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ABSTRACT 

 

Children are not blank slates when they begin school; instead, they bring prior 

conceptions about the everyday world with them. Situations of motion are 

ubiquitous in everyday life, and because of much interchange with the physical world 

conceptions are affected from a very early age. Yet prior conceptions of motion 

usually do not comply with accepted scientific views, and therefore conceptions 

need to be changed within the course of education. A differentiation can be made 

between explicit declarative knowledge and tacit procedural knowledge. 144 

children aged 4 to 11 years were assessed on their explicit understanding of object 

speed and speed change along a horizontal, down an incline, and in free fall. Study 1 

assessed the children’s predictions of motion using a range of everyday objects. 

Their conceptions were further assessed in Study 2 using a tube and two balls of 

different weights. Study 3 was a computer-presented quasi-replication of the tube-

and-balls study. The results of these three studies suggest that children’s explicit 

predictions of motion are limited or incorrect. At the same time, many infancy 

studies have unveiled underlying knowledge about the physical world, which is 

considered tacit in its nature. Some researchers posit the idea that this knowledge 

does not change at its core and persists throughout the lifespan. While infancy 

research methods would be difficult to apply in a sample of children, judgement 

tasks may help in tapping tacit understanding in this age range. In Study 4, the 

children were shown video clips of the same set-up used in Study 3 but with motion 

occurring, either correctly or incorrectly. The children had to judge whether what 

they saw in the clips looked correct or not. The results indicate a mismatch between 

tasks requiring explicit predictions and a task relying on tacit judgements, suggesting 

judgements are more accurate than predictions. A dual-pathway model 

incorporating explicit and tacit reasoning is proposed, limitations of the current work 

are discussed, and suggestions for future work are made. Overall, it is evident that 

two kinds of understanding about the same topic are available in young children, and 

it is hoped that early science education can eventually consider this differentiation in 

order to facilitate conceptual change. 
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“What does the fish know about the 

water in which he swims all his life?” 

(Einstein, 1950, p. 5) 

 

 

 

 

 

 

 

 

 

INTRODUCTION: 

AN OVERVIEW OF THE THESIS 

 

Albert Einstein posed an interesting and rather important question when asking 

what the fish knows about the water in which he swims all his life. The quest for 

knowledge – what it constitutes, where it comes from – has fascinated and occupied 

minds for a long time, and there are still answers to be uncovered. What does the 

fish know about the water? What do we know about the world we live in? What do 

we know about the physical world that we see and interact with so often? And what 

do we really know about the physical world? 

 

One particularly ubiquitous element of the physical world is motion, and we are very 

familiar with it due to extensive everyday experiences, practically from the first day 

of our lives. And yet it appears that many people hold beliefs about motion that do 

not correspond to accepted scientific views, despite constant experiences. In order 

to assist students in mastering the related concepts successfully, science education 

needs to help modify these beliefs. Unfortunately, many students struggle with 

physics. Speed and acceleration are parameters of motion that are fundamental to 

many other higher-order physics concepts. So in order to master advanced physics, 
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an understanding of the basics is essential. At the same time, speed and acceleration 

are concepts that relate to the physical world that we engage with consistently. 

Given the issue of a lack of accurate knowledge in many adults, it seems 

commonsense to tackle the issues at stake as early as possible. With the introduction 

of science in primary education in England (Department for Education and 

Employment, 1999), young children are already expected to learn about concepts 

relating to motion, thus it provides an ideal starting point to remedy dissociations 

between naïve physics and science. 

 

Yet science education is often not able to effectively induce a change in conceptions, 

as naïve beliefs often persist into adulthood. So the question that arises is whether 

alternative strategies could be sought that could facilitate change more effectively. 

Here, again, the distinction needs to be raised about what we know and what we 

really know. Is the knowledge that is reflected in decision-making, in explaining and 

predicting events accurate? While the scientist no doubt possesses accurate relevant 

knowledge, it would seem that very many, if not most, people do not. But is there an 

alternative with which the non-scientist can learn to overcome naïve beliefs 

somehow? 

 

This thesis examines three main issues with regards to young children’s 

understanding of object motion:  

 

1. What can be said on the topic of children’s general beliefs about object 

motion – which variables are important to them in their reasoning, and how 

do these variables affect children’s predictions of dynamic events? 

2. What can be said about children’s ideas as to how motion types inform each 

other, if they do so at all – how do reasoning about horizontal motion, 

reasoning about motion in fall and reasoning about incline motion interact, 

and how can this information assist in developing a single model of young 

children’s conceptions of motion? 

3. Given that one might anticipate young children to have limited or incorrect 

beliefs about motion, considering the literature, do children have alternative 
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knowledge about dynamic events available to them that could potentially be 

integrated into early science education and utilised in modifying their limited 

or incorrect beliefs more effectively? 

 

To address these general objectives, the first seven chapters of this thesis explore 

the theoretical background leading up to these objectives and up to more specific 

key research aims. 

 

Chapter 1 on the naïve knowledge of the physical world first takes a historical 

approach to a central issue in folk physics – conceptions of motion that are in 

discordance with accepted scientific views. It illustrates the long-lasting stability of 

Aristotelian physics from the pre-Christian era into our current age, highlighting the 

particular case of motion. The chapter also introduces the early development of 

psychological and educational research in relation to conceptions of motion. It then 

continues by highlighting the issue of prior conceptions in the classroom as well as 

the potential problem with having these prior conceptions. The chapter concludes 

that young children do not begin school as blank slates but instead bring with them 

conceptual knowledge about the physical world (cf. Duit, 2009). Yet despite its 

richness, children’s naïve knowledge is limited, or even simply incorrect, and the role 

of the educator is to facilitate a change in conceptions. 

 

The notion of conceptual change is then introduced in Chapter 2. Jean Piaget’s ideas 

on conceptual change are presented, and its – much-criticised, and largely 

ineffective – application to science education is discussed. Alternative theories of 

conceptual change are then covered. The chapter reviews ideas of knowledge as 

theory, ideas of knowledge as elements, and ideas of knowledge as an integration of 

both theory and elements. It then continues by discussing different approaches to 

conceptual change in the classroom, making particular reference to the construction 

of mental models, to model-based reasoning and to the use of thought experiments 

in science. These models are based on previous experiences and may provide 

particular insight into children’s predictive models of object motion. However, while 

they provide an insight into predictive knowledge, and while they may be useful to 
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science education per se, they do not provide ultimate solutions and cannot facilitate 

conceptual change effectively. Overall, Chapter 2 highlights that the approaches to 

conceptual change in the classroom are not proving to be fruitful, and that it may 

instead be worthwhile considering alternatives to the standard approaches. 

 

In Chapter 3, a crucial distinction is thus introduced, by contrasting two forms of 

knowledge – declarative explicit knowledge and procedural tacit knowledge. The two 

forms of understanding are defined, and the relevance of this distinction is 

established. In particular, the chapter highlights research with infants by describing 

the violation-of-expectation paradigm and the resulting descriptions of infants’ tacit 

knowledge of the physical world. This raises the fundamental query as to whether 

tacit knowledge persists beyond infancy, and if so what its potential role in early 

science education might be, given the problems that have arisen in Chapter 1 on 

prior conceptions and Chapter 2 on conceptual change. Finally, Chapter 3 establishes 

the possibility of judgements as a useful methodology in assessing children’s tacit 

knowledge. This is coupled with the possibility of using computers to assess tacit 

knowledge beyond infancy by ascertaining the current use of computers in primary 

education and by establishing why computers may provide a useful tool in 

determining children’s tacit knowledge of object motion. 

 

In order to prepare the reader for the subsequent extensive literature reviews on the 

understanding of speed and object motion, Chapter 4 is intended to provide an 

intermissive collection of the physical laws that govern motion. Following a definition 

of terms, the concept of speed is briefly described in three different motion types – 

motion along a horizontal, motion in free fall, and motion down an incline. In 

addition, the principle of speed change and the effect of object mass on motion are 

covered. 

 

Chapter 5 provides an elaborate review of the literature that discusses children’s 

general understanding of the concept of speed. It illustrates how children are able to 

deal with the interaction of speed, time and distance. Piaget’s substantial work in 

this field is described first, followed by a number of Piagetian replications. Despite 
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much consensus among this research, the choice task paradigm employed in these 

studies is nonetheless open to criticism. Friedrich Wilkening’s work, which relied on a 

non-choice task paradigm, is covered next, which is followed by a critique of 

Wilkening’s paradigm. Regardless of the methodological approaches used, the 

research reviewed in this chapter signals that – developmental trends aside – 

children do have a reasonable understanding of the concept of speed, and how it 

functions in terms of the underlying elements time and distance. This paves the way 

for assessing children’s understanding of object motion. 

 

The crucial information relating to object motion is then covered in Chapter 6. This 

chapter discusses research on the specific understanding of naturally induced object 

motion. The importance of weight as a variable in object motion reasoning is 

established. Building on the distinction between explicit and tacit understanding 

introduced in Chapter 3, the chapter then looks at a variety of studies examining 

children’s and adults’ explicit reasoning about motion along horizontals, about 

motion in free fall, and about motion down inclines. Moreover, it explores the 

literature assessing understanding of speed change, as this understanding appears to 

be a crucial element in the recognition of naturalness of motion. What emerges is 

that while there is a substantial amount of work on children’s explicit understanding 

of object motion, none of the studies integrate more than one motion type, and 

therefore little can be concluded about how different dimensions are associated in 

children’s object motion reasoning. Chapter 6 then continues by looking at the small 

number of studies assessing tacit knowledge of general object motion, both studies 

with infants and studies beyond infancy. These, in turn, suggest that while explicit 

understanding of motion may be limited or incorrect, tacit judgements relatively 

accurately reflect correct knowledge. 

 

Finally, Chapter 7 offers a summary of the introductory chapters, and provides a 

rationale and general overview of the subsequent research chapters. It highlights the 

key research questions to be explored and answered by the research, and presents 

an outline of the current work by considering ethical issues, general information 
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about the participants of the research, as well as information about the use of 

computers in this particular sample. 

 

The seven introductory chapters are then followed by four studies – Chapters 8 to 11 

– that address the key research questions raised in Chapter 7, supplemented by 

Chapter 12, which presents some additional cross-study analyses. These, in turn, 

lead to a general discussion in Chapter 13, pertaining to the theoretical approach 

that has led up to the four studies as well as pertaining to the specific outcomes of 

the research. The emerging findings contributing to the understanding of how 

children predict dynamic events are considered, as well as how their tacit 

judgements of such events compares with explicit predictions. The general 

discussion furthermore outlines a dual-pathway model resulting from an integration 

of the theoretical background with the present research. This model takes into 

consideration both explicit and tacit models of motion, and how they may fit into a 

general system of reasoning. In addition, the discussion considers limitations of the 

current work and makes suggestions for future undertakings; both in terms of 

exploring further the theoretical distinction between explicit and tacit 

understanding, and in terms of its applications to educational practice. 
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“Science is not just a collection of 

laws, a catalogue of facts, it is a 

creation of the human mind with its 

freely invented ideas and concepts.” 

(Einstein & Infeld, 1938, p. 310) 

 

 

 

 

 

 

 

CHAPTER 1: 

NAÏVE KNOWLEDGE OF THE PHYSICAL WORLD 

 

There are distinct disciplines in everyday science, a dozen or so in number (Carey, 

1987), all of which seem to be, to some extent, essential for individual survival and 

prosperity as a species (Hatano, 1990; Wilkening & Huber, 2002) – biology, 

chemistry, mathematics, just to name a few. Among these disciplines, humans also 

hold ‘naïve physics’, which deals with how an object behaves in the physical world. 

We have a lot of interchange with the physical world; we engage with it both visually 

and tactically. We see what happens around us, we pick up objects, push them, 

throw and catch them, and so on. There can be no doubt that people have naïve 

physical knowledge on the basis of all this interaction, particularly regarding 

mechanics (diSessa, 1996). But what is the connection between this naïve folk 

physics and the physicist’s physics taught in schools? 

 

1.1 A historical approach to naïve physics 

 

The roots of the problem with which this thesis is concerned can be traced back to at 

least the fourth century BC, to the writings of the Ancient Greek philosopher 
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Aristotle. In his Physics, a collection of philosophical treatises on the most general 

principles of motion, he wrote that “it is a fact of experience that the greater the 

impulse of weight or lightness things have, the faster (other things being equal) they 

complete a given journey, in accordance with the ratio the magnitudes have to one 

another” (Aristotle, trans. 2008, p. 98). So according to Aristotle’s ideas, the heavier 

an object the proportionally faster it should fall – an object should take twice the 

time to fall the same distance as another object twice as heavy.  

 

Taking, for instance, a hammer and a feather and dropping them simultaneously in a 

normal environment would indeed show that the hammer – the heavier of the two 

objects – falls faster than the feather and reaches the ground first when the two are 

dropped from the same height at the same time. Similar observations of nature had 

led Aristotle to write his assumptions in Physics (cf. Stinner, 1994), and the example 

of hammer and feather above shows that it is certainly conceivable why he would 

have drawn his conclusions. Interestingly enough, Aristotle was not at all far from 

the correct idea, and even mentioned it in Physics – “it follows that in a void 

everything will travel at the same speed” (Aristotle, trans. 2008, p. 98). Certainly 

since the famous 1971 live demonstration during a lunar expedition where a 

hammer and a feather were dropped simultaneously in the moon’s environment, we 

know that in a void all objects do indeed fall at the same rate. Unfortunately the very 

same sentence in Physics then continues saying that this would have to be 

impossible. 

 

One might forgive the errors of a single person, and think that surely one man’s 

erroneous views of the physical world cannot have too grave an effect. But the 

problem reaches beyond Aristotle’s own mind – his claims were largely accepted by 

science (and non-science) for almost two millennia after Physics, and only publicly 

refuted during the scientific revolutions of the 17th century AD.1 However, the 

                                                 
1
 It is worth noting here that there were already some revisions of Aristotelian physics throughout the 

Middle Ages, for instance by Philoponus, Avicenna, di Marchia, Buridan or Oresme (cf. Kozhevnikov & 

Hegarty, 2001; Stinner, 1994), though none of these directly affected the major Aristotelian claims 

listed here. 
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problem persists: Even following the scientific analyses of Galilei (1638), Hugens 

(1669) and Newton (1687), showing that Aristotle’s beliefs and therefore, more or 

less, those of the entire known world were erroneous, the naïve theories that people 

hold about object motion today very often correspond to the Aristotelian physical 

theories (Heuer & Wilhelm, 1997; Mildenhall & Williams, 2001; Shanon, 1976; 

Whitaker, 1983). Because these views, like Aristotle’s own views, are seemingly 

based on experiences with the everyday world, they are thus known as naïve 

physics. 

 

1.2 Naïve physics in psychological and educational research 

 

Champagne, Gunstone and Klopfer (1983) write that “even students who do well on 

textbook problems often do not apply the principles they have learned to predicting 

and describing actual physical events”, which is “not due to an absence of theories, 

but rather to the persistence of naïve theories” (p. 173). Young people and adults 

commonly have macroschemata for motion that are more Aristotelian than 

Newtonian, and remnants of the Aristotelian macroschemata persist in many 

successful physics students (Gunstone & White, 1981). Macroschemata are mental 

structures encompassing microschemata, which in turn are mental structures than 

guide the analysis and interpretation of an identifiable class of phenomena, 

incorporating propositions and concepts (Champagne et al., 1983). 

 

Indeed, in concordance with Champagne et al. (1983), McCloskey (1983a, b, c), too, 

notes that people sometimes have strange conceptions about physical phenomena, 

and the discrepancy between spontaneous judgements and the actual physical 

events may indeed surprise, especially given the amount of relevant everyday 

experience that is available. But what is more, Champagne, Klopfer and Anderson 

(1980), for example, have shown that belief in the proposition ‘heavier objects fall 

faster than lighter objects’ is not readily changed by instruction; similar findings 

associated with Aristotelian macroschemata for the motion of objects have been 

reported in other studies of physics students (e.g. Gunstone & White, 1981; 

Leboutet-Barrell, 1976). The macroschema for motion results from years of 
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experience with events involving moving objects and talking about these objects, 

and these events suffice for children and adults to satisfactorily describe the world of 

motion that they experience. Yet this macroschema differs from the formal system 

of Newtonian mechanics. 

 

The assessment of prior understanding of physics is not actually a very recent 

phenomenon. More than 60 years ago Oakes (1945a, b) published an early study of 

adults’ understanding of falling objects and of Bernoulli’s principle. However, despite 

the work suggesting that when adults’ explanations were incorrect they did not 

differ substantially from those of children (cf. Oakes, 1947, as cited in Bingham & 

West, 1948), it did not seem to have much impact on educational or psychological 

research. Slightly over a decade later, Oakes made another attempt with a paper 

that both revisited the earlier work and reported examples of his own college 

students’ explanations given in response to his conventional examination questions 

about a wide range of biology and physics topics (Oakes, 1957). Yet despite finding, 

overall, that adults’, children’s and college students’ beliefs were often inconsistent 

with scientists’ views of phenomena, no related studies followed for some time to 

further probe any of these findings. Then, quite suddenly, in the 1970s a surge of 

studies of conceptions in the classroom and beyond appeared in the world of 

educational and psychological research, amounting relatively quickly to over 8,000 

studies (cf. Duit, 2009). 

 

The area of physics, and object motion in particular, was not spared from this 

research movement. Several early studies on naïve knowledge of object motion 

exist, where participants were asked to make predictions about naturally induced 

motion in a variety of tasks – for example, trajectories of released pendulums 

(Caramazza, McCloskey, & Green, 1981), curvilinear motion (Kaiser, Jonides, & 

Alexander, 1986; Kaiser, McCloskey, & Proffitt, 1986; McCloskey, Caramazza, & 

Green, 1980; McCloskey & Kohl, 1983), or parabolic paths of falling objects (Kaiser, 

Proffitt, & McCloskey, 1985; McCloskey, Washburn, & Felch, 1983). In his time, 

Oakes may have been outside the then popular main stream of behaviourism and 

thus remained largely unnoticed (White & Gunstone, 2008). By the 1970s, however, 



 32

psychology had recovered its interest in the mind. The ‘misconceptions’ movement 

exploded to particular prominence in the early 1980s, produced the bulk of the vast 

literature, and then tailed off somewhat in the early 1990s. Nonetheless both its 

presence and its influence remain strong (diSessa, 2006). What is particularly 

interesting, however, is not only that adults have views about the world that are not 

always in concordance with science, but that divergent views have already begun to 

emerge by the very beginning of school education. 

 

1.3 Prior conceptions in the classroom 

 

It is now widely accepted that children do not come to school as tabula rasa, but 

instead that they possess rich prior conceptions about the physical world. They have 

beliefs about how things happen and expectations which enable them to predict 

future events. Children construct this knowledge on the basis of their everyday 

experiences of and interactions with the world around them (King, 1960; Klaassen, 

2005; Vosniadou & Ioannides, 1998), and children seem to hold these beliefs and 

expectations very strongly (Leboutet-Barrell, 1976). These are not simply isolated 

ideas; instead, they are a part of conceptual structures that provide a sensible and 

coherent understanding of the world from the child’s point of view (Champagne et 

al., 1980). Despite its richness, this knowledge, however, is often inaccurate and 

differs fundamentally from the scientific conceptions to be taught in the classroom 

(Clement, 1983; Duit, 1999; Halloun & Hestenes, 1985; McCloskey, 1983c; 

McDermott, 1984; Vosniadou & Brewer, 1992). One recent survey of 122 primary 

school science teachers in England, for instance, identified 130 conceptions that 

children bring to the science class (Pine, Messer, & St. John, 2001), conceptions that 

are inconsistent with the concepts to be taught. 

 

A variety of terms exists to describe such prior knowledge structures that children 

hold. Even though the research essentially takes place within the same paradigm, 

certain researchers tend to favour particular terms over others because of the 

underlying attributions they may give to the status of these ideas (Gunstone, 1988; 

diSessa, 1993). Some researchers use the term ‘preconceptions’ to describe naïve 
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ideas (Arons, 1997; Ausubel, 1968; Cahyadi & Butler, 2004; Dykstra, Boyle, & 

Monarch, 1992). This term does not make judgements as to the correctness of the 

belief. The terms ‘alternative frameworks’ (Driver & Easley, 1978), or ‘children’s 

science’ (Osborne & Freyberg, 1985), on the other hand, are generally taken to imply 

that children generate, within the limitations of available evidence, coherent views 

of phenomena. Other terms used within the literature include ‘common sense 

beliefs’ (Champagne et al., 1980), ‘intuitive models’ (Fischbein, 1987), and 

‘misapplications’ (Elby, 2001). The term ‘misconceptions’, on the other hand, implies 

that the ideas students have are simply wrong and in need of modification because 

they are inconsistent with the target concepts to be taught (E. J. Dijksterhuis, 1961; 

Halloun & Hestenes, 1985; Mildenhall & Williams, 2001; Tytler, 1998). Despite the 

term ‘misconceptions’ being applicable because it implies a belief that the scientific 

community no longer holds and which is therefore simply incorrect, it nonetheless 

retains pejorative connotations. Therefore, in the present work the term 

‘misconception’ will not be used to describe relevant ideas that children bring to the 

classroom, but instead these ideas are simply referred to as ‘prior conceptions’, thus 

not qualifying them in any way. 

 

1.4 Prior conceptions – a problem? 

 

So despite the grand scientific revolutions of the 17th century (e.g. Galilei, 1638; 

Hugens, 1669; Newton, 1687) showing that Aristotle’s beliefs and therefore, more or 

less, those of the entire known world were erroneous, the naïve theories that people 

hold about object motion today very often still correspond to the Aristotelian 

physical theories (e.g. Heuer & Wilhelm, 1997; Mildenhall & Williams, 2001; Shanon, 

1976; Whitaker, 1983). But what is the problem with having prior conceptions? 

Students have constructed various conceptions over many years of experiencing the 

everyday world. These conceptions can certainly be useful to students in that they 

provide reasonable explanations of the behaviour of objects (Hammer, 1996, 2000) 

and satisfactory predictions of motion (Tao & Gunstone, 1999), and this knowledge 

may be perfectly adequate for survival in the everyday world (Reif, 2008). However, 

the nature of such naïve conceptions poses a problem for learning science: “The 
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main barrier to learning the curricular materials […] is not what the student lacks, 

but what the student has, namely, alternative conceptual frameworks for 

understanding the phenomena covered by the theories we are trying to teach” 

(Carey, 2000a, pp. 13-14). Halloun and Hestenes (1985), too, highlight the need for 

physics instruction that takes the initial common sense beliefs of students into 

account, and several others have identified relevant specific common sense beliefs 

that are in conflict with Newtonian mechanics and thus interfere with physics 

instruction (Clement, 1982; Gunstone & White, 1981). 

 

However, the problem reaches beyond this point. Not only are the conceptions that 

children bring with them incorrect and at variance with commonly accepted 

scientific views, but also there is much agreement that these conceptions are highly 

resistant to instruction and conceptual change (Bloom & Weisberg, 2007; Chi, 2005; 

Chi & Roscoe, 2002; Duit & Treagust, 2003; Duit, Treagust, & Widodo, 2008; Ferrari 

& Chi, 1998; Finegold & Gorsky, 1991; D. Kuhn, 1989; Stepans, Beiswanger, & Dyche, 

1986; Tao & Gunstone, 1999). It has also been pointed out that many incorrect 

conceptions persist even after students finish physics courses, and that even high-

grade students often cannot apply basic physical principles to solve problems for 

realistic situations (Haertel et al., 2003; Mestre, 1991). The fact that these 

conceptions are erroneous or inaccurate also means that, while they may be useful 

in an informal setting and in everyday life, they can actually hinder the child’s ability 

to learn further about a topic in the context of more formal education (Driver, 1981; 

Driver & Erickson, 1983; Klaczynski & Narasimham, 1998; Reif, 2008; Schauble, 1996; 

Sherin, 2006; Singh, 2001). The high resistance means educators need to be aware of 

these conceptions and work to modify them, rather than simply introducing and 

superimposing the correct concepts. In addition, they need to incorporate the 

learner’s active involvement in their personal knowledge construction of the world 

around them, and help them to interpret new situations effectively (Carey, 1986; 

Gilbert & Swift, 1985; West & Pines, 1983; von Glasersfeld, 1989). 

 

Naïve scientific notions appear to be particularly prevalent in the area of mechanics 

and dynamics because moving objects can be commonly observed in action in 
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everyday life (diSessa, 1996; Tao & Gunstone, 1999), and the importance of 

kinaesthetic and sense experiences as a possible source of children’s prior 

conceptions has been suggested in the literature (e.g. Strauss, 1981; Viennot, 1979; 

Wilkening & Huber, 2002). Yet because phenomena involving motion have been 

acquired since early in life and are very familiar from everyday interactions with the 

world, naïve notions about them are probably particularly difficult to change 

(Planinic, Boone, Krsnik, & Beilfuss, 2006).  

 

The role of education is, in principle, quite simple: Education needs to promote a 

change in conceptions about the world. But this is much more difficult in practice 

than it may sound in theory – “it becomes apparent that what is needed is a bridge 

between cognitive developmental and science education research” (Vosniadou, 

1999, p. 9). Additionally, all the factors just mentioned highlight the usefulness of 

early conceptual change intervention. A claim being made is that major restructuring 

of the already existing knowledge is necessary (Duit, 1999). How can this 

restructuring be achieved? Additionally, when should this restructuring best be 

induced? Tracing the disjunction between science and the everyday world back to its 

source and remedying this can probably best be done in the earliest stages of 

education, and the question arises of whether instruction could be set up in such a 

way, right from the beginning, so “that this false disjunction could never arise at all” 

(Isaacs, 1930, p. 351). Despite the suggestion coming from an educational 

perspective from 80 years ago, there seems no reason why it should be much 

different today. 

 

1.5 Summary 

 

It has become evident that we are dealing with an age-old problem, reaching back at 

least to Aristotle’s times. And despite the major scientific revolutions of the 17th 

century, many people still hold naïve theories of physics that correspond to those 

notions proposed in Aristotle’s Physics. Even young children come to the classroom 

with rich and varied knowledge of the physical world, yet their understanding is 

often incomplete or misconstrued, and these naïve theories often persist beyond 
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school education into adulthood. Essentially, the role of the educational system 

should thus be to facilitate a change in ideas, bringing children closer to the concepts 

to be taught in science, and yet this is often problematic. A case has been made for 

tackling the roots of the problem at an early age, and by finding alternative ways 

around the traditional approach to science education in order to promote 

conceptual change. 
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“A theory of conceptual change is a 

prerequisite for any comprehensive 

account of learning and can have 

important implications for 

instruction.” (Vosniadou, 1994b, p. 3) 

 

 

 

 

 

 

 

CHAPTER 2: 

CONCEPTUAL CHANGE AND MENTAL MODELLING 

 

Chapter 1 has illustrated that there is a fundamental problem in naïve beliefs about 

the physical world, particularly about object motion. The chapter has highlighted the 

issue of prior conceptions in the classroom that are inconsistent with accepted 

scientific views, instead matching ideas that, despite intermissive scientific 

revolutions, have been around for more than two millennia. Yet evidently these prior 

conceptions pose a problem, and they often remain limited or incorrect. It has been 

noted that science education must deal with changing these conceptions somehow, 

and yet on the larger scale this does not seem to work very well, as prior conceptions 

persist into adulthood. But how can conceptions be modified? 

 

2.1 Conceptual change 

 

Conceptual change is among the most central areas in the learning of sciences. In 

fact, “conceptual change has long been recognized as a fundamental aspect of 

science learning” (Mayer, 2002, p. 101). Many of the most important ideas in science 

seem to be affected by the challenges of problematic learning (diSessa, 2006). In 
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order to understand scientific concepts, students cannot simply rely on the 

memorisation of facts, or on the enrichment of their naïve, intuitive theories. 

Instead, they need to be able to restructure their prior knowledge about the world, 

which is based on everyday experience. This approach rests on the assumptions that 

knowledge is established within domain-specific structures, and that knowledge 

acquisition leads to a change in theories. Such structures are generative, thereby 

making it possible for children to explain and predict, thus being able to deal with 

unfamiliar scenarios, answer questions and solve problems (Vosniadou, 2002a, 

2007a). 

 

Some topics in science education appear to be particularly difficult for students. 

Learning and teaching in these areas are seen to be problematic. Many areas in the 

sciences, from elementary school through university level, have this characteristic, 

including, in physics, Newtonian mechanics. Students need to build new ideas in the 

context of old ones. The source of the difficulty is widely held to be the fact that 

students come to their physics classes with prior conceptions about the nature and 

processes of such phenomena as motion that, though not fully developed and 

integrated, interfere with learning science. Thus, students are thought to have to 

undergo major conceptual change in the learning process (Nersessian, 2003). Yet 

much research has shown that these conceptions and ideas are firmly held and are 

resistant to change. 

 

But what would change of conceptions entail anyway? Conceptual change research 

is difficult to review, because of the range of disciplines from which conceptual 

change theories have emerged – including biology, physics, chemistry and 

astronomy. In fact, despite the consistent agreement that there is no debate about 

whether conceptual change occurs or not there is currently no singularly accepted 

theory of conceptual change; instead, multiple tested theories exist (cf. Suping, 

2003). The term conceptual change was first introduced by Thomas Kuhn (1962) to 

indicate that the concepts that are embedded within a scientific theory change their 

meaning along with a change in the theory. When a theoretical framework changes, 

the meanings of the concepts within it also change, thus making them 
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incommensurable with the concepts they were incorporated under within the 

previous theoretical framework. Conceptual change results from a pattern consisting 

of accumulation of anomalies, a resulting crisis, and finally the emergence of a new 

conceptual structure that forms part of a new paradigm, though one which is still 

related to the old paradigm both in “vocabulary and apparatus” (T. S. Kuhn, 1962, p. 

148). 

 

2.2 Piaget and conceptual change 

 

Two questions are central to Piaget’s (1952, 1954) work on children’s acquisition of 

knowledge and intelligence. Firstly, what do children build? They build schemata, 

internal representations of specific physical or mental actions that are basic building 

blocks of intelligent behaviour, which help to understand the world. Infants, for 

instance, are born with reflexive action schemata such as sucking, and only later on 

are symbolic mental schemata acquired. They continue to develop and increase in 

complexity over time. At the same time, the child also constructs operations, which 

are acquired in middle childhood. These are higher order mental structures enabling 

the child to understand complex rules about how the world around them functions 

and to deal with the relationships between schemata. Through building new 

schemata and acquiring new operations, children can advance in their intellectual 

development, reaching successive stages that have greater complexity and 

representational power than previous stages. 

 

The second central question is how children build, and how they reach successive 

stages. Piaget’s constructivist approach is based on two processes, namely, 

assimilation and accommodation. The former is a process by which new objects or 

new events are understood in terms of already existing schemata, while the latter is 

a process by which existing schemata have to be modified to fit these new objects or 

new events. Schemata can be expanded, or new ones can be created. Piaget (1978, 

1985) viewed equilibration as a key mechanism in the process of conceptual change 

– “the activities of the subject directed to assimilate, integrate, and regulate all 

cognitive perturbations due to either external contradictions or internal limitations” 
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(Lourenço & Machado, 1996, p. 150). Two key elements of this process of 

equilibration are assimilation and accommodation, which cause a restructuring of 

conceptions. 

 

During assimilation, the external world is interpreted in terms of existing schemata. 

When new objects or events are encountered that fit into a particular schema, the 

objects or events can be dealt with appropriately or accommodated, despite not 

having come across the particular instances of object or event before. The objects or 

events are incorporated into the appropriate schemata. Infants place various objects 

in their mouths, by which they are assimilating them all into their sucking schema. 

When, on the other hand, objects or events are encountered that cannot be dealt 

with by relying on existing schemata, there are two possibilities. Either existing 

schemata are adjusted in order to hold the new objects or events, or new schemata 

are created. Infants will begin to suck differently on objects than on nipples, for 

instance – the sucking schema has begun to be modified. At times children assimilate 

more than they accommodate, so their thinking structures do not change very much. 

They are at a stage of cognitive equilibrium. At other times, however, children realise 

that new information does not match current schemata, and they find themselves at 

a stage of cognitive disequilibrium. They have to accommodate more than they 

assimilate, but once their schemata have been modified appropriately, assimilation 

begins to take over again. Piaget referred to this movement between equilibrium 

and disequilibrium (and back again) as equilibration. Whenever equilibration occurs, 

more effective schemata are constructed. This way, the environment can be better 

dealt with, and as infants progress through childhood to adulthood, they generally 

become more sophisticated in dealing with the world. 

 

However, Piaget’s notion of conceptual change remained rather too vague to satisfy 

anyone (cf. Meadows, 2006).  A more definitive fault line, however, is that Piaget 

tried to develop a domain independent stage theory of intelligence where changes in 

conceptualisation in several domains all reflected common differences in thinking. 

Vygotsky (1986), on the other hand, suggested that students need to internalise 

newly presented scientific knowledge by integrating it with their existing knowledge. 
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Both approaches are seen as problematic, though. Current conceptual change 

approaches to learning are domain specific and are better described in terms of 

growth of scientific knowledge via conceptual change and a complete replacement 

of theories (Clement, Brown, & Zietsman, 1989; Karmiloff-Smith, 1992; Thagard, 

1992; Vosniadou & Ioannides, 1998; Vosniadou, Vamvakoussi, & Skopeliti, 2008; 

West & Pines, 1986). If new knowledge is built on the basis of old knowledge, these 

prior notions about science that children bring with them to the classroom must 

clearly play an important role in the process of learning (Gilbert, Osborne, & 

Fensham, 1982). 

 

Several researchers (e.g. Hewson & A’Beckett Hewson, 1984; Posner, Strike, Hewson, 

& Gertzog, 1982; Strike & Posner, 1985) have drawn an analogy between Piaget’s 

(1978, 1985) concepts of assimilation, accommodation and equilibration and the 

concepts of normal science and scientific revolution offered by philosophers of 

science such as Thomas Kuhn (1962) and constructed a theory to promote 

equilibration in the learning of science based on the use of cognitive conflict. 

Accordingly, there are four fundamental conditions that need to be fulfilled before 

conceptual change can happen. Firstly, there needs to be dissatisfaction with existing 

conceptions. Secondly, there must be a new and intelligible conception. Thirdly, the 

new conception must appear plausible. This implies that problem situations ought to 

be based upon phenomena of which individuals have some general awareness and 

common understanding (Biemans & Simons, 1999). Finally, the new conception 

should suggest the possibility of a fruitful program.  

 

This so-called classical approach to conceptual change involves the teacher first 

making students’ prior conceptions explicit and then applying an approach where 

ideas that do not fit existing ideas are articulated, thereby creating dissatisfaction. A 

formal scientific concept explaining the anomaly is then introduced. Despite Posner 

et al. (1982), for instance, claiming that their framework is merely epistemological 

and that it is not intended as a scheme for instruction, it has been frequently applied 

by science educators in their instruction (cf. Nussbaum & Novack, 1982; C. Smith, 

Macklin, Grosslight, & Davis, 1997). Yet at the same time this classical approach to 



 42

conceptual change receives much criticism – students’ conceptual progress towards 

understanding and learning concepts in science often remained limited (Alvermann 

& Hague, 1989; Dole & Sinatra, 1998; Vosniadou, 2008). 

 

2.3 Alternative theories of conceptual change 

 

2.3.1 Knowledge as theory 

 

Carey (1985, 1991, 1992, 1999, 2009), too, has suggested an application of Thomas 

Kuhn’s (1962) ideas to how a child’s conceptions develop, and draws parallels 

between children’s conceptual change and historical developments in science. Wiser 

and Carey (1983), for example, built the case that naïve conceptions of heat and 

temperature parallel the ideas of an early group of scientists. Nersessian (1992), 

however, advocates the use of ‘cognitive-historical analysis’ to determine empirically 

the processes involved in scientists’ change of theories. She, too, uses the notion of 

incommensurability between concepts that children hold and experts’ concepts to 

describe conceptual change in cognitive development. Conceptual change requires a 

re-assignment of concepts to different ontological categories, or the creation of new 

categories. Classic conceptual change studies by Carey (1985), Vosniadou and 

Brewer (1992) or Gopnik (1996), among others, have led to what is known as the 

‘theory theory’ account, according to which conceptual change takes the form of 

theory formation and change. A similar view had been proposed by McCloskey 

(1983c) and Clement (1983), among others. Their account proposes that students of 

all ages construct naïve theories of phenomena encountered in their experience. 

These naïve theories are merely rudimentary, and not as systematic and articulated 

as scientific theories.  

 

Vosniadou (1994a, 1999, 2002b, 2007a, 2008) also considers beliefs to be tied to and 

constrained by a set of ontological and epistemological presuppositions. As a result, 

beliefs form a coherent structure. In this theoretical framework, the main difference 

between the novice and the expert is that the novice’s knowledge is tied to 

ontological and epistemological presuppositions that provide a radically different 
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explanatory framework than the principles and laws of physics. The view that 

concepts are embedded in theories also receives support from research with infants. 

These results have challenged Piaget’s (1952, 1954) view that infants start the 

knowledge acquisition process equipped only with a set of sensory reflexes and 

some domain-general processes and have suggested that the human mind is more 

specified innately to deal with the complexity of environmental stimulation. Findings 

in this area are explored in detail in Chapter 3 and in Chapter 6. However, it is not 

necessary to equate the notion of innate predispositions with a static, genetic 

blueprint, for the initial, innate, endowment of the infant appears to be much less 

detailed than the nativists have proposed, leaving enough room for flexibility and 

creativity in cognitive development (Karmiloff-Smith, 1992). One area of knowledge 

for which it is likely that domain-specific principles have been developed is the 

domain of knowledge about the physical world. 

 

2.3.2 Knowledge as elements 

 

As shown, some use the term ‘theory’ explicitly. Others imply it or use less loaded 

terms, such as the construct of ‘schema’ (e.g. Chi, 2008). Learning and development 

is then seen as requiring the reorganisation of such a structure and not simply its 

enrichment. An alternative view of conceptualisation of the development of naïve 

physical knowledge, however, is that our knowledge about the everyday world is not 

embedded within theory frameworks but that each concept exists within an 

unstructured collection as a separate and basic element. Minstrell (1982, 1989, as 

cited in diSessa, 2006) viewed conceptual change where intuitive ideas are threads 

connecting facets that, rather than simply being rejected, need reweaving into a 

different, stronger, and more normative conceptual fabric.  

 

DiSessa (1993, 1996, 2006, 2008) dubs the individual elements phenomenological 

primitives, or ‘p-prims’, of which humans have hundreds, if not thousands, at roughly 

the same size scale of Minstrell’s facets. These p-prims are generated from a 

learner’s experiences and observations of phenomena, through interactions with the 

physical world and reflecting events and actions such as pushing, pulling or throwing. 
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P-prims are loosely organised within a conceptual network and are highly contextual 

in some cases. They are not activated under a highly organised system, which is why 

the term ‘theory’ is not deemed applicable by diSessa (1993, 1996, 2006, 2008). They 

are activated by recognition mechanisms that depend on the connections that p-

prims have to the other elements of the system. The process of learning science is 

one of collecting and systematising the pieces of knowledge into larger systems of 

complex knowledge structures such as laws of physics, and conceptual change occurs 

through the reorganisation of p-prims and a change in their function (diSessa, 1993). 

Conceptual change requires a cognitive reorganisation of these naïve knowledge 

elements into complex systems (diSessa, 2002). 

 

2.3.3 Knowledge as an integration of theory and elements 

 

There is likely no single explanation for the complex processes of conceptual change 

and naïve knowledge structures (Özdemir & Clark, 2007). Nonetheless, despite the 

differences in the two general approaches to conceptual change described above, 

that is, theory versus elements, they are not necessarily incompatible with each 

other. There seems to be strong evidence for both views, as illustrated by Özdemir 

and Clark’s (2007) summary comparison. Yet the knowledge-as-theory position does 

not have to be inconsistent with the view that something like diSessa’s idea of p-

prims constitutes an element of the knowledge system. D. E. Brown and Hammer 

(2008) propose a conceptual system which consists of different kinds of knowledge 

elements, such as beliefs, presuppositions and mental models, and they believe their 

system remains consistent with diSessa’s proposal that there is a need to focus not 

on single conceptions but on rich knowledge systems composed of many constituent 

elements. According to D. E. Brown and Hammer (2008), their complex systems 

theory is able to describe the full spectrum of phenomena in the conceptual change 

literature. Each phenomenon can be described in terms of cognitive structures which 

arise from the interactions of smaller conceptual elements or resources not unlike 

the p-prims. Initial beliefs about phenomena are probably context-bound, upon a 

first experience of a new phenomenon. But over time, the child must see 
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commonalities across situations, and will build presuppositions that constitute a 

naïve theory of events (Stavy & Tirosh, 2000). 

 

2.4 Approaches to conceptual change in the classroom 

 

Despite the variety in theories it has been clearly established that conceptual change 

is difficult to achieve. However, all normally developing children have the capacity 

for conceptual change (Carey, 2000a). Thus teaching and learning for conceptual 

change require substantial amounts of effort on the part of the teacher, as well as on 

the part of the learner. For this effort to be invested, there needs to be an 

environment within which this is both necessary and appreciated. Teachers need to 

design relevant activities (Vosniadou, Ioannides, Dimitrakopoulou, & Papademetriou, 

2001), and students need to be actively engaged. One important step in the design 

of such activities is that the underlying prior conceptions need to be specified as 

precisely as possible. How can they be assessed, and how do children predict 

physical events that show their misunderstandings? It is assumed that humans have 

a cognitive system that allows them to create mental representations of physical 

objects that embody the internal structure of the concept and can be run in the 

mind’s eye to generate predictions and explanations of phenomena (cf. Nersessian, 

1998, 1999, 2008a, b). 

 

2.4.1 Mental modelling and model-based reasoning 

 

A distinction needs to be made between bottom-up, conservative, additive and 

largely unconscious mechanisms and top-down, radical, deliberate, and intentional 

learning mechanisms. The first of the two is manifest in the Piagetian adaptation 

mechanisms of assimilation, accommodation and equilibration (Piaget, 1978, 1985), 

or the process of internalisation (Vygotsky, 1978). The others can be mechanisms 

such as model-based reasoning, which rely on the deliberate use of mental 

modelling and the use of thought experiments (Helm, Gilbert, & Watts, 1985; T. S. 

Kuhn, 1977; Nersessian, 1992; Vosniadou, 2007a). While the bottom-up mechanisms 

can be productive in spontaneous conceptual change, this is not the case for 
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instruction-induced conceptual change, which requires a deliberate use of the top-

down mechanisms – on the contrary, it usually leads to the formation of incorrect 

conceptions, and Posner et al. (1982) did acknowledge that their framework is not 

ideal for educational practice. The problems of prior knowledge that children bring 

to the classroom have been laid out in Chapter 1 on prior conceptions in the 

classroom. In order to avoid the construction of alternative or synthetic models (cf. 

Vosniadou & Brewer, 1992), students must be made aware of the inconsistencies 

between their naïve theories and the scientific ones, and use must be made of the 

top-down, conscious and deliberate mechanisms for intentional learning (Alonso-

Tapia, 2002; Sinatra & Pintrich, 2003; Vosniadou, 2003, 2007b, c). 

 

Mental models have been introduced in relation to long-term memory 

representations of knowledge used in understanding and reasoning processes, 

particularly where physical systems are concerned. This literature posits the notion 

to explain a wide range of experimental results indicating that people use organised 

knowledge structures relating to physical systems in employing qualitative domain 

knowledge of physical systems to solve problems (Forbus, 1983; Gentner & Stevens, 

1983). But what exactly are mental models? A mental model is not simply a mental 

image of one particular instance, although in some cases a particular image can, of 

course, be relied on. It is analogous to a real-world or imaginary situation, event or 

process, since it preserves constraints that are inherent to dimensions of the real-

world system (Johnson-Laird, 1983; Nersessian, 2002b). According to Lesh and Doerr 

(2003), models are conceptual systems consisting of elements, relations, operations 

and rules. Mental models thereby act as prototypes of particular kinds of conceptual 

models, such as the behaviour of objects in free fall, which can then enable a person 

to simulate similar behaviour with new objects (Nersessian, 1992, 2002a, 2003). A 

person’s intuitive mental model of motion, for instance, is a model built up in that 

way following many years of experience of things that move within the real world 

(Mildenhall & Williams, 2001; Reif & Larkin, 1991; Vosniadou, 2007c). Mental models 

embody a representation of the spatial and temporal relations among, and the 

causal structures between, the events and objects concerned. Since mental models 

need to be causally coherent, it should be possible to carry out simulative reasoning 
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about the behaviours of a model for those tasks that are dynamic in nature 

(Johnson-Laird, 1983). 

 

As mentioned above, then, mental modelling and thought experiments appear to be 

crucial elements in conceptual change instruction. Mental modelling is a 

fundamental form of human reasoning, evolved as an efficient means to navigate the 

environment and to solve problems in order to survive in the world. Humans have 

been able to extend this ability to the construction of scientific representations. The 

scientist’s specific problem solving therefore does not differ from the problem 

solving used in everyday circumstances (Nersessian, 1995, 1999), thus reflecting 

rather appropriately the view of children not being fundamentally different from 

scientists in their thinking approach (cf. Gopnik, 1996). Given the differences 

between novices’ and experts’ reasoning skills in scientific problem solving, the skill 

of modelling is something that seems to develop with learning (Chi, Feltovich, & 

Glaser, 1981; Nersessian, 1995). 

 

When solving a problem, learners construct a mental model of that problem and use 

the model as the basis for prediction and inference (Jonassen, 2003, 2004; Morgan, 

1999). When individuals construct mental models or retrieve them during cognitive 

functioning, new information is incorporated into the knowledge base. As such, a 

mental model can constrain the knowledge acquisition process in ways rather similar 

to prior conceptions. Mental models and model-based reasoning can provide 

important information about the underlying knowledge structures from which they 

are generated. Understanding the generic mental models that individuals use to 

answer a variety of different questions related to a given concept can provide 

important information regarding the theories that constrain the knowledge 

acquisition process (Vosniadou, 1994a). This highlights the relevance of mental 

modelling in the process of establishing conceptual faults in children’s reasoning 

about the physical world. 
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2.4.2 Mental models and thought experiments 

 

How are mental models used when having to make predictions about object motion 

events? In many instances people reason by carrying out thought experiments on 

internal models of physical situations, where a model is a structural, behavioural, or 

functional analogue of a real-world phenomenon (Craik, 1943; Yu, 2002). Thought 

experiments in scientific reasoning are by no means a new concept. Famous thought 

experiments from the scientific revolution include Galilei's (1632) Ship, an 

experiment created to disprove the then popular argument that the Earth did not 

rotate, Newton's (1728) Cannonball, used to hypothesise that the force of gravity 

was universal, or Galilei's (1638) well-known Leaning Tower of Pisa experiment. In 

these thought experiments, an individual is invited to imagine an experimental 

situation being described. The person is asked to picture objects, for example, and to 

imagine various things happening to these objects, or to imagine doing something 

with them, such as rotating objects mentally. Eventually, the person reaches 

conclusions about these objects and what would happen to them given certain 

conditions. 

 

Consider the following example to illustrate this. The traditional story of the Leaning 

Tower of Pisa experiment is that Galilei himself dropped two objects of different 

mass from the top of the Leaning Tower of Pisa in order to invalidate Aristotle’s 

theory of gravity by which objects fall at constant speeds relevant to their mass. The 

general consensus is, however, that Galilei did not actually perform this experiment 

himself (cf. Cooper, 1935) but rather that he relied purely on theoretical reasoning to 

reach his conclusions. His simple idea was that if two objects of different mass are 

connected by a string and this ensemble is dropped from a tower, according to 

Aristotelian physics the string should soon pull taut because the lighter object would 

slow down the fall of the heavier object and the heavier object would speed up the 

fall of the lighter object – therefore the ensemble as a whole should be slower than 

the heavy object alone. But at the same time, the ensemble would be heavier than 

either of the individual objects and therefore should fall faster than the heavy object 
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on its own. From this contradiction Galilei concluded that the Aristotelian 

assumption had to be false. 

 

So how can mental models be created and thought experiments be carried out, given 

that there are no objects to physically work with? The real difficulty of carrying out 

thought experiments is merely establishing models of entirely new phenomena 

never encountered before. Once this has happened, the jump from data to theory is 

quite small and can be made fairly effortlessly (J. R. Brown, 1986). Mental models are 

typically relied on when trying to understand stories, or in ordinary planning of 

activities, and they are highly specific, representing concrete situations, objects and 

relations (Johnson-Laird, 1983). When, for example, a reader encounters a 

description of a situation, a model is built, a quasi-spatial picture of it. Whenever the 

storyteller provides new details, the model gets updated.  

 

There are differing views on what knowledge thought experiments are based on. 

One view is that the background conditions are dictated by the thought 

experimenter’s general knowledge about the world. The insight yielded by thought 

experiments is therefore a posteriori – “the material with which the individual works 

is experiential, and so his or her conclusions will be, in the last resort derived from 

experience” (Miščević, 1992, p. 215). So here, too, past experience is deemed 

important in the development of understanding of how objects behave, and the 

reliance on prior knowledge can seemingly be done fairly easily and quickly, given 

the process of having to identify the appropriate theory or elements of knowledge in 

order to reach a conclusion. Furthermore, mental models allow for reorganisation of 

past knowledge, therefore acknowledging the ability to integrate new information 

when accessing a model that is insufficiently appropriate for a particular scenario 

(Miščević, 2007). An alternative view is that thought experiments draw on imagined 

transformations that depend on innate knowledge of three-dimensional space (e.g. 

Shephard, 2008). 

 

Because of the extensive experience that we have with motion, it should be 

relatively easy to construct mental models of dynamic events. Yet despite motion 
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being a key element of the physical world, it is one that has largely resisted 

conceptual change, both on a global scale as well as on an individual level. Although 

some mental modelling might employ static representations, those derived from 

thought experimental narratives are essentially dynamic in nature; animation is 

central to Craikian mental modelling (Craik, 1943). What this means is that mental 

models can go beyond simple spatial transformations and can incorporate 

transformations occurring within physical systems. Constructing and conducting 

thought experiments makes use of existing representations as well as scientific and 

general world knowledge to make realistic transformations from one possible 

physical state to the next (Nersessian, 2008b). This makes the use of mental models 

in predictions of object motion obvious, and the understanding of object motion is, 

after all, the central issue here – the importance and relevance of it having been 

raised in Chapter 1.  

 

2.5 Summary 

 

What has been established so far is that children come to the classroom with prior 

naïve knowledge about the physical world that is highly resistant to conceptual 

change. The means by which children, and adults, reason about scientific problems is 

by constructing mental models on the basis of previous experiences they have 

collated over many years and carrying out thought experiments to reason about new 

problems related to such previous experiences. The importance of modelling in 

understanding scientific phenomena has been recognised for some time (e.g. 

Confrey & Doerr, 1994; Frederiksen & White, 1998; Lehrer & Schauble, 2000, 2003). 

This is important to be aware of when considering the work on children’s 

understanding of motion, which will be discussed in Chapters 5 and 6. More 

importantly, however, what this chapter has done is illustrate that, whilst being a 

necessary task in early science education, current conceptual change approaches do 

not appear to be particularly effective in achieving change. This beckons for 

considering alternatives to the standard teaching approach, which will be discussed 

in the next chapter. 

 



 51

“It is my belief, you see, that thinking 

is a double phenomenon, like 

breathing.” (Asimov, 1975, p. 159) 

 

 

 

 

 

 

 

 

 

CHAPTER 3: 

THE EXPLICIT-TACIT KNOWLEDGE DISTINCTION 

 

Certain situations in everyday life require an accurate interpretation of an object’s 

behaviour in terms of its speed and its acceleration, such as when in traffic. In order 

to know when it is safe to cross a busy road and when not, with no pedestrian 

crossing in sight, a child – or an adult, for that matter – needs to be able to estimate 

with reasonable accuracy how fast a car is going, and how much longer will be 

needed until that car has reached the point of crossing. From this the child can then 

deduce whether it is safe enough to cross the road before that car reaches the point 

of crossing (cf. te Velde, van der Kamp, & Savelsbergh, 2008). Though much further 

down any life-maintaining scale, a further scenario can be considered: If children 

have to walk to school, they need to be able to judge how fast they must walk from 

home within a given time if they do not want to be late for classes, or if they need to 

hurry up while walking there, increasing their stride. Additionally, children play 

games, such as cops and robbers, or any derivations thereof, that require a 

reasonable estimation of different speeds in order to win the game.  
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It is therefore evident that an appropriate knowledge of motion, and specifically of 

speed and acceleration, is necessary. Yet as Chapter 1 indicated, naïve Aristotelian 

knowledge interferes with an accurate understanding of this, and what Chapter 2 

has done is show that the standard approach to conceptual change in educational 

practice is by making current conceptions explicit and imposing the correct concepts. 

Firstly, though, what is meant by explicit knowledge? And as indicated at the end of 

Chapter 2, because of the fruitlessness of current approaches to conceptual change, 

the question arises whether alternative forms of knowledge are available to consider 

in the facilitation of conceptual change. Such a possible alternative is discussed in 

this chapter. 

