capture their fluctuations in magnitude over a period
of time. Visual analogue scales (VAS) are often used for this purpose, where the subject is
asked to rate their pain based on a linear scale from minimum to maximum representing ‘no
pain’ to ‘unbearable pain’ (‘no relief’ and ‘very pleasant relief’ for relief ratings). The validity
of VAS has been demonstrated via its positive correlation to other forms of pain self-report
measures and observed pain behaviour (Jensen et al., 1986; DD Price et al., 1983). However,
VAS can be relatively more time-consuming and cognitively demanding compared to other
measures (Turk and Melzack, 2011).

Choices

During instrumental conditioning, participants are usually given the choice of multiple re-
sponses, each being reinforced according to a separate schedule operating concurrently (‘con-
current schedule’, Bouton, 2007). Choices can reflect which, when, and how much of a
reinforcer one prefers, which can be modelled within the RL framework. Apart from being
realistic and intuitive, choice reaction time can also reveal additional information for inference,
such as uncertainty or expectation violation in decision-making, as well as impulsiveness and
self-control in personality traits (Bouton, 2007; Meyniel et al., 2016).

2.3 Pain stimulation

Methods for eliciting noxious experimental pain safely and reliably in humans become more
limited when compatibility with MRI needs to be considered. The experiments in this thesis
used thermal and electrical pain stimulations during fMRI scanning, delivered using MRI-safe
stimulators with special physical filters for noise reduction.

Stimulation methods

Thermal stimulation activates pain-specific A-delta and C fibres in the ascending nociceptive
pathways using a contact heat-evoked potential stimulator (CHEPS) (Chen et al., 2001). Ther-
mal pain thresholds are relatively consistent across and reproducible within individuals (Byrne
and Dafny, 1997; Chakour et al., 1996). Uniquely, thermal stimuli can be used to deliver tonic
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pain to mimic a clinically valid pain relief experience, through the rapid heating and cooling
capabilities of CHEPS (70 and 40 ◦C/s respectively). Strict temperature and duration limits
are programmed in thermal stimulator software to ensure safe delivery of tonic thermal pain
without the risk of burns (Medoc, 2017).

Electrical stimulation is also widely used to elicit a painful, aversive state in experimental
psychology studies (Li et al., 2011; Schiller et al., 2008; Seymour et al., 2004). By activating
both A-delta and non-nociceptive A-beta fibres, electrical stimulation produces a sharp, focal
painful sensation, especially when delivered through a concentric surface electrode. This type
of electrode consists of a central anode and a concentric circular cathode of 10mm diameter, and
was initially designed to study facial pain, but has since been used in many experimental pain
studies (Seymour, 2010). Electrical stimulation is more appropriate for tasks with repetitive
stimulation because it has lower peripheral habituation comparing to thermal stimulation
(Seymour et al., 2004).

Calibration procedures

As individuals have different pain thresholds, calibration is conducted to set threshold stimula-
tion parameters (temperature or electrical current) for each participant before each experiment.
This typically consists of a staircase procedure, followed by a randomised sequence of stimuli
for participants to rate in terms of their subjective intensities. The staircase method increases
stimulation intensities by a fixed amount each time to establish a suitable range, in a way that
participants can anticipate and stop upcoming trials if needed. The randomised sequences
that followed remove potential anticipatory effects of the staircase method (Derbyshire et al.,
1997; Seymour et al., 2004). A sigmoid or Weibull function can then be fitted to the stimula-
tion parameters and the collected ratings to determine the appropriate settings for the desired
subjective pain level (Seymour, 2010).

2.4 Computational modelling

A generative model proposed to explain the pain/relief learning process should explain ex-
perimental data well while structurally remaining as simple as possible, striking a balance
between biological plausibility and computational tractability (Claeskens and Hjort, 2008).
Model fitting refers to the procedure of estimating model parameters to produce predictions that
fit the experimental data best (Myung, 2003). The goodness of model fit can be assessed with
various summary statistics, which are often used for model comparison amongst competing
models in order to determine the most plausible theoretical explanation.
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Model fitting

Trial-by-trial analysis is particularly suitable for learning models as it can capture the temporal
dynamics and complexity of the data. For example, in a conditioning experiment, a trial
typically consists of a visual cue, followed by the participant’s chosen action, and finally the
outcome of reward or punishment. The evolution function of a learning model produces a
prediction at each of these trial time points (e.g. cue value, action value, outcome prediction
error), which combines aggregated experience from past trials with actual response in the
current trial. These model predictions are assumed to reflect the experimental data (e.g. action
chosen, evoked SCR, subjective rating) with additive noise, described by the observation
function. Together, these functions map the components underlying learning processes to the
observable neural and/or physiological data (Daunizeau et al., 2014; Daw et al., 2011).

Model parameters are used to specify a model, and to characterise factors of experimental
interest (e.g. learning rate). Model fitting following maximum likelihood estimation (MLE)
seeks to find the free parameter estimates θ̂M that maximises P(D|M,θM), the probability of
observing current dataset D given a model M, as described by Bayes’ rule:

P(θM|D,M) ∝ P(D|M,θM) ·P(θM|M) (2.4)

For example, one can estimate the learning rate in an RL model that maximises the probability
of choosing an action given a visual cue. Typically, free parameters of the evolution and
observation functions are estimated within a predetermined range to maximise the likelihood
estimate aggregated over the entire dataset. This process can be accomplished by discretising
the parameter space for a grid search, or using the nonlinear optimisation functions available in
scientific computing software (e.g. fmincon in MATLAB) (Daw, 2011). A variational Bayesian
approach is also implemented in the software VBA toolbox (Variational Bayesian Analysis;
https://mbb-team.github.io/VBA-toolbox/) to maximise the approximation of the log model
evidence (Daunizeau et al., 2014).

Model parameter estimates are likely to differ between individuals, potentially reflecting
certain population-level characteristics. The summary statistics approach treats each partici-
pant’s parameter estimate as a random variable, and the means of group parameters are used
for population-level inference (Friston et al., 2005). In a fixed effect analysis, the same model is
assumed to generate the data for all individuals of a group. Alternatively, for a random effect
analysis, individual subject’s model parameters are assumed to be drawn from an unknown
population distribution, where theses parameters are allowed to differ across individuals. Fixed
effects analysis does not consider between-subject variability, which contributes to higher risk
of false positive results (Poldrack et al., 2011). The group-level summary statistics can be

https://mbb-team.github.io/VBA-toolbox/
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assumed to define subject-level parameters hierarchically, acting as constraints for the likely
parameter range. Group-level parameters can then be estimated by updating group parameter
summary statistics from all subjects’ parameter posterior and iterating until convergence. This
mixed-effect modelling approach has the advantage of reducing the likelihood of producing
outliers in individual parameter estimates because of the group constraints (Daunizeau et al.,
2014; Daw, 2011; Penny et al., 2004).

Model comparison

Model comparisons address the question of to what extent the experimental data supports a
collection of proposed models. The data likelihood P(D|M, θ̂M) assigned for model parameter
optimisation can be used as model evidence to compare among different models. However,
these measures need to be corrected to account for model complexity, usually by taking into
account the number of free model parameters, in order to avoid overfitting (Daw et al., 2011).
For learning models, the Bayesian Information Criterion (BIC, Schwarz, 1978) is often used:

BIC =
k
2

logn− log(P(D|M, θ̂M)) (2.5)

where n is the number of data points (e.g. choices from all trials) and k is the number of
free parameters in the model. However, the penalty of BIC for model complexity ignores the
different admissible range of individual model parameters (i.e. the priors). This problem can
be circumvented by Bayesian model selection (BMS), where parameter priors are factored into
the calculation (MacKay, 2003).

When considering model evidence from multiple participants, model identity could be
considered as a random effect that varies across individuals, where the best fitting model can
be different for each participant (Daunizeau et al., 2014; Stephan et al., 2009). Random effect
BMS assumes one model out of a collection was drawn from a distribution for each individual,
in addition to the variations in model parameters and observed data. This inference therefore
reflects how likely a model fits the individuals within a population. For fixed effect BMS, on
the other hand, the same model is assumed to generate the data of all individuals, and different
models are compared based on the summed model evidence from these individuals.

In summary, collecting fMRI and other physiological and behavioural data during pain/relief
learning experiments allows us to test and compare various possible reinforcement learning
models. This informs us about the generative processes underlying the different conditioned
responses, and the effects of learning on the pain/relief hedonic experience. The main workflow
used in the studies in this thesis is summarised in Fig 2.1.
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Fig. 2.1 Methods summary. The main purpose of the studies in this thesis is to understand pain
and relief representation and processing in the brain. A series of data, including fMRI BOLD
signals, subjective ratings, physiological recordings, and choices can be collected during the
pain/relief learning experiments designed to study their motivational effects. Generative models
proposed to explain pain/relief information processing are usually fitted with behavioural data
(e.g. physiological data or choices) from individuals, and the winning model emerges from
model comparison is considered the most likely candidate underlying the computation. Model-
generated predictors are then used to localise brain regions with model correlated activations,
and to assess the impact of learning on hedonic experiences.





Chapter 3

Experiment 1: Dissociable learning
processes underlie pain conditioning

Pavlovian conditioning underlies many aspects of pain behaviour, from the execution of
protective motor responses to the elicitation of fear. However, it remains unclear whether
there are multiple learning mechanisms involved in these behaviour, and how they might be
represented in the brain. Using a parallel conditioning paradigm in which different Pavlovian
cues predicted pain to either the left or right forearm, we show that conditioning involves
two distinct learning processes. First, a preparatory system learns autonomic responses and is
correlated with brain activity in amygdala-striatal circuits (the classic ‘fear-learning’ circuit).
Second, a ‘consummatory’ system learns limb-withdrawal responses, detectable with limb
electromyography and correlated with ipsilateral cerebellar activity. These results define a
distinct computational role for the cerebellum in pain, and show that the overall phenotype of
conditioned pain behaviour depends on two parallel reinforcement learning circuits.

Adapted from Zhang et al. (2016)
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3.1 Introduction

Pavlovian conditioning underlies many aspects of pain behaviour, including fear and threat
detection (LeDoux, 2014), escape and avoidance learning (Gerber et al., 2014), and several
types of endogenous analgesia (Wager and Atlas, 2015). Although a central role for the
amygdala is well established (Phelps and LeDoux, 2005), both human and animal studies
implicate other brain regions in learning, notably ventral striatum and cerebellum (Seymour
et al., 2004). It remains unclear whether these regions make different contributions to a
single aversive learning process, or represent independent learning mechanisms that interact to
generate the expression of pain-related behaviour.

We designed a human parallel aversive conditioning paradigm in which different Pavlovian
visual cues probabilistically predicted thermal pain primarily to either the left or right arm,
and studied the acquisition of conditioned Pavlovian responses using combined physiological
recordings and functional magnetic resonance imaging (fMRI). Using computational modelling
based on reinforcement learning theory, we found that conditioning involves two distinct types
of learning processes. First, a ‘preparatory’ system learns non-specific conditioned responses
such as aversive facial expressions and autonomic responses including skin conductance. The
associated learning signals – the learned associability and prediction error – were correlated
with fMRI brain responses in amygdala-striatal regions, corresponding to the classic aversive
(fear) learning circuit. Second, a specific lateralised system learns ‘consummatory’ limb-
withdrawal responses, detectable with electromyography of the arm to which pain is predicted.
Its related learned associability was correlated with responses in ipsilateral cerebellar cortex,
suggesting a novel computational role for the cerebellum in pain. In conclusion, our results
show that the overall phenotype of conditioned pain behaviour depends on two dissociable
reinforcement learning circuits.

3.2 Methods

Subjects

15 healthy human subjects (one female) participated in a Pavlovian first-order delay conditioning
experiment (Fig 3.1). All subjects gave informed consent prior to participation, and the study
was approved by the Ethics and Safety committee of the National Institute of Information and
Communications Technology, Japan.
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Fig. 3.1 Experimental design. (a) Each trial involved one of three Pavlovian CS cues, each
of which primarily predicted (70%) either left pain (blue symbol), right pain (red), or no pain
(green), and infrequently predicted the other outcomes (15%). (b) On each trial, a 1s CS cue
was followed immediately by pain or no pain (US) in a delay conditioning procedure, followed
by a variable 7-9s inter-trial interval (ITI).

Experimental design

Subjects learned conditioned associations between different visual cues (abstract coloured
images presented on a computer screen) and brief painful heat stimuli delivered either to the
left forearm, the right forearm, or not at all. A relatively short CS-US interval of 1s was
used to optimise detection of reflex-like conditioned muscle activities, similar to the design
of eye-blink conditioning studies (Daum et al., 1993). Ultra-brief painful heat stimuli at 55◦C
were delivered through two 27mm diameter contact heat-evoked potential stimulators (CHEPS,
Medoc Pathway, Israel), to the subject’s left or right inner forearm. The CHEPS thermodes
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can heat up rapidly at 70◦C/s to 55◦C, followed by immediate cooling at 40◦C/s to baseline
temperature of 30◦C.

Physiological measurement and analysis

Physiological signals were continuously recorded using MRI compatible BrainAmp ExG MR
System with specialised electrodes and sensors (Brain Products, Munich, Germany, Fig 3.4).
Off-line processing and analysis were implemented in MATLAB (The MathWorks Inc., MA,
USA).

Skin conductance responses (SCR) were assessed as the peak-to-peak amplitude difference
in a time window of 0.5-4.5s after cue onset (pain-omitted trials), and 0.5-5.5s (pain trials). Raw
SCR magnitudes were square root transformed for normalisation (confirmed with Kolmogorov-
Smirnov test and visual inspection of histogram), and scaled to individual subject’s mean square
root transformed US response (Li et al., 2011; Schiller et al., 2008).

Upper-limb electromyography (EMG) recordings were taken from the brachioradialis and
biceps-brachii muscles on both arms. MRI artefacts were removed by using a custom-made
filtering program (Ganesh et al., 2007). The resultant EMG signals were band-pass filtered at
10-150Hz, full wave rectified, and baseline adjusted. The signals from 1s CS-US interval were
extracted and sorted according to trial types for further analysis. Moreover, conditioned EMG
response (CR) was defined as where ISI EMG activity reached 30% of the EMG maximum of
that trial, staying above that with a minimum duration of 200ms, and a minimum integral of
1mV · ms (Thieme et al., 2013). The percentage of EMG CR incidence was averaged across
left and right.

Facial EMG (corrugator muscle) and heart rate were collected in behavioural study only
(Fig 3.5a and 3.5b). Facial EMG during the 1s CS-US duration was averaged within 0-500ms
and 500-1000ms bins for statistical comparison across subjects. Due to hardware constraint,
SCRs were recorded on left side only, as there is no definitive evidence of laterality difference
between electrodermal activity recorded on left or right hand (Dawson et al., 2007). It should
be noted that null effects presented in results might be significant given a larger sample size.

Computational model analysis

We constructed reinforcement learning models, fitted trial-by-trial model value / associability
to SCR data for parameter estimation and model comparison, and then used obtained learning
signals to probe brain activity (Boll et al., 2013; Li et al., 2011; Schiller et al., 2008). In this
way, the brain responses are specifically related to the behaviourally fitted learning model.
These models can be used to test competing hypotheses about the neural representation of
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preparatory (i.e. laterality non-specific) and consummatory (i.e. laterality specific) learning
processes.

Standard temporal difference model

This model is the simple ‘real-time’ instantiation of the Rescorla-Wagner (RW) model (Rescorla
and Wagner, 1972). The value V of trial n+1 for a given cue j is updated based on the value
of current trial n and the prediction error, the difference between current value Vj and outcome
stimulus value R at trial n, weighted by a constant learning rate α :

Vj(n+1) =Vj(n)+α · (R(n)−Vj(n)) (3.1)

where the learning rate α (0≤ α ≤ 1) is a free parameter.

Hybrid temporal difference model

The hybrid model combines both Rescorla-Wagner and Pearce-Hall (PH) models, where the
RW rule is used for error-driven value update and PH associability is used as a dynamic
learning rate for RW to modulate predictive learning (Li et al., 2011). The value of associability
decreases if the conditioned stimuli become correctly predictive of the stimuli outcome (Pearce
and Hall, 1980). The values for the hybrid model were updated as follow:

Vj(n+1) =Vj(n)+κ ·α j(n) · (R(n)−Vj(n)) (3.2)

α j(n+1) = η ·
∣∣R(n)−Vj(n)

∣∣+(1−η) ·α j(n) (3.3)

where free parameters α0 (initial associability, 0≤ α0 ≤ 1), κ(0≤ κ ≤ 1), η(0≤ η ≤ 1), are
determined by fitting to behavioural data.

Assuming the preparatory learning system cannot distinguish lateralised outcomes, then
R(n) = 1 for all pain trials regardless of laterality. While the consummatory learning system
tracked outcomes ipsilateral to its side only, ignoring the opposite side, then for the left system,
R(n) = 1 for left pain, or R(n) = 0 for both right pain and no pain, and vice versa for the right
system. The three learning systems were assumed to share the same learning parameters, but
were sensitive to different outcome types.

For individual sessions, model parameters were fitted by maximizing likelihood for individ-
ual subject’s sequence of SCRs, modelled as the normal distribution around a mean determined
by the predicted value V (or associability α , or the sum of both), computed by the model on
trial n, scaled by free parameters β1, β2 and shifted by a constant term β0, with distribution
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variance σ (Li et al., 2011).

SCRn ∼ N(β0 +β1Vn,σ) (3.4)

SCRn ∼ N(β0 +β1αn,σ) (3.5)

SCRn ∼ N(β0 +β1Vn +β2αn,σ) (3.6)

To avoid contamination by pain over CS-predictive responses, only SCRs of no pain
(i.e. unreinforced) trials were fitted, but all trials were used in the computation of value
and associability. We obtained population free parameters using a hierarchical model fitting
approach (a mixed effect method) for subsequent imaging analysis (Daw, 2011). Bayesian
information criterion (BIC) value was calculated for each model with optimal individual
parameters to quantitatively compare goodness of fit (Table 3.1).

fMRI data analysis

Functional MRI imaging data was acquired on a 3T Siemens Magnetom Trio scanner with
Siemens standard 12 channel phased array head coil.

Functional images were collected using a single-shot gradient echo EPI sequence (repetition
time TR=2500ms, echo time TE=30ms, field of view=240mm, flip angle=80◦). Thirty seven
contiguous oblique-axial slices (3.75 × 3.75 × 3.75 mm voxels) parallel to the AC-PC line
were acquired. Whole-brain high resolution T1-weighted structural images were obtained.
Preprocessing of imaging data was conducted using SPM8 following standard procedures
(Wellcome Trust Centre for Neuroimaging, UK; http://www.fil.ion.ucl.ac.uk/spm/).

We conducted a parametric analysis, in which the computational model generated learning
signals were used as parametric regressors at the time of CS (visual cue) and US (pain outcome)
presentation for each trial (O’Doherty et al., 2007). These trial time points were modelled
with stick functions to represent events as finite impulses with zero durations. The best fitting
hybrid model from the SCR-based analysis was used to generate the following regressors with
population free parameters:
At outcome time:

• Preparatory associability αgeneral,

• Left-sided consummatory associability αleft,

• Right-sided associability αright,

At cue and outcome time (i.e. ‘full’ prediction error as a biphasic response):

http://www.fil.ion.ucl.ac.uk/spm/
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• Preparatory prediction error V Dgeneral,

• Left-sided predicted error series V Dleft,

• Right-sided prediction error series V Dright,

Regressors of no interest:

• Left pain delivery,

• Right pain delivery,

• Motion parameters (×6) from affine realignment in preprocessing.

All these regressors were compiled into one single general linear model (GLM) for first-
level analysis for individual subject in SPM8. Note that associability and prediction errors were
relatively uncorrelated (see demonstration in Fig 2.1), their inclusion in a single regression
model is unlikely to be confounded by shared variance (Li et al., 2011). Resulting contrasts
were used in second-level one-sample t-tests to make population inference (Fig 3.3). Small
volume correction (SVC) for multiple comparison was conducted within anatomically defined
8mm diameter spherical masks built around hypothesised structure coordinates of the amygdala,
ventral putamen and cerebellum (Table 3.2).

Functional region of interest (ROI) analysis of the cerebellum was conducted using the
Spatially Unbiased Infratentorial Template (SUIT) atlas (Diedrichsen, 2006). Masks of the cere-
bellum were created using T1-weighted structural scans for each subject, spatially normalised
to the SUIT template. Resultant contrasts from first-level analyses were then resliced into SUIT
atlas space using previously generated SUIT normalisation parameters. Spatial smoothing
of the functional data was omitted in order to avoid contaminating activation from the visual
cortex. The SUIT probabilistic MRI atlas of human cerebellum was used to locate cerebellar
lobules (Diedrichsen et al., 2009). In addition, post-hoc analyses of all ROIs were conducted
by extracting beta estimates for each subject from the functional clusters of interest as they
appear in given contrasts using MarsBaR toolbox (http://marsbar.sourceforge.net/). They were
then averaged across subjects according to model or trial types without parametric modulation.

3.3 Results

The brain is acutely tuned to detecting a variety of threats, especially pain, and elicits a set
of appropriate responses as soon as potential harm is detected. This classic ‘fear’ response is
critical for survival, and the way in which cues in the environment are used to predict harm

http://marsbar.sourceforge.net/


46 Experiment 1: Dissociable learning processes underlie pain conditioning

(Pavlovian conditioning) represents one of the most important and evolutionarily conserved
learning systems in animals. However, it is not clear whether the overall phenotype of the
pain-based fear response represents a single process, or the sum of partially independent
processes.

Physiological responses

We recorded a number of different physiological responses to evaluate the acquisition of
conditioned responses. SCRs did not distinguish the laterality of predicted or received pain,
consistent with a preparatory response. Specifically, SCRs showed comparable conditioning to
cues that predicted left (CS+ L) or right (CS+ R) arm pain, in comparison to control (CS−) (Fig
3.2a, data represented as mean± SEM). SCRs to the pain itself were also comparable regardless
of whether the pain was delivered to the predicted (congruent) or unpredicted (incongruent)
side (Fig 3.2b). We could not identify any significant laterality differences in early or late
learning periods during each session, from either normalised SCR magnitude or rise time to
peak (Fig 3.5c and 3.5d).

Facial EMG also followed a preparatory pattern. The EMG was recorded from the corruga-
tor muscle, a characteristic muscle of aversive expression, during a behavioural version of the
task (Fig 3.4). The response during the 1s CS-US interval averaged across trials showed a signif-
icant increase in 500-1000ms time window, for both CS+ L and CS+ R trials compared to CS−
trials (combined CS+ L/R vs. CS− paired t-test p<0.05 in 500-1000ms), but not significant
between CS+ L and R groups (p>0.1 for all sample points, Fig 3.2c). Comparing pain-evoked
responses for congruent and incongruent prediction trials during 1s duration after painful US
delivery revealed no statistically significant differences, consistent with a preparatory response
(both p>0.5, Fig 3.2d).

In contrast, EMG responses from each arm (recorded from brachioradialis and biceps-
brachii, which are involved in upper limb withdrawal) showed lateralised ‘consummatory’
patterns. We recorded activity in the 1 second CS-US interval, and compared it to pre-CS
baseline activity. We found that responses were significantly greater in the arm in which pain
was predicted (ipsilateral) as opposed to the contralateral side (Fig 3.2e and 3.2f). We did
not test for facial/limb EMG interaction with laterality as they were collected from different
versions of the same experiment. Note that because of the proximity of the stimulating thermode
and the EMG electrodes, US responses (to look for congruency effects) are unavoidably too
corrupted by electrical artefact for analysis.



3.3 Results 47

CS+ L CS+ R CS−
0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 S
C

R

n.s.
**

**

(a)

L pain R pain
0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 S
C

R

 

 

n.s.n.s.

Congruent Incongruent

(b)

Time (ms)

E
M

G
 a

m
p

lit
ud

e 
(m

V
)

0 200 400 600 800 1000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
CS+ L

CS+ R

CS-

(c)

Before pain
0

5

10

15

20

25
E

M
G

 C
R

 in
ci

de
nc

e 
ra

te
 (

%
)

 

 

n.s.

CS+ L
CS+ R

After pain
 

 
n.s.

