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Abstract

We present a federated, asynchronous, and (ε, δ)-differentially private algorithm
for PCA in the memory-limited setting. Our algorithm incrementally computes
local model updates using a streaming procedure and adaptively estimates its
r leading principal components when only O(dr) memory is available with d
being the dimensionality of the data. We guarantee differential privacy via an
input-perturbation scheme in which the covariance matrix of a dataset X ∈ R

d×n

is perturbed with a non-symmetric random Gaussian matrix with variance in

O
((

d
n

)2
log d

)
, thus improving upon the state-of-the-art. Furthermore, contrary

to previous federated or distributed algorithms for PCA, our algorithm is also
invariant to permutations in the incoming data, which provides robustness against
straggler or failed nodes. Numerical simulations show that, while using limited-
memory, our algorithm exhibits performance that closely matches or outperforms
traditional non-federated algorithms, and in the absence of communication latency,
it exhibits attractive horizontal scalability.

1 Introduction

In recent years, the advent of edge computing in smartphones, IoT and cryptocurrencies has induced
a paradigm shift in distributed model training and large-scale data analysis. Under this new paradigm,
data is generated by commodity devices with hardware limitations and severe restrictions on data-
sharing and communication, which makes the centralisation of the data extremely difficult. This
has brought new computational challenges since algorithms do not only have to deal with the sheer
volume of data generated by networks of devices, but also leverage the algorithm’s voracity, accuracy,
and complexity with constraints on hardware capacity, data access, and device-device communication.
Moreover, concerns regarding data ownership and privacy have been growing in applications where
sensitive datasets are crowd-sourced and then aggregated by trusted central parties to train machine
learning models. In such situations, mathematical and computational frameworks to ensure data
ownership and guarantee that trained models will not expose private client information are highly
desirable. In light of this, the necessity of being able to privately analyse large-scale decentralised
datasets and extract useful insights out of them is becoming more prevalent than ever before. A
number of frameworks have been put forward to train machine-learning models while preserving
data ownership and privacy like Federated Learning [37, 29], Multi-party computation [41, 32, 47],
Homomorphic encryption [20], and Differential Privacy [13, 14]. In this work we pursue a combined
federated learning and differential privacy framework to compute PCA in a decentralised way and
provide precise guarantees on the privacy budget. Seminal work in federated learning has been made,
but mainly in the context of deep neural networks, see [37, 29]. Specifically, in [29] a federated
method for training of neural networks was proposed. In this setting one assumes that each of a large
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number of independent clients can contribute to the training of a centralised model by computing
local updates with their own data and sending them to the client holding the centralised model
for aggregation. Ever since the publication of this seminal work, interest in federated algorithms
for training neural networks has surged, see [48, 24, 19]. Despite of this, federated adaptations of
classical data analysis techniques are still largely missing. Out of the many techniques available,
Principal Component Analysis (PCA) [44, 27] is arguably the most ubiquitous one for discovering
linear structure or reducing dimensionality in data, so has become an essential component in inference,
machine-learning, and data-science pipelines. In a nutshell, given a matrix Y ∈ R

d×n of n feature
vectors of dimension d, PCA aims to build a low-dimensional subspace of Rd that captures the
directions of maximum variance in the data contained in Y. Apart from being a fundamental tool for
data analysis, PCA is often used to reduce the dimensionality of the data in order to minimise the cost
of computationally expensive operations. For instance, before applying t-SNE [34] or UMAP [36].
Hence, a federated algorithm for PCA is not only desired when data-ownership is sought to be
preserved, but also from a computational viewpoint.

Herein, we propose a federated and differentially private algorithm for PCA (Alg. 1). The computation
of PCA is related to the Singular Value Decomposition (SVD) [16, 38] which can decompose any
matrix into a linear combination of orthonormal rank-1 matrices weighted by positive scalars. In
the context of high-dimensional data, the main limitation stems from the fact that, in the absence
of structure, performing PCA on a matrix Y ∈ R