 

3.1 ‘Explicit versus tacit knowledge’? 

 

To allow learning of appropriate judgements of speed and acceleration, a plenitude 

of everyday events where objects are in motion is available to the child, allowing 

objects not only to be observed, but also to be interacted with. Adults also instruct 

children on safe behaviour. However, this knowledge may either be limited to 

learning the behaviour of specific objects within specific situations; alternatively, 

generalisations may well be established from multiple observations of same or 

similar behaviour, and implicit theories of object motion may be constructed from 

this (McCloskey, 1983c). But does the expressed knowledge reflect the actual 

knowledge held? This thesis is first and foremost concerned with the distinction 

between children’s explicit beliefs about objects in the physical world and their tacit 

understanding thereof. But how do these two forms of knowledge differ from each 

other? It is crucial to establish what is meant by explicit knowledge, what is meant by 

tacit reasoning, and to then ascertain the importance of this distinction. 

 

The acknowledgement of the existence of implicit or intuitive knowledge, as 

opposed to simple instinctive reflexes, reaches at least as far back as Darwin (1859), 

who interprets the hive bees’ art of cell making as an instinct evolved from 

numerous successive and slight modifications of simpler instincts, by commenting on 

“the exquisite structure of a comb, so beautifully adapted to its end”, and yet ”it 
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seems at first quite inconceivable how they can make all the necessary angles and 

planes, or even perceive when they are correctly made” (Darwin, 1859, p. 248). 

However, the more crucial general distinction between two forms of knowledge can 

be associated with Ryle’s (1949) work, which referred to two separate kinds of 

reasoning – ‘knowing that’ versus ‘knowing how’. The former refers to an express 

understanding of in what ways something operates, or what the specific processes 

are that lead to an outcome. The latter, on the other hand, refers to the knowledge 

that people rely on to ascertain familiarity with objects or events, or a subjective 

feeling of oldness about them, without a person necessarily being aware of any 

specific underlying rules – the person is drawn to a particular location because it 

feels right but there is no conscious basis of reasoning to support that decision 

(Dorfman, Shames, & Kihlstrom, 2002; Fu, Dienes, & Fu, 2010a; Scott & Dienes, 2010; 

Sun, Mathews, & Lane, 2007; Whittlesea & Wright, 1997). This knowledge that 

remains unarticulated yet can be demonstrated in use or action is called tacit 

knowledge (Polanyi, 1967; Wagner & Sternberg, 1985). 

 

Of course one could question at this point, perhaps understandably, whether 

referring to knowledge in ‘knowing how’ performance is appropriate, or whether 

‘knowing how’ should just be seen as a form of effective guessing. How can we be 

certain that, even if performance on a task is above chance levels, participants are 

falling back onto some underlying knowledge systems instead of simply being rather 

good guessers? A possible answer comes from a number of recent studies that not 

only make the case for a distinction between conscious and unconscious structural 

knowledge (e.g. Dienes, 2008; Fu et al., 2010a), but take this even further by 

distinguishing between simple guessing and reasoning on the basis of unconscious 

structural knowledge (e.g. Dienes & Scott, 2005; Fu, Dienes, & Fu, 2010b). 

 

3.2 The relevance of the explicit-tacit distinction 

 

Hogarth (2001) identifies two principal thinking and knowledge systems. While the 

‘deliberate’ system involves explicit reasoning and requires effort and attention, the 

‘tacit’ system is set to operate automatically, and typically provides quick responses 



 54

without conscious awareness. Quite compatible with Hogarth’s (2001) model is that 

of Plessner and Czenna (2008). Their ‘reflective’ system is concerned with handling 

explicit knowledge, which becomes effective under deliberate judgement and 

making of decisions. Their ‘intuitive’ system, on the other hand, functions on the 

basis of implicit knowledge and expresses itself in spontaneous judgements and 

decisions. Both models share the assumption that there are two systems differing 

from each other in terms of presence or absence of cognitive effort. Plessner and 

Czenna (2008) state that these models only apply to judgement situations where 

several options are involved and the decider has some amount of prior experience – 

however, in their opinion this requirement is already fulfilled by most everyday 

judgement and decision situations.  

 

Consider the following example. Throwing and catching a ball is, in actuality, a rather 

complex task in terms of the physical and mathematical laws involved. Professional 

ball players can judge rather well – out on the playing field – where, when and how a 

ball will reach them (e.g. Gigerenzer, 2004, 2007; McLeod & Dienes, 1996; McLeod, 

Reed, Gilson, & Glennerster, 2008). Yet when asked to do related prediction tasks on 

paper, their performance is nowhere near as accurate. Reed, McLeod and Dienes 

(2010) required people with above average ball playing skills to imagine catching a 

ball thrown towards them and to describe how they would know where to be and 

how they would know they were moving fast enough to catch the ball. Their study 

suggests that the participants were not able to describe correctly how they would 

make relevant decisions.  

 

It thus becomes apparent that two different modes of thinking must be involved in 

these two types of tasks: While the theoretical tasks required explicit knowledge and 

reasoning, which is not always accurate, in practice these same players are able to 

rely on quick yet accurate unconscious thinking, which clearly is an advantage for 

them. Gigerenzer (2007) entitles such unconscious thinking ‘gut feeling’; a 

judgement that appears quickly in consciousness and whose underlying reasons we 

are not fully aware of, yet is strong enough to act upon – “by definition, the person 

with the feeling has no idea” (Gigerenzer, 2007, p. 17). There is widespread 
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agreement that tacit knowledge is an important phenomenon; many regard tacit 

knowledge as fundamental to all human knowledge (e.g. Gourlay, 2004), perhaps 

even unique to humans (Evans, 2003), and it is perceived to even be critical in 

activities like scientific experiments (Collins, 2001). 

 

3.3 Learning a lesson from infancy research 

 

School-aged children, and adults too, often give mistaken explanations for the 

motions of objects and make erroneous predictions about future object motions (cf. 

Clement, 1982; Krist, Fieberg, & Wilkening, 1993; Piaget, 1977). These observations 

may suggest that the tacit conceptions underlying adults’ perception of object 

motion are distinctly separate from the explicit conceptions that underlie 

predictions, judgements and explanations (Kim & Spelke, 1999). Piagetian speed 

tasks and alternative tasks, which will be discussed in Chapter 5, only allowed 

accessing explicit knowledge, but have suggested that there is some intuitive 

understanding of the relevant concepts; perhaps there is even more knowledge that 

can be unearthed. But where would this tacit knowledge come from? 

 

Let us for a brief moment return to ancient Greece, to the philosopher Plato (trans. 

2009). In his work, Socrates takes Meno’s slave boy through the steps of a geometric 

proof. The boy, an uneducated child, acknowledges the truth of each step and ends 

up proving the theorem. Socrates concludes that because the boy, who has had no 

experience of geometry, can do this, he must already somehow know the proofs of 

geometry without consciously being aware of them. The new research with infants 

suggests that Socrates’ stunningly counter-intuitive idea was perhaps exactly right: 

Even babies must know much more than we think (cf. Gopnik, Meltzoff, & Kuhl, 

2001). 

 

A quote used in many developmental psychology texts describes an infant’s 

perception of the world as being “one great blooming buzzing confusion” (James, 

1890, p. 488). By a century later the picture that started developing quite rapidly was 

not only that infants are not quite the tabula rasa depicted by James (1890), but that 
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infants are in fact “budding intuitive physicists, capable of detecting, interpreting, 

and predicting physical outcomes”, whose “physical world […] appears very similar to 

that of adults” (Baillargeon, 1993, p. 311). If the young infant does not possess 

sufficient language capacities at that early stage to make knowledge explicit but does 

possess appropriate understanding, what form does this understanding take, how 

can it be assessed, and finally, what happens with this knowledge as infants become 

toddlers and learn to express their ideas in an explicit manner? 

 

3.3.1 The violation-of-expectation paradigm 

 

Piaget (1952, 1954; also see Harris, 1983) concluded, upon extensive observations 

and research, that young infants lack any ability to reason about objects as material 

beings and about their physical properties, and that this takes time to develop – up 

to two years – by observing their own actions on objects. Assessing any knowledge in 

infants is “notoriously difficult” (Munakata, 2000, p. 471); however, with the 

emergence of a new research technique about 25 years ago it would appear that 

Piaget’s conclusions can be contradicted; the emergence of the violation-of-

expectation paradigm. The violation-of-expectation paradigm is based on the 

assumption that we have particular expectations about events or properties of 

objects, based on physical laws such as gravity, solidity or continuity, which cannot 

simply be altered. 

 

In a characteristic experiment where the violation-of-expectation paradigm is 

employed infants are typically presented with a small number of habituation or 

familiarisation trials, although this need not necessarily always be the case, 

depending on the complexity of the events. These are then followed by test trials 

with both possible and impossible events. The possible trials tend to present an 

alternative event that is conceptually related to the habituation or familiarisation 

trials and is therefore perceptually different, but nevertheless remains physically 

possible. The impossible events in turn are both perceptually and conceptually 

different. So the objects or events displayed in the test trials bear resemblance to 

habituation or familiarisation but incorporate a change to at least one aspect, 
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thereby creating two entirely novel scenes in a perceptual sense but one being 

possible and one being impossible in terms of the concepts involved. Because the 

impossible event is seen as violating expectations based on prior beliefs or naïve 

theories, this event should receive longer looking times (Spelke, 1985) and more 

surprise; an “emotional reaction to an upset belief” (Casati & Pasquinelli, 2007, p. 

171). 

 

The belief violation paradigm has been applied extensively in research involving 

infants, as it does not require coordinated motor actions, in contrast to what is 

demanded in typical Piagetian tasks (Baillargeon, Spelke, & Wasserman, 1985). With 

regard to infants who detect violations in such tasks following the principle of 

violation-of-expectation, Baillargeon (2004) deems it rather unlikely that these 

infants could be attributed explicit knowledge about these violations, or indeed 

explicit knowledge about anything at all. Instead, their reactions are attributed to 

some form of internal physical reasoning system that monitors events, scrutinising 

those that do not occur as expected. Similarly, Hood (2001) notes that whilst infants 

cannot “provide a commentary related to their knowledge” (p. 1283), before 

acquisition of language their knowledge may well be reflected in adaptive actions, 

and gaze would certainly be one means to do so.  

 

3.3.2 Infants’ knowledge of the world 

 

Baillargeon and her colleagues have applied the violation-of-expectation paradigm in 

a number of studies in which they assessed young infants’ understanding of the 

physical world and an appreciation of some of the basic principles underlying object 

motion. For example, very young infants already appear to appreciate that adequate 

support is needed in order for a box not to fall, contrary to Piaget’s (1952, 1954) 

assumptions (Baillargeon & Hanko-Summers, 1990; Baillargeon, Needham, & DeVos, 

1992; Needham & Baillargeon, 1993). It seems that infants implicitly consider an 

object’s centre of gravity in deciding whether it is adequately supported, though 

estimation of where that centre of gravity lies is very crude. Alternatively, they may 

rely on primitive rules, that when an object has little lower surface support it must 
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topple and fall. Additionally, infants aged 2½ to 3½ months are aware that objects 

continue to exist when masked by other objects, that objects cannot remain stable 

without support, that objects move along spatially continuous paths, and that 

objects cannot move through the space occupied by other objects (Baillargeon, 

1994).  

 

Some researchers (e.g. Bogartz, Shinskey, & Schilling, 2000; Bogartz, Shinskey, & 

Speaker, 1997; Cashon & Cohen, 2000; Shilling, 2000) have raised scepticism about 

the interpretations of violation-of-expectation tasks, suggesting that these looking 

time studies do not necessarily reflect what infants know in a conceptual manner. 

Instead, they offer alternative accounts by which looking times can often be 

attributed to perceptual preferences. However, despite this issue being unresolved 

per se, many infancy studies employing the violation-of expectation paradigm 

enacting appropriate controls for such perceptual preferences collectively provide 

evidence that infants do indeed display conceptual knowledge of the world (cf. 

Hood, Carey, & Prasada, 2000). 

 

On the basis of findings from an array of research so vast that it cannot possibly be 

covered and reviewed here, Spelke and colleagues (Kinzler & Spelke, 2007; Spelke, 

1991, 1994, 2000, 2004; Spelke, Breinlinger, Macomber, & Jacobson, 1992; Spelke & 

Kinzler, 2007; Spelke, Phillips, & Woodward, 1995) have proposed the notion of core 

knowledge. Despite some controversy over this hypothesis, several other 

researchers sanction the existence of some form of core cognition system (e.g. 

Baillargeon, 1995, 2001; Carey, 2009; Carey & Sarnecka, 2006; Carey & Spelke, 1994, 

1996; Karmiloff-Smith, 1992; Leslie, 1994). The consensus is that infants are born 

with certain core beliefs about objects, such as the belief that objects move along 

connected unobstructed paths. Non-core beliefs, such as the belief that objects 

require support to remain stable, would be acquired through observations and 

manipulations of objects.  

 

Studies of human infants, focused on the ontogenetic and phylogenetic origins of 

knowledge, provide evidence for four core knowledge systems, including for 
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representation of inanimate objects and their mechanical interactions (Spelke, 

2004). These core beliefs represent the infant’s initial theory of the physical world 

and stand at the centre of the adult’s intuitive understanding of that world – 

according to the core knowledge view, therefore, adults possess their basic intuitions 

about objects and motion from birth, and this basic knowledge is, at its core, not 

subject to any change during the rest of the lifespan (Carey, 2009; Keysers et al., 

2008; Santos & Hood, 2009; Spelke, 2000). 

 

3.3.3 Tacit knowledge beyond infancy? 

 

Children, according to Karmiloff-Smith (1992), display from the very beginning a 

range of specific cognitive skills, such as imitating movements or recognising faces. 

She suggests that humans are born with pre-wired modules that, while unrelated to 

begin with, start interacting during development. While early learning is done by 

instinct, as thinking develops, the world has to be redescribed from an implicit form 

to more explicit forms. This process of representational redescription occurs through 

three phases. In the first phase, a child learns mastery of an activity. Information is 

extracted from the environment and added to the representational system without 

changing or interacting with existing representations. These representations are 

dubbed Implicit (I-level) representations, and while they can generate successful 

behaviour in interactions with the world, the behaviour is inflexible. In the second 

phase, I-level representations are redescribed to Explicit 1 (E1-level) representations. 

These deal with explicit representations that can be changed and that can be related 

with each other – they are not consciously accessible but are no longer simply 

procedural. In the third phase, the external world and the internal representations 

are integrated and representations are redescribed to Explicit 2/3 (E2/3-level) 

representations. While both are consciously accessible, verbal report is only possible 

at the E3-level.  

 

Representational redescription can be illustrated by a study by Karmiloff-Smith and 

Inhelder (1974/1975), where children needed to balance wooden beams across a 

fulcrum. Four- and 5-year-olds were able to complete tasks successfully due to 
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proprioceptive feedback about which way the beam would fall. Karmiloff-Smith 

(1992) presumes that these children were relying on I-level representations. Six- and 

7-year olds were able to place beams at their geometric centres but only if they were 

symmetrical, not if they were asymmetrical. According to Karmiloff-Smith (1992), 

these children had some general but consciously inaccessible problem solving 

strategy at the E1-level. Eight- and 9-year-olds were able to balance beams of all 

types, incorporating some knowledge about torque, by having reached E2-level or 

E3-level representations. Overall, like Piaget Karmiloff-Smith (1992) acknowledges 

cognitive progress. However, unlike Piaget’s (1978, 1985) notion of equilibration, 

which was introduced in Chapter 2, Karmiloff-Smith (1992) proposes that progress in 

development happens as a result of reaching a stable state, that is, mastery, rather 

than a state of cognitive disequilibrium. 

 

It has been argued that the relative orthodoxy – as viewed from a scientific 

perspective – of tacit knowledge unveiled in studies with infants continues as age 

increases (see e.g. Carey & Spelke, 1994; Keysers et al., 2008; Spelke, 1991; Spelke et 

al., 1992). This would imply that young children, too, hold similar tacit beliefs 

concurring, to some degree, with Newtonian physics. The existence of differences 

between explicit and tacit knowledge at the pre-school and primary school level 

would mean that conceptual development cannot simply be reduced to a process by 

which tacit knowledge is merely converted to explicit knowledge (Karmiloff-Smith, 

1992). Additionally, Carey (1991, 2009) proposes that concepts change over time, 

enriched by the acquisition of further knowledge along the way, but that the core 

remains unchanged. Especially with regards to the notion of core cognition 

introduced earlier, which has been proposed by several researchers, what we know 

in infancy should still be there at a later age, albeit in an enriched form. 

 

3.4 The role of language and experience 

 

Some researchers posit the notion that humans are evolutionarily endowed with 

some innate knowledge of language, taking the form of a language acquisition device 

(e.g. Chomsky, 1965; Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; 
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Pinker, 1984, 1989; Spelke & Newport, 1998). This device guides the learning of 

natural languages. How does the learning of natural languages relate to the 

development of concepts, especially to the underlying concepts embedded within 

core cognition? As regards concepts, the key aspect of language is semantics, and 

there appears to be no literature discussing the possible role of semantics in the 

development of tacit knowledge of the physical world per se. In fact, the indication 

seems to be that while syntactic components of language are tacit, semantic 

components do not appear to be so (cf. K. Johnson, 2004). However, there can be no 

doubt that the acquisition of language, semantics in particular, plays an important 

role in development of knowledge beyond the tacit level, given that “language 

acquisition and conceptual development are intimately related” (Carey, 2009, p. 

464).  

 

Children learn natural languages by hearing people talk about objects and events 

around them (Ganea, Shutts, Spelke, & DeLoache, 2005; Harris, 2002). But children 

cannot learn the meaning of a particular concept unless they are able to relate the 

spoken word to the presence of the physical object or event. Similarly, words that do 

not refer to concrete phenomena need to be relatable to some form of occurrence in 

which the concept appears. As Spelke and Kinzler (2009) write, while it is logically 

possible that exposure to painting courses could cause students to know calculus, 

the relevant experience for developing knowledge of calculus inevitably includes 

exposure to calculus. This highlights the importance of the relation between relevant 

experiences and the development of knowledge. This relation can only be 

established if the child already has a workable concept of that object or event as well 

as a workable procedure to identify instances of the concept (Spelke, 2003).  

 

It would seem, therefore, that concepts are not learned through learning natural 

language, but that concepts must exist, to some extent at least, prior to the 

acquisition of relevant natural language. In particular, concepts must be acquired 

before their relevant semantics, and the appropriate word meanings must be 

associated with the concepts at a later point. Natural languages have a “magical 

property” (Spelke, 2003, p. 306): Once the terms of a language have been mastered, 



 62

as well as the rules by which they can be combined, different meanings on the basis 

of grammatical combinations of those terms can be represented without having to 

learn them. That is to say, once semantics of individual concepts have been acquired, 

the meanings of new conceptual systems can be established through the meaning of 

the individual concepts (Ganea et al., 2005; Spelke, 2003). For instance, a child may 

lack the concept ‘under the big bed’ but does not need to learn the concept to 

understand the phrase. If the child has learned the semantics of ‘under’, ‘big’ and 

‘bed’, then the expression will be understood because the child is able to combine 

concepts that are already held in an appropriate manner.  

 

A number of studies (see Carey, 2009, for a review) provide initial evidence that 

language learning plays an active role in shaping conceptual development. A crucial 

question in the development of conceptual knowledge is whether language and the 

learning thereof cause a difference in thinking about the world – does the 

prelinguistic infant think differently about the world than the child who is acquiring 

or has acquired language? Despite there not being any definitive answer to the 

question of the existence of core knowledge or core cognition, it seems clear that 

most of the knowledge we possess is not embedded within core cognition systems – 

“there are no innate perceptual analysers, nor innate learning mechanisms, that pick 

out the electrons, the tables, the stars, or the wombats in our environment” 

(Rosenberg & Carey, 2009, p. 184). Even if children did have rich innate conceptual 

knowledge of the world and of language, they would still need to learn their 

particular language, including its semantic and syntactic devices and how they are 

expressed (Carey, 2009). 

 

But the issue of semantics goes beyond simple lexical representations of individual 

objects. According to Kuczaj and Hill (2003), children construct a semantic system 

instead of a list of independent words due to the existence of relations between 

words rather than their isolated existence. The development of such a system is 

facilitated by the acquisition of semantic relations, and children have to determine 

those relations. Some words are simply opposites, such as ‘hot’ and ‘cold’. Other 

words form entire semantic dimensions, such as ‘hot’, ‘warm’, ‘cool’ and ‘cold’. 
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When children learn the words in semantic dimensions, words at the far ends of the 

dimension, that is, the opposites, are learned before the words that fall between 

them (Kuczaj, 1975, 1982). The words at the far ends also appear to be more salient 

to young children than those between them (Kuczaj, 1999). But not only does there 

appear to be saliency towards the end points of semantic relations. Researchers 

have also noted a semantic congruity effect in judgements. People are faster at 

judging which of two small animals is smaller than they are at judging which of the 

two is bigger. Conversely, they are faster at judging which of two large animals is 

bigger than they are at judging which is smaller (cf. Jordan & Brannon, 2009).  

 

One might expect that this semantic congruity effect would be driven by language; 

yet research with rhesus monkeys, for instance, has shown they are faster at 

choosing the smaller of two small numerosities than they are at choosing the larger 

of the two, and that they are faster at choosing the larger of two large numerosities 

than at choosing the smaller (Cantlon & Brannon, 2005). If, therefore, humans and 

rhesus monkeys share similar susceptibility to the semantic congruity effect, at least 

as far as numerical understanding is concerned, then language is unlikely to be the 

entire story. This would also be in line with infancy research, showing that in terms 

of object properties prelinguistic infants are already capable of distinguishing 

between individual entities such as objects and non-individual entities such as sand 

(Huntley-Fenner, Carey, & Solimando, 2002; Rosenberg & Carey, 2006), between 

heavy and light objects (Molina & Jouen, 2002), or between objects that are too big 

to fit into a container and objects that are not (Aguiar & Baillargeon, 1998). It seems 

reasonable to suggest that they do not, at this stage, hold semantic representations 

of mass or size. Yet clearly they must have some underlying conceptual 

understanding of these properties, or else they would not be able to distinguish 

between objects on the basis of such properties. 

 

Knowledge that is represented by explicit symbols – in language, mathematics, or 

maps – differs from core cognition (Carey, 2009). It differs in its format, that is, core 

cognition is not represented by explicit symbols. Also, most knowledge is not 

recognised to be innate and does not remain constant throughout the course of 
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development, because relations among explicit symbols can be revised. Core 

cognition might, for instance, entail knowledge of the solidity principle whereby two 

objects cannot occupy the same space at the same time and cannot pass through 

each other. But learning about physics can create awareness that what are perceived 

to be solid objects are, in fact, not strictly solid; particles can pass through the lattice 

structure of wood. It thus appears that while we would be surprised to see a large 

object fall through a table, because it would essentially violate our underlying 

principle of solidity, we are still able to appreciate through explicit representations in 

form of language that the principle of solidity has its limits, too; representations 

incommensurable with core cognitive principles. 

 

Humans appear to be alone in their ability to create external public representations 

of the conceptual world. Other animals may well hold such representations, 

comparable to core knowledge in humans, but they do not communicate about 

them. According to Carey (2009), domain-specific learning mechanisms enable 

language acquisition. Language learning is supported by representations in core 

cognition – they provide the meanings that lexical items express. And certainly, 

language learning makes representations more easily accessible and shareable. 

Language learning, therefore, plays an important role in creating representational 

resources that are too abstract to be represented without the help of semantics. 

Core knowledge is implicit and encapsulated, whereas knowledge embedded in 

intuitive theories is mostly accessible and explicit (cf. Carey, 2009). While semantics 

do not interfere with core knowledge, they enable to supplementation of its 

repertoire by establishing newly combined conceptual systems (Spelke, 2003). On 

the basis of a possibly innate language acquisition device, language learning – 

particularly semantics – is supported by core cognition rather than being the cause 

of it. But the role of language in the development of conceptual understanding 

beyond what is available in the core cognitive system remains important, as does its 

relevance in making underlying knowledge accessible and shareable. And it would 

seem that this is the crucial element in the elevation of core and tacit knowledge to 

explicit knowledge, without effecting a change in core or tacit knowledge 

themselves. 
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3.5 The possible role of tacit knowledge in early science education 

 

As established so far, any knowledge about objects and events is either explicit or 

tacit. Cases of explicit knowledge of a fact about an object or an event “are 

representations of one’s own attitude of knowing that fact”, while tacit knowledge 

“consists of representations that merely reflect the properties of objects or events 

without predicating them of any particular entity” (Dienes & Perner, 1999, p. 752). 

However, a student’s ability to articulate his or her thinking is limited by the 

language he or she possesses (Perkins, 1992; Tishman & Perkins, 1997). Instead, 

people can also acquire knowledge that enables them to deal with a complex 

stimulus defined by abstract rules, without consciously being aware of the existence 

of any rules, or any conscious analysis taking place.  

 

As signalled already in Chapters 1 and 2, naïve physics research collectively suggests 

that children have explicit prior beliefs about the physical world, relating to the 

objects within it as well as their own behaviour, and that these beliefs are incorrect 

in the scientific sense. But unlike in the everyday world, where the problem solver 

deals with real or realistic situations, knowledge imparted in school is often counter-

intuitive because of its text-based reality or the use of idealised situation where, for 

example, friction or air resistance can be ignored in physics problems. Furthermore, 

a particular issue with science education is that there tends to be a focus on teaching 

and assessing knowledge in an explicit manner. Of course, certain elements of 

science cannot perhaps be taught in any other way, particularly if the concepts to be 

taught are of a somewhat abstract nature, such as genetics, chemical bonds or 

atomic structure, for instance.  

 

But those elements that are less abstract to the mind because they are readily 

visible, such as dynamics, are also taught in an explicit fashion. This may be 

understandable, as integrating tacit knowledge assessment into science education is 

a formidable task in itself due to the inexpressible nature of tacit knowledge and the 

related difficulty in assessing it. And at the same time there has to be some point in 

the educational process where explicit engagement with the concepts to be taught is 
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required, for how else could a student’s understanding be verified without some 

form of explicit communication of that knowledge? There can certainly be no denial 

that the conventional explicit physics teaching approach must, in general, be 

preparing students sufficiently well for higher-level work in the field – otherwise we 

would live in a world without scientists. But as Stinner (1994) points out, quite 

rightly, this may only have been achieved at a price, by losing many potential 

scientists who might have benefited from alternative approaches. The theoretical 

use of tacit knowledge in gaining knowledge has been sanctioned (A. Dijksterhuis, 

Bos, Nordgren, & van Baaren, 2006), and its access and integration in the process of 

problem solving is seen as an important goal for educational practice (e.g. Sun et al., 

2007). 

 

3.6 How can tacit knowledge be assessed? 

 

Applying the procedure of the violation-of-expectation paradigm and measuring 

looking times in relation to displaying knowledge of physical events, as is done with 

young infants, becomes increasingly difficult beyond 12 to 14 months of age (cf. 

Rosenberg & Carey, 2009), due to increased mobility and restlessness often 

observed in such experiments. Instead, manual search tasks have been used to 

explore children’s beliefs. Relevant search tasks by Hood and colleagues, on 

horizontal and free fall motion (Baker, Gjersoe, Sibielska-Woch, Leslie, & Hood, in 

press; Hood, 1995, 1998; Hood et al., 2000; Hood, Santos, & Fieselman, 2000; Hood, 

Wilson, & Dyson, 2006), suggest that even if core knowledge does continue to exist 

beyond infancy, then by the end of infancy, that is, by around two years of age, 

children no longer appear to make appropriate use of this knowledge when having 

to search for objects and show poor performance levels of correct reaching in object 

motion tasks. Hood et al. (2000) do note, however, that in addition to object 

knowledge these tasks also rely on executive control, and this may well provide a 

problematic barrier. As opposed to looking, reaching requires a stronger 

manifestation of the hidden object in memory, though with continued learning these 

representations become more robust and can be accessed more readily (Munakata, 

McClelland, Johnson, & Siegler, 1997). 
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Adding to that, Goldin-Meadow and Alibali (1999) stress that eye glances, in contrast 

to pointing or reaching behaviour, are in fact of an implicit nature. Indeed, a 

substantial accumulation of search studies (Ahmed & Ruffman, 1998; Berthier et al., 

2001; Clements & Perner, 1994; Garnham & Ruffman, 2001; Hofstadter & Reznick, 

1996; Hood, Cole-Davies, & Dias, 2003; Mash, Keen, & Berthier, 2003; Ruffman, 

Garnham, Import, & Connolly, 2001) suggests that while manual search behaviour of 

toddlers is often incorrect, their gaze behaviour implies they do, in fact, know the 

correct locations of objects. Similarly, toddlers’ verbal responses in belief tasks are 

often incorrect and do not tend to match their correct looking behaviour (e.g. Low, 

2010). Clearly, explicit knowledge about objects and events underlies developmental 

processes that can only be overcome during early childhood. And even then they do 

not necessarily provide correct understanding, as Chapter 2 of this thesis has 

indicated. So given that tacit knowledge about everyday physics, object motion in 

particular, is still there (cf. Carey, 2009; Santos & Hood, 2009; Spelke, 2000), but 

presumably cannot be accessed by measuring looking times or by verbal or manual 

search tasks – how can it be accessed beyond infancy and made available to the 

child, if it can be at all? 

 

3.6.1 Judgements as an indicator of tacit knowledge? 

 

As has already been indicated earlier in this chapter, occasionally there appear to be 

dissociations between explicit and tacit knowledge. While explicit predictions may be 

incorrect, relevant tacit procedural tasks can be performed accurately. Several 

studies have indicated that learners are able to successfully complete tasks without 

being able to explain how they were able to do so (e.g. Berry & Broadbent, 1988; 

Karmiloff-Smith, 1986; A. S. Reber, 1989; P. J. Reber & Kotovsky, 1997; Siegler & 

Stern, 1998). It has been indicated that judgement tasks can be used to access and 

reveal underlying knowledge structures (cf. Broaders, Cook, Mitchell, & Goldin-

Meadow, 2007). In judgement tasks, participants are typically offered a limited 

number of options, and they are required to identify the correct option, or whether 

options are true or false. 
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Broaders et al. (2007) suggest that one way to access tacit knowledge is to include 

judgement components into experimental tasks. In a study by Bowers, Regehr, 

Balthazard and Parker (1990), for instance, adults were asked to figure out common 

word associations when provided with three other words – when given the words 

‘playing’, ‘credit’ and ‘report’, for example, the participants had to produce the 

associate ‘card’. They were presented with two triads at a time, of which one had an 

associate and the other did not. First, the participants needed to solve the triads by 

finding associates. If they did not succeed, they were asked to judge which of the 

two triads was likely to be solvable. Bowers et al. (1990) found that the participants 

were able to correctly identify the solvable triad even if they could not find the 

correct associate, suggesting they had an underlying tacit understanding that the 

triad was solvable. With children, too, similar results have been observed in 

judgement tasks. Siegler and Crowley (1994) found that 9-year-olds were able to 

judge which of two strategies was the better way to play a game of tic-tac-toe, even 

when they were not yet able to use the better strategy themselves, and actually 

used a different tactic when playing the game. 

  

3.7 Using computers to assess tacit judgements 

 

It is clear, then, that judgement tasks could provide an insight into young children’s 

tacit understanding of object motion. One approach to assessing judgements of the 

correctness of dynamic events is by simulating events, thus giving children the 

opportunity to choose between correct and incorrect events, much like in the 

violation-of-expectation paradigm. And one means of presenting simulations of 

events is by using computers. The effectiveness of the use of information and 

communication technology (ICT) and assessment of tacit knowledge within 

education as such are not seen as central issues in the research context of this thesis. 

However, it is worth noting two points, particularly in the light of possible 

implications of the research, but also as a methodological justification for those 

studies that involve computers. Firstly, assessing tacit knowledge, at least in this 

case, is rather difficult. ICT provides a means to carry out the research. And secondly, 

if the assessment of tacit knowledge proves to be successful and it can be used 
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within education in some form or other, then it may be important to note the degree 

of usage of ICT in primary schools. 

 

3.7.1 Computers and conceptual change 

 

Systematic studies of student learning have revealed a gap between the objectives of 

most physics teachers engaged in traditional forms of instruction and the actual level 

of conceptual understanding achieved by most of their students (Heron & Meltzer, 

2005). A better approach to teaching physics might be to use new technology tools 

effectively (Wieman & Perkins, 2005). One advantage of the so-called digital age in 

which we now find ourselves is that ICT is being used more commonly within 

education. It is seen as a way of transforming teaching and learning, and helping to 

facilitate learning processes “for those who struggle with traditional forms of 

learning” (Barker & Gardiner, 2007, p. 16). The benefit and potential had been 

recognised and appreciated fairly early on in the development of computer-based 

teaching research (e.g. diSessa, 1986; Lindström, Ekeblad, & Neuman, 1987). Twenty 

years later ICT is still believed to significantly enhance science teaching and learning, 

and there are plenty of recent books (L. R. Newton & Rogers, 2001), edited 

collections (Barton, 2004; Holliman & Scanlon, 2004) as well as a variety of reviews 

(Glover et al., 2005; Murphy, 2003; H. J. Smith et al., 2005) to support this view.  

 

A range of authors has suggested specific means of inducing conflict and thereby 

stimulating reflection and conceptual change by relying on the use of so-called 

computer micro worlds (e.g. Andaloro, Bellomonte, & Sperandeo-Mineo, 1997; 

diSessa, 1982; Doerr, 1997; Hennessy et al., 1995a, b; Papert, 1980; Twigger et al., 

1991). Here, computer simulations can be used to provide discrepant events that 

might promote conceptual change. This has the advantage that students can freely 

experience the micro world by visualising immediately the consequences of their 

actions (Bliss & Ogborn, 1989; Papert, 1980) or explicit predictions. Despite the 

questioning of the usefulness of ICT in science education in general (see e.g. 

McFarlane & Sakellariou, 2002), several researchers have now acknowledged that 

ICT bears one particularly important advantage for science classrooms, and that is 
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creating simulations. In certain situations, ICT would probably be more effective than 

any other medium when relying on simulations instead of coursework (Poole, 2000). 

More importantly, simulations or virtual experiments make it possible to depict 

physical situations where conducting the real experiment would be dangerous 

(Howe, Tolmie, & Anderson, 1991) or indeed even outright impossible. Students can 

thus make abstract and direct observations of phenomena or processes that they 

would not be able to by any other means (Gould, Tobochnik, & Grant, 2006; 

Hennessy, 2006; Hennessy et al., 2007; Rogers, 2004; Steinberg, 2000). 

 

3.7.2 Current use of computers in primary education 

 

Over the last decade the usage levels of ICT have increased in all areas of education 

within the United Kingdom, with decreasing computer-to-student ratios and a higher 

willingness both by teachers and by students to make use of ICT within the processes 

of teaching and learning (Barker & Gardiner, 2007). The use of ICT in primary 

education in particular has greatly increased over the past years. While in 1998 on 

average one computer was available to 17.6 pupils (Department for Education and 

Skills, 2004), the average number of pupils per computer has sunk to 6.9 in British 

state schools (British Educational Suppliers Association, 2009). The percentage of 

primary schools with electronic interactive whiteboards rose from 48 per cent in 

2003 to 63 per cent in 2004 (Department for Education and Skills, 2004) – a 

substantial increase within just a single year. Currently, there is an average of 8.6 

whiteboards in every primary school in England (British Educational Suppliers 

Association, 2009). 

 

In the National Curriculum for England (Department for Education and Employment, 

1999), the use of ICT across the curriculum is clearly stated. Even at the primary 

school level, pupils are expected to be given opportunities to apply and develop their 

ICT capabilities in all subjects, with the exception of physical education. They are 

expected to use ICT to support their learning in all subjects, and to share information 

through electronic media. Barker and Gardiner (2007) further note that in 2004 92 

per cent of primary school teachers in England were reported to make regular use of 
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ICT. Much early work on ICT use in science education and group work has usually had 

to state that the computers capable of running software with the necessary fidelity 

are expensive, and would therefore be unlikely to be available for one-to-one use 

(e.g. Howe et al., 1991; Howe, Tolmie, Anderson, & Mackenzie, 1992; Light et al., 

1987). However, given the aforementioned numbers of recent ICT availability and 

usage in schools, this would not really pose a problem anymore. 

 

3.8 Summary 

 

There seems to be a clear distinction between two different kinds of knowledge, one 

being explicit and the other being tacit in nature. Examples above have shown that 

while explicit reasoning is not always accurate, tacit understanding can make up for 

this. However, the assessment of this distinction might be difficult, despite research 

implying that differences in reasoning do exist. Here, a lesson can perhaps be 

learned from infancy research. A wealth of work following the violation-of-

expectation paradigm leads to the consensus that young infants display knowledge 

about the physical world, and this knowledge is not considered to be explicit. At the 

same time, it is assumed that this knowledge persists throughout the lifespan. The 

acquisition of language, while possibly having its roots in core cognition, does not 

appear to alter core knowledge but is seen as a crucial tool in making underlying tacit 

knowledge explicit. Seeing as the classic approach to science education relies on 

explicit knowledge yet fails to promote conceptual change sufficiently, the 

incorporation of tacit knowledge certainly seems worthwhile exploring. The 

possibility of using judgements to tap young children’s tacit understanding has been 

introduced, and the current use of ICT in schools can certainly contribute to this. 
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“Aristotle is not dead.” (Whitaker, 

1983, p. 352) 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4: 

THE PHYSICS BEHIND OBJECT SPEED AND ACCELERATION 

 

So far, it has been established that motion, due to its ubiquitous nature and the long 

lasting persistence of incorrect ideas, makes an interesting case to investigate. 

Chapter 1 of this thesis has shown that the scientific revolutions, particularly those 

by Galilei (1638) and by Newton (1687), have clearly confuted Aristotle’s views laid 

out in Physics (trans. 2008). Yet folk physics in individuals still resists revolutions and 

maintains an Aristotelian manner, often even after substantial exposure to 

educational practice. Chapters 5 and 6 will be discussing research examining the 

conceptions of motion. However, before considering any of the research into the 

understanding of speed and speed change, it is crucial to establish some of the laws 

that govern these concepts, thus highlighting their actual complexity, as opposed to 

the comparatively simplistic Aristotelian views. This intermissive chapter presents 

these laws. 

 

 

 

 



 73

4.1 A definition of terms 

 

Although from a scientific view the term ‘velocity’ should be used rather than 

‘speed’, it is one that is not often recognised correctly by students – a study by Jones 

(1983), for instance, found that out of 30 students aged 11 to 16 years only one was 

able to define velocity correctly. However, this issue does not pose a real threat for 

the current work. Despite velocity being central to formal analyses of motion, 

velocity is merely speed in a given direction. Speed is a concept that is both 

meaningful to children as well as linkable to science (Howe, 1998), so velocity and 

speed are conceptually close enough for this error in definition to be put aside for 

current purposes. Similarly, although ‘mass’ would be the correct term to use rather 

than ‘weight’, as weight is the result of a mass-gravity interaction, much of the 

literature focuses on children’s use of what is referred to as weight. Although in this 

chapter the term ‘mass’ will have to be used, as it appears separate from gravity in 

equations, the literature reviewed later on will be found to refer to object weight. 

Newtonian mechanics state that speed, time, and distance interact by specific 

multiplication and division rules. An object’s uniform speed v is determined by the 

distance d covered within a given time t, that is, v = d / t. 

 

How different factors may affect speed in different dimensions will be covered next, 

as well as an important element that separates Aristotelian from Newtonian physics 

– speed change. Speed change is an important factor to consider in object motion. 

While Aristotle (trans. 2008) claimed that objects do not change speed during travel, 

we now know this is not the case. Instead, objects accelerate and decelerate when in 

natural motion, unless terminal velocity is reached in free fall after some time (i.e. 

where air resistance can no longer be overcome), surface friction can no longer be 

overcome in supported motion, or a barrier is reached. The laws of Newtonian 

mechanics state that acceleration, speed, and time interact by specific multiplication 

or division rules as well. 
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4.1.1 Speed along a horizontal 

 

Figure 4.1 below shows a diagrammatic depiction of the forces acting on an object 

during propelled horizontal motion. The frictional force f exerted by the surface 

would cause the object to decelerate until it eventually comes to a halt. The 

deceleration (or negative acceleration a) is determined by the coefficient of friction x 

mass x gravity or μ mg. An object’s uniform acceleration a is the rate at which it 

changes its speed, with u being its initial speed and v its final speed, within a given 

time t, that is, a = (v – u) / t. Additionally, Newton’s second law states that the 

acceleration of an object can be determined by the interaction of the object’s mass 

m with the net force Fnet acting on that object, that is, Fnet = ma. By rearranging this 

acceleration equation to a = Fnet / m and integrating the forces, the equation 

becomes a = – μ mg / m, or a = – μ g. In the case of sliding objects, the coefficient of 

friction depends on the materials of the object and the surface of contact. The 

typical value for the coefficient of rolling friction (i.e. friction where spheres are 

involved) is 0.001. 

 

 

Figure 4.1 A diagrammatic depiction of the forces acting on a ball in horizontal 

motion 
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4.1.2 Speed in free fall 

 

Figure 4.2 (p. 76) shows a diagrammatic depiction of the forces acting on an object in 

free fall. In free fall, an object falls along a linear path downwards at an acceleration 

determined by gravitational force only. This results in a constant acceleration of 

approximately 9.81 m/s2. Therefore, object mass in fact becomes irrelevant when 

determining an object’s speed and its acceleration. The equation a = [(mg sinθ) – (μ 

mg cosθ)] / m can be reduced to a = [(g sinθ) – (μ g cosθ)]; sin 90° = 1, and since in 

free fall there is no friction, μ = 0, the equation thus being further reduced to a = g. 

However, it is important to note that the cases for motion down an incline and free 

fall only hold true in an ideal environment where there is no resistance due to air: in 

a vacuum. When a body is allowed to fall in real situations, its motion is influenced 

by two factors. Its weight, that is, the gravitational attraction which the earth exerts 

upon it, gives the body its tendency to fall, while the resistance due to the air, 

including the buoyancy, opposes this tendency and diminishes the rate of fall. This 

effect is more noticeable in the case of a feather or a leaf, because the ratio of the 

magnitude of the effect to that of the weight of the body is greater than it is for 

bodies of high density such as stones or pieces of metal. So in any real-life event 

where objects are in motion, there is an additional resistant force to take into 

consideration, and that is buoyancy, or displacement. 
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Figure 4.2 A diagrammatic depiction of the forces acting on a ball in free fall 

 

The density of air depends on its temperature and the atmospheric height, but under 

normal atmospheric conditions, that is, at 1 atm, it varies only slightly from 1.164 

kg/m3 at 30 ˚C to 1.342 kg/m3 at –10 ˚C. This pressure decreases with height. Any 

object with a non-zero height will see different pressures on its top and bottom, with 

the pressure on the bottom being higher. This difference in pressure causes the 

upward buoyancy force. Buoyancy is expressed by the formula Fbuoyancy = – ρVg, 

where ρ is the density of the gas, or air in this case, V is the volume of the object, and 

g is the standard gravity. This formula holds true for any shape. The buoyancy of an 

object therefore depends on two factors: the object's volume and the density of the 

surrounding gas. The greater the object's volume and surrounding density, the more 

buoyant force it experiences. The total force on an object in free fall is thus the net 

force of buoyancy and the object's weight, that is, Fnet = mg – ρVg. The negative 

magnitude of the buoyancy implies that it is in the opposite direction to gravity. 

Applying this to acceleration in free fall extends the equation stated earlier to a = 

(mg – ρVg) / m. 

 

4.1.3 Speed down inclines 

 

Figure 4.3 (p. 77) shows a diagrammatic depiction of the forces acting on an object in 

motion down an incline. Releasing an object from the top of an incline with a given 
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angle of incline θ results in the object rolling or sliding down the incline, given that 

frictional forces can be overcome. Two relevant forces now act on the object: the 

parallel force F||, which acts downwards and parallel to the incline (determined by 

mass x gravity x sinθ or mg sinθ), and the frictional force f, which acts upwards and 

parallel to the incline (determined by the coefficient of friction x mass x gravity x 

cosθ or μ mg cosθ). There are two other forces involved: the perpendicular force and 

the normal force, which act oppositely to each other. However, as an object only 

moves parallel to the slope, these two forces are balanced (Newton’s third law) and 

therefore do not need to be considered. By rearranging the acceleration equation 

from above to a = Fnet / m and integrating the forces gives a = [(mg sinθ) – (μ mg 

cosθ)] / m. Again, with sliding objects, the coefficient of friction depends on the 

materials of the object and the slope, and the typical value for the coefficient of 

rolling friction is 0.001. 

 

 

Figure 4.3 A diagrammatic depiction of the forces acting on a ball in motion 

down an incline 

 

4.1.4 The effect of mass on motion 

 

Relating to the everyday world it may appear that heavy objects do indeed fall faster 

than lighter objects. Yet, to illustrate, if dropping two balls of the same material and 

the same size, with a radius of 10 cm, but with different masses due to one being 
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hollowed out, resulting in a heavier ball of 10 kg and a lighter one of 5 kg, and taking 

air density to be about 1.2 kg/m3, their accelerations would show to be 9.7996 m/s2 

for the 10 kg ball and 9.7992 m/s2 for the 5 kg ball. This minimal difference in a rate 

of change cannot possibly be perceived with the naked eye. Yet according to 

Aristotelian physics, the 10 kg ball should fall twice as fast as the 5 kg ball, and 

neither of the two should accelerate but fall at a constant speed (Aristotle, trans. 

2008). Conversely, a sheet of paper falls faster when crumpled up, even though 

there has been no increase in mass, only in volume. This shows that the proposition 

‘heavy objects fall faster than lighter objects’ is erroneous. It may be a common 

belief in all meaningful respects, yet it is inconsistent with the physics. 
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“Now the concepts of movement and 

speed especially touch upon […] 

general science teaching, in which it 

would be of great value to know 

precisely the way in which these 

concepts develop.” (Piaget, 1970a, p. 

ix) 

 

 

 

 

 

CHAPTER 5: 

CHILDREN’S GENERAL UNDERSTANDING OF THE CONCEPT OF SPEED 

 

One particular element of motion to consider is the underlying concept of speed, 

and its two constituent concepts time and distance. These are explicit concepts in 

relation to motion, and they underlie all formal analyses of motion. So is naïve 

Aristotelian physics perhaps the result of a distorted or limited understanding of the 

underlying concept speed and its interactions with time and distance? The literature 

reviewed in this chapter looks at children’s understanding of speed in relation to 

time and distance, and will show that while such understanding may develop as 

children grow older, the general understanding emerging from a range of 

methodological approaches is good. 

 

5.1 Piaget’s work 

 

As Driver and Easley (1978) point out, and quite rightly so, it is “inevitable that any 

survey of the literature on the development of children’s concepts in science will 

reflect the large contribution which Jean Piaget has made in this field” (p. 63). This 

view has not changed, as Piaget’s work exerts a heavy influence on research into 
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children’s explicit understanding of speed and acceleration. In fact, the first major 

research into children’s understanding of speed and the related concept of time 

stems from a discussion between the physicist Einstein and Piaget in 1928 (Lovell, 

1961; Piaget, 1972). Einstein was interested to know in what order, if in any at all, 

young children acquire the concepts of time and of speed, since he defined speed 

and time in terms of each other, where neither concept is more basic than the other 

– as opposed to Newton, who defined speed in terms of time. Piaget, intrigued by 

Einstein’s view, subsequently carried out research into these areas.  

 

Piaget’s (1970a) book on the child’s conception of movement and speed 

differentiates between three kinds of research – assessment of children’s 

understanding of qualitative speed, assessment of their understanding of relative 

speed, and assessment of their understanding of quantitative speed. Qualitative 

speed refers to a basic intuition of ‘rapidity’ and operations where speed is simply 

based on the order of objects. Relative speed, on the other hand, is a coordination of 

two speeds into a single apparent speed. In quantitative speed tasks, relations 

between speed, time and distance have to be understood, whether just in 

proportional terms or in more specific metrical forms. Examples from Piaget’s 

(1970a) work for all three kinds of assessments are described next. 

 

5.1.1 Qualitative speed 

 

Looking at qualitative speed, Piaget (1970a) showed children two tunnels, one being 

longer than the other. Two dolls entered the tunnels at the same time and emerged 

from them at the same time. Correct judgements of their respective speeds – 

whether one doll went through its tunnel faster than the other – were taken to 

mean that the child had mastered the concepts of time, distance, and speed. Piaget 

(1970a) identified three stages of development here. In Stage I, the younger 

children, aged 5 to 6 years, entirely failed to solve the task correctly and instead 

claimed that the dolls travelled at the same speed. When the tunnels were removed 

and the motions of the dolls repeated in full view of the children, they would state 

that the doll travelling the longer distance did so at a faster pace, yet when the 
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tunnels were put back, they again believed that they travelled at the same speed. In 

Stage II, at around 6 years, children initially affirmed that the speeds were the same, 

but following the removal and replacement of the tunnels they would appreciate the 

qualitative differences in speed. Finally, in Stage III, at around 7 to 8 years, children 

were readily able to solve the task correctly. Similar results were found when using 

two lines of travel that were not parallel to each other.  

 

5.1.2 Relative speed 

 

Further, Piaget (1970a) assessed children’s understanding of relative speed. This was 

done by having toy cyclists rotate on an endless belt, past a doll, at such a speed that 

in 15 seconds 8 cyclists passed the doll. The children were asked to predict how 

many cyclists would pass the doll if the doll were to move in the same direction as 

the cyclists, having established that the doll does not travel quite as fast as the 

cyclists. Here, Piaget (1970a) noted four stages. In Stage I, no relativity of speed was 

present, and an additional task involving a simple passing situation, which was 

introduced to ensure a basic understanding of the scenario, could not be solved 

correctly either. In this additional task, one cyclist would start and the children were 

asked whether the doll would take more or less time to reach the cyclist if it stood 

still, if it travelled in the same direction as the cyclist, or if it travelled in the opposing 

direction. In Stage II, the additional task could be responded to, but the crucial 

aspect of relative speed remained without correct responses. The first two stages 

occurred between about 6 and 8 years of age. In Stage III, between 8 and 10 years, 

the child did not manage to solve the prediction task correctly, but once shown the 

doll and cyclists’ motion, they were able to obtain the correct answer. Finally, in 

Stage IV, from around 11 years of age, the children were able to obtain the general 

solutions through formal operations – where the relations between individual 

relevant concepts are coordinated correctly and logically (e.g. speed, time, and 

distance), both with actual observed events as well as with hypothetical propositions 

– and predict the outcome prior to seeing the event. 
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5.1.3 Quantitative speed 

 

Additionally, children were also given quantitative speed tasks. Essentially, the task 

was similar to the qualitative speed task, but with the implementation of specific 

times and distances – where unequal distances were travelled in unequal times (or 

rather, lines were drawn within given amounts of time) – to use in the inference of 

speed. This required a precise understanding of how speed is affected by the 

interaction of distance and time. As Piaget (1970a) had previously identified that 

young children rely on speed as an intuitive concept, only older children that, by age, 

fell into Stage III in the relative speed task were assessed, that is, from the age of 8 

years onwards. Piaget (1970a) identified two substages per stage. In Stage IIIa, at 8 

to 9 years, speeds could not be compared. In Stage IIIb, at 9 to 10 years, children 

could succeed on questions where one variable, time or distance, had to be equal. In 

Stage IVa, at 10 to 11 years, tasks could be solved, but merely on a trial-and-error 

basis, and in Stage IVb, from 12 years onward, the tasks were then solved 

systematically. 

 

5.1.4 Summary 

 

From his research, therefore, Piaget (1970a) was able to conclude that young 

children do indeed possess a general understanding of speed. First, according to 

Piaget (1970a), when the child is still in the preoperational stage, this understanding 

is of a primitive, intuitive nature, and it is based on perceived overtaking. When it 

comes to deducing speed from the relationship between distance and time, 

however, these children’s judgements tended to be incorrect. Where concrete 

operations are applied, at around the age of 7 or 8 years, relative speed is 

understood as an interaction of time and distance, in the form of v = d / t. Where the 

interrelations become more complex, or where hypothetical reasoning is necessary, 

formal operations are required, and only older children tended to succeed at these 

tasks in Piaget’s (1970a) work.  
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5.2 Piagetian replications 

 

Several studies directly based on Piaget’s speed (1970a) experiments have been 

carried out subsequently, and these are outlined here. 

 

5.2.1 Délorme and Pinard (1970) 

 

Délorme and Pinard (1970)2, for instance, showed children aged 7, 9, 11 and 13 years 

two model escalators parallel to each other, similar to the cyclists in Piaget’s (1970a) 

relative speed task. On one of these, ten toy children travelled upwards, always at a 

constant speed. On the other, a toy observer was watching the children pass him; he 

could move up and down, and his speed was variable. On some tasks the observer 

and the toy children would move in the same direction, on other tasks they would 

move in opposite directions. Additionally, sometimes the observer would be faster, 

sometimes slower, and sometimes at the same speed as the toy children. The 

participating children were tested on both task types. They were asked to count the 

number of toy children passing the observer within a certain amount of time, and 

they were then asked to predict whether the observer would be able to count a 

different number of toy children if he were to move himself, either up or down, at 

varying speeds.  