Congruent
incongruent

(d)

Timen(ms)

E
M

G
na

m
p

lit
ud

en
(m

V
)

0 200 400 600 800 1000
-1

0

1

2

3

4

5

6
Ipsilateral
Contralateral

CSnon CSnoff

*

(e)

Brachioradialis Biceps−brachii 
0

5

10

15

20

25

30

35

40

45

E
M

G
 C

R
 in

ci
de

nc
e 

ra
te

 (
%

)

 

 

*

*

Ipsilateral CS Contralateral CS

(f)



48 Experiment 1: Dissociable learning processes underlie pain conditioning

(g)

Fig. 3.2 Behavioural results. (a) CS-evoked SCRs in ‘unreinforced’ trials show significant
differences between CS+ L/R and CS− (TL(41) = 2.78, TR(41) = 2.99, both p<0.01), but not
between CS+ L and CS+ R (T (41) = 0.14, p = 0.89). (b) SCRs for reinforced pain trials with
congruent / incongruent predictions, separated into L/R pain groups, showing no significant
differences. (c) Facial EMG traces during 1s CS-US interval show CS+ L/R > CS− in
amplitude (combined CS+ L/R vs CS− p<0.05 in 500-1000ms), but not significantly different
between CS+ L/R (all time points p>0.1). (d) Average facial EMG conditioned response
(CR) incidence show no significant difference between CS+ L/R during 1s CS-US interval
before, or during 1s after pain delivery, between congruent / incongruent trials (both p>0.5). (e)
Time-course of upper-limb EMG during 1s CS-US interval averaged across L/R, with ipsilateral
> contralateral response amplitude (p<0.05 in 850-1000ms). (f) Average upper-limb EMG
CR incidence in brachioradialis and biceps-brachii muscles, significantly greater for ipsilateral
trials (both p<0.05). (g) Trial-by-trial model fit of associability (blue) and value (red) to group
normalised SCRs (black) of non-reinforced trials in 1 session (first 10 trials). Data represented
as mean ± SEM. *p < 0.05; **p < 0.01; n.s., not significant.
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Neuroimaging results

Reinforcement learning theory proposes that acquisition of conditioned responses from trial-by-
trial experience utilises two key measures: a prediction error term that records the difference
between pain expectations and outcomes (Rescorla and Wagner, 1972); and an ‘associability’
term that keeps track of the uncertainty of predictions (Pearce et al., 1981). These two measures
are then integrated to update CS values that provide the prediction for the next trial. Accordingly,
the larger the prediction error the greater the update in CS value. The associability term acts as
the learning rate of value, with higher associability representing greater uncertainty and hence
more rapid learning.

SCRs were of sufficient fidelity to permit trial-by-trial analysis using a computational
statistical model fitting procedure. In agreement with previous reports (Boll et al., 2013; Li
et al., 2011), we found the SCR sequences were best described by a preparatory associability
term, illustrated in Fig 3.2g, as confirmed with a model comparison procedure based on model
fitting BICs (Table 3.1).

We then used the estimated model parameters in a linear regression with brain responses
recorded by concurrent fMRI, to identify whether anatomically distinct learning signals related
to preparatory and left / right consummatory learning signals could be dissociated. We used
the computational parametric regressors for all learning signals (associability and prediction
error for both preparatory and consummatory temporal difference models) in a single GLM
(see methods). These values were generated using population free parameters with the best
fitting model, the hybrid model, obtained from the behavioural data (SCRs) fitting procedure
mentioned earlier.

We found that bilateral ventral putamen and amygdala BOLD signals correlated with
a preparatory temporal prediction error and associability signal respectively (Fig 3.3a and
3.3b). In contrast, left and right consummatory associabilities correlated with ipsilateral
cerebellar responses. Associability signal clusters were located symmetrically in lobule left
V extending into left VI, and spanning the border between lobules right V and right VI (Fig
3.3c). The peak coordinates of these cerebellar activations were in grey matter, as identified
by the SUIT atlas (Table 3.2). In addition, post-hoc analyses of functional ROIs support the
hypothesised roles of structures identified by computational models. Beta estimates were
extracted for each subject from the functional clusters of interest as they appear in the contrasts
presented in the results. They were averaged across subjects according to model or trial types
without parametric modulation, where amygdala, putamen and cerebellum showed differential
responses to preparatory and consummatory model outputs (Fig 3.5e).
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Fig. 3.3 Statistical parametric maps showing: (a) Preparatory prediction error in bilateral ventral
putamen (MNI z=-2, p<0.001 unc.). (b) Preparatory associabilities in bilateral amygdala (z=-
18, p<0.01 unc.). (c) Ipsilateral activations to consummatory associabilities (y=-40, p<0.001
unc., all p<0.05 in small volume correction (SVC) using anatomically defined 8mm diameter
spherical ROI masks built around hypothesised structure coordinates, Table 3.2). ROI analysis
of cerebellum using SUIT probabilistic atlas template showing: Top: left anterior cerebellum
activations in the border between lobule V and VI (SUIT space coordinates: 24, -52, -15), and
in lobule VIII (-22, -50, -41, p<0.004 unc.); bottom: right anterior cerebellum activation in the
border between lobule V and VI (-18, -52, -13, p<0.001 unc.). unc.: uncorrected threshold.
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3.4 Discussion

In summary, our results dissociate two distinct response-learning systems underlying human
pain. An amygdala-striatal system was identified with predictors from a general computational
reinforcement learning model that largely ignores information about the laterality of pain,
and the same model predictions also explain preparatory conditioned responses, including
autonomic responses and facial expression. In contrast, a cerebellar system was identified with
a laterality-specific learning model, which also corresponds with specific ‘consummatory’ limb
withdrawal responses appropriate to the anatomical site of predicted pain.

The role of the amygdala in preparatory conditioning is well established. For instance,
amygdalar lesions impair autonomic responses, freezing, potentiated startle, and active avoid-
ance (Gerber et al., 2014; LeDoux, 2014). Our data shows that a preparatory associability
signal correlates with activity at the level of the fMRI BOLD, consistent with previous studies
in both humans and rodents (Boll et al., 2013; Holland and Gallagher, 1993, 2006; Li et al.,
2011). It is important to note, however, that aversive prediction errors have been identified at a
neuronal level in rodents (Johansen et al., 2010; McHugh et al., 2014). Although there exist
species and methodological differences in comparison to our study, it illustrates the differences
in methodology between BOLD responses and neuronal physiological recordings. In particular,
since the BOLD signal could be conveying the average signal of a potentially computationally
heterogeneous group of neurons, some caution is needed against over-interpretation of the
results. On the other hand, it is still unclear how some computational quantities might be
encoded by distributed activity of a population of neurons. In addition, while the amygdala
contributes to SCR control (Davis, 1992), the associability signal was fitted to SCRs from only
a subset of non-reinforced trials (1/3 of all trials) for model parameter estimation. Therefore
the amygdala BOLD response parametrically correlated with associability is unlikely to be
driven by SCRs alone.

Results from other studies also argue against any simplistic single model of amygdala
function. For example, amygdala responses have been shown contralateral to the shock
laterality in unilateral eye-blink conditioning (Blair et al., 2005), and to exhibit non-symmetrical
activations in a range of fear paradigms (Apergis-Schoute et al., 2014), in contrast to the results
here which lacked laterality dissociation. Other factors such as motivational state (Balleine and
Killcross, 2006), and sensitivity to inferred (‘model-based’) cue-outcome contingency (Prévost
et al., 2011) have also been demonstrated. Therefore, whilst our computational model-based
analysis showed that the expression of preparatory responses did not appear to distinguish
laterality, we certainly cannot exclude the possibility that neuronal processing within the
amygdala may incorporate information about outcome identity, including laterality.
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The involvement of the putamen in aversive conditioning was discovered much later than
amygdala, and its function has been less clear. Since the putamen receives cortical somatotopic
pain projections (Bingel et al., 2004), it is possible that it might have carried a consummatory
or sensory-specific error signal (Roy et al., 2014; Torrecillos et al., 2014). However, the
non-lateralised nature of the signal seen here instead provides good evidence to suggest that it
is primarily part of a preparatory system.

Most significantly, the results provide a formal account of one of the roles of the cerebellum
in pain. Previous research, including using human fMRI, has shown cerebellum responses to
noxious stimuli, however defining a specific role in pain processing has been difficult (Moulton
et al., 2010). Stimulation of the cerebellum can alter nociceptive thresholds and reflexes in
animals (Saab and Willis, 2003), suggesting it may engage in pain modulation along with
various brain stem structures involved in the cerebrocerebellar loop (Kelly and Strick, 2003;
Moulton et al., 2010). Evidence from human studies indicate cerebellum may be activated by
other processes related to, but not exclusive to pain sensory processing, for example motor
withdrawal (Dimitrova et al., 2003), anticipation to pain (Ploghaus et al., 1999), and negative
emotions (Singer et al., 2004). This has led to the proposal that the cerebellum may act as an
integrator of various effector systems of pain such as sensorimotor integration, pain modulation,
and affective processing (Moulton et al., 2010).

Our results provide evidence of an uncertainty-sensitive associative learning process for
ipsilateral conditioned motor responses. Anatomically, the major activation was localised in the
anterior lobe, bordering lobule V and VI, which concurs with the sensorimotor area of previous
functional topographic studies (Stoodley and Schmahmann, 2009). Conditioned postural limb
activation during electrical shock conditioning are known to depend on an intact anterior and
superior cerebellum (Timmann et al., 2000). Electrical shocks, however, also recruit ascending
proprioceptive fibres that project to cerebellum and support motor learning. Here, our use
of thermal pain stimulation – which should selectively activate A-delta and c-fibres afferents,
provides evidence of a primary nociceptive-driven learning process.

This result suggests parallels with eye-blink conditioning, a prototypical consummatory
response. Anatomically, both animal and human lesion experiments have identified an associa-
tion between lobe V and VI with impairment or disruption of eye-blink conditioning (Lavond
and Steinmetz, 1989; Thieme et al., 2013). Computationally, cerebellar climbing fibre activity
has been shown to represent prediction error magnitude (Schultz and Dickinson, 2000), from
which associability might be calculated. Previous eye-blink studies have suggested a distinction
between preparatory and consummatory learning processes. Although both excitatory and
inhibitory conditioning on one eye can transfer to the other (Pearce et al., 1981); cues predicting
unilateral airpuff do not block acquisition of contralateral blink responses, but they do block
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autonomic responses (Betts et al., 1996). This suggests preparatory and consummatory learning
systems are distinct, but interact.

Together, our data shows that the expression of learned pain behaviour is the sum of
multiple, distinct neural processes. This has important implications for how we evaluate pain
and its treatment, especially in animals where motor responses such as paw withdrawal and
tail flick are the predominant outcome measures by which pain is inferred. Our data shows
that different emitted responses may correspond to different underlying neural subsystems of
responses to pain, which may help explain difficulties in translating animal-to-human results.
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3.5 Tables

Table 3.1 Goodness of fit to SCRs for individual models (scanning, 3 sessions 15 subjects,
34 non-reinforced trials per session per subject. bold: winning model, V: model values, α:
associabilities).

Model Mean BIC # of free parameters Fitted free parameters

RW (V) -193.34 4 α , β0, β1, σ

Hybrid (V) -186.69 6 α , κ , η , β0, β1, σ

Hybrid (α) -198.73 6 α , κ , η , β0, β1, σ

Hybrid (V + α) -197.36 7 α , κ , η , β0, β1, β2, σ

Table 3.2 Neuroimaging ROI analysis. Small volume correction (SVC) for multiple comparison
within anatomically defined 8mm spherical masks of hypothesised structure coordinates (we
did not find evidence of consummatory prediction errors on either side, see text).

Model / Region peak p(FWE-corr) cluster size t statistics Z statistics x, y, z {mm}

Associability (preparatory)

Amygdala (L) 0.089 13 2.96 2.57 -28 -6 -18
0.112 2.78 2.44 -32 -4 -16

Amygdala (R) 0.038 36 3.58 2.97 30 -4 -18

Prediction error (preparatory)

Ventral putamen (L) 0.002 43 5.77 4.06 -32 2 2
0.003 43 5.67 4.02 -24 -4 -6

Ventral putamen (R) 0.003 91 5.50 3.95 26 -4 -6
0.014 4.49 3.48 34 -4 -2

Associability (consummatory left)

Cerebellum (L) 0.017 15 4.19 3.32 -28 -40 -30

Associability (consummatory right)

Cerebellum (R) 0.011 7 4.55 3.51 32 -38 -30
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3.6 Supplementary figures

(a)

(b)

Fig. 3.4 Recording and stimulating apparatus placement. (a) Placement of bilateral upper-
limb EMG electrodes (brachioradialis and biceps-brachii), pulse oximeter (heart rate), skin
conductance electrodes, and stimulation thermodes. (b) Placement of facial EMG (corrugator)
electrodes.
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(e)

Fig. 3.5 Supplementary results (heart rate was acquired only in 2 behavioural sessions). (a)
Heart rate changes of ‘unreinforced’ trials in time window 1-5.5s after cue onset (0-1s not
shown due to signal contaminated by thermal stimulation). No difference between CS+ L/R (all
time points p>0.4), but both significantly different from CS− (vs. CS+ L all time points and vs.
CS+ R 1-3s, p<0.05), with more pronounced deceleration (1-3s) and acceleration (4-5.5s).
(b) Heart rate changes in pain trials. Incongruent prediction trials showed less pronounced
acceleration over congruent trials (but all sample points p>0.1). This is consistent with previous
results when subjects were given novel (surprising) aversive stimuli (Bradley, 2009), and raises
the possibility that some autonomic responses may not entirely blind to the laterality of pain,
and hence may not be purely a preparatory response.
(c) SCR were separated into early (trials 1-10) and late (trials 11-80) learning periods in each
session (scanning, 3 sessions). Early learning trials showed no significant laterality differences
in either SCR magnitude (peak-to-peak magnitude at time window 0.5-5.5s after CS onset),
or the time taken to rise to peak SCR (time difference from minimum to maximum SCR
magnitude, n.s.: p>0.05).
(d) Late learning trials were similar to early learning trials.
(e) Beta values of ROIs identified sorted into high/low associability or prediction error, then
aggregated into high minus low trials. Amygdala and putamen ROIs showed higher values for
general system outputs (Assoc/PE G), while cerebellum ROIs showed differential high value
for ipsilateral system outputs (Assoc/PE L/R). The overall BOLD activity pattern may not
fully capture the dynamic predictions of the RL models, therefore we showed only the trend of
activities and did not include full statistics in this analysis.





Chapter 4

Experiment 2: Comparing active and
passive relief learning

Tonic pain after injury characterises a behavioural state that prioritises recovery. Although
generally suppressing cognition and attention, tonic pain needs to allow effective relief learning
so that the cause of pain can be reduced if possible. Previous evidence showed that uncertainty
and attention modulate pain, however, whether and how this might relate to relief learning
remains unknown. Here, we compared active and passive relief from tonic pain, implemented
as instrumental and yoked Pavlovian escape conditioning tasks respectively, to investigate
whether learning to obtain relief have influence over the motivational and hedonic aspects of
pain. We showed that active relief-seeking involves a reinforcement learning process manifest
by error signals observed in the dorsal putamen. Critically, this system also uses an uncertainty
(‘associability’) signal detected in pregenual anterior cingulate cortex (pgACC) that both
controls the relief learning rate, and endogenously modulates the level of tonic pain.

Adapted from Zhang et al. (2018a)
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4.1 Introduction

Tonic pain is a common physiological consequence of injury and results in a behavioural
state that favours quiescence and inactivity, prioritising energy conservation and optimising
recuperation and tissue healing. This effect extends to cognition, and decreased attention is seen
in a range of cognitive tasks during tonic pain (Crombez et al., 1997; Lorenz and Bromm, 1997).
However, in some circumstances, this could be counter-productive, for instance if attentional
resources were required for learning some means of relief or escape from the underlying cause
of the pain. A natural solution would be to suppress tonic pain when relief learning is possible.
Whether and how this is achieved is not known, but it is important as it might reveal central
mechanisms of endogenous analgesia.

Two observations provide potential clues as to how a relief learning system might modulate
pain. First, in some situations, perceived controllability has been found to reduce pain (Becker
et al., 2015; Salomons et al., 2004, 2007; Wiech et al., 2014b), suggesting that the capacity to
seek relief can engage endogenous modulation. Second, instructed attention has commonly
been observed to reduce pain (Bantick et al., 2002). Therefore, it may be that attentional
processes that are internally triggered when relief is learnable might provide a key signal that
controls reduction of pain.

In general, learning involves distinct processes of prediction (‘state learning’) and control
(‘action learning’) (Mackintosh, 1983), although relief learning during tonic pain has not been
thoroughly investigated. But a quantitative model of relief learning – one that describes the
computational processes that are implemented in learning centres in the brain – would allow
interrogation of how an attentional process might operate to modulate tonic pain. In the case of
phasic pain, learning can be described by reinforcement learning (RL) models – a well-studied
computational framework for learning from experience. RL models describe how to predict the
occurrence of inherently salient events, and learn actions to exert control over them (maximising
rewards, minimising penalties) (Seymour et al., 2004). RL models aim to provide a mechanistic
(beyond a merely descriptive) account of the information processing operations that the brain
actually implements (Dayan and Abbott, 2001), and have a solid foundation in classical theories
of animal learning (Mackintosh, 1983). In such models, an agent learns state or action value
functions through outcomes provided by interacting with the world. These functions can be
learned by computing the error between predicted and actual outcomes, and using the error to
improve future predictions and actions (Sutton and Barto, 1998). Experimentally, the validity
of these models can be tested by comparing how well different model-generated predictors fit
the actual behavioural and/or neural data (O’Doherty et al., 2007).

During learning, attention is thought to boost learning of predictive associations and
suppress other irrelevant information. Computationally, this can be achieved by estimating the
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uncertainty as predictive associations are learned, and using this as a metric to control learning
rates. Accordingly, high uncertainty corresponds to high attention and leads to more rapid
learning (Dayan et al., 2000; AJ Yu and Dayan, 2005). One well-recognised way of formalising
uncertainty in RL is by computing a quantity called the associability, which calculates the
running average of the magnitude of recent prediction errors (i.e. frequent large prediction
errors implies high uncertainty / associability). The concept of associability is grounded in
classical theories of Pavlovian conditioning (the ‘Pearce-Hall’ learning rule, Holland and
Schiffino, 2016; Le Pelley, 2004; Pearce and Hall, 1980), and provides a good account of
behaviour and neural responses during Pavlovian learning (Boll et al., 2013; Li et al., 2011;
Zhang et al., 2016). In this way, associability reflects a computational construct that captures
aspects of the psychological construct of attention.

If it is the case, therefore, that attention can be understood as an uncertainty signal that
drives learning during relief-seeking, it can then be tested whether it modulates tonic pain
in parallel. Standard models of RL do not include any mechanism by which the subjective
experience of outcomes is under control, although in principle endogenous modulation of tonic
pain could arise from any component of the learning system, including an associability signal.
Using an associability signal in this way would make intuitive sense, because it would reduce
ongoing pain when requirement for learning was high.

The study has two goals: to delineate the basic neural architecture of relief learning from
tonic pain (i.e. pain escape learning) based on a state and action learning RL framework; and to
understand the relationship between relief learning and endogenous pain modulation i.e. to test
the hypothesis that an attentional learning signal reduces pain. We studied behavioural, physi-
ological and neural responses during an active (instrumental) and yoked passive (Pavlovian)
relief learning paradigm. These tasks were designed to place a high precedence on error-based
learning and uncertainty, as a robust test for learning mechanisms and dynamic modulation of
tonic pain. Using a computationally motivated analysis approach, we aimed to identify whether
behavioural and brain responses were well described as state and/or action RL learning systems
and examined whether and how they exerted control over the perceived intensity of ongoing
pain.

4.2 Methods

Subjects

19 healthy subjects participated in the neuroimaging experiment (six female, age 26.1±5.1
years). All subjects gave informed consent prior to participation, had normal or corrected to
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(a)

(b)

No relief (constant temperature ~ 44 °C)

Relief

4 s 13 °C

(c)

Fig. 4.1 Experiment paradigm. (a) Example trial, which was an instrumental relief learning
task (Ins) with fixed relief probabilities, yoked with identical Pavlovian task (Pav) within
subject. In instrumental trials, subjects saw one of two images (‘cues’) and then chose a left
or right button press, with each action associated with a particular probability of relief. In
the yoked Pavlovian session, subjects were simply asked to press button to match the action
shown on screen (appearing 0.5s after CS onset). (b) Instrumental/Pavlovian session yoking
and cue-outcome contingency, arrows represent identical stimulus-outcome sequence. Note in
contingency table, left and right button presses were randomised for both actions and cues. (c)
Relief and no relief outcomes, individually calibrated, constant temperature at around 44◦C
were used to elicit tonic pain, a brief drop in temperature of 13◦C was used as relief outcome
for 4s, but temperature did not change for the duration in no relief outcomes.
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normal vision, and were free of pain conditions or pain medications. The experiment was
approved by the Ethics and Safety committee of the National Institute of Information and
Communications Technology (NICT), Japan.

Experimental design

Subjects participated in interleaved instrumental conditioning and yoked Pavlovian relief
conditioning sessions in which they actively or passively escaped from pain, respectively (Fig
4.1). Tonic pain was maintained by constant thermal stimulation to the left inner forearm (see
‘Stimulation’ for details), and relief was induced by temporarily cooling the heat stimulus,
which abolishes pain and causes a strong, pleasant sense of relief.

In the instrumental conditioning sessions, subjects learned to select responses (button press
left or right) given visual stimuli (abstract fractal images on a computer screen) to try and
obtain an outcome of a brief cooling (relief) period from the tonic painful heat (Fig 4.1a).
There were two types of visual cue: an ‘easy’ cue with high probability of relief when paired
with a particular response (80% relief chance with one of the button press responses and 20%
chance with the other response), and a ‘hard’ visual cue with a lower probability of relief with
a particular response (60%/40% relief chance for the two response actions). These different
outcome probabilities were used to induce experimental variability in the uncertainty of relief
prediction. On each trial, the visual cue (condition stimulus, CS) appeared on screen for 3s,
during which subjects were asked to make the left or right button press response. An arrow
corresponding to the chosen direction was superimposed on the cue after the decision was
made until the 3s display period ended. The disappearance of the cue and response arrow was
followed immediately by the outcome of a temporary decrease in temperature of the painful
heat stimulus (temporary reduction of temperature by 13◦C from the tonic level for 4s), or
no change in temperature such that the constant pain continued straight on into the next trial
(Fig 4.1c). The next trial started after a jittered inter-trial interval (ITI) of 4-6s (mean=5s) after
outcome presentation concluded. There were 20 trials per session, with equal number of ‘easy’
and ‘hard’ cues (n=10 each). Each session lasted about 5 min.

The yoked Pavlovian conditioning task was identical to the instrumental task, except
subjects did not have control over the outcomes through their responses. Instead, the sequence
of cues and outcomes from the previous instrumental session were used (or the first instrumental
session from the previous subject, for subjects who started with a Pavlovian session, Fig 4.1b),
although subjects were not aware of the yoking process. A different set of fractal images
was used for the yoked Pavlovian sessions, so learning on an instrumental session could
not be transferral to its corresponding Pavlovian session. To control for motor responses in
both sessions, subjects were asked to press the response button according to the randomised
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indicator arrow shown, which appeared on screen 0.5s after CS presentation. This is common
in neuroimaging studies of Pavlovian and instrumental learning, and it was clearly explained to
subjects that these actions bore no relationship to outcomes.

Each subject repeated instrumental and yoked Pavlovian sessions three times (six in total).
They were clearly instructed whether it was a Pavlovian or instrumental session. To remove
any order confounds, the session order were alternated within and between subjects (i.e. order
ABABAB, or BABABA), with half the subjects started with the instrumental and the other half
with the Pavlovian task. A short break was taken every two sessions to allow the experimenter
to change the location of the heat stimuli probe, to minimise effects of habituation/sensitisation
across the whole experiment.

Subjective ratings of perceived trial outcomes (pain relief, or ongoing pain) were collected
near the beginning, middle, and end of each session, in identical order for instrumental and its
yoked Pavlovian counterpart. A linear rating scale appeared 3.5s after outcome presentation
(0.5s overlap with relief duration if any), where the scale ranged from 0 (no pain at all) to 10
(unbearable pain) for no relief outcome (red scale in Fig 4.1a), and 0 (no relief at all) to 10
(very pleasant relief) for relief outcome (green scale). On average 8 pain and 8 relief ratings
per paradigm i.e. total 16 for each subject were collected. Details are summarised in Table
4.1. Although it is the case that ratings are inherently subjective, their modulation reflects an
objective process that may explain a component of this apparent subjectivity. This does raise
the issue of whether the subjective relief ratings influence the outcome values when learned in
the RL model, but this (presumably subtle) effect is something that is beyond the experimental
power of this experiments to resolve.

Stimulation

Painful tonic thermal stimuli were delivered to the subject’s skin surface above the wrist on
the left inner forearms, through a contact heat-evoked potential stimulator (CHEPS, Medoc
Pathway, Israel). The 27mm diameter CHEPS thermode is capable of rapid cooling at 40◦C/s,
which made rapid temporary pain relief possible in an event related design.

The temperature of painful tonic stimuli was set according to the subject’s own pain
threshold. Before the task, two series of 6 pre-set temperatures were presented in random order
(set 1: mean± standard deviation (std) 43.7±1.7◦C; set 2: 44.6±0.6◦C), with each temperature
delivered for 8s, after which the subject determined whether the stimulation period was painful
or not (ISI=8s). The higher of the two lowest painful temperatures from the two tests was used
as the tonic stimulation temperature.

Final temperature used was 44.3±0.2◦C, supported by previous evidence that a similar
temperature/location for prolonged exposure (>7s) corresponds to medium pain in ratings
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(Atlas et al., 2010). Relief temperature was set constant at 13◦C below threshold temperature
for all subjects. Thermode temperature stayed at threshold level unless relief outcome occurs,
where rapid cooling at 40◦C/s to relief temperature and stayed for 4s, before ramping back to
threshold level at 40◦C/s.

Physiological measures

Skin conductance responses (SCRs) were measured using MRI-compatible BrainAmp ExG
MR System (Brain Products, Munich, Germany) with Ag/AgCl sintered MR electrodes, filled
with skin conductance electrode paste.