d×n requires O(d2n + d3) computation time
and O(d2) memory. This cubic computational complexity and quadratic storage dependency on
d makes the cost of PCA computation prohibitive for high-dimensional data, though it can often
be circumvented when the data is sparse or has other type of exploitable structure. Moreover, in
some decentralised applications, the computation has to be done in commodity devices with O(d)
storage capabilities, so a PCA algorithm with O(d) memory dependency is highly desirable. On this
front, there have been numerous recent works in the streaming setting that try to tackle this problem,
see [39, 40, 35, 2, 3, 6]. However, most of these methods do not naturally scale well nor can they be
parallelised efficiently despite their widespread use, e.g. [7, 6]. To overcome these issues a reliable
and federated scheme for large decentralised datasets is highly desirable. Distributed algorithms for
PCA have been studied previously in [28, 31, 45]. Similar to this line of work in [42] proposed a
federated subspace tracking algorithm in the presence of missing values. However, the focus in this
line of work is in obtaining high-quality guarantees in communication complexity and approximation
accuracy and do not implement differential privacy. A number of papers in non-distributed, but
differentially private algorithms for PCA have been proposed. These can be roughly divided in two
main groups: (i) those which are model free and provide guarantees for unstructured data matrices,
(ii) those that are specifically tailored for instances where specific structure is assumed. In the
model-free PCA we have (SuLQ) [5], (PPCA) and (MOD-SuLQ) [8], Analyze Gauss [15]. In the
structured case, [22, 23, 21] studies approaches under the assumption of high-dimensional data, [54]
considers the case of achieving differential privacy by compressing the database with a random affine
transformation, while [18] proposes a distributed privacy-preserving version for sparse PCA, but
with a strong sparsity assumption in the underlying subspaces. To the best of our knowledge, the
combined federated, model free, and differential private setting for PCA has not been previously
addressed in literature. This is not surprising as this case is especially difficult to address. In the one
hand, distributed algorithms for computing principal directions are not generally time-independent.
That is, the principal components are not invariant to permutations the data. On the other hand,
guaranteeing (ε, δ)-differential privacy imposes an O(d2) overhead in storage complexity, which
might render the distributed procedure infeasible in limited-memory scenarios.

Summary of contributions: Our main contribution is Federated-PCA (Alg. 1) a federated, asyn-
chronous, and (ε, δ)-differentially private algorithm for PCA. Our algorithm is comprised out of
two independent components: (1) An algorithm for the incremental, private, and decentralised com-
putation of local updates to PCA, (2) a low-complexity merging procedure to privately aggregate
these incremental updates together. By design Federated-PCA is only allowed to do one pass through
each column of the dataset Y ∈ R

d×n using an O(d)-memory device which results in a O(dr)
storage complexity. Federated-PCA achieves (ε, δ)-differential privacy by extending the symmetric
input-perturbation scheme put forward in [8] to the non-symmetric case. In doing so, we improve the
noise-variance complexity with respect to the state-of-the-art for non-symmetric matrices.
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2 Notation & Preliminaries

This section introduces the notational conventions used throughout the paper. We use lowercase
letters y for scalars, bold lowercase letters y for vectors, bold capitals Y for matrices, and calligraphic
capitals Y for subspaces. If Y ∈ R

d×n and S ⊂ {1, . . . ,m}, then YS is the block composed of
columns indexed by S. We reserve 0m×n for the zero matrix in R

m×n and In for the identity matrix
in R

n×n. Additionally, we use ‖ · ‖F to denote the Frobenius norm operator and ‖ · ‖ to denote

the ℓ2 norm. If Y ∈ R
d×n we let Y = UΣVT be its full SVD formed from unitary U ∈ R

d×d

and V ∈ R
n×n and diagonal Σ ∈ R

d×n. The values Σi,i = σi(Y) ≥ 0 are the singular values of

Y. If 1 ≤ r ≤ min(d, n), we let [Ur,Σr,V
T
r ] = SVDr(Y) be the singular value decomposition

of its best rank-r approximation. That is, the solution of min{‖Z−Y‖F : rank (Z) ≤ r}. Using
this notation, we define [Ur,Σr] be the rank-r principal subspace of Y. When there is no risk of
confusion, we will abuse notation and use SVDr(Y) to denote the rank-r left principal subspace
with the r leading singular values [Ur,Σr] We also let λ1(Y) ≥ · · · ≥ λk(Y) be the eigenvalues of

Y when d = n. Finally, we let ~