 

Where the observer moved in the same direction as the toy children and at the same 

speed, only the 7-year-olds failed to predict correctly. The three older age groups 

were successful. Where the observer moved in the same direction but either faster 

or slower, only children in the oldest age group were able to predict correctly. 

Contrarily, if the observer moved in the opposite direction at any of the three 

relative speed levels, it was not until 11 and 13 year of age that more than 50 per 

cent managed to predict correct outcomes; the younger children generally failed 

(though they again performed slightly better on the first task where the speeds of 

                                                 
2
 Délorme and Pinard published their research in 1970 based on Piaget’s original French work from 

1946, rather than on the English translation from 1970. 
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both the observer and the toy children were the same). Overall Délorme and Pinard 

(1970) concluded here that the developmental stages observed in their study were 

comparable to the stages constructed by Piaget (1970a), and that same-direction 

motion tasks are more easily solved than different-direction tasks. On the other 

hand, the authors suggest that the use of formal operations for this concept – 

predicting correctly and logically, and justifying predictions of hypothetical scenarios 

correctly – seemingly evolves slightly later than anticipated by Piaget. 

 

5.2.2 Siegler and Richards (1979) 

 

A further direct replication of Piaget’s (1970a) tasks was carried out by Siegler and 

Richards (1979). They remarked that despite Piaget’s claims that the concepts of 

speed, time, and distance are all mastered simultaneously (i.e. each concept can 

develop with neither of the other two necessarily having been mastered); he 

seemingly had never tested the same children on all three concepts. Further, the 

tasks testing the three concepts were not entirely comparable because of different 

materials being used, and different questions being asked. Hence, Siegler and 

Richards (1979) revised the methodologies by creating a single task that could assess 

all three concepts at the same time. Like in one of Piaget’s (1970a) studies, children 

saw two parallel train tracks with a locomotive on each of them. However, the trains 

could start from the same or different points at same or different times, could stop 

at the same or different points at different times, could travel the same or different 

distances or for the same or different times, and could travel at the same or different 

speeds. In Siegler and Richards’ (1979) work, at least one variable was always 

manipulated. This was followed by questions about how long each train took, how 

fast each train went, and how far each train travelled. After testing a range of ages – 

5, 8, 11 and 20 years – Siegler and Richards (1979) found that the younger children 

based their judgements of time, distance, and speed solely on the spatial stopping 

points of each train, whereas the oldest age group displayed full understanding of all 

three concepts. The 8- and 11-year-olds displayed a mix; their responses showed 

they fully understood speed and distance, but not time. 
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5.2.3 Acredolo and Schmid (1981) 

 

As an extension of Siegler and Richards (1979), Acredolo and Schmid (1981) showed 

7- to 12-year-old children two toy trains moving down parallel tracks, and the 

children were then required to judge the relative speeds, distances, and durations of 

travel. However, as opposed to Siegler and Richards (1979), at least one of speed, 

distance, and duration was equal, and sometimes all three were, for “if children truly 

understand a concept, they ought to be able to judge equalities as well as 

inequalities” (Acredolo & Schmid, 1981, p. 491). From their findings, Acredolo and 

Schmid (1981) concluded that mastery of speed precedes mastery of distance, which 

in turn precedes mastery of duration. Thus all three concepts mature at distinctly 

different ages. The findings by both Siegler and Richards (1979) and Acredolo and 

Schmid (1981) may appear to contradict Piaget’s (1970a) hypothesis that all three 

concepts are mastered simultaneously, and the findings do suggest that time is 

appreciated at a later stage. Yet at the same time they are consistent with a further 

notion that intuitive speed in young children is not strictly related to time constructs, 

and that the concept of time is appreciated at a later point in childhood (Piaget, 

1970b). This too may appear to be in conflict with the statement that speed, time 

and distance are mastered simultaneously. However, as opposed to the concept of 

speed, which is seen as the relationship between a spatial and a temporal interval, 

that is, between distance and time, intuitive speed does not necessarily require an 

understanding of the notion of time (Piaget, 1970b). This has been illustrated by 

Piaget’s (1970a) aforementioned speed studies. 

 

5.2.4 Levin (1977, 1979) 

 

The relation between speed and time was also a topic of research for Levin (1977, 

1979). According to Piaget (1969, 1970a), the intuitive conceptualisation of time is 

characterised by its confusion with space and speed. In the time-space confusion, 

farther travel is associated with more time, despite any differences in speed; similar 

findings have been observed by Levin (1977). The time-speed confusion has two 

substages to it. A child first believes that more speed covers more distance and 
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because more distance requires more time to be covered, it is concluded that more 

speed must require more time, no matter how far is being travelled. The child then 

associates slower movement with more effort or activity, which in turn is associated 

with taking more time, and therefore the child concludes that less speed requires 

more time, regardless of distance travelled. This erroneous conclusion seems to 

stem from the inability to construct duration when coordinating distance and speed, 

and the child may ignore distance, thus concluding that the body moving at a slower 

pace requires more time (Levin, 1979). 

 

However, it seems that the second notion has not received full support. Levin (1977), 

for example, found that children between 5 and 9 years of age rarely associated 

slower speed with longer durations. Levin (1979) focussed on three concepts that 

may help to explain time-speed and time-space confusions: Firstly, there is a general 

difficulty in clearly distinguishing between dimensions; secondly, some dimensions 

are possibly more salient than others; and thirdly, there is a tendency to concentrate 

on differences rather than similarities (also see Levin, 1977; Levin, Israeli, & Darom, 

1978) – “the confusion of time and speed is only one of children’s many confusions 

stemming from their difficulty in distinguishing between dimensions” (Levin, 1979, p. 

470). In her study, Levin (1979) presented children with two figures on axes, which 

rotated at either 16 or 78 rotations per minute, for either four or seven seconds. The 

children’s ability to compare durations correctly was found to be interfered with by 

speed. It is assumed that when children are asked to choose the event that takes 

longer they use a two-step process to make their decisions: First, they spontaneously 

compare the two events on all salient dimensions, of which time is only one, and 

decide which of the events is ‘more’ on each dimension separately. Then, they 

combine these conclusions to determine which one is ‘more’ in an overall sense. 

Where there is conflict (i.e. when both events have ‘more’ dimensions) this conflict is 

resolved by compensation, leading to a same-time judgement, or deciding which 

‘more’ is weightier. 
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5.2.5 Montangero (1979) 

 

In a further study by Montangero (1979) 5- to 8-year-olds were shown two toy 

houses, which represented two towns, and two toy cars. The experimenter told the 

children that one of the cars would take an entire day to travel between the two 

houses, and that the other car would only take half a day. The children then had to 

state which car they thought would take more time to get from one house to 

another, whether the car that took an entire day travelled at the same speed as the 

other car, and whether the distance travelled was the same for both cars. Here, as 

opposed to Piaget (1970a) or Siegler and Richards (1979) one given dimension was 

constant, one given dimension was different, and the third dimension had to be 

inferred based on the two givens. From his results, Montangero (1979) concluded 

that at 5 to 6 years of age children understand that the car taking less time travels at 

a greater speed, but they no longer take this constancy into consideration when 

asked about the third dimension – a car would have travelled further because it took 

more time, suggesting that time is a more salient variable than distance. By 7 to 8 

years of age they take all three dimensions into consideration. However, when asked 

to infer how distance affects speed, children make a detour that allows them to start 

with the variable speed and they first relate speed with time, then time with 

distance, and eventually they relate distance with speed, which can lead to 

erroneous judgements of this final relation. 

 

5.2.6 Summary 

 

It would appear, thus, that the range of Piagetian replications have, on the whole, 

been able to confirm the findings put forward by Piaget (1970a). Additional support 

also comes from research on the universality of Piaget's (1970a) findings across 

cultures. This research has generally been able to confirm the number and the 

sequence of the stages found by Piaget as well, for example in east African children 

(Bovet & Othenin-Girard, 1975), in Middle Eastern children (Al-Fakhri, 1977; Za'rour 

& Khuri, 1977), and in Swazi children (Bentley, 1986), though these children usually 

appeared to reach stages at later ages than their Western counterparts. Children’s 
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understanding of speed develops in stages, where initially speed is merely conceived 

in an intuitive manner, followed by an understanding of particular relations in the 

form of velocity = distance / time (v = d / t), which finally is then understood in its 

entirety – though only Siegler and Richards (1979) and Acredolo and Schmid (1981) 

assessed children who, according to Piaget, would have already reached the stage of 

formal operations. However, inconsistencies remain in the findings. Studies have 

either found that speed, distance and time do not develop simultaneously, or that 

speed-time associations do not occur in the way proposed by Piaget. As a result of 

these inconsistencies, but also for other reasons, alternative approaches have been 

taken. 

 

5.3 Non-Piagetian approaches 

 

5.3.1 Choice versus non-choice tasks 

 

The experimental paradigms used in research on the integration of distance, time, 

and speed have typically fallen into two categories. On the one hand we have the 

choice paradigm as used by Piaget and those who replicated his work. Children are 

presented with two moving objects and they need to choose the object that went 

faster, farther or longer – whatever the requirement of the task may be. Then there 

is the non-choice paradigm, where children are presented with a single object and 

they have to predict the behaviour of that object in relation to two given dimensions. 

For example, they may have to induce the speed of an object from given information 

about time and distance travelled. While there has been a wide range of tasks 

following Piaget’s (1970a) initiative, largely confirming his findings, there are 

nonetheless particular problems with the classic choice-task used, as identified by 

Wilkening (1981, 1982).  

 

Firstly, in order for children to succeed on such a task, they need to consider several 

different pieces of information at the same time. This amount of input may be too 

much for the child’s short-term memory processing capacity and therefore relation 

knowledge may not be displayed correctly. Secondly, the choice task does not assess 
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children’s understanding of the relationship among dimensions, that is, v = d / t: The 

easiest way to solve choice tasks, according to Wilkening (1981, 1982) is by ignoring 

time and distance and focussing on speed alone. “The choice-task paradigm […] is, in 

principle, not capable of investigating quantitative, functional relations as they are 

involved in the physical laws. Knowledge of these laws, however, is the issue of 

interest – even in a Piagetian framework” (Wilkening, 1982, p. 92) – findings on non-

metric relations cannot be generalised to knowledge of continuous, quantitative 

relations (cf. Wilkening & Anderson, 1982). Support for this notion also comes from 

studies where, when non-choice prediction tasks were used rather than choice 

presentations, children exhibited a greater success with problem solving and were 

less likely to focus on single dimensions (e.g. Levin, Wilkening, & Dembo, 1984; 

Wilkening, Levin, & Druyan, 1987). So taking the aforementioned study by 

Montangero (1979) as an example, does the child know that the speed of the car 

that takes only half a day to travel is twice as much as that of the car that takes an 

entire day3, and is there any means of predicting exact values of speed from time 

and distance information, in this task or in any Piagetian task as such?   

 

5.3.2 Wilkening’s work 

 

Based on these criticisms, a move away from Piagetian methods was made by 

Wilkening (1981) through applying the so-called functional measurement 

methodology, which constitutes a part of information integration (cf. Anderson, 

1981). Wilkening’s (1981) first task tested the integration of time and speed 

information when judging distance. The participants were shown toy models of three 

animals – a cat, a tortoise and a guinea pig – running away from a toy dog barking for 

different amounts of time. One of the three toy animals was placed at certain 

distances, the dog then barked, and the participants were asked to estimate how far 

the other two animals would run in the same time in relation to the one animal that 

had already been placed at a location. The choice of animals reflected a general 

                                                 
3
 Asking a child at a young age about the precise mathematical relations between two speeds would 

not be likely to achieve any results. 
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perception of how fast they can typically move in relation to each other; tortoises 

are generally known to be very slow, a guinea pig can move significantly faster than a 

tortoise, and a cat in turn significantly faster than a guinea pig. Although this only 

works under the ideal presumption that children are familiar with all three animals 

and their motion patterns – while adults may have reasonable relevant experience, 

this should not be taken for granted in young children and may have some effect on 

the results.  

 

The results show that 5-year-olds, 10-year-olds and adults all have similar patterns of 

judgement: A diverging fan pattern, which implies that the correct multiplication rule 

d = vt had been used to integrate the information. Where algebraic multiplication or 

division rules have to be applied to infer a third variable, and, for example, three 

distances are given as well as three speeds (which gives nine combinations of 

distance-speed), the distance-speed interactions, when plotted on a graph with time 

plotted against distance, will show an arrangement in form of a diverging fan, that is, 

the difference in time becomes greater for each increase in speed per particular 

distance. 

 

In the second task, participants were required to integrate distance and speed 

information in the judgement of time. The animals were placed at particular 

distances, and the participants were asked to judge how long the dog would bark so 

that the animals could reach those distances. The results suggest that the 10-year-

olds and the adults had used the division rule t = d / v. The 5-year-olds, on the other 

hand, seemingly applied a simple subtraction rule t = d - v. As opposed to a diverging 

fan pattern, the results now merely displayed lines running parallel to each other. 

The final task looked at how distance and time information are integrated in the 

judgement of speed. The dog barked for a certain amount of time, distances were 

marked, and the participants had to judge which of seven animals would correspond 

to that speed. The results show none of the three age groups followed the division 

rule. Ten-year-olds and adults used the subtraction rule v = d - t. However, for the 5-

year-olds it appears they only relied on speed in direct relation to distance without 

considering time as an additional variable. Overall, a factor of importance may have 



 91

been information retrieval from short-term memory, and the three tasks differed in 

the demands on short-term memory, thus young children may have had more 

difficulty in assessment. 

 

In a second experiment by Wilkening (1981), only 5-year-olds and adults were 

tested, and only two tasks were carried out. In the first task, a dog barked, and only 

then were the animals moved. This was to prevent the use of direct eye movement 

as a strategy, as respondents were now required to imagine simultaneous 

movements of all three animals. In the other task, the dog barked, and a bubble with 

the words ‘bow wow’ appeared from its mouth and became longer. This allowed 

length of barking time to be compared directly with distance travelled. The results of 

the second task did not differ from those of the third task in Experiment 1. Even 

though a visual time aid was given, adults did not improve in their judgements. The 

first task, however, showed that the 5-year-olds, as opposed to the adults, were no 

longer able to make appropriate use of the rule d = vt, contrasting the results of the 

first task in the first experiment. Wilkening (1981) suggests this means that when 

removing eye movement strategy possibilities young children can no longer 

integrate the given information in an accurate manner, and instead they have to rely 

on subjective judgement – though information integration does still occur, albeit 

incorrectly.  

 

Wilkening (1981) draws two main conclusions from his work. Firstly, processing 

visual representations of time may be as difficult for young children as retrieving 

time information from their memory, whereas speed and distance representations 

become much more concrete. Secondly, young children often appear to take speed 

to be an inherent variable, something that is a fixed property of an object or a living 

being. It almost seems strange to children that there is a factor, that is, time, that 

can influence speed. Hence the difficulty in understanding that time affects speed 

may explain their reliance on distance alone when judging speeds. It is important to 

note, though, that it cannot be concluded from this that young children have an 

explicit understanding of dimensional interrelations in the sense that they know all 

of their implications. Rather, it can be assumed that they know procedures that can 



 92

be used to relate dimensions in such ways that physical laws are not violated. 

Support for Wilkening’s (1981) findings comes from a connectionist simulation by 

Buckingham and Schultz (2000) – though only a simulation, therefore not being able 

to be seen as evidence for the use of integration rules (cf. Wilkening & Huber, 2002), 

the findings are nonetheless convincing. 

 

5.3.3 Critiques of the non-choice paradigm 

 

However, it would seem that Wilkening’s (1981) results are perhaps not as 

straightforward as they might be perceived to be. Using apparently simpler 

procedures, poorer performances can be observed, suggesting that there is 

something inappropriate about Wilkening’s (1981) methodology in turn. Cross and 

Mehegan (1988), for instance, supplied children between the ages of 4 and 9 years 

with information about the differential speeds of two cars over given times. Using 

this information, primary school aged children needed to choose those routes that 

each car would have to follow for both to reach a particular goal at the same time. 

This procedure was simpler in that two cars were used whereas Wilkening’s (1981) 

tests involved at least three animals. Moreover, when distance or time was given, it 

was the same for each car; all Wilkening’s (1981) given variables, on the other hand, 

differed. Yet Cross and Mehegan (1988) – tentatively – conclude from their findings 

that children treat the three variables speed, time and distance as three separate 

variables rather than being able to consider the appropriate relationship among 

them.  

 

Nonetheless it appears, from the research by Wilkening (1981), that direct relations 

are recognised before inverse relations. In direct relations, increasing one variable 

results in an increase of the other variable. For instance, an increase in distance 

when keeping speed constant results in an increase in time taken to travel the 

distance. In inverse relations, on the other hand, increasing one variable results in a 

decrease of the other variable. For instance, an increase in speed when keeping 

distance constant results in a decrease in time taken to travel the distance. 
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Wilkening’s (1981) observation interestingly enough concurs with Piaget’s (1969, 

1970b) ideas.  

 

However, while Wilkening (1981) criticised the Piagetian approach, Acredolo, Adams 

and Schmid (1984) in turn criticise Wilkening’s (1981) methodology. In Wilkening’s 

(1981) study only one animal ran at a time, thus children could never directly 

compare two animals’ speeds and thus could not determine whether a guinea pig 

running over a long duration or a cat running over a short duration would run 

farther. They also looked at whether judgements are more preferably based on 

certain relations over others – in conservation of liquid tasks, for example, 

nonconserving children tend to rely on water level rather than glass width, even 

though both are crucial variables. 

 

In Acredolo et al.’s (1984) experimental setting, elementary school children aged 6 to 

11 years were shown a toy rabbit and a toy skunk that would both run away when an 

angry toy dog was barking. It was explained to the children that sometimes the 

rabbit and the skunk would run at the same speed, and sometimes one would run 

faster. Also, even though they started at the same time, sometimes one would run 

for longer. And even though they started from the same point, sometimes one 

would run farther. The children were assessed in three conditions, one for each of 

time, distance, and speed. The first problem in each condition was used primarily as 

a pre-test and buffer for the harder problems to follow – in the distance condition, 

for example, the two animals would run at the same speed for the same amount of 

time, and the children had to decide whether they ran the same distance or if one of 

the two ran farther. If children seemed to have difficulty understanding this first 

problem, they were given further instructions before proceeding. The second and 

third problems provided information about the children's understanding of the 

relationships between specific pairs of dimensions – running at the same speed for 

different times, or for same times at different speeds, in the distance condition – 

while the last two problems had the potential for providing information about the 

children's capacity to integrate relations and recognise conflicts – one of the two 

running faster, and either of the two running longer. The findings seem to confirm 



 94

that children recognise direct relationships before inverse relationships; at the 

younger ages tested, speed-distance and duration-distance tasks were solved 

correctly more often that speed-duration tasks, and it was only at around 9 years of 

age in this sample that all three relationships were understood equally well. 

However, there is no concurrence with, for example, Montangero’s (1979) claim that 

children first understand each of the relations in one direction, then in the other. 

 

A similar method of assessing the ability to integrate information related to speed 

stems from a study in the field of mathematics education. Howe, Nunes and Bryant 

(2010) looked at children’s ability to make appropriate use of the relationships 

between speed, time and distance. They gave 963 children aged 7 to 12 years a 

range of questions; in six of these questions the children were required to figure out 

which of two (children, hamsters, cars) went faster, on the basis of information that 

was provided about time taken and distance travelled. The level of difficulty 

increased over the course of the questions asked. The first two questions were easy 

questions where one of the two given variables remained constant and insufficient 

information was provided to solve the tasks computationally. The third and fourth 

questions were easy questions where again one of the two given variables remained 

constant, but adequate information was provided to solve the tasks computationally, 

though the questions could also have been solved without computation. The final 

two questions were hard questions where both time and distance varied and 

computation was necessary to solve the questions. Here, too, the overall results 

suggest that the ability to solve questions correctly increased with age, with the 

exception of the final question, which observed an inverse trend. It is suggested that 

perhaps the younger children did not actually take both variables into account but 

relied on time alone. This would propose that time is more salient than distance, 

which is in concordance with the previously described work by Montangero (1979). 

 

5.3.4 Summary 

 

By using alternative methodologies, studies have thus shown that the general 

Piagetian pattern remains. With increasing age, the interrelations of speed, time, and 
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distance are understood more clearly and tasks are more likely to be solved 

correctly. Despite the issues emerging from Cross and Mehegan’s (1988) work, it 

appears that even young children show a basic understanding of v = d / t, though 

Wilkening’s (1981) results could be re-interpreted along the lines that understanding 

here, too, is more of an intuitive nature – if children understand that one animal can 

run faster purely because it physically overtakes the other, they will place the animal 

they think runs slower before the animal they think runs faster, without necessarily 

having to take time into account, since time was the same for all three animals. It 

appears, thus, that while these alternative approaches certainly seem justified in the 

light of the critique of the Piagetian methodology, a compromise might need to be 

found, in form of combining quantitative with qualitative tasks – giving children 

ratios to work with (e.g. one object moving twice as fast as another) and 

investigating in what way the final responses are, in fact, achieved, by asking them in 

a Piagetian fashion. 

 

5.4 Summary 

 

Overall, the general understanding of the concept of speed, and with it the related 

concepts of time and distance, are generally well understood, with accuracy of 

understanding improving with age. Regardless of the methodological approaches 

used, then, the research reviewed here suggests that while there are developmental 

trends children do have a reasonable understanding of the concept of speed, and 

how it functions in terms of the underlying elements time and distance. But these 

tasks are all fairly general, and they are based on approaches that are not really 

something that one would observe in the everyday world, such as animals racing 

against each other, and the use of toy cars acting as representations of real life 

scenarios. While these studies indicate the ability to work with the concepts speed, 

time and distance, the relevance to Aristotelian physics remains untouched here. So 

what is children’s understanding of speed and acceleration where real objects are 

considered in their real environment, behaving the way children would actually see 

them behave, given that they clearly have some understanding of the underlying 

concepts involved? This will be reviewed in the following chapter. 
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“Aristotle observed nature and 

reported what he saw.” (Stinner, 

1994, p.78) 

 

 

 

 

 

 

 

 

 

CHAPTER 6: 

RESEARCH ON THE UNDERSTANDING OF NATURALLY INDUCED OBJECT 

MOTION 

 

One problem that arises in some tasks is the nature of the environment in which 

object motion takes place. Cahyadi and Butler’s (2004) work, for example, highlights 

the problem of scientific versus everyday reasoning. Their research on understanding 

of motion in free fall suggests that undergraduate students are more able to solve 

cases of idealised motion correctly, that is, where no air resistance needs to be 

considered, than real-world problems, despite understanding the interplay between 

air resistance and object size. Students appreciated that a flat sheet of paper would 

fall more slowly than a crumpled one, or observed that a person with a parachute 

falls more slowly after the parachute opens – despite weight not changing.  

 

The previous chapter on children’s general understanding of speed and acceleration 

concluded with a query about how children would reason about object motion that 

they would be able to actually observe in everyday life, when no extraneous 

variables such as pushing, pulling, car engines, or other variables that would depend 

on a person’s actions would have an effect. One particular aspect of Aristotelian 
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physics is that objects were thought to move at constant speeds, even though in fact 

their speed changes, at least until they reach terminal velocity in fall, or until they 

stop moving due to barriers or surface friction. So in order to appreciate the 

naturalness of object motion, that is, motion in the Newtonian sense, it is crucial to 

have some understanding of speed change. The research on children’s 

understanding of such motion, both of object speed and of object acceleration, can 

be separated into three categories: Research on the understanding of motion along a 

horizontal, research on the understanding of motion in free fall, and research on the 

understanding of motion down an incline. First, however, one particular variable, to 

which particular reference is made in Aristotelian motion, is considered. 

 

6.1 The importance of weight as a variable in object motion reasoning 

 

It appears that weight in particular has some effect on children’s and adults’ 

predictions of and beliefs about object motion. While in the chapter on the physics 

of object speed and acceleration it was shown that weight per se is a negligible 

influence upon falling or rolling objects (instead, speed is affected by other factors 

such as surface area or material density), this is probably one of the most 

predominant pre-conceptions held, and corresponds to a typically Aristotelian view 

of the world. In fact, many students hold the belief that an object falls with a speed 

that is proportional to its weight (Halloun & Hestenes, 1985). It has been noted – in 

order to highlight the importance of weight within the issue of object speed and 

acceleration – that after space and time (both of which are, of course, essential 

factors when measuring speed and acceleration), weight is one of the most 

fundamental concepts and therefore largely affects general knowledge of physics 

(Galili, 2001). 

 

Some older studies (e.g. Gibson, 1969; Piaget & Inhelder, 1974) provided claims that 

young children do not make any distinction between size and weight. Gibson (1969), 

for one, made this claim due to the fact that children’s performance on size and 

weight seriation tasks was identical; in both cases items were simply seriated 

according to their size. Piaget and Inhelder (1974) found, quite similarly, that size 
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intruded on weight judgement tasks. Some children thought that popcorn would 

become heavier once popped, simply because it then got bigger. They would also 

predict that a wax ball and a clay ball would weigh the same if they were the same 

size. Indeed, one might conclude from this that young children do not differentiate 

between the two concepts. However, C. Smith, Carey and Wiser (1985) assessed 3- 

to 9-year-old children on a range of verbal and nonverbal tasks, finding that there 

was indeed a concept of size that was fully differentiated from a concept of weight. 

 

Concepts related to weight, that is, ‘heavy’ and ‘light’ and concepts related to size, 

that is, ‘big’ and ‘small’, appear to be, in fact, appreciated and recognised from a 

fairly early age – haptic studies, for example, have shown that by the age of 12 

months infants can already differentiate between light and heavy objects (e.g. 

Molina & Jouen, 2002), and violation-of-expectation tasks suggest that young infants 

understand, for example, when an object is too big to fit into a particular container 

(e.g. Aguiar & Baillargeon, 1998). Therefore it does not seem surprising that these 

concepts play such an important role in children’s perception of the world and 

eventually give rise to some misconceptions. 

 

6.2 Motion along a horizontal 

 

Despite the research covered in the previous chapter largely being concerned with 

horizontal motion, none of it makes a specific case for that dimension. In fact, the 

research could have been carried out using the same tasks with inclines or in free 

fall. So what is children’s understanding of horizontal motion in particular? 

 

A chapter in Inhelder and Piaget (1958) describes a study where balls of different 

sizes and weights were launched by a spring device such that they rolled along a 

horizontal, and the children had to predict the stopping points. This study already, it 

seems, took for granted that young children understand that objects eventually stop, 

though it does not assess their understanding of what exactly happens during this 

process. Instead, the focus was on how object size and particularly weight affect the 

general process of slowing down. The children at Stage I sometimes claimed that 
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light balls would go further because they were easier to set in motion, but also that 

heavier balls would go further because they were deemed stronger. During Stage IIA 

there was some attempt to eliminate these weight contradictions, though some still 

remained. Generally, a heavy ball was associated with having more force, and a 

lighter ball was deemed easier to launch. Stage IIB saw children taking a reverse 

approach. Instead of explaining motion, they explained the slowing down. However, 

these children were not aware of their tendency to reverse, and their responses 

were still comparable to those at Stage IIA. At Stage IIIA the reversal tendency 

became explicit, and children predicted that large balls would go further because 

they were heavier. Also, friction and air resistance were introduced as influential 

factors. Finally, during Stage IIIB fundamental explanations resulted from explicit 

reversal. The children now predicted that the heavier balls would go further because 

they had more force, that is, weight was simply regarded as a synonym of force, 

though at the same time heavier balls also, for them, meant more friction. 

 

Weight as a variable in horizontal motion has also been assessed in a study by Howe 

(1991, as cited in Howe, 1998). One hundred and twenty-six children aged 6 to 15 

years were shown photographs and were required to respond to questions related 

to the scenarios seen in them. In one of the photographs a large green ball, which 

was identified as being made of solid plastic, was being rolled across paving stones. A 

tennis ball, a table tennis ball, a golf ball and a bowls wood were to be seen in the 

picture as well. The children were asked questions about whether the green ball was 

the best choice or whether another of the balls would have rolled faster, and they 

were required to give justifications for their views. Twenty-two variables were 

identified. A clear majority of children at every age level thought that the kind of ball 

would make a difference, and they were always able to give reasons. Out of the 

variables used by at least ten children, variables related to weight featured right at 

the top of the list, heaviness being associated with more speed by 47 of the children, 

and lightness by 39 of them. Other variables included size and bounciness. In 

another photograph the bowls wood was being pushed across an ice rink, and again 

the children were asked the same questions as with the green ball. Fifty-one children 
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thought the heavier ball would go fastest, and 21 children went for the lightest. 

Other variables used included smoothness and size.  

 

Maloney (1988) provided undergraduate students with a series of problems where 

they had to predict either distance travelled or time taken to fall under different 

combinations of variables. Howe (1998) notes a particularly clear reliance on object 

weight and the claim made by undergraduates that heavy balls resist motion in the 

horizontal direction. This is particularly noteworthy because this is the reverse of 

what Howe’s (1991, as cited in Howe, 1998) findings suggest – in her study, there 

was a strong tendency for those aged 12 years and over to assume that along a 

horizontal heavy objects travel faster than light ones, and that the assumption of 

heavy objects being resistant to horizontal motion was present in the younger 

children of her sample. Clearly, this is as yet an unresolved issue. 

 

Twigger et al. (1994) assessed 10- to 15-year-olds’ preconceptions of object 

deceleration, among other scenarios where force and motion were considered. In 

the relevant task, the participants were asked questions about the motion of a 

model carriage when it was given an initial push along a horizontal track. Two main 

reasons were given for its slowing down, often in conjunction with each other. The 

carriage either slowed down, according to the children, because it ran out of energy 

or force, or because of external opposing forces such as friction and air resistance. 

The second reason was, in fact, stated by almost all of the children. In a study by 

Howe, Taylor Tavares and Devine (2010a), children aged 6 to 10 years were shown a 

billiard table surface on a computer screen. On the billiard table, a white ball hit a 

red ball, upon which the action froze. A line then appeared leading from the red ball, 

indicating the path the red ball would have followed if the action had continued. 

Along this line, two points were marked, and the children were required to decide 

whether the speed of the red ball would be the same at both points, or whether it 

would be faster or slower at either of the points. The results imply that while the 

older children in this sample (and children older than 10 years of age, as indicated by 

Twigger et al., 1994) may have some grasp of speed change along horizontals, 
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younger children seemingly do not. Instead, the younger children rarely 

acknowledged that speeds would be different between the two points. 

 

6.3 Motion in free fall 

 

Objects do not only move in supported environments, that is, along horizontals or 

down inclines, but they also fall unsupported. Because this seems to be the most 

common form of naturally induced motion experienced in everyday life (as opposed 

to horizontal motion largely occurring because of animate motion), a fairly 

substantial literature has established itself over the years. The findings from 

theoretical prediction tasks suggest that the weight of an object is expected to have 

an impact on its fall. Sequeira and Leite (1992), for example, concluded from a 

pencil-and-paper task that more than half of the undergraduate students they 

questioned about object fall stated that heavier objects would take less time to 

reach the ground in free fall. In another study, by van Hise (1988), both children and 

adults were questioned on their beliefs of what would happen if a heavy and a light 

ball were released from a height. Van Hise found that young children aged 4 to 6 

years believed that both a heavy and a light ball would reach the ground first when 

released from the same height, simply because they would be released at the same 

time. Between 6 and 7 years of age the belief was that the lighter ball will reach the 

ground first. Those aged 7 years and above held the belief that the heavier ball 

would touch the ground first due to its weight, therefore assigning more speed to 

the heavier object. 

 

In a study by Gunstone and White (1981), students were shown two balls of the 

same size, one made of metal, the other of plastic. The question asked how the time 

it takes the metal ball to fall to the ground compares with the time it takes the 

plastic ball to fall the same distance. A quarter of students claimed the speeds would 

differ, based on weight and air resistance. The remaining three quarters predicted 

equal times, but their justifications were not very consistent. Those students who 

had predicted the metal ball falling faster were also more likely to claim that the 

metal ball did, in fact, fall faster when they observed the falling. The latter claim 
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finds support in a similar study by Baker, Murray and Hood (2009) with primary 

school aged children. After predicting what would happen if two canisters of 

different weights were dropped, 6- and 8-year-old children witnessed them fall and 

they were required to report what they saw. Children developed an association 

between speed differences and object weight, implying that heavy objects would fall 

faster, and they would further claim to have observed this following the action. 

Baker et al. (2009) concluded that not only were the older children more likely to 

have persistent incorrect ideas about the weight-speed interaction but also that 

their confirmation bias was stronger. This certainly suggests that children’s ideas 

become well entrenched at a reasonably early age, and lends support to the idea 

that conceptual change in science should be tackled early (cf. Isaacs, 1930). 

 

In a slightly more extensive study, Nachtigall (1982) assessed German fifth-grade 

students4 in order to establish their knowledge of speed and acceleration in relation 

to gravity. In one question he asked the children whether a person, standing on the 

ground beneath a window from which balls were dropped, would see a lead ball or 

an aluminium ball reach the ground first, or whether the balls would reach the 

ground simultaneously, and the students had to justify their predictions. The vast 

majority (91 per cent) thought that the lead ball would reach the ground first, as it 

was heavier, thus predicting and justifying in an Aristotelian manner. A few students 

(three per cent) thought that the aluminium ball would reach the ground first, 

because – based on their experience of building paper aeroplanes – lighter objects 

fly better than heavier objects. The remainder (six per cent) predicted that both balls 

would reach the ground at the same time, but their justifications showed there was 

no clear understanding as to why this should be the case.  

 

Nachtigall’s (1982) work also involved assessing children’s understanding of speed 

change in free fall. In the first of these tasks, the children were told that person A 

would drop a ball from the window of a third storey, the ball would fall past person B 

                                                 
4
 Although ages are not provided in this paper, it is worth noting that German fifth-grade students are 

typically 10-11 years old. 
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standing at the window of the second storey, and past person C standing at the 

window of the first storey. The children had to then predict and justify whether the 

ball was moving at a faster speed when falling past B or past C, or whether the speed 

would be the same at both points. Fifty per cent of the students thought the ball 

would be faster whilst falling past C, because the ball needed some time to reach its 

proper speed. Some of these students also explained that the force of gravity was 

stronger closer to the ground. Forty-seven per cent believed there would be no 

change in speed, as the ball did not change its weight. The remaining three per cent 

thought the ball would be slower when falling past C, because by then it would need 

to slow down. These students later explained this on the basis of their observations 

of the landing of an Apollo-spacecraft they had seen on television. 

 

A further question again involved person A dropping a ball from the third storey, and 

an identical ball from the second storey. Person B was watching both balls fall past 

the window of the first storey. Twelve per cent of the students displayed 

inconsistencies with the previous task: While they may have predicted, in the first 

task on speed change, that the ball would be faster at the first storey than at the 

second storey, that is, closer to the ground, because it still needed to speed up 

properly, they predicted in the second task on speed change that both balls would 

fall past the first storey at the same speed, thus reducing acceleration to a short and 

intensive effort. A further 12 per cent of students predicted the ball dropped from 

the second storey would be faster because it had travelled a shorter distance upon 

reaching the first storey, implying that the fastest object is the one that travels a 

shorter distance, or that takes less time – a one-dimensional reasoning approach. 

 

A more recent study, with primary school children as well, was conducted by Chinn 

and Malhotra (2004). All 228 children answered three questions after handling two 

rocks; rock A being heavy and rock B being light. In the uninformed condition the 

children were given unrelated questions and they were not given information about 

the rocks in terms of weight differences – any reasoning on the basis of weight 

would thus have been a result of own inference. Children in the prediction condition 

had one question requiring them to predict whether rock A or rock B would hit the 
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ground first, or if they would hit the ground at the same time. The other two 

questions were unrelated. The precise-prediction children had the same first 

question and were then asked to make more precise predictions – if they thought 

one would be faster they had to indicate how much faster. The two rocks were then 

dropped simultaneously. Of the 150 children in the prediction and precise-prediction 

groups 65 per cent predicted that the heavy rock would hit the ground first, 15 per 

cent that the light rock would hit first, and 20 per cent predicted that the rocks 

would hit at the same time. Following the action, the children were given more 

questions. They first had to identify whether one rock had hit the ground first, or 

whether they had reached the ground at the same time. Seventy-two per cent of the 

students who had expected the rocks to hit at the same time reported observing the 

rocks hit at the same time. In contrast, fewer than half of the students who had 

expected either rock to hit first reported observing their choice of rock hit the 

ground first. 

 

In a study by Champagne et al. (1980, as cited in McDermott, 1984) high school 

students were asked to make predictions about object fall and to then compare their 

predictions with observations of the actions that followed, that is, when the objects 

were dropped. There was a general correct acknowledgement of acceleration, that 

is, that speed increases with fall. Similarly, Gunstone and White (1981) investigated 

knowledge of speed and acceleration in relation to gravity in first-year 

undergraduate students. They were shown a physical situation, and asked to make a 

prediction about what happens if a certain action is taken. This action was then 

demonstrated, and the students were asked to observe and explain discrepancies 

with their predictions. In the task, a blackboard eraser was resting on a book, which 

in turn was held at a distance above a surface. The students were asked why the 

eraser was not moving. The book was then quickly removed, causing the eraser to 

fall, and the students were required to explain what had caused the eraser’s motion. 

The majority of the students gave satisfactory responses and explanations. The 

eraser was then held two metres above a surface. The students were required to 

predict and explain how speed halfway down would compare with speed at the 

bottom, just before reaching the floor. The eraser was then dropped. Gunstone and 
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White (1981) found that though the majority of students again predicted correctly, 

they claimed to have observed that the eraser had been faster further down – they 

insisted, after the eraser had been dropped, that they were able to see the eraser 

accelerating, albeit the eraser having only fallen for such a short distance. Only about 

a third of the students noted the difficulty of observing accurately in this setting. 

Again, a fairly strong confirmation bias can be noted. 

 

6.4 Motion down an incline 

 

In addition to assessing children’s understanding of horizontal motion, Inhelder and 

Piaget (1958) presented children of a range of ages with a task relating speed down 

an incline with object weight. Children saw a plane that could be adjusted in its 

height, thus varying the angle of incline. Several balls of different sizes and weights 

were rolled down until they hit a springboard, and the children were required to 

establish the relationship between the height of the incline and the length of the 

bounds. From their results, Inhelder and Piaget (1958) were able to establish a three-

stage developmental model. During Stage I, up to about 7 years of age, the child 

responded intuitively, based on personal experiences. A correspondence between 

the angle of incline and the length of bound was perceived, but height and angle 

were not distinguished. Weight was constantly assigned a role, though not always in 

a consistent manner. Individual children sometimes stated that the bigger balls 

would bound further because they were heavier, and sometimes they stated that 

the smaller balls would bound further because they were lighter (or even, 

occasionally, because the smaller balls were deemed heavier). During Stage II, from 7 

to 11 years of age, children were able to make correct formulations of 

correspondences, though not systematically. They often managed to exclude weight, 

and there was some dissociation of height. During Stage IIIA, responses were made 

more readily than during Stage II, with the children eventually hypothesising that 

height was relevant, and during the final Stage IIIB, the hypothesis was actually 

proposed and verified. 
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Though the focus of their research was that of group interaction, Howe, Tolmie and 

Rodgers (1992) nonetheless provide relevant information about children’s prior 

conceptions when it comes to weight as a factor in object motion down an incline. 

Eight- to 12-year-old children were tested on their preconceptions about motion 

down an incline in relation to angle of incline, height of starting position, surface 

friction and weight. The children were then grouped according to their pre-

conceptions and assessed on their group work. They were shown slopes and toy 

cars. In the pre-test they were asked questions about the motion, in the group task 

they were required to predict and carry out experiments themselves with the same 

apparatus. Looking at the pre-test, which for present purposes is more interesting, 

Howe, Tolmie and Rodgers (1992) identified three levels of understanding from their 

results. At Level I, variables, such as the angle of the slope, friction, or the object’s 

weight, were either not considered at all, or were considered but not understood 

correctly. At Level II, there was some understanding of how the slope variables 

operate and interact, for example that increasing the angle of the slope increases the 

distance travelled. However, whilst object weight was deemed important, too, it was 

not coordinated with other variables. At Level III, in addition to understanding how 

the slope variables operate and interact, the object’s weight was deemed important 

and was coordinated with other variables as well. Only a very small number of 

children explicitly excluded object weight from having any effect on motion. Though 

there appeared to be some increase in level per age group, this increase was not 

significant. 

 

What is important to note is that almost all children in this study by Howe, Tolmie 

and Rodgers (1992, see follow-up analysis cited in Howe, 1998) not only thought that 

object weight was relevant to motion down an incline but they were highly 

consistent in how they thought this would operate. They said either that the heavy 

objects would travel faster or that the light objects would travel faster on at least 

seven of the eight occasions on which they had been questioned. A third of the 8- to 

9-year-olds felt heavy objects would travel faster. For the 9- to 10-year-olds the 

number of children choosing heaviness was less than a third, and for the 10- to 11-
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year-olds just under one quarter. For the 11- to 12-year-olds, on the other hand, two 

thirds of the children chose heaviness over lightness. 

 

In addition to assessing understanding of speed, as shown in the chapter on 

children’s general understanding of speed, as discussed in Chapter 5, Piaget (1970a) 

also identified four stages in the development of children’s understanding of 

acceleration. He did this by showing children a slope with a ball and asking them 

about the speed of the ball if it were to roll down that slope – whether the speed 

would always be the same, whether it would be more to start with or whether it 

would be more towards the end of the slope – and by flagging intervals along the 

slope, either based on same distances between the flags or on same temporal 

intervals, and asking about the speeds at each interval. Initially, acceleration 

appears, from Piaget’s (1970a) results, to be perceived as a short and intensive effort 

where the object quickly changes speed at the beginning, but not as a constantly 

changing variable (Stage I) – this observation is similar to that made by Nachtigall 

(1982) of children’s understanding of acceleration in fall. At around 6 years of age, 

the child already possesses an intuitive conception of acceleration – an object’s 

speed is perceived to be less when it starts rolling down a ramp and more when it 

reaches the end of the ramp. However, acceleration is still not understood as a 

continuous or regular change in speed over time. When creating shorter intervals, 

each interval’s speed is intuitively seen as faster than the previous interval, but there 

seems to be no suggestion that this is due to an understanding of the necessary 

relationship between speed and time (Stage II). Between 7 and 8 years, acceleration 

down the ramp is perceived as more continuous, but children still have difficulties in 

relating a series of successive speeds in terms of times and distances travelled (Stage 

IIIa). At 9 to 10 years, children develop the ability to translate successive movements 

in a limited way, and to compare distances or times travelled between intervals – 

they understand distances are travelled in shorter times because speed increases 

(Stage IIIb). Finally, by 11 years children can compare distance-time relationships 

over a series of successive changes in speed; acceleration requires separating speed 

into its distance-time relationships and at the same time making comparisons of 

successive speeds, and they are now able to do so (Stage IV). 
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In order to assess these stages further, Raven (1972) administered a range of 

acceleration tasks to elementary school children aged 8 to 11 years, where all 

children performed all tasks. The first task required the children to judge whether or 

not there was a change in speed when a toy car travelled down an incline. The 

second and third task showed an incline that had been sectioned into four even 

distances, and speeds for these sections had to be compared. For the final task the 

children had to count while a toy car rolled down an incline, at certain intervals a 

point along the incline was marked, and they had then to compare these intervals in 

terms of length and speeds. The results show a developmental change in giving 

correct responses – albeit across the comparatively small age range. A higher 

proportion of children solved each task correctly as age increased, although it was 

only at 11 years that all four tasks were solved at a consistently high level. At 11 

years, the lowest percentage of correct responses was 67 per cent, compared with 

40 per cent of correct responses at 10 years of age. Overcoming the critique that 

Piaget (1970a) seemingly never tested the same children on multiple tasks, Raven’s 

(1972) results nonetheless concur with Stages IIIa to IV identified above. 

 

The complexity of the term acceleration, however, becomes obvious when finding 

that there is no clear distinction between speed and acceleration, and acceleration is 

simply seen as ‘speeding up’. Solving the Piagetian acceleration task in research by 

Trowbridge and McDermott (1980) merely relied on undergraduate students’ 

qualitative predictions of the relationship between distance travelled and elapsed 

time for a ball rolling down an incline, that is, that distance travelled simply becomes 

less with time. Successful completion did not require consideration of any ratios; a 

primitive intuition of speeding up appeared to be adequate. The task posed no 

overall problem for any of the students. Trowbridge and McDermott (1981) 

therefore modified this task into a semi quantitative extension. A ball rolled from 

rest down an incline, and the motion over a particular distance was timed. The 

participants were then asked to predict approximately how much time the ball 

would require in order to cover twice the distance from the starting point. Most 

students were able to complete the task successfully. In a further task, a ball 
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travelled at a constant speed, that is, with no acceleration. A second ball started at a 

later time from a point behind the first ball, at an initially higher speed and then 

decelerated. Students were asked to judge whether these two balls ever had the 

same acceleration. A successful comparison did not require any quantitative 

understanding of acceleration, yet only students who recognised that acceleration 

implies a change in speed over time were able to complete the task correctly; correct 

completion of such a task therefore implies that the relationship between speed and 

acceleration is understood. However, there was not necessarily an understanding of 

the involvement of time. 

 

This led to the development of a third task. In two channels, two balls travelled from 

rest until, at the end of the incline, the same speed had been reached. The balls were 

not released from the same point or at the same time, and did not travel equal 

distances but reached their respective endpoints simultaneously. They did have the 

same average and the same final speed, but one ball reached that final speed faster 

than the other, therefore having a greater acceleration. The students were then 

asked if these balls had the same or different accelerations. To obtain the correct 

answer, it was essential to recognise either that since the first ball is already moving 

when the other is released, the change in speed for that second ball must be greater 

in order for them to reach their endpoints simultaneously, or that they reach the 

same final speed in different amounts of time, therefore the second ball requires less 

time to change speed. Although this was a qualitative task, explicit consideration of 

change in speed and change in time to determine acceleration was required. From 

the results of these tasks, ten different approaches to compare accelerations were 

identified; one being a non-kinematical approach, one being a confusion between 

position and acceleration, four involving confusion between speed and acceleration 

– these first six all lead to wrong answers –, two showing a discrimination between 

speed and acceleration but neglecting any impact of time, and two showing the 

correct qualitative understanding of acceleration. There is a shift from perceptual 

(first six approaches) to conceptual (final four approaches) component usage. 

Overall, performance was poor; even in the group of introductory physics students 
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only about 40 per cent showed some understanding of acceleration and used one of 

the last four approaches, even though they were aware of the theoretical concept. 

 

6.5 Assessment of tacit knowledge of object motion 

 

6.5.1 Infancy studies 

 

As mentioned earlier in Chapter 3 on the explicit-tacit distinction, a wealth of 

research has shown that young infants display a rich yet tacit understanding of the 

physical world. And as is the case for many areas in developmental cognition, the 

study of speed and acceleration, too, has turned to infancy. This area of research is 

still limited but the few studies that exist are nonetheless crucial for current 

purposes.  

 

Kim and Spelke (1992), for instance, habituated 5- and 7-month-old infants to one of 

two possible events, a ball either accelerating down an incline or decelerating up an 

incline. In the test phase the infants were then shown two novel events where the 

direction of the incline had been changed; one of the novel events was possible, the 

other impossible. Those infants who had been habituated to the acceleration scene 

were tested with the ball moving up the incline, accelerating in the impossible trial 

and decelerating in the possible trial. Those who had seen the decelerating ball 

during habituation then saw the ball moving down the incline during testing, 

accelerating in the possible event and decelerating in the impossible event. 

Additionally, sometimes the direction of motion changed as well. The main result 

was that the 5-month-olds looked longer at those novel test trials where both 

acceleration or deceleration and direction changed than when only one changed. 

However, the possibility of the scenario did not affect their behaviour. This would 

appear to imply that the impossible test event did not violate any expectations, and 

infants instead reacted on the basis of the amount of perceptual deviance from the 

familiar habituation event. The 7-month-olds, on the other hand, looked longer at 

the impossible event, even though less perceptual changes had taken place. Kim and 
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Spelke (1992) conclude from this that the sensitivity to changes in speed in relation 

to gravitational constraints develops early but gradually. 

 

A similar study by Kannass et al. (1999) assessed 10- and 16-month-old infants’ 

perceptions of events involving a computer-generated ball rolling up or down an 

incline. The first experiment, showing the infants either a ball accelerating up or 

down, or decelerating up or down the incline, revealed that there appear to be no a 

priori expectations within these age groups about how objects should behave when 

in motion; all four events were regarded with similar interest. However, this 

similarity in interest need not be a response to the possibility or the impossibility of 

events, but may merely be a learning reaction – especially considering infants were 

given only six trials – where all events were treated as novel. In a second experiment, 

the infants were habituated to the ball either accelerating or decelerating down the 

incline, and in a third experiment they were habituated to the ball accelerating or 

decelerating up the incline. In both cases, test events consisted of all four scenarios 

tested in Experiment 1. In the case of downward motion, only the 16-month-olds 

reacted to the change in possibility; the 10-month-olds merely reacted to change in 

direction. In the case of upward motion, the 16-month-olds responded to featural 

changes, direction in particular, and 10-month-olds did not differentiate between 

any of the scenarios.  

 

Overall, Kannass et al. (1999) conclude, in consensus with Kim and Spelke (1992), 

that there is a developmental trend: Over time, infants become more sophisticated 

in their responses to tasks where object speed and acceleration are of primary 

concern, though Kannass et al.’s (1999) results imply slightly slower development 

than might be inferred from Kim and Spelke (1992). But despite this difference, both 

studies clearly point out that even if there is developmental change it must take 

place much earlier than the work on young children’s erroneous reaching behaviour 

in search tasks, which was described in Chapter 3, would account for. 

 

It might seem reasonable to say that Piaget and all those who have followed since 

have drawn sufficiently similar conclusions to rule out further research when it 
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comes to children’s basic understanding of object speed and acceleration. However, 

while there is not much research specifically related to infants’ understanding of 

speed and acceleration in object motion, the described studies already show that 

even in young infants there appears to be at least some rudimentary understanding 

of these concepts. Regardless of the difference between the two studies, that is, the 

difference in speed of development, what is important to note is that from the 

results of both studies it can be ascertained that development takes place from a 

very young age. And it is this issue that highlights the need to include means of 

assessing tacit knowledge in children – particularly with younger children who 

typically cannot solve speed or acceleration tasks satisfactorily, attempting to 

explore their tacit knowledge may reveal that they know more about these concepts 

than they, or researchers so far, may be explicitly aware of.  

 

6.5.2 Tacit knowledge of motion beyond infancy 

 

As has been pointed out in Chapter 3 on the explicit-tacit distinction, a case can be 

made for assessing tacit knowledge and making use of that knowledge in facilitating 

conceptual change. Some attempts have already been made in assessing 

dissociations between explicit knowledge of object motion and tacit understanding 

thereof. Although not specifically looking at speed and acceleration, a study by 

Kaiser, Proffitt, Whelan and Hecht (1992) assessed the dissociation between motion 

predictions and judgements of naturalness of motion. Students were first asked to 

draw animations of motion if an aeroplane were to release a keg of beer during 

flight. The trajectories drawn were generally not consistent with physical principles. 

Conversely, when the students were shown animations of this motion, more than 80 

per cent of students tended to express a preference for the trajectories that were, in 

fact, more natural.  

 

Specifically looking at speed and acceleration, Shanon (1976) presented 

undergraduate students with predictive tasks where they were required to respond 

to a series of questions regarding speed and acceleration in free fall. The consensus 

was that between a third and a half of the responses were Aristotelian in nature. But 
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when presented with video recordings of motion, the recordings of movement with 

constant acceleration were identified by all students as being natural, rather than 

the recordings of movement with constant velocity. Shanon (1976) concluded that 

people are able to perceive kinematic phenomena correctly, despite their incorrect 

predictions. 

 

Both these crucial studies have been concerned with the understanding expressed 

by adults. However, the results, on a larger scale, do not differ from those obtained 

with young children (or even with infants). Kim and Spelke (1999), for instance, had 

2-year-old children predict landing positions of an object that was to be launched off 

a cliff. The children tended to choose a straight-down motion path rather than a 

parabolic path. Yet when viewing objects being launched, where the children were 

shown the possible and impossible falling trajectories, the results indicate that the 

children judged the impossible trajectories – where the object fell straight down – as 

looking strange to them, but not when the object correctly followed a parabolic 

path. Quite similarly, in a study by Howe, Taylor Tavares and Devine (2010b) an 

attempt has been made to assess young children’s explicit and tacit reasoning of 

object fall in a computer-presented task with a hot air balloon and a girl in the 

balloon releasing balls of different sizes. Their predictive reasoning results show that 

throughout the age range of 6 to 10 years children were generally unaware of the 

influence of acceleration due to gravity in free fall. Their tacit reasoning task, on the 

other hand, implied that the same children do display a reasonably good tacit 

understanding that objects accelerate through air. 