SCR data was recorded on volar surfaces of distal phalanges of the second and fourth
fingers on the left hand (tonic pain side with thermode attached). The signals were collected
using BrainVision software at 500Hz with no filter.

Off-line processing and analysis were implemented in MATLAB (The MathWorks Inc.,
Natick, MA, USA), with the PsPM toolbox (http://pspm.sourceforge.net/). The data was down-
sampled to 10Hz, band-pass filtered at 0.0159-2Hz (1st order Butterworth). Given the variable
nature of SCR onset and duration in a learning experiment, the non-linear model in PsPM was
used. Boxcar and delta regressors were constructed at cue onset (duration=3s, cue presentation),
and at outcome onset (duration=3s, during relief period) respectively. These regressors were
convolved with the canonical skin conductance response function, to estimate event-related
response amplitude, latency, and dispersion (only SCR amplitude were used in modelling).

Sessions with more than 20% trials (4 out of 20 trials) with cue-evoked SCR amplitude
below the threshold of 0.02 were labelled as not having enough viable event related SCRs. 15
subjects and 50 sessions remained. Trial SCRs were log-transformed within subject before
model fitting.

Other behavioural measures

Trial-by-trial choice data (button press indicating choices) and reaction times (length of time
taken from CS onset to choice button press) of subjects were recorded as part of behavioural
measurements. All behavioural data including raw SCRs, choices, and ratings can be found in
the supplementary data attachment online (Zhang et al., 2018a).

Computational learning models

To capture relief learning we fitted behavioural responses using different learning models from
previous studies (Table 4.2). Free Energy (F) is the variational Bayesian approximation of a

http://pspm.sourceforge.net/
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model’s marginal likelihood, and the sum of F for all participants provides model absolute fit
evaluation. Actual model comparison was conducted based on random-effect analysis. For
instrumental learning, the reinforcement of subjects’ responses based on experienced relief can
be modelled using reinforcement learning models (Sutton and Barto, 1998). For Pavlovian
learning, physiological responses can be used for model fitting (Boll et al., 2013; Li et al., 2011;
Zhang et al., 2016).

Win-Stay-Lose-Shift (WSLS) model

WSLS assumes a subject has fixed pseudo Q values for each state-action pair, where a relief
outcome always produces a positive value for the chosen state-action pair (i.e. win-stay),
while the remaining state-action combinations had negative values (i.e. lose-shift). A no relief
outcome flipped the sign of all values. Two free parameters p1 and p2 (0≤ p1,2 ≤ 1) scaling
the pseudo Q values for the two cues presented were used in model fitting, which were assumed
fixed through out the experiment but varied for individuals.

Temporal Difference (TD) model

The predicted state-action value Q given particular state s and action a between successive
trials is updated using an error-driven delta rule with learning rate α (0 ≤ α ≤ 1) (Gläscher
et al., 2010; G Morris et al., 2006; Sutton and Barto, 1998):

Qt+1(s,a) = Qt(s,a)+α · (rt−Qt(s,a)) (4.1)

where rt is the outcome of the trial (relief=1, no relief=0). The probability of choosing action a
from a set of all available actions As ∈ {a,b,c...} in trial t is modelled by a softmax distribution,

p(a|s) = exp(τ ·Qt(s,a))
∑b∈As exp(τ ·Qt(s,b))

(4.2)

where τ is the inverse temperature parameter governing the competition between actions
(τ > 0).

Rescorla-Wagner (RW) model

For Pavlovian learning, where choice decisions are not available, the standard TD model based
on the Rescorla-Wagner learning rule updates the state value V (s) for a given cue following a
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similar prediction error based updating process:

Vt+1(s) =Vt(s)+α · (rt−Vt(s)) (4.3)

Hybrid model

The hybrid model incorporated an associability term as a changing learning rate for a standard
TD model in state value learning (Le Pelley, 2004; Li et al., 2011). The associability term is
also referred to as Pearce-Hall associability, an equivalent measure of uncertainty, which is
modulated by the magnitude of recent prediction error (Pearce and Hall, 1980). The varying
learning rate can be used in Pavlovian state-learning:

Vt+1(s) =Vt(s)+κ ·αt(s) · (rt−Vt(s)) (4.4)

αt+1(s) = η · |rt−Vt(s)|+(1−η) ·αt(s) (4.5)

where η , κ are free parameters limited within the range of [0,1].
The model can also be extended to instrumental action-learning:

Qt+1(s,a) = Qt(s,a)+κ ·αt(s,a) · (rt−Qt(s,a)) (4.6)

αt+1(s,a) = η · |rt−Qt(s,a)|+(1−η) ·αt(s,a) (4.7)

Model fitting and comparison

Model fitting

Model fitting was performed with the Variational Bayesian Analysis (VBA) toolbox (https:
//mbb-team.github.io/VBA-toolbox/). The toolbox seeks to optimise free energy within the
Bayesian framework, analogous of maximum likelihood. Behavioural data (choices, SCRs)
were fitted separately for each individual resulting in different sets of parameters, and model
fitting performance was measured by aggregating individual subject fitting statistics. The
mean of all subject parameters were used to generate regressors for fMRI analysis following
conventions (Table 4.3).

The VBA toolbox takes in an evolution function that describes the learning model (e.g.
value updating rule), and an observation function that describes response mapping (e.g. softmax
action selection). For choice fitting, data was split into multiple sessions to allow between-
session changes in observation function parameters, but evolution function parameters and
initial states were fixed throughout all sessions.

https://mbb-team.github.io/VBA-toolbox/
https://mbb-team.github.io/VBA-toolbox/
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For SCR fitting, multi-session split were the same as choice fitting. The first two trials
from each session were excluded from fitting to avoid extreme values from startle effects,
which also served to reduce the confound from general habituation of SCRs. Trials with
insufficient event-related responses were also excluded (see ‘Physiological measures’ above).
The observation function for SCR fitting was:

gx = predictor+b (4.8)

with b as a free parameter. The predictor was not scaled to avoid overfitting.
Parameter prior setting for models followed previous studies. TD, RW and hybrid models

all have initial values as 0, and initial associability as 1. All free parameters of the evolution
function were assumed to have prior variance of 1, with the exception of SCR fitting where it
was assumed to be 0.05 to reduce flexibility. Fitted learning parameters were similar to previous
studies (Li et al., 2011; Zhang et al., 2016).

Model comparison

Model comparison was implemented with random-effect Bayesian model selection in the VBA
toolbox. The best fitted model for each individual was allowed to vary, and model frequency in
population (i.e. in how many subjects the model was the best-fit model) and model exceedance
probability (how likely the model is more frequent than other models compared) were estimated
from model fitting evidence (free energy from learning models in choice and SCR fitting, or
log likelihood from regression models in rating fitting) (Daunizeau et al., 2014; Stephan et al.,
2009).

We also calculated the protected exceedance probabilities, which corrected for the possibility
that model differences observed are due to chance (Rigoux et al., 2014). Results were shown in
figure supplements in the same way as in the original exceedance probabilities in the results
section (Fig 4.5). See http://mbb-team.github.io/VBA-toolbox/wiki/BMS-for-group-studies/
#rfx-bms for details of its calculation.

fMRI acquisition

Neuroimaging data was acquired with a 3T Siemens Magnetom Trio Tim scanner, with the
Siemens standard 12 channel phased array head coil.

Functional images were collected with a single echo EPI sequence (repetition time TR=2500ms,
echo time TE=30ms, flip angle=80, field of view=240mm), 37 contiguous oblique-axial slices
(voxel size 3.75 × 3.75 × 3.75 mm) parallel to the AC-PC line were acquired. Whole-brain

http://mbb-team.github.io/VBA-toolbox/wiki/BMS-for-group-studies/#rfx-bms
http://mbb-team.github.io/VBA-toolbox/wiki/BMS-for-group-studies/#rfx-bms
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high resolution T1-weighted structural images (dimension 208 × 256 × 256, voxel size 1 × 1
× 1 mm) using standard MPRAGE sequence were also obtained.

fMRI preprocessing

Functional images were slice time corrected using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/) with individual session’s slice timing output by the scanner. Resulting images
were then preprocessed using the fmriprep software (build date 09/03/2017, freesurfer option
turned off, https://github.com/poldracklab/fmriprep), a pipeline that performs motion correction,
field unwarping, normalisation, field bias correction, and brain extraction using a various set of
neuroimaging tools available. The normalised images were smoothed using a Gaussian kernel
of 8mm using SPM12. The confound files output by fmriprep include the following signals:
mean global, mean white matter tissue class, three FSL-DVARS (stdDVARS, non-stdDVARS
and voxel-wise stdDVARS), framewise displacement, six FSL-tCompCor, six FSL-aCompCor,
and six motion parameters (matrix size 24 × number of volumes).

fMRI GLM model

All event-related fMRI data was analysed with GLM models constructed using SPM12, es-
timated for each participant in the first level. Model generated signals used as parametric
modulators were generated with one set of group-mean model parameters, obtained with
behavioural data fitting as described. We used the mean of the fitted parameters from all
participants in the imaging analysis as this provides the most stable estimate of the population
mean (taking into account the fact that individual fits reflect both individual differences and
noise). For completeness, however, we also ran the analyses with individually fitted values,
which led to similar results (i.e. no change in significance level of each result). All regressors
were convolved with a canonical hemodynamic response function (HRF). We also include
regressors of no interest to account for habituation and motion effects. Specifically, to keep the
analyses from the two relief learning studies (Experiment 2 and 3) the same, we included the
following habituation regressors to regress out potential change in tonic pain perception simply
due to prolonged stimulation: the number of trials since last receiving a relief outcome (‘Relief’
term in rating regression model in Equation 5.7), and the log of trial number within session
(log(Trial) term). The resulting GLM estimates were entered into a second-level one-sample
t-test for the regressors of interest to produce the random-effect statistics and images presented
in the Results section.

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://github.com/poldracklab/fmriprep
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TD softmax

Regressors of interest:

• CS onset (duration=3s, cue presentation): Q values of chosen cue,

• US onset (duration=3s): prediction error,

Regressors of no interest:

1. CS onset (duration=3s, cue presentation): number of trials since last relief,

2. CS onset (duration=CS onset to US offset, entire trial exclude ITI): within session log
trial number,

3. choice press (duration=0),

4. rating press (duration=rating duration),

5. CS offset (duration=0),

6. 24 column confounds matrix output by fmriprep.

Hybrid model associability

Regressors of interest:

• choice press time (duration=0, cue button press): associability (generated for individual
session with new V0/A0 to match SCR fitting procedure),

Regressors of no interest:

• same as GLM above,

• adding relief onset (duration=0),

• removing choice press regressor.

We note for completeness that it is theoretically possible to model the learning process
as a continuously valued function that exactly matches the time-course of the temperature
changes. In the context of the current study, the effect of this would be largely orthogonal
to the experimental manipulations. However, representation of the baseline temperature as
a continuous function is clearly important in real-life contexts in which the baseline level
determines homeostatic motivation and phasic reward functions (Morville et al., 2018), and
hence future studies could directly manipulate this.
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For multiple comparison, we used anatomical binary masks generated using the Harvard-
Oxford Atlas (Desikan et al., 2006) for small volume correction. Atlases are freely available
with the FSL software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). We thresholded the
probability maps at 50%, focusing on ROIs defined a priori (learning related: amygdala,
accumbens, putamen, caudate, pallidum, ventromedial prefrontal cortex [VMPFC], dorsolateral
prefrontal cortex [DLPFC]; controllability-induced analgesia related: cingulate gyrus – anterior
division, insular cortex, VLPFC). We used the frontal medial cortex for VMPFC, the frontal
orbital cortex for VLPFC, and the middle frontal gyrus for DLPFC respectively. We reported
results with p<0.05 (FWE cluster-level corrected). Masks were applied separately, not combined
(Table 4.4).

fMRI model comparison

To determine whether state-based and action-based learning involve the same brain regions
during instrumental learning, we used Bayesian model selection (BMS) with the instrumental
sessions imaging data. We ran Bayesian first level analysis using two separate GLMs containing
the PE signals from TD and Hybrid models (at US onset time, durations=3s) using unsmoothed
functional imaging data, with the same regressors of no interest as other GLMs described.
To reduce computation time, this was restricted to voxels correlated to PEs from previous
parametric modulation analysis results, within a mask of conjunction clusters from TD and
hybrid PE analysis (cluster formation at p<0.01, k<5). Resulting log-model evidence maps
produced from each model for individual participant were first smoothed with a 6mm Gaussian
kernel, then entered into a random-effect group analysis (Stephan et al., 2009). Voxel-wise
comparison between models produced posterior and exceedance probability maps to show
whether a particular brain region is better accounted for by one model or the other. Posterior
probability maps were overlaid on subject-averaged anatomical scans using MRIcroGL (https:
//www.nitrc.org/projects/mricrogl/).

Axiom analysis for prediction errors

To determine whether ROI activations to prediction errors were responding outcomes or
prediction errors, we carried out ROI axiomatic analysis (Roy et al., 2014; Rutledge et al.,
2010). For neural signals in an ROI to be considered as relief prediction errors, it should have:
(i) consistent outcome ordering regardless of expectations (response to relief is larger than no
relief), (ii) consistent expectation ordering regardless of outcome (response decreases with
increased predicted relief). Although the axiomatic analysis is useful for delineating outcome
and prediction responses in previous reward or aversive PE studies, the continued presence of

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://www.nitrc.org/projects/mricrogl/
https://www.nitrc.org/projects/mricrogl/
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tonic pain in our study differs from the ‘no stimulation’ conditions in these studies. Therefore
we did not test for the third axiom of no surprise equivalent (section 1.3), and showed the
overall BOLD activity pattern without including full statistics in this analysis.

Trials were separated into relief or no relief outcomes, then into equal-size bins of ascending
sorted expected relief values, calculated from TD model as we were primarily interested in
instrumental sessions. A median split for values was chosen to ensure sufficient trials were
included from each session (relief outcomes per session: 10.8 trials). This produced 4 regressors
(2 outcomes × 2 value bins), to be estimated at outcome time (duration=3s) when PE was
generated. GLMs include button presses for choice or rating, and movement related regressors
of no interest mentioned above. ROI masks of 8mm spheres were generated from peak
coordinates from TD model prediction error exceedance probability map calculated by BMS
above (ventral and dorsal striatum, amygdala, VMPFC and DLPFC).

4.3 Results

Behavioural results

Choice In instrumental learning, participants can learn which actions maximise the chance
of relief. We assessed the ability of RL models to explain subjects’ choice data, in comparison
to a simple WSLS decision-making rule. We compared two basic RL models that have been
widely studied in neurobiological investigations of reward and avoidance – a TD action learning
model with a fixed learning rate, and a version of the TD model with an adaptive learning rate
based on action associabilities (hybrid TD model). The associability reflects the uncertainty
in the action value, where higher associability indicates high uncertainty during learning, and
is calculated based the recent average of the prediction error magnitude for each action. In a
random-effects model comparison procedure (Daunizeau et al., 2014), we found that choices
were best fit by the basic TD model (model frequency=0.964, exceedance probability=1, Fig
4.2a). Thus, there is no evidence that associability operates directly at the level of actions.

Skin conductance responses (SCR) To investigate physiological indices of learning, we
examined trial-by-trial SCRs during the 3s cue time, before outcome presentation. SCRs
obtained in instrumental sessions were higher compared to yoked Pavlovian sessions (Fig 4.2b,
n=15, see Methods for session exclusion criteria, paired t-test T(14)=2.55, p=0.023), with the
average SCR positively correlated between paradigms across individuals (Pearson correlation
ρ=0.623, p=0.013, n=15). Raw traces and cue-evoked responses of SCRs can be found in
Figure supplements Fig 4.4a and 4.4b.
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In Pavlovian aversive (fear) learning, SCRs have been shown to reflect the associability of
Pavlovian predictions (Boll et al., 2013; Li et al., 2011; Zhang et al., 2016). Here, associability
is calculated as the mean prediction error magnitude for the state (i.e. regardless of actions) (Le
Pelley, 2004). In instrumental learning, Pavlovian learning of state-outcome contingencies still
proceeds alongside action-outcome learning, distinct from instrumental choices, so Pavlovian
state-outcome learning can be modelled in both instrumental and Pavlovian sessions. Consistent
with previous studies of phasic pain, model-fitting revealed that the hybrid model with state-
based associability best fit the SCR data in both Pavlovian and instrumental sessions (Fig 4.2c
and Fig 4.2d, instrumental sessions: model frequency=0.436, exceedance probability=0.648,
Pavlovian sessions: model frequency=0.545, exceedance probability=0.676), when tested
against a competing simple Pavlovian Rescorla-Wagner model (akin to a TD model with only
one state and a fixed learning rate). However, using the more stringent protected exceedance
probability analyses, the advantage of associability over other models were less conclusive (Fig
4.5). Together with the choice results, these analyses suggest that subjects use an associability-
based RL mechanism for learning state values during both Pavlovian and instrumental pain
escape, and a non-associability based RL mechanism for learning action values in instrumental
sessions. This divergence in learning strategies indicates that parallel learning systems coexist,
consistent with their dissociation under dopamine antagonists (Dickinson et al., 2000). It is
likely that the two systems differ in their way of incorporating information about uncertainty in
learning, as well as the nature of their behavioural responses.

Ratings Subjective ratings of pain and relief were taken intermittently after outcomes during
the task, to explore how pain modulation might depend on relief learning. Ratings were taken
on a sample of trials, so as to minimise disruption of task performance (see Table 4.1 for
timing details). Based on the fact that both controllability and attention are implicated in
endogenous control, we hypothesised that pain would be reduced when the state-outcome
associability was high, reflecting an attentional signal associated with enhanced learning.
However, other types of modulation are possible. For instance, pain might be non-specifically
reduced in instrumental, versus Pavlovian learning, reflecting a general effect of instrumental
controllability. Alternatively, pain might be reduced by the expectation of relief that arises
during learning, as it is known that conditioning alone can support placebo analgesia responses
(Colloca et al., 2008) (although the extent to which this occurs might depend on the acquisition
of contingency awareness during learning) (Locher et al., 2017; Montgomery and Kirsch, 1997).
In this case, pain would be positively correlated with the relief prediction error, since it reports
the difference between expectation and outcome.
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Fig. 4.2 Behavioural results. (a) Choice-fitted model comparison, TD model fit instrumental
sessions choices best (TD: action-learning model with fixed learning rate, Hybrid: action-
learning model with associability as changing learning rate, WSLS: win-stay-lose-shift model).
Model frequency represents how likely a model generate the data given a random participant,
while exceedance probability estimates how one model is more likely compared to others
(Stephan et al., 2009). (b) Instrumental vs Pavlovian sessions SCRs (n=15, sessions with over
20% trials <0.02 amplitude excluded). (c) Associability from hybrid model fitted trial-by-trial
SCRs best in instrumental sessions (Assoc: associability, Hyb: hybrid model, RW: Rescorla-
Wagner model). (d) Associability also fitted SCRs from Pavlovian sessions best. (e) Both
pain and relief ratings did not differ significantly between instrumental and Pavlovian sessions
(Participants’ ratings were averaged for each of the four categories shown, mean=8 ratings per
person per category, figure legend identical to Fig 4.2b).
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To test these competing hypotheses, we first compared the mean ratings of both pain
(following a ‘no relief’ outcome) and relief (following a relief outcome) between Pavlovian and
instrumental sessions, and found no significant difference (Mean± standard error (SEM), n=19,
instrumental pain: 6.97±0.13, Pavlovian pain: 6.91±0.20, instrumental relief: 6.46±0.24,
Pavlovian relief: 6.33±0.27, between paradigm paired t-test both ratings p>0.5, Fig 4.2e).
Hence, there is no support for a general effect of instrumental controllability on subjective
pain and/or relief experience. We noted that mean pain and relief ratings were correlated
with each other across individuals (ratings averaged across paradigms, Spearman’s correlation
ρ=0.73, p<0.001), indicating that higher perceived tonic heat pain was associated with higher
cooling-related relief.

Next, we correlated pain ratings with the state-based associability and TD prediction
error. In accordance with our hypothesis, in instrumental sessions associability was found
to be negatively correlated with pain ratings (mean Spearman’s ρ̄=-0.177, one-sample t-
test of Fisher’s z-transformed correlation coefficients T(18)=-2.125, p=0.048). In Pavlovian
sessions, however, we did not find a correlation (ρ̄=-0.114, T(18)=0.758, p=0.458). There
was no significant interaction between associability and paradigm (repeated measure ANOVA
F(1,18)=1.247, p=0.279). This suggests that although associability is associated with pain
modulation, this effect is not necessarily specific to instrumental sessions.

We found that the prediction errors were negatively correlated with pain ratings in Pavlo-
vian sessions (ρ̄=-0.356, T(18)=-3.198, p=0.005), but not instrumental sessions (ρ̄=-0.154,
T(18)=0.720, p=0.481). That is, when relief was omitted (i.e. as was always the case on the
pain rating trial), a larger frustrated (i.e. negative) relief prediction error was associated with
an increase in pain – in contrast to the prediction of a placebo expectation hypothesis. Inter-
action between prediction error and paradigm was not significant (repeated measure ANOVA
F(1,18)=3.706, p=0.0702). Finally, we also looked at relief ratings, but failed to find any
significant correlation with either associability or prediction error in either instrumental or
Pavlovian sessions.

Neuroimaging results

The behavioural findings support the hypothesis that an associability signal that arises during
state-based learning is associated with reduction of pain. Therefore, we then sought to identify
(i) neural evidence for an error-based relief learning process, and (ii) the neural correlates of
the associability signal associated with tonic pain modulation. We implemented the TD action-
learning model and associability-based hybrid TD state-learning model as determined from the
behavioural data, using group-mean parameters (learning rate in TD model, and free parameter
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κ and η in hybrid TD model) to re-estimate trial-by-trial prediction errors/associability values
for each subject as parametric modulators of fMRI BOLD time-series in general linear models.

Prediction errors The prediction error represents the core ‘teaching’ signal of the reinforce-
ment learning model, and we specified a priori regions of interest based on the areas known
to correlate with the prediction error in previous reinforcement learning studies of pain and
reward (ventral and dorsal striatum, VMPFC, DLPFC, and amygdala (FitzGerald et al., 2012;
Garrison et al., 2013; Seymour et al., 2005)).

First, we looked for brain responses correlated with the action prediction error from the
TD model in instrumental sessions. This identified responses in bilateral putamen, bilateral
amygdala, left DLPFC, and VMPFC (Fig 4.3a, Table 4.4).

Since action-outcome learning and state-outcome learning co-occur during instrumental
sessions, we next modelled the state prediction error from the hybrid model in a separate
regression model. In instrumental sessions, this revealed responses in similar regions to the
TD action prediction error: in the striatum, right amygdala and left DLPFC (figure not shown,
Table 4.4), consistent with the fact that state and action prediction errors are highly correlated.

To test which regions were better explained by each, we conducted a Bayesian model
selection within the prediction error ROIs (a conjunction mask of correlated clusters to both
prediction error signals). This showed that the action-learning TD model had higher posterior
and exceedance probabilities in the dorsal putamen and VMPFC (Fig 4.3b warm colour clusters).
The state-learning (hybrid) model better explained activities in the amygdala, ventral striatum,
and DLPFC (Fig 4.3b cool colour clusters). Applying the same hybrid model prediction error
signal in Pavlovian sessions only identified much weaker responses that did not survive multiple
correction, in regions including the left amygdala (figure not shown).

To further illustrate the nature of the outcome response, we calculated a median split of the
preceding cue values (based on the TD model), and looked at the outcome response for relief
and no-relief outcomes. A prediction error response should be (i) higher for relief trials, and
(ii) higher when the preceding cue value was low (i.e. when relief was delivered when it was
not expected) (Roy et al., 2014). As illustrated in Fig 4.3c, this ‘axiomatic’ analysis reveals
some features of the prediction error, but lacks the resolution to illustrate it definitively.

Associability Since the behavioural data showed that the state-based associability correlated
negatively with tonic pain ratings, we examined BOLD responses correlated with trial-by-trial
associability from the hybrid model, by using the associability as a parametric regressor at the
choice time (see Methods for details of GLMs). We specified a priori ROIs according to regions
previously implicated in attention and controllability-related endogenous analgesia, notably
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Fig. 4.3 Neuroimaging results, shown at p<0.001 uncorrected: (a) TD model prediction errors
(PE) as parametric modulators at outcome onset time (duration=3s). (b) Model PE posterior
probability maps (PPMs) from group-level Bayesian model selection (BMS) within PE cluster
mask, warm colour: TD model PE, cool colour: hybrid model PE (shown at exceedance
probability P>0.7), (c) Axiomatic analysis of hybrid model PEs in instrumental sessions,
ROIs were 8mm spheres from BMS peaks favouring TD model PEs, in left putamen and
VMPFC. (d) Associability uncertainty generated by hybrid model, as parametric modulators at
choice time (duration=0), in instrumental sessions. (e) Comparing pgACC activations across
instrumental/Pavlovian paradigms, ROI was 8mm sphere at [-3, 40, 5], peak from overlaying
the pgACC clusters from Experiment 2 and 3 (Fig 5.6a).
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pregenual anterior cingulate cortex (pgACC), posterior insula and ventrolateral prefrontal cortex
(VLPFC) (Salomons et al., 2007; Wiech et al., 2006); and associability (amygdala) (Boll et al.,
2013; Li et al., 2011; Zhang et al., 2016).