 

All four studies mentioned above looked at motion in free fall. However, what about 

the understanding of naturalness of motion in other dimensions? Kaiser and Proffitt 

(1984), for one, found that both college students and children aged 6 to 10 years 

could judge video recordings of dynamic collision events in horizontal motion as 

natural or anomalous above chance levels, with only little improvement as age 

increased. In an additional computer-presented study on the understanding of 

horizontal motion, Howe et al. (2010a) presented 6- to 10-year-olds with scenarios 

involving billiard balls on a billiard table. The children were required to make 
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predictions about the motion patterns, and to then observe their choices. Their 

predictions seem to suggest that friction is only slowly taken into account, as 

children get older, yet their judgements of motion imply they do acknowledge the 

role of friction in motion. 

 

Interestingly, a study by Kozhevnikov and Hegarty (2001) on the understanding of 

upward motion suggests something rather opposite. Whilst undergraduate students’ 

explicit knowledge was generally good, implicit knowledge was more likely to match 

medieval impetus theories. When the participants were shown an apparent motion 

display with an ascending object, they were able to make correct explicit judgements 

about the motion, if they had had some form of physics training beforehand. But 

their implicit knowledge did not differ significantly from that of their novice 

counterparts. However, Kozhevnikov and Hegarty (2001) do acknowledge several 

crucial faults in their work. A lack of realism in their displays may certainly have 

affected the results, as participants merely saw a series of static frames rather than 

videos of continuous motion like in Shanon (1976), and Kozhevnikov and Hegarty 

(2001) appreciate that more realistic displays could have elicited more correct 

implicit knowledge. In addition, they also suggest that there might be different 

situations where implicit knowledge could be expected to be inaccurate. This could 

happen when witnessing events that do not occur very often in everyday life, as was 

the case in their study, and they stress that it might be plausible for people to 

develop correct implicit knowledge if they have had specific experiences. 

 

6.6 Summary 

 

The literature covered here has shown that children’s (and adults’) explicit 

understanding of speed and acceleration – fundamental concepts in physics – are 

rarely understood correctly or in all entirety. Tacit knowledge assessment attempts 

have shown first fruitful signs of underlying notions about the correctness of motion. 

In combination with the wealth of infancy studies there is certainly a good case for 

continuing this thread of work. What is important to note about the work reviewed 

here is that despite quite an array of studies on individual dimensions, that is, 
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motion along a horizontal, motion down inclines, and motion in free fall, no studies 

appear to have assessed the same children’s understanding of motion in more than 

one dimension, and certainly not all three dimensions. While tacit judgement tasks 

are generally sparse, the ones discussed here, too, do not consider more than one 

dimension, and incline motion judgement tasks do not appear to have been done at 

all. Yet the interaction of dimensions in tasks could provide useful information on 

children’s reasoning about individual dimensions and show how the individual 

dimension reasoning processes, if at all, affect each other. 
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“[…] every student of elementary 

physics has to struggle with the same 

errors and misconceptions which then 

had to be overcome, and on a reduced 

scale, […] history repeats itself every 

year.” (E. J. Dijksterhuis, 1961, p. 30) 

 

 

 

 

 

CHAPTER 7: 

SUMMARY, RATIONALE AND OVERVIEW OF THE CURRENT WORK 

 

At the very beginning of this thesis, two questions were asked. What do we know 

about the physical world we live in? And what do we really know about the world we 

live in? Motion is certainly only one aspect of the physical world, so why consider 

this topic? Speed and acceleration are important everyday concepts; they happen all 

around us. Also, they are fairly stable concepts – a moving object either has constant 

speed or changes its speed. Furthermore, whenever there is motion there 

automatically is speed, and in naturally induced motion there is usually acceleration 

or deceleration5, so the proposed research is looking at variables that are connected 

with every single moving object. Additionally, given the frequency with which speed 

and acceleration are relevant because of their everyday occurrence, they provide an 

interesting concept to investigate in terms of what children know about them. 

 

 

 

                                                 
5
 Unless, as described in previous chapters, terminal velocity, barriers or too much friction interfere, 

which will either cause inertia or motion at a constant speed. 
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7.1 Summary of the introductory chapters 

 

7.1.1 Naïve physics and the problem with prior conceptions 

 

It emerged quite quickly that there is a problem. Despite extensive experiences with 

the everyday physical world, Chapter 1 illustrated that many children and adults hold 

naïve theories of motion that do not correspond to scientific views. Chapter 1 

continued by highlighting the obvious fact that children do not come to the 

classroom as tabula rasa, but instead that there is a plethora of conceptions about 

the everyday world that children bring with them. They construct these naïve beliefs 

from their observations of and interactions with events and objects. Furthermore, 

while the educator’s role should be to facilitate a change in conceptions, children’s 

prior beliefs bring with them the issue of being resistant to change. In fact, specific 

studies on speed and acceleration, which were introduced in Chapter 6 (e.g. Baker et 

al., 2009; Gunstone & White, 1981), suggest that confirmation biases with regard to 

observations of events establish themselves early and gradually become more 

manifest, even within a short timeframe of only two years. This argues for early 

intervention.  

 

Chapter 2 on conceptual change reflected on the theories of how knowledge is 

organised and how conceptual change can be brought about. Key mechanisms of 

mental modelling, model-based reasoning and thought experiments were introduced 

in this chapter. The conclusion from these is that despite the range of theories and 

processes in conceptual change research resistance to change remains, particularly 

in the area of physics. How can this be remedied? 

 

7.1.2 The role of tacit knowledge 

 

An alternative form of knowledge was then introduced in Chapter 3 – tacit 

knowledge. The idea of some form of knowledge about the everyday physical world 

ties in well with the findings from infancy research. The specific studies on infants’ 

understanding of speed and acceleration described in Chapter 3 and later in Chapter 
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6 imply the idea of relevant tacit knowledge existing in infancy, and the notion of 

core knowledge or cognition suggests that this tacit knowledge remains unchanged 

throughout the lifetime. This promotes the idea of assessing tacit knowledge in 

childhood. However, while the approaches used with infants may not be appropriate 

with older children, Chapter 3 has suggested the usefulness of judgements as a 

method to tap tacit understanding of object motion. The use of ICT in early science 

education has also briefly been reviewed. In combination with the review of infancy 

research and the judgement methodology this suggests an effective tool for 

assessing tacit knowledge in childhood. This can be done by creating and presenting 

correct and false scenarios to activate tacit knowledge, which can then hopefully be 

used in facilitating conceptual change within early science education by designing 

instructional programmes. 

 

One final point to make here is that in explicit reasoning tasks there appear to be 

two particular difficulties in examining the beliefs of young children (Tytler, 2000). 

Firstly, there is the issue of communication. Children might not necessarily 

understand what the researcher expects from them, or if they do understand the 

purpose they might not be able to articulate their views. Secondly, the act of probing 

might cause children to create conceptions in order to respond, even if perhaps they 

have not had any conceptions up to that point. This seems to be a particular concern 

with younger children who may have had less experience and therefore may have 

less settled beliefs. The assessment of tacit knowledge might be able to overcome 

these issues. Given the difficulty of expressing intuition, the crucial question that 

now remains is how, if at all, can tacit knowledge be assessed? And is there really 

anything to assess? 

 

7.1.3 Understanding of speed and acceleration 

 

The theoretical chapters on prior conceptions, conceptual change and mental 

models were succeeded by an interim summary of physical laws governing motion in 

Chapter 4. This, in turn, gave way to a literature review on children’s general 

understanding of speed in Chapter 5. The resulting suggestions are that Piagetian 
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and alternative methods seem to show a somewhat consistent explicit 

understanding of general speed. Given this consistency it might seem reasonable to 

conclude that further research could be ruled out in this area. However, other than 

assessing the understanding of the meaning of these concepts these studies provide 

no information about the relevant issue at stake, that of naïve theories of motion 

and the understanding of how speed and acceleration function in dynamic everyday 

life events. 

 

So what about specific everyday-related object motion? The currently available 

literature was reviewed in the subsequent Chapter 6, too, looking at the 

understanding of object motion. While the literature on motion along a horizontal 

and motion down an incline is somewhat limited, the studies on free fall make it 

particularly clear that inconsistencies between naïve beliefs and accepted scientific 

notions exist, persisting into adulthood. The importance of weight in reasoning 

about object motion supports this view. One particular issue that arose was that 

none of the work covered in Chapter 6 (also see Table A1 in the appendix, pp. 338-

342, for a summary of studies) has assessed the same children’s understanding of 

motion in more than one dimension. Yet “vertical gravity is a constant fact of life, so 

vertical dimensions should be treated differently from horizontal dimensions” 

(Hayes, 1979, p. 256). This claim would suggest that events involving downward 

motion are differentiated psychologically from horizontal motion (Howe, 1998). But 

what about motion in diagonal dimensions, that is, motion down inclines? If 

horizontal and vertical dimensions are distinguished from each other, does either 

one of them inform understanding of incline motion? Or do both? Or is incline 

motion treated independently from horizontal motion and from vertical motion? 

 

7.2 Key research questions 

 

In Chapter 1, this thesis proposed to examine three main objectives. Firstly, the 

question was raised of what could be said on the topic of children’s general explicit 

beliefs about object motion, which variables are important to children in their 

reasoning, and how these variables affect their predictions of dynamic events. 
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Secondly, the question emerged of what could be said about children’s ideas as to 

how motion types inform each other, if they do so at all; how reasoning about 

horizontal motion, reasoning about motion in fall and reasoning about incline 

motion interact, and how this information might assist in developing a single model 

of young children’s conceptions of motion. And thirdly, given that one might 

anticipate young children to have limited or incorrect beliefs about motion, 

considering the literature, the question was raised of whether children have 

alternative tacit knowledge about dynamic events available to them that could 

potentially be integrated into early science education and utilised in modifying their 

limited or incorrect beliefs more effectively. 

 

The more specific research questions thus asked within the frame of research are as 

follows: 

 

1. What are the common conceptions of object speed and acceleration; do 

young children have a common explicit belief of object speed and 

acceleration? 

2. What are the primary factors that affect explicit decision-making when it 

comes to assessing object speed and acceleration; does weight feature as 

predominantly as the literature suggests? 

3. How do motion types interact in children’s understanding of vertical, 

horizontal and diagonal dimensions? In particular, do horizontal and vertical 

dimensions inform reasoning about incline motion? 

4. Can explicit knowledge be assessed via a computer in a comparable manner 

as via real-life object tasks? 

5. Is tacit knowledge about object speed and acceleration accessible? 

6. If tacit knowledge can be assessed, how correct are young children’s tacit 

conceptions and how do they compare to explicit knowledge? 

 

Four studies, covered in Chapters 8 to 11, sought to address these questions. 

Question 1 is addressed by the first three studies. Question 2 is specifically 

addressed by the first study in Chapter 8. Young children’s general beliefs as to what 
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variables influence object motion are explored here. Question 3 is looked at in the 

first study, but is primarily tackled by the second study in Chapter 9. Here, a more 

detailed real-object reasoning task assessed how object weight impacts upon young 

children’s beliefs about motion, and how the three motion dimensions horizontal, 

fall and incline may inform each other. Question 4 is covered by the third study in 

Chapter 10, where a computer-presented task of the second study is used to 

investigate how computers can assist in exploring young children’s explicit beliefs 

about motion. Finally, questions 5 and 6 are addressed in the fourth study in Chapter 

11 by assessing young children’s tacit judgements of dynamic events. 

 

7.3 An overview of the work 

 

7.3.1 Ethical considerations 

 

Ethical approval for the studies described hereafter was sought from and granted by 

the Faculty of Education, University of Cambridge. Written consent for the 

participation of all children was obtained from their parents. The main experimental 

procedures were described to the participating children immediately before the 

experiments and to their parents in advance through the consent forms, and it was 

made clear that the children’s participation was voluntary. All children were told that 

they could discontinue the studies if and whenever they wished to do so. It was 

made clear that the children were not obliged to answer any of the questions. The 

children as well as their parents were made aware that any collected data would be 

treated with full confidentiality and that, if published, the data would not be 

identifiable as theirs. Following the research, the children and their parents were 

debriefed via written summaries in which the research was explained. The 

participating children were not deliberately misled in any manner, and there was no 

realistic risk of any children experiencing physical or psychological distress or 

discomfort. Enhanced disclosure from the Criminal Records Bureau had been 

obtained prior to any data collection. 
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7.3.2 Participants 

 

Participants were recruited from a state primary school located in a suburban area of 

Cambridge, United Kingdom. In agreement with the school, the opt-out method was 

used to exclude children for whom parental consent was not granted. From the 

remaining group of potential participants, class teachers were asked to select 

children in order to be able to exclude cases where, for example, language was 

known to be an issue, as this could have interfered with understanding research 

instructions. The resulting sample then comprised of 144 children from four age 

groups, and the same children participated in all four studies. An additional 17 

children formed the piloting sample for all four studies. The studies aimed to test 

children from Year 1 (around 5 years of age), Year 2 (around 6 years of age), Year 4 

(around 8 years of age) and Year 6 (around 10 years of age). Piloting for the first 

study was carried out before the school summer holidays of 2008, and in order to 

continue working with the same children after the summer holidays, the piloting for 

Study 1 was carried out with children who were then in Reception, Year 1, Year 3 and 

Year 5 respectively.  They were also tested in approximately the same order for each 

study in order to maintain a similar time difference between studies for each child, 

thereby reducing effects of time as much as possible. 

 

7.3.2.1 Choice of participant age bands 

 

The particular age groups were selected for two principal reasons. Firstly, they 

reflect the general trend of age groups covered in the literature reviewed in the 

previous chapters, where children were assessed (see the overview of relevant 

studies laid out in Table A1 in the appendix, pp. 338-342). By using a similar age 

range a better overall comparison of results was anticipated, to see if the explicit 

task results would be consistent with any previous research, and if so how additional 

explicit task results and the tacit task results would compare and fit into the overall 

picture. Secondly, the young age, as opposed to working with adults, stems from 

Isaacs’ (1930) notion introduced earlier, that remedying disjunctions between 

science and the everyday world is best tackled as early as possible. 
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7.3.2.2 Repeated testing of same sample and order of tasks 

 

For practical reasons, due to research time availability as well as to the designing of 

the computer programs, the children could not be tested in different order of tasks, 

that is, some children beginning with the tacit reasoning task and some with the 

explicit reasoning task. However, similarly structured research by Howe et al. (2010a, 

b), for instance, found no order effects when assessing explicit and tacit reasoning in 

primary school children and counter-balancing the order of the explicit and tacit 

tasks. In addition, as no motion took place during any of the explicit prediction tasks, 

it was not anticipated that any learning effects regarding motion could occur before 

reaching the tacit task. It was felt that by repeatedly testing the same children on all 

tasks, this would allow a more sensible comparison of performances among tasks. 

 

Despite similarly structured research suggesting no such effects, to ensure that order 

effects had not occurred in the present work either, a small sample of 16 additional 

children was subsequently tested. The children were recruited from the same school 

as those in the main studies, and they were from the same four age groups, four 

children per age band. None of these children had participated in any of the four 

pilot studies or any of the four main studies, and they did not receive the tasks 

outlined in Studies 1 and 2. One set of eight of the children received the task 

outlined in Study 3 first, then the task outlined in Study 4 a few days later. The 

second set of eight children received the Study 4 task first, then the Study 3 task (see 

the appendix, pp. 350-353, for details). 

 

The additionally collected data indicate the same patterns observed in the main data 

presented in the research chapters here (see the appendix, pp. 350-353, for details 

regarding data analysis). Analyses of the data revealed no significant differences in 

performance between the two sets of additional children, suggesting no order effect 

in this additional sample. At the same time, the additional data collected for the 

Study 3 task do not differ significantly from that of the main Study 3 sample. This 

suggests that the main Study 2 performance presumably had no effect on the main 

Study 3 performance. Finally, the additional Study 4 data do not differ significantly 
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from that of the main Study 4 sample. This indicates that even if children had done 

the tacit judgement task first (or only the tacit judgement task), their judgements 

would have still been comparable to those of children who had already had 

considerable exposure to explicit prediction tasks, implying no problem with 

assessing the same children on a number of explicit tasks prior to assessing their 

tacit judgements of related dynamic events. And this is not particularly surprising, 

since the children were not given any feedback in any of the tasks, that is, they were 

never told whether their predictions or their judgements were correct or incorrect. 

 

7.3.2.3 Science education levels 

 

The National Curriculum for England specifies what primary school children should 

be taught in science (Department for Education and Employment, 1999). In terms of 

the present work, they are certainly expected to know several important elements 

by the end of primary school. For instance, already in Key Stage 1 (ages 5 to 7 years) 

children are to be taught how to scientifically investigate about materials and 

physical processes, by planning and asking questions, obtaining evidence, presenting 

and evaluating it, and include the use of ICT. Children are expected to be taught how 

to use their senses to explore materials (such as solidity and texture) and to compare 

objects. Finally, the National Curriculum also requires that children be taught to find 

out about and describe motions of familiar things, including changes in speed and 

causal relations. In Key Stage 2 (ages 7 to 11 years), children are expected to extend 

their investigation skills from Key Stage 1. In addition, they are required to be taught 

to compare materials and objects on the basis of their properties. They are also 

required to be taught about downward motion and gravity, friction and air 

resistance. 
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7.3.3 Timeline of data collection 

 

A timeline, beginning in May 2008 and ending in July 2009, is shown in Figure 7.1 

below. It illustrates the process of data collection for the four studies presented in 

the subsequent Chapters 8 to 11. 

 

 

Figure 7.1 A timeline of the thesis data collection 

 

7.3.4 Use of computers 

 

In terms of the current topic of object speed and acceleration, it has been noted that 

motion is a particularly well-suited topic for computer tasks in general due to its 

essential structure being visual, geometric and dynamic (diSessa, 1986). However, 

despite the claim that computer simulations can, in fact, be credible representations 

of reality, at least where diagnosis and remediation of alternative conceptions of 

velocity is concerned (Zietsman & Hewson, 1986), the naturalness of such 

simulations has been questioned (e.g. Hennessy & O’Shea, 1993). However, it cannot 

escape notice that many of these simulations have rather strange scenarios, such as 

shops on Mars – while these may, of course, be entertaining, it is no surprise that the 

naturalness is criticised. The criticism does not, on the other hand, include real 

scenarios, that is, video recordings of actual events. Whether this factor is equally 

dubious remains to be seen. 
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The two infancy studies on speed and acceleration (Kannass et al., 1999; Kim & 

Spelke, 1992) described in Chapter 6, and related studies exploring infants’ 

knowledge of the physical world by Baillargeon and colleagues (Baillargeon, 1994; 

Baillargeon & Hanko-Summers, 1990; Baillargeon et al., 1992; Needham & 

Baillargeon, 1993; also see Baillargeon, Kotovsky, & Needham, 1995) described in 

Chapter 3 provide an excellent opportunity to continue where explicit reasoning 

tasks stopped in the 1980s. With infant studies having made successful use of 

computers to create false scenarios and to tap into tacit knowledge of the physical 

world, the suggested research attempts to bridge the gap between different 

research methods (real-life object tasks and computer tasks) as well as between 

research and primary education teaching, by making use of research methods to 

investigate knowledge, which can then hopefully be applied within education.  

 

So how can computer methods be integrated into children’s assessment of their 

understanding of motion in the everyday world? How can tacit knowledge be tapped 

into? The methods used in specifically related infancy research (Kannass et al., 1999; 

Kim & Spelke, 1992) could perhaps also be used with children. By creating false 

scenarios that conflict with expectations about the real world, demands could be 

placed on underlying tacit knowledge, similar to that expressed in violation-of-

expectation paradigms. Howe et al. (2010a, b) and Kim and Spelke (1999) show first 

tentative uses of this approach, and related work with adults lends support as well 

(Kaiser & Proffitt, 1984; Kaiser et al., 1992; Shanon, 1976). To avoid issues of 

naturalness as much as possible, real scenarios can be used and altered in such ways 

that false scenarios can be created without the introduction of alternative or surreal 

environments. Furthermore, if successful, this would bear implications for designing 

educational computer programs, and the above-established use of ICT in early 

education certainly provides support for this notion as well. 

 

7.3.4.1 Specific use of ICT at the recruited school 

 

As two of the studies relied on computer-presented tasks, it was crucial to establish 

the extent of the children’s experience with computers. The use of ICT in primary 
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schools in England in general has been covered earlier. A brief questionnaire was 

distributed among the class teachers at the school involved in the current research, 

of those year groups that contributed to the data. They were asked to provide 

information about the use of ICT in their classrooms and their children’s hands-on 

experience with ICT. A summary of this information is shown in Table 7.1 below. 

Across the age range, the children are under regular exposure to a range of ICT 

techniques when being taught (ranging from 40 per cent to 85 per cent of teaching 

time), and in addition they have personal experience using some of them in the 

classroom. Even the youngest children are already equipped with basic experience of 

using computers. This is important to be aware of when considering the 

methodologies applied and the results obtained from those studies that involve 

computer-presented tasks. 

 

Table 7.1 Summary of the use of ICT at the recruited school 

Age group 

Hours of general 

teaching with ICT 

per week 

Hours of science 

teaching with ICT 

per week 

ICT equipment used in 

teaching  

Children’s ICT hands-on 

experience  

Year 1 15 out of 25 

(60%) 

1 out of 2 (50%) Interactive whiteboard, 

laptop, PCs, CD player, 

programmable toys. 

PCs, programmable 

toys. 

Year 2 10 out of 25 

(40%) 

½ out of 1 (50%) Interactive whiteboard, 

paint programs, talking 

books, ICT games, word 

processing, internet. 

Interactive whiteboard, 

paint programs, talking 

books, ICT games, word 

processing, internet. 

Year 4 22 out of 26 

(85%) 

1½ out of 2 (75%) Interactive whiteboard, 

image-processing 

programs, interactive 

maths programs. 

Interactive whiteboard, 

image-processing 

programs, interactive 

maths programs. 

Year 6 20 out of 30 

(67%) 

2 out of 4 (50%) Interactive whiteboard, 

PCs, DVDs, videos, 

internet. 

Interactive whiteboard, 

PCs, internet. 
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7.4 Contributions of the research to the literature 

 

Studies 1 to 4 each offer unique contributions to the existing literature. Study 1 

provides information about how a range of everyday objects – which children have 

considerable experience with in general, and which would have an effect on naïve 

explicit knowledge formation – inform views of motion, and what variables play a 

crucial role in their predictions. This may help to understand more clearly where 

children’s alternative conceptions of motion originate from, particularly as a parallel 

to Aristotelian physics based on the everyday world, and their ability to reason about 

motion by using objects they are familiar with. It also provides initial information on 

children’s understanding of motion dimension interaction, which is examined in 

more detail in the following studies. Study 2 then provides a detailed account of how 

motion dimensions interact in children’s reasoning; prior work has only focused on 

individual dimensions. The study particularly provides information about children’s 

conceptions of incline motion in relation to horizontal and vertical dimensions, as the 

question of how motion down an incline is perceived in relation to either still 

remains open. This study will further the understanding of explicit motion models in 

childhood. Study 3 provides information on motion dimension interaction (i.e. 

horizontal, vertical, incline) as well as a more direct means to compare explicit with 

tacit knowledge – do children consider relevant real-object tasks in the same way as 

computer-presented tasks? It thus provides a point of comparison and adds to the 

literature on the use of ICT in learning, thereby contributing information to 

educational practice. Finally, Study 4 provides information on the underlying 

judgements that children hold of dynamic events. Again, while prior literature may 

have focussed on judgements of events, none has compared all three motion 

dimensions. Given that much of the prior literature indicates incorrect explicit beliefs 

of motion, it is hoped that more can be learned about any underlying tacit 

conceptions of motion in order to contribute to designing conceptual change 

programmes for educational practice. 
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CHAPTER 8: 

YOUNG CHILDREN’S EXPLICIT BELIEFS ABOUT MOTION USING 

EVERYDAY OBJECTS (STUDY 1) 

 

8.1 Overview 

 

It has been noted in Chapter 1 of this thesis that the problem of learning lies with 

what knowledge children possess rather than what knowledge they do not have 

(Carey, 2000a), that is, prior conceptions about the world that are inconsistent with 

science. In fact, many children and adults hold beliefs that reflect incorrect 

Aristotelian ideas of object motion in the physical world. As facilitating conceptual 

change seems to be difficult, as shown in Chapter 2, it seems worthwhile to 

investigate children’s explicit beliefs about motion using everyday objects. The first 

objective of this thesis was to see what can be said on the topic of children’s general 

beliefs about object motion, to see which variables are important to children in their 

reasoning, and how these variables affect their predictions of dynamic events. 

 

Much of the research that has been covered in the introductory Chapter 6 addressed 

children’s explicit beliefs about object motion using a limited array of objects, usually 

two objects only (Baker et al., 2009; Champagne et al., 1980, as cited in McDermott, 

1984; Chinn & Malhotra, 2002; Nachtigall, 1982; Sequeira & Leite, 1991; Trowbridge 

& McDermott, 1981; van Hise, 1988). However, how consistent are these beliefs 

across a range of objects, particularly objects that occur in everyday life? This study 

aimed to establish what general basic beliefs children hold about speeds of different 

objects following different kinds of motion paths, using everyday objects that most 

children would probably have seen or held before and perhaps even experienced in 

particular motions before. While the actual choice of object was not important, the 

study aimed to examine which object variables feature predominantly in primary 

school children’s justifications of their beliefs, and how these variables affect their 

predictions – do particular features mean faster motion, or slower motion?  
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In particular light of Galili’s (2001) notion, which was first introduced in Chapter 6, 

that weight is one of the more crucial variables in reasoning about the physical 

world, this study aimed to see if weight was, indeed, a predominant justification in 

children’s explanations. But not only was the study concerned with whether weight 

is a predominant feature as such, but also with the direction of justifications – does, 

for instance, object heaviness facilitate or inhibit motion as compared to object 

lightness in children’s reasoning? Although reliance on weight and the direction of 

justification has been reasonably well established in reasoning about free fall motion 

(e.g. Baker et al., 2009; Chinn & Malhotra, 2004; Nachtigall, 1982; Sequeira & Leite, 

1992), less is known about how strongly weight features in reasoning about motion 

along a horizontal or down inclines, and in what direction it features: Do young 

children predominantly associate faster horizontal motion and motion down inclines 

with heavy objects or with light objects? Furthermore, what about other variables 

that children might use in their predictions about motion? Do children perhaps rely 

on other object features as well, possibly incorporating different variables in 

different motion dimensions? 

 

Finally, despite a not unreasonable amount of research on children’s explicit beliefs 

about object speed, this literature appears to have concentrated primarily on motion 

in free fall or on motion down an incline (see Chapter 6, and the summary in Table 

A1 in the appendix, pp. 338-342). There do not appear to be any studies that have 

examined the same children’s reasoning about object motion along a horizontal, 

object motion in free fall and object motion down an incline. Given the view that 

horizontal motion and free fall motion should be differentiated psychologically from 

each other (Hayes, 1979; Howe, 1998) – do children associate motion down inclines 

more with motion along horizontals, or with motion in free fall in terms of their 

predictions and justifications, or do they even treat it as completely separate from 

either of them? This study was an attempt to close this gap. 

 

In addition, children engage with everyday objects – as the name implies – very 

frequently, so they are very familiar with them. Much of naïve scientific knowledge, 

similar to Aristotle’s experiences that led him to writing Physics, is based on 
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observations of the everyday world. These observations presumably play a crucial 

role in the development of explicit motion knowledge. So in order to increase 

understanding of children’s abilities to reason about motion as it occurs in the 

everyday world, where most of their experience of object motion ultimately derives 

from, the use of everyday objects will enable to help them engage with objects and 

events they can relate to. With regard to the above-mentioned aspect of motion 

dimension interaction, using everyday objects may also provide information about 

children’s reasoning about different motion dimensions on the basis of what they 

are already familiar with.  

 

8.2 Research questions 

 

1. Which variables do primary school children predominantly use when they 

reason about motion of everyday objects? 

2. In which direction are variables associated with faster motion; is, if taking 

weight as an example, heaviness associated with faster motion, or lightness? 

3. How does the use of variables compare between motion dimensions, that is, 

do children use the same or different variables when reasoning about motion 

along horizontals, motion down inclines and motion in free fall? 

 

8.3 Method 

 

8.3.1 Pilot study 

 

8.3.1.1 Participants 

 

As noted in Chapter 7, the pilot sample for the study consisted of 17 children (nine 

boys). The sample included three Reception children (two boys; age M = 5.20 years, 

SD = 0.38), six Year 1 children (four boys; age M = 6.19 years, SD = 0.26), five Year 3 

children (three girls; age M = 7.90, SD = 0.13) and three Year 5 children (two girls; 

age M = 10.31, SD = 0.51). 
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8.3.1.2 Materials 

 

The materials consisted of 12 objects (see Figure 8.1, p. 133). The objects were a 

yellow glass marble (approximately 1.5 cm in diameter), a red billiard ball 

(approximately 5 cm in diameter), a red toy car (approximately 7 cm length x 3 cm 

width x 2 cm height), an orange toy truck (approximately 8 cm length x 3 cm width x 

4 cm height), a standard golf ball (approximately 4 cm in diameter), a standard 

squash ball (approximately 4 cm in diameter), a standard tennis ball (approximately 

7 cm in diameter), an orange (approximately 7 cm in diameter), a hammer 

(approximately 32 cm length x 13.5 cm head width), a rock (approximately 5 cm 

diameter x 3.5 cm height), a feather (approximately 13 cm length x 3 cm width), and 

a leaf (approximately 13 cm length x 9 cm width). Due to the orange and leaf being 

perishable they needed to be exchanged every few days, but care was taken to 

match old and new objects by size and shape as much as possible. In addition to the 

12 objects, a questionnaire was used to guide the task and for the researcher to note 

children’s responses to questions. 
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Figure 8.1 Objects used in Study 1 

 

8.3.1.3 Design 

 

There were questions relating to three different motion types within the assessment 

– one set of questions on motion along a horizontal, one set of questions on motion 

down an incline, and one set of questions on motion in free fall. The 12 objects listed 

above were separated into three groups, one group per motion type, with four 

objects in each group. The horizontal motion objects were the glass marble, the 

billiard ball, the toy car and the toy truck. The incline motion objects were the golf 

ball, the squash ball, the tennis ball and the orange. The free fall objects were the 

hammer, the rock, the feather and the leaf. The objects were paired with each other 

within each group, giving six pairs per group and 18 pairs overall, giving 18 

comparisons. Each child was assessed on all comparisons. 

 

 

 



 134 

8.3.1.4 Procedure 

 

The interviews took place outside of the classrooms but in an open and publicly 

accessible area of the school. Upon arrival, the child was given general information 

about the study – that the researcher had brought some toys and that there were 

going to be some questions about them. It was made clear to the child that 

participation was voluntary and that completion of individual items or the study as a 

whole was not compulsory. The child was then asked to provide name, gender, year 

group and date of birth. Although this information was already made available to the 

researcher by the school, it was hoped that making the children contribute it might 

put them more at ease. The information was noted on the questionnaire by the 

researcher, with the exception of the child’s name for which only initials were used. 

Where the child was not able to provide complete information, usually the date of 

birth, this was retrieved from lists provided to the researcher by the school. 

 

To begin with, the child was introduced to all 12 objects. The child was allowed to 

handle the objects and was asked to notify the researcher when an unknown object 

was encountered. Whenever this was the case the researcher briefly explained what 

the unknown object was. The objects could be handled at any time but the child was 

asked not to carry out any relevant motions with the objects when having to respond 

to the questionnaire items, that is, not to roll them across the table or deliberately 

let them fall. Two of the objects were then selected, in accordance with the first 

question on the questionnaire.  

 

For the horizontal motion objects, the child was given the following first instruction 

(object pairs are examples; italics were stressed by the researcher in speech): 

“Imagine you are playing on the floor, you are holding the car with one hand and the 

truck with the other hand right next to each other, like this [researcher 

demonstrated this action with hands]. If you push them both as hard as each other 

across the floor at the same time, do you think one of the two will roll faster, or do 

you think they will both roll as fast as each other?” Depending on the child’s choice, 

the researcher then asked, “Why do you think the truck (or the car) will roll faster?” 
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or “Why do you think they will roll as fast as each other?” For the incline motion 

objects, the child was given the following first instruction:  “Imagine you are on a hill, 

you are holding the tennis ball with one hand and the orange with the other hand 

right next to each other, like this [researcher demonstrated this action with hands]. If 

you let both of them go at the same time, do you think one of the two will roll down 

the hill faster, or do you think they will both roll as fast as each other?” Depending 

on the child’s choice, the researcher then asked, “Why do you think the tennis ball 

(or the orange) will roll faster?” or “Why do you think they will roll as fast as each 

other?” And for the free fall motion objects, the child was given the following first 

instruction: “Imagine you are standing up, you are holding your arms out at the same 

height, like this [researcher demonstrated this action with hands] and you have the 

hammer in one hand and the feather in the other hand. If you let both of them drop 

at the same time, do you think one of the two will fall faster, or do you think they 

will both fall as fast as each other?” Depending on the child’s choice, the researcher 

then asked, “Why do you think the hammer (or the feather) will fall down faster?” or 

“Why do you think they will fall down as fast as each other?” 

 

For half of the comparisons the questions were directly about speed and the child 

was asked whether one of the two would be faster, for the other half the questions 

were about time taken and the child was asked whether one of the two would take 

more time, such that for each object category there were three questions of each 

type. Furthermore, the two sets of questions represented an inverse relationship 

with each other, that is, more speed (which requires less time over the same 

distance) and more time (which results in less speed over the same distance). For 

each question, there was thus a choice between three response possibilities: The 

child could select one of the two objects over another, or state that both would 

behave the same. In addition, the child was asked to provide justifications, that is, 

state why they had made their choices. The child’s responses were noted on the 

questionnaire by the researcher. Each interview lasted approximately 20 to 25 

minutes for each child. 
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8.3.1.5 Outcomes of the pilot study 

 

The structure of the questionnaires was put to the test in two piloting sessions. In 

the first session, all 12 objects had been made available to the children at the same 

time, and all questions had been placed in a random order, irrespective of motion 

type. As a variation, in the second session the questions were then grouped by 

motion type, and it seemed that this structure bore two advantages. Firstly, having 

changes on fewer levels (changing object pairs alone versus changing object pairs 

and motion type) appeared to be less confusing for the children. Also, by having to 

change objects twice during a session it not only gave the children a chance to take a 

short break if they needed one, but it also appeared to have raised their interest 

level each time a new array of objects was presented. This latter point seemed 

particularly crucial with the youngest children. Finally, an initial concern had been 

that 18 questions in one session might not be entirely feasible, but the piloting 

revealed no complications with having that many questions within a single session. 

 

In the first session of the pilot study, some of the Year 1, Year 3 and Year 5 children 

had been assessed in small groups, respective of their age bands. In the second 

session, children from Reception and the remainder of the Year 1 and Year 3 children 

had been assessed individually. It was initially thought that the older children, given 

their reading and writing skills, could have been assessed in groups, so as to facilitate 

the process of data collection. However, the problems that arose from this 

procedure were twofold. Firstly, it appeared that bar those from the oldest age 

group most of the children did not have adequate writing skills in order to write the 

justifications for their responses, or that their writing required too much time. 

Secondly, having the children in groups, even though it had been made clear to them 

that they should not discuss their answers with each other or say them out loud, 

made it unclear how individual responses might have been influenced by what had 

been said by other children in the group. Thus it appeared necessary to conduct the 

interviews on a one-to-one basis for all children, and the second session from the 

piloting showed this to be much more effective. 
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8.3.2 Main study 

 

8.3.2.1 Participants  

 

As noted in Chapter 7, the Study 1 main sample consisted of 144 children (80 girls). 

The sample included 36 Year 1 children (20 girls; age M = 5.47 years, SD = 0.33), 36 

Year 2 children (21 girls; age M = 6.48 years, SD = 0.29), 36 Year 4 children (21 girls; 

age M = 8.34, SD = 0.35) and 36 Year 6 children (18 girls; age M = 10.51, SD = 0.23).  

 

8.3.2.2. Materials 

 

The materials were the same as used in the pilot study. In addition, instead of one 

questionnaire three different questionnaires were used to guide the tasks and for 

the researcher to note children’s responses to questions (see the appendix, pp. 346-

347, for a sample questionnaire). Only one questionnaire was used per child and the 

random selection of questionnaire determined the test condition for each child (as 

outlined below). 

 

8.3.2.3 Design 

 

The 12 objects listed in the materials were separated into three groups in the same 

way as in the pilot study, again resulting in 18 comparisons. The comparisons were 

distributed over three blocks – one block on motion along a horizontal, one block on 

motion down an incline, and one block on motion in free fall. The order of blocks and 

the order of comparisons within each block were randomised, giving three different 

conditions, such that the questionnaires either began with the questions about 

objects rolling horizontally, about objects rolling down an incline, or about objects in 

free fall (see Table 8.1, p. 138, and the appendix, pp. 346-347, for a sample 

questionnaire). Each child contributed to all three blocks. For each justification type 

that was made, each child thus scored between 0 and 18 (for each block the score 

was between 0 and 6). In those cases where children made same-speed decisions, 

they were given a score of 0.5 for each of the two directions of the justification they 
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used. Equal numbers of children per age group were selected for each condition, 

that is, 12 children per age group were selected for each condition.  

 

Table 8.1 Conditions in Study 1 

 Condition 1 Condition 2 Condition 3 

Block 1 
Horizontal motion 

questions 
Incline motion questions Free fall motion questions 

Block 2 Incline motion questions Free fall motion questions 
Horizontal motion 

questions 

Block 3 Free fall motion questions 
Horizontal motion 

questions 
Incline motion questions 

 

8.3.2.4 Procedure 

 

The general procedure and the instructions were the same as in the pilot study, but 

with the following changes. As three different questionnaires were now to be used in 

the assessment, prior to a child joining, a questionnaire was selected at random, and 

only one questionnaire was used per child. Children were tested on an individual 

basis as the piloting had revealed difficulties in assessing the children in groups, 

notably lack of sufficient writing skills, and discussion amongst the group. The latter 

aspect in particular would have made it difficult to conclude whether responses 

given were those of individual children, or whether the other children in the group 

had influenced them. The objects were presented four at a time only, relevant to the 

testing block, that is, only objects for the horizontal motion task or the incline 

motion task or the free fall task. This was because during the piloting it had become 

apparent that having only four objects at a time instead of all 12 made the task 

easier for the children to follow due to less scenario-switching, and having 

intermittent breaks where objects were changed allowed maintaining higher interest 

levels throughout, especially for the younger children. During each block, the initial 

description of the situation was only given with the first comparison and not 

repeated in subsequent items, only the two questions using the new object pairs. 



 139 

Finally, at the end of each block the four objects were removed and the child was 

given the option either to take a short break or to continue with the next block of 

questions. The procedure for the remaining two blocks was then the same as for the 

first block.  

 

8.4 Results 

 

8.4.1 Methods of analysis 

 

Five main justification types were identified from the responses. These included 

references to the objects’ weight, size, shape or texture, or any other justifications. 

Data were collected in the form of justifications (see 8.3.2.3); multiple justifications 

could be given for each questionnaire item. With the exception of the final group of 

responses, each of the justification types was broken down into two ‘directions’ – 

when children used a justification type to indicate faster or slower speed, they 

referred to either one of the two. Thus, weight was separated into ‘heavy’ and ‘light’, 

size was separated into ‘big’ and ‘small’, shape was separated into ‘round’ and 

‘uneven’, and texture was separated into ‘smooth’ and ‘rough’. Other reasons were 

not separable into directions and were thus not considered for directional analyses.  

 

Kolmogorov-Smirnov tests on the normality of distribution of the data showed that 

all distributions deviated significantly from normality. Therefore assumptions for 

parametric tests were not met. Wilcoxon signed-rank tests showed no significant 

differences between scores for questions asking about time taken and scores for 

questions asking about speed. Therefore the scores of the two sets were merged, 

that is, scores for ‘faster’ and ‘less time’ were grouped, to avoid reporting similar 

results twice. Analyses of mean scores involved Friedman’s ANOVAs and post hoc 

Wilcoxon signed-rank tests, with Bonferroni corrections applied (all significance 

thresholds p ≤ .0125). Effects of gender were analysed with Mann-Whitney tests, and 

effects of age and effects of conditions were analysed with Kruskal-Wallis tests and 

post hoc Jonckheere-Terpstra tests. No significant gender or condition effects were 
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found, therefore these are not considered further. All data were analysed using 

PASW (Predictive Analytics Software, formerly SPSS) Statistics version 18. 

 

8.4.2 Justification types 

 

Figure 8.2 below shows the mean scores for overall faster motion justification types. 

For each justification type used by children in their predictions of faster motion, a 

maximum score of 18 was obtainable. There was significant variation in mean scores 

for justification types, χ2(4, N = 144) = 219.15, p < .001. Object weight (M = 6.62, SD = 

3.61) was used as a justification significantly more often than size (M = 3.70, SD = 

2.25), T = 7, r = -.55. Mean scores for size and shape did not differ significantly. Shape 

(M = 3.20, SD = 2.08) was used significantly more often than texture (M = 2.56, SD = 

1.95), T = 3, r = -.02. Texture was used significantly more often than other reasons (M 

= 0.97, SD = 1.49), T = 6, r = -.05. 
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Figure 8.2 Mean scores for overall faster motion justification types (Maximum 

possible score = 18) 

 

Figure 8.3 (p. 141) shows the mean scores for overall faster motion justification 

types by age groups. There was a significant interaction of age with the use of weight 
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as a justification, H(3) = 77.37, p < .001, usage increasing with age, J = 6118, z = 8.01, 

r = .67. There was a significant interaction of age with the use of size as a 

justification, H(3) = 15.57, p < .001, usage decreasing with age, J = 3125, z = -2.75, r = 

-.23. There was a significant interaction of age with the use of shape as a 

justification, H(3) = 32.71, p < .001, usage increasing with age, J = 5344, z = 5.26, r = 

.44. There was also a significant interaction of age with the use of texture as a 

justification, H(3) = 36.59, p < .001, usage increasing with age, J = 5165, z = 4.63, r = 

.39. However, there was no significant interaction of age with the use of other 

justifications. 
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Figure 8.3 Mean scores for overall justification types by age groups (Maximum 

possible score = 18) 

 

8.4.2.1 Motion along a horizontal 

 

Figure 8.4 (p. 142) shows the mean scores for overall faster motion justification 

types for motion along a horizontal. For each justification type used by children in 

their predictions of faster motion, a maximum score of 6 was obtainable. There was 

significant variation in mean scores for justification types in horizontal motion 

predictions, χ2(4, N = 144) = 237.80, p < .001. The mean scores for size and shape did 
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not differ significantly. Both size (M = 2.13, SD = 1.40), T = 4, r = -.35, and shape (M = 

2.13, SD = 1.45), T = 4, r = -.37, were used significantly more often than weight (M = 

1.33, SD = 1.38). Weight was used significantly more often than other reasons (M = 

0.51, SD = 1.16), T = 5, r = -.43. Other reasons were used significantly more often 

than texture (M = 0.14, SD = 0.57), T = 3, r = -.26. 
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Figure 8.4 Mean scores for overall justification types in horizontal motion 

(Maximum possible score = 6) 

 

Figure 8.5 (p. 143) shows the distribution of scores by age group. The same general 

age effect pattern as for overall justifications was found. Use of weight increased 

with age, J = 5110, z = 4.56, r = .38, use of shape increased with age, J = 4953, z = 

3.91, r = .33, and use of texture increased with age, J = 4230, z = 2.91, r = .24. Size 

and other reasons did not vary significantly with age. 
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Figure 8.5 Mean scores for justification types in horizontal motion by age groups 

(Maximum possible score = 6) 

 

8.4.2.2 Motion down an incline 

 

Figure 8.6 (p. 144) shows the mean scores for overall faster motion justification 

types for motion down an incline. For each justification type used by children in their 

predictions of faster motion, a maximum score of 6 was obtainable. There was 

significant variation in mean scores for justification types in incline motion 

predictions, χ2(4, N = 144) = 188.78, p < .001. Object texture (M = 2.33, SD = 1.74) 

was used as a justification significantly more often than shape (M = 1.02, SD = 1.09), 

T = 6, r = -.53. There were no significant differences among shape, size and weight, 

but all three were used significantly more often than other reasons (all p < .001). 
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Figure 8.6 Mean scores for overall justification types in incline motion 

(Maximum possible score = 6) 

 

Figure 8.7 (p. 145) shows the distribution of scores by age group. The same general 

age effect pattern as for overall justifications was found. Use of weight increased 

with age, J = 5401, z = 5.83, r = .49, use of shape increased with age, J = 5221, z = 

5.04, r = .42, and use of texture increased with age, J = 4955, z = 3.88, r = .24. Size 

and other reasons did not vary significantly with age. 
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Figure 8.7 Mean scores for justification types in incline motion by age groups 

(Maximum possible score = 6) 

 

8.4.2.3 Motion in free fall 

 

Figure 8.8 (p. 146) shows the mean scores for overall faster motion justification 

types for motion in free fall. For each justification type used by children in their 

predictions of faster motion, a maximum score of 6 was obtainable. There was 

significant variation in mean scores for justification types in free fall motion 

predictions, χ2(4, N = 144) = 338.99, p < .001. Object weight (M = 4.38, SD = 2.02) was 

used as a justification significantly more often than size (M = 0.57, SD = 0.87), T = 10, 

r = -.81. Mean scores for size and other reasons did not differ significantly. Other 

reasons (M = 0.41, SD = 0.82) were used more often than texture (M = 0.10, SD = 

0.34), T = 4, r = -.35. Mean scores for texture and shape did not differ significantly. 
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Figure 8.8 Mean scores for overall justification types in free fall motion 

(Maximum possible score = 6) 

 

Figure 8.9 (p. 147) shows the distribution of scores by age group. The same general 

age effect pattern as for overall justifications was found. Use of weight increased 

with age, J = 6049, z = 8.12, r = .68, and use of size decreased with age, J = 2617, z = -

5.27, r = -.44. Shape, texture and other reasons did not vary significantly with age. 
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Figure 8.9 Mean scores for justification types in free fall motion by age groups 

(Maximum possible score = 6) 

 

8.4.3 Directions of justifications 

 

Figure 8.10 (p. 148) shows the mean scores for overall faster motion justification 

directions. For each justification direction used by children in their predictions of 

faster motion, a maximum score of 18 was obtainable. Faster motion was 

significantly associated with heaviness (M = 4.72, SD = 2.60) over lightness (M = 1.90, 

SD = 2.29), T = 8, p < .001, r = -.68, roundness (M = 3.18, SD = 2.09) over unevenness 

(M = 0.02, SD = 0.11), T = 10, p < .001, r = -.80, and smoothness (M = 2.21, SD = 1.80) 

over roughness (M = 0.35, SD = 0.75), T = 8, p < .001, r = -.67. No significant effect of 

justification direction was found for size. 
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Figure 8.10 Mean scores for overall directions of justification variables (Maximum 

possible score = 18) 

 

8.4.4 Motion along a horizontal 

 

Figure 8.11 (p. 149) shows the mean scores for overall faster motion justification 

directions for motion along a horizontal. For each justification direction, a maximum 

score of 6 was obtainable. 
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Figure 8.11 Mean scores for directions of justification variables in horizontal 

motion (Maximum possible score = 6) 

 

8.4.4.1 Object weight 

 

Overall, faster horizontal motion was significantly associated with lightness (M = 

1.10, SD = 1.30) over heaviness (M = 0.23, SD = 0.60), T = 6, p < .001, r = -.50. Among 

Year 1, Year 2 and Year 6 children, the same difference (all p < .05) was observed, 

and among Year 4 children there was no significant difference. 

 

8.4.4.2 Object size 

 

Overall, faster horizontal motion was significantly associated with smallness (M = 

1.56, SD = 1.30) over bigness (M = 0.57, SD = 1.00), T = 6, p < .001, r = -.48. Among 

Year 1, Year 2 and Year 6 children, the same difference (all p < .05) was observed, 

and among Year 4 children there was no significant difference. 
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8.4.4.3 Object shape 

 

Overall, faster horizontal motion was significantly associated with roundness (M = 

2.11, SD = 1.46) over unevenness (M = 0.01, SD = 0.07), T = 9, p < .001, r = -.77. 

Among all four age groups, the same difference (all p < .001) was observed. 

 

8.4.4.4 Object texture 

 

Overall, faster horizontal motion was significantly associated with smoothness (M = 

0.14, SD = 0.57) over roughness (M = 0.00, SD = 0.00), T = 2, p < .05, r = -.17. Among 

Year 6 children, faster motion was significantly associated with smoothness (M = 

0.31, SD = 0.82) over roughness (M = 0.00, SD = 0.00), T  = -2, p < .05, r = -.34. Year 1, 

Year 2 and Year 4 children made no reference to texture.  

 

8.4.5 Motion down an incline 

 

Figure 8.12 (p. 151) shows the mean scores for overall faster motion justification 

directions for motion down an incline. For each justification direction, a maximum 

score of 6 was obtainable. 
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Figure 8.12 Mean scores for directions of justification variables in incline motion 

(Maximum possible score = 6) 

 

8.4.5.1 Object weight 

 

Overall, faster motion down an incline was significantly associated with heaviness (M 

= 0.66, SD = 0.92) over lightness (M = 0.25, SD = 0.92), T = 5, p < .001, r = -.41. Among 

Year 4 and Year 6 children, the same difference (all p < .05) was observed, and 

among Year 1 and Year 2 children there was no significant difference. 

 

8.4.5.2 Object size 

 

Overall, faster motion down an incline was significantly associated with bigness (M = 

0.59, SD = 0.99) over smallness (M = 0.36, SD = 0.75), T = 6, p < .001, r = -.54. Year 1 

children showed a preference for smaller objects moving faster, T = 4, p < .001, r = -

.60, but among the three older age groups, the preference was for big objects 

moving faster (all p < .05). 
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8.4.5.3 Object shape 

 

Overall, faster motion down an incline was significantly associated with roundness 

(M = 1.01, SD = 1.08) over unevenness (M = 0.01, SD = 0.08), T = 8, p < .001, r = -.66. 

Among all four age groups, the same difference (all p < .05) was observed. 

 

8.4.5.4 Object texture 

 

Overall, faster motion down an incline was significantly associated with smoothness 

(M = 1.99, SD = 1.65) over roughness (M = 0.34, SD = 0.75), T = 8, p < .001, r = -.65. 

Among Year 2, Year 4 and Year 6 children, the same difference (all p < .001) was 

observed, and among Year 1 children there was no significant difference. 

 

8.4.6 Motion in free fall 

 

Figure 8.13 (p. 153) shows the mean scores for overall faster motion justification 

directions for motion in free fall. For each justification direction, a maximum score of 

6 was obtainable. 
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Figure 8.13 Mean scores for directions of justification variables in free fall motion 

(Maximum possible score = 6) 

 

8.4.6.1 Object weight 

 

Overall, faster motion in free fall was significantly associated with heaviness (M = 

3.83, SD = 1.95) over lightness (M = 0.55, SD = 0.91), T = 9, p < .001, r = -.77. Among 

all four age groups, the same difference (all p < .001) was observed. 

 

8.4.6.2 Object size 

 

Overall, faster motion in free fall was significantly associated with bigness (M = 0.50, 

SD = 0.86) over smallness (M = 0.07, SD = 0.26), T = 5, p < .001, r = -.43. Among Year 

1, Year 2 and Year 4 children, the same difference (all p < .05) was observed, and 

among Year 6 children there was no significant difference. 

 

8.4.6.3 Object shape 

 

Overall, faster motion in free fall was significantly associated with roundness (M = 

0.06, SD = 0.23) over unevenness (M = 0.00, SD = 0.00), T = 3, p < .05, r = -.24. No 
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significant differences were found for any of the four age groups when they were 

considered separately. 

 

8.4.6.4 Object texture 

 

Overall, faster motion in free fall was significantly associated with smoothness  (M = 

0.08, SD = 0.31) over roughness (M = 0.01, SD = 0.08), T = 3, p < .05, r = -.22. Year 2 

children made no reference to texture, and the other three age groups showed no 

significant preference for either. 

 

8.5 Discussion  

 

This study was an attempt to establish what general beliefs children hold about 

speed of different everyday objects following three different kinds of motion paths. 

It was not concerned with whether primary school children’s predictions about 

object motion were consistent with accepted scientific views or not, but instead it 

addressed the variables that affect children’s predictions about object motion, and 

how predictions and variable use compare across different motion types. 

 

8.5.1 Variables used in children’s justifications of object motion 

 

Children’s justifications about object motion could be grouped into five categories. 

Predictions were either made on the basis of object weight, object size, object 

shape, object texture, or other reasons. The last group included a range of reasons 

referring to attributes of the objects that did not fit into any of the other categories, 

such as “the truck will be faster than the car because it has more wheels than the 

car”, or reasons that were not necessarily attributes of the objects themselves, such 

as “the car will be faster than the truck because cars are faster than trucks in real 

life”. Overall, it would, at least at first glance, appear that the results are in 

concordance with Galili’s (2001) idea of weight being a rather important variable in 

reasoning about the physical world. Almost 40 per cent of all justifications in this 

study were weight-based. Where motion in free fall was concerned, weight 
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accounted for over 85 per cent of justifications. However, in horizontal motion 

weight only accounted for a quarter of justifications, and in incline motion for less 

than 20 per cent. Instead, horizontal motion justifications were dominated by size 

and shape (almost 40 per cent each), and incline motion justifications by texture (45 

per cent), with size and shape being used in about one fifth of cases, just like weight.  

 

Of course, the objects used in each of the motion types were different, thereby 

making cross-motion-type comparisons a little difficult. If the incline motion objects 

had been used to make predictions for horizontal motion and for free fall, perhaps 

texture would have outweighed the other variables as well (although it would seem 

unlikely for motion in free fall). In fact, the objects used for horizontal motion 

predictions do not really offer much obvious variation in texture. Younger children 

appeared to rely more on size than older children, and less on weight; it seems that 

only when visual aspects, that is, size or shape, could not account for any predicted 

differences in motion did they turn to the intrinsic variable (although this was only 

shown to be true for free fall motion – while the use of weight increased over age in 

all three motion types, size did not change over age in horizontal motion and incline 

motion). 

 

8.5.2 Directions of variables 

 

Not only was the study interested in what variables are used in children’s reasoning, 

but also with the directions of these variables in relation to object motion. The use of 

shape and texture as means of justification may be interesting per se, but the 

directions associated with faster speed are less so. When used as a justification, 

faster speed was, perhaps not unsurprisingly, almost always associated with 

roundness and smoothness of objects, no matter which motion type was concerned. 

However, where object weight and size are concerned, a different picture emerges 

from the results. Given the literature on understanding of object motion in free fall, 

it does not come as a surprise that here, too, children mainly associated faster 

motion with heavier objects across all ages, though children in the youngest age 

group also referred to size reasonably often, almost as frequently as to weight, and 
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faster motion was associated with bigger objects. Horizontal motion, on the other 

hand, was associated with lighter and smaller objects, again fairly consistently across 

all ages. This observation is in concordance with previous work suggesting that in 

horizontal scenarios children under the age of 12 years associate heavy objects with 

higher resistance to motion (Howe, 1991, as cited in Howe, 1998). There was, 

however, less consistency for incline motion. While younger children predicted faster 

motion for lighter and smaller objects, there was a clear shift in conceptions, with 

older children predicting faster motion for heavier and bigger objects. This, too, is 

consistent with prior work by Howe et al. (1992, as cited in Howe, 1998). 

 

8.5.3 Interaction of motion dimensions 

 

A final aspect the study was trying to investigate was how the three motion types are 

connected in terms of children’s reasoning about motion taking place. It might seem 

fair to conclude that motion in horizontal and motion in vertical dimensions are not 

considered in the same way, at least as far as justification directions are concerned. 

In fact, inverse pictures emerged for the two motion types – while faster motion 

along a horizontal was generally associated with small and light objects, faster 

motion in free fall was associated with big and heavy objects, and both views were 

held consistently over age. So indeed, the two motion types do seem to be 

differentiated psychologically from each other at least to some degree, lending 

support to previous ideas (Hayes, 1979; Howe, 1998).  

 

However, what about motion down an incline? Is it perceived to be an integration of 

horizontal and vertical dimensions, or do children treat it as a third, independent, 

dimension that bears no significant relation to either horizontal or vertical paths? 

This is a difficult question to answer on the basis of the present results. As 

mentioned already, object variable use in predictions varied among motion types, 

and this could of course suggest that children consider each motion type 

independently from the other. At the same time, however, the possibility of incline 

motion being an integration of horizontal and vertical motion cannot be refuted on 

the basis of the results either. In fact, the variance in justifications among motion 
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types was possibly more due to the difference in objects used and less due to the 

difference in motion dimensions per se. So children may indeed consider the three 

motion types as interrelated, but no answer can be provided at this point, only 

speculation. 

 

8.6 Summary 

 

Primary children are able to use a variety of variables when reasoning about motion 

of everyday objects. Five main justification variables were identified in this study. 

Although object shape and texture were always associated with faster motion in one 

variable direction only, that is, roundness and smoothness, weight and size varied 

somewhat in their directional associations with faster motion. Faster horizontal 

motion was consistently associated with lightness and smallness of objects, and 

faster vertical motion consistently with heaviness and bigness. Motion down an 

incline, on the other hand, was associated with lightness and smallness in younger 

children and with heaviness and bigness in older children. This would seem to be an 

indicator of conceptual change and thus supports the notion of early intervention.  
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CHAPTER 9:  

YOUNG CHILDREN’S EXPLICIT BELIEFS ABOUT MOTION USING A 

‘SCIENTIFIC’ APPARATUS (STUDY 2) 

 

9.1 Overview 

 

Clearly, a variety of variables are available to and used by children when predicting 

object motion, as shown in Study 1. The first chapter of this thesis showed, however, 

that the particular variable creating dissonance between Aristotelian and Newtonian 

physics is object weight. To further the first objective of this thesis – how variables 

affect children’s predictions of dynamic events – a more controlled study is 

presented here, which focuses on weight. 

 

The task of mental modelling, which was introduced in Chapter 2, is made easier 

when the object in question is in front of the reasoner acting to support the 

structure in imagination (e.g. Nersessian, 2002a). So if an entire apparatus is 

provided, rather than just the individual objects and having to imagine the 

environment in which they are supposedly moving, model-based reasoning should 

be facilitated. However, does it cause differences in results when children are 

provided with all information bar the dynamics, or is children’s understanding of 

motion sufficiently robust that they would not necessarily require any prompts in 

form of an apparatus? Also, as established in Study 1, object weight may indeed 

seem to be an important variable in children’s reasoning, consistent with Galili’s 

(2001) view. It was noted, however, that when reasoning about horizontal motion 

and about motion down an incline object texture, object shape and object size 

played important roles as well.  If object shape and object size are kept constant in 

comparisons and texture differences are minimal, will predictions be made based on 

object weight, and if so, what direction will justifications take?  

 

In order to appreciate naturalness of motion, changes in speed often need to be 

registered, that is, children need to show an understanding of acceleration or 
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deceleration, or at least an appreciation of their occurrence without necessarily 

needing to understand the details involved. As for the understanding of speed, 

explicit understanding of acceleration and deceleration, too, has been covered by 

some researchers (Champagne et al., 1980, as cited in McDermott, 1984; Kim & 

Spelke, 1992; Nachtigall, 1982; Piaget, 1970a; Raven, 1972; Trowbridge & 

McDermott, 1981). But there is no consistent age range among these studies; studies 

with children, for example, do not seem to have looked at speed changes in motion 

along a horizontal. And again, none of the studies integrated different motion 

dimensions. The current study was therefore an attempt to fill this gap in the 

literature. 

 

The second objective noted at the beginning of this thesis was addressing what can 

be said about children’s ideas as to how motion types inform each other, if they do 

so at all. While Study 1 was able to provide information on how children reason 

about object motion along different paths, a viable conclusion as to how these 

inform each other could not be drawn. Although differences in justifications 

emerged, these were quite possibly due to a different set of objects being used for 

each motion type, where there was no commonality in object variables across the 

three blocks. The previous literature, too, cannot provide an ultimate answer 

because there is a range of weight-related outcomes emerging from the research. In 

free fall, the research is relatively consistent, finding that faster motion is largely 

associated with heavy objects (Baker et al., 2009; Chinn & Malhotra, 2004; 

Nachtigall, 1982; Sequeira & Leite, 1992), and Study 1 confirmed this observation. In 

horizontal dimensions, however, faster motion sometimes seems to be associated 

with lighter objects (Maloney, 1988) and sometimes with heavier objects (Howe, 

1991, as cited in Howe, 1998). In incline motion, too, there appears to be no 

consistency, but here it is an issue within tasks rather than between studies (Howe et 

al., 1992, as cited in Howe, 1998; Inhelder & Piaget, 1958), with associations 

changing across age.  

 

With the exception of free fall, where one might expect to find faster motion to be 

associated with heavier objects in general, will faster motion in the other two 
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dimensions be associated more with heaviness or more with lightness of objects, 

given the same objects are used and the same children reason about all three 

dimensions? In the present study, therefore, the number of objects to be considered 

for comparison was reduced to two balls, and the same balls were used for 

predictions across all three motion types. Balls are useful objects in the present 

context, as they do not have high friction coefficients. This means that object friction 

does not play a crucial role, and comparisons between the three motion types and 

between two different incline heights could be established more easily. 

 

Furthermore, the current study attempted to investigate how children understand 

the interaction of incline height and motion changes. Do young children appreciate 

that when inclines are raised objects roll down faster and when inclines are lowered 

objects roll down slower? And do children make the same predictions regardless of 

object weight, or are different balls associated with different changes? The 

importance of this lies in the fact that changes in incline height cause changes in 

motion, even when the objects do not change their weight. Children’s beliefs about 

how object motion is affected by incline changes may contribute to appreciating 

how, if at all, horizontal and vertical dimensions affect children’s understanding of 

object motion in incline situations, or whether incline motion is treated as an 

independent dimension, much in the same way as horizontal and vertical dimensions 

are differentiated from each other (Hayes, 1979; Howe, 1998). Given the variances in 

reasoning observed within studies on incline motion (Howe et al., 1992, as cited in 

Howe, 1998; Inhelder & Piaget, 1958), can this be expected here, too, and if so, could 

this provide more information about how children reason about motion down 

inclines? 

 

9.2 Research questions 

 

1. If other variables are kept as constant as possible, how does weight affect 

primary school children’s predictions of motion in all three dimensions, that 

is, horizontal motion, motion down an incline, and motion in free fall? 

2. What is primary school children’s understanding of speed change? 
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3. How do motion dimensions compare, that is, do children hold the same 

beliefs about speed and speed change if they use the same objects when 

reasoning about motion along horizontals, motion down inclines and motion 

in free fall, or do the beliefs differ among dimensions? 

4. How do children reason about incline height changes and its effects on object 

speed, and how might this inform their reasoning about incline motion in 

general? 

 

9.3 Method 

 

9.3.1 Pilot study 

 

9.3.1.1 Participants 

 

As noted in Chapter 7, the pilot sample for the study consisted of 17 children (nine 

boys), which included three Year 1 children (two boys; age M = 5.57 years, SD = 

0.38), six Year 2 children (four boys; age M = 6.56 years, SD = 0.26), five Year 4 

children (three girls; age M = 8.30, SD = 0.13) and three Year 6 children (two girls; 

age M = 10.71, SD = 0.51). 

 

9.3.1.2 Materials 

 

Two test balls were used; one was a bright pink standard table tennis ball and one 

was a dark green solid glass marble similar in size to the table tennis ball (both 

approximately 4 cm in diameter, the table tennis ball weighing approximately 3 g 

and the marble weighing approximately 75 g). In addition, one practice ball was used 

as well, a standard squash ball (approximately 4 cm in diameter). The materials 

further consisted of a transparent acrylic tube of 101.5 cm length and with an 

internal diameter of 6.5 cm. The tube was marked at equal distances of 50 cm, 

beginning from the end point (referred to as Point A at 100 cm, Point B at 50 cm and 

Point C at 0 cm from the end), thus placing the starting point of motion at 1.5 cm 

inside the tube. A wooden frame allowed the tube to be placed at inclines of two 
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different angles such that the starting point of motion inside the tube could be at 

either 15 cm or 30 cm height. A paper track of 101 cm length and 10 cm width was 

placed underneath the opening of the tube when placed at an incline. The paper 

track was marked at equal distances of 50 cm, beginning from the tube exit (referred 

to as Point A at 0 cm, Point B at 50 cm and Point C at 100 cm from the end – Point A 

on the paper track was therefore at the same location as Point C along the tube), 

thus placing the opening of the tube, that is, the starting point of horizontal motion, 

at 1 cm into the paper track. The apparatus, without the paper track and set up as 

for the incline motion tasks, can be seen in Figure 9.1 (p. 163). In addition to the 

apparatus and objects, eight different questionnaires were used to guide the tasks 

and for the researcher to note children’s responses to questions (see the appendix, 

pp. 348-349, for a sample questionnaire). Only one questionnaire was used per child 

and the random selection of questionnaire determined the test condition for each 

child (as outlined below). 
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Figure 9.1 Apparatus and test balls used in Study 2, as set up for incline motion 

tasks with indications of the three points A, B and C relevant for the 

speed change questions 

 

9.3.1.3 Design 

 

There were four separate blocks within the assessment – two blocks on motion 

down an incline, one block on motion along a horizontal, and one block on motion in 

free fall. The horizontal motion blocks always came after the incline motion blocks 

because horizontal motion, in this case, followed on from motion down the incline, 

that is, because the objects needed to be in motion without the help of external 

factors such as having to push them. Incline comparisons were also paired together 

to facilitate instructions. For each condition there were altogether three control 

questions and 20 test questions. In four cases – in the second incline block and in the 

speed change tasks – comparisons needed to be made, that is, motion down a low 

height incline versus motion down a high height incline, or speed at different points 

along a path. These comparisons needed to be made for one ball only, either the 
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glass marble (‘heavy’) or the table tennis ball (‘light’). All comparisons within each 

condition were made with the same ball. 

 

9.3.1.4 Procedure 

 

The interviews took place outside of the classrooms but in an open and publicly 

accessible area of the school. Prior to a child joining, a questionnaire was selected at 

random. Upon arrival, the child was given general information about the study – that 

the researcher had brought a fun science experiment and that there were going to 

be some questions about it. It was made clear to the child that participation was 

voluntary and that completion of individual items or the study as a whole was not 

compulsory. Information regarding the child’s name, gender, year group and date of 

birth was already available from Study 1 and was not requested again. 

 

At the beginning of the first block the child was introduced to the apparatus, which 

was set up according to the first block in the respective condition, and was 

introduced to the three balls, which could be handled at any time, but the child was 

asked not to carry out any relevant motions with the objects when having to respond 

to the questionnaire items, that is, not to roll them across the table or deliberately 

let them fall. At the beginning of each block (with exception of the second incline 

block in each condition; the incline comparison block) the child was given a control 

question. This control question only required some general statement about what 

would happen to the practice ball if it were held into the tube and then released, 

that is that the ball would roll or fall down the tube. The same question was asked 

for the horizontal motion block but emphasis was placed on the ball’s behaviour 

along the track rather than the tube. This control question was asked to ensure the 

child understood the apparatus and was familiar with the general concepts of object 

motion involved. 

 

For the first incline motion block, regardless of incline height, the child was given the 

following first instruction (italics were stressed by the researcher in speech): 

“Imagine you have two tubes like this one next to each other, and they are exactly 
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the same. Then imagine you are holding both balls with your hands in the tube, like 

this [researcher demonstrated this action with hands]. If you let both of them go at 

the same time, do you think one of the two will roll down to the end of the tube 

faster, or do you think they will both roll as fast as each other?” For the free fall 

motion block, the child was given the following first instruction: “Imagine you have 

two tubes like this one next to each other, and they are exactly the same. Then 

imagine you are holding both balls with your hands in the tube, like this [researcher 

demonstrated this action with hands]. If you let both of them go at the same time, 

do you think one of the two will fall down to the bottom of the tube faster, or do you 

think they will both fall as fast as each other?” In subsequent questions within each 

block, only the question, not the description, was repeated using the new object 

pairs. For the second incline, the child was given the following first instruction: “Now 

watch this. If I put the tube here [researcher changes tube from high to low incline or 

vice versa], and you let this ball [researcher points out comparison ball] roll down 

the tube, do you think it will roll faster than before, or slower than before, or do you 

think it will roll as fast as it did before?” In the subsequent item within each block, 

only the question, not the description, was repeated. 

 

Horizontal motion was always considered to occur following the incline height used 

in the first incline block, and the apparatus was changed back to how it was set up in 

the first block. For the horizontal motion block, the child was given the following first 

instruction (italics were stressed by the researcher in speech): “Remember how we 

just pretended the two balls were rolling down at the same time? Imagine you have 

two tubes like this one next to each other again, and they are exactly the same. Now 

imagine you are holding the two balls into the tube, like this [researcher 

demonstrated this action with hands] and you let them go and they reach the 

bottom of the tube [researcher points out the tube exit] at the same time and the 

balls roll out along here, all the way to the end [researcher points along the paper 

track]. Do you think one of the two will roll to the end faster, or do you think they 

will both roll as fast as each other?” In the subsequent item within each block, only 

the question, not the description, was repeated. 
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Questions were asked about speed, time taken and distance travelled. In addition, 

each block, with the exception of the incline comparison block, comprised three 

questions relating to speed change, which succeeded the speed questions. The child 

was assured that the distances between Points A and B, between Points A and C, and 

between Points B and C, which were pointed out by the researcher, were the same 

before having to respond to the questions. Speed change questions only referred to 

speed and required a comparison of speeds for only one test ball, choice of ball 

depending on the condition, at Points A, B and C along the tube or the track. For 

each item in the block the child was given the following instruction: “If the ball rolls 

[or falls] from here to here [researcher points out the two Points in question], do you 

think it will be faster here [researcher points out first Point], or here [researcher 

points out second Point], or do you think it will be just as fast?” 

 

For each question on speed, there was a choice between three response 

possibilities: The child could select one of the two objects over another, or state that 

both would behave the same. In addition, the child was asked to provide 

justifications, that is, state why they had made their choices. For each question on 

speed change, there was also a choice between three response possibilities: The 

child could choose an increase in speed, a decrease in speed, or no change in speed. 

Justifications were not required. The child’s responses were noted on the 

questionnaire by the researcher. At the end of each block the child was given the 

option either to take a short break or to continue with the next block of questions. 

The apparatus was then modified as necessary. The procedure for the remaining 

three blocks was then the same as for the first block. Each interview lasted 

approximately 40 to 50 minutes for each child. 

 

9.3.1.5 Outcomes of the pilot study 

 

Due to the difficulties with group administration encountered in the piloting for 

Study 1, all of the children in Study 2 were assessed individually rather than in 

groups. No particular problems in the general structure of the sessions were 

revealed during the piloting. All children took an active interest in the apparatus and 
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the materials. Having the practice ball increased the children’s involvement and 

interest in the task in general, as well as their interaction with the apparatus.   

 

During the pilot study, questions were asked about speed, time and distance 

travelled. However, one particular difficulty was noted with this. This was with 

understanding questions referring to distance, where the children were asked, for 

example, whether one of the balls would fall or roll farther down the incline, or 

whether they would cover the same distance. It had been intended to function as a 

control question to suggest to the children that one variable, that is, distance, did 

not vary throughout the entire task. It became apparent, though, that this question 

was easily misunderstood. In the horizontal and incline motion scenarios it was not 

clear whether the children really understood that distance referred to motion up to 

the end point of the tube or the paper track only, rather than up to the point where 

the balls would stop moving, even though they had been asked the distance 

questions after the speed and time questions, for which the end points had been 

identified to the child by the researcher.  

 

It seems that in this case their decisions about speed and time affected their 

decisions about distance. However, placing the distance questions before the speed 

and time questions did not make a difference either. This miscomprehension was 

particularly noticeable in the free fall scenarios, though, where children claimed that 

the heavy ball (which was the one selected as being faster and taking less time by all 

the children in the pilot study) would fall a greater distance – despite neither ball 

being physically able to fall beyond the table on which the tube stood. The questions 

relating to distance were thus removed from the interviews during Study 2, and in 

each block there were therefore only two questions relating to speed, with one 

question referring to differences in speed and one question referring to differences 

in time taken. 
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9.3.2 Main study 

 

9.3.2.1 Participants 

 

As noted in Chapter 7, the Study 2 main sample consisted of 144 children (80 girls), 

which included 36 Year 1 children (20 girls; age M = 5.70 years, SD = 0.32), 36 Year 2 

children (21 girls; age M = 6.68 years, SD = 0.26), 36 Year 4 children (21 girls; age M = 

8.64, SD = 0.33) and 36 Year 6 children (18 girls; age M = 10.77, SD = 0.25). 

 

9.3.2.2 Materials  

 

The materials were the same as used in the pilot study. 

 

9.3.2.3 Design  

 

The general design was the same as in the pilot study. With the exception of the 

horizontal-incline order and the two incline blocks being together, the order of 

blocks and the order of comparisons within each block were randomised, giving 

eight different conditions, such that the questionnaires either began with the 

questions about objects rolling down one of the two inclines, or about objects in free 

fall (see Table 9., p. 169). Because of removing questions on distance travelled, for 

each condition there were altogether only three control questions and 17 test 

questions. Each child contributed to all four blocks. For each direction, that is, 

whenever the heavy ball and whenever the light ball was chosen to be faster, each 

child thus scored between 0 and 6 for the speed questions (for each block the score 

was between 0 and 2), between 0 and 2 for the incline comparison questions, and 

between 0 and 9 for the speed change questions (for each block the score was 

between 0 and 3). Equal numbers of children per age group were selected for each 

condition, that is, 12 children per age group were selected for each condition. 
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Table 9.1 Conditions in Study 2 

 Condition 

 1 2 3 4 5 6 7 8 

Incline 

comparisons
6
 

Heavy 

ball 

Light   

ball 

Heavy 

ball 

Light   

ball 

Heavy 

ball 

Light   

ball 

Heavy 

ball 

Light   

ball 

Block 1 
Incline at 15 cm 

(both balls) 

Incline at 30 cm 

(both balls) 

Free fall 

(both balls)  

Free fall 

(both balls) 

Block 2 
Incline at 30 cm 

(one ball) 

Incline at 15 cm 

(one ball) 

Incline at 15 cm 

(both balls) 

Incline at 30 cm 

(both balls) 

Block 3 
Horizontal  

(both balls) 

Horizontal 

(both balls) 

Incline at 30 cm 

(one ball) 

Incline at 15 cm 

(one ball) 

Block 4 
Free fall  

(both balls) 

Free fall 

(both balls) 

Horizontal 

(both balls) 

Horizontal 

(both balls) 

 

9.3.2.4 Procedure 

 

The general procedure was the same as in the pilot study but with distance-related 

questions removed. During the piloting, questions had been asked about speed, time 

and distance travelled, and it was noted that questions referring to distance 

travelled, where the children were asked, for example, whether one of the balls 

would fall or roll farther down the incline, or whether they would cover the same 

distance, appeared to be rather confusing. While it had only been intended as a 

control question to suggest that one variable, distance, did not vary throughout the 

task, it became apparent that the children easily misunderstood the question. In the 

horizontal and incline motion scenarios it was not clear whether the children really 

understood that distance referred to motion up to the end point of the tube or the 

paper track only, rather than up to the point where the balls would stop moving. This 

                                                 
6
 Incline comparisons (either in Block 2 – Conditions 1 to 4 – or in Block 3 – Conditions 5 to 8 – only 

needed to be made for two inclines with the same ball; the condition determines whether this was 

the heavy ball or the light ball. 
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miscomprehension was particularly noticeable with the free fall scenarios, where 

children claimed that one of the balls would fall a greater distance – despite neither 

ball being physically able to fall beyond the table on which the tube stood. The 

questions relating to distance were thus removed from the interviews during Study 

2, and in each block there were therefore only two questions relating to speed, with 

one question referring to differences in speed and one question referring to 

differences in time taken. The removal of the distance questions meant that each 

interview now lasted approximately 30 to 40 minutes for each child. 

 

9.4 Results 

 

9.4.1 Methods of analysis 

 

All children passed all control questions (where predictions had to be made for the 

practice ball), so data for all children qualified for analysis. Two justification types 

were identified from the responses. These were references to the objects’ weight or 

texture. Where justifications were made, reference was always made to weight. Very 

rarely was any reference made to texture of the balls, and where this was the case it 

was always in conjunction with weight. Weight was broken down into its two 

directions, ‘heavy’ and ‘light’. No misattribution of weight was observed, that is, no 

child stated the table tennis ball was heavier than the glass marble or vice versa. 

Data were collected in the form of response choices (see 9.3.2.3). In line with the 

physics of object motion (see Chapter 4) speed change was analysed in terms of 

acceleration, that is, speeding up, for free fall motion and for incline motion, and as 

deceleration, that is, slowing down, for motion along the horizontal. 

 

Kolmogorov-Smirnov tests on the normality of distribution of data showed that all 

distributions deviated significantly from normality. Therefore assumptions for 

parametric tests were not met. Wilcoxon signed-rank tests showed no significant 

differences between scores for questions asking about time taken and scores for 

questions asking about speed. Therefore the scores of the two sets were merged, 

that is, scores for ‘faster’ and ‘less time’ were grouped, to avoid reporting similar 
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results twice. Mean scores were analysed using Friedman’s ANOVAs and post hoc 

Wilcoxon signed-rank tests, with Bonferroni corrections applied (all significance 

thresholds p ≤ .025). Effects of gender and effects of ball type were analysed with 

Mann-Whitney tests. Effects of age and effects of conditions were analysed with 

Kruskal-Wallis tests and post hoc Jonckheere-Terpstra tests. No significant gender or 

condition effects were found, therefore these are not considered further. All data 

were analysed using PASW (Predictive Analytics Software, formerly SPSS) Statistics 

version 18. 

 

9.4.2 Speed 

 

Figure 9.2 (p. 172) shows the mean scores for overall faster motion response 

options, whether the heavy ball or the light ball would be faster, or whether the two 

would be the same. A maximum score of 6 was obtainable. There was significant 

variation among mean scores for response options, χ2(2, N = 144) = 208.80, p < .001. 

Different-speed options (M = 5.81, SD = 0.47) were chosen significantly more often 

than same-speed options (M = 0.19, SD = 0.47), T = 11, r = -.94. But there was no 

overall significant difference between choosing the heavy or the light ball as being 

faster.  
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Figure 9.2 Mean scores for overall response options (Maximum possible score = 

6) 

 

Figure 9.3 (p. 173) shows the mean scores for overall justification types by age 

groups. There was a significant interaction of age with mean scores for choosing the 

heavy ball as faster, H(3) = 28.22, p < .001. Mean scores increased with age, J = 5188, 

z = 4.84, r = .40. There was also a significant interaction of age with mean scores for 

choosing the light ball as faster, H(3) = 31.46, p < .001. Mean scores decreased with 

age, J = 2433, z = -5.38, r = -.45. There was no significant interaction of age with 

mean scores for same-speed options. 
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Figure 9.3 Mean scores for overall justification types by age groups (Maximum 

possible score = 6) 

 

9.4.2.1 Motion along a horizontal 

 

Figure 9.4 (p. 174) shows the mean scores for overall faster motion response options 

in the horizontal motion block, whether the heavy ball or the light ball would be 

faster, or whether the two would be the same. A maximum score of 2 was 

obtainable. There was significant variation among mean scores for horizontal motion 

response options, χ2(2, N = 144) = 191.85, p < .001. The light ball (M = 1.66, SD = 

0.57) was predicted significantly more often to be faster than the heavy ball (M = 

0.28, SD = 0.52), T = 9, r = -.78. The heavy ball being faster was predicted more 

frequently than making a same-speed prediction (M = 0.06, SD = 0.23), T = 11, r = -

.88. 
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Figure 9.4 Mean scores for response options in horizontal motion (Maximum 

possible score = 2) 

 

Figure 9.5 (p. 175) shows the mean scores for horizontal motion predictions by age 

groups. Age did not interact significantly with mean scores. Regardless of age, 

children consistently predicted the light ball to be faster. 
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Figure 9.5 Mean scores for predictions in horizontal motion by age groups 

(Maximum possible score = 2) 

 

9.4.2.2 Motion down an incline 

 

Figure 9.6 (p. 176) shows the mean scores for overall faster motion response options 

in the incline motion block, whether the heavy ball or the light ball would be faster, 

or whether the two would be the same. A maximum score of 2 was obtainable. 

There was significant variation among mean scores for response options, χ2(2, N = 

144) = 93.76, p < .001. There was no significant preference for predicting either of 

the balls as being faster. But both predicting the heavy ball to be faster (M = 1.00, SD 

= 0.84), T = 8, r = -.68, and predicting the light ball to be faster (M = 0.94, SD = 0.85), 

T = 8, r = -.65, was done significantly more often than choosing the same-speed 

option (M = 0.06, SD = 0.27). 

 



 176 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Heavy  Light  Same

Response option

M
ea

n
 s

co
re

 

Figure 9.6 Mean scores for response options in incline motion (Maximum 

possible score = 2) 

 

Figure 9.7 (p. 177) shows the mean scores for incline motion predictions by age 

groups. There was significant variation with age for predicting the heavy ball to be 

faster, H(3) = 54.91, p < .001, with mean scores increasing with age, J = 5875, z  

=7.54, r = .63. There was significant age variation for predicting the light ball to be 

faster, H(3) = 54.91, p < .001, with mean scores decreasing with age, J = 1908, z = -

7.54, r = -.63. There was no significant interaction of age with mean scores for same-

speed options. 

 



 177 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Year 1  Year 2  Year 4  Year 6

Age group

M
ea

n
 s

co
re

Heavy Light Same
 

Figure 9.7 Mean scores for predictions in incline motion by age groups 

(Maximum possible score = 2) 

 

9.4.2.3 Motion in free fall 

 

Figure 9.8 (p. 178) shows the mean scores for overall faster motion response options 

in the free fall motion block, whether the heavy ball or the light ball would be faster, 

or whether the two would be the same. A maximum score of 2 was obtainable. 

There was significant variation among mean scores for free fall motion response 

options, χ2(2, N = 144) = 197.26, p < .001. The heavy ball (M = 1.66, SD = 0.56) was 

predicted significantly more often to be faster than the light ball (M = 0.27, SD = 

0.49), T = 10, r = -.80. The light ball being faster was predicted more frequently than 

making a same-speed prediction (M = 0.06, SD = 0.23), T = 4, r = -.30. 
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Figure 9.8 Mean scores for response options in free fall motion (Maximum 

possible score = 2) 

 

Figure 9.9 (p. 179) shows the mean scores for free fall motion predictions by age 

groups. Age did not interact significantly with mean scores. Regardless of age, 

children consistently predicted the heavy ball to be faster. 

 

 

 

 



 179 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Year 1  Year 2  Year 4  Year 6

Age group

M
ea

n
 s

co
re

Heavy Light Same
 

Figure 9.9 Mean scores for predictions in free fall motion by age groups 

(Maximum possible score = 2) 

 

9.4.3 Incline height comparisons 

 

Figure 9.10 (p. 180) shows the mean scores for faster motion response options in 

incline comparisons, that is, where children had to compare motion down a high 

incline with the same ball’s motion down a low incline. A maximum score of 2 was 

obtainable. There was a significant interaction of incline change with mean scores, 

χ2(2, N = 144) = 50.01, p < .001. There was no overall significant preference for faster 

or slower motion as the incline changed, but both faster motion (M = 0.89, SD = 

1.01), T = 7, r = -.58, and slower motion (M = 1.00, SD = 1.01), T = 6, r = -.53, were 

significantly preferred over no change at all (M = 0.11, SD = 0.46). There was no 

overall age variation. There were no significant differences between the heavy ball 

and the light ball conditions for faster or slower motion, but there was a significant 

difference for same-speed choices, where the light ball (M = 0.25, SD = 0.64) was 

more likely to be attributed no change in speed than the heavy ball (M = 0.01, SD = 

0.11) as the incline changed, U = 2264, p < .05, r = -.24. 
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Figure 9.10 Mean scores for response options in incline height comparisons 

(Maximum possible score = 2) 

 

9.4.3.1 Incline height 

 

Figure 9.11 (p. 181) shows the mean scores for response options in incline 

comparisons by incline height change. A maximum score of 2 was obtainable. There 

was a significant difference in speed attribution for direction of incline height 

change. The balls were predicted to be faster (M = 1.69, SD = 0.68) rather than 

slower (M = 0.18, SD = 0.54) when the incline height was raised, T = 7, p < .001, r = -

.80. There was no significant difference between predicting them to be slower or 

unchanged. The balls were predicted to be slower (M = 1.57, SD = 0.80) rather than 

faster (M = 0.29, SD = 0.68) when the incline height was lowered, T = 6, p < .001, r = -

.68. There was no significant difference between predicting them to be faster or 

unchanged. Ball type had no significant effect on either of the incline height changes. 
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Figure 9.11 Mean scores for response options in incline height comparisons by 

incline height change (Maximum possible score = 2) 

 

9.4.4 Changes in speed 

 

For speed change, the children were required to compare speeds of one ball at 

Points A, B and C, which were indicated on the tube and along the horizontal. Figure 

9.12 (p. 182) shows mean scores for attributions of changes in speed, that is, 

whether speed changed or not. A maximum score of 3 was obtainable for each 

distance AB, AC and BC. Response scores varied significantly, χ2(2, N = 144) = 118.77, 

p < .001. While attribution scores for AB and AC did not differ significantly, both AB 

(M = 2.51, SD = 0.88), T = 8, r = -.67, and AC (M = 2.60, SD = 0.76), T = 8, r = -.64, 

received significantly more correct attributions than BC (M = 1.23, SD = 1.27).  
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Figure 9.12 Mean scores for attributions of speed change (Maximum possible 

score = 3) 

 

Figure 9.13 (p. 183) shows the mean speed change attribution scores by age groups. 

A maximum score of 3 was obtainable for each distance AB, AC and BC. Age 

interacted significantly with total attribution score, H(3) = 57.27, p < .001, with speed 

change attributions increasing with age, J = 5926, z = 7.39, r = .62. Similar age-score 

interactions were observed for attribution scores to all three distances (all p < .05). 
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Figure 9.13 Mean scores for attributions of speed change by age groups 

(Maximum possible score = 3) 

 

Figure 9.14 (p. 184) shows the mean speed change attribution scores by ball weight. 

A maximum score of 3 was obtainable for each distance AB, AC and BC. The weight 

of the ball interacted significantly with total attribution score, with more attribution 

of speed changes to the heavy ball (M = 6.73, SD = 1.91) rather than the light ball (M 

= 5.94, SD = 1.88), U = 2000, p < .05, r = -.20. This difference was significant for AB, U 

= 2074, p < .05, r = -.22, but not for AC or BC. 
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Figure 9.14 Mean scores for attributions of speed change by ball weight 

(Maximum possible score = 3) 

 

Figure 9.15 (p. 185) shows the distribution of mean scores for attributions of speed 

changes by motion type. A maximum score of 1 was obtainable for each distance AB, 

AC and BC in each of the three motion dimensions. Motion type interacted 

significantly with attributions, χ2(2, N = 144) = 65.00, p < .001. Incline scenarios did 

not receive significantly more attributions than free fall scenarios, but both incline 

scenarios (M = 2.28, SD = 0.73), T = 7, r = -.57, and free fall scenarios (M = 2.23, SD = 

0.69), T = 6, r = -.48, received significantly more attributions than horizontal 

scenarios (M = 1.83, SD = 0.85). For all three motion types, the attribution pattern 

was the same: Speed change was attributed to AB and AC significantly more often 

than to AB (all p < .025), but there were no differences in attribution between AB 

and AC.  
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Figure 9.15 Mean scores for attributions of speed change by motion type 

(Maximum possible score = 1) 

 

Figure 9.16 (p. 186) shows the distribution of mean scores for attributions of speed 

changes by motion type and by ball weight. A maximum score of 3 was obtainable 

for each motion dimension. Motion type and object weight interacted significantly. 

For motion along a horizontal, the heavy ball (M = 2.07, SD = 0.76) received more 

attributions of speed change than the light ball (M = 1.58, SD = 0.87), U = 1821, p < 

.05, r = -.27, meaning children were more likely to attribute a slowing down to the 

heavy ball. For motion in free fall, too, the heavy ball (M = 2.33, SD = 0.71) received 

more attributions of speed change than the light ball (M = 2.13, SD = 0.65), U = 2123, 

p < .05, r = -.17, meaning children were more likely to attribute a speeding up to the 

heavy ball. For motion down an incline, there was no significant difference between 

the two balls. 
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Figure 9.16 Mean scores for attributions of speed change by motion type and by 

ball weight (Maximum possible score = 3) 

 

9.5 Discussion 

 

This study aimed to further investigate findings from Study 1 but within a more 

controlled environment, also looking at whether children’s conceptions regarding 

object motion are consistent with accepted scientific views or not. Additionally, 

children’s appreciation of speed changes during motion was investigated, as speed 

changes occur frequently and are thus important in the appreciation of naturalness 

of motion. Finally, given that no conclusion could be drawn from Study 1 regarding 

the interrelation of the three motion types, this study aimed to provide more 

information towards how children might understand motion down an incline in 

terms of vertical and horizontal dimension interaction, if this does indeed inform 

incline motion. 

 

9.5.1 Directions of variables 

 

Using the two test balls enabled the control of a number of variables that emerged 

from children’s reasoning about object motion in Study 1. Size and shape were held 
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constant, and differences in texture were so minimal that almost no reference was 

made, and none of the children made any reference to texture on its own. Instead, 

with the exception of those children who made same-speed predictions, the 

children’s predictions were always made on the basis of the balls’ weights. Overall, 

there were no differences in predictions of faster motion between the two balls. 

However, there were differences across the motion type blocks. Consistent with 

Study 1 and previous work (e.g. Howe, 1991, as cited in Howe, 1998), faster 

horizontal motion was usually associated with the lighter ball. Also consistent with 

Study 1 and extensive previous research (e.g. Baker et al., 2009; Champagne et al., 

1980, as cited in McDermott, 1984; Chinn & Malhotra, 2002; Nachtigall, 1982; 

Sequeira & Leite, 1991; van Hise, 1988), faster motion in free fall was usually 

associated with the heavier ball, in both cases accounting for over 80 per cent of 

predictions. The frequency of these predictions for both dimensions was constant 

across all four age groups.  

 

Faster incline motion predictions, on the other hand, changed with age. Whilst 

younger children predicted faster motion for the lighter ball, older children predicted 

it for the heavier ball. It seems that there was not a particular age point where 

children suddenly switched from associating faster incline motion with lightness to 

associating it with heaviness. Instead, it seems to be a gradual process of change. 

This suggests that even though the changes go from one incorrect view to another 

incorrect view, without affecting same-speed predictions at all, there is little 

resistance to change in conceptions within the total age range, at least where 

motion down an incline is concerned. This is a crucial observation and lends much 

support to the notion that conceptual change should be tackled in the early years. 

Given the extensive literature on children’s prior conceptions and the mismatch 

between these and accepted scientific views, not only concerning children’s 

understanding of motion, it may come as no particular surprise that here, too, 

children held views about object speed that were incompatible with science. 

Regardless of direction of the responses, a staggering 97 per cent of speed task 

responses were in favour of differences in motion between the two balls. 
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9.5.2 Attribution of changes in speed 

 

Concerning attribution of changes in speed, children seem to appreciate that there 

must be a change in speed between a starting point and any subsequent point. Both 

attributions of speed change to AB and attributions of speed change to AC were 

made in over 80 per cent of cases each, but attributions of speed change to BC only 

in 40 per cent of cases. The rather high attribution rate for AB and AC could 

presumably be explained by the simple fact that at Point A in incline motion and 

motion in free fall motion did not take place, so at any subsequent point speed 

would be more than it was at Point A. This is rather similar to Piaget’s (1970a) 

observation of children initially perceiving acceleration in incline motion as a short 

and intensive effort, or Nachtigall’s (1982) similar findings in children’s 

understanding of speed changes in free fall motion. In horizontal motion, children 

probably hold the beliefs in a similar way, only inversely: As soon as a ball rolls along 

a horizontal upon leaving a diagonal dimension, it instantly slows down for a short 

while, therefore being slower at any point after leaving the tube, and then continues 

at a constant speed.  

 

The observation that the heavier ball was expected to slow down more often than 

the lighter ball can quite possibly be explained by children believing that light objects 

roll faster along a horizontal and weight being a hindrance to motion (cf. Howe, 

1991, as cited in Howe, 1998). Moreover, the change in speed from the diagonal to 

the horizontal dimension may suggest that children believe that objects have to slow 

down once there is no downward element of motion anymore – to the extent that 

incline motion can be considered in terms of downward motion. This would imply 

that children perceive incline motion to be affected by vertical dimensions, although 

as children get older, they may hold this association more strongly, given their 

predictions that the relationship between heavy and light objects rolling down 

inclines become more similar to their predictions than the relationship between the 

two when in free fall. 
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9.5.3 Interrelation of motion types 

 

Again, as in Study 1, it appears that for young children motion along a horizontal and 

motion in free fall do indeed seem to be distinguished from each other, as they 

affect the same objects in different ways, lending support to previous ideas (Hayes, 

1979; Howe, 1998). However as opposed to Study 1, where it was difficult to 

interpret children’s understanding of motion down an incline in terms of horizontal 

and vertical dimensions, it seems to be somewhat clearer from this study’s results. 

The same objects were used to assess understanding of all three motion types, 

enabling a better comparison. It would appear that, at least in terms of the objects 

used here, younger children associate motion down an incline more with motion 

along a horizontal than with motion in free fall, and that as age increases this 

association crosses over, such that as children get older they associate motion down 

an incline more with motion in free fall and less with motion along a horizontal. As 

with the directions of variables, even though the changes go from one incorrect view 

to another incorrect view, there is little resistance to change in conceptions. 

Therefore support is added to the notion that conceptual change should be engaged 

with early on. 

 

9.5.4 Incline comparisons 

 

One aspect that may contribute to understanding how the motion types interact is 

by looking at incline comparisons. Over 80 per cent of incline comparison predictions 

were consistent with accepted scientific views. Even the youngest children 

appreciated that an increase in the height of the incline would results in faster 

speed, regardless of the weight of the ball, or that a decrease in the height would 

result in slower speed. This is an interesting finding, as a change in incline has the 

same effect on any object, regardless of weight, as long as friction is overcome. 

Similar to Baillargeon and colleagues’ observation of a décalage in infant’s 

understanding of object support (cf. Baillargeon & Hanko-Summers, 1990; 

Baillargeon et al., 1992; Needham & Baillargeon, 1993), it would appear that there is 

a shift in conceptions of what incline motion entails in relation to the degree of 
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support it offers the objects. As aforementioned, the younger children associated 

faster incline motion with lightness, and older children associated it with heaviness. 

However, regardless of age the children seemed to understand that the interaction 

of horizontal and vertical dimensions and its effect on object motion changes with 

the degree of incline. It would thus seem reasonable to suggest that children’s 

notion of diagonal dimensions is informed both by horizontal and by vertical 

dimensions, but that the salience of dimensions changes with age – while younger 

children associate incline motion more with supported horizontal motion and 

therefore reason similarly about motion in those two dimensions, older children 

integrate elements of free fall more frequently into their conception of inclines, 

thereby reasoning similarly about those two dimensions. 

 

9.6 Summary 

 

Consistent with previous work, primary school children associate faster horizontal 

motion with lightness and faster free fall with heaviness of objects. What the 

literature could not provide was information on children’s understanding of motion 

down inclines, and the present study has begun to close this gap by showing that 

conceptions of incline motion vary with age. The children’s understanding of speed 

change appears to be limited and rarely goes beyond the simple intuitive notion of 

speed change happening as a short and intensive ‘spurt’ to begin with. However, 

attributions of speed change increased with age and would seem to have become 

more sophisticated in the sense that attributions not involving the starting point of 

motion were made much more frequently by older children. Varying incline heights 

has helped to further the understanding of how children understand diagonal 

dimensions and how supported horizontal motion and unsupported free fall motion 

may affect their understanding of incline motion. 
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CHAPTER 10: 

ASSESSING YOUNG CHILDREN’S EXPLICIT BELIEFS ABOUT MOTION 

USING A COMPUTER-PRESENTED TASK (STUDY 3) 

 

10.1 Overview 

 

The third objective mentioned at the beginning of this thesis was to see whether 

alternative knowledge sources might be accessible that could facilitate conceptual 

change, as Chapter 2 indicated that the current approaches bear limited success. The 

results from Study 2 have suggested that children’s explicit verbalised conceptions of 

object motion are somewhat limited and bear a striking resemblance to naïve 

Aristotelian views, as noted in Chapter 1. Earlier in this thesis, in Chapter 3, it was 

questioned whether alternative knowledge sources might be available to tap, and it 

emerged that tacit understanding might indeed be present. However, to enable a 

better comparison between explicit prediction tasks and tacit judgement tasks, for 

which computers are deemed to be extremely helpful (see Chapter 3), it is crucial to 

establish whether explicit beliefs about motion can be assessed by using computers 

as well, and to see how these results compare with those of real-object tasks, as was 

done in Study 1 and Study 2. 

 

ICT is being used increasingly within schools in the United Kingdom, and the National 

Curriculum for England (Department for Education and Employment, 1999) 

emphasises the need for teachers to incorporate ICT in their teaching, even at the 

primary school level. The benefit and potential of computer-based teaching have 

been recognised in a range of recent publications, as laid out in the introductory 

Chapter 3 (e.g. Barton, 2004; Glover et al., 2005; Holliman & Scanlon, 2004; Murphy, 

2003; L. R. Newton & Rogers, 2001; Smith et al., 2005). At the school involved in the 

present research, too, almost two thirds of teaching is aided by ICT, and the children 

have considerable hands-on experience with a variety of the equipment used, even 

in the youngest age group (see Table 7.1, p. 127). This experience ought to be made 

use of. 
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The key question asked in the present study was thus whether children’s explicit 

knowledge could be assessed via computers in a comparable manner to assessing it 

via real-life object tasks, as was done in Study 1 and Study 2, by essentially 

replicating Study 2, and whether the results would be comparable to those of Study 

2. Regardless of the results that emerge, it seems that using computers as a medium 

to assess young children’s explicit understanding of object motion might bear at 

least three advantages over real-life object tasks within the current research 

framework. Two of these advantages are theoretical in their nature, and the third 

advantage is of a more practical nature. 

 

One theoretical advantage in the current work is that in addition to providing 

information about children’s beliefs, computers can also enable the recording of 

accurate measures of response times. Response times could contribute to furthering 

understanding of young children’s explicit conceptions of object speed and 

acceleration. For example, are some tasks perhaps easier for children than others; do 

they find it easier to reason about motion in one particular dimension than in 

others? If so, then – whilst keeping the tasks as constant as possible across the 

motion types – children should spend more time on tasks they find difficult and that 

require more thinking. 

 

The second theoretical advantage of using computers to assess explicit knowledge is 

that the findings about explicit beliefs can be related more readily to children’s 

possible tacit understanding about the same phenomena by assessing both kinds of 

knowledge using the same medium, that is, computers. As has been established in 

the introductory chapters, computers could be useful tools in the investigation of 

tacit knowledge. This second advantage leads on to the practical advantage of using 

computers, which is the application of the work to the classroom. The use of ICT in 

schools has already been mentioned above. In light of the fact that the current 

research as a whole is concerned with being able to provide information contributing 

towards the possible establishment of conceptual change programmes within early 

science education, it was hoped that this study could provide data about the effect, 

if any, of computers on explicit knowledge assessment. 
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10.2 Research questions 

 

1. Can primary school children’s explicit beliefs about object speed and speed 

change be assessed using computer-presented tasks resulting in similar 

outcomes to real-object tasks? 

2. Can computers provide more information about children’s explicit beliefs by 

considering response time data? 

 

10.3 Method 

 

10.3.1 Pilot study 

 

10.3.1.1 Participants 

 

As noted in Chapter 7, the pilot sample for the study consisted of 17 children (nine 

boys), which included three Year 1 children (two boys; age M = 5.96 years, SD = 

0.38), six Year 2 children (four boys; age M = 6.94 years, SD = 0.26), five Year 4 

children (three girls; age M = 8.65, SD = 0.13) and three Year 6 children (two girls; 

age M = 11.05, SD = 0.51). 

 

10.3.1.2 Materials 

 

The scenarios were created using PowerPoint. The speed scenarios and incline 

comparison scenarios each consisted of two pictures, A and B, which showed the 

apparatus used in Study 2. The test balls used in Study 2 – a bright pink table tennis 

ball and a dark green solid glass marble – could be seen in the scenarios. Below the 

pictures were three brief possible ball motion comparison outcomes written in large 

font against coloured backgrounds. The options read “A is faster”, “B is faster” and 

“Same speed” for speed question scenarios, and “A takes longer”, “B takes longer”, 

and “Same time” for time question scenarios. Background colours always remained 

in the same order but the same options were in different locations in different trials, 

that is, the response-colour combinations varied. An example of a scenario is shown 
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in Figure 10.1 below. Furthermore, the apparatus and test balls from Study 2 were 

also used in this study (see Figure 9.1, p. 163). 

 

 

Figure 10.1 Example scenario of speed task in Study 3; comparisons have to be 

made between Ball A and Ball B in their speed to reach point X at the 

end of the tube if released simultaneously 

  

The speed change scenarios each consisted of one picture, which showed the 

apparatus used in Study 2, and one test ball – either the table tennis ball or the glass 

marble. Along the tube or the horizontal three points, A, B and C, were pointed out. 

Below the picture were again three brief possible ball motion comparison outcomes 

written in large font against coloured background. The options read “Faster at A”, 

“Faster at B” and “Same speed” for speed question scenarios where speed change 

for the distance AB needed to be considered. Equivalent options were prepared for 

the distance AC and for the distance BC. An example of a scenario is shown in Figure 

10.2 (p. 195).  
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Figure 10.2 Example scenario of speed change task in Study 3; comparisons need 

to be made between the ball’s speeds at Point A and at Point B 

 

In addition to the test scenarios, there were practice scenarios consisting of 

PowerPoint slides on which small and large squares were shown, again with three 

options to choose from (“A is bigger”, “B is bigger”, “Same size”). An example of a 

practice scenario is shown in Figure 10.3 (p. 196). 
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Figure 10.3 Example scenario of practice trials in Study 3 

 

The trials were presented using DMDX (Forster & Forster, 2003), a computer 

program that allows the recording of response choices as well as response times. The 

software was run on a Sony VAIO VGN-NR21J laptop. Connected to the laptop was 

an external 15” LCD colour monitor via which the scenarios were presented to the 

participants. An external KeySonicTM Nano Keyboard ACK-3400U, also connected to 

the laptop, was used for responses to the scenarios. The keyboard was masked to 

reduce distractions from unnecessary keys. Three keys were indicated by colour on 

the masking. The DMDX programme was set up to only allow these three keys to 

function, the other keys were disabled. One key was on the centre of the keyboard 

(the yellow key), the other two were on the left (the red key) and on the right (the 

blue key) end of the keyboard, in the same row as the centre key (see Figure 10.4, p. 

197).  
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Figure 10.4 Computer screen and keyboard used in Study 3 

 

The three key colours referred to the three response options given in the scenarios. 

Each response had a different background colour; the response on the left had a red 

background, the response in the middle had a yellow background, and the response 

on the right had a blue background. To choose the left response with the red 

background the red key had to be pressed, to choose the middle response with the 

yellow background the yellow key had to be pressed, and to choose the right 

response with the blue background the blue key had to be pressed. Each trial could 

be set so that it could only be seen for up to 60 seconds, after which a new trial 

would start without recording a response if none was made within the 60 seconds. 
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10.3.1.3 Design 

 

There were eight separate blocks within the assessment – one practice block, five 

blocks on speed, and three blocks on speed change. Of the speed blocks, two were 

on motion down an incline, one was on motion along a horizontal, and one was on 

motion in free fall. Of the speed change blocks, there was one for each of the three 

motion dimensions. As in Study 2, the horizontal motion blocks always came after 

the incline motion blocks because horizontal motion, in this case, followed on from 

motion down the incline, that is, because the objects needed to be in motion 

without the help of external factors such as having to push them. Incline 

comparisons were also paired together. Conditions all had the practice block first, 

then the speed blocks and then the speed change blocks. All blocks consisted of six 

trials each, with each individual trial appearing twice within a block. The order of 

blocks was known to the researcher, but the order of trials was not. For each 

condition there were altogether six practice questions and 42 test questions. Like in 

Study 2, in four cases – in the second incline block and in the speed change tasks – 

comparisons needed to be made, that is, motion down a low height incline versus 

motion down a high height incline, or speed at different points along a path. These 

comparisons needed to be made for one ball only, either the glass marble (‘heavy’) 

or the table tennis ball (‘light’). All comparisons within each condition were made 

with the same ball. 