In instrumental sessions we found correlated responses only in the pgACC (Fig 4.3d,
Table 4.4, MNI coordinates of peak: [-2, 37, 5]). No significant responses were observed
in Pavlovian sessions. Fig 4.3e illustrates individual subjects’ beta values extracted from an
8mm diameter spherical ROI mask built around peak coordinates [-3, 40, 5]. Instrumental
sessions had higher response magnitude in the pgACC compared to Pavlovian sessions across
subjects (Instrumental sessions: one-sample t-test against 0 T(18)=3.746, p=0.0015, Pavlovian
sessions: one-sample t-test against 0 T(18)=-1.230, p=0.235, paired t-test for instrumental
versus Pavlovian T(18)=3.317, p=0.0038).

4.4 Discussion

In summary, the results indicate that (i) relief action learning is well described by a RL
(TD) learning process, with action prediction error signals observed in the dorsal putamen,
(ii) that state-outcome learning proceeds in parallel to action-outcome learning, and can be
described by an associability-dependent hybrid TD learning mechanism, and (iii) that this
state associability modulates the level of ongoing tonic pain during instrumental learning, with
associated responses in the pgACC.

Tonic pain characterises the altered behavioural homeostatic state after injury, in which
motivation becomes orientated towards recovery. Whereas acute (phasic) pain functions as a
teaching signal about harmful events, the physiological function of tonic pain is different: it
provides a new affective baseline that endows relief with positive value as a behavioural goal, yet
it also consumes other cognitive and behavioural functions to promote recuperation. Our results
provide an explanation to this apparently paradoxical relationship: we identified a learning
circuit that governs relief learning and decision-making, with its activities correlating with
the information available during active learning, where higher uncertainty in the environment
corresponded to lower subjective pain ratings. In so doing, it solves the problem of balancing
tonic pain with the requirement to actively learn about behaviour that could lead to relief.

Endogenous modulation of tonic pain could in principle arise from any component of
the learning system, including the associability signal. Associability has its theoretical un-
derpinnings in classical theories of associative learning and attention (i.e. the Pearce-Hall
theory, Pearce and Hall, 1980), and its mathematical implementation here is as an approximate
uncertainty quantity derived from computing the running average of the magnitude of the
prediction error (Le Pelley, 2004; Sutton, 1992). This uncertainty signal effectively captures
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how predictable the environment is: when uncertainty is high (because of lots of recent large
prediction errors), it increases the speed of acquisition through increasing the learning rate, and
so accelerates convergence to stable predicted values. It is therefore an effective attention-like
signal for mediating endogenous analgesia, because it selectively facilitates active relief seeking
by suppressing pain only when it is necessary. This conception of the role of uncertainty in pain
may explain why uncertainty has been shown to enhance phasic pain (Yoshida et al., 2013),
where pain acts as the signal to drive learning, and suppresses tonic pain, where pain acts to
reduce general cognition. In both instances, the role of uncertainty and attention is to facilitate
learning.

The behavioural data modelling results suggest potentially dissociable learning systems. The
instrumental choice data was best fitted by the TD model without an action-based associability
term, while the SCR data was best fitted by the hybrid TD model with a state-based associability
term. This distinction between the learning of prediction and control, captured as state and
action learning respectively, has been observed in several previous studies (Boll et al., 2013;
Gläscher et al., 2010; Li et al., 2011; G Morris et al., 2006; Zhang et al., 2016), and likely
reflects the distinction between instrumental and Pavlovian learning systems. Indeed, Pavlovian
and instrumental systems learn different responses – conditioned responses (e.g. autonomic
responses) and instrumental actions respectively, each of which have independent biological
functions (Dickinson and Balleine, 2002). While we did not find evidence that associability
was used in determining actions (in keeping with previous reports), it was used for learning
other forms of conditioned response. Although captured as independent models here, it is
possible that different learning systems interact under appropriate circumstances (Holmes et al.,
2010), however, that will require probing with a different task.

Compared to instrumental sessions, the results from Pavlovian relief learning sessions
were less informative. While the SCR data model fitting were largely consistent with previous
findings, pain ratings were found to increase with larger frustrated relief prediction errors,
similar to nocebo effects. Unlike the associability signal that captures uncertainty of past
events, the relief prediction error reflects frustration of having received the current outcome.
Since pain ratings were always collected after such frustrated attempts in obtaining relief, it is
therefore more difficult to conclude whether these ratings reflect pain or reactions to outcome.
As for neuroimaging results, although not surviving multiple comparison, we identified state-
based prediction errors in the left amygdala, consistent with a previous tonic pain relief
study (Seymour et al., 2005). Previous evidence have also shown the amygdala representing
multiple computationally distinct learning signals: aversive, reward, relief prediction errors,
and associability (Belova et al., 2007; Johansen et al., 2010; Li et al., 2011; Paton et al., 2006;
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Roesch et al., 2010, 2012). Based on these current findings, it is difficult to draw definitive
conclusions regarding the effects of passive relief learning in Pavlovian sessions.

These results also led us to identify the major limitations of the current experimental design
– the limited number and the post-outcome timing of pain ratings. This rating method was
chosen as a compromise to reduce subjects’ tonic pain exposure and increase the number of
overall trials to boost learning. However, while the correlation analysis pointed towards an
associability driven analgesic effect, the number of ratings may not be adequately powered for
a comprehensive model comparison with other forms of uncertainty. Furthermore, collecting
ratings after outcome occurrence made it difficult to distinguish pain and frustration. These
limitations can be addressed by increasing the number of rated trials in a task design focusing
on instrumental relief learning only, as demonstrated in the next experiment.
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4.5 Tables

Table 4.1 Details of subjective ratings.

Experiment Rating type Rating timing Avg # of ratings/subject

Active vs. Passive
relief learning
(Experiment 2)

Instrumental pain After 3s cue+choice
window AND outcome
(rating type depend on
outcome)

8.2
Instrumental relief 7.7
Pavlovian pain 8.1
Pavlovian relief 7.7

Table 4.2 All learning models fitted (bold: winning model; AL - action-learning; SL - state-
learning, F - variational Bayesian approximation to the model’s marginal likelihood, used for
model comparison, assoc - associability)

Instrumental sessions

Choice F (n=19, sum [SEM]) SCR F (n=15, sum [SEM])

TD -1330.920 [3.604] RW - value -1079.153 [8.024]
Hybrid (AL) -1345.667 [3.664] Hybrid (SL) - value -1077.911 [8.059]
WSLS -1486.723 [3.973] Hybrid (SL) - assoc -1077.699 [8.003]

Pavlovian sessions

Choice (not available) SCR F (n=15, sum [SEM])

N/A
RW - value -1101.079 [7.132]
Hybrid (SL) - value -1096.250 [7.195]
Hybrid (SL) - assoc -1095.135 [7.106]
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Table 4.3 Learning model fitting results (std: standard deviation; µθ : Bayesian prior mean of
evolution function parameter; σθ : prior variance of evolution function parameter; µφ : prior
mean of observation function parameter, σφ : prior variance of observation function parameter).

Model
(Options) Data fitted (sessions) Parameters Mean Std

Initial
states

TD (*) choice (instrumental) learning rate, α 0.401 0.087 Q0=0

WSLS (*) choice (instrumental) pseudo Q (cue 1), p1 0.382 0.073 No
hidden
states

pseudo Q (cue 2), p2 0.458 0.075

Hybrid Action
learning (*)

choice (instrumental) free parameter κ 0.527 0.104 Q0=0
free parameter η 0.413 0.125 α0=1

RW - V (†) SCR (instrumental) learning rate, α 0.492 0.013 V0=0

RW - V (†) SCR (Pavlovian) learning rate, α 0.492 0.014 V0=0

Hybrid - Assoc (†) SCR (instrumental) free parameter κ 0.497 0.004 V0=0
free parameter η 0.495 0.004 α0=1

Hybrid - Assoc (†) SCR (Pavlovian) free parameter κ 0.498 0.003 V0=0
free parameter η 0.496 0.008 α0=1

Hybrid - V (†) SCR (instrumental) free parameter κ 0.492 0.012 V0=0
free parameter η 0.499 0.003 α0=1

Hybrid - V (†) SCR (Pavlovian) free parameter κ 0.494 0.005 V0=0
free parameter η 0.5 0.003 α0=1

*Fitting options: µθ = 0, σθ = 1, µφ = 0, σφ = 1
†µθ = 0, σθ = 0.05, µφ = 0, σφ = 1
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Table 4.4 Multiple correction (cluster-forming threshold of p <0.001 uncorrected, regions from
Harvard-Oxford atlas. *FWE cluster-level corrected (showing p<0.05 only)

p* k t Z MNI coordinates (mm) Region mask
x y z

TD model PE, instrumental sessions

0.007 4 4.27 3.5 -21 -5 -14 Amygdala L
0.011 3 4.98 3.9 28 -1 -14 Amygdala R

0 28 5.31 4.07 -21 3 -7 Putamen L
4.7 3.75 -28 -5 1

0.003 14 5.73 4.27 20 7 -7 Putamen R
0.034 2 3.75 3.18 28 -1 8
0.007 4 4.63 3.71 -17 3 -3 Pallidum L
0.003 9 5.2 4.01 17 7 -3 Pallidum R

Hybrid model PE, instrumental sessions

0.005 5 4.3 3.52 -21 -5 -14 Amygdala L
0.014 2 4.53 3.65 28 -1 -14 Amygdala R
0.004 12 5.02 3.92 -21 3 -7 Putamen L
0.012 6 4.55 3.66 -28 3 8
0.046 1 3.82 3.23 -28 11 -3
0.001 23 5.03 3.92 20 7 -7 Putamen R

4.92 3.87 20 7 1
4.39 3.57 24 -1 5

0.006 5 4.04 3.36 -17 3 -3 Pallidum L
0.005 6 4.82 3.81 17 7 1 Pallidum R

Hybrid model PE, Pavlovian sessions

None

Hybrid model associability, instrumental sessions

0.027 5 4.34 3.55 -2 37 5 Cingulate Anterior
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Fig. 4.4 Skin conductance raw data. (a) Raw skin conductance traces, where vertical lines
are beginning of each trial when cue display starts (n=15, excluded participants not shown,
showing first non-excluded session from all participant). (b) Filtered skin conductance traces
(band-pass at 0.0159-2Hz, 1st order Butterworth), averaged across all trials within participant
(n=15, excluded participants not shown, shaded region represent SEM across all participants).
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Fig. 4.5 Model protected exceedance probability. (a) Choice fitting remains similar to the
original exceedance probability. (b-c) SCR fitting comparison becomes less clear regarding best
fitting model. However, the best fitting models from comparison remained unchanged compared
to the original comparison using exceedance probabilities in Experiment 3 (Chapter 5), where
the number of trials was increased as fitting wasn’t conducted separately for Instrumental /
Pavlovian sessions, providing further validation of the results (Fig 5.5).





Chapter 5

Experiment 3: Active relief learning in a
dynamic environment

Experiment 2 (Chapter 4) provided good evidence of a relief learning system capable of
modulating tonic pain according to uncertainty during learning by tracking the associability
signal. However, it remains unclear whether other forms of uncertainty signals, especially those
arising from a more complicated learning environment, may be responsible for pain modulation.
Using a modified tonic pain escape learning task with dynamic relief probabilities, we showed
that active relief learning can still be modelled with a reinforcement learning process. With
an increased number of pain ratings, we validated the results of associability-driven analgesia
modulating tonic pain levels in a dynamic learning environment, as well as its correlation
with BOLD activities in the pregenual anterior cingulate cortex. Together with the previous
experiment, these results define a self-organising learning circuit that allows reduction of
ongoing pain when learning about potential relief.

Adapted from Zhang et al. (2018a)
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5.1 Introduction

In Experiment 2 (Chapter 4), the associability signal was found to reflect pain modulation
during active relief learning, where tonic pain was suppressed according to the information
available for learning. While associability as an internal uncertainty signal during learning
is a potential candidate to bridge the gap to previous results on attention-driven endogenous
analgesia (Bantick et al., 2002; Salomons et al., 2004; Valet et al., 2004; Wiech et al., 2006),
this result also raised two important questions regarding the previous experimental design.

The first question was: can the associability signal be distinguished from other uncertainty
signals that may arise in learning? Importantly, the use of fixed probabilities in the previous
experiment means that associability tends to decline during sessions – as learning progresses,
values of relief increase after a succession of relief trials, making subsequent relief outcomes
less surprising, which leads to low associability/uncertainty. This raises the possibility that
more complex models of uncertainty and attention might better explain the data. Model-based
learning models, such as hidden Markov models (HMMs) or hierarchical Bayesian models,
assume learners construct internal models of a complex, dynamic world (Behrens et al., 2007;
Mathys et al., 2011; Prévost et al., 2011). These models incorporate changing beliefs of the
environment during learning, which gives rise to different forms of uncertainty between the
levels of environment, stimulus, actions, and outcomes (Daw et al., 2011; Mathys et al., 2011).
In addition, predictors of model-based learning models have been found to correlate with
activities in the prefrontal cortex, raising the possibility that previously observed activations in
the pgACC might be tracking multiple learning signals (Daw et al., 2005; Gläscher et al., 2010).
In order to tease apart the different uncertainty signals, a dynamic world with non-stationary
relief probabilities is used in this study.

A second design question was: does the modulation of pain ratings occur throughout the
trial? In the previous relief learning task, pain ratings were taken after choice action and trial
outcome occurrence, which means only when relief was frustrated. This raises the possibility
that the subjective rating reflects an outcome-driven response, as opposed to a learning-driven
process modulating the ongoing pain. In addition, uncertainty was previously modelled before
outcome onset, when it was assumed to combine with prediction errors to influence value
update (Li et al., 2011). Therefore, we believe taking ratings before outcome is more likely to
capture the modulatory effects on tonic pain with minimal impact from outcomes.

With these issues in mind, we designed a novel task to test if the active relief learning model
could be generalised to a different paradigm with greater demands on flexible learning. We
modified the relief learning task to include dynamic cue-relief contingencies, where participants
learn to choose one cue out of three to obtain brief relief from tonic thermal pain, and need to
adjust their choice throughout the task. We aimed to test for changes in learning strategies, as
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well as other forms of uncertainty signals against associability for modulatory effects on tonic
pain.

5.2 Methods

Subjects

23 healthy subjects participated in the neuroimaging experiment (five female, age 23.9±3.1
years). All subjects gave informed consent prior to participation, had normal or corrected to
normal vision, and were free of pain conditions or pain medications. The experiment was
approved by the Ethics and Safety committee of the Advanced Telecommunications Research
Institute, Japan.

Experimental design

Subjects participated a purely instrumental relief conditioning task similar to that in Experiment
2 (Chapter 4). In this task, three visual cues were presented on screen simultaneously for 3s,
during which the subject was asked to choose one (Fig 5.1a). Each one of these cues had
varying relief probability, generated by a random walk program (probabilities changing at
step size of 0.1, bound between 0.2-0.8, with random start). Relief outcomes were temporary
reductions of 13◦C from the tonic level, with the duration reduced to 3s, which was enough to
produce a similar relief sensation with lower trial time. Subjects repeated the same task for
eight sessions (24 trials each), with the same visual cues throughout. However, several subjects
did not complete all sessions because of excess time in SCR experimental set-up which reduced
the time available for the task; hence, the overall average was 7.08±1.44 sessions per subject.

In each session, subjective pain ratings were collected in 10 random trials out of the 24. The
ratings were collected after the 3s choice period and before the outcome presentation, using the
same 0-10 rating scale as Experiment 2 (red scale only, see Table 5.1).

Stimulation

Painful tonic thermal stimuli were delivered with a contact heat-evoked potential stimulator
(CHEPS, Medoc Pathway, Israel) to the subject’s skin surface above the wrist on the left inner
forearms.

The temperature of painful tonic stimuli was thresholded slightly differently compared to
the previous tonic pain relief experiment. 10 temperatures were presented in each series, both
were randomly generated with 44.4±0.7◦C. After the 8s stimulation, subjects were asked to
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Fig. 5.1 Experiment paradigm. (a) Example trial, where subjects performed an instrumental
paradigm only involving unstable relief probabilities. Three cues were presented alongside
each other with subjects required to choose one of the three using a button press. The position
of each cue varied from trial-to-trial, and the same three cues were presented throughout. Tonic
pain rating being taken before the outcome was experienced, not after as in Experiment 2.
(b) Example traces of dynamic relief probabilities for the three displayed cues throughout all
trials in eight sessions, which required a constant trade-off of exploration and exploitation
throughout the task. Dynamic relief probabilities also provide varying uncertainty throughout
learning. (c) Relief and no relief outcomes, with constant temperature at around 44◦C were
used to elicit tonic pain similar to Experiment 2, a brief drop in temperature of 13◦C was used
as relief outcome for 3s, which was enough to produce relief sensation but with shorter trial
time. Temperature did not change for the duration in no relief outcomes.
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rate their pain on a linear VAS scale with 0-10 numerical markings, which were fitted with a
sigmoid function. The temperature was chosen from the painful range of: 44, 44.2, 44.5, 44.8,
45◦C, whichever closest and below the model fitted value of VAS=8.

Final temperature used was 44.5±0.4◦C, similar to that of Experiment 2 (44.3±0.2◦C). Re-
lief temperature was at 13◦C below threshold temperature for all subjects. Thermal stimulation
settings were identical to Experiment 2, except relief duration was shorted to 3s.

Physiological measures

SCRs were recorded from both hands, in the same location as Experiment 2 on volar surfaces
of distal phalanges of the second and fourth fingers on the left (pain side with thermode), and
on the hypothenar eminences of the palm on the right (button press hand without thermode),
with electrodes approximately 2cm apart. The signals were collected using MRI-compatible
BrainAmp ExG MR System (Brain Products, Munich, Germany) and BrainVision software at
500Hz with no filter.

The offline processing and exclusion criteria were identical to Experiment 2. Sessions
were excluded if more than 20% trials were labelled as not having enough viable event related
SCRs (cue-evoked SCR amplitude below the threshold of 0.02). 19 subjects and 79 sessions
remained for the left (thermal stimulation side), 20 subjects and 96 sessions remained for the
right (no stimulation side). For model fitting, right side SCR reject criteria were used, since
both channels’ data were included as two data sources. Transformed SCRs on both sides were
highly correlate (Fig 5.2b).

Computational learning models

Model-free reinforcement learning models were fitted to choice and SCR data, including
the TD model, hybrid model, and Rescorla-Wagner (RW) model (see section 4.2 for model
specifications). The softmax function (Equation 4.2) was used for mapping choices to model
predictors, and a simple translation function was used for SCR mapping (Equation 5.8).

Hidden Markov Model (HMM)

For Experiment 3, where relief probability is unstable, model-based learning models were fitted
to behavioural data. A Hidden Markov Model with dynamic expectation of change (Prevost
et al., 2013; Schlagenhauf et al., 2014) was adapted to incorporate a hidden state variable St

that represents the subject’s estimation of an action-outcome pair (e.g. St = (cue, relief), three
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cues × relief/no relief = 6 combinations). The state transition probabilities are calculated as:

P(St |St−1) =

(
1−β β

β 1−β

)
(5.1)

where β is a free parameter (0≤ β ≤ 1). For each cue, the symmetry of the transition matrix
encodes the reciprocal relationship between relief/no relief belief. Given the hidden state
variable, the probability of actually observing this outcome is updated as:

P(Ot |St) = 0.5×

(
1+ c 1− c
1−d 1+d

)
(5.2)

where the rows of the matrix represent relief/no relief outcomes, the columns represent the
relief/no relief belief in St . c and d are free parameters (0≤ c≤ 1, 0≤ d ≤ 1) to incorporate
potential discrimination between the two outcome types. The prior probability of St is calculated
from the state transition probabilities and the posterior probability of St−1 (Equation 5.3). The
posterior probability of St is calculated from the prior P(St) (from Equation 5.3) and the
observed outcome Ot (Equation 5.4):

P(St) = ∑
St−1

P(St |St−1)P(St−1) (5.3)

P(St) =
P(Ot |St)P(St)

∑St P(Ot |St)P(St)
(5.4)

where Equation 5.3 is updated before observed outcome Ot , Equation 5.4 is updated after Ot .
St can be used to approximate state values by calculating the relative relief belief through a

sigmoid function, with a free parameter m, and the preferred action to be inferred using the
softmax function.

P(r=1|cue) =
1

1+ exp(−x)
(5.5)

where x = St(r=1)−St(r=0)+m.
To represent uncertainty under i possible posterior relief probabilities, entropy H is calcu-

lated for the chosen cue as:
H(St) =−∑

i
P(St)logP(St) (5.6)

Hierarchical Bayesian model

The Hierarchical Bayesian model introduced by Mathys et al. (2011) incorporates different
forms of uncertainty during learning on each level: irreducible uncertainty (resulting from
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probabilistic relationship between prediction and outcome), estimation uncertainty (from im-
perfect knowledge of stimulus-outcome relationship), and volatility uncertainty (from potential
environmental instability). This model has been shown to fit human acute stress response (de
Berker et al., 2016). The model was adopted to our study with the basic structure unchanged.
The second level estimated probabilities were used to approximate state values of different
cues, and the preferred action calculated using the softmax function.

Modelling pain ratings

Our prior hypothesis suggests uncertainty is a likely modulator of tonic pain perception, hence
model generated uncertainty signals (associability, entropy, and surprise) were used as the main
pain rating predictors, given the increased number of ratings collected in Experiment 3. A
generalised linear model includes the uncertainty predictor, and additional terms to control for
potential temporal habituation/sensitization and between-session variation:

Rating = β1 ·Relief+β2 · log(Trial)+β3 ·Predictor (5.7)

where the ‘Relief’ term is the number of trials since the previous relief outcome, log(Trial) is
the log of trial number within session (1-24), ‘Predictor’ is the model generated uncertainty
value using group-averaged model parameters fitted with choice/SCR data. All trials were used
for predictor calculation, but only rated trials were included in this regression. The log(Trial)
term is used because it can capture the nonlinear effects of habituation or sensitisation from
prolonged thermal pain (Jepma et al., 2014). This GLM approach for pain rating modelling
allows the use of Bayesian model comparison with resulting model fitting statistics, in line
with other behavioural data modelling in Experiments 2 and 3. Repeated measure ANOVA
results of the winning model predictor verified the results were not confounded by correlated
predictors in the regression model.

Model fitting and comparison

Model fitting of choice and SCR data was performed with the Variational Bayesian Analysis
(VBA) toolbox (https://mbb-team.github.io/VBA-toolbox/), as was described in section 4.2.
Model parameters for individuals were optimised in a Bayesian equivalent of maximum
likelihood (Table 5.2). The mean of best fit parameters from all subjects were summarised in
Table 5.3. These parameters were also used to generate regressors for fMRI analysis.

https://mbb-team.github.io/VBA-toolbox/
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For SCR fitting, as data were collected on both hands, left and right SCRs were fitted
simultaneously as two data sources in the observation functions:

g(x1) = predictor+b1

g(x2) = predictor+b2 (5.8)

where x represents trial-by-trial SCRs from two sources, with b1 and b2 as two free parameters
to fit each side with the same predictor. Note that including two free parameters to bilateral
SCR fitting might change the absolute fit statistics from those of Experiment 2, but it did not
influence model comparisons since these were not conducted across experiments.

The TD, RW and hybrid models were assumed to have initial values of 0, and initial
associability of 1. HMM and Bayesian models were assumed to have initial hidden states of
relief belief as 0. All free parameters of the evolution function were assumed to have prior
variance of 1, with the exception of SCR fitting where it was assumed to be 0.05 to reduce
flexibility.

We also calculated the protected exceedance probabilities based on Rigoux et al. (2014)
(Fig 5.5). In Experiment 3, the number of trials was increased as fitting was conducted with data
from all sessions, not separately for instrumental/Pavlovian sessions as in Experiment 2. Best
fitting models from protected comparison remained unchanged from the original comparison
using exceedance probabilities. These results provided validation for Experiment 2 in the way
similar to the neuroimaging analysis.

fMRI acquisition

A 3T Siemens Prisma scanner was used for neuroimaging data acquisition, with the Siemens
standard 64 channel phased array head coil.

Scanning parameters were deliberately kept identical to the previous experiment. Functional
images were collected with a single echo EPI sequence (repetition time TR=2500ms, echo
time TE=30ms, flip angle=80, field of view=240mm), in 37 contiguous oblique-axial slices
(voxel size 3.75 × 3.75 × 3.75 mm) parallel to the AC-PC line. Whole-brain high resolution
T1-weighted structural images (dimension 208 × 256 × 256, voxel size 1 × 1 × 1 mm) were
obtained with the standard MPRAGE sequence.

fMRI preprocessing

Functional images were slice time corrected using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/). Image preprocessing was conducted using the fmriprep software (build

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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date 09/03/2017, freesurfer option turned off, https://github.com/poldracklab/fmriprep). The
normalised images were smoothed using a Gaussian kernel of 8mm using SPM12. The 24-
column matrix output by fmriprep were used in subsequent analysis to account for confounds.

fMRI GLM model

First level analysis for individual participant was conducted with SPM12. General linear models
included best-fit learning model generated signals as parametric modulators, and regressors of
no interest to account for habituation and motion effects. Second-level one-sample t-test of
first-level GLM estimates were carried out using procedures identical to that of Experiment
2 (Section 4.2), and results with p<0.05 were summarised in Table 5.4 (FWE cluster-level
corrected for multiple comparison, based on the Harvard-Oxford anatomical atlases).

fMRI model comparison and axiom analysis

Similar to Experiment 2, Bayesian model selection (BMS) was used to determine which brain
regions were involved in state-based or action-based learning, within the conjunction activation
mask of both prediction error signals.