 

10.3.1.4 Procedure 

 

Children were assessed on an individual basis. The task was carried out outside of 

the classrooms but in an open and publicly accessible area of the school. The 

apparatus of transparent tube and incline frame used in Study 2 and shown in the 

trials was present at all times and was set up as for the incline tasks (see Figure 9.1, 

p. 163). Prior to a child joining, the computer program was set up and a condition 

was selected at random. The necessary information for each child was entered at 

this point. Upon arrival, the child was reminded about the previous task in Study 2 

and was shown the apparatus used, and was told that this time there would be a 
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computer where they would see pictures of the apparatus and hands holding the 

test balls into the tube, and that the child would have to answer questions about the 

pictures. The two test balls used in Study 2 and shown in the computer-presented 

scenarios – the table tennis ball and the glass marble – were made available to the 

child at this point, and the child could handle them at any time but was asked not to 

carry out any relevant motions with the objects when having to respond to the 

computer scenario items, that is, not to roll them across the table or deliberately let 

them fall. It was made clear to the child that participation was voluntary and that 

completion of individual items or the study as a whole was not compulsory. 

 

The child first saw a blank screen, and the researcher familiarised the child with the 

monitor and the keyboard. The researcher asked the child to point out each key 

according to its colour. The child was then asked to press the yellow key. This elicited 

an introduction to the materials. The child saw a series of diagrams of the monitor 

and keyboard. The researcher used the diagrams to explain the procedure to the 

child, showing the link between response choices and keys to press. At the end of 

the introduction, the child was told that there would be some very easy trials to 

practice the use of the keyboard. This practice block consisted of six simple 

questions, where the sizes of two squares had to be compared, that is, whether one 

square was bigger or smaller than the other, or if they were the same size.  

 

If children were unable to read the options, the researcher followed the trials and for 

each trial gave the child instructions. The instruction given by the researcher always 

corresponded to the particular trial on the screen; response-colour combinations 

varied (that is, while background colours remained in the same order, response 

options varied in their location across trials) but responses were always read out 

from left to right. To avoid any top-bottom or left-right confusion, the researcher 

pointed to the picture in question and the corresponding response option each time. 

In the practice trials the researcher would say to the child: “If you think the square 

on the top [researcher points at picture A] is bigger, press the red key. If you think 

the square on the bottom [researcher points at picture B] is bigger, press the yellow 
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key. If you think they are both [researcher points at pictures A and B] the same size, 

press the blue key.”  

 

Each of the test blocks consisted of six questions, three relating to speed predictions 

and three relating to time predictions. All six questions required a comparison of the 

two test balls, that is, whether one of the two would be faster or take less time than 

the other to reach the end of the tube or the end of the track, or if speed or time 

taken would be the same for both. The incline comparison block consisted of 

questions where a comparison had to be made for only one test ball, that is, whether 

after raising or lowering the incline height the ball would change its speed, or 

whether there would be a change in time taken to reach the end of the tube or track. 

For this, the scenarios showed both the low height incline and the high height incline 

with the same ball. If required, the child was given the following instructions: “If you 

think the ball on the top [researcher points at picture A] will roll faster, press the red 

key. If you think the ball on the bottom [researcher points at picture B] will roll 

faster, press the yellow key. If you think they will both [researcher points at pictures 

A and B] roll at the same speed, press the blue key.” In the case of free fall trials, a 

left/right rather than top/bottom distinction was made. The speed change trials 

required a comparison of speeds for again only one test ball, the same ball as used 

for the incline comparison block, choice of ball depending on the condition. If 

required, the child was given the following instructions: “If you think the ball will be 

faster at Point A [researcher points at Point A], press the red key. If you think the ball 

will be faster at Point B [researcher points at Point B], press the yellow key. If you 

think the ball will have the same speed at both points [researcher points at Points A 

and B], press the blue key.” 

 

At the end of the block, the child was given the option to either take a short break or 

continue with the next block. Before each block the child was told which scenario 

type to expect, that is, motion down an incline, motion along a horizontal or motion 

in free fall. When horizontal motion trials were to come, the child was told that the 

balls had rolled down the inclines such that they reached the end of the tube at the 

same time. The task lasted approximately 20 to 25 minutes for each child. 
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10.3.1.5 Outcomes of the pilot study 

 

During the first session of the pilot study the children were asked to explain how 

they would respond to the questions, that is, state which key they would press and 

why they would press it. This was to ensure that the prediction statements were 

clear enough for the children, and that the process of matching statement 

backgrounds with key colours was understood. As the piloting was not concerned 

with collecting data or information about response times, it was not crucial that the 

children responded as quickly or even accurately as they would in the main study. 

Trials were therefore set to last until a response was made, giving the children time 

to explain their choices. No difficulties in understanding instructions or the computer 

apparatus were registered. The second set of children received the task without 

having to explain their response processes. Here, the trial length was put to the test, 

and each trial was set to last for 60 seconds only. 

 

One problem that had been considered likely to arise was the children’s ability, or 

lack thereof, to read the prediction statements, due to age and reading levels rather 

than font size or simplicity of the statements. This was a particular concern with the 

children from the youngest age group. However, the pilot study showed that having 

the researcher read out the responses to the children, where necessary, did not 

seem to have an impact on the children’s ability to understand the statements or on 

making decisions. In addition to explaining choices in the first session, the children 

were also asked to read out the statements, where possible, and where children 

were able to read, no difficulties in understanding the statements were apparent. 

Hence during the practice trials in the main study it became clear whether a child’s 

reading ability was sufficient for the child to complete the blocks alone, or whether 

the researcher needed to read out the replies.  
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10.3.2 Main study 

 

10.3.2.1 Participants  

 

The Study 3 main sample consisted of 127 children (69 girls) from the sample noted 

in Chapter 7, which included 27 Year 1 children (14 girls; age M = 6.14 years, SD = 

0.33), 32 Year 2 children (18 girls; age M = 7.03 years, SD = 0.26), 34 Year 4 children 

(20 girls; age M = 9.02, SD = 0.30) and 34 Year 6 children (17 girls; age M = 11.00, SD 

= 0.24). An additional 16 children participated but were excluded from data analysis 

due to insufficient completion of the practice trials, not completing the study, or 

technical errors, and one child left the school between Study 2 and Study 3 and could 

therefore not take part anymore. 

 

10.3.2.2 Materials 

 

The materials were the same as used in the pilot study, but the trial length was set to 

last for 60 seconds only for all children. 

 

10.3.2.3 Design 

 

The general design was the same as in the pilot study. With the exception of the 

horizontal-incline order and the two incline blocks being together, as well as 

separating practice, speed and speed change blocks, the order of blocks and the 

order of comparisons within each block were randomised, giving altogether eight 

different conditions (see Table 10.1, p. 203). Altogether there were eight conditions 

with eight blocks in each condition. Each child contributed to all eight blocks. In each 

trial there were always three options to choose from. For the speed task choices 

each child scored between 0 and 18 (for each block the score was between 0 and 6), 

for the incline comparison task block choices each child scored between 0 and 6, and 

for the speed change task choices each child scored between 0 and 18 (for each 

block the score was between 0 and 6). Approximately equal numbers of children per 

age group were selected for each condition. Overall, there were 17 children per 
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condition, with the exception of Condition 5 for which only 16 children were 

selected. From each age group, four children were selected for each condition, and 

the remaining seven children were distributed over the eight conditions at random, 

one child per condition – Condition 5 was not allocated an additional child. 

 

Table 10.1 Conditions in Study 3 

 Condition 

 1 2 3 4 5 6 7 8 

Motion 

direction 
Left to right Right to left Right to left Left to right 

Comparisons
7
 

Heavy 

ball 

Light  

ball 

Heavy 

ball 

Light  

ball 

Heavy 

ball 

Light  

ball 

Heavy 

ball 

Light  

ball 

Block 1 Practice trials 

Block 2 
Incline at 15 cm 

(both balls) 

Incline at 30 cm 

(both balls) 
Free fall (both balls) Free fall (both balls) 

Block 3 
Incline comparison 

(one ball) 

Incline comparison 

(one ball) 

Incline at 15 cm 

(both balls) 

Incline at 30 cm 

(both balls) 

Block 4 
Horizontal (both 

balls) 

Horizontal (both 

balls) 

Incline comparison 

(one ball) 

Incline comparison 

(one ball) 

Block 5 Free fall (both balls) Free fall (both balls) 
Horizontal (both 

balls) 

Horizontal (both 

balls) 

Block 6 Incline speed change (one ball) Free fall speed change (one ball) 

Block 7 Horizontal speed change (one ball) Incline speed change (one ball) 

Block 8 Free fall speed change (one ball) Horizontal speed change (one ball) 

 

 

 

                                                 
7
 Incline comparisons (either in Block 3 – Conditions 1 to 4 – or in Block 4 – Conditions 5 to 8 – only 

needed to be made for two inclines with the same ball. Speed change comparisons between Points A, 

B and C (Blocks 6 to 8) also only needed to be made with one ball. The condition determines whether 

this was the heavy ball or the light ball. 
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10.3.2.4 Procedure 

 

The general procedure was the same as in the pilot study; the piloting revealed no 

inadequacies in the procedure that needed to be addressed. 

 

10.4 Results 

 

10.4.1 Method of analysis  

 

In order for data to be considered for analysis, children had to correctly complete at 

least 4 out of the 6 practice trials and had to complete the study. 127 of the 143 

children who participated were able to fulfil these requirements, so their data 

qualified for analysis. Data were collected in the form of response choices (see 

10.3.2.3). In line with the physics of object motion (see Chapter 4) and with the 

analysis procedure of Study 2, speed change was analysed in terms of acceleration, 

that is, speeding up, for free fall motion and for incline motion, and as deceleration, 

that is, slowing down, for motion along the horizontal. Data were also collected in 

form of response times. Age differences were not considered for analysis in the case 

of response times because of the differences in methodology (reading out to 

children or not). It would have been too difficult to take into account individual 

reading times. 

 

Kolmogorov-Smirnov tests on the normality of distribution of data showed that all 

distributions deviated significantly from normality. Therefore assumptions for 

parametric tests were not met. Wilcoxon signed-rank tests showed no significant 

differences between scores for questions asking about time taken and scores for 

questions asking about speed. Therefore the scores of the two sets were merged, 

that is, scores for ‘faster’ and ‘less time’ were grouped, to avoid reporting similar 

results twice. Mean scores and mean response times were analysed using 

Friedman’s ANOVAs and post hoc Wilcoxon signed-rank tests, with Bonferroni 

corrections applied (all significance thresholds p ≤ .025 except where specified 

otherwise). Correlations were analysed using Kendall’s tau tests. Effects of gender, 
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effects of handedness and effects of ball type were analysed with Mann-Whitney 

tests. Effects of age and effects of condition were analysed with Kruskal-Wallis tests 

and post hoc Jonckheere-Terpstra tests. No significant gender, handedness or 

condition effects were found, therefore these are not considered further. All data 

were analysed using PASW (Predictive Analytics Software, formerly SPSS) Statistics 

version 18. 

 

10.4.2 Speed 

 

Figure 10.5 (p. 206) shows the mean scores for overall faster motion response 

options, whether the heavy ball or the light ball would be faster, or whether the two 

would be the same. A maximum score of 18 was obtainable. There was a significant 

interaction of prediction statement choice with mean scores, χ2(2, N = 127) = 156.88, 

p < .001. Different-speed statements (M = 17.02, SD = 1.74) were chosen significantly 

more often than same-speed statements (M = 0.98, SD = 1.74), T = 10, r = .90. There 

was an overall significant preference to choose statements where the heavy ball (M 

= 9.33, SD = 3.85) was faster than the light ball (M = 7.69, SD = 3.69), T = 3, r = .26.  
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Figure 10.5 Mean scores for overall response options (Maximum possible score = 

18) 

 

Figure 10.6 (p. 207) shows the mean scores for overall justification types by age 

groups. There was a significant interaction of age with response options, both for 

choosing statements where the heavy ball was faster, H(3) = 42.69, p < .001, and for 

choosing statements where the light ball was faster, H(3) = 45.22, p < .001, but not 

for same-speed statements. 
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Figure 10.6 Mean scores for overall justification types by age groups (Maximum 

possible score = 18) 

 

10.4.2.1 Motion along a horizontal 

 

Figure 10.7 (p. 208) shows the mean scores for overall faster motion response 

options in the horizontal motion block, whether the heavy ball or the light ball would 

be faster, or whether the two would be the same. A maximum score of 6 was 

obtainable. There was a significant interaction of prediction statement choice with 

mean scores, χ2(2, N = 127) = 149.99, p < .001. There was a significant preference to 

choose statements where the light ball (M = 4.88, SD = 1.93) was faster than the 

heavy ball (M = 0.71, SD = 1.62), T = 8, p < .001, r = -.75, but there was no significant 

difference between choosing statements where the heavy ball was faster or 

choosing the same-speed options. 
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Figure 10.7 Mean scores for response options in horizontal motion (Maximum 

possible score = 6) 

 

Figure 10.8 (p. 209) shows the mean scores for horizontal motion predictions by age 

groups. Age did not interact significantly with mean scores. Regardless of age, 

children consistently predicted the light ball to be faster. 
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Figure 10.8 Mean scores for predictions in horizontal motion by age groups 

(Maximum possible score = 6) 

 

10.4.2.2 Motion down an incline 

 

Figure 10.9 (p. 210) shows the mean scores for overall faster motion response 

options in the incline motion block, whether the heavy ball or the light ball would be 

faster, or whether the two would be the same. A maximum score of 6 was 

obtainable. There was a significant interaction of prediction statement choice with 

mean scores, χ2(2, N = 127) = 53.41, p < .001. There was no significant preference for 

choosing either of the statements where one ball was faster than the other, but both 

the heavy ball statements (M = 3.34, SD = 2.84), T = 8, r = -.69, and the light ball 

statements (M = 2.39, SD = 2.81), T = 6, r = -.57, were chosen significantly more often 

than the same-speed options (M = 0.27, SD = 0.98). 
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Figure 10.9 Mean scores for response options in incline motion (Maximum 

possible score = 6) 

 

Figure 10.10 (p. 211) shows the mean scores for incline motion predictions by age 

groups. There was significant age variation for choosing statements where the heavy 

ball was faster, H(3) = 51.67, p < .001, with mean scores increasing with age, J = 

4573, z  =7.35, r = .65, and there was significant age variation for choosing 

statements where the light ball was faster, H(3) = 52.50, p < .001, with mean scores 

decreasing with age, J = 1488, z = -7.32, r = -.65. There was no significant interaction 

of age with mean scores for same-speed options. 
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Figure 10.10 Mean scores for predictions in incline motion by age groups 

(Maximum possible score = 6) 

 

10.4.2.3 Motion in free fall 

 

Figure 10.11 (p. 212) shows the mean scores for overall faster motion response 

options in the free fall motion block, whether the heavy ball or the light ball would 

be faster, or whether the two would be the same. A maximum score of 6 was 

obtainable. There was a significant interaction of prediction statement choice with 

mean scores, χ2(2, N = 127) = 174.66, p < .001. There was a significant preference to 

choose statements where the heavy ball (M = 5.28, SD = 1.87) was faster than the 

light ball (M = 0.41, SD = 1.47), T = 9, r = -.82, but there was no significant difference 

between choosing statements where the light ball was faster or choosing the same-

speed options.  

 



 212 

0

1

2

3

4

5

6

Heavy  Light  Same

Response option

M
ea

n
 s

co
re

 

Figure 10.11 Mean scores for response options in free fall motion (Maximum 

possible score = 6) 

 

Figure 10.12 (p. 213) shows the mean scores for horizontal motion predictions by 

age groups. Age did not interact significantly with mean scores. Regardless of age, 

children consistently predicted the heavy ball to be faster. 
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Figure 10.12 Mean scores for predictions in free fall motion by age groups 

(Maximum possible score = 6) 

 

10.4.3 Incline height comparisons 

 

Figure 10.13 (p. 214) shows the mean scores for response options in incline 

comparisons, that is, where children had to compare motion down a high incline 

with the same ball’s motion down a low incline. A maximum score of 6 was 

obtainable. There was a significant interaction of incline change with mean scores, 

χ2(2, N = 127) = 37.91, p < .001. There was no overall significant preference for 

statements of faster or slower motion as the incline changed, but both faster motion 

statements (M = 2.72, SD = 2.79), T = 6, r = -.53, and slower motion statements (M = 

2.76, SD = 2.82), T = 6, r = -.55, were significantly preferred over no change at all (M = 

0.53, SD = 1.41).  There was no overall age variation. There were no significant 

differences between the heavy ball and the light ball conditions for faster or slower 

motion statements, but there was a significant difference for same-speed 

statements, where the light ball (M = 0.85, SD = 1.81) was more likely to be 

attributed no change in speed than the heavy ball (M = 0.15, SD = 0.48) as the incline 

changed, U = 1708, p < .05, r = -.19. 
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Figure 10.13 Mean scores for response options in incline height comparisons 

(Maximum possible score = 6) 

 

Figure 10.14 (p. 215) shows the mean scores for response options in incline 

comparisons by incline height change. A maximum score of 6 was obtainable. There 

was a significant difference in speed attribution for direction of incline change; 

prediction statements were chosen where the balls were predicted to be faster (M = 

5.15, SD = 1.67) rather than slower (M = 0.30, SD = 0.92) when the incline was raised, 

T = 7, p < .001, r = -.86, and slower (M = 5.05, SD = 1.92) rather than faster (M = 0.47, 

SD = 1.37) when the incline was lowered, T = 7, p < .001, r = -.81. 
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Figure 10.14 Mean scores for response options in incline height comparisons by 

incline height change (Maximum possible score = 6) 

 

10.4.3.1 Incline height change from 15 cm to 30 cm 

 

There was a significant interaction of prediction statement choice with mean scores, 

χ2(2, N = 61) = 88.98, p < .001. Statements were chosen significantly more often 

where the balls were predicted to be faster (M = 5.15, SD = 1.67) rather than slower 

(M = 0.30, SD = 0.92) when the incline was raised, T = 7, r = -.86, and there was no 

significant difference between choosing statements that predicted them to be 

slower or statements that predicted them to remain unchanged. Ball type had no 

significant effect. 

 

10.4.3.2 Incline height change from 30 cm to 15 cm 

 

There was a significant interaction of prediction statement choice with mean scores, 

χ2(2, N = 66) = 81.46, p < .001. Statements were chosen significantly more often 

where the balls were predicted to be slower (M = 5.05, SD = 1.92) rather than faster 

(M = 0.47, SD = 1.37) when the incline was lowered, T = 7, r = -.81, and there was no 

significant difference between predicting them to be faster or unchanged. Ball type 
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had no significant effect on choosing different-speed statements, but there was a 

significant preference, U = 433, p < .05, r = -.26, for statements where the light ball‘s 

speed (M = 0.86, SD = 1.73) rather than the heavy ball’s speed (M = 0.07, SD = 0.25) 

remained unchanged after incline change. 

 

10.4.4 Changes in speed 

 

For speed change, the children were required to compare speeds of one ball at 

Points A, B and C, which were indicated on the tube and along the horizontal in the 

scenarios. Figure 10.15 below shows mean scores for attributions of changes in 

speed, that is, whether speed changed or not. A maximum score of 6 was obtainable 

for each distance AB, AC and BC. Response scores varied significantly, χ2(2, N = 127) = 

122.97, p < .001. Attribution scores for AB and AC did not differ significantly, but 

both AB (M = 5.03, SD = 1.69), T = 8, r = -.74, and AC (M = 5.07, SD = 1.55), T = 8, r = -

.75, received significantly more attributions than BC (M = 1.80, SD = 2.32). 
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Figure 10.15 Mean scores for attributions of speed change (Maximum possible 

score = 6) 
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Figure 10.16 below shows the mean speed change attribution scores by age groups. 

A maximum score of 3 was obtainable for each distance AB, AC and BC. Age 

interacted significantly with total attribution score, H(3) = 28.48, p < .001, with speed 

change attributions increasing with age, J = 4201, z = 5.23, r = .46. Similar age effects 

were observed for attribution scores to all three distances (all p < .05).  
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Figure 10.16 Mean scores for attributions of speed change by age groups 

(Maximum possible score = 6) 

 

Figure 10.17 (p. 218) shows the mean speed change attribution scores by ball 

weight. A maximum score of 6 was obtainable for each distance AB, AC and BC. The 

weight of the ball did not interact significantly with overall attribution score, 

however, there was a significant difference for AB where the heavy ball (M = 5.44, SD 

= 1.22) received significantly more attributions than the light ball (M = 4.68, SD = 

1.96), U = 1606, p < .05, r = -.21. 
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Figure 10.17 Mean scores for attributions of speed change by ball weight 

(Maximum possible score = 6) 

 

Figure 10.18 (p. 219) shows the distribution of mean scores for attributions of speed 

change by motion type. A maximum score of 2 was obtainable for each distance AB, 

AC and BC in each of the three motion dimensions. Motion type interacted 

significantly with attributions, χ2(2, N = 127) = 17.47, p < .001. Incline scenarios did 

not receive significantly more attributions than free fall scenarios, but both incline 

scenarios (M = 4.15, SD = 1.40), T = 4, r = -.34, and free fall scenarios (M = 4.02, SD = 

1.33), T = 2, r = -.22, received significantly more attributions than horizontal 

scenarios (M = 3.73, SD = 1.38). For all three motion types, the attribution pattern 

was the same: Speed change was attributed to AB and AC significantly more often 

than to BC (all p < .025). There were no differences in attribution between AB and 

AC.  
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Figure 10.18 Mean scores for attributions of speed change by motion type 

(Maximum possible score = 2) 

 

10.4.5 Study 2 versus Study 3 

 

10.4.5.1 Horizontal motion, free fall motion and incline motion 

 

There was high external consistency in the overall speed task results. For all three 

motion types, mean speed prediction scores from Study 2 and mean prediction 

statement choice scores from Study 3 were positively correlated with each other, τ = 

.77, p < .001. 

 

10.4.5.2 Incline height change 

 

There was high external consistency in the incline height comparison task results. 

Mean incline comparison prediction scores from Study 2 and mean prediction 

statement choice scores from Study 3 were positively correlated with each other, τ = 

.83, p < .001. 
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10.4.5.3 Speed change 

 

There was high external consistency in the overall speed change task results. For all 

three motion types, mean speed change attribution scores from Study 2 and mean 

attribution statement choice scores from Study 3 were positively correlated with 

each other, τ = .68, p < .001. 

 

10.4.6 Response times 

 

10.4.6.1 Within-block response times 

 

Figure 10.19 below shows the mean response times across trials. Regardless of block 

type, there was significant variation in mean response times, χ2(5, N = 127) = 429.35, 

p < .001, with response times decreasing from an average 15084 ms (SD = 1948 ms) 

in Trial 1 to an average 14029 ms (SD = 1882 ms) in Trial 6. All block types showed 

significant decreases (all p < .001) over trials. The decrease occurred regardless of 

order of blocks. 
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Figure 10.19 Mean response times across trials 
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10.4.6.2 Between-block response times for speed tasks 

 

Figure 10.20 below shows the mean response times by motion type. There was a 

significant interaction of motion type with mean response times, χ2(3, N = 127) = 

276.48, p < .001. Response times were greatest for the first incline block (M = 12999 

ms, SD = 2540 ms) and smallest for the incline comparison block (M = 11072 ms, SD = 

1488 ms). Post hoc analyses (significance thresholds p ≤ .0167) showed that 

response times for incline trials were significantly greater than for horizontal trials, T 

= 9, r = -.79. Response times for horizontal trials were significantly greater than for 

free fall trials, T = 6, r = -.53. Response times for free fall trials were significantly 

greater than for incline comparison trials, T = 9, r = -.80. 
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Figure 10.20 Mean response times by motion type 

 

10.4.6.3 Between-block response times for speed change tasks 

 

Figure 10.21 (p. 222) shows the mean response times among speed change blocks. 

There was significant variation in mean response times, χ2(2, N = 127) = 202.65, p < 

.001. Response times were greatest for the incline block (M = 19236 ms, SD = 1711 

ms) and were significantly greater than for horizontal trials (M = 16964 ms, SD = 
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2099 ms), T = 10, r = -.87, and for free fall trials (M = 16646 ms, SD = 2269 ms), T = 

10, r = -.87. Response times did not differ significantly between horizontal and free 

fall trials.  
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Figure 10.21 Mean response times among speed change blocks 

 

10.5 Discussion 

 

The principal aim of the present study was to assess young children’s explicit 

understanding of object motion within a computer-presented task, and to compare 

the findings to those emerging from a real-object task, that is, Study 2. Given the 

increasing use of ICT in schools and the recognition of benefits coming from 

computer-assisted teaching and learning, it was hoped that this study could provide 

valuable information towards designing conceptual change programmes in early 

science education that would incorporate computers. Moreover, the study aimed to 

provide additional information about young children’s explicit beliefs by analysing 

their response times to tasks. 
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10.5.1 Using computers to assess explicit beliefs 

 

The results of this study all show high positive correlations between children’s 

explicit predictions made in Study 2 and the same children’s statement choices made 

in Study 3. Even when all options are presented to children in the form of different 

‘hypotheses’, including the correct one, children still made choices consistent with 

their predictions. This finding lends much support to the possibility of using 

computers as a tool in conceptual change programmes, as they appear to provide 

the same information about children’s explicit beliefs as related real-object tasks. As 

in Study 2, almost all of the speed task responses were in favour of differences in 

motion between the two balls, regardless of direction of the responses. Concerning 

attribution of changes in speed, the pattern was similar to that observed in Study 2 

as well. Both attributions of speed change to AB and attributions of speed change to 

AC were made in over 80 per cent of cases each, but attributions of speed change to 

BC only in 30 per cent of cases (which is ten percentage points less than in Study 2, 

the largest difference observed between the two studies). And over 80 per cent of 

incline comparison predictions were chosen correctly, as in Study 2. Overall, the 

findings are confirmatory of the early-age conceptual change approach, whilst being 

able to incorporate ICT as well, which is consistent with recognition of benefit and 

potential of computer-based teaching in the literature (e.g. Barton, 2004; Glover et 

al., 2005; Holliman & Scanlon, 2004; Murphy, 2003; Newton & Rogers, 2001; Smith 

et al., 2005). 

 

10.5.2 Response times 

 

In Study 2, the idea was introduced that children’s explicit understanding of how 

motion dimensions interact can be explained on the basis of supported versus non-

supported motion – younger children associated incline motion more with horizontal 

motion because of the element of support in inclines, and older children associated 

it more with free fall motion because of the element of fall in inclines. One 

advantage of using a computer-presented task over a real-object task to assess 

explicit knowledge is that response times can be measured at an accurate level. If 
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children think about horizontal motion and about vertical motion independently, but 

having to consider two dimensions in incline motion, then response times for the 

incline motion tasks could be expected to be longer. And the results from this study 

suggest that some trials appeared to be more difficult than others, as more time was 

spent reasoning about the statements.  

 

Both for speed and speed change tasks, significantly more time was spent on incline 

motion trials than on any of the other motion type trials. This could provide support 

to the notion that motion down inclines is perceived to be the result of horizontal 

and vertical dimensions interacting, whereas reasoning about either horizontal or 

vertical dimensions alone is much easier, as then only one dimension has to be taken 

into consideration. One aspect that was not considered in the analyses of response 

times was the children’s ages. This factor was deemed not to provide any particularly 

useful information about any differences in reasoning processes per se, given that 

reading ability can be expected to vary among the age groups and within groups as 

well, and given that some children had to rely on the researcher to read the 

prediction statements. Nonetheless the response times provide useful information 

for the interpretation of explicit understanding. 

 

10.6 Summary 

 

The results from this study suggest that children’s explicit beliefs about object 

motion can be assessed either through a real-object task or through a computer-

presented task, as the results do not differ substantially. This lends much support to 

the notion of incorporating ICT into early science education. Furthermore, by 

incorporating the assessment of response times this study has provided further 

support for the notion introduced in Study 2 that children’s ideas of incline motion 

are the result of an interaction of horizontal and vertical dimensions but with 

differing dimension salience across age. 
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CHAPTER 11:  

YOUNG CHILDREN’S TACIT UNDERSTANDING OF OBJECT MOTION 

(STUDY 4) 

 

11.1 Overview 

 

The final objective, as introduced at the beginning of this thesis, was to see whether 

children have alternative knowledge sources that could, eventually, provide 

assistance in the conceptual change process and help to overcome the naïve 

Aristotelian conceptions identified in Chapter 1. So far, Studies 1 to 3 have all 

reached similar conclusions: Primary school children’s explicit understanding about 

object motion is limited, and despite variation on incline motion tasks across age 

groups the children appear to hold consistent beliefs within their age groups across 

studies. However, is there perhaps an alternative form of knowledge about motion 

available in children that is not limited, but that cannot be consciously accessed by 

the individual? The introductory chapters have highlighted that there may well be 

such an alternative form of knowledge; knowledge that remains unarticulated yet 

can be demonstrated in use or action (Polanyi, 1967; Wagner & Sternberg, 1985). 

And if this so-called tacit knowledge can be triggered, how correct are young 

children’s tacit conceptions of object motion, and how do they compare to their 

explicit beliefs? 

 

Reed et al. (2010), for instance, have shown that people with above average ball 

playing skills show poor performance on pencil-and-paper prediction tasks, yet when 

these people are out in the field, they know where, when and how a ball will reach 

them without being able to give any explanation for their behaviour (Gigerenzer, 

2004, 2007; McLeod & Dienes, 1996; McLeod et al., 2008). Do children perhaps have 

a similar sense of correctness about motion? Some studies suggest a degree of 

confirmation bias; a tendency to ‘observe’ what was predicted, even when there was 

actually a dissociation between predictions and actions (e.g. Baker et al., 2009; Chinn 

& Malhotra, 2002; Gunstone & White, 1981). Nevertheless the participants in these 
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studies were typically only shown the correct outcome on which to base their 

observations. What if children are shown outcomes that are incorrect but that 

reflect their explicit predictions – do they confirm their beliefs by judging these 

outcomes as correct, or do they realise that their explicit predictions actually result 

in dynamics that appear unnatural? 

 

There have been attempts to show motion scenarios and ask participants to judge 

them as correct or incorrect (Kaiser & Proffitt, 1984; Kaiser et al., 1992; Shanon, 

1976), suggesting that non-naturalness of motion can be detected, even if non-

natural motion predictions are made. However, Shanon’s (1976) conclusion was 

derived from the results of a somewhat small sample made up of participants who 

were adult university students; despite not being physics students, nothing is known 

about their prior educational experience that might have affected the results. Kaiser 

et al. (1992) included a greater number of students, again adults, of whom 

approximately three quarters did have relevant experience of physics instruction, 

and this may certainly have had a crucial effect on detecting naturalness. At the 

same time, though, violation-of-expectation studies have shown that even very 

young infants react with surprise and longer looking times when shown dynamic 

events where motion is unnatural, suggesting that these infants had some internal 

representation of what naturalness of motion would entail, and seeing incorrect 

scenarios did not comply with that internal representation (Kannass et al., 1999; Kim 

& Spelke, 1992). 

 

However, what about the ages in between? Do children who have explicit beliefs 

about the world that are incompatible with accepted scientific views judge natural 

dynamic events as correct and unnatural dynamic events as incorrect, or do they 

judge those outcomes as correct that correspond to their explicit beliefs? If there is a 

mismatch between explicit reasoning and tacit judgement, then this could provide 

useful information towards the development of conceptual change programmes in 

early science, and it could also contribute support to the notion that the underlying 

knowledge displayed in infancy remains throughout the lifespan (cf. Carey, 2009; 

Keysers et al., 2008; Santos & Hood, 2009; Spelke, 2000). 
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On the basis of several studies, Chapter 3 highlighted the inclusion of judgement 

components into experimental tasks as a possible indicator of underlying tacit 

knowledge (cf. Broaders et al., 2007). In judgement tasks, participants are typically 

offered a limited number of options, and they are required to identify the correct 

option, or whether options are true or false. Computer-presented tasks were 

deemed to provide a useful tool for this, and a first important step towards this was 

taken in Study 3 by heightening the possibility of comparing predictions with 

judgements. Additionally, as tacit judgements are associated with spontaneous 

responses rather than ‘controlled’ processing in gesturing, for example (e.g. Broaders 

et al., 2007), and more importantly with fast processing (cf. Gigerenzer, 2007; 

Kurzban, 2008) it was hoped that response time data could provide more 

information in the process of tacit judgements of dynamic events. 

 

11.2 Research questions 

 

1. How do primary school children reason about dynamic events of object 

motion; how accurate are their judgements? 

2. Can response times provide any additional information about children’s tacit 

judgements? 

3. How do children’s tacit judgements compare with their explicit beliefs about 

object motion? 

 

11.3 Method 

 

11.3.1 Pilot study 

 

11.3.1.1 Participants 

 

As noted in Chapter 7, the pilot sample for the study consisted of 17 children (nine 

boys), which included three Year 1 children (two boys; age M = 6.20 years, SD = 

0.38), six Year 2 children (four boys; age M = 7.20 years, SD = 0.28), five Year 4 
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children (three girls; age M = 8.90, SD = 0.13) and three Year 6 children (two girls; 

age M = 11.31, SD = 0.50). 

 

11.3.1.2 Materials 

 

The scenarios were recorded with a Sony DCR-HC35E digital video camera recorder 

and compiled using Windows Movie Maker. The recordings were of the two test 

balls used in Study 2 and Study 3 (a bright pink table tennis ball and a dark green 

solid glass marble) being released into the transparent tube from the previous 

studies and falling down, rolling down when inclined, or along a horizontal surface 

after leaving the tube. Recordings were modified so that for each motion type there 

were three different scenarios. The video clips either showed motion as it actually 

occurs (‘same-speed trials’), or had the motion of one of the balls slowed down, such 

that there were trials where one ball was half as fast as the other, either the light 

ball or the heavy ball (‘different-speed trials’). For all video clips, motion occurred 5 

seconds into the clip, giving the child time to prepare for the task, that is, to note 

which ball is the heavy ball and which one is the light ball, or which incline is high and 

which one is low. Total video clip length was always 10 seconds. A screenshot of an 

example of a trial is shown in Figure 11.1 (p. 229). In addition to the test scenarios, 

there were practice scenarios consisting of PowerPoint slides on which either a blue 

triangle or a red circle was shown. 
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Figure 11.1 Screenshot of a correct incline motion trial in Study 4; the top tube 

shows the light table tennis ball, the bottom tube shows the heavy 

glass marble 

 

Trials were presented using DMDX (Forster & Forster, 2003). The software was run 

on a Sony VAIO VGN-NR21J laptop. Connected to the laptop was an external 15” LCD 

colour monitor via which the scenarios were presented to the participants. An 

external KeySonic ACK-3400U Nano keyboard, also connected to the laptop, was 

used for responses to the scenarios. The keyboard was masked to reduce 

distractions. Two keys were indicated by colour on the masking. The DMDX 

programme was set up to allow only these two keys to function; the other keys were 

disabled. One key was on the left end of the keyboard (the red key), and the other 

key was on the right end of the keyboard (the blue key), in the same row as the 

centre key (see Figure 10.4, p. 197 – the yellow key was masked in Study 4). For half 

of the children the ‘yes’ response was the right key and the ‘no’ response the left 

key, for the other half of the conditions the ‘yes’ response was the left key, the ‘no’ 

response the right key. The ‘yes’ key was used to start blocks. In addition, two A4 

sheets of paper, one with ‘yes’ and a green tick on it, and the other with ‘no’ and a 
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red cross on it, were placed next to the keyboard on the appropriate sides to act as 

reminder to the participants. Each trial could be seen for the length of the video clip, 

that is, for 10 seconds, after which the screen would become blank, but responses 

could be given up to 30 seconds after the start of each video clip, after which a new 

trial would start without recording a response if none was made within the 30 

seconds. 

 

11.3.1.3 Design 

 

There were three kinds of trials. The first showed natural motion. The other two 

showed manipulated non-natural motion, that is, one of the two balls was slowed 

down. Of these two non-natural trial types, one reflected explicit predictions 

observed in Studies 2 and 3 and the other reflected the opposite view. For instance, 

children would see trials where the heavy ball falls much faster than the light ball – 

which, at large, reflects their explicit predictions – and trials where the light ball falls 

much faster than the heavy ball. There were six blocks of trials. All blocks consisted 

of six trials each, with each of the three trial types appearing twice within a block. 

Within each block the trials were randomised by the computer program. The order 

of blocks was known to the researcher, but the order of trials was not. Where incline 

comparisons had to be made, the same ball was seen for both inclines in the incline 

comparison block. The horizontal motion blocks always came after the incline 

motion blocks because horizontal motion, in this case, followed on from motion 

down the incline. Incline comparisons were also paired together. Motion always 

occurred in one direction within conditions but was varied between conditions such 

that one half of the children saw horizontal and incline motion from right to left and 

the other half of the children saw it from left to right. Free fall trials were not 

affected by motion direction control. Finally, a practice block consisted of six simple 

questions, where pictures had to be identified as being a blue circle or not. 

 

 

 



 231 

11.3.1.4 Procedure 

 

Children were assessed on an individual basis. The task was carried out outside of 

the classrooms but in an open and publicly accessible area of the school. The 

apparatus of transparent tube and incline frame used in Study 2 and shown in the 

trials was present at all times and was set up as for the incline tasks (see Figure 9.1, 

p. 163). Prior to a child joining, the computer program was set up and a condition 

was selected at random. The necessary information for each child was entered at 

this point. Upon arrival, the child was reminded about the previous tasks in Study 2 

and Study 3 and was shown the apparatus used, and was told that this time there 

would be a computer where they would see short videos of the apparatus and hands 

holding balls into the tube and letting the balls go so that they would roll or fall. The 

two test balls used in Study 2 and shown in the computer-presented scenarios – the 

table tennis ball and the glass marble – were made available to the child at this 

point, and the child could handle them at any time but was asked not to carry out 

any relevant motions with the objects when having to respond to the computer 

scenario items, that is, not to roll them across the table or deliberately let them fall. 

It was made clear to the child that participation was voluntary and that completion 

of individual items or the study as a whole was not compulsory. 

 

The child first saw a blank screen, and the researcher familiarised the child with the 

monitor and the keyboard. The researcher explained that one of the keys meant 

‘yes’ and pointed out the sheet of paper stating ‘yes’ and a green tick next to that 

key, and that the other key meant ‘no’ and pointed out the sheet of paper stating 

‘no’ and a red cross next to that key. The researcher then asked the child to point out 

each key according to its colour and meaning. Following the introduction the child 

was told that there would be some very easy trials to practise the use of the 

keyboard, where decisions had to be made whether what was shown on the monitor 

was a blue circle or not. This practice block consisted of six trials; three trials showed 

a red triangle and three trials showed a blue circle. The child was then asked to press 

the ‘yes’ key (either the red key or the blue key, depending on the condition), which 

elicited the practice block. 
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Before each test block the child was told which scenario type to expect. The child 

was given the following instruction: “Next, you are going to see two hands holding 

these two balls [researcher points out table tennis ball and marble] inside the tube 

and letting them go. Watch carefully, and decide, as quickly as you can, whether it 

looks right or not. If it looks right, press ‘yes’ [researcher points to ‘yes’ key and 

corresponding sheet of paper] and if it does not look right, press ‘no’ [researcher 

points to ‘no’ key and corresponding sheet of paper].” In the case of the horizontal 

motion block, the first part of the instruction was slightly modified: “Next, you are 

going to see these two balls [researcher points out table tennis ball and marble] 

rolling across the screen.” At the end of each block, the child was given the option to 

either take a short break or continue with the next block. The task lasted 

approximately 10 to 15 minutes for each child. 

 

11.3.1.5 Outcomes of the pilot study 

 

During the first session of the pilot study some of the children were asked to explain 

how they would respond to the trials, that is, state which key they would press and 

why they would press it. They were not required to justify their responses per se, but 

needed to state that they pressed a key because of the response it is associated 

with. This was to ensure that the process of matching responses with the key colours 

was understood. As the piloting was not concerned with collecting data or 

information about response times, it was not crucial that the children responded as 

quickly or even accurately as they would in the main study. Trials were therefore set 

to last until a response was made, giving the children time to explain their choices. 

No difficulties in understanding instructions or the computer apparatus were 

registered. During a second piloting session the remaining children received the task 

without having to explain their response processes. Here, the trial length was put to 

the test, and each trial was set to last for 30 seconds only. No difficulties were 

apparent. 
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11.3.2 Main study 

 

11.3.2.1 Participants  

 

The Study 4 main sample consisted of 136 children (76 girls) from the sample noted 

in Chapter 7, which included 31 Year 1 children (17 girls; age M = 6.31 years, SD = 

0.31), 35 Year 2 children (21 girls; age M = 7.27 years, SD = 0.28), 34 Year 4 children 

(20 girls; age M = 9.29, SD = 0.31) and 36 Year 6 children (18 girls; age M = 11.28, SD 

= 0.24). An additional seven children participated but were excluded from data 

analysis due to insufficient completion of the practice trials, not completing the 

study, or technical errors. 

 

11.3.2.2 Materials  

 

The materials were the same as used in the pilot study, but the trial length was set to 

last for 30 seconds only for all children. 

 

11.3.2.3 Design  

 

The general design was the same as in the pilot study. Altogether, there were eight 

different conditions (see Table 11.1, p. 234). For each half of a condition sample the 

‘yes’ response was the right key and the ‘no’ response the left key, for the other half 

of the condition sample the ‘yes’ response was the left key, the ‘no’ response the 

right key. Each child contributed to all six blocks. In each trial there were always two 

options to choose from; either the trial looked correct or it did not. Overall, each 

child scored between 0 (if all trials were judged to look incorrect) and 36 (if all trials 

were judged to look correct). For each block the score was between 0 and 6. 

Approximately equal numbers of children per age group were selected for each 

condition. Overall, there were 17 children per condition. From each age group, four 

children were selected for each condition, and the remaining eight children were 

distributed over the eight conditions at random, one child per condition. 
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Table 11.1 Conditions in Study 4   

 Condition 

 1 2 3 4 5 6 7 8 

Motion 

direction 
Left to right Right to left Right to left Left to right 

Block 1 Practice trials 

Block 2 

Incline at 

15 cm 

(two 

balls) 

Incline at 

30 cm 

(two 

balls) 

Incline at 

15 cm 

(two 

balls) 

Incline at 

30 cm 

(two 

balls) 

Free fall (two balls) 

Block 3 
Incline comparisons 

with heavy ball only 

Incline comparisons 

with light ball only 

Incline at 

15 cm 

(two 

balls) 

Incline at 

30 cm 

(two 

balls) 

Incline at 

15 cm 

(two 

balls) 

Incline at 

30 cm 

(two 

balls) 

Block 4 
Incline comparisons 

with light ball only 

Incline comparisons 

with heavy ball only 

Incline comparisons 

with heavy ball only 

Incline comparisons 

with light ball only 

Block 5 Horizontal (two balls) 
Incline comparisons 

with light ball only 

Incline comparisons 

with heavy ball only 

Block 6 Free fall (two balls) Horizontal (two balls) 

 

11.3.2.4 Procedure 

 

The general procedure was the same as in the pilot study; the piloting revealed no 

procedural issues that needed to be addressed. 

 

11.4 Results 

 

11.4.1 Method of analysis  

 

In order for data to be considered for analysis, children had to correctly complete at 

least 4 out of the 6 practice trials and had to complete the study. 136 of the 143 

children who participated were able to fulfil these requirements, so their data 
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qualified for analysis. Data were collected in form of ‘correct’ or ‘incorrect’ choices, 

that is, whether a trial looked correct or not (see 11.3.2.3). Data were also collected 

in form of response times to trials. As motion only occurred 5 seconds after the start 

of each clip but response times were recorded from 0 seconds onwards, 5000 ms 

were taken off each response time data point. Because responding to trials did not 

rely on reading prediction statements, unlike in Study 3, age differences in response 

times could be considered here. 

 

Kolmogorov-Smirnov tests on the normality of distribution of data showed that all 

distributions, including response time distributions, deviated significantly from 

normality. Therefore assumptions for parametric tests were not met. Mean scores 

and mean response times were analysed using Friedman’s ANOVAs and post hoc 

Wilcoxon signed-rank tests, with Bonferroni corrections applied (all significance 

thresholds p ≤ .025 except when specified otherwise). Correlations were analysed 

using Kendall’s tau tests. Effects of gender, effects of handedness and effects of key 

response (i.e. whether the left or the right key was the ‘yes’ response) were analysed 

with Mann-Whitney tests. Effects of age and effects of condition were analysed with 

Kruskal-Wallis tests and post hoc Jonckheere-Terpstra tests. No significant gender, 

handedness, key or condition effects were found, therefore these are not considered 

further.  

 

In addition, chi-square analyses were conducted on children’s performance accuracy 

(judging trials correctly versus judging trials incorrectly regardless of trial type), on 

scoring hits (judging correct trials to be correct) versus misses (judging correct trials 

to be incorrect) and on scoring correct rejects (judging incorrect trials to be 

incorrect) versus false alarms (judging incorrect trials to be correct). All data were 

analysed using PASW (Predictive Analytics Software, formerly SPSS) Statistics version 

18. 
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11.4.2 Overall response times 

 

11.4.2.1 Within-block response times 

 

Figure 11.2 below shows the mean response times across trials. Regardless of block 

type, there was a significant interaction of trial number with response times within 

blocks, χ2(5, N = 136) = 494.10, p < .001, decreasing from an average of 3742 ms (SD 

= 1250 ms) in Trial 1 to an average of 2034 ms (SD = 903 ms) in Trial 6. All block types 

showed significant decreases (all p < .001) over trials. Trials were responded to faster 

over time within each block. There was a significant interaction of age with mean 

response times, H(3) = 57.14, p < .001, with response times decreasing over age, J = 

1521, z = -7.56, r = -.65. 
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Figure 11.2 Mean response times across trials 

 

11.4.2.2 Between-block response times 

 

Figure 11.3 (p. 237) shows mean response times by block type. There was a 

significant interaction of block type with response times, χ2(4, N = 136) = 381.74, p < 

.001. Post hoc analyses (significance thresholds p ≤ .0125) showed that response 
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times were greatest for horizontal blocks (M = 3641 ms, SD = 1266 ms) and smallest 

for the incline height comparison trials (heavy ball incline comparisons: M = 1883 ms, 

SD = 1383 ms; light ball incline comparisons: M = 1893 ms, SD = 1162 ms). Response 

times for horizontal trials were significantly slower than for incline trials, T = 7, r = -

.58. Response times for incline trials were significantly slower than for free fall trials, 

T = 10, r = -.88. Response times for free fall trials were significantly slower than for 

light incline comparison trials, T = 9, r = -.79. Response times for the comparison 

trials did not differ significantly from each other. There was also a significant 

interaction of within-block trial type with response times. Response times decreased 

from 2975 ms (SD = 1077 ms) at first viewing to 2538 ms (SD = 905 ms) at second 

viewing of the same trial, T = 9, p < .001, r = -.78. The same effect was noted in all 

blocks. 
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Figure 11.3 Mean response times by block type 

 

11.4.3 Ball comparisons 

 

Figure 11.4 (p. 238) shows mean scores for choosing trials as correct; trials could 

either show the heavy ball being faster than the light ball (‘heavy’), the light ball 

being faster than the heavy ball (‘light’), or both balls travelling at the same speed. A 
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maximum score of 6 was obtainable. There was a significant interaction of trial type 

with mean correctness scores, χ2(2, N = 136) = 140.31, p < .001. Same-speed trials (M 

= 4.62, SD = 1.38) were chosen as correct significantly more often than different-

speed trials (M = 3.14, SD = 1.55), T = 6, r = -.49. There were no significant 

differences between judging scenarios as correct when either of the balls was faster.  
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Figure 11.4 Mean scores for choosing trials as correct (Maximum possible score = 

6) 

 

Figure 11.5 (p. 239) shows mean scores for choosing trials as correct by age groups. 

There was no significant interaction of age with judging same-speed trials as correct, 

but age interacted significantly with judging trials as correct when the heavy ball was 

faster, H(3) = 7.98, p < .05, with judgements increasing with age, J = 4158, z = 2.80, r 

= .24. There was also a significant interaction of age with judging trials as correct 

when the light ball was faster, H(3) = 8.08, p < .05, with judgements decreasing with 

age, J = 2764, z = -2.83, r = -.24. 
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Figure 11.5 Mean scores for choosing trials as correct by age groups (Maximum 

possible score = 6) 

 

Children were significantly more accurate (M = 6.74, SD = 2.58) than inaccurate (M = 

2.26, SD = 1.71) in their motion judgements, χ2(1, N = 2448) = 606.01, p < .001. They 

scored significantly more hits (M = 4.62, SD = 1.38) than misses (M = 1.38, SD = 1.38) 

for all motion trials, χ2(1, N = 816) = 237.25, p < .001. They also scored significantly 

more correct rejects (M = 8.86, SD = 1.55) than false alarms (M = 3.14, SD = 1.55), 

χ2(1, N = 1632) = 370.88, p < .001. Their performance was therefore significantly 

better both for correct and incorrect trials. 

 

11.4.3.1 Motion along a horizontal 

 

Figure 11.6 (p. 240) shows the distribution of mean scores for choosing trials as 

correct for motion along a horizontal; trials could either show the heavy ball being 

faster than the light ball (‘heavy’), the light ball being faster than the heavy ball 

(‘light’), or both balls travelling at the same speed. A maximum score of 2 was 

obtainable. There was a significant interaction of scenario type with mean 

correctness scores for horizontal motion trials, χ2(2, N = 136) = 127.00, p < .001. 

Same-speed trials (M = 1.51, SD = 0.75) were chosen as correct significantly more 
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often than trials where the light ball (M = 0.92, SD = 0.82) was faster, T = 8, r = -.65, 

and trials were chosen as correct more often when the light ball was faster than 

when the heavy ball (M = 0.10, SD = 0.33) was faster, T = 4, r = -.36. 
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Figure 11.6 Mean scores for choosing horizontal motion trials as correct 

(Maximum possible score = 2) 

 

Figure 11.7 (p. 241) shows the mean scores for horizontal motion judgements by age 

groups. Age did not interact significantly with mean scores. Regardless of age, 

children consistently judged trials as correct in the same pattern. 
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Figure 11.7 Mean scores for horizontal motion trial judgements by age groups 

(Maximum possible score = 2) 

 

Children were significantly more accurate (M = 2.24, SD = 1.09) than inaccurate (M = 

0.76, SD = 0.84) in their horizontal motion judgements, χ2(1, N = 816) = 200.02, p < 

.001. Children scored significantly more hits (M = 1.51, SD = 0.75) than misses (M = 

0.49, SD = 0.75), χ2(1, N = 272) = 70.01, p < .001. They also scored significantly more 

correct rejects (M = 2.98, SD = 0.85) than false alarms (M = 1.02, SD = 0.85), χ2(1, N = 

544) = 130.07, p < .001. Their performance was therefore significantly better both for 

correct and incorrect trials.  

 

11.4.3.2 Motion down an incline 

 

Figure 11.8 (p. 242) shows the distribution of mean scores for choosing trials as 

correct for motion down an incline; trials could either show the heavy ball being 

faster than the light ball (‘heavy’), the light ball being faster than the heavy ball 

(‘light’), or both balls travelling at the same speed. A maximum score of 2 was 

obtainable. There was a significant interaction of scenario type with mean 

correctness scores for incline motion trials, χ2(2, N = 136) = 72.15, p < .001. Same-

speed trials (M = 1.52, SD = 0.77) were chosen as correct significantly more often 
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than trials where the heavy ball (M = 0.57, SD = 0.71) was faster, T = 7, r = -.59, and 

more often than trials where the light ball (M = 0.54, SD = 0.76) was faster, T = 7, r = -

.58. The two different-speed trials did not differ from each other.  
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Figure 11.8 Mean scores for choosing incline motion trials as correct (Maximum 

possible score = 2) 

 

Figure 11.9 (p. 243) shows the mean scores for incline motion judgements by age 

group. There was no significant interaction of age with judging same-speed trials as 

correct, but age significantly interacted with judging trials as correct when the heavy 

ball was faster, H(3) = 20.20, p < .001. As age increased, these scenarios were 

increasingly likely to be judged correct, J = 4504, z = 4.55, r = .39. Age also 

significantly interacted with judging trials as correct when the light ball was faster, 

H(3) = 19.37, p < .001, but this time scenarios were decreasingly likely to be judged 

as correct as age increased, J = 2497, z = -4.35, r = -.37. 
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Figure 11.9 Mean scores for incline motion trial judgements by age groups 

(Maximum possible score = 2) 

 

Children were significantly more accurate (M = 2.20, SD = 1.09) than inaccurate (M = 

0.78, SD = 0.90) in their incline motion judgements, χ2(1, N = 816) = 178.83, p < .001. 

They scored significantly more hits (M = 1.51, SD = 0.77) than misses (M = 0.49, SD = 

0.77), χ2(1, N = 272) = 72.06, p < .001. They also scored significantly more correct 

rejects (M = 2.89, SD = 0.92) than false alarms (M = 1.11, SD = 0.92), χ2(1, N = 544) = 

130.07, p < .001. Their performance was therefore significantly better both for 

correct and incorrect trials. 

 

11.4.3.3 Motion in free fall 

 

Figure 11.10 (p. 244) shows the distribution of mean scores for choosing trials as 

correct for motion in free fall; trials could either show the heavy ball being faster 

than the light ball (‘heavy’), the light ball being faster than the heavy ball (‘light’), or 

both balls travelling at the same speed. A maximum score of 2 was obtainable. There 

was a significant interaction of scenario type with mean correctness scores for free 

fall motion trials, χ2(2, N = 136) = 146.11, p < .001. Same-speed trials (M = 1.60, SD = 

0.71) were chosen as correct significantly more often than trials where the heavy ball 
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(M = 0.91, SD = 0.77) was faster, T = 5, r = -.42, and trials were chosen as correct 

more often when the heavy ball was faster than when the light ball (M = 0.10, SD = 

0.32) was faster, T = 8, r = -.67. 
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Figure 11.10 Mean scores for choosing free fall motion trials as correct (Maximum 

possible score = 2) 

 

Figure 11.11 (p. 245) shows the mean scores for free fall motion judgements by age 

groups. Age did not interact significantly with mean scores. Regardless of age, 

children consistently judged trials as correct in the same pattern. 
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Figure 11.11 Mean scores for free fall motion trial judgements by age groups 

(Maximum possible score = 2) 

 

Children were significantly more accurate (M = 2.29, SD = 1.04) than inaccurate (M = 

0.71, SD = 0.83) in their free fall motion judgements, χ2(1, N = 816) = 228.71, p < 

.001. They scored significantly more hits (M = 1.60, SD = 0.71) than misses (M = 0.40, 

SD = 0.71) for free fall motion trials, χ2(1, N = 272) = 96.49, p < .001. Children also 

scored significantly more correct rejects (M = 2.99, SD = 0.83) than false alarms (M = 

1.01, SD = 0.83) for free fall motion trials, χ2(1, N = 544) = 134.01, p < .001. Their 

performance was therefore significantly better both for correct and incorrect trials. 

 

11.4.3.4 Response times 

 

Figure 11.12 (p. 246) shows the distribution of mean response times for trials over 

the three different motion types. Trial type had a significant effect on mean response 

times for trials in the horizontal motion block, χ2(2, N = 136) = 234.10, p < .001. More 

time was spent on trials where the light ball was faster (M = 4399 ms, SD = 1336 ms) 

than on same-speed trials (M = 3543 ms, SD = 1339 ms), T = 10, r = -.85, and more 

time was spent on same-speed trials than on trials where the heavy ball was faster 

(M = 3849 ms, SD = 1337 ms), T = 9, r = -.81. There was no overall significant 



 246 

variation in mean response times for trial types in the incline motion block, though 

significantly less time was spent on same-speed trials (M = 3182 ms, SD = 1346 ms) 

than on trials where the light ball was faster (M = 3668 ms, SD = 1946 ms), T = 4, r = -

.37. Trial type had a significant effect on mean response times for trials in the free 

fall motion block, χ2(2, 136) = 201.63, p < .001. More time was spent on trials where 

the heavy ball was faster (M = 3849 ms, SD = 1337 ms) than on same-speed trials (M 

= 2374 ms, SD = 1141 ms), T = 10, r = -.87, but response times did not differ 

significantly between same-speed trials and trials where the light ball was faster. 
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Figure 11.12 Mean response times by motion type 

 

Figure 11.13 (p. 247) shows mean response times for trials chosen as correct. There 

was a significant interaction of judgements with response times. When different-

speed trials were chosen to be correct, response times were significantly higher than 

when same-speed trials were chosen to be correct. This was the case for horizontal 

motion trials, U = 1294, p < .001, r = -.30, for incline motion trials, U = 1242, p < .001, 

r = -.32, and for free fall trials, U = 992, p < .001, r = -.41. 
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Figure 11.13 Mean response times for trials chosen as correct 

 

11.4.4 Incline height comparisons 

 

Figure 11.14 (p. 248) shows mean scores for incline height comparison trials; trials 

could either show the ball being faster down the high incline than down the low 

incline (‘high incline’), being faster down the low incline than down the high incline 

(‘low’), or travelling down both inclines at the same speed. A maximum score of 4 

was obtainable. There was a significant interaction of incline height with mean 

response scores, χ2(2, N = 136) = 225.55, p < .001. Trials where motion down the high 

incline was faster (M = 3.65, SD = 0.61) were chosen as correct significantly more 

often than same-speed trials (M = 0.68, SD = 1.00), T = 10, r = -.86, and same-speed 

trials were chosen as correct significantly more often than trials where motion down 

the low incline was faster (M = 0.14, SD = 0.49), T = 5, r = -.44. There were no 

significant differences between the heavy ball and the light ball; both followed the 

same pattern. 
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Figure 11.14 Mean scores for incline comparison trials (Maximum possible score = 

4) 

 

Children were significantly more accurate (M = 5.42, SD = 1.98) than inaccurate (M = 

0.58, SD = 0.92) in their incline height comparison judgements, χ2(1, N = 1632) = 

1061.19, p < .001. There was significant variation with age; children were 

increasingly likely with age to be accurate than inaccurate, χ2(3, N = 1632) = 27.9, p < 

.001. Children scored significantly more hits (M = 3.65, SD = 0.61) than misses (M = 

0.35, SD = 0.61), χ2(1, N = 544) = 372.24, p < .001. There was significant variation with 

age; children were increasingly likely with age to score hits rather than misses, χ2(3, 

N = 544) = 14.8, p < .05. Children also scored significantly more correct rejects (M = 

7.18, SD = 1.10) than false alarms (M = 0.82, SD = 1.10), χ2(1, N = 1088) = 689.30, p < 

.001. There was again significant variation with age; children were increasingly likely 

with age to score correct rejects rather than false alarms, χ2(3, N = 1088) = 14.7, p < 

.05. Overall, their performance was therefore significantly better both when seeing 

correct trials and when seeing incorrect trials. 
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11.4.4.1 Response times 

 

Figure 11.15 below shows mean response times for incline height comparison trials. 

Incline height had a significant effect on mean response times, χ2(2, N = 136) = 68.87, 

p < .001. More time was spent looking at same-speed scenarios (M = 2399 ms, SD = 

1056 ms) than at trials where motion down the low incline was faster (M = 1647 ms, 

SD = 781 ms), T = 8, r = -.67. Given the accuracy on this task, this would suggest that 

the children were able to quickly identify the correctness or incorrectness of a 

scenario when one of the inclines caused faster motion because the difference 

between the two was visible soon enough. With the same-speed scenarios, they may 

have waited to see if a change would come after all but would then still be accurate 

enough to judge those scenarios as incorrect. 
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Figure 11.15 Mean response times for incline comparison trials 

 

11.4.5 Explicit versus tacit tasks 

 

11.4.5.1 Ball comparisons 

 

Figure 11.16 (p. 251) shows the response accuracy for ball comparisons in Study 3 

(explicit reasoning) contrasted with accuracy of judgements in Study 4 (tacit 
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reasoning). The tasks show an inverse relationship to each other. While in explicit 

reasoning a different-speed response was usually selected, T = 10, r = -.89, in the 

judgement tasks same-speed responses were perceived to be correct more often 

than different-speed responses, T = 9, r = -.81. Whenever a different-speed scenario 

was judged to be correct in the judgement tasks rather than the same-speed 

scenario, the same pattern as in the explicit task was followed: Across all age groups, 

children were more likely to select the horizontal scenarios where the light ball was 

faster as correct, χ2(2, N = 46) = 74.06, p < .001, and the free fall scenarios where the 

heavy ball was faster, χ2(2, N = 41) = 59.84, p < .001. The incline scenarios resulted in 

no significant overall preference for either different-speed scenarios, but there was a 

significant age effect on judging scenarios as correct when the light ball was faster, 

H(3) = 16.57, p < .05, with judgements decreasing over age, J = 207, z = -4.03, r = -.59, 

and there was a significant age effect on judging scenarios as correct when the heavy 

ball was faster, H(3) = 25.58, p < .001, with judgements increasing over age, J = 632, z 

= 4.96, r = .73. There was also a difference in Study 4 in response time patterns 

between these two groups. Mean response times were significantly higher for blocks 

where different-speed scenarios were chosen to be correct (M = 3961 ms, SD = 656 

ms) than for blocks where same-speed scenarios were chosen to be correct (M = 

2986 ms, SD = 1211 ms), U = 1083, p < .001, r = -39. 
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Figure 11.16 Comparison of response accuracy for ball comparisons in Study 3 with 

judgement accuracy in Study 4 

 

11.4.5.2 Incline comparisons 

 

Figure 11.17 (p. 252) shows the response accuracy for incline comparisons in Study 3 

(explicit reasoning) and Study 4 (tacit reasoning). Both tasks show a similar pattern: 

The high incline was consistently predicted to cause faster motion in explicit 

reasoning, T = 9, r = -.81, no matter whether the heavy ball or the light ball was used, 

and when shown, this scenario was consistently chosen to be correct, T = 10, r = -.86, 

no matter which ball was shown. 
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Figure 11.17 Comparison of response accuracy for incline comparisons in Study 3 

with judgement accuracy in Study 4 

 

11.5 Discussion 

 

This study was concerned with trying to discover whether children are able to 

identify correct motion scenarios, even when their explicit beliefs are different. 

Specifically, the study investigated how primary school children’s tacit judgements 

about object speed and acceleration compare with the beliefs they showed in 

Studies 2 and 3. By making use of approaches employed in previous work (Kaiser & 

Proffitt, 1984; Kaiser et al., 1992; Kannass et al., 1999; Kim & Spelke, 1992; Shanon, 

1976) the study was an attempt to unveil underlying tacit knowledge about object 

motion and to compare and contrast it with findings from the explicit knowledge 

studies. 

  

11.5.1 Accuracy of judgements 

 

As opposed to Studies 2 and 3, where practically all predictions made when two balls 

had to be compared were different-speed predictions, Study 4 shows a different 

picture. Here, over 75 per cent of same-speed trials were judged to be correct, 
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whereas only just over 25 per cent of the different-speed trials were judged to be 

correct. Given the high accuracy levels observed in previous studies that used 

judgement methodologies, it perhaps comes as no particular surprise that in the 

present study, too, children consistently judged those trials as correct where the ball 

rolling down the high incline was faster than the same ball rolling down the low 

incline, regardless of ball type. One problem to bear in mind at this point is the 

extent to which children might perceive some objects to be faster than others – 

perhaps the incorrect scenarios shown to them displayed too great a dissonance 

between the two balls’ motion patterns; their beliefs may well hold that motion 

would be different, but not to such an extent, and therefore the same-speed motion 

trials may simply be more similar to their explicit beliefs than the different-speed 

trials. However, overall it would appear that young children are indeed able to 

recognise naturalness of motion and appreciate that it is correct; these findings are 

consistent with those of previous studies (Kaiser & Proffitt, 1984; Kaiser et al., 1992; 

Kannass et al., 1999; Kim & Spelke, 1992; Shanon, 1976).  

 

Although same-speed scenarios were chosen to be correct significantly more often 

than different-speed scenarios, it is interesting to note that when looking at the 

numbers of different-speed trials that were judged as being correct, they show the 

same pattern as observed in the explicit reasoning tasks in Studies 2 and 3. When 

different-speed trials were judged as correct, it was mainly the trials where the light 

ball was faster that were chosen in the horizontal motion blocks, and mainly the 

trials where the heavy ball was faster that were chosen in the motion in free fall 

blocks. In blocks where motion was down an incline, the responses were in balance. 

However, as in the explicit reasoning tasks, the association of faster motion down an 

incline with the light ball shifted with increasing age to an association of faster 

motion down an incline with the heavy ball. It seems, therefore, that the responses 

can be separated into two groups: Either the judgements are accurate, or they 

reflect explicit beliefs. Trials that reflected neither of these two options were hardly 

ever selected as appearing to be correct. However, from accuracy alone it is difficult 

to know how seriously the researcher’s instructions were followed. Did children 

respond as quickly as they could, or did they, on a small scale, take their time to 
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reflect about the trials? Or, as they knew beforehand what motion type to expect, 

that is, horizontal, incline or free fall, perhaps they prepared themselves in advance 

as to which trials they thought they should look for. Response times may help to 

analyse this aspect. 

 

11.5.2 Response times 

 

The results from this study suggest that some trials appeared to be more difficult 

than others, as responses were made later in the trial. Significantly more time was 

spent on horizontal motion trials than on any of the other motion type trials, and 

incline comparison trials were judged significantly faster than trials where two 

different balls had to be compared. When different-speed trials that matched 

children’s explicit beliefs were judged to be correct, response times were observed 

to be significantly higher than when same-speed trials or when different-speed trials 

that did not match children’s explicit beliefs were judged to be correct. Combining 

this with the directions of variables, it seems that children spent more time watching 

trials when they ended up judging different-speed trials as correct, thereby making it 

a less spontaneous judgement than when same-speed trials were judged to be 

correct, perhaps falling back on explicit beliefs. 

 

11.5.3 Explicit reasoning versus tacit judgement 

 

The principal aim of Study 4 was to provide data that permit young children’s explicit 

reasoning about object motion to be compared with their judgements of motion 

naturalness. Although a reasonable number of different-speed trials were still judged 

as being correct, same-speed trials were recognised as being correct far more often 

than in Studies 2 and 3. Many children can seemingly identify inappropriate 

scenarios almost instantly; trials that are neither correct nor match their explicit 

beliefs (that is, when the heavy ball is faster along the horizontal, or when the light 

ball is faster in free fall). Not only were these scenarios usually judged as being 

incorrect, but response times were faster for these trials as well. So it is a question 

between correct scenarios and expected scenarios. It could well be that children who 
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chose trials as correct when they matched their explicit expectations were simply 

being biased in their observation. However, despite some unresolved questions it is 

clear that there is a mismatch between explicit reasoning and tacit judgement, with 

children recognising naturalness of motion. 

 

11.6 Summary 

 

When shown a variety of dynamic events, both natural and non-natural in nature, 

primary school children are able to identify those events that do, in fact, depict 

natural motion with reasonable accuracy, and well above chance levels. At each trial, 

chance level would be 50 per cent of judging the trial as correct and 50 per cent of 

judging it as incorrect. Yet children clearly performed far above this level. Response 

time recordings have helped explore these differences and the results suggest that if 

children act ‘on a whim’ they are more likely to appreciate naturalness of motion 

than when they spend more time making a decision. It is evident that children’s tacit 

judgements, as in studies with adults, can be differentiated from their explicit beliefs 

quite clearly. 
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CHAPTER 12: 

SUPPLEMENTARY CROSS-STUDY ANALYSES 

 

Individually, Studies 1 to 4 all provide information on children’s predictions of object 

motion – using, across the first three studies, different objects or different 

assessment approaches – and on the same children’s judgements of object motion.  

 

On the other hand, while correlation analyses were carried out between two 

consecutive studies, that is, comparing the results from Study 2 with those from 

Study 3 and comparing the results from Study 3 with those from Study 4, these on 

their own provide limited information on the continuity of children’s performance. 

The correlations merely indicate a similarity or lack thereof between scores from two 

studies, but do not state very much – particularly between Study 3 and Study 4 – 

about the ways in which the sets of scores are comparable or the ways in which way 

they are not. Therefore additional analyses spanning these three studies were 

conducted in the hope of remedying this. 

 

It is also worth looking at whether anything can be noted about children’s variable 

use in their reasoning about everyday object motion, as was done in Study 1, and 

their judgements of dynamic events, as was done in Study 4. Is there any link 

between children’s reliance on particular object variables in predictions and their 

ability to judge motion scenarios as correct or incorrect in an accurate manner? It 

was noted in Study 1 that generally speaking there was little consistency within age 

groups and across age groups in the use of variables when having to predict motion 

of everyday objects. And in Study 4, while there was a fair degree of consistency in 

accuracy levels, there was still a substantial group of children who did not perform as 

well. Looking at whether either of the two groups of children – those who performed 

well and those who did not – displayed any particular patterns in their everyday 

object predictions may help to understand these differences in judgements. 
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Two sets of supplementary cross-study analyses are presented in this chapter. First, 

the development of performance across Studies 2, 3 and 4 is analysed, displaying the 

trends of performance across these three studies. Following these, logistic regression 

analyses evaluate the relationships, if any, between variable use in Study 1 and 

judgement accuracy in Study 4, presenting any possible regression models that may 

help to establish predictions of accuracy in judgement tasks on the basis of variable 

use in everyday object reasoning. 

 

12.1 Development of performance across Studies 2, 3 and 4 

 

12.1.1 Methods of analysis 

 

In order to ease comparison between mean performance scores from Study 2 and 

mean scores from Study 3, the mean scores for Study 3 were all averaged so that the 

maximum score matched that of Study 2 – in Study 3, the same trial for which a 

prediction had to be made in Study 2 was seen three times. Maximum scores for 

Study 4 were already equal to those for Study 2, thus also being equal to the 

averaged scores for Study 3. Mean scores were analysed using Friedman’s ANOVAs 

and post hoc Wilcoxon signed-rank tests, with Bonferroni corrections applied (all 

significance thresholds p ≤ .025). All data were analysed using PASW (Predictive 

Analytics Software, formerly SPSS) Statistics version 18. 

 

12.1.2 Motion along a horizontal 

 

Figure 12.1 (p. 258) shows the mean performance scores for the horizontal motion 

tasks from Study 2, Study 3 and Study 4. ‘Heavy’ refers to predicting that the heavy 

ball would be faster than the light ball (Studies 2 and 3) and to judging trials as 

correct when the heavy ball rolled faster than the light ball (Study 4). ‘Light’ refers to 

predicting that the light ball would be faster than the heavy ball (Studies 2 and 3) 

and to judging trials as correct when the light ball rolled faster than the heavy ball 

(Study 4). ‘Same’ refers to predicting that both balls would roll as fast as each other 
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(Studies 2 and 3) and to judging trials as correct when both balls rolled as fast as 

each other (Study 4). A maximum score of 2 was achievable in each task. 
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Figure 12.1 Mean performance scores for predictions and judgements in 

horizontal motion by task type (Maximum possible score = 2) 

 

There was significant variation among mean performance scores across the studies 

for predicting the heavy ball to be faster (Studies 2 and 3) and judging trials to be 

correct when the heavy ball travelled faster (Study 4), χ2(2, N = 121) = 14.78, p < 

.001. There was no significant difference between performance in Study 2 and 

performance in Study 3 or between performance in Study 3 and performance in 

Study 4. 

 

There was also significant variation among mean performance scores across the 

studies for predicting the light ball to be faster (Studies 2 and 3) and judging trials to 

be correct when the light ball travelled faster (Study 4), χ2(2, N  = 121) = 63.20, p < 

.001. There was no significant difference between performance in Study 2 and 

performance in Study 3. However, there was a significant decline in frequency of 
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scores from Study 3 (M = 1.64, SD = 0.64) to Study 4 (M = 0.92, SD = 0.81), T = 6, r = -

.58. 

 

Finally, there was significant variation among mean performance scores across the 

studies for predicting both balls to travel at the same speed (Studies 2 and 3) and 

judging trials to be correct when both balls travelled at the same speed (Study 4), 

χ2(2, N  = 121) = 176.71, p < .001. There was a significant increase in frequency of 

scores from Study 2 (M = 0.06, SD = 0.23) to Study 3 (M = 0.13, SD = 0.34), T = 2, r = -

0.22, and a significant increase in frequency of scores from Study 3 to Study 4 (M = 

1.51, SD = 0.74), T = 9, r = -0.83. 

 

12.1.3 Motion down an incline 

 

Figure 12.2 (p. 260) shows the mean performance scores for the incline motion tasks 

from Study 2, Study 3 and Study 4. ‘Heavy’ refers to predicting that the heavy ball 

would be faster than the light ball (Studies 2 and 3) and to judging trials as correct 

when the heavy ball rolled faster than the light ball (Study 4). ‘Light’ refers to 

predicting that the light ball would be faster than the heavy ball (Studies 2 and 3) 

and to judging trials as correct when the light ball rolled faster than the heavy ball 

(Study 4). ‘Same’ refers to predicting that both balls would roll as fast as each other 

(Studies 2 and 3) and to judging trials as correct when both balls rolled as fast as 

each other (Study 4). A maximum score of 2 was achievable in each task.  
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Figure 12.2 Mean performance scores for predictions and judgements in incline 

motion by task type (Maximum possible score = 2) 

 

There was significant variation among mean performance scores across the studies 

for predicting the heavy ball to be faster (Studies 2 and 3) and judging trials to be 

correct when the heavy ball travelled faster (Study 4), χ2(2, N = 121) = 35.70, p < 

.001. There was no significant difference between performance in Study 2 and 

performance in Study 3. However, there was a significant decline in frequency of 

scores from Study 3 (M = 1.16, SD = 0.94) to Study 4 (M = 0.59, SD = 0.73), T = 5, r = -

.47. 

 

There was also significant variation among mean performance scores across the 

studies for predicting the light ball to be faster (Studies 2 and 3) and judging trials to 

be correct when the light ball travelled faster (Study 4), χ2(2, N = 121) = 14.15, p < 

.05. There was no significant difference between performance in Study 2 and 

performance in Study 3. However, there was a significant decline in frequency of 

scores from Study 3 (M = 0.75, SD = 0.93) to Study 4 (M = 0.49, SD = 0.73), T = 3, r = -

.25. 

 

Finally, there was significant variation among mean performance scores across the 

studies for predicting both balls to travel at the same speed (Studies 2 and 3) and 
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judging trials to be correct when both balls travelled at the same speed (Study 4), 

χ2(2, N = 121) = 190.52, p < .001. There was no significant difference between 

performance in Study 2 and performance in Study 3. However, there was a 

significant increase in frequency of scores from Study 3 (M = 0.09, SD = 0.32) to 

Study 4 (M = 1.53, SD = 0.76), T = 9, p < .001, r = -.83. 

 

12.1.4 Motion in free fall 

 

Figure 12.3 (p. 262) shows the mean performance scores for the free fall motion 

tasks from Study 2, Study 3 and Study 4. ‘Heavy’ refers to predicting that the heavy 

ball would fall faster than the light ball (Studies 2 and 3) and to judging trials as 

correct when the heavy ball fell faster than the light ball (Study 4). ‘Light’ refers to 

predicting that the light ball would fall faster than the heavy ball (Studies 2 and 3) 

and to judging trials as correct when the light ball fell faster than the heavy ball 

(Study 4). ‘Same’ refers to predicting that both balls would fall as fast as each other 

(Studies 2 and 3) and to judging trials as correct when both balls fell as fast as each 

other (Study 4). A maximum score of 2 was achievable in each task.  
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Figure 12.3 Mean performance scores for predictions and judgements in free fall 

motion by task type (Maximum possible score = 2) 

 

There was significant variation among mean performance scores across the studies 

for predicting the heavy ball to be faster (Studies 2 and 3) and judging trials to be 

correct when the heavy ball travelled faster (Study 4), χ2(2, N = 121) = 91.09, p < 

.001. There was no significant difference between performance in Study 2 and 

performance in Study 3. However, there was a significant decline in frequency of 

scores from Study 3 (M = 1.77, SD = 0.62) to Study 4 (M = 0.89, SD = 0.79), T = 7, r = -

0.66. 

 

There was also significant variation among mean performance scores across the 

studies for predicting the light ball to be faster (Studies 2 and 3) and judging trials to 

be correct when the light ball travelled faster (Study 4), χ2(2, N = 121) = 16.40, p < 

.001. There was a significant decline in frequency of scores from Study 2 (M = 0.26, 

SD = 0.47) to Study 3 (M = 0.13, SD = 0.47), T = 3, r = -.24. However, there was no 

significant difference between frequency of scores in Study 3 and frequency of 

scores in Study 4. 
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Finally, there was significant variation among mean performance scores across the 

studies for predicting both balls to travel at the same speed (Studies 2 and 3) and 

judging trials to be correct when both balls travelled at the same speed (Study 4), 

χ2(2, N = 121) = 192.09, p < .001. There was no significant difference between 

performance in Study 2 and performance in Study 3. However, there was a 

significant increase in frequency of scores from Study 3 (M = 0.11, SD = 0.42) to 

Study 4 (M = 1.60, SD = 0.71), T = 9, r = -.84. 

 

12.1.5 Incline height comparisons 

 

Figure 12.4 (p. 264) shows the mean performance scores for the incline height 

comparison tasks from Study 2, Study 3 and Study 4. ‘High incline’ refers to 

predicting that a ball would be faster down the high incline than down the low 

incline (Studies 2 and 3) and to judging trials as correct when the ball rolled faster 

down the high incline than down the low incline (Study 4). ‘Low incline’ refers to 

predicting that a ball would be faster down the low incline than down the high 

incline (Studies 2 and 3) and to judging trials as correct when the ball rolled faster 

down the low incline than down the high incline (Study 4). ‘Same’ refers to predicting 

that a ball would roll at the same speeds down both inclines (Studies 2 and 3) and to 

judging trials as correct when a ball rolled as fast down both inclines (Study 4). A 

maximum score of 2 was achievable in each task.  
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Figure 12.4 Mean performance scores for predictions and judgements in incline 

height comparisons by task type (Maximum score = 2) 

 

There was no significant variation among mean performance scores across the 

studies for predicting the high incline ball to be faster (Studies 2 and 3) and judging 

trials to be correct when the high incline ball was faster (Study 4). There was also no 

significant variation among mean performance scores across the studies for 

predicting the low incline ball to be faster (Studies 2 and 3) and judging trials to be 

correct when the low incline ball was faster (Study 4). 

 

However, there was significant variation among mean performance scores across the 

studies for predicting both balls to travel at the same speed (Studies 2 and 3) and 

judging trials to be correct when both balls travelled at the same speed (Study 4), 

χ2(2, N = 121) = 27.89, p < .001. There was no significant difference between 

performance in Study 2 and performance in Study 3. However, there was a 

significant increase in frequency of scores from Study 3 (M = 0.17, SD = 0.47) to 

Study 4 (M = 0.32, SD = 0.50), T = 3, r = -.24. 
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12.2 Relationship between variable use in Study 1 and performance in Study 4 

 

12.2.1 Methods of analysis 

 

Forward stepwise binary logistic regression analyses were carried out to see how 

children’s likelihood of performing with an accuracy level above chance when 

judging trials in Study 4 could be predicted by the same children’s use of variables in 

general predictions of faster motion in Study 1. Accuracy in Study 4 was determined 

from judging correct trials as being correct as well as from judging incorrect trials as 

being incorrect. Analyses were conducted both with general variable use (i.e. 

reliance on weight, size, shape, texture and other reasons) and with variable 

directions (i.e. reliance on heavy, light, big, small, round, uneven, smooth and 

rough). By using the stepwise procedure, whether variables or variable directions 

would make any significant contribution to a model and whether they were 

therefore considered in a model was automatically determined by the statistical 

program. Any chosen variables or variable directions not listed in the model were 

deemed not to contribute significantly to the model. All data were analysed using 

PASW (Predictive Analytics Software, formerly SPSS) Statistics version 18. 

 

12.2.2 Motion along a horizontal 

 

Above chance level accuracy of horizontal motion judgements in Study 4 was defined 

as obtaining a score of at least 4 out of 6 points, that is, identifying at least 4 out of 6 

horizontal motion trials correctly. The only variable entered by PASW into the 

regression model was object shape. The strength of association was very poor, only 

describing 3.7% (Cox & Snell R2) and 5.2% (Nagelkerke R2) of the variance in 

response; this relationship was statistically significant (χ2(1) = 5.10, p < .05). No 

further variables were added. In the model, for every additional “shape” point the 

logit (p) decreases by 0.303 points, and the likelihood of not performing above 

chance level increases by 42.5%, that is, the increase in usage of “shape” in 

predictions (Study 1) decreases the chances that the level of judgements is above 

accuracy (Study 4). This means the more frequently “shape” was relied on in Study 1, 



 266 

the lower the judgement accuracy was in Study 4. This relationship is statistically 

significant (Wald(1) = 4.83, p < .05). The logistic regression equation for this model is: 

 

logit (p) = 1.542 – 0.303 shape 

 

The overall percent correctly predicted increases to 69.9% upon adding the variable, 

which implies that whether judgements are performed at above chance level or not 

can be differentiated on the basis of the use of the variable “shape” in Study 1. 

 

When using variable directions rather than variables alone, the only variable 

direction entered by PASW into the regression model was object roundness. The 

strength of association was very poor, only describing 3.4% (Cox & Snell R2) and 4.8% 

(Nagelkerke R2) of the variance in response; this relationship was statistically 

significant (χ2(1) = 4.73, p < .05). No further variables were added. In the model, for 

every additional “round” point, the logit (p) decreases by 0.290 points, and the 

likelihood of not performing above chance level increases by 42.8%, that is, the 

increase in usage of “round” in predictions (Study 1) decreases the chances that the 

level of judgements is above accuracy (Study 4). This means the more frequently 

“round” was relied on in Study 1, the lower the judgement accuracy was in Study 4. 

This relationship is statistically significant (Wald(1) = 4.50, p < .05). The logistic 

regression equation for this model is: 

 

logit (p) = 1.507 – 0.290 round 

 

12.2.3 Motion down an incline 

 

Above chance level accuracy of incline motion judgements in Study 4 was defined as 

obtaining a score of at least 4 out of 6 points, that is, identifying at least 4 out of 6 

incline motion trials correctly. No variables were included in the model by PASW, 

thereby suggesting there is no significant relation between variable use in Study 1 

and accuracy of judgements in Study 4. This was the case both for general variables 

and for variable directions. 
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12.2.4 Motion in free fall 

 

Above chance level accuracy of fall motion judgements in Study 4 was defined as 

obtaining a score of at least 4 out of 6 points, that is, identifying at least 4 out of 6 

fall motion trials correctly. No general variables were included in the model by 

PASW, therefore suggesting no significant relation between general variable use in 

Study 1 and accuracy of judgements in Study 4.  

 

When using variable directions, the only variable entered by PASW into the 

regression model was object smallness. The strength of association was initially very 

poor, only describing 4.3% (Cox & Snell R2) and 6.4% (Nagelkerke R2) of the variance 

in response; this relationship was statistically significant (χ2(1) = 6.01, p < .05). No 

further variables were added. In the model, for every additional “small” point, the 

logit (p) decreases by 1.658 points, and the likelihood of not performing above 

chance level increases by 62.4%, that is, the increase in usage of “small” in 

predictions (Study 1) decreases the chances that the level of judgements is above 

accuracy (Study 4) performance is above accuracy. This means the more frequently 

“small” was relied on in Study 1, the lower the judgement accuracy was in Study 4. 

This relationship is statistically significant (Wald(1) = 5.94, p < .05). The logistic 

regression equation for the model is: 

 

logit (p) = 1.253 – 1.658 small 

 

12.2.5 Incline height comparisons 

 

Above chance level accuracy of incline comparison judgements in Study 4 was 

defined as obtaining a score of at least 7 out of 12 points, that is, identifying at least 

7 out of 12 incline comparison trials correctly. No variables were included in the 

model by PASW, therefore suggesting no significant relation between variable use in 

Study 1 and accuracy of judgements in Study 4. Because of the very high degree of 

performance accuracy observed in Study 4 (only a very small number of children 

performed at or below chance level), a more rigid boundary was set at scoring at 
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least 11 out of 12 points. Still no variables were identified as contributing towards a 

significant relation between variable use in Study 1 and accuracy of judgements in 

Study 4.  

 

However, when using prediction directions as variables rather than variables alone, 

the only variable entered by PASW into the regression model was object heaviness. 

The strength of association was initially very poor, only describing 4.1% (Cox & Snell 

R2) and 5.8% (Nagelkerke R2) of the variance in response; this relationship was 

statistically significant (χ2(1) = 5.72, p < .05). No further variables were added. In the 

model, for every additional “heavy” point, the logit (p) increases by 0.543 points, and 

the likelihood of performing above chance level increases by 35.2%, that is, the 

increase in usage of “heavy” in predictions (Study 1) increases the chances that the 

level of judgements is above accuracy (Study 4). This means the more frequently 

“heavy” was relied on in Study 1, the higher the judgement accuracy was in Study 4. 

This relationship is statistically significant (Wald(1) = 4.76, p < .05). The logistic 

regression equation for the model is: 

 

logit (p) = 0.543 heavy + 0.458 

 

12.3 Discussion 

 

The analyses presented in this chapter were carried out in order to provide detailed 

information about the development of children’s performance across Studies 2, 3 

and 4, and to evaluate the relationship between children’s variable use in Study 1 

and their judgement accuracy in Study 4. 

 

12.3.1 Development of performance across Studies 2, 3 and 4 

 

Across the three motion trials – horizontal motion, incline motion and free fall 

motion – performance changed to some degree across studies. Children’s 

predictions in Study 2 and Study 3 generally showed no changes (with the exception 

of a slight increase in same speed predictions for horizontal motion trials and a slight 
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decrease in light-as-faster predictions for incline motion trials), thereby suggesting a 

general consistency in predictions. On the other hand, there was always a significant 

increase or decline between Study 3 and Study 4 – always in favour of higher 

accuracy, that is, a large increase in same speed judgements and a decrease in 

heavy-as-faster and light-as-faster. Given no substantial change between Study 2 and 

Study 3, the same changes in score frequencies can be noted between Study 2 and 

Study 4. Where incline height comparisons were concerned, there was consistency in 

predicting and judging the high incline ball to roll faster than the low incline ball 

across all three tasks (with the exception of a slight increase in same-speed 

judgements from same-speed predictions).  

 

Overall, the findings from these analyses confirm the correlation analyses that were 

carried out in the respective study chapters. The scores from Studies 2 and 3 had 

been found to be highly positively correlated, and no substantial change was 

observed in these additional analyses. The scores from Studies 3 and 4, on the other 

hand, had been found to differ significantly, and the information provided here gives 

a clearer picture how these scores differ, while also allowing Study 2 to be more 

directly contrasted with Study 4. The additional analyses also provide further support 

for the notion of using computer-presented scenarios (Study 3) to assess predictions 

in the same manner as using real objects (Study 2).  

 

12.3.2 Relationship between variable use in Study 1 and performance in Study 4 

 

Study 1 had revealed that there are a number of variables children use in their 

reasoning of everyday object motion events, and that there is little consistency 

across age groups, even within age groups, in use of these variable. At the same 

time, a considerable number of children did not judge motion scenarios correctly in 

Study 4, and this raised the question whether this particular subset of children was 

possibly identifiable by their general variable use in Study 1.  

 

Only few variables relied on in Study 1 – and never more than one per regression 

model – were considered to have any predictable effect on performance in Study 4. 
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The variables concerned as well as their relation to the judgement tasks are not 

particularly surprising. The more children relied on external attributes in Study 1, 

that is, shape or size, the less likely they were to perform above chance in Study 4 

judgements where neither shape nor size differed between the two balls. It seems 

thus reasonable to suggest that children who rely heavily on external features of 

objects would find it more difficult to accurately judge motion if no differences in 

external properties are available to them. Similarly, the more children relied on 

weight in Study 1, the more likely they were to perform above chance level in Study 

4 judgements where weight did differ between the two balls and did cause a 

difference in motion. Here, it seems reasonable to suggest that children who rely 

heavily on weight would find it easier to judge motion if the crucial difference 

affecting motion, as is the case for incline comparisons, is weight. 
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“Nature has contrived to have it both 

ways, to get the best out of fast dumb 

systems and slow contemplative ones, 

by simply refusing to choose between 

them.” (Fodor, 1985, p. 4) 

 

 

 

 

 

 

 

CHAPTER 13: 

GENERAL DISCUSSION 

 

The work of the ancient Greek philosopher Aristotle (trans. 2008) and the thinking of 

many people today reveal a striking similarity – both provide claims about motion in 

the physical world that are limited, incorrect, and therefore incompatible with 

science. Perhaps not everyone wants to be a scientist. But perhaps others do and are 

discouraged by the fact that they just cannot grasp basic physical concepts well 

enough, and that their prior conceptions are resistant to any change through 

educational processes. Perhaps, though, alternative approaches are available? This 

thesis sought to find an answer. 

 

13.1 Aims of the present work 

 

A wealth of research, which now adds up to over 8,000 studies (cf. Duit, 2009), has 

investigated the conceptions that students in the classroom hold across a range of 

disciplines – biology, chemistry, astronomy, medicine, and notably physics. The 

consensus is that children do not enter the classroom as tabula rasa, but instead that 

they possess rich prior conceptions about the physical world. But instead of finding 



 272 

these prior conceptions helpful when learning about scientific concepts, students are 

thought to have to undergo conceptual change (Nersessian, 2003), because despite 

their richness their conceptions are often inaccurate and differ fundamentally from 

the scientific conceptions to be taught in the classroom. While the naïve conceptions 

that are formed in this way can be satisfactory in explaining and dealing with 

everyday motion problems (Hammer, 1996, 2000; Reif, 2008; Tao & Gunstone, 

1999), the nature of these naïve conceptions poses a problem for learning science, 

as often they do not comply with accepted scientific notions and are typically 

resistant to change through instruction (Bloom & Weisberg, 2007; Chi & Roscoe, 

2002; Duit & Treagust, 2003; Duit et al., 2008; Ferrari & Chi, 1998; Finegold & Gorsky, 

1991; D. Kuhn, 1989). 

 

Motion is a ubiquitous phenomenon in everyday life, and humans have much 

interchange with motion in the physical world. Consequently, these everyday 

experiences have a significant effect on conceptions about motion from an early age. 

Speed and acceleration are fundamental to motion. The literature on the 

understanding of speed and acceleration presented in the earlier chapters of this 

thesis has shown, too, that children often do not hold views consistent with the 

materials to be taught. However, this work is limited in that there is no integration of 

children’s understanding about different motion paths. How do children understand 

motion paths in relation to each other; are horizontal motion and free fall motion 

related in any way? And how is motion down an incline perceived? One aim of the 

thesis was therefore to investigate primary school children’s beliefs about object 

speed and acceleration by looking at the predictions they make about motion, and 

what factors affect their decision-making. In addition, the work attempted to 

integrate beliefs for three different motion paths – horizontal, vertical and incline – 

into a larger scheme of motion that is not just limited to individual paths. 

 

A further aim of the work was to see if computers could be useful in the assessment 

of explicit knowledge. The use of ICT in schools has greatly increased over the last 

years, and the National Curriculum for England (Department for Education and 

Employment, 1999) emphasises the incorporation of ICT in the curriculum. The 
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general benefit of computer-based teaching has been recognised in a range of recent 

publications (e.g. Barton, 2004; Glover et al., 2005; Holliman & Scanlon, 2004; 

Murphy, 2003; L. R. Newton & Rogers, 2001; H. J. Smith et al., 2005). Regarding 

science education in particular, ICT brings with it the advantage of creating 

simulations, as these can generate abstract scenarios, dynamic events that could 

otherwise not be observed in the real world (Gould et al., 2006; Hennessy, 2006; 

Hennessy et al., 2007; Rogers, 2004; Steinberg, 2000). Several authors have 

highlighted the use of computers in the promotion of conceptual change (Andaloro 

et al., 1997; diSessa, 1982; Doerr, 1997; Hennessy et al., 1995a, b; Papert, 1980; 

Twigger et al., 1991), and it was hoped that these last two points could be combined 

– creating dynamic events that do not occur in the everyday world but that may 

match the beliefs children hold, and facilitating conceptual change. 

 

The thesis’ final objective was to investigate whether an alternative to the standard 

explicit belief assessment is available that could assess children’s tacit understanding 

of object motion – an understanding that “consists of representations that merely 

reflect the properties of objects or events without predicating them of any particular 

entity” (Dienes & Perner, 1999, p. 752); an understanding that remains unarticulated 

yet can be demonstrated in use or action (Polanyi, 1967; Wagner & Sternberg, 1985). 

Much like the above-average ball players who cannot make sufficient predictions on 

paper about where, when and how to catch a ball (Reed et al., 2010) yet out in the 

playing field their catching behaviour suggests otherwise (Gigerenzer, 2004, 2007; 

McLeod & Dienes, 1996; McLeod et al., 2008), the present research was interested 

to find out whether young children display similar dissociations in their explicit 

predictions and their tacit understanding of object speed and acceleration.  

 

In order to assist with the issue of how to determine tacit understanding, the 

judgement task approach was introduced in Chapter 3 (cf. Broaders et al., 2007). It 

was felt that in combination with computers as an assessment tool children’s explicit 

conceptions could be explored as well as contrasted with children’s judgements of 

related object motion events, in order to see if the former process differs from the 

latter. In the long run, a possible dissociation between explicit and tacit reasoning 
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could be utilised in early science education to promote change of common 

Aristotelian ideas, as introduced in Chapter 1, thereby overcoming the difficulties of 

the process of conceptual change noted in Chapter 2. 

 

13.2 Summary of the results 

 

13.2.1 Variables used in children’s explicit reasoning 

 

From Study 1 it was established that children’s predictions about object motion are 

based on a range of variables. Overall, the results are in concordance with Galili’s 

(2001) idea of weight being an important variable in reasoning about the physical 

world, but justifications varied among motion types. While weight was a principal 

variable in free fall motion, weight-based justifications were not used as often in the 

other two motion types; size and shape were mainly used in horizontal motion 

justifications, and texture in incline motion justifications. However, these results 

have to be considered carefully, as the objects used in each of the motion types 

were different, thereby making cross-motion-type comparisons a little difficult. Using 

the two test balls in Study 2 enabled control of several of the variables that emerged 

from children’s reasoning about object motion in Study 1. Size and shape became 

obsolete, and differences in texture were sufficiently minimal that hardly any 

reference was made, and even when children did refer to texture, they always did 

this in combination with object weight. Instead, with the exception of those children 

who made same-speed predictions, the children’s predictions were always made on 

the basis of the balls’ weights. 

 

13.2.1.1 Directions of variables in justifications 

 

In Study 1 it was found that when shape and texture were used as a justification, 

faster speed was almost always associated with roundness and smoothness of 

objects, no matter which motion type was concerned. However, where object 

weight and size are concerned, a different picture emerged from the results. Given 

the substantial literature on the understanding of object motion in free fall (e.g. 
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Baker et al., 2009; Champagne et al., 1980, as cited in McDermott, 1984; Chinn & 

Malhotra, 2002; Nachtigall, 1982; Sequeira & Leite, 1991; van Hise, 1988), it was not 

particularly unexpected that children mainly associated faster fall with heavier 

objects across all ages. This said, children in the youngest age group also referred to 

size reasonably often, almost as frequently as to weight, and faster motion was 

associated with bigger objects. Faster horizontal motion, on the other hand, was 

associated with lighter and smaller objects, again fairly consistently across all ages; 

this, too, seems to be in concordance with previous work suggesting that in 

horizontal scenarios children under 12 years of age associate heavy objects with 

higher resistance to motion (Howe, 1991, as cited in Howe, 1998). There was less 

consistency across age groups for incline motion. While younger children predicted 

faster motion for lighter and smaller objects, there was a clear shift in conceptions, 

with older children predicting faster motion for heavier and bigger objects, again 

consistent with previous findings (e.g. Howe et al., 1992, as cited in Howe, 1998). 

 

Studies 2 and 3 confirmed these findings, though reduced to weight alone, as size no 

longer varied. For incline motion, it seems that there was not a particular age point 

where children suddenly switched from associating faster incline motion with 

lightness to associating it with heaviness. Instead, it seems to be a gradual process, 

which suggests that even though the changes go from one incorrect view to another 

incorrect view, without affecting same-speed predictions at all, there is little 

resistance to change in conceptions within the total age range, at least where 

motion down an incline is concerned. This is a crucial observation and lends much 

support to the notion that conceptual change should be tackled in the early years. 

Given the extensive literature on children’s prior conceptions and the mismatch 

between these and accepted scientific views, not only concerning children’s 

understanding of motion, it may come as no particular surprise that here, too, 

children held views about object speed that were incompatible with science. 
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13.2.2 Interaction of motion types 

 

It might seem fair to conclude that motion in the horizontal dimension and motion in 

the vertical dimension are not considered in the same way, at least as far as 

justification for directions of predictions are concerned. In fact, inverse pictures 

emerged for the two motion types – while all three explicit task studies showed that 

faster motion along a horizontal was generally associated with small and light 

objects, faster motion in free fall was associated with big and heavy objects, and 

both views were held consistently over age. So indeed, the two motion types do 

seem to be differentiated psychologically from each other at least to some degree, 

lending support to previous ideas (Hayes, 1979; Howe, 1998). However, what about 

motion down an incline? Is it perceived to be an integration of horizontal and vertical 

dimensions, or do children treat it as a third, independent, dimension that bears no 

significant relation to either horizontal or vertical paths? Study 1 could not offer any 

conclusive response to resolve this question because of the comparability of the 

object groups, or rather, lack thereof. However, Study 2 offered a clearer picture. It 

would appear that, at least in terms of the objects used, younger children associate 

motion down an incline more with motion along a horizontal than with motion in 

free fall, and that over age this association crosses over, such that as children get 

older they associate motion down an incline more with motion in free fall and less 

with motion along a horizontal. As with the directions of variables, even though the 

changes go from one incorrect view to another incorrect view, there is little 

resistance to change in conceptions and adds further support to the notion that 

conceptual change should be engaged with early on. 

 

13.2.2.1 Incline comparisons 

 

Much like the shift in understanding of support observed in Baillargeon’s work with 

infants (Baillargeon & Hanko-Summers, 1990; Baillargeon et al., 1992; Needham & 

Baillargeon, 1993), young children, too, appear to undergo a shift in conception of 

incline motion in relation to the involvement of support. Younger children associated 

faster incline motion with lightness of objects and older children associated it with 
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heaviness of objects, yet all children seemed to understand that the degree of incline 

affects the interaction of horizontal and vertical dimensions and the resulting object 

motion changes. It would thus appear that children’s notion of diagonal dimensions 

is informed by their understanding of both horizontal and vertical dimensions at all 

ages, but that younger children associate incline motion more with supported 

horizontal motion and that older children integrate elements of free fall more 

frequently into their conception of inclines, thereby reasoning similarly about those 

two dimensions. 

 

It is suggested that the children’s understanding of how incline changes from low to 

high (or vice versa) affect motion might contribute to understanding how the three 

motion types interact in terms of the children’s reasoning about them. The children’s 

predictions in Studies 2 and 3 proved to be consistent with accepted scientific views. 

However, as they did not give any justifications, it is difficult to conclude whether 

they knew that incline height increases result in faster speed or that incline height 

decreases result in slower speed, regardless of the object, because the force acting 

on the objects along the slope increases.8 Alternatively, they may have responded 

without knowing the reasons per se but arrived at the correct conclusion simply 

because the changes affect all objects in the same way, as long as friction can be 

overcome.  

 

13.2.3 Attribution of changes in speed 

 

Studies 2 and 3 also investigated children’s appreciation of changes in speed, which 

is deemed to be an important factor in understanding naturalness of motion. Both 

studies suggest that children appreciate that there must be a change in speed 

between a starting point and any subsequent point. This is rather similar to Piaget’s 

                                                 
8
 As laid out in the section on the physics behind object speed and acceleration, motion down an 

incline can be calculated using the formula a = [(mg sinθ) – (μ mg cosθ)] / m. If object weight mg and 

friction coefficient μ do not change, but the angle θ of incline does, acceleration a changes 

accordingly, increasing as θ increases and decreasing as θ decreases, for any object, as long as friction 

is overcome. 
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(1970a) observation of children initially perceiving acceleration in incline motion as a 

short and intensive effort, or Nachtigall’s (1982) similar findings about children’s 

understanding of speed changes in free fall motion. In horizontal motion, children 

probably hold the beliefs in a similar way, only inversely: As soon as a ball rolls along 

a horizontal following a dimension change, that is, from incline motion to horizontal 

motion, it instantly slows down, therefore being slower at any point after leaving the 

tube. Results from previous work by Howe et al. (2010a) on children’s understanding 

of horizontal motion suggest young children do not anticipate changes in speed 

along horizontals. The results provided by Studies 2 and 3 do not refute those 

findings, and are not necessarily incompatible with them. However, Howe et al. 

(2010a) did not incorporate any change in dimension. If no dimension change had 

been provided in Studies 2 and 3, that is, if children had not been told that the balls 

had been rolling down the incline first, then quite possibly horizontal speed change 

would not have been anticipated by the children. 

 

Again, this point of dimension change affecting speed change suggests that incline 

motion is not exactly like horizontal motion, and that even for the youngest children 

there must be some appreciation of an integration of horizontal and vertical 

dimensions, despite supported motion perhaps being more salient to them. 

However, attributions were made far less frequently between two points where a 

change in speed might be less obvious because neither point is a starting or stopping 

point. This indicates that children’s explicit understanding of speed change appears 

to be limited, and unlike Piaget (1970a), there appeared to be no developmental 

trend over age in attributions, despite using the same age range – children in all age 

groups seemed just as likely to make attributions beyond the starting point. Of 

course, Piaget’s work was not directly replicated here, so it is difficult to draw any 

clear parallels to it. 

 

Interestingly, the weight of the ball also had an effect on speed change attributions. 

The heavier ball was more likely than the lighter ball to be associated with a change 

in speed as it moved, regardless of motion dimension. This certainly stands in conflict 

particularly with the observed understanding of horizontal motion, where heaviness 
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was seemingly seen as a hindrance to faster motion. It is unclear why this would be 

so. However, Aristotelian physics (cf. Aristotle, trans. 2008) notes that heavier 

objects have more internal impetus and are therefore more able to cut through 

resistance caused by air. Although Aristotle only referred to speed and not to speed 

change, it seems plausible that children may associate heaviness with a prolonged 

ability to overcome resistance, thus being more able to accelerate (albeit 

temporarily) than lighter objects. 

 

13.2.3.1 Speed change and realignment of the incline dimension 

 

As mentioned already, there is a shift from younger children associating motion 

down inclines more with horizontal motion to older children associating motion 

down inclines more with motion in free fall. The increasing awareness of speed 

change with age may help to further understand why this realignment occurs. On the 

one hand, there is a clear increase with age in associating the heavy ball with faster 

motion down inclines, that is, the alignment shifts from the horizontal to the vertical 

dimension. At the same time, awareness of speed change increases. Younger 

children show little awareness of speed change at all, and their predictions suggest 

they associate incline motion more with horizontal motion. Yet as the awareness of 

speed change improves, the incline dimension is realigned. It would appear, thus, 

that younger children who do not have an understanding of speed change view 

incline motion in terms of it being supported, like horizontal motion, thus aligning 

the two, and as children gain awareness of speed change and gain awareness that 

acceleration (rather than deceleration) occurs down inclines like it does in free fall, 

they shift their alignment. Certainly, a more in-depth examination of the 

development of speed change awareness and the realignment effect would be 

worthwhile. 

 

13.2.4 Effectiveness of using computers 

 

Given the rapidly increasing use of ICT in schools and the recognition of benefits that 

come from computer-assisted teaching and learning, it was hoped that the current 
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research could also provide valuable information towards designing conceptual 

change programmes in early science education that would incorporate computers. 

The results all show high positive correlations between children’s explicit predictions 

made in Study 2 and the same children’s statement choices made in Study 3. Even 

when all options are presented to children in form of different ‘hypotheses’ rather 

than questions, including the correct one, children will still make choices consistent 

with their predictions. This finding lends much support to the suggestion of possibly 

using computers as a tool in conceptual change programmes, as they appear to 

result in the same observations of children’s explicit beliefs as real-object tasks. As in 

Study 2, almost all of speed task responses in Study 3 were in favour of differences in 

motion between the two balls, regardless of direction of the responses. Concerning 

attribution of changes in speed and changes in incline height, the pattern was similar 

to that observed in Study 2 as well. Overall, the findings are confirmatory of the 

early-age conceptual change approach, whilst being able to incorporate ICT as well. 

 

13.2.5 Explicit reasoning versus tacit judgement 

 

As opposed to Studies 2 and 3, where practically all predictions made when two balls 

had to be compared were different-speed predictions, Study 4 showed that the 

children judged same-speed trials to be correct more often than they accepted 

different-speed trials. From the explicit studies it was unclear what the children 

actually meant when they predicted that one object would be faster than the other 

(how much faster?), so quite possibly the same-speed scenarios simply seemed more 

similar to their explicit beliefs than the different-speed scenarios. However, then 

they could have selected the same-speed trials as incorrect as well, which was rarely 

done. Thus it is suggested that, overall, young children are indeed able to recognise 

naturalness of motion and appreciate that it is correct; these findings are consistent 

with those of previous motion research (Kaiser & Proffitt, 1984; Kaiser et al., 1992; 

Kannass et al., 1999; Kim & Spelke, 1992; Shanon, 1976). The differences between 

explicit predictions and tacit judgements observed here are also in concordance with 

related recent findings on conscious versus unconscious judgement knowledge, and 

in turn the results receive support from findings that distinguish guessing from 
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intuition (Dienes, 2008; Dienes & Scott, 2005; Fu et al., 2010a, b; Scott & Dienes, 

2010). 

 

It was additionally observed, though, that there were several occasions where 

different-speed trials were judged as being correct, and the ones chosen to be 

correct corresponded to the pattern found in the children’s explicit predictions in 

Studies 2 and 3; in these cases, horizontal motion was judged as correct when the 

light ball was faster, free fall motion was judged as correct when the heavy ball was 

faster, and incline motion judgements varied with age, shifting from associating the 

light ball with faster motion to associating the heavy ball with faster motion. The 

conclusion from this was that the responses were separable into two groups – 

children’s tacit judgements were often accurate, but when their judgements were 

not, they reflected the explicit beliefs that emerged in Studies 2 and 3. 