In addition, axiom analysis was used to determine whether ROI activations were driven by
outcomes or prediction errors (section 4.2). As we are primarily interested in the overall BOLD
activity pattern, we did not include full statistics in this analysis. With increased number of
trials, six regressors (2 outcomes × 3 value bins) were generated at outcome time (duration=3s)
when PE was generated. Again, we focused on a prior selected ROIs related to relief learning.

5.3 Results

23 new subjects participated in a modified version of the instrumental escape learning task
described in Experiment 2, with a number of important differences. First, subjects performed
only instrumental sessions (8 sessions with 24 trials in each) given the absence of a global
effect of instrumental versus Pavlovian pain in the previous relief experiment. Second, subjects
were required to choose one out of three simultaneously presented visual cues to obtain relief,
in which the position of each cue varied randomly from trial to trial. This was done to
experimentally and theoretically better distinguish state-based and action-specific associability
(Fig 5.1a). Third, the action-outcome contingencies were non-stationary (dynamic), such that
the relief probability from selecting each cue varied slowly throughout the experiment duration,
controlled by a random walk algorithm which varied between 20-80% (Fig 5.1b). This ensured
that associability varied constantly through the task, encouraging continued relief exploration,

https://github.com/poldracklab/fmriprep
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and allowed us to better resolve more complex models of uncertainty (see below). It also
reduced the potential confounding correlation of associability and general habituation of SCRs.
Fourth, we increased the frequency of tonic pain ratings (10 per session, 80 per subject in
total, Table 5.1) to enhance power for identifying modulatory effects on pain. Fifth, the rating
was taken after the action but before outcome, to provide an improved assessment of ongoing
tonic pain modulation without interference by the outcome. Finally, we also collected SCRs
bilaterally, to enhance the data quality given the importance of the SCR in inferences about
associability.

Behavioural results

Choice In addition to the simple TD and hybrid action-learning TD models compared in
Experiment 2, the modification in paradigm allowed us to test more sophisticated model-based
learning models, including a hidden Markov model (HMM) (Prevost et al., 2013), and a hierar-
chical Bayesian model (Mathys et al., 2011). Both models incorporate a belief of environmental
stability into learning, i.e. whether a cue previously predicting relief reliably has stopped being
reliable during the course of the experiment. This is achieved by tracking the probability of
state transition in the HMM, or environmental volatility in the hierarchical Bayesian model.
Despite the greater demands of the non-stationary task compared to Experiment 2, the basic
TD action learning model still best predicted choices following model comparison (model fre-
quency=0.624, exceedance probability=0.989), followed by the HMM (model frequency=0.192,
exceedance probability=0.006) and the hybrid action-learning model (model frequency=0.174,
exceedance probability=0.004) (Fig 5.2a, see Methods for full details).

SCR SCRs were recorded from the side with thermal stimulation (left hand) and the side
without stimulation (right hand). The left side had lower mean SCRs (Fig 5.2b, L/R paired
t-test T(19)=-2.67, p=0.015, n=20, exclusion criteria followed from Experiment 2), however,
trial-by-trial SCRs were highly correlated between both sides within individual subjects (mean
Pearson correlation ρ̄=0.733, 18 out of 20 participants with p<0.001). This suggests that
although the overall SCR amplitude might be suppressed by the tonic heat stimulus, this did
not affect event-related responses.

Using the same model-fitting procedure as in Experiment 2 (with the addition that the
model now predicted SCR on both hands for each trial), we found that the associability from
the state-outcome hybrid model again provided the best fit of trial-by-trial SCRs (Fig 5.2c,
model frequency=0.667, exceedance probability=0.954). Indeed, the associability-SCR fit has
a much higher model exceedance probability compared with that in Experiment 2 (calculated
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by comparing a set of models within each experiment, not comparing fit across experiments),
presumably from including the less attenuated SCRs from the non-stimulated right side.

Ratings Experiment 2 suggested that the associability acted was correlated with modulation
of tonic pain ratings. Given the dynamic nature of the current design, we investigated whether
uncertainty measures related to other aspects of learning might offer a better account. To do
this, we fitted multiple regression models to trial-by-trial ratings for each participant as follows:

Rating = β1 ·Relief+β2 · log(Trial)+β3 ·Predictor (5.9)

where the ‘Relief’ term is the number of trials since the previous relief outcome, log(Trial) is
the log of trial number within session (1-24), ‘Predictor’ is the model generated uncertainty
value. The ‘Relief’ and log(Trial) terms were included to account for potential temporal and
sessional effects of the tonic pain stimulus.

We built a regression model with different uncertainty signals as predictors for comparison:
the state-based associability from hybrid model (as in Experiment 2), the entropy of state-action
posterior probabilities (approximate of uncertainty over values) in an HMM, the absolute value
of prediction error from previous trial in TD model (as a model of surprise), and a null model
that did not include ‘Predictor’ term (Fig 5.2d). In this analysis, the state-learning hybrid
associability again best fit the pain ratings (model frequency=0.698, exceedance probabil-
ity=0.980; n=22, 1550 ratings, one participant was excluded for having >90% identical ratings).
Regression coefficients with hybrid model associability as the uncertainty predictor were
significant across subjects (Fig 5.2e, one-sample t-test for three sets of coefficients: ‘Relief’
term: T(21)=-4.004, p<0.001 (i.e. habituation, reduced pain over time after relief), log(trial)
term: T(21)=1.017, p=0.321, associability term: T(21)=-2.643, p=0.015). Repeated measure
Type-III sums-of-squares ANOVA showed all terms were statistically significant (‘Relief’
term: F(1,1545)=37.02, p<0.001, log(trial) term: F(1,1545)=14.13, p<0.001, associability term:
F(1,1545)=4.35, p=0.037).

Neuroimaging results

Prediction errors We found that the TD model’s action prediction errors were robustly
correlated with BOLD responses in similar regions identified in Experiment 2, including left
dorsal putamen, bilateral amygdala, and left DLPFC (Fig 5.3a, Table 5.4). Of these, BMS
showed the TD model had higher posterior and exceedance probabilities in the dorsal putamen,
as well as amygdala and DLPFC (Fig 5.3b warm colour clusters). The state-learning hybrid
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Fig. 5.2 Behavioural results. (a) Model comparison showed that TD model fitted choices best
(Bayesian: hierarchical Bayesian model, HMM: hidden Markov model, Hybrid: action-learning
model with associability as changing learning rate). (b) SCRs measured on the side with thermal
stimulation (‘Stim side’, left hand) were lower than those on without stimulation (‘Non-stim
side’, right hand), but both were highly correlated. (c) Associability from state-learning hybrid
model fit SCRs best, similarly to Experiment 2. (d) Trial-by-trial associability from hybrid
model fitted pain ratings best compared with other uncertain measures (entropy: HMM entropy,
surprise: TD model prediction error magnitude from previous trial, null model: regression
with no predictors). (e) Regression coefficients with associability as uncertainty predictor were
significantly negative across subjects.
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model explained prediction error responses in several areas, but outside our original a priori
regions of interest (see Fig 5.3b cool colour clusters).

As previously, we further illustrated the pattern of outcome responses as a function of
preceding cue value and relief/no-relief in an ‘axiomatic’ analysis. We split the trial values into
3 bins, allowing a better inspection of responses permitted by our larger number of trials. This
revealed a clear prediction error-like pattern in the dorsal putamen, but it was somewhat less
clear cut in the amygdala and DLPFC (Fig 5.3c). Therefore, across all analysis methods and
the two experiments, the left dorsal putamen robustly exhibited a response profile consistent
with an escape-based relief prediction error.

Associability Following the same analysis as in Experiment 2, we found again that pgACC
BOLD responses correlated with trial-by-trial associability from the state-learning hybrid
model (Fig 5.3d, Fig 5.3e, Table 5.4). The peak from this analysis was almost identical to that
in Experiment 2 (Overlaid clusters can be found in Fig 5.6a). In addition, we used trial-by-trial
pain ratings as a parametric modulator, but did not find significant pgACC responses, which
suggested that it was unlikely to be solely driven by pain perception itself. Taken together, this
indicates that the pgACC associability response is robust across experimental designs.

5.4 Discussion

In summary, this experiment reproduced the main results of active relief learning from Ex-
periment 2 within a non-stationary relief environment. Firstly, dorsal putamen correlated
with an action-relief prediction error from the RL model. And secondly, pgACC correlated
with a state-based associability signal, that in turn was associated with reduced tonic pain. In
particular, this modulation of pain was present after the cue was presented (and not just at
the outcome as in Experiment 2), and was better explained by the associability signal when
compared against alternative uncertainty measures.

Across both relief learning experiments, the results provide convergent support for two
key findings. First, we show that relief seeking from the state of tonic pain is supported by a
reinforcement learning process, in which optimal escape actions are acquired using prediction
error signals, which are observed as BOLD signals in the dorsal putamen. Second, we show that
during learning, the level of ongoing pain is inversely correlated with the learned associability
associated with state-based relief predictions. This signal thus corresponds to lower subjective
pain when there is a greater capacity to learn new information, and is associated with BOLD
responses in the pregenual anterior cingulate cortex. Together, these results identify a learning
circuit that governs tonic pain escape learning whilst also suppressing pain according to the
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Fig. 5.3 Neuroimaging results, shown at p<0.001 uncorrected: (a) TD model prediction errors
(PE), at outcome onset time (duration=3s). (b) Model PE posterior probability maps (PPMs)
from group-level Bayesian model selection, warm colour: TD model PE, cool colour: hybrid
model PE (both shown at exceedance probability P>0.80). (c) Axiom analysis, separating trials
according to outcomes and predicted relief values (bin 1-3 from low to high), BOLD activity
pattern from striatum (putamen) satisfied those of relief PE. (d) Associability uncertainty
generated by hybrid model correlating with pgACC activities, at choice time (duration=0). (e)
pgACC activation beta values across all subjects, ROI was 8mm sphere at [-3, 40, 5], peak from
overlaying the pgACC clusters from Experiment 2 and 3.
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precise information available during learning. In so doing, it solves the problem of balancing
tonic pain with the requirement to actively learn about behaviour that could lead to relief.

The findings highlight the dual function of a state-based relief associability signal during
tonic pain escape. However, a caveat to this is that associability cannot distinguish unreliable
cues – inherently poor predictors of outcomes, and so does not discriminate between reducible
and irreducible uncertainty, bearing in mind there is little adaptive logic in suppressing pain
for unreliable predictors. Over extended time-frames, it is possible that the learning system
recognises this and reduces endogenous control. However in rodent studies of associative
learning, associability is maintained even after several days of training (Holland et al., 2002),
and it is possible that salient cues in aversive situations maintain the ability to command
attention and learning longer than that would be predicted by ‘optimal’ Bayesian models.

The localisation of the associability signal to the pgACC is consistent with a priori pre-
dictions. The region is known to be involved in threat unpredictability (Nitschke et al., 2006;
Rubio et al., 2015), computations of uncertainty during difficult approach-avoidance decision-
making (Amemori and Graybiel, 2012), and in the perseverance of behaviour during foraging
(Kolling et al., 2012; McGuire and Kable, 2015). It is distinct from a more anterior region
in the ventromedial prefrontal cortex associated with action value (FitzGerald et al., 2012).
More importantly, it has been specifically implicated in various forms of endogenous analgesia,
including coping with uncontrollable pain (Salomons et al., 2007), distraction (Valet et al.,
2004), and placebo analgesia (Bingel et al., 2006; Eippert et al., 2009). However, an open
question remains about the role of conscious awareness in driving pgACC-related endogenous
control – a factor that is often important in these other paradigms. Whether or not the role
of associability is modulated by the metacognitive awareness of uncertainty or controllability
would be an important question for future studies.

The pgACC has been suggested to be central to a ‘medial pain system’ and the descending
control of pain, with its known anatomical and functional connectivity to key regions including
the amygdala (Derbyshire et al., 1997; Salomons et al., 2014; Vogt et al., 2005) and PAG
(Buchanan et al., 1994; Domesick, 1969; Stein et al., 2012; Vogt, 2005). Evidence of high level
of µ-opioid receptors within pgACC (Vogt et al., 2005), where increased occupation has been
found in both acute and chronic pain (Jones et al., 2004; Zubieta et al., 2005), further illustrates
pgACC’s potential role for cortical control of pain.

The results provide a formal computational framework that brings together theories of
pain attention, controllability and endogenous analgesia. Previous demonstrations of reduced
pain (albeit typically for phasic, not tonic pain) have been inconsistent (Becker et al., 2015;
Mohr et al., 2012; Salomons et al., 2004, 2007; Wiech et al., 2014b, 2006). Our results offer
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insight into why, by suggesting that endogenous analgesia is not a non-specific manifestation
of control, but rather a specific process linked to the learnable information.

From the perspective of animal learning theory, the experiments here show how motivation
during the persistent pain state can be understood as an escape learning problem, in which
the state of relief is determined by the offset of a tonic aversive state (Mackintosh, 1983;
Solomon and Corbit, 1974). This is theoretically distinct from the better-studied form of relief
that results from omission of otherwise expected pain or punishment (Konorski, 1967), and
which motivates avoidance behaviour (Mowrer, 1960). In our task, acquisition of dissociable
behavioural responses (SCRs and choices) reveals the underlying theoretical architecture of
the escape learning process, which involves both parallel state-outcome and action-outcome
learning components. The action-outcome learning error signal localises to a region of the
dorsolateral striatum (dorsal putamen). Striatal error signals are seen across a broad range
of action learning tasks, although the region here appears more dorsolateral than previously
noted in avoidance learning (Delgado et al., 2009; Kim et al., 2006; Seymour et al., 2012).
It is not possible to definitively identify whether avoidance and escape use distinct errors,
but it is well recognised that there are multiple error signals in dorsal and ventral striatum,
for instance reflecting ‘model-based’ (cognitive), ‘model-free’ (including stimulus-response
habits) and Pavlovian control (Schonberg et al., 2010; Tricomi et al., 2009; Yin et al., 2004).
The reinforcement learning model we describe is a ‘model-free’ mechanism, since it learns
action values but does not build an internal model of state-outcome identities and transition
probabilities (Daw et al., 2005). However, it is likely that a model-based system coexists, and
might be identifiable with appropriate task designs (Daw et al., 2011).

Developing a computational account of relief learning and endogenous control may also help
us understand how the brain contributes to the pathogenesis and maintenance of chronic pain
(Navratilova and Porreca, 2014). Adaptive learning processes are thought to be important in
chronic pain: learning and controllability have been proposed to play a role in the pathogenesis
and maintenance of chronic pain (Apkarian et al., 2004; Flor et al., 2002; Salomons et al., 2014;
Vlaeyen, 2015), and brain regions such as the medial prefrontal cortex and striatum have been
consistently implicated in clinical studies, e.g. in pain offset responses (Baliki et al., 2010) and
resting functional connectivity in chronic back pain (Baliki et al., 2008, 2012; Fritz et al., 2016;
R Yu et al., 2014). In addition to suggesting a possible computational mechanism that might
underlie pain susceptibility in these patients, the results highlight the pgACC as a potential
target for therapeutic intervention.
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5.5 Tables

Table 5.1 Details of subjective ratings.

Experiment Rating type Rating timing Avg # of ratings/subject

Active relief learning in
dynamic environment
(Experiment 3)

Instrumental pain

After 3s
cue+choice
window, BEFORE
outcome

70.9

Table 5.2 All learning models fitted (bold: winning model; AL - action-learning; SL - state-
learning, F - variational Bayesian approximation to the model’s marginal likelihood, used for
model comparison, assoc - associability)

Instrumental sessions only, Pavlovian not available

Choice F (n=23, sum [sem]) SCR F (n=20, sum [sem])

TD -3572.476 [8.736] RW - value -7867.834 [60.668]
Hybrid (AL) -3626.478 [8.946] Hybrid (SL) - value -7857.341 [60.643]
HMM -3571.020 [9.067] Hybrid (SL) - assoc -7841.864 [60.838]
Bayesian Hierarchical -3784.372 [8.616]
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Table 5.3 Learning model fitting results (std: standard deviation; µθ : Bayesian prior mean of
evolution function parameter; σθ : prior variance of evolution function parameter; µφ : prior
mean of observation function parameter, σφ : prior variance of observation function parameter).

Model
(Options) Data fitted Parameters Mean Std

Initial
states

TD (*) choice learning rate, α 0.577 0.28 Q0=0

Hybrid Action
learning (*)

choice free parameter κ 0.774 0.381 Q0=0
free parameter η 0.14 0.139 α0=1

HMM (*) choice state transition probability β 0.275 0.213 Q0=0.5
relief outcome bias c 0.535 0.212
no relief outcome bias d 0.027 0.072

Bayesian (‡) choice level 2 (outcome) κ 0.331 0.239 Q0=0
level 2 (outcome) ω -0.423 1.396
level 3 (belief) θ 0.45 0.03

RW - V (†) SCR (bilateral) learning rate, α 0.46 0.054 V0=0

Hybrid - Assoc (†) SCR (bilateral) free parameter κ 0.49 0.01 V0=0
free parameter η 0.488 0.027 α0=1

Hybrid - V (†) SCR (bilateral) free parameter κ 0.48 0.034 V0=0
free parameter η 0.496 0.013 α0=1

*Fitting options: µθ = 0, σθ = 1, µφ = 0, σφ = 1
†µθ = 0, σθ = 0.05, µφ = 0, σφ = 1
‡µθ = [0,−2,0], σθ = 1, µφ = 0, σφ = 1
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Table 5.4 Multiple correction (cluster-forming threshold of p <0.001 uncorrected, regions from
Harvard-Oxford atlas. *FWE cluster-level corrected (showing p<0.05 only)

p* k t Z MNI coordinates (mm) Region mask
x y z

TD model PE

0.002 15 4.31 3.63 -25 -5 -22 Amygdala L
0.003 11 4.36 3.66 24 -8 -14 Amygdala R
0.018 1 3.97 3.41 28 -1 -26
0.002 22 5.9 4.52 -32 -8 5 Putamen L
0.021 4 4.55 3.78 32 -16 1 Putamen R

Hybrid model PE

0.001 16 4.36 3.66 -21 -12 -14 Amygdala L
4.23 3.58 -21 -1 -18

0.002 13 4.95 4.01 24 -8 -18 Amygdala R
4.34 3.65 28 -1 -26

0.003 17 5.49 4.31 -32 -8 5 Putamen L

Hybrid model associability

0.001 29 4.5 3.75 -6 40 12 Cingulate Anterior
4.44 3.71 -2 33 23
4.08 3.49 -2 44 5
3.93 3.38 2 40 1
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5.6 Supplementary figures
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Fig. 5.4 Skin conductance raw data. (a) Raw skin conductance traces, where vertical lines
are beginning of each trial when cue display starts (n=20, excluded participants not shown,
showing first non-excluded session from all participant). (b) Filtered skin conductance traces
(band-pass at 0.0159-2Hz, 1st order Butterworth), averaged across all trials within participant
(n=20, excluded participants not shown, shaded region represent SEM across all participants).
In the current experimental design, pain ratings were collected after cue display period, and
participants could terminate rating whenever they finished. These variable time gaps between
cue display and outcome account for the second peak in trial averaged SCR trace.
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Fig. 5.5 Model protected exceedance probability. (a-c) Choice, SCR, rating fitting all remain
similar to original exceedance probability figures.
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(a)

(b)

Fig. 5.6 Overlaying clusters from both relief learning experiments to show similarities. (a)
Overlaying associability associated pgACC responses from both relief learning experiments
(displayed at p<0.001 unc., crosshair at [-3, 40, 5]). (b) Overlaying prediction error associated
responses (displayed at p<0.001 unc., showing overlapping dorsal putamen and amygdala
clusters).



Chapter 6

Experiment 4: Endogenous controllability
of brain-machine interfaces for pain

A fundamental property of human pain is the ability to endogenously modulate perceived
intensity as a function of cognitive control. It is especially important for the design of closed-
loop brain-machine interfaces that aspire to use brain activity to control therapeutic devices,
since it could act to substantially enhance or degrade performance. It remains unclear exactly
what aspect of the neural representation of pain is under control. We studied brain activity
whilst subjects received intermittent pain stimuli in an fMRI-based real-time neurofeedback
task, in which multi-voxel pattern decoding of pain intensity was used to train a control
algorithm to learn to deliver lower intensity stimuli (adaptive decoded neurofeedback). This
created the incentive for subjects to enhance the neural discriminability of pain intensity, but
we found that this was only achieved in a single brain region – the pregenual anterior cingulate
cortex (pgACC). In contrast, discriminability was either reduced or unchanged in classic
pain-processing regions, including insula, dorsolateral prefrontal, and somatosensory cortex.
Furthermore, we also found that pain perception was modulated as subjects learned the success
rate of the machine reducing high-intensity pain. The results indicate a primary role for the
pgACC in the endogenous control of pain, and illustrate how regionally specific co-adaptive
brain-machine learning can have a critical effect of the efficacy of closed-loop systems for pain.

Adapted from Zhang et al. (2018b)
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6.1 Introduction

A striking feature of the pain system is its capacity for endogenous modulation, whereby the
perception of pain can be reduced or increased by higher brain control processes (deCharms
et al., 2005; Tracey and Mantyh, 2007; Wiech, 2016; Woo et al., 2017). It is thought to reflect
a key mechanism by which animals cope with threat, and is mediated in part by control of
descending pathways to the spinal dorsal horn neurons that transmit incoming nociceptive
signals (Basbaum and Fields, 1984; Ossipov et al., 2010). Identifying the central cortical
control site(s) is important, not least for the innovation of new pain treatments. But whereas a
number of brain areas are clearly sensitive to subjective perception of modulated pain, it isn’t
clear whether they are functionally involved in control, or merely reflect the consequence of
it. Importantly, it is not known whether discriminability between different intensities is under
control – a possibility that would suggest a direct modulation of the informational representation
of pain in the brain.

This issue is particularly important for the design of ‘closed-loop’ brain-machine interfaces,
which aim to use brain-based activity patterns to dynamically control pain interventions (Zhang
and Seymour, 2014). Recent studies have shown that multivariate pattern analysis (MVPA
‘decoding’) methods can be used to discriminate pain-related brain (BOLD) responses in
humans with reasonable accuracy (Brodersen et al., 2012; Marquand et al., 2010; Schulz et al.,
2012; Wager et al., 2013), and this can in principle be used to guide interventions in closed-loop
settings where immediate intervention delivered is adjusted based on the real-time decoded
pain state. If a person is aware that their brain is being decoded, however, the incentive is for
them to learn to endogenously increase the discriminability of pain-related brain information,
and therefore enhance the performance of any machine application that uses this information.
But if pain discriminability patterns are not primarily under active control, then performance
would be potentially susceptible to other adaptive changes associated with learning that might
actually reduce discriminability – for instance modulation by expectancy effects in which pain
predicts its subsequent relief (Atlas and Wager, 2012; Colloca et al., 2008). Consequently,
understanding the nature of cognitive control of neural pain representations is of fundamental
importance to predicting the performance and stability of closed-loop systems over time.

To identify whether pain discriminability could be enhanced through cognitive control,
we designed a co-adaptive brain-machine interface system using real-time functional brain
imaging (rtfMRI). Accordingly, a machine learned to reduce the intensity of experimental
pain stimulation based on decoded BOLD representations of pain in the brain, creating the
incentive for subjects to modulate their brain responses. We studied whether and where neural
discriminability of pain increased when subjects were aware of the system, and the associated
impact on the perception of pain itself.
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6.2 Methods

Subjects

19 healthy participants enrolled in a two-day neuroimaging experiment (two female, age
23.5±4.0 years). All subjects gave informed consent prior to participation, had normal or
corrected to normal vision, and were free of pain conditions or pain medications. The experi-
ment was approved by the Ethics and Safety committee of the Advanced Telecommunications
Research Institute, Japan.

Experimental design

The experiment spanned two days. On each day, each participant completed 2 sessions of pain
thresholding test outside the scanner and 6 sessions of task with high/low painful stimuli inside
the scanner.

Day 1: Decoder construction

Participants received a sequence of high and low intensity painful electrical stimuli to the left
hand, with no associated task demands other than intermittent pain ratings (Fig 6.1a). For
decoding, we used BOLD responses in bilateral insula cortex, since this region is thought to
have a primary role in the coding of pain (AD Craig, 2002; Geuter et al., 2017; Segerdahl
et al., 2015; Woo et al., 2017). Individual participant’s responses to high and low intensity
stimuli were subsequently used to train a voxel-wise MVPA decoder that could classify the two
stimulus levels (see ‘Decoder construction’).

From the participant’s perspective, a painful stimulus was delivered at the beginning of
each trial when a ‘+’ symbol appear on screen below the white bulls-eye fixation point. The ‘+’
stayed on for 10s, then the ‘=’ symbol replaced it for 2s, signalling a brief inter-trial interval
(ITI). In 40% trials (12 randomly chosen out of 30 in each session), the ‘+’ stayed on screen
for 4s and the fixation point turned to an orange square (signalling upcoming rating), followed
by a 0-10 visual analogue scale that stayed on for 6s, where participants were asked to rate
how painful the stimulus was by pressing two buttons to move the slider on screen (Fig 6.1b).
Brain images from 4-10s after pain delivery were used for both decoder training and real-time
decoding. This allowed for BOLD delay and avoid movement contamination. The 30-trial
session was repeated 6 times with a short break in between (180 trials, 72 ratings per subject
in total). All participants were given the instruction to rest in the scanner and do nothing (see
‘Participant instructions and survey questions’).
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(a)

(b)

(c)

Fig. 6.1 Experimental paradigm. (a) Participants took part in a two-day decoding neurofeedback
experiment. On Day 1, their functional brain images were recorded while they were given high
or low level of electrical pain at the beginning of each trial, which were used for offline MVPA
decoder training. On Day 2, participant’s probability of having received high pain (P(Pain)) in
the current trial was computed in real-time from their brain activities by the decoder, which
was then used by the pain delivery system to decide on the pain level of the next trial. The
decision function of the system was based on a reinforcement learning algorithm that aimed
to lower the participant’s decoded P(Pain). (b) For 40% of all trials in a session, participants
were asked for their pain ratings 4s after its delivery on a 0-10 VAS scale. The changed fixation
point acted as a prompt for rating. The display were identical on both days. (c) Demonstration
of bilateral insula ROI generated from AAL atlas (viewed at z=0).
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Day 2: Neurofeedback adaptive control

High and low pain stimulation were embedded into a closed-loop adaptive control paradigm
using real-time MVPA output as the feedback signal. Specifically, a machine controlling the
two levels of pain stimulation tried to learn to deliver the level with the least pain based on the
output of the MVPA classifier (the Day 2 scan was carefully realigned with Day 1 to allow
generalisation across days). After delivering pain stimulus, the participants’ probability of
experiencing high pain from that stimulus (P(Pain)) was estimated by the decoder with insula
BOLD activity from their brain images in that trial (realigned and resliced to the reference
image from Day 1, following Shibata et al., 2011). The estimated probability was used as
reward in the decision function (with lower probability of high pain equating to a more positive
reward).

The reason for using an adaptive decision function was two-fold: to maximise the incentive
for subjects to enhance discriminability of pain; and to show that in principle, pain-reducing
interventions can be learned by an appropriate control algorithm. Specifically, stimulation was
based on a reinforcement learning algorithm that learned the values for each of the two stimulus
levels, initialised at zero at the beginning of each session (i.e. the machine doesn’t ‘know’
which level results in less pain). The details of this algorithm are described below, but in brief,
the stimulation state that elicited lower decoded pain signal in the participant was reinforced
(see ‘Neurofeedback adaptive control’).

To allow meaningful comparisons to be made between the brain responses on the two days,
bearing in mind their necessary sequential order, we yoked a previous participant’s Day 2 pain
sequence as the sequence for the current participant on Day 1. Day 1 and 2 had the same trial
structure (Fig 6.1a), apart from the adaptive control process and subject instructions. The yoking
procedure preserves the balance of high/low pain stimuli and their temporal sequences between
days, which allows investigation of whether any brain-machine co-adaptation processes took
place. 16 out of 19 participants used another participant’s Day 2 trial sequences on Day 1
as yoked control. All participants were explicitly told that the pain level they received was
controlled by the computer programme, and were aware that modulating their brain activity
could therefore influence the computer (see ‘Participant instructions’ below).

Stimulus delivery

Painful electrical stimuli were delivered using two constant current stimulators (Digitimer
model DS7A, Welwyn Garden City, Hertfordshire, UK), at two current levels for high/low pain
determined using the participant’s own threshold. On each day, the current levels were set
according to the pain threshold test conducted before experiment started. The current levels



114 Experiment 4: Endogenous controllability of brain-machine interfaces for pain

were fixed across sessions (except in 4 subjects, minor adjustments were made where pain
ratings were either too high, or there were no difference between two levels). All stimuli were
delivered as a train of 50 5ms square wave pulses at 10Hz, lasting 500ms (DS7 settings: x1
mA, 200µs).

The two stimulators were connected to a custom-made switch that allowed current delivery
through the same custom-made, MRI-compatible ring electrode (10mm diameter). The elec-
trode was taped to the back of the left hand of the participant, its location marked on Day 1 as
reference for attachment on Day 2.

Pain thresholding (Day 1 and 2)

On each day, participants completed a thresholding procedure at the beginning of the experiment.
In the first session, the staircase method was used to evaluate their highest pain limit. Stimuli
current were linearly increased at 0.2-0.5mA interval, and participants were asked for verbal
feedback of a 0-10 pain rating in person after each stimulation. This procedure was rerun a
few times using different starting points and both stimulators. In the second session, 14 trials
of randomised painful stimuli were given within the range of lowest perceivable to highest
tolerable current level determined in session 1. Subjects rated each stimulus 1s after receiving
it, on a 0-10 VAS scale on screen using a keyboard (as practice to the rating procedure used in
the task). To determine the final current level to use, both a Weibull and a sigmoid function
were fitted to session 2’s stimuli and ratings, and current levels for VAS = 1 and 8 were used
for low / high pain stimulus for the experiment respectively. The same procedure was repeated
for Day 2, and the new fitted current levels were used.

fMRI data acquisition (Day 1 and 2)

Neuroimaging data was acquired with a 3T Siemens Prisma scanner with the standard 64
channel phased array head coil. Whole-brain functional images were collected with a single
echo EPI sequence (repetition time TR=2000ms, echo time TE=26ms, flip angle=80, field of
view=240mm), 33 contiguous oblique-axial slices (voxel size 3.2 × 3.2 × 4 mm) parallel to
the AC-PC line were acquired. Whole-brain high resolution T1-weighted structural images
(dimension 208 × 256 × 256, voxel size 1 × 1 × 1 mm) using standard MPRAGE sequence
were also obtained.



6.2 Methods 115

Decoder construction (Day 1)

Preprocessing All preprocessing were conducted using SPM12 (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12/) in MATLAB (The MathWorks Inc., Natick, MA, USA).

All functional images were realigned and resliced to the reference functional volume (the
first baseline TR after the first 3 dummy TRs obtained in the first session on Day 1). Structural
T1 images were coregistered and segmented according to the canonical single subject T1
images. The resulting inverse transformation matrix was used to normalise the bilateral insula
ROI obtained from the Automated Anatomical Labeling (AAL) atlas from MNI space to
individual subject space. These warped ROI images were then coregistered to the reference
functional TR.

Feature extraction Time series were extracted from all voxels within the individual’s insula
ROI. To account for BOLD delay and to minimise motion contamination, the times series from
TR 3-5 (4-10s) were used from each trial, the first two TRs (0-4s) immediately following pain
stimulus were omitted. For denoising, the 5 TRs following 3 dummy TRs at the beginning of
each session were used as baseline, each trial ROI time series were normalised by subtracting
session baseline mean and divided by baseline standard deviation, then the mean across the TR
3-5 from all trials were extracted for classifier training.

Decoder training Mean insula voxel activity as feature and high/low pain delivered as label
were aggregated across all trials within participant for decoder training. Binary classification by
Sparse Logistic Regression (SLR) with variational parameters approximation (Yamashita et al.,
2008) was used. This results in a sparse matrix of weights for about 5 percent of all voxels
within the given ROI. By multiplying weights with feature/voxel intensity signals, the decoder
produces the probability of observing current label given trial features (referred as (P(pain)
from here, P(pain)=1 means highly likely to have received high pain, P(pain)=0 means unlikely
to have received high pain, or highly likely to have received low pain).

For decoder training, all trials were used for training. To estimate decoder accuracy, all
trials were partitioned into 10 equal sets with 9 sets for training and 1 set for testing (10 fold
cross-validation). The average testing accuracy of 10 iterations of cross-validation were used
as estimated decoder accuracy (Table 6.1). The trained decoder was tested with another day’s
data using the experimental setting.

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Neurofeedback adaptive control algorithm (Day 2)

To allow automated adaptive control of pain stimulus delivery, we used a simple reinforcement
learning algorithm (Sutton and Barto, 1998) to update the value of high/low pain states trial-by-
trial:

Qt+1(a) = Qt(a)+α(−P(pain)−Qt(a)) (6.1)

where t represent trials, Q is the value of given state, a is the actions available for the algorithm
(i.e. either giving high or low pain, collectively shown as action set A), α is learning rate fixed
at 0.5.

P(pain) is the decoder-generated probability of current trial’s stimulus being high pain. It’s
scaled between [-1,1] when used in the updating function. Higher P(pain) would decrease
the value of the current pain state more and vice versa, while the value of the unchosen state
remained unchanged.

The algorithm selects which pain level to deliver for the next trial using an ε-greedy action
selection rule based on current values:

pt+1(a|Qt) =

random action a ∈ A, if ξ > ε

argmaxa∈AQt(a), otherwise
(6.2)

where ε is the explore ratio fixed at 0.4 (i.e. exploring by choosing a random action by
either giving high or low pain 40% of the time, exploiting the other times), ξ is a uniform
random number drawn within [0,1] at each trial. The random exploration allows a sufficient
proportion of alternative pain level to be delivered, to ensure the next participant who uses
current participant’s Day 2 sequence to have enough trials of both high and low pain for decoder
construction. We also set values to be 0 for both states at the beginning of each session.

Frequency learning model

The frequency learning model M assumes a participant estimates the posterior distribution of a
given stimuli θ from a previously observed sequence of two possible stimuli y1:t (i.e. high or
low pain) using Bayesian updating (Mars et al., 2008; Meyniel et al., 2016).

p(θ |y1:t ,M) ∝ p(y1:t |θ ,M)p(θ ,M) (6.3)

Given the experiment design, participants are assumed to have uninformative prior over the two
stimuli at the beginning of each session, which can be represented by a Beta distribution with
parameters [1,1]. Since the product of two Beta distributions results in a Beta distribution, the
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posterior distribution depends only on the frequency of the high and low stimuli Nh,Nl , which
has an analytical solution. The posterior mean of the predicted high pain distribution is:

p(h|Nh,Nl) =
Nh +1

Nh +Nl +2
(6.4)

and P(l|Nh,Nl) = 1− p(h|Nh,Nl) given the reciprocal relationship between high/low pain
stimuli.

The uncertainty/surprise of current stimulus h/l at trial t can be estimated as the entropy H
of the posterior mean before updating from trial t−1:

H(P(ht)) =−log2(P(ht−1)) (6.5)

This model does not require model fitting, as participants were assumed to cumulate
stimulus counts over the entire session (30 trials), where we assumed perfect memory retention.
It is possible to limit the number of trials for frequency memory, or introduce a forgetting
‘leaky factor’ to discount previously experienced trials. However, given that we had no other
behavioural data for fitting apart from selective pain ratings, and relatively short sessions, we
decided to use the simplest frequency model without fitted parameters.

To determine any learning effects on subjective ratings, we followed the method in Woo
et al. (2017) to use subjective rating residuals for correlation analysis with learning model
predictors. We regressed subjective ratings with a matrix of high/low pain stimulus identities
(high=1, low=-1), and session numbers (1-6) for each individual to obtain rating residuals. The
fluctuation of the resulting residuals can be interpreted as modulatory effects on pain beyond
the level of nociceptive inputs.

Behavioural data

Behavioural data were analysed using Python 3.6, with pandas 0.19.2, scipy 0.18.1, afex 0.16-1.

fMRI data offline analyses

Preprocessing For offline analysis, functional images were preprocessed using the fmriprep
software (build date 21/05/2017, pypi version 0.4.4, freesurfer option turned off, https://github.
com/poldracklab/fmriprep), a pipeline that performs slicetime correction, motion correction,
field unwarping, normalisation, field bias correction, and brain extraction using a various set
of neuroimaging tools available. The confound files output by fmriprep include the following
signals: mean global, mean white matter tissue class, three FSL-DVARS (stdDVARS, non-
stdDVARS and voxel-wise stdDVARS), framewise displacement, six FSL-tCompCor, six

https://github.com/poldracklab/fmriprep
https://github.com/poldracklab/fmriprep
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FSL-aCompCor, and six motion parameters (matrix size 24 × number of volumes). Resulting
functional images were smoothed with an 8mm Gaussian kernel in SPM12, except for those in
used searchlight analysis.

fMRI GLM model

All event-related fMRI data were analysed with GLM models constructed using SPM12,
estimated for each participant in the first level. Stick functions at pain stimulation onset were
convolved with a canonical hemodynamic response function (HRF). We also included rated
trials (duration=10s, from beginning until ITI) as regressor of no interest, in addition to the 24
columns of confound matrix output by fmriprep. Day 1 and 2 data were included in the same
GLM, but first-level contrasts were estimated separately for days.

Whole-brain comparison (Fig 6.3) 2 regressors: high/low pain onset (duration=0).

Switch trials differences (Fig 6.5) 4 regressors: trials stimulus different from or identical to
that of the previous trial were labelled as switch or non-switch trials, separately for high/low
pain (HH, LL, LH, HL), at pain onset (duration=0).

Frequency learning posterior probability and entropy (Figs 6.6b, 6.6c, 6.6d) 3 regres-
sors at pain onset (duration=0) with parametric modulators: posterior probability of current
stimulus (updated prediction), entropy of previous posterior probability of current stimulus (un-
certainty of prediction before updating), actual identity of stimulus (high pain=1, low pain=-1).
All parametric modulators mean centred within session, SPM orthogonalisation for these 3
regressors were turned off.

For multiple comparison, we used anatomical binary masks generated using the Harvard-
Oxford Atlas (Desikan et al., 2006) (freely available with the FSL software, https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/Atlases), and periaqueductal grey probabilistic atlas (Ezra et al., 2015) for
small volume correction. All probability maps were thresholded at 50%, and all masks were
applied separately, not combined. We used the frontal medial cortex mask as approximation
for the ventromedial prefrontal cortex (VMPFC). Bilateral masks for ventrolateral and lateral
periaqueductal grey (vlPAG and lPAG) were combined respectively. We also used the pregenual
anterior cingulate cortex (pgACC) peak identified in our previous study of active relief learning
(Zhang et al., 2018a) for the 8mm spherical ROI mask (sphere peak used: [6,40,12]). We
reported all results with p<0.05 (FWE cluster-level corrected), with the exception of searchlight
analysis results (MFG/DLPFC SVC had p=0.06, see Table 6.2).

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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ROI analysis

Beta estimates were extracted from activation ROIs (see text for mask details). Beta values
plotted were the average of all voxels within ROI masks, with statistics showing subject-
level SEM. Post-hoc repeated measure ANOVA were conduced with the R package ‘afex’.
pgACC activations were overlaid on subject-averaged anatomical scans using MRIcroGL
(https://www.nitrc.org/projects/mricrogl/).

Decoder comparison

Decoders were constructed using Day 2 data with the same procedure as Day 1 (Fig 6.4). This
was done to determine whether the decoding performance of insula ROI remained the same, or
whether any learning-induced changes might have changed the decoder properties.

Whole-brain searchlight analysis was conducted using the Decoding Toolbox (TDT, v3.98)
in MATLAB (Hebart et al., 2015). The toolbox can conduct multivariate decoding analyses
at combined trial types within fMRI runs, by extracting features from beta images of relevant
regressors in the first level GLM analysis output by SPM. This could lead to higher classification
accuracy and lower computation time, comparing to single trial decoding.

A searchlight analysis was carried out within a 10mm radius sphere for the whole brain, with
high/low pain categories as unsmoothed beta images from each run for individual participant.
TDT produced a decoding accuracy map for each voxel using a leave-one-run-out cross
validation scheme, which can be interpreted as the local information content of each voxel
(Kriegeskorte et al., 2006). The Day 1 and 2 accuracy maps from each individual were then
smoothed with a Gaussian kernel of 4mm, and entered into a standard SPM second level paired
t-test as in the GLM analysis above. The resulting T map indicates the changes in decodable
information used for pain level decoding across days.

Participant instructions and survey questions

Day 1 (Decoder construction)

Please rest in the scanner. We are looking at your brain’s response to different levels of pain.
You don’t have to do anything.

Day 2 (Adaptive control)

You don’t need to do anything in this task. The computer is trying to work out if you feel pain
or not, by looking at your brain activity. If it thinks you felt pain, it will try and change the pain

https://www.nitrc.org/projects/mricrogl/
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stimulation to stop you from having pain. If it thinks you did not feel much pain, it will try not
to change anything. However, it cannot do this very reliably, as reading the brain activity is
difficult, so it may often make mistakes.

During your first scan, we gave a random sequence of pain stimuli – some high, and some
low. Using this data, we have trained a computer program to tell how much pain you were
feeling during each shock, based on your brain activity. It is good, but not perfect – it gets it
right about 80% of the time.

In today’s scan, the computer program can influence the pain level you get. If it thinks you
felt a lot of pain, it will influence the pain machine to give you less pain in the future. If it
thinks you did not feel much pain, it will try to influence the pain machine to continue to give
you little pain. In other words, it is trying to help you get less pain! This is a difficult job for
the computer program, because it is not perfect at reading your brain activity as soon as it is
active (i.e. within a few seconds).

It is up to you what you do in the task. You can do nothing, and hope that the system works
well, and the computer learns to reduce the pain. Or you can try to influence the computer
using your thoughts, in any way that you like.

Post-training survey (Day 2)

1. Do you think the machine was successful in reading your pain and trying to reduce it?

2. Did you try to influence the computer by doing or thinking anything?

3. If so, what did you do/think?

4. And if so, do you think you were successfully able to influence it?

5. Any other comments or feedback?

6.3 Results

Behavioural results

Within-subject decoder construction based on the insula ROI achieved reasonable classification
accuracy (Day 1: 10-fold cross-validated test accuracy 65%, sensitivity 60%, specificity 67%,
accuracy one-sample t-test vs 0.5 across subjects: T(18)=8.967, p<1e-7) (see also Table 6.1).
When this classifier was used during neurofeedback when the subject returned on Day 2,
decoding accuracy remained above chance (Day 2: accuracy 56%, sensitivity 51%, specificity
63%, accuracy t-test vs 0.5: T(18)=4.053, p=0.0007). Specifically, the real-time decoder output
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following delivery of high pain (referred to as P(pain), Fig 6.2a) differed significantly for the
high and low pain stimuli (repeated measure ANOVA of session and pain level effects, only
pain level main effect significant: F(1, 18)=17.41, p=0.0006, post-hoc test Bonferroni corrected
P(pain) for high pain 95%CI=[0.558, 0.676], low pain=[0.434, 0.551]).

Decoder performance was therefore sufficient for the reinforcement learning control system
to learn differential values for high and low pain stimuli within a few trials in each session
(Fig 6.2b, mean ± SEM, high pain=-0.264±0.0486, low pain=-0.0608±0.0479, paired t-test:
T(18)=-3.651, p=0.0018). Accordingly, the control system delivered significantly fewer high
compared to low pain stimuli (Fig 6.2c, number of high pain trials minus low pain trials: Day
1=-3.526±1.436, Day 2=-3.912±1.412, one-sample t-test vs 0: Day 1 T(18)=-2.455, p=0.0245,
Day 2 T(18)=-2.771, p=0.0126).

Table 6.1 Decoder testing performance (high pain = positive, low pain = negative for sensitiv-
ity/specificity calculation; CV: 10-fold cross validation; D1: Day 1; D2: Day 2. All values are
mean (SEM), n=19)

Train D1, Test D1 (CV) Train D1, Test D2 Train D2, Test D2 (CV) Train D2, Test D1

Accuracy 0.6488 (0.0163) 0.5632 (0.0156) 0.5601 (0.0100) 0.4912 (0.0314)
Sensitivity 0.6017 (0.0258) 0.5057 (0.0159) 0.4982 (0.0313) 0.4379 (0.0258)
Specificity 0.6654 (0.0248) 0.6309 (0.0365) 0.5903 (0.0246) 0.5490 (0.0310)

# features (voxels) 24.053 (1.053) 28.737 (0.700)

An important feature of our experimental design was to have matched sequences on Day
2 (neurofeedback) to Day 1 (decoder construction), to allow meaningful comparisons to be
made. To achieve reasonable classification learning, therefore, we set the decision function
(i.e. by which action values determine the actual machine choice of pain level) for the control
system to be noisy, so that despite the relatively clear difference between action values, there
were sufficiently large number of high stimuli delivered that would support decoder training
performance when the sequence was used for a subsequent subject’s Day 1 decoder construction.
Note that the 3 initial subjects did not have yoked stimulus sequences, instead they used
randomly generated 50/50 high/low pain sequences.

Participants completed pain threshold testing on both days before the experiment started,
with aims to achieve VAS=1 and 8 for low/high pain respectively. Consequently, pain rat-
ings were significantly different between the high and low levels of pain (Fig 6.2d, high
pain=5.92±0.356, low pain=1.99±0.258, repeated measure ANOVA Pain levels: F(1,11)=86.00,
p<1e-5), but did not show significant differences across sessions or days (day: F(1,11)=3.173,
p=0.103, session: F(5,55)=0.470, p=0.797). There were no significant differences in the
high/low pain stimulation current levels given between days (paired t-test p=0.12 and 0.27
respectively).
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We conducted a questionnaire survey (see Methods) after Day 2’s experiment concluded,
in which participants showed evidence of awareness of and attempt in mentally influencing
the system to reduce overall pain. 17 out of 19 (1 ambiguous) of all participants believed the
machine was successful in reading their pain and trying to reduce it, 15 out of 19 (2 ambiguous)
believed that they were successful in influencing the system to achieve that using some mental
strategies. The strategies used most frequently included a combination of mental imagery of
pain, distraction from pain, predicting/recalling stimulus sequence, and doing nothing.

Whole-brain comparison between days

Offline whole-brain analysis of fMRI data using a conventional general linear model showed
evidence of a regional day × pain level interaction (Fig 6.3a). Specifically, within-subject
comparison (Day 2 - Day 1) of the contrast (high pain - low pain) showed increased responses
in PAG (statistics in figure legend, and correction for multiple comparisons detailed in Table
6.2), probably localising in dorsolateral or lateral PAG (Fig 6.3b), using PAG subdivision masks
from (Ezra et al., 2015). The PAG is an important a priori ROI in this analysis, as it is a key
part of the descending endogenous control system.

In contrast, we found decreased BOLD responses in the left amygdala and bilateral putamen
(Fig 6.3a). Responses in the bilateral insula ROI, of which the decoder computed P(Pain) from,
were not significantly different between days for either high or low pain, or overall (pain level
main effect: F(1,18)=63.911, p=2.475e-7, session main effect: F(5,90)=4.130, p=0.002, none
of the interactions significant. Note that images used in the GLM and subsequent analyses
were fully preprocessed, as opposed to the limited (i.e. rapid) processing used in real-time
neurofeedback).

Decoder comparison

To identify potential changes in the multi-voxel patterns in the insula, we compared MVPA
decoder performance trained offline using the bilateral insula ROI on functional brain images
from Day 1 and Day 2 (i.e. training the decoder separately on each day, and using cross-
validation test sets to estimate performance). This analysis aimed to detect changes in the
representation of pain, distinct from the mean BOLD signal across all ROI voxels, and despite
the fact that there were no significant changes to pain stimuli or rating between days. Using a
10-fold cross-validation, we found that the decoding test accuracy decreased on day 2 compared
to Day 1 (Fig 6.4a and Table 6.1, Day 1: 64.8%, Day 2: 56.0%, Wilcoxon signed-rank test
Z(18)=3.69, p<0.001). Furthermore, the decoder trained with Day 2 data identified significantly
more voxels as contributing to decoding performance compared to Day 1 (Fig 6.4b and Table
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Fig. 6.2 Behavioural results (mean ± SEM across n=19 individuals). (a) Decoder predicted
probabilities of having received high pain, P(pain), were able to distinguish high/low pain
state (calculated on Day 2 only). (b) Within-session, the control system learned to value low
pain states higher than high pain states (Q(low pain) > Q(high pain)) after several initial trials
(Day 2). (c) Number of high pain trials minus low pain trials delivered to all participants on
both days, where low pain levels were delivered more frequently (participant 1-3 used random
stimulus sequences on Day 1 instead of yoked, error bars represent SEM calculated across
sessions for a participant). (d) Raw pain ratings were significantly different for the two pain
levels, but not across sessions or days (H=high pain, L=low pain).
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Fig. 6.3 Whole brain comparison between days results, (a) Within-subject comparison (2nd
level paired t-test, Day 2 - Day 1) of the high pain - low pain 1st level contrasts, interaction were
observed in left amygdala (peak coordinates [-16, -7, -18], T=-4.38, k=11), bilateral putamen
(left peak [-26, 12, 6], T=-4.09, k=47, right peak [26, 19, -2], T=-4.50, k=32) and the PAG
(peak coordinates [0, -30, -6], T=3.27, k=3). All images shown at p<0.005, k>0. (b) Dorsal
lateral PAG and lateral PAG masks (thresholded at 50%) from (Ezra et al., 2015) overlaying
PAG activation from GLM (cluster formation at Z=2.9). SVC using bilateral dlPAG mask
p(FWE-corr)=0.034, k=1, T=3.14, Z=2.76, peak in [-3,-30,-6], k=1, T=2.94, Z=2.62, [3,-30,-6],
lPAG mask (FWE-corr)=0.036, other statistics the same as dlPAG mask. (note our voxel size is
too big for very serious PAG subdivision). H: high pain, L: low pain.
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Fig. 6.4 Decoder comparison and searchlight analysis results. (a) 10 fold cross validation
test accuracy of insula decoder decreased on Day 2 (mean ± SEM across N=19 individuals).
(b) Number of weighted voxels increased on Day 2. (c) Comparison between the mean
searchlight accuracy of pgACC and insula clusters (masks extracted from clusters shown in
figures below, at p<0.005 unc.) and right SII (mask from accuracy>75% on Day 1, k=50 voxels,
see text). (d-e) Whole-brain searchlight analysis showed that information content contributing
to decoding accuracy decreased in left insula and DLPFC/MFG, and increased in pgACC, on
Day 2 comparing to Day 1 (shown at p<0.005, k>0).