 

It is suggested that this was a result of prolonged observations of trials, which in turn 

resulted in reasoning based on explicit beliefs rather than spontaneous judgements 

based on tacit understanding. The response time data gathered in Study 4 support 

the idea of two distinct reasoning approaches. Whenever the children spent less 

time to reach a decision about the correctness of a trial they were more likely to 

make correct decisions. But when the children seemingly engaged with the trials for 

longer, they would choose those dynamic events as correct that reflected their 

explicit beliefs expressed in the previous studies. It seems, therefore, that fast 

responding (Kurzban, 2008), a quick ‘gut feeling’ response (Gigerenzer, 2007), 

provides a higher likelihood of being accurate about dynamic events, and that 

expressly thinking about the events results in referring to explicit knowledge that is 

different from underlying tacit knowledge. 

 

13.3 Model-based reasoning – one model but two pathways? 

 

The importance of modelling in understanding scientific phenomena has been 

recognised for some time (e.g. Confrey & Doerr, 1994; Frederiksen & White, 1998; 

Lehrer & Schauble, 2000, 2003). Mental models are conceptual systems consisting of 
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elements, relations, operations and rules (Lesh & Doerr, 2003) and act as prototypes 

of particular kinds of conceptual models, which can then enable a person to simulate 

similar behaviour with new objects (Nersessian, 1992, 2002a, 2003). When solving a 

problem, learners construct a mental model of the problem and use that model as 

the basis for prediction and inference (Jonassen, 2003, 2004; Morgan, 1999). Mental 

models and model-based reasoning can provide important information about the 

underlying knowledge structures from which they are generated. This highlights the 

relevance for mental modelling in the process of establishing conceptual limitations 

in children’s explicit thinking about the physical world. But how can mental models 

be integrated into the current work, particularly in relation to children’s tacit 

judgements? 

 

The findings from the current work offer support for two distinct forms of knowledge 

that may nonetheless be connected somehow. Vosniadou (2002a) suggests that 

mental models can help to draw on implicit physical knowledge, which can be then 

used to solve problems, and that by doing so the implicit knowledge becomes 

explicit. However, this does not seem to be quite consistent with the results 

described here. If in the current work this implicit model were relied on in explicit 

reasoning, then the model would obviously be faulty to some degree – and yet the 

tacit task suggests that there is some ability to reach appropriate conclusions about 

the naturalness of object motion. Though perhaps the idea should not be dismissed 

per se, but instead it may require some form of modification. An extension of 

Vosniadou’s (2002a) idea is depicted in Figure 13.1 (p. 283) and is outlined next. 
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Figure 13.1 A dual-pathway model of reasoning 

 

The extension works in the following way. Given the notion of the possible 

innateness of basic principles according to Spelke and colleagues (Kinzler & Spelke, 

2007; Spelke, 1991, 1994, 2000, 2004; Spelke et al., 1992; Spelke & Kinzler, 2007; 

Spelke, Phillips, & Woodward, 1995) and of basic concepts according to Carey and 

colleagues (Carey, 1992, 2000b, 2004, 2009; Carey & Sarnecka, 2006), there is a set 

of core cognition elements that are loosely connected in appropriate combinations 

to form domain-specific prototypical models – much like D. E. Brown and Hammer’s 

(2008) notion of conceptual change models described in Chapter 2. When infants 

display an understanding of events in violation of expectation tasks, they map what 

they see onto the tacit model they hold and base decisions of possibility versus 

impossibility of events on the goodness-of-fit between external observation and 

internal model. As they grow older, additional external contributors such as 

language, sociocultural factors, or experience with particular instances come into 

play. When reasoning by making explicit predictions, elements of the tacit model are 

elevated and ‘filtered’ through these contributors, resulting in a new explicit model 
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that still incorporates the tacit elements but nonetheless differs substantially from 

the tacit model. 

 

Tacit models are not replaced by explicit models, they still remain and are used in 

performing tasks such as catching balls, but in predictive reasoning the explicit 

models have to be used. Furthermore, a range of tasks with very young children 

(Ahmed & Ruffman, 1998; Berthier et al., 2001; Clements & Perner, 1994; Garnham 

& Ruffman, 2001; Hofstadter & Reznick, 1996; Hood et al., 2003; Low, 2010; Mash et 

al., 2003; Ruffman et al., 2001) suggest that while these children’s explicit 

knowledge, expressed through reaching behaviour or verbal responses, is often not 

correct, their looking behaviour indicates that there must be some underlying 

representation of the correct responses. According to Goldin-Meadow and Alibali 

(1999), this underlying knowledge is implicit in its nature. It is therefore certainly 

plausible to assume that tacit knowledge continues to exist beyond infancy but that 

the acquisition of language in early childhood interferes with the children’s tacit 

beliefs.  

 

Support for the notion that the explicit representations are based on underlying tacit 

models appears elsewhere in the research literature. For instance, explicit 

mathematical computations are made possible through a number of automatic 

processes that are inaccessible to consciousness, that is, through underlying tacit 

structures. This includes the automatic activation of core processes and approximate 

representations of numerical magnitudes (cf. Stanescu-Cosson et al., 2000). At the 

same time, when core processes are damaged in some way or another, mental 

arithmetic becomes very difficult and suffers (Lemer, Dehaene, Spelke, & Cohen, 

2003). This clearly illustrates how explicit and tacit processes are linked, and that 

explicit processes cannot operate on their own, lending strong support to the idea of 

a combined structure of thinking and understanding. 

 

And reasoning on the basis of such explicit models is how prior conceptions emerge 

by the time children enter school, if not sooner, that are inconsistent with the actual 

concepts to be taught. The suggestion made here also allows for two somewhat 



 285 

different notions from the literature to be under the same roof. While one view 

holds that mental models are dictated by a person’s general background knowledge 

about the world (e.g. Miščević, 1992), an alternative view is that thought 

experiments draw on imagined transformations that depend on innate knowledge of 

three-dimensional space (e.g. Shephard, 2008). It is argued here that the models that 

are retrieved during explicit reasoning might essentially be the result of an 

interaction of (possibly innate) core principles and external contributors. 

 

13.3.1 The role of language in the dual pathway model 

 

The results from Study 4 appear to suggest that the underlying tacit knowledge 

displayed in children’s judgements of dynamic events remains unchanged across the 

age groups assessed. So it would appear that tacit models establish themselves at 

least by about the age of 5 years and remain consistent throughout childhood. Given 

the lack of additional age groups in the present research, it is difficult to make any 

suggestion as to when exactly these tacit models are established and whether they 

do indeed remain consistent into adulthood. However, related work with adults (e.g. 

Kaiser & Proffitt, 1984) indicates only limited improvement in accuracy of 

judgements between middle childhood and adulthood, thus suggesting that tacit 

knowledge probably does remain stable beyond early childhood. And yet the results 

from the first three studies collectively suggest that explicit conceptions differ from 

tacit conceptions and change with age. Knowledge that is represented by explicit 

symbols differs from core cognition (Carey, 2009). Most knowledge is not considered 

to be innate and does not remain constant throughout the course of development, 

because relations among explicit symbols can be revised. It is clear, then, that 

language must play an important part in this differentiation. And as was noted in 

Chapter 3, language unquestionably plays a role in the development of conceptual 

knowledge and in the elevation of underlying tacit knowledge to the explicit level 

(Carey, 2009). 

 

The dual pathway idea depicted in Figure 13.1 (p. 283) does take into account that 

there is, essentially, just one model, the model that Vosniadou (2002a) is referring 
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to, but because of the re-routing in explicit reasoning this model is altered 

unintentionally, that is, something is lost in the process of translation from tacit to 

explicit, caused by the interference from external factors. Vosniadou and colleagues 

(Stathopoulou & Vosniadou, 2007; Vosniadou, 1994a, 2003, 2007c) do suggest that 

the situative or sociocultural contexts play an important role in the construction of 

beliefs and conceptual change, and “of course human beings also have language – 

the main medium for the cultural transmission of acquired learning” (Carey, 2004, p. 

59). There is no reason to assume that it would be any different in the current 

proposition; once language can be used in the construction of beliefs, explicit models 

are created and altered through beliefs of others, that is, parents, teachers and 

peers, via discourse – but the corresponding tacit models would remain untouched 

by this. So indeed it would appear that Fodor (1985) made an appropriate statement 

about two systems. While mapping would be a fast and straightforward process, 

predicting would take longer because of the re-routing and the resulting integration 

of external contributors. Other previous work, too, supports the idea of language 

being the decisive element in the elevation of tacit knowledge to the explicit level. 

 

Despite language acquisition possibly having its origins in core cognitive systems (cf. 

Chomsky, 1965; Gleitman et al., 2005; Pinker, 1984, 1989; Spelke & Newport, 1998), 

it would appear that language learning itself does not affect core or tacit knowledge 

but builds upon it without modifying it. This, too, is in line with the observation that 

judgements seemingly based on underlying tacit knowledge structures remain 

constant throughout the tested age ranges. It seems likely that language continues 

to develop in its sophistication, and certainly there are concepts whose semantics 

are only appreciated at later ages. Semantics are necessary in order to give meaning 

to concepts so that they can be made explicit. These semantics are acquired through 

associations between spoken words, by parents, teachers or peers, and the objects 

or events concerned (Ganea et al., 2005; Harris, 2002). 

 

It was also noted in Chapter 3 that children construct semantic systems, and not 

merely lists of independent words, because of the relations between words (Kuczaj 

& Hill, 2003), that words at the far ends of a semantic dimension are learned before 
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words that are in between (Kuczaj, 1975, 1982), and that for young children words at 

the far ends of the dimension are more salient (Kuczaj, 1999). When children made 

predictions based on object properties in Studies 1, 2 and 3, such as weight or size, 

they did so by using a term from one end of the relevant semantic dimension, and 

presumably having an idea of where the other object in a pair would be placed 

within that semantic dimension. But it has also been noted that in order to 

appreciate the semantics of an object or an event and to incorporate the semantics 

into one’s language system a workable concept of that object or event must already 

be in existence (Spelke, 2003). This may explain why judgements of conceptual 

events can be made with reasonable accuracy. So it is clear that even if semantics 

play a role in conceptual knowledge, it does not appear to interfere with underlying 

knowledge structures as such, but merely in the process of elevating that underlying 

knowledge to the explicit level. 

 

There is no certainty about the existence of core cognition, and even if it does exist, 

then most knowledge is not directly encapsulated in it. On the contrary: “There are 

no innate perceptual analysers, nor innate learning mechanisms, that pick out the 

electrons, the tables, the stars, or the wombats in our environment” (Rosenberg & 

Carey, 2009, p. 184). Semantics do not interfere with core knowledge. Instead, they 

enable the embellishment of its repertoire by establishing newly combined 

conceptual systems (Spelke, 2003). Language learning – particularly semantics – is 

supported by core cognition rather than being the cause of it. But the role of 

language in the development of conceptual understanding beyond what is available 

in the core cognitive system remains important, as does its relevance in making 

underlying knowledge accessible and shareable. Even if children have every kind of 

knowledge represented in their core cognitive system, they still need to acquire 

appropriate language skills to make that knowledge explicit. 

 

13.3.2 The possible impact of science education on model formation 

 

An important aspect that might very likely contribute to explicit model formation is 

the influence of education. When looking at the National Curriculum for England’s 
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(Department for Education and Employment, 1999) specifications for primary school 

science teaching, it becomes clear that children are already expected to be taught 

several relevant aspects of the work covered in the four studies here. Not only are 

the scientific skills they are taught relevant but also the specific content they 

encounter in class. While the former is not seen as particularly disconcerting, as if 

anything, those skills have probably facilitated task performance for the children, the 

latter may have largely helped to establish explicit models of motion. In Key Stage 1 

(ages five to seven years), children learn about speed change, in Key Stage 2 (ages 

seven to 11 years) they learn about gravity, friction and air resistance. How this 

teaching content has an impact on the results here is difficult to estimate, but it 

seems reasonable to suggest that learning about these elements leads to integrating 

them into a generic explicit model of motion, and clearly this is not working well, as 

their explicit beliefs are limited. By incorporating children’s tacit understanding of 

motion into the curriculum, support might be provided when learning about these 

concepts. 

 

This might certainly suggest that incline motion and speed change might be affected 

by curriculum contents and educational practice. At the same time, though, it is very 

worthwhile to note that the prior work by Howe et al. (1992, as cited in Howe, 1998), 

which revealed a similar crossover in children’s reasoning about motion down 

inclines as found in the present work, was carried out in Scotland, where the 

National Curriculum does not apply. Moreover, data for that study was collected at a 

time when science did not constitute a part of primary education within Scotland (C. 

Howe, personal communication, May 4, 2010). So while some impact of science 

education on model formation may be present, it is difficult to establish whether it 

does or not, but on the basis of other research it seems somewhat unlikely to be the 

case. 

 

13.4 The role of executive function and inhibition of responses 

 

As aforementioned, several studies have noted that toddlers often fail tasks by 

searching at incorrect locations or giving incorrect verbal responses, yet their looking 
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behaviour suggests they do know the correct location (Ahmed & Ruffman, 1998; 

Berthier et al., 2001; Clements & Perner, 1994; Garnham & Ruffman, 2001; 

Hofstadter & Reznick, 1996; Hood et al., 2003; Low, 2010; Mash et al., 2003; 

Ruffman et al., 2001). It would appear that the under-developed nature of executive 

control in this age range interferes with underlying knowledge structures, although 

these limitations can eventually be overcome. What role might developing facility 

with executive function play in the current theoretical model? 

 

Firstly, a developmental trend can be noted. Young infants – at the time that their 

visual system is fully developed – do not possess appropriate motor or language 

abilities to perform particular tasks. But tasks such as those following the violation-

of-expectation paradigm are able to rely purely on their visual responses and suggest 

underlying knowledge. Infants who have then developed sufficient motor abilities 

can be assessed on their conceptual understanding in simple reaching tasks such as 

the A not B search task. However, younger infants within this group tend to fail these 

tasks first, and cannot search correctly until they have sufficiently mastered 

executive control over their actions and are able to overcome inhibitions. Yet up to 

the point when they are able to solve these tasks correctly, some task variations (e.g. 

Ahmed & Ruffman, 1998) have revealed that infants may reach for the wrong 

location but look at the correct location, thus indicating that whilst they have not 

been able to overcome inhibition of motoric responses, their underlying knowledge 

is still accessible through visual responses.  

 

During toddlerhood, an increase in search task sophistication level, that is, having 

more than two possible search locations (e.g. Baker et al., in press; Berthier, DeBlois, 

Poirier, Novak, & Clifton, 2000; Haddad, Kloos, & Keen, 2008; Hood et al., 2000, 

2003, 2006; Keen et al., 2008), young children again first fail to solve tasks accurately 

by reaching for the wrong location when asked to retrieve an object, yet they will 

visually search at the right location. Similarly, while language develops rapidly at this 

age, toddlers fail verbal tasks but their visual response suggests an underlying 

knowledge of the correct response (Low, 2010). Eventually, young children are able 

to master these more sophisticated reaching tasks and verbal tasks. When reaching 
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the age group assessed in this thesis, it would appear that explicit functioning is not 

yet appropriately developed, whatever the cause of this may be – and it would 

appear that language most probably plays a large role in this. However, when relying 

on visual responses (and some minor motor “search” responses through pressing 

one of two buttons) it seems possible to show that these children do appear to 

understand the concept correctly.  

 

It has been suggested in the neuropsychological literature that the development of 

the prefrontal cortex plays a role in executive function and inhibition response 

development (cf. Baird et al, 2002; Diamond, 1988, 1991, 2006; M. H. Johnson, 2005; 

Wood & Grafman, 2003). One theory of its involvement is that when skills are 

mastered in the prefrontal cortex, that skill is outsourced to other specialist areas of 

the cortex, and the prefrontal cortex then deals with new skills (Csibra et al., 1998; 

M. H. Johnson et al., 1998; Mareschal et al., 2004; Thatcher, 1992). Are perhaps 

visual and motoric response abilities outsourced, but for some reason responses in 

relation to language are not? Certainly, the prefrontal cortex continues to develop 

well into adolescence; while recognition memory is stable by the age of 8 years, 

performance requiring advanced planning and working memory does not appear to 

reach levels of sufficient competency before the age of 12 (Fabiani & Wee, 2001; 

Luciana, 2003), which is also the oldest age group tested in the current research. In 

line with this, several studies (e.g. Davidson, Amso, Anderson, & Diamond, 2006; 

Zelazo, Craik, & Booth, 2004; Zelazo, Müller, Frye, & Marcovitch, 2003) also indicate 

that executive function continues to develop throughout childhood and into 

adulthood, and is seen as a growth in conscious control (Zelazo, 2004) – a growth in 

explicit representation of knowledge? 

 

How does the ability to predict motion develop? Again, a developmental trend can 

be established. According to Leslie, Xu, Tremoulet and Scholl (1998), young infants 

are eventually able to continue tracking a moving object once it becomes occluded. 

They propose that this is done through deployment of an attentional index, which 

guides the infants to the object’s likely location. Yet because the object is invisible, 

the attentional index is only an approximation, and similar conclusions have been 
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drawn from search tasks with toddlers – if the object is visible for part of its 

trajectory, children are more able to search successfully (e.g. Butler, Berthier, & 

Clifton, 2002). What the present prediction tasks demand from the child is 

essentially the same; they are not able to see any trajectory but need to have an 

approximate understanding of this trajectory in order to make their predictions. 

They do not seem to be successful at deploying their index accurately, though. As 

language development has been suggested to play a crucial role in the retrieval 

ability of underlying concepts (to which such an attentional index must belong if 

prelinguistic infants hold it), it would seem that language interferes too strongly with 

the retrieval process of the underlying index information. Yet when the trajectory is 

fully visible, as in the judgement tasks, they are more likely to match that trajectory 

of motion with their anticipated attentional indices – in a process where language 

does not play any role. 

 

On the basis of these aspects – development of task and skill sophistication levels 

and the role of the prefrontal cortex – it is thus proposed that similar to Karmiloff-

Smith’s (1992) notion of redescription, where mastery at a skill level needs to be 

achieved before a new level can be attained, it appears that as sophistication 

requirements increase, from simple visual responses to simple motoric choices to 

more complex motoric choices to use of language, children have to learn mastery of 

a new skill before they can appropriately solve tasks. If their new skill is not fully 

mastered, underlying knowledge can still be reflected in equally appropriate skills 

that have previously already been mastered. However, unlike Karmiloff-Smith (1992) 

it is proposed that it is not a case of redescription per se but a case of ‘layering’ 

based on core knowledge system accessibility; adding skills to an existing repertoire 

of knowledge without compromising prior skills. It is suggested that while all skills 

are technically accessible in a particular task (depending on age), they are only 

consciously accessible in relation to task relevance – verbal tasks require language, 

search tasks require motoric skills, and non-search tasks can rely on visual 

representation only. When solving tasks, only the most relevant skill is drawn upon. 

Underlying tacit knowledge, on the other hand, can still be represented through any 

of these skills, as long as they have been mastered sufficiently. Quite possibly, 
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language processing in the kind of explicit tasks presented in this thesis is too 

complex to overcome and therefore responses cannot be inhibited appropriately. 

Incorporating eye-tracking methods into the explicit tasks might reveal that children 

look at the response their underlying knowledge tells them is right, but they are 

simply making incorrect choices because they cannot sufficiently inhibit the linguistic 

processing.  

 

13.5 Limitations of the present work 

 

Despite the findings that have been presented so far, the work has limitations, and 

these are discussed here. Perhaps the main limitation is that the work has not taken 

into account the impact of language or of outside school factors, such as parent 

education levels. Although these should not have an effect on the tacit models if 

these are based on innate conceptual knowledge or very early experiences alone (cf. 

Baillargeon & Hanko-Summers, 1990; Baillargeon et al., 1992; Needham & 

Baillargeon, 1993), they most probably do play a crucial role in explicit reasoning. 

One might be tempted to suggest, for instance, that if parents have a higher 

education degree in, say, physics, they might be more likely to convey correct 

information to their children. Particularly if the model suggested above places an 

emphasis on the impact that external contributors have on the development and 

retrieval of explicit models, it is important to be aware of how strong the impact of 

these contributors is, and to what extent they dilute the tacit models during 

predictive reasoning. As aforementioned, these external contributors presumably do 

indeed have an effect, and this notion finds support in the literature (cf. 

Stathopoulou & Vosniadou, 2007; Vosniadou, 1994a, 2003, 2007c). However, the 

current work does not touch on this aspect. 

 

A further aspect that is not considered in the present work is generic theories of 

motion. None of the tasks in the present work looked at children’s generic theories, 

or whether they even have any. For instance, do children believe that, as a matter of 

principle, heavier objects always fall faster than lighter ones, or does this depend on 

the specific objects that are used? Study 1 did touch upon the fact that there are 
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several variables that children rely on in their justifications, and often even consider 

multiple variables – occasionally, children predicted same speeds because one was 

heavier, although at the same time the other was bigger, and both variables seemed 

to have the same effect on the objects. Despite this providing a basic idea that if they 

do have generic naïve theories of motion they would not be limited to weight, the 

work does not provide enough in-depth information to draw conclusions on this 

matter. 

 

An additional limitation of the current research is that the studies do not take into 

account any qualitative developmental trends of understanding of object speed and 

acceleration, neither individually nor collectively. Despite similar results across the 

ages where motion along a horizontal and motion in free fall are considered, is a 

five-year-old child’s belief about faster motion the same as it is for an 11-year-old? 

They clearly are not the same where motion down an incline is concerned, as their 

predictions about faster motion change with age. Previous work on children’s 

understanding of object speed and acceleration where a range of ages was 

considered (Howe, Tolmie, & Rodgers, 1992; Inhelder & Piaget, 1958; Piaget, 1970a) 

has concluded that children’s understanding changes qualitatively with age; it 

becomes more sophisticated over time as children pass from one stage of 

development to another. On the other hand, it is worth noting here that none of 

these studies looked at motion in free fall. So it may well be that older children have 

a more sophisticated understanding about motion – as children get older, they may 

have a better understanding of what factors affect motion, such as gravity, friction, 

or drag, and use them in their reasoning process, but without arriving at any 

different solution in the present context. 

 

One methodological drawback of the current work has possibly been the use of 

computer screen and keyboard rather than working with an integrated system, that 

is, using a touch screen monitor. Unfortunately the computer program used was not 

compatible with the screen used, hence the need to resort to an external keyboard. 

Despite having made the keyboard as simple as possible by masking it off and 

matching responses and keys by colour, the response process involved an additional 
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step by matching responses with keys. By designing a computer program compatible 

with touch screens or interactive whiteboards, this additional step could be avoided 

and possibly lead to more accurate results, particularly in the tacit reasoning task. In 

addition, by making the studies compatible with touch screens or interactive 

whiteboards the work could become more useful in the designing of conceptual 

change programmes for the classroom. 

 

Another methodological issue to consider is the role of the tube in horizontal 

scenarios. The horizontal motion trials in Study 3 and Study 4 included a small 

section of the incline being visible. The initial argument for horizontal motion trials in 

Studies 2 to 4 was that somehow horizontal motion needed to be induced without 

any subjective influence such as pushing – if one object is pushed harder than the 

other, it might expectedly go faster because of the greater push. So the children 

were instructed that the balls would have been (in the case of predictions) or had 

been (in the case of judgements) released down the tube at an incline in such a way 

that both balls reached the end of the tube at the same time, thereby offering no 

indication as to whether the two balls had been released at the same time or not. 

However, it is difficult to know how exactly this may have affected their predictions 

and judgements of horizontal motion. Following the instructions, the children might 

not necessarily have expected the two balls to have travelled the same distance; 

they might have felt the balls could have been released simultaneously at different 

points in the tube, or that one tube was, in fact, shorter than the other. But given 

their familiarity with the apparatus by then, given the availability of the physical tube 

during all relevant studies, and given that no additional apparatus was introduced at 

any point, this does not seem very likely to be the case. Certainly in Study 2, where 

children needed to give verbal justifications for their choices, no child made any 

indication that the balls might behave differently from each other because of issues 

relating to the apparatus. It seems reasonable to suggest that the Study 3 trials could 

have been arranged such that they showed the incline and the horizontal in the 

same picture. This, however, brings with it the issue of scaling. Firstly, the individual 

pictures would have been much smaller, and secondly, the relation of size to the 

other trials, notably the fall trials, would in itself possibly had had an effect on 
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predictions. As far as Study 4 is concerned, if the entire set-up had been shown, that 

is, the tube at an incline and the horizontal, then – leaving aside the aspect of size – 

the children would have seen the two balls rolling down the incline and they may 

have made their judgements purely on how the balls compared along the incline. 

And if for a child the incline motion does not look right to begin with, then why 

would the horizontal motion considered to possibly be right? Similarly, if the incline 

motion does look right then children may again assume that the horizontal motion 

will be right and base judgements on the incline motion alone. Nonetheless it was 

felt that showing the exit of the tube was necessary in order to reassure the children 

how the horizontal motion had come about to begin with. In light of the issues 

mentioned here, it seems that the risk of bias is so small that the advantages of using 

the approach outweigh alternative approaches, which could themselves bring 

problems with them. But of course it is difficult to say with any certainty that the 

current approach might not have created any participant bias, as unlikely as it would 

seem to be, and it is worth keeping this point in consideration. 

 

A further apparatus issue to consider is the fact that for the fall conditions in Studies 

2, 3 and 4 the balls fell (or were predicted to fall) inside a tube. It could be argued 

that the tube may have been a contributing factor in predictions and judgements. 

However, the tube was used to enable a more direct comparison between fall and 

incline motion by using the exact same distance for both task types, and to provide 

indicators of distance for the speed change tasks. From a physical perspective, the 

incorporation of the tube in the fall tasks should not have made a difference per se, 

as both balls would have been affected in the same way due to their similarity in 

shape and size. From a physical point of view the buoyancy effect should be greater 

within a tube; the buoyancy effect is determined by the volume of the objects (i.e. 

shape and size) and the density of the medium (i.e. air). Yet both balls had the same 

volume and the tube was the same for both objects in the same atmospheric 

conditions. If they were indeed slightly slowed down in their fall, because of 

increased pressure within the tube, then the two balls would have both been slowed 

down similarly. It was also the same tube for both balls, therefore the same 

dimensional effects occurred, that is, the same tube diameter for same-sized and 
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same-shaped objects. In addition, the tube itself did not restrict any motion, as at 6.5 

cm it was much wider in diameter than the two balls at 4 cm. Even though the free 

fall condition is not strictly free fall because of the tube, it does not seem 

conceivable that this would have had any effect on predictions or judgements 

throughout the studies. 

 

A final issue that arose early on was that of the lack of cross-study counterbalancing. 

The reason for not counterbalancing was because of the prolonged designing of the 

two computer studies. At the same time, however, it was felt that counterbalancing 

the studies would not have made a difference, as the children were not provided 

with any feedback on their predictions. They were neither told whether they were 

correct or not, and they did not see any motion occurring which would have enabled 

them to verify their predictions. Similarly, having the judgements task first would not 

have caused any differences in explicit predictions, because again, the children did 

not receive feedback on their judgements and thus would not have had any 

indication as to whether their judgements were correct or incorrect. The data 

collected subsequently to assess whether there was any order effect in task 

presentation (see Chapter 7 and the appendix, pp. 350-353) supports this by showing 

no indication of predictive performance in Study 3 affecting judgement performance 

in Study 4 or vice versa. The only possible effect that may have been achieved in not 

counterbalancing across all studies – though this is merely speculation at this point – 

is that children might have relied more intensively on object weight in the Study 1 

task if they had performed on the other tasks first, where weight was the crucial 

difference between the two balls. In light of this possible outcome, however, it 

would appear more beneficial to have had Study 1 prior to any of the other studies 

for precisely that reason, as the wealth of justifications observed in Study 1 may 

otherwise not have been noted. 
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13.6 Suggestions for future work 

 

13.6.1 Furthering of the explicit-tacit distinction 

 

The results emerging from the present work offer additional questions to be 

explored in order to improve understanding of how explicit reasoning and tacit 

judgement are related to each other. For example, do explicit prediction tasks 

impose additional demands, or even entirely qualitatively different demands on 

brain activity than tacit judgement tasks? Scheuerecker et al. (2007), for instance, 

found a distinction at the neurological level between explicit and implicit processes 

in the evaluation of emotional facial expressions – while functional magnetic 

resonance imaging scans showed that both processes activated similar neural 

substrates the explicit task engaged additional networks as compared to the implicit 

task. Another recent study, by Chiu et al. (2006), investigated brain responses of 

explicit and implicit memory by measuring event-related potentials. Their work 

suggests that the two memory types can be differentiated on the basis of brain 

activation. So on the basis of these two studies one might indeed expect to find 

neurological differences between explicit and tacit reasoning processes within the 

current framework, too. 

 

This in turn opens additional aspects worth investigating in order to further the 

understanding of the distinction between explicit reasoning and tacit judgement. If 

the underlying tacit knowledge about objects and motion can be assumed to remain 

unchanged throughout the lifespan (cf. Carey, 2009; Keysers et al., 2008; Santos & 

Hood, 2009; Spelke, 2000), then true tacit reasoning ought to activate the same 

brain regions at any given age, whether in early infancy or in adulthood. If, at the 

same time, reasoning on the basis of explicit knowledge is the result of language, 

education and any other factors interfering with the information retrieval process as 

described above, then one might expect to find differences in brain activity across 

development, possibly with an increase in the areas involved or in intensity of 

activity of the same areas as acquisition of language and knowledge transmission 

increase. Granted, entirely eliminating all factors that could potentially contribute to 
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making tacit knowledge explicit would probably be rather difficult, so any 

assessment of what here is called true tacit reasoning would presumably pose a 

formidable challenge. 

 

Another research technique that might provide useful information with regard to 

tacit judgements in particular involves eye pupil dilation measures when watching 

events. For example, young infants have shown heightened pupil dilations when 

watching impossible scenarios rather than possible scenarios during a violation of 

expectation experiment (Jackson & Sirois, 2009). Applying this technique to the 

present context, would young children (or adults, for that matter), too, show 

heightened pupil dilations when seeing incorrect trials during tacit reasoning? Would 

they perhaps show heightened dilations even if they judged incorrect trials as 

correct, thereby registering the naturalness of the event but being in conflict with 

their explicit representation that they may have accessed by that point? This is a 

similar notion to that of the dissociation observed between search errors or 

incorrect verbal problem solving and a display of underlying knowledge about 

correct locations expressed by looking behaviour in late infancy and early childhood 

(e.g. Ahmed & Ruffman, 1998; Clements & Perner, 1994; Garnham & Ruffman, 2001; 

Hofstadter & Reznick, 1996; Hood et al., 2003; Low, 2010; Mash et al., 2003; 

Ruffman et al., 2001). 

 

13.6.2 Applications to educational practice 

 

Whether making use of tacit knowledge can facilitate conceptual change in early 

science cannot be assumed on the basis of the current results, as no intervention 

study was conducted. The current work has merely looked at distinguishing explicit 

reasoning from tacit judgements in primary school children. But can tacit knowledge 

effect conceptual change in children and modify their existing explicit beliefs? The 

current research cannot offer any conclusive support, neither in favour of successful 

changes nor against it. However, what it does do is offer suggestions for the 

construction of conceptual change programmes. In the light of the current work, 

conceptual change would need to make use of the distinction between explicit 



 299 

knowledge and tacit reasoning by making the tacit model accessible (but not explicit) 

to the child. In doing so, the internal conflict between explicit beliefs and tacit 

understanding becomes available to the child.  

 

Howe, Taylor Tavares and Devine (2010c) have begun to assess such an approach. 

Primary school children aged 8 to 12 years were assessed on two computer-

presented tasks described earlier in Chapter 6 (Howe et al., 2010a, b) but combining 

both explicit predictions and tacit judgements of predictions. When predictions were 

made, the children received feedback about their predictions, that is, whether they 

were correct or incorrect. In both cases, they were then invited to see what happens 

if their predictions are carried out. So children who predicted correctly would see 

correct motion, and children who predicted incorrectly would see incorrect motion. 

The latter group would then also be able to see the correct motion. In a pre-test the 

children needed to make predictions of motion. A few days later, some children 

worked through the teaching software, that is, the integration of predictions and 

outcomes, and some children did not. A post-test several weeks later identified that 

while at the pre-test stage all children were equivalent in performance, those that 

worked with the software made superior predictions to those children who did not 

work with the software, both for horizontal motion and for free fall. 

 

In Chapter 2, the notion was introduced that in order to change conceptions there 

must be conflict and dissatisfaction with current views. Although there are issues 

with this approach in its applications to education, the incorporation of tacit 

knowledge assessment may bring the conflict to a much more individual level and 

help to increase the likelihood of conflict and dissatisfaction, thus eliciting a change 

in conceptions. This may be fruitful in adjusting the explicit model and bringing it 

closer to the tacit model by making the tacit model an external contributor in its own 

right. Of course one cannot simply cut out the other external contributing factors 

such as language or sociocultural influences (see the dual pathway model displayed 

in Figure 13.1, p. 283), as science education does require an explicit understanding of 

concepts (for how else could teachers know if children understand the concepts to 

be taught?), and the external contributors are after all what defines explicitness of 
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knowledge in the first place. But by making the tacit model ‘explicit’ in the sense that 

it becomes a contributor without being diluted of other contributors it is hoped that 

conceptual change can be facilitated appropriately. However, the effectiveness or 

lack thereof is something that requires further investigation through an intervention 

study examining children’s explicit understanding some time after an in-depth 

confrontation with the tacit models. 
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“You know more than you think you 

know […]” (Wilde, 1891/1999, p. 21) 

 

 

 

 

 

 

 

 

 

 

CONCLUSION: 

AN EPILOGUE TO THE THESIS 

 

At the very beginning of this thesis, a quote was given. Albert Einstein asked what 

the fish knows about the water in which he swims all his life – a very meaningful and 

interesting question. This quote was adapted to a long-term problem, that of our 

understanding of the physical world we live in. Two questions were asked, and their 

difference may not have been very clear to begin with. Firstly, what do we know 

about the physical world, and secondly, what do we really know about it? Like 

Aristotle so many years ago, many children and adults today hold beliefs about the 

world that are inconsistent with science. Evidently, despite these erroneous notions 

the human species has nonetheless managed to survive. But it has not done so well 

in changing naïve notions in order to produce efficient scholars that can deal with 

physics in appropriate ways.  

 

The first question – what we know about our physical world in general – can be 

answered on the basis of the introductory chapters of this thesis. The answer is that 

as individuals we believe to know a lot, but this knowledge is often limited or 

incorrect. The first three studies in this thesis have confirmed this idea; children’s 
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understanding of object motion is rich, but limited, and too alike Aristotelian 

theories. As conceptual change in science education does not seem to be a 

particularly effective way, on a large scale, to incite change of conceptions, the 

question arose whether judgements of dynamic events would reveal an answer to 

the second question – what we really know about our physical world. The results of 

the fourth study in this thesis, and other research, have indicated that children’s 

spontaneous judgements of events support the notion of underlying tacit knowledge 

structures that accurately reflect the physical world. 

 

It is clear, then, that two ‘forms’ of understanding about the same topic are available 

in young children. Early science education ought to begin taking this differentiation 

into consideration, and hopefully future research programmes investigating whether 

tacit judgements can facilitate change of explicit conceptions will provide stronger 

support for this. The quest for knowledge continues, and probably will never end. 

But one further step has already been taken now. 
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A2 Questionnaire for teachers: Use of information and communication technology (ICT) in 
the classroom 
 
 
 
Dear Teachers, 
 
 
 
 
As part of my PhD research at the Faculty of Education, University of Cambridge, which looks 
at young children’s explicit and tacit understanding of object motion, certain tasks are being 
carried out using a computer. As a sideline to this I would be interested to find out how 
much experience these children have in the use of ICT within the classroom, particularly in 
the context of science education. It would therefore be greatly appreciated if you could take 
the time to fill out this short questionnaire on your use of ICT in the classroom.  
 
By completing and returning this questionnaire you will be giving your consent to participate 
in my research. Your responses will be collected anonymously and your data will be treated 
confidentially, and no identifying information will be used in publication. Should you wish 
your data to be withdrawn at any point, please let me know. 
 
Kindly complete the questionnaire and return it to ___________ by Monday, June 1st. In the 
meantime, if you have any further questions, please feel free to contact me at 
mh530@cam.ac.uk or at the Faculty of Education (see footer for address). 
 
Many thanks 
 
 
 
 
 
Michael Hast 
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Use of information and communication technology (ICT) in the classroom 
 

 
Year: _____ 

 
1. How many hours of your overall teaching, on average, incorporate the use of ICT? 
 
  

_____ hours per week (out of _____ hours*) 
 
2. Which ICT methods do you use in the classroom? 
 
 
 
 
 
3. With which of the above methods, if any, are your children given hands-on 

experience? 
 
 
 
 
 
4. How many hours a week, on average, do you spend on teaching science? 
 
 

_____ hours per week (out of _____ hours*) 
 
5. Do you incorporate ICT when teaching science? 
 
 

YES / NO 
 
6. How much of your science teaching, on average, involves the use of ICT? 
 
 

_____ hours per week (out of _____ hours**) 
 
7. Which ICT methods do you use when teaching science? 
 

 

 

 

 

 

                                                 
*
 Total hours that your children are taught per week (not necessarily only by you), excluding breaks. 

**
 Total hours of science teaching only. 
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A3 Consent form 
 
 
 
Dear Parent or Guardian 
 
 
 
I am currently carrying out research for my PhD at the Faculty of Education, University of 
Cambridge. My research is interested in seeing what pre-school and primary school children 
know about how fast objects move. There will be a range of tasks in which the children will 
simply be shown a range of everyday objects, either in real life or on a computer screen, and 
they will be asked questions about how fast these objects move. 
 
Participation will be absolutely voluntary. If the children do not want to answer questions or 
if they want to stop at any point, they are free to do so, without needing to justify 
themselves. Also, any data that I collect will be treated confidentially, which means that if 
the results are published, there will be no way of identifying any data as that of your child’s. 
If at any later point you wish your child’s data to be withdrawn from the research, please let 
me know. 
 
If you do NOT wish your child to participate in my research at all, please fill in the form 
below and return it to the school by Friday, May 2nd. If you require further information you 
are welcome to contact either the head teacher of your child’s school, or you can contact me 
at the Faculty of Education (see footer for address).  
 
 
Many thanks 
 
 
 
 
 
Michael Hast 
 

 
 
 
I do not wish my child __________________________________________ (please give full 

name), Year ______, to participate in your research. 
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A4 Sample questionnaire for Study 1 
 

Initials: ____   Gender: __   Year: __  Birthday: __________ 
 

 
INCLINE 

1. Do you think one of the two will roll for longer? 

Squash ball   Golf ball   Both the same 

Because ______________________________________________________________ 

2. Do you think one of the two will roll faster? 

Orange    Tennis ball   Both the same 

Because ______________________________________________________________ 

3. Do you think one of the two will roll faster? 

Tennis ball   Squash ball   Both the same 

Because ______________________________________________________________ 

4. Do you think one of the two will roll for longer? 

Orange    Golf ball   Both the same 

Because ______________________________________________________________ 

5. Do you think one of the two will roll faster? 

Squash ball   Orange    Both the same 

Because ______________________________________________________________ 

6. Do you think one of the two will roll for longer? 

Golf ball   Tennis ball   Both the same 

Because ______________________________________________________________ 

 
FALL 
7. Do you think one of the two will fall faster? 

Hammer   Feather   Both the same 

Because ______________________________________________________________ 

8. Do you think one of the two will fall faster? 

Leaf    Stone    Both the same 

Because ______________________________________________________________ 

9. Do you think one of the two will fall for longer? 

Stone    Hammer   Both the same 
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Because ______________________________________________________________ 

10. Do you think one of the two will fall faster? 

Feather   Stone    Both the same 

Because ______________________________________________________________ 

11. Do you think one of the two will fall for longer? 

Hammer   Leaf    Both the same 

Because ______________________________________________________________ 

12. Do you think one of the two will fall for longer? 

Leaf    Feather   Both the same 

Because ______________________________________________________________ 

 

HORIZONTAL 

13. Do you think one of the two will roll for longer? 

Car    Truck    Both the same 

Because ______________________________________________________________ 

14. Do you think one of the two will roll faster? 

Marble    Car    Both the same 

Because ______________________________________________________________ 

15. Do you think one of the two will roll for longer? 

Truck    Marble    Both the same 

Because ______________________________________________________________ 

16. Do you think one of the two will roll faster? 

Billiard ball   Truck    Both the same 

Because ______________________________________________________________ 

17. Do you think one of the two will roll for longer? 

Marble    Billiard ball   Both the same 

Because ______________________________________________________________ 

18. Do you think one of the two will roll faster? 

Car    Billiard ball   Both the same 

Because ______________________________________________________________ 
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A5 Sample questionnaire for Study 2 
 

Initials: ____   Gender: __   Year: __  Birthday: __________  
 

Light/Heavy 
 

 
1. Motion down an incline at 15 cm 

 

a. Control ball: what happens if you let it go? (correct or incorrect) 

b. Will the two balls take the same time, or will one take more, or less, to reach the end of 

the tube? Why? 

 

c. Do they both go as fast, or is one faster or slower? Why? 

 

d. How does the speed of the ball at Point A (0cm) compare with that at Point C (100cm); is 

it the same, or more, or less? 

 

e. How about Point A (0cm) and Point B (50cm)? 

 

f. How about Point B (50cm) and Point C (100cm)? 

 

 

2. Motion down an incline at 30 cm (incline comparison) 

 

a. Will the ball take the same time as before, more, or less, to reach the end of the tube? 

Why? 

b. Does it go as fast as before, or is it faster or slower? Why? 
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3. Horizontal motion 

 

a. Control ball: what happens when it reaches the end of the tube? (correct or incorrect) 

b. Will the two balls take the same time, or will one take more, or less, to stop? Why? 

 

c. Do they both go as fast, or is one faster or slower? Why? 

 

d. How does the speed of the ball at Point A (0cm) compare with that at Point C (100cm); is 

it the same, or more, or less? 

 

e. How about Point A (0cm) and Point B (50cm)? 

 

f. How about Point B (50cm) and Point C (100cm)? 

 

 

4. Motion in free fall 

 

a. Control ball: what happens if you let it go? (correct or incorrect) 

b. Will the two balls take the same time, or will one take more, or less, to reach the end of 

the tube? Why? 

 

c. Do they both go as fast, or is one faster or slower? Why? 

 

d. How does the speed of the ball at Point A (0cm) compare with that at Point C (100cm); is 

it the same, or more, or less? 

 

e. How about Point A (0cm) and Point B (50cm)? 

 

f. How about Point B (50cm) and Point C (100cm)? 
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A6 Addendum to 7.3.2.2 on repeated testing of same sample and order of tasks 

 

In order to see whether the repeated testing of the same sample of children and the order 

of tasks had any effect on the children’s performance on individual tasks, an additional 

sample of children was recruited. These children were tested on their performance in the 

Study 3 task (see Chapter 10) and on their performance in the Study 4 task (see Chapter 11). 

 

1. Method 

 

1.1 Participants 

 

As noted in Chapter 7, the additional study sample consisted of 16 children (8 girls). The 

sample included 4 Year 1 children (2 girls; age M = 6.30 years, SD = 0.26), 4 Year 2 children (2 

girls; age M = 7.01 years, SD = 0.30), 4 Year 4 children (2 girls; age M = 9.27, SD = 0.22) and 4 

Year 6 children (2 girls; age M = 11.33, SD = 0.12). The children were recruited from the same 

school as the main sample. None of them had previously participated in any of the four pilot 

studies or any of the four main studies. 

 

1.2 Materials 

 

The materials used in the two tasks were the same as those in the main Study 3 (see Chapter 

10) and as those used in the main Study 4 (see Chapter 11) respectively. 

 

1.3 Design 

 

The conditions for the two tasks were the same as in the main Study 3 (see Chapter 10) and 

as in the main Study 4 (see Chapter 11) respectively. One half of the children – two from 

each age group, one girl and one boy – performed the Study 3 task first and then the Study 4 

task a few days later. The other half of the children performed the Study 4 task first and then 

the Study 3 task a few days later. 
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1.4 Procedure 

 

The procedure and the instructions for the two tasks were the same as in the main Study 3 

(see Chapter 10) and as in the main Study 4 (see Chapter 11) respectively. 

 

2. Results 

 

2.1 Methods of analysis 

 

Analyses were conducted on two levels. On the first level, the additional sample children’s 

responses to the Study 3 task were compared with each other, that is, the mean scores for 

children who performed the Study 3 task first were compared with the mean scores for 

children who performed the Study 3 task second. The same analyses were conducted for the 

Study 4 task. On the second level, the additional sample children’s overall responses to the 

Study 3 task were compared with those of the main Study 3 sample, and the additional 

sample children’s overall responses to the Study 4 task were compared with those of the 

main Study 4 sample. All analyses of mean score comparisons involved Mann-Whitney tests. 

Effects of gender were analysed with Mann-Whitney tests, and effects of conditions were 

analysed with Kruskal-Wallis tests and post hoc Jonckheere-Terpstra tests. No significant 

gender or condition effects were found, therefore these are not considered further. All data 

were analysed using PASW (Predictive Analytics Software, formerly SPSS) Statistics version 

18. 

 

2.2 Study 3 task 

 

2.2.1 Mean scores 

 

No significant differences for any of the mean scores for the Study 3 task were observed 

between the children who performed the Study 3 task first and the children who performed 

the Study 4 task first. This was the case for speed predictions, for speed change predictions, 

and for incline height comparison predictions. 
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2.2.2 Response times 

 

No significant differences for any of the mean response times for the Study 3 task were 

observed between children who performed the Study 3 task first and those who performed 

the Study 4 task first. 

 

2.3 Study 4 task 

 

2.3.1 Judgements 

 

No significant differences for any of the mean judgement scores for the Study 4 task were 

observed between children who performed the Study 4 task first and those who performed 

the Study 3 task first. 

 

2.3.2 Response times 

 

No significant differences for any of the mean response times for the Study 3 task were 

observed between children who performed the Study 4 task first and those who performed 

the Study 3 task first. 

 

2.4 Additional sample versus main sample 

 

2.4.1 Study 3 task 

 

No significant differences for any of the mean scores for the Study 3 task were observed 

between the additional sample children and the main sample children. This was the case for 

speed predictions, for speed change predictions, and for incline height change predictions. 

Response times did not differ significantly between the two groups either. 
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2.4.1 Study 4 task 

 

No significant differences for any of the mean scores for the Study 4 task were observed 

between the additional sample children and the main sample children. This was the case for 

speed predictions, for speed change predictions, and for incline height change predictions. 

Response times did not differ significantly between the two groups either. 

 

3. Summary 

 

The results suggest that repeated testing of the same children had no effect on mean scores, 

both for explicit predictions (Study 3 task) and for tacit judgements (Study 4 task). The 

results for children who performed either task first did not differ significantly from those for 

children who performed either task second. This also indicates that the order of 

presentation of tasks had no significant effect on scores either. The results obtained here 

further indicate that the Study 3 main sample results were not affected by having done 

Study 2 previously. The children in the additional sample, who had not done the Study 2 task 

at all, did not differ significantly from the main Study 3 sample in their mean scores for the 

Study 3 task. The results further imply that the main Study 4 sample judgements were not 

affected by exposure to prior tasks. The children in the additional sample did not differ 

significantly from the main Study 4 sample in their mean judgement scores for the Study 4 

task. This was even the case if they performed the Study 4 task prior to the Study 3 task, 

therefore not having been exposed to any other tasks beforehand. It can therefore be 

assumed that any results obtained in the main studies were not affected by repeated testing 

or by order of tasks. 
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A7 Debrief information 
 
 
 
Research on children’s science 
 
 
 
Dear ______, 
 
 
 
 
I would like to take this opportunity to thank _________________ School for helping me 
with my PhD research. Please find attached a summary of the work. If you or any other 
teachers or parents have any questions, feel free to contact me at mh530@cam.ac.uk or at 
the Faculty of Education (see footer for address). 
 
 
 
 
Many thanks 
 
 
 
 
 
Michael Hast 
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Young children’s explicit and tacit understanding of object motion 
Research summary 
 
There seems to be much agreement in the research literature that children do not start 
school as blank slates, but that they bring with them ideas about how the world works 
(based on their experiences, on what they learn from their parents etc.). The problem in 
many areas of science is that the ideas children have beforehand do not comply with 
accepted scientific views and therefore, in the course of education, the children’s beliefs 
need to be altered appropriately. In some subjects this seems to be easier to do, for example 
in chemistry or biology. But in physics, especially in dynamics, this is not the case, because 
children do have so much experience with the outside world, from the day they are born, 
and so their ideas are held very firmly.  
 
My work was interested in exploring primary school children’s beliefs about speed and 
acceleration of objects, and whether there are other ways of assessing their understanding. 
For this purpose, a distinction can be made between two kinds of knowledge. Explicit 
knowledge is the kind of knowledge that can be expressed verbally or in writing. Tacit 
knowledge, on the other hand, is a kind of knowledge that cannot be assessed through 
asking questions but it can be expressed in actions. For example, knowing how to ride a 
bicycle is tacit knowledge – you might know how to ride a bicycle, but you don’t necessarily 
know why you can ride it or what exactly makes the bicycle move (because you may not 
know all the physical principles involved in making the bicycle move forward). I looked at 
children’s explicit beliefs in three studies and compared it with their tacit understanding in a 
fourth study. 
 
Study 1 
 
In the first study I showed children a range of everyday objects and paired them together. 
The children had to make predictions about motion along a horizontal, down an incline, and 
in free fall, and they had to justify their answers. For example, they were shown a feather 
and a hammer and were asked whether one of the two would fall faster, or whether they 
would both fall as fast as each other. I was not interested in their choices, only in their 
justifications, and found that children used a range of justifications – weight, size, shape, 
texture, any other reasons – and that the use of justifications varied across ages and motion 
types. Younger children appeared to rely more on size than older children, and less on 
weight. When used as a justification, faster speed was, perhaps not unsurprisingly, almost 
always associated with roundness and smoothness of objects. In free fall, children mainly 
associated faster motion with heavier and bigger objects across all ages. Horizontal motion, 
on the other hand, was associated with lighter and smaller objects, again consistently across 
all ages. But while younger children predicted faster incline motion for lighter and smaller 
objects, older children predicted faster motion for heavier and bigger objects.  
 
Study 2 
 
In the second study I decided to further investigate the findings from Study 1 but using a 
more ‘scientific’ set-up. There were two balls – a heavy ball and a light ball – of similar sizes, 
and a tube. Consistent with Study 1, faster horizontal motion was usually associated with the 
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lighter ball, and faster motion in free fall was usually associated with the heavier ball. Faster 
incline motion predictions, on the other hand, changed with age. Younger children predicted 
faster motion for the lighter ball and older children for the heavier ball. This suggests that 
even though the changes go from one incorrect view to another incorrect view, there is little 
resistance to change in beliefs within the total age range. Concerning acceleration, children 
generally seemed to appreciate that there must be a change in speed between a starting 
point and any subsequent point. However, they did not always appreciate that there would 
be changes between two points when the balls were moving at both points. But in order to 
appreciate the naturalness of motion, children will need to understand that objects 
accelerate (or decelerate). 
 
Study 3 
 
Given the fairly extensive use and the recognised benefits of ICT in primary school teaching, 
the third study was a replication of Study 2 but using a computer. The children were shown 
pictures on a computer screen and they were given prediction options to choose from. The 
results of this study all show very similar results to those of Study 2. Even when all options 
were presented to children, including the correct one, children still made choices consistent 
with their predictions in Study 2. 
 

Study 4 
 
The fourth study, then, was concerned with trying to discover whether children are able to 
identify correct motion scenarios, even when these are different from their beliefs that they 
have shown in Studies 2 and 3. The children were shown short video clips where the balls 
were moving, either correctly or incorrectly. Over 75 per cent of same-speed trials were 
judged to be correct, whereas only just over 25 per cent of the different-speed trials were 
judged to be correct. Children can also seemingly identify inappropriate scenarios almost 
instantly; trials that are neither correct nor match their explicit beliefs (i.e. when the heavy 
ball is faster along the horizontal, or when the light ball is faster in free fall). Despite some 
unresolved questions it is clear that there is a mismatch between explicit reasoning and tacit 
judgement, with children recognising naturalness of motion. 
 
Conclusion 
 
Whether making use of tacit knowledge can facilitate change of beliefs in early science 
cannot be assumed on the basis of the current results alone, as no intervention study was 
conducted. The current work has merely looked at distinguishing explicit reasoning from 
tacit judgements in primary school children. Can tacit knowledge modify their existing 
explicit beliefs? The current research cannot offer any conclusive support, neither in favour 
of successful changes nor against it. However, what it does do is offer suggestions for the 
construction of conceptual change programmes. 
 