6.1, Day 1: 24.1±1.1 voxels, Day 2: 28.7±0.7 voxels, signed-rank test Z(18)=-3.21, p=0.001)
(NB. the sparse logistic regression method prunes unnecessary features using regularisation that
assumes the weight prior as a zero mean vector and a diagonal covariance matrix, Yamashita
et al., 2008). There were no significant differences in the locations (i.e. average of x, y, or z
coordinates) of these weighted voxels within individuals. These results suggest the insula as an
ROI may have overall disrupted functional information content for pain level encoding on Day
2 (neurofeedback).

To identify any changes in pain intensity representations across the whole of the brain,
we conducted a whole brain post-hoc searchlight analysis using data from Day 1 and 2. This
identifies accuracy maps that reflect the local information content of each voxel (Hebart et al.,
2015; Kriegeskorte et al., 2006), which can be used to search the brain for changes in pain
level representation. A paired t-test of these maps (Day 2 - Day 1 in a second level paired t-test,
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DF=18) revealed reduced pain level decoding accuracy localised to a region in the left insula
(Fig 6.4d, [-45, 6, 2], T=-6.04, k=142, whole brain cluster level p(FWE-corr)=0.014, shown
at p<0.005 uncorrected). This localisation presumably underlies the ROI-based reduction in
accuracy in the preceding analysis. Extracting the exact values from accuracy maps from
both days, the left insula showed decreased decoding accuracy on Day 2 (171 voxels, Day
1: 67.844±2.320, Day 2: 57.546±2.366, paired t-test T(18)=-5.335, p=4.525e-5). Outside
of the insula, we also noted reduced accuracy (135 voxels, Day 1: 67.074±1.715, Day 2:
55.932±2.234, paired t-test T(18)=-4.996, p=9.359e-5) in the left medial frontal gyrus (i.e
dorsolateral prefrontal cortex (DLPFC), [-38, 9, 42], T=-5.68, k=134, which survived correction
for whole brain multiple comparisons, whole brain cluster level p(FWE-corr)=0.045).

In contrast, using the same searchlight procedure as above, we found increased information
content in a small region of the medial prefrontal cortex consistent with the pregenual anterior
cingulate cortex (pgACC) (Fig 6.4e, [6, 44, 14], T=3.50, k=5, small volume correction (SVC)
using an 8-mm spherical mask based on our previous investigation, Zhang et al., 2018a).
Extracting the exact values from the accuracy maps from both days, this pgACC ROI had
significantly increased decoding accuracy across all participants (Fig 6.4c, Day 1 accuracy:
55.293±1.604, Day 2: 63.009±2.383, paired t-test T(18)=3.676, p=0.0017).

For comparison, we also looked at the average accuracy maps from all participants in
the right secondary somatosensory cortex (SII), since this region is also known to encode
intensity-related pain responses. We found reasonable accuracies across both days (Day 1
peak [45,-17,26], accuracy=77.414, Day 2 peak [55,-30,26], accuracy=74.510), however, SII
decoding accuracy did not vary significantly across days (averaged within the cluster mask
from Day 1, k=50, Day 1: 75.813±2.234, Day 2: 71.563±2.880, paired t-test T(18)=1.344,
p=0.196). To look at regional differences formally, we computed a day × location interaction:
we found that this was significant between pgACC and SII (F(1,18)=6.648, p=0.012), although
not between insula and SII (F(1,18)=1.507, p=0.22).

Trial sequence comparison

The imaging results above indicate that there are differences in the way pain is processed
and represented on Day 2. To examine this further, we next looked for behavioural and brain
evidence that might reflect the subject’s reported attempts to modulate their brain activity in the
context of the closed-loop neurofeedback on Day 2. Specifically, we classified ‘switch’ and
‘non-switch’ trials, depending on whether the pain level delivered in the current trial differed
from that of the previous trial, because these sequence information can guide participants as
they adapt their mental strategies on Day 2.
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Fig. 6.5 Switch trials differences. All imaging results shown at p<0.001, k=0. (a) Within-subject
normalised ratings, group by days, pain levels, and switch status, showing that Day 2 switch
low pain trials were more painful than non-switch trials. (b) Day 2 decoder predicted scores
(p(pain)*100) for switch/non-switch trials showed differences for high and low pain. (c) Day 2
HL>LL in bilateral amygdala. (d) Beta values extracted using bilateral activation cluster as
ROI (at p<0.001 unc., k=30). (e) Day 2 LL>HL in right ventral striatum / OFC. (f) Beta values
extracted from individuals using striatum activation cluster (k=9).
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Using a simple t-contrast, we found that pain ratings for the low pain stimulus on switch
trials was significantly higher than non-switch trials on Day 2, although there was no significant
interaction across days (Fig. 6.5a, paired t-test T(18)=-2.466, p=0.0186, day × switch interac-
tion for low pain: F(1,18)=2.477, p=0.133, interaction for high pain: F(1,18)=0.214, p=0.650).
Similarly, we found that predicted insula P(Pain) score on switch trials was significantly higher
for low pain (Fig 6.5b, paired t-test T(18)=2.990, p=0.0079), as well as being marginally so
for high pain (T(18)=1.952, p=0.067). This provides evidence, from both ratings and insula
patterns, that subjects were sensitive to the sequence of pain stimuli on Day 2.

In the imaging data, the contrast of switch vs non-switch low pain trials on Day 2 revealed
HL>LL BOLD responses in bilateral amygdala (Fig 6.5c), and LL>HL in right striatum (Fig
6.5e). Exploring this result with an ROI analysis, Day 2 showed significant pain level ×
switch interaction in both ventral striatum (Fig 6.5f, repeated measure ANOVA F(1,18)=7.673,
p=0.0126)), and amygdala (Fig 6.5d, ANOVA F(1,18)=11.991, p=0.0028)). This shows that
learning-related brain regions track pain feedback.

Frequency learning evidence

The switch trial analyses provide behavioural and brain evidence that subjects are sensitive
to the sequential identity of the stimuli on Day 2 (although this effect is not readily apparent
on Day 1, the lack of an interaction by day means we can’t necessarily conclude that subjects
are significantly more sensitive to switches on Day 2). Switch trials are important because
they contain more information than non-switch trials, an effect that can be formalised by a
simple model in which people use the underlying frequency of high and low pain to infer how
successful, overall, the machine is at reducing pain, i.e the overall probability of receiving low
or high pain on any trial.

To capture a basic frequency learning process we applied a simple Bayesian learning model
to quantify two key metrics: the ongoing probability of low/high pain, and the level of surprise
on each trial (entropy). Previous studies have shown that such simple models provide a good
account of behavioural and brain measures of surprise in comparable statistical environments
(Mars et al., 2008; Meyniel et al., 2016).

We first looked at whether these metrics correlated with behaviour. Using a linear regression
model of pain ratings (see methods), we found no correlation with a posteriori probability of
low pain (z-transformed correlation coefficients Day 2 vs 0: T(18)=-0.582, p=0.568, Day 1 vs
0: T(18)=0.233, p=0.819, paired t-test between days: T(18)=0.601, p=0.555). However, we
found a strong correlation with entropy, which was specific to Day 2, compared to Day 1 (Fig
6.6a, z-transformed correlation coefficients Day 2 vs 0: T(18)=4.648, p=1.99e-4, Day 1 vs 0:
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Fig. 6.6 Frequency learning evidence on Day 2. (a) Entropy (uncertainty regarding upcoming
stimulus being high pain) from frequency learning model correlated with pain rating residuals
from Day 2, but not Day 1 (using pain rating residuals with intensity and session numbers
regressed out, see Methods). (b) Frequency learning model posterior probability of low pain
correlated with VMPFC on Day 2 (peak coordinates [0, 51, -14], T=4.44, shown at p<0.001
unc.). (c-d) Frequency learning model entropy on Day 2 (i.e. entropy of posterior probability
of current stimulus before updating) correlated with pgACC and bilateral insula (pgACC peak
coordinates [13, 41, 14], T=5.91, sagittal and coronal views both at p<0.001 unc.). (e) Overlay
of pgACC activations from both entropy (green) and searchlight (red) analysis (visualised at
Z>3.2 for both).
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T(18)=0.259, p=0.798, Paired t-test between days: T(18)=2.245, p=0.0376). That is, greater
entropy was associated with greater subjective pain.

In the analysis of imaging data on Day 2, we found that the a posteriori probability of low
pain was correlated with BOLD responses in VMPFC (Fig 6.6b), consistent with this regions
strongly association with reward and relief value in previous studies of learning (Kim et al.,
2006; Seymour et al., 2012). We found that entropy was correlated with BOLD responses
in both bilateral insula and pgACC (Fig 6.6c and 6.6d). The insula response lay within
the bilateral insula mask used for the decoder construction, and the pgACC response was
part overlapping with the region associated with increased accuracy coding during adaptive
neurofeedback (Fig 6.6e). When looking at the contrast of these responses across days, we found
that although there was no significant effect of day in the insula response, the peak pgACC
response was significantly greater on Day 2 (SVC corrected p(FWE-corr)=0.021, T=3.70,
Z=3.15, peak coordinates [13,41,14]). That is, entropy – effectively an uncertainty metric
during learning – correlated with both pain ratings and pgACC BOLD response specifically
during neurofeedback.

6.4 Discussion

The results show that a real-time decoded brain response to an experimental pain stimulus can
be used as feedback to teach a machine to reduce the intensity of future stimuli in an adaptive,
closed-loop setting. Critically, subjects were not able to enhance discriminability in insula
and somatosensory cortex, two regions commonly associated with intensity coding of pain,
with the insula discriminability actually reduced. However, enhanced discriminability was
observed in pgACC, reflecting the incentive to support the brain-machine system performance.
Furthermore, the pgACC was also associated with modulation of subjective pain perception
through uncertainty during frequency learning, a process that tracked the overall success of
the closed-loop system. This indicates a central role for the pgACC in the dynamic control
of neural representation and behavioural manifestation of pain. Across the whole brain, these
results also reveal regionally-specific adaptive learning processes that can occur in a co-adaptive
closed-loop brain-machine system for pain.

The enhancement of discriminability suggests that pain representation in the pgACC is under
direct control. Along with other regions (including the insula and DLPFC), the pgACC has
been implicated in endogenous control across a range of paradigms, including placebo/nocebo
(Bingel et al., 2006; Eippert et al., 2009; Zubieta et al., 2005), attention/distraction (Bantick
et al., 2002; Tracey et al., 2002; Valet et al., 2004), and controllability (Salomons et al.,
2007; Zhang et al., 2018a). In at least some of these paradigms, it is sensitive to opioidergic
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modulation – the neurotransmitter best associated with endogenous control – and is thought to
mediate its effect through the descending pathway to the PAG and RVM (Valet et al., 2004;
Zubieta et al., 2005). But it has remained unclear whether this modulation is a non-specific
up- or down-regulation of pain responses, or a process in which the specific informational
representation of pain is under control. Furthermore, the enhancement of discriminability
cannot easily be explained by simple reinforcement (i.e. counter-conditioning of high pain to its
subsequent relief, Koizumi et al., 2016), since it necessarily involves differential modulation of
low and high intensity representations, e.g. reducing low intensity and enhancing high intensity
representations.

The importance of the pgACC in endogenous pain control is further demonstrated by the
fact that it was also associated with the behavioural modulation of pain (i.e. the subjective
perception), through a learning process in which subjects appear to keep track of the underlying
probability of low / high pain (which indicates the success of the overall system). In particular,
the learned uncertainty (formally, the entropy) correlates with an increase in pain, in a manner
at least partly independent to the modulation of the decoded intensity representation of pain.
This increase in pain perception by learned uncertainty is consistent with the concept that pain
is modulated according to its informational value to drive learning – when there is much to
learn (i.e. high uncertainty), acute pain is increased to facilitate learning/attention (Yoshida
et al., 2013) (with the opposite effect for tonic pain, whose role is suppress attention and
cognition, Zhang et al., 2018a). Overall, therefore, the fact that pgACC activity independently
reflects the control of both the neural and behavioural representations of pain suggests it has a
sophisticated role in endogenous modulation. It is also distinct from the PAG, which although
generally engaged during neurofeedback, did not show a parametric modulation according to
discriminability or behavioural modulation.

The role of the pgACC contrasts with that of the decreased pain discriminability observed in
the insula and DLPFC. The insula is strongly implicated in pain intensity coding and inference,
it is shown to be involved in endogenous control through predictive coding, placebo analgesia
and controllability (Bräscher et al., 2016; Geuter et al., 2017; Petrovic et al., 2002; Wager et al.,
2004). The DLPFC is thought to have a modulatory role in endogenous control, where fMRI,
structural and TMS evidence strongly associated the region with placebo analgesia (de Andrade
et al., 2011; Krummenacher et al., 2010; Lui et al., 2010; Taylor et al., 2012; Wiech et al., 2006).
Thus although pgACC, insula and DLPFC are co-implicated across a set of related behavioural
contexts in which endogenous control is observed, our data shows that their function can be
clearly dissociated. At least in the context of the current design, pgACC appears more closely
tied to cognitive control and modulation of perceived pain.



132 Experiment 4: Endogenous controllability of brain-machine interfaces for pain

The results demonstrate the feasibility of using online decoded pain responses to guide a
closed-loop pain control system. The use of fMRI allows exploration of a range of target regions
for decoding. Although multi-ROI classifiers can have much higher accuracy (Wager et al.,
2013), here we used a single (bilateral) brain region as it is more realistic in terms of future
applications that involve long-term implanted recordings, for example with electrocorticog-
raphy (ECoG). However, this approach also has increased susceptibility to noise, warranting
considerations for the trade-off between decoder simplicity and robustness. A key feature of
our system is the incorporation of an RL decision function. This has a key advantage over fixed
feedback decision policies because in principle RL algorithms can be used to search a much
larger parameter space (as opposed to the binary levels of stimulation here) – something that
has valuable applicability for many therapeutic interventions (e.g. spinal or brain stimulators).
That is, when the optimal configuration of parameters for treatment under control is not known,
the RL algorithm can search and find it over time. Combining the use of machine learning to
generate an value approximation function with RL for optimal control provides an ‘intelligent’
system for pain control. However, larger parameter spaces require much longer time to learn,
which moves it beyond the capability of fMRI as a measurement method. Although it is over
such extended timescales that closed-loop systems are likely to have the highest clinical utility,
it remains unclear how the brain may adapt to such systems in the long-term. Clinically, the
combination of real-time signal decoding and RL control may speed up neurofeedback training,
and making the procedure more intuitive for patients. While we showed that this co-adaptation
engages the endogenous pain control system, its long-term impact and therapeutic value will
need to be assessed in future studies.

The adaptive neurofeedback system revealed the presence of co-adaptive learning: whilst
the machine is learning the value functions for different interventions, the brain is learning
in parallel about the success of the machine in delivering the desired outcome. In our data, it
appeared that some brain regions, i.e. the somatosensory cortex, were unaffected by learning,
and together with a high decoding accuracy would make it a better candidate region than the
insula – although this may change depending on the type of pain involved (thermal, as opposed
to electrical for example). In the case of the insula, there are several mechanisms by which
the representation may have been disrupted by learning, for instance it is well established that
its pain responses change as a function of predictability (Geuter et al., 2017). In our study,
identifying the mechanism of the difference in representation between Day 1 (when there was
no task) and Day 2 (during neurofeedback) is complicated by an order effect – neurofeedback
necessarily occurred after decoder construction. However, regardless of the mechanism, the
lack of stability in decoder performance over time disrupts the machine’s ability to learn the
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value functions, creating a maladaptive feedback loop. This illustrates the importance of the
specific choice of brain region for generating the feedback function.

6.5 Tables
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Table 6.2 Multiple correction (cluster-forming threshold of p <0.001 uncorrected unless stated
otherwise, regions from Harvard-Oxford, PAG probabilistic atlas, and previous study. *FWE
cluster-level corrected. n=19. H: high pain, L: low pain.)

p* k t Z MNI coordinates (mm) Region mask
x y z

Fig 6.3: Whole brain comparison (D2>D1, L>H, p<0.005)

0.032 8 4.38 3.57 -16 -7 -18 Amygdala L

0.021 28 3.81 3.22 -22 9 6 Putamen L
3.62 3.10 -19 6 2
3.62 3.09 -26 -1 2

0.040 18 3.47 3 23 9 6 Putamen R
3.29 2.88 26 15 -2

Fig 6.3: Whole brain comparison (D2>D1, H>L, p<0.005)

0.034 1 3.14 2.76 -3 -30 -6 dlPAG (Ezra et al., 2015)
0.034 1 2.94 2.62 3 -30 -6

0.036 1 3.14 2.76 -3 -30 -6 lPAG (Ezra et al., 2015)
0.036 1 2.94 2.62 3 -30 -6

Fig 6.4: Searchlight analysis - decreased information content (D2>D1)

0.048 2 3.94 3.3 -42 3 -2 Insula L

0.061 2 4.41 3.59 -38 15 42 Middle Frontal Gyrus L
0.078 1 4.37 3.56 -38 35 30

Fig 6.4: Searchlight analysis - increased information content (D2>D1, p<0.005)

0.045 5 3.50 3.02 6 44 14 8mm pgACC sphere at
[6,40,12] (Zhang et al., 2018a)

Fig 6.5: Whole brain comparison (D2, HL>LL)

0.014 2 4.41 3.59 -26 -4 -14 Amygdala L
0.008 6 4.81 3.81 26 -7 -14 Amygdala R

Fig 6.5: Whole brain comparison (D2, LL >HL)

striatum did not survive SVC

Fig 6.6: Frequency learning model - posterior probability of low pain (D2)

0.007 10 4.44 3.6 0 51 -14 Frontal Medial Cortex

Fig 6.6: Frequency learning model - entropy (D2)

0.039 5 5.30 4.06 10 41 10 Cingulate Anterior
0.033 6 4.36 3.56 0 3 38

0.002 14 5.91 4.35 13 41 14 8mm pgACC sphere at
[6,40,12] (Zhang et al., 2018a)

0.002 31 5.24 4.03 -38 -7 2 Insular cortex (bilateral)
0.032 6 4.60 3.69 39 -4 6



Chapter 7

Discussion

The aim of this thesis was to explore how pain and relief are represented in the human brain.
Specifically, this posed three questions: (1) How do humans learn and adapt behaviourally and
neurally in the presence of pain and relief, from a computational perspective? (2) How does
learning influence the subjective experience of pain and relief, as well as their representations
in the brain? (3) How does the understanding of pain/relief motivation inform the development
of future technology-based pain therapeutics?

I investigated learning processes involved in pain and relief under three different sets of
conditions: passive learning during Pavlovian conditioning with acute pain, active and passive
relief learning during the escape of tonic pain, and human-machine co-adaptive learning in the
presence of a closed-loop pain control system. Different types of data during these experiments
were collected, including fMRI BOLD signals, physiological recordings, subjective ratings,
and instrumental choices (Fig 2.1). Various formal learning models were then fitted to these
data, allowing the use of model-generated predictors for computational characterisation of the
underlying processes.

In this chapter, the contributions of these experimental studies to our current understanding
of pain and relief is discussed, and their implications are summarised in section 7.1. Potential
directions for future work are then given in section 7.2, including a discussion of the possibilities
of extending current theoretical framework and improving pain therapeutics.

7.1 Contributions

Bridging the gap between conditioning paradigms and experimental data via the computational
framework of learning, we demonstrated that pain and relief are not one-dimensional sensory
experiences, but instead involve motivational aspects that transcend their various behavioural
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and neurobiological measures. Learning to predict and control pain and relief in turn impacts
on their perceptual experiences and information representations in the brain.

Uncertainty and pain/relief learning

We have demonstrated that uncertainty plays a crucial role in the control of learning during
both acute and tonic pain. Computationally, the associability signal emerges as a key form
of uncertainty used during pain/relief learning. It is calculated based on previously cached
prediction error magnitudes arising during reinforcement learning. Associability keeps track of
uncertainty by considering how surprising recent events were, i.e. how much actual outcomes
differed from those that were predicted. It also acts to modulate learning rate for value updating,
such that greater uncertainty leads to more rapid learning and hence faster convergence to
stable predicted values (Pearce and Hall, 1980; AJ Yu and Dayan, 2005). Associability is also
a biologically relevant signal: it can plausibly be implemented through activations of cerebellar
climbing fibres (Schultz and Dickinson, 2000), and has previously been found to correlate with
BOLD responses in the amygdala during aversive Pavlovian conditioning (Boll et al., 2013;
Holland and Gallagher, 1993; Li et al., 2011).

The computational framework of associability allows us to identify the neural correlates
of learning processes underlying different conditioned responses. Specifically, we found that
trial-by-trial SCRs were best fitted by the state-based associability – both in Pavlovian learning
of acute pain (Experiment 1), which has been well characterised in similar studies (Boll et al.,
2013; Li et al., 2011); and in relief learning during tonic pain (Experiments 2 and 3), which has
not been demonstrated previously. Active relief learning involves instrumental action learning,
whereas Pavlovian conditioning involves only passive prediction learning. While action-based
associability can be calculated, we did not find evidence of it being directly used in the learning
of instrumental actions. This difference in the involvement of uncertainty for action and SCR
learning is consistent with the fact that the instrumental learning process exists in parallel
to the Pavlovian one. Our results were in accordance with existing evidence that draws a
distinction between instrumental and Pavlovian learning systems (Gläscher et al., 2010; Li
et al., 2011; G Morris et al., 2006), where the former learns actions, and the latter learns other
conditioned (e.g. autonomic) responses, with the two systems interacting under appropriate
circumstances (Holmes et al., 2010). Extending the active relief learning paradigm to a more
complex environment, we demonstrated further that the parallel learning processes had a robust
presence. The associability-SCR fitting results generalised in the relief learning case from a
static learning environment (Experiment 2, where the probability of relief following an action
does not change over time) to a dynamic one (Experiment 3, where a learning environment
featuring more possible actions and changing relief probabilities over time). The latter kind of



7.1 Contributions 137

context evokes higher variability in associability, ensuring the model fitting outcomes reflect
learning effects instead of potentially confounding perceptual habituations. Together, these
findings establish the relevance of associability beyond predictive learning of acute pain. As an
uncertainty signal, it also has an important role in controlling learning of relief from tonic pain,
where the restoration of homeostasis becomes the salient outcome.

We found that acute pain learning involves multiple dissociable neural processes. Using
a lateralised experimental design, we were able to distinguish different types of behavioural
conditioned responses (‘preparatory’ autonomic arousal, and ‘consummatory’ limb withdrawal)
in human participants (Experiment 1). Importantly, this design could also distinguish the two
underlying systems computationally: in the context of this experiment, the consummatory
learning system is assumed to be sensitive to lateralised pain only, while the preparatory
learning system attends to pain on both sides equally. This feature allowed us to model the two
systems with two sets of independent predictors, which could be used to test for system-specific
neural correlates in fMRI data. We showed that the cerebellum (lobules V and VI) tracked
consummatory (laterality-specific) associability, while the amygdala tracked preparatory (non
laterality-specific) associability during conditioning. These findings were in accordance with
previous evidence regarding possible neural implementation of associability signals (Holland
and Gallagher, 1993; Li et al., 2011; Schultz and Dickinson, 2000). Given this experiment
prioritised neural process dissociation, we did not directly test for behavioural correlates of
consummatory associability. However, this can be achieved with appropriate task designs that
optimise consummatory behavioural recordings.

Our results provide the first computational account of the role of the cerebellum in pain,
adding to existing evidence that aversive learning involves multiple processes outside of the
amygdala (Balleine and Killcross, 2006; Cardinal et al., 2002; LeDoux, 2014). We linked the
importance of the cerebellum in the acquisition of motor-related aversive conditioned responses
(Daum et al., 1993; Lavond and Steinmetz, 1989) with its role in pain processing (Moulton
et al., 2010; Seymour et al., 2004). Our task design satisfied the conditions for cerebellum
recruitment in associative learning, including the elicitation of simple motor response, short
CS-US interval (<3-4s), the use of aversive US, and the activation of the inferior olive by an
intense US (Steinmetz, 2000). In addition, thermal pain stimuli have been shown to activate
the cerebellum (Moulton et al., 2010; Wager et al., 2007). Together, these evidence suggest
the identified cerebellar activations are specific to pain processing. In practical terms, these
findings can serve as a reminder that observed pain behaviour should be used as an index of
pain with caution. For example, evoked limb withdrawal in animal studies may be reflexive
instead of reflecting ‘affective’ pain (Andersen et al., 2006). Indeed, as LeDoux (2017) recently
pointed out, changing behavioural and physiological responses in animal research is not the
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same as relieving fear or anxiety, and fixating on these behavioural indices could be detrimental
to the development of translational treatments. Given that most preclinical pain studies rely
heavily on non-verbal animal testing, interpretation of behavioural assessments should consider
both evoked and spontaneous measures, as well as specific disease models, pharmacological,
and genetic manipulations used (Burma et al., 2017).

In Experiments 2 and 3, we found that neural and behavioural responses underlying pain
relief could be distinguished from those of reward learning. BOLD signals in the dorsal putamen
was found to correlate with relief learning prediction errors from the action-learning TD model
(Experiments 2 and 3), its activation patterns conformed to those required in an axiomatic
test, which delineated these responses from simple reactions to relief outcomes (Roy et al.,
2014). The dorsal putamen has previously been shown to be involved in controllability and
habit learning (Maier and Seligman, 2016; Tricomi et al., 2009), and is anatomically distinct to
the typical reward-related regions, notably the NAc, identified in previous pain relief studies
(Andreatta et al., 2012; Leknes et al., 2011; Navratilova et al., 2012). Behaviourally, learned
actions were better explained by a ‘model-free’ (or S-R habit) learning model, regardless of
the learning environment being static or dynamic, as opposed to the ‘model-based’ (cognitive)
learning strategies frequently identified in reward learning studies (Daw et al., 2005; Gläscher
et al., 2010; Prévost et al., 2011). This difference is also evident from a motivational perspective
– we approached restoring homeostasis as reinforcement, which is conceptually different from
reward maximisation in typical reward reinforcement learning (learning ‘what to do’ can be
independent from learning ‘what not to do’, Elfwing and Seymour, 2017). In addition, we have
demonstrated that the associability signal correlated with both the changes in ongoing pain
and the activity of the brain region heavily implicated in the endogenous pain control system,
constituting a unique feature of pain relief learning (This will be discussed in more detail later
in this section). In summary, these findings suggest that the processes underlying relief learning
exhibit complex interactions with tonic pain, and warn against the simplistic view of equating
pain relief with reward, or treating behavioural responses related to relief as indices of factually
achieving pain relief.

The modulation of pain during learning

We have shown that uncertainty correlates with endogenously modulated pain, which suggests
its potential capacity in maximising the impact of learning. In the case of tonic pain, rather than
acting as a warning signal of imminent tissue damage, the prolonged presence of pain serves as
a gauge of bodily homeostasis – it encourages recuperation by suppressing behaviour in order to
conserve energy and limit further damage, and it resets pain relief as the new behavioural goal,
where the immediate restoration of homeostasis is preferred (Crombez et al., 1997; Lorenz and
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Bromm, 1997). This apparent paradox leads to an interesting question: if tonic pain generally
suppresses behaviour and cognition, how does it balance the need to learn to achieve pain
relief?

Our active relief learning studies showed through two independent fMRI experiments that
the brain potentially has an ingenious solution: it selectively reduces pain when it detects
learnable information about possible relief. We showed that the brain can achieve this by
learning the uncertainty signal of associability, which measures the amount of learnable
information about pain relief, and endogenously suppressing ongoing pain by a proportionate
amount to aid relief-seeking. In this way, relief-seeking is facilitated by lowered levels of tonic
pain when the environment is uncertain and learning is needed. Furthermore, the robustness
of these findings was confirmed in different learning environments. This account therefore
constitutes a generalised, mechanistic model of endogenous pain control during active relief
learning, supported by behavioural, physiological and neurobiological data from healthy human
participants.

We also showed evidence of perceived acute pain correlating with uncertainty (Experiment
4). In the absence of an explicit CS-US associative learning paradigm, the presence of a
closed-loop system incentivised participants to learn, as altering mental strategies can influence
the machine’s decision on the pain intensity delivered in upcoming trials. In a within-subject
yoked design, we compared responses to high/low pain sequences presented to participants with
and without the closed-loop control, and showed behavioural and neural modulation of pain as
a result of human learning. A Bayesian frequency learning model captured the learning process,
such that the estimation of high/low pain probability and the level of uncertainty in the form of
entropy were updated by accumulating stimuli appearances (i.e. tracking the overall success
of the closed-loop system). We further identified a positive correlation between subjective
pain ratings and uncertainty, which occurred only when closed-loop control was available.
While entropy does not directly participate in the Bayesian updating of frequency learning, this
subjective modulation of pain could dynamically enhance acute pain when uncertainty is high
and learning is needed. Similar results has been shown in a cued acute pain study (Yoshida
et al., 2013), suggesting the observed differential modulating responses to tonic and acute pain
are unlikely to be driven solely by the absence of cued associations. Hence uncertainty can
engage attention more effectively, leading to more efficient learning (AJ Yu and Dayan, 2005).

Based on these observations, we propose that uncertainty during learning can be a candidate
computational construct to describe information-sensitive control of the endogenous analgesia
system. This aspect of the endogenous system seeks to maximise the impact of learning by
dynamically modulating pain according to current uncertainty, or the need for learning about
the environment. Tracking the same uncertainty signal across contexts fits the parsimonious



140 Discussion

assumption of biological systems, and in principle is able to accommodate different priorities
of learning by prompting different responses downstream – suppressing tonic pain to facilitate
relief-seeking, and enhancing acute pain to engage attention for effective learning of future pain
predictions. Finally, this information-based pain control mechanism appears to be particularly
relevant when active control (through either instrumental actions or mental strategies) is
available, suggesting that the brain might selectively engage this endogenous control process
only when effective learning is more likely to make an impact.

It should be noted that the proposed framework emerges from experiments designed to
investigate pain/relief learning, however, learning is unlikely to be the sole contributing factor
to the observed modulation of pain perception. For example, peripheral nociceptors alone have
been shown to detect thermal pain and make magnitude judgements (Robinson et al., 1983),
and pain relief induced by interupting a continuous noxious thermal stimulus with greater heat
(offset analgesia) can activate endogenous pain control (Derbyshire and Osborn, 2009). In
cases such as learned helplessness, learning may not have similar impacts on a maladapted
brain. Hence the work in this thesis should be interpreted within the specific experimental
context.

The role of pgACC in pain/relief learning

We have illustrated the central role of the pregenual anterior cingulate cortex (pgACC) in
cortical pain control during pain and relief learning. In three different fMRI studies, we
have localised uncertainty signals generated by learning models to the pgACC, in addition to
showing these signals’ correlation with subjective pain ratings. Specifically, these uncertainty
signals were state-based associability from a hybrid TD model during active relief learning
(Experiments 2 and 3), and entropy from a Bayesian frequency learning model of acute pain
under closed-loop control (Experiment 4). It is worth noting that these uncertainty signals
were not directly fitted to pain ratings – parameters of the learning model were fitted either
using SCRs/choices or assumed to be fixed. In addition, we did not find pgACC responses
using subjective pain ratings alone as a regressor in neuroimaging analyses. Therefore, BOLD
responses identified in the pgACC with uncertainty signals were more likely to reflect learning
processes than subjective pain experienced, despite the correlations between uncertainty and
subjective pain.

The enhancement of pain discriminability suggests the pgACC may be a key node in the
endogenous analgesia system responsible for active control (Experiment 4). The region has long
been implicated in aspects of endogenous pain control related to attention and controllability
(Bingel et al., 2006; Eippert et al., 2009; Salomons et al., 2007), especially opioid-dependent
placebo/nocebo effects (Petrovic et al., 2002; Zubieta et al., 2005). However, it remains unclear
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whether the pgACC is simply reflecting the consequences associated with pain responses,
or actively representing pain information. Identified as the only region with increased dis-
criminability of pain under closed-loop control, our results suggest that the pgACC could be
reflecting information contents directly relating to endogenous control, since discriminability
enhancement would require differential modulations of high/low pain intensity representations.
In summary, our results indicate that the pgACC may be tracking uncertainty during learning,
and it could be reflecting direct, active control of the endogenous analgesia system.

Clinically, the localisation of the pgACC might help elucidate the mechanism underlying
previous ACC-targeted deep brain stimulation for intractable chronic pain treatment (Kringel-
bach et al., 2007; Mohseni et al., 2012), and potentially offer a more specific target for future
stimulation-based therapeutics. However, we would caution against the simplistic view that this
particular region might be specific to endogenous pain control, as previous evidence points to its
relevance for computing uncertainty during general decision-making (Amemori and Graybiel,
2012), dealing with threat (Nitschke et al., 2006), processing emotions (Etkin et al., 2011), and
encoding perseverance during foraging (Kolling et al., 2012; McGuire and Kable, 2015).

During our literature review, we noticed a discrepancy in terminology regarding the human
pgACC. The ACC region similar to the one we have identified has been referred to as the rostral
ACC (rACC) in many pain and placebo analgesia studies (Bingel et al., 2006; Eippert et al.,
2009; Kong et al., 2006; Petrovic et al., 2002; Segerdahl et al., 2018; Zubieta et al., 2005), to
distinguish it from the more caudal part of the ACC. However, many other studies, including
ours, referred to the same region as the pregenual ACC (pgACC) (Atlas et al., 2010; Salomons
et al., 2007; Shackman et al., 2011; Wager et al., 2007), following the anatomical definitions by
Vogt (2009) to describe activations in the ACC subdivisions comprising Brodmann’s areas 24
and 32. Some studies also used the term perigenual ACC (Bräscher et al., 2016; Valet et al.,
2004). Anatomical evidence suggests that the pgACC can be distinguished from nearby regions
such as the subgenual ACC (sgACC) and the anterior midcingulate cortex (aMCC) through
differentiating distribution patterns of neurotransmitter receptors (Palomero-Gallagher et al.,
2009), or tracing efferent/afferent projections (Vogt, 2009). Moreover, our results add support
to the differentiation of the pgACC by providing further computational characterisation of the
region. We believe future researchers would benefit from a clearer definition of terminology
when pgACC-related results are being reported.

Implications for technology-based pain control systems

In our final experiment, we investigated the implications of learning for the design of future
technology-based pain control systems. In a closed-loop system, subjective pain is decoded in
real-time from neural activities, and immediate intervention is delivered according to the pain
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experienced (Zhang et al., 2013; Zhang and Seymour, 2014). Developing a BMI for healthy
participants, we explored how the brain might adapt to such a pain control system, where
real-time decoded brain responses were used as feedback to teach a machine to reduce the
intensity of future pain stimuli. The availability of closed-loop control can provide a context
for learning – participants can either actively learn to increase the discriminability of pain
in their brain to enhance machine performance, or passively associate pain with subsequent
relief, reducing pain discriminability. If such learning occurs, as we have shown repeatedly in
previous experiments, what does it entail for closed-loop therapeutic systems?

We showed that the availability of closed-loop control engaged learning and endogenous
pain modulation, subsequently changing the neural representation of pain in the brain. The
presence of the closed-loop system increased the decodable information contents of pain in
the pgACC, while decreasing those in other pain-related brain regions including the insula and
DLPFC. In addition, when closed-loop control was available, uncertainty measure (entropy
from the Bayesian frequency learning model) appeared to modulate subjective pain, as well
as being correlated with BOLD responses in the pgACC and insula. The identification of
overlapping neural representation of these elements suggests that uncertainty-related pain
modulation might play a role in changing the neural representation of pain. In practical
terms, the engagement of endogenous control as a result of learning may contribute to the
altered discriminability of pain in certain brain regions, reducing the decoding accuracy of pain
decoders constructed for these brain regions (e.g. insula), and hence impacting the efficacy of
the closed-loop system.

While learning might affect neural representation of pain, we showed that this can potentially
be overcome by incorporating adaptive learning on the machine side of the system. We
incorporated a basic reinforcement learning decision function which enabled the machine
to adaptively learn the values of different pain states, instead of hardcoding fixed feedback
decision policies. In our experiment, the machine was able to successfully adapt its pain state
values to accommodate changing brain activities, subsequently delivering fewer high pain trials
to participants. In theory, this type of human-machine co-adaptation could become the norm
for future closed-loop control systems. However, given that fMRI is not suitable for recordings
over extended timescales, the long-term consequences of these systems will require careful
investigation with alternative BMI methods.

Methodological contributions

Methodologically, we illustrated the possibility of collecting data from different experiments
– designed with different learning paradigms, conducted with different participants, and
scanned in different scanners – to consolidate the same computational framework. The use
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of open-source, version-controlled analysis software, with container software such as docker
(https://www.docker.com/), a unified data structure protocol such as Brain Imaging Data Struc-
ture (BIDS, http://bids.neuroimaging.io/), and processing and analysis pipelines designed for
the BIDS data structure (https://github.com/BIDS-Apps), ensures experimental data can be
processed in a traceable, reproducible manner. This could be a potential solution to the current
reproducibility problem within the neuroimaging community (Gorgolewski et al., 2017).

To our knowledge, the BMI system we presented in Experiment 4 represents the first attempt
to develop rtfMRI-based, closed-loop control of pain in healthy human participants. This
requires fewer training sessions compared to conventional decoded neurofeedback paradigms
(Megumi et al., 2015; Shibata et al., 2011), and we have demonstrated its effectiveness in
inducing human learning. Similar closed-loop systems could be adopted to test representation
and discriminability changes in many other perceptual modalities for healthy human participants
non-invasively, and to improve training efficiency of decoded neurofeedback in treatment
settings.

Summary

We have demonstrated that pain and relief motivate learning, with uncertainty during learning
playing an important role. In turn, learning to predict and control pain engages the endogenous
pain control system, where uncertainty inversely correlates with pain perception, potentially to
maximise the impact of learning. We have identified the pgACC to be a key brain region in the
bidirectional relationship between perception and learning. Based on these observations, future
pain therapeutics relying on decoded brain activities would need to take into account human
learning and its engagement of endogenous pain control, potentially by employing adaptive
control for the machine element. With the help of computational modelling, we can better
understand the roles of the neural networks involved in the processing of pain/relief information
during learning, beyond the conventional approach of stimulus-response brain mapping.

We have shown that the controllability of pain is inextricably linked to learning and en-
dogenous modulation. From a learning perspective, controllability involves the detection
and processing of learnable information regarding pain/relief occurrence in an environment,
including the evaluation of uncertainty during learning. We propose that uncertainty concerning
salient events, such as acute pain or relief from tonic pain, acts to direct attention to learn-
able associations between these events and the environment, and to engage the endogenous
modulatory system to dynamically modulate pain perception in order to facilitate this learning.
Depending on the circumstances, learning may have different priorities – obtaining relief when
in tonic pain, or predicting the next occurrence of acute pain – which may prompt different
responses of the endogenous pain control system. This may explain why previous studies have

https://www.docker.com/
http://bids.neuroimaging.io/
https://github.com/BIDS-Apps
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inconsistently identified controllability-related pain suppression or enhancement (SM Miller,
1979; Salomons et al., 2007; Wiech et al., 2014b; Yoshida et al., 2013). In addition, the consis-
tent localisation of uncertainty signals in the pgACC highlights the importance of this structure
in the endogenous control of pain, an observation which is in accordance with numerous studies
showing the prefrontal cortex’s involvement in descending pain control (Bushnell et al., 2013;
Wager and Atlas, 2015). We believe that a computational framework centred on uncertainty
during learning can potentially unite pain attention, controllability, and endogenous analgesia,
to explain the different modulatory effects attributed to the controllability of pain.

Our results also contribute to existing evidence of the pain/relief system’s degeneracy,
whereby structurally different brain regions and/or pathways yield the same behavioural output
(Edelman and Gally, 2001; Tononi et al., 1999). Given their biological significance, it is
unsurprising that pain and relief systems have evolved to engage multiple neural processes
and behavioural responses. Unlike the redundancy built into many engineering systems,
where the fail-safe mechanism is usually a standalone component, elements in a biological
system not only coexist, but interact. Hence, with degeneracy comes adaptability, resilience,
and complexity. These properties can manifest differently not only within, but also across
individuals of a population (Noppeney et al., 2004; CJ Price and Friston, 2002). In-depth
understanding of the various mechanisms underlying this complex system constitutes the first
step towards understanding how they can go wrong, and the many consequences this may
entail. By acknowledging the complex nature of pain and relief, we hope to provide realistic
insights into pain-related disorders, and guidance for the future development of pain assessment,
therapeutics, and research.

7.2 Future work

Extending theoretical framework

While the reinforcement learning framework is able to capture motivational states involved in
pain and relief learning, there are other contributing components that have not been explored in
the experimental designs in this thesis. Notably, working memory and effort valuation systems
have both been shown to interact with reinforcement learning during decision-making (Collins
and MJ Frank, 2012; Croxson et al., 2009). In real-life situations, the state-action space is
much larger than that of laboratory settings, therefore learning is likely to involve a wider array
of higher order cognitive functions. In the field of fear learning, a two-circuit view of threat
processing has recently been proposed, whereby the subjective experience of fear emerges
as a result of information integration from both cortical ‘cognitive’ (e.g. working memory)
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and subcortical ‘defensive survival’ (e.g. behavioural) circuits (LeDoux, 2017; LeDoux and
Brown, 2017). Experimental evidence from human electro-encephalography studies have also
shown that working memory contributes to guiding reinforcement learning policy (Collins
et al., 2017; Collins and M Frank, 2017). These recent developments have demonstrated that it
is possible to expand existing experimental paradigms to test whether higher-order processes
might be relevant for pain and relief motivation, and if this is the case, how the underlying
computations might be organised in the brain. A possible approach is to adapt a pain or relief
learning task with aspects from the decision-making task from Collins et al. (2017), which
involves systematic manipulation of memory load and response delay. These manipulations
could include stimuli with rotating changes in features such as shape and colour, and delayed
trials to prevent a previously acquired action strategy being reused immediately. While this
kind of design may require separate learning and testing phases in order to accommodate
the acquisition of a larger state-action space, it would allow us to explore the influence of a
working memory component that cannot be explored in our current designs. Interestingly, the
DLPFC has been observed to play a role in working memory (Curtis and D’Esposito, 2003),
opioid-dependent placebo effects (Zubieta et al., 2005), and encoding pain-related information
(Experiment 4), suggesting a certain level of functional integration may be possible within this
region.

Another extension to the current theoretical framework is to explore the potential role
of effort valuation, specifically the costs of available actions, in pain and relief motivation.
We have shown that action is an integral part of pain and relief learning, which appears to
correlate with neural activities in distinct motor-related brain regions (cerebellum, dorsal
putamen). Furthermore, previous studies have demonstrated a connection between pain relief
and motor cortex stimulation (Hosomi et al., 2013; Yanagisawa et al., 2016; Zhang and Seymour,
2014). However, current pain/relief learning studies, especially fMRI experiments, are largely
constrained in terms of available physical movements – an important part of natural pain/relief-
related behaviour. A recent study has suggested a possible method for investigating the role
of effort evaluation in pain-related learning. Using a 3 degrees-of-freedom, force-controlled
robotic arm to elicit realistic arm movements, Meulders et al. (2016) paired increased effort
with less frequent pain in order to study naturalistic pain avoidance learning. They found
that individuals reported more pain-related fear for lower effort levels and exerted more effort
to avoid pain, compared to a yoked control group where no effort-pain contingency was
established. It might therefore be worth incorporating action costs or efforts as additional
experimental variables for pain/relief learning. This can be achieved within an MRI environment
by pairing varying levels of grip force with different pain/relief stimuli to the hand (Kawato
et al., 2003), however, more naturalistic avoidance/escape actions would require the use of non-
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MR modalities that can tolerate greater movement. It would also be interesting to investigate
how thermal or electrical pain might differ from qualitatively different musculoskeletal pain
in terms of eliciting naturalistic behavioural responses, with the use of EMG measurements.
Notably, a previous study found evidence of action evaluation in the striatum and the ACC
(Kurniawan et al., 2011), which are also important ROIs in pain and relief studies.

We also believe that our current studies would benefit from future replication and improve-
ment. The theoretical framework of learning uncertainty and its engagement of endogenous
pain control established here can be tested in other appropriately designed pain/relief learning
paradigms, to address some of the issues we discussed in each experimental chapter – for
example, the distinction between reducible and irreducible uncertainty and its potential effects
on pain modulation (Experiments 2 and 3), and the role of conscious awareness, of either
contingency or controllability, in uncertainty-related pgACC responses (Experiments 2-4). Our
learning tasks could usefully be repeated under opioid manipulation (e.g. naloxone treatment),
to investigate its effects on uncertainty-related pain modulation and the associated pgACC
BOLD responses. In addition, the long-term consequences of uncertainty-related endogenous
pain control need to be explored, possibly with non-fMRI modalities. This can be achieved
by conducting pain/relief learning tasks over a period of days or weeks, in order to ascertain
whether learning effects might extend to clinically relevant timescales. Experiment 2-4 used
the yoked control design for across-paradigm comparisons. Yoking has been suggested to have
inferrential limitations as random variations can cause systematic bias (Church, 1989), however,
it offered direct comparison between response-contingent and nonresponse-contingent events
in the same experiment, saving time and resources. It is possible to enhance the utility of
yoking by including unreinforced stimuli in tasks, improving reinforcement scheduling, and
interpreting from the directions of behavioural differences instead of magnitudes (Church, 1964;
Jean-Richard-Dit-Bressel et al., 2018). Another possible improvement on the current designs
is to adopt power analysis prior to determining sample size. Here, we based our sample size
estimation on previous studies. However, if time and scheduling did not constitute major issues,
prior power calculation based on pilot or archived data should become a standard practice in the
planning of future fMRI experiments, with the help of open-source tools such as Neuropower
(http://neuropowertools.org/).

Improving pain therapeutics

We have identified the pgACC as a potential therapeutic target for chronic pain treatment,
however, the appropriate method for stimulation or modulation remains to be explored. Based
on previous anatomical and functional evidence (Valet et al., 2004; Vogt et al., 2005), we
attempted to increase the connectivity between pgACC and PAG using non-invasive neuro-

http://neuropowertools.org/
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feedback training as a potential method to enhance endogenous pain control in an initial pilot
study. We have recently modified the connectivity-based decoded neurofeedback training
paradigm developed by Megumi et al. (2015), providing positive feedback (monetary incen-
tives) when above-baseline pgACC-PAG connectivity was detected, and negative feedback
for below-baseline connectivity, similar to a trial-by-trial reinforcement learning experiment.
Following previous decoding neurofeedback protocols, no pain or relief stimulation were used
during training.

Pilot data from two healthy human participants (not included in this thesis) showed incon-
sistent training effects on pgACC-PAG connectivity. There are two potential problems with this
particular design. Firstly, the outcome of such training on endogenous analgesia is difficult to
evaluate using our existing pain/relief learning paradigms. Secondly, pgACC-PAG connectivity
appeared be modulated by participants controlling their breathing, a much simpler alternative to
controlling brain activities. Although the latter problem can potentially be addressed by adding
filters to reduce physiological noise in fMRI images online, there is no obvious solution to the
first problem for healthy human volunteers. While the theoretical underpinnings behind this
approach are sound, a more comprehensive design for outcome evaluation is needed to assess
treatment efficacy and to establish placebo control, followed by a sufficiently powered blinded
trial. A recent patient study narrowed the pathological alteration in pgACC-PAG connectivity
down to the more specific region of ventrolateral PAG (Segerdahl et al., 2018), suggesting
that the current decoded neurofeedback training may benefit from a more refined anatomical
localisation.

Our current learning tasks could be adapted to characterise pain/relief motivation in pa-
tient populations, such as those with chronic pain and related comorbidities, and potentially
supplement current procedures of diagnostic assessment in order to assist personalisation of
treatment planning. Reinforcement learning tasks and choice data modelling have already been
used to characterise deficits in patients with psychiatric disorders such as obsessive-compulsive
disorder (Gillan et al., 2016), and evaluate treatment effects in Parkinson’s disease (Seymour
et al., 2016). While we have demonstrated the importance of pain/relief motivation in healthy
human participants, we have yet to use these paradigms with pain patients. Establishing the
correlation between modelled motivational deficits and the clinical manifestations of chronic
pain, for example by combining learning tasks with pain questionnaires in both pain patients
from different cohorts and healthy controls, will be valuable for establishing the standards
needed for behavioural assessment tasks.

Finally, we have established the need for developing assessments of and adjustments for
long-term effects in technology-based pain therapeutics. The definition of such therapeutics
is not necessarily restricted to closed-loop pain control systems – a wide range of software
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and devices capable of capturing and influencing pain-related behaviour as well as cognitive
states should also be taken into account. With the technology industry starting to dedicate its
infrastructure and capital to healthcare (Crow and A Gray, 2018), technology-based therapeutic
systems, especially those based on BMI, will inevitably garner more attention (Palmer, 2018).
It is likely that in the near future, more signal detection, processing, and storage options will be
made available, expanding the existing pain therapeutic and management toolkit. However, as
we have shown, the human brain learns from and adapts directly to a BMI pain control systems.
Consequently, alongside the development of technology-based healthcare systems, we should
be mindful of the potential consequences of using these tools in the long term.

To conclude, future research could extend the existing theoretical framework of pain/relief
motivation to higher-order cognitive systems, and make use of these findings to improve
existing assessment and treatment options for pain disorders. While all neurobiological models
of pain and relief remain speculative, the work presented in this thesis shows the potential
power of combining computational modelling with experimental evidence to improve our
existing knowledge. Crucially, further understanding of ‘everyday’ pain and relief may shed
light on how the human brain might be guided to prevent, or to better cope with chronic pain,
by way of offering technology-based therapeutic alternatives.
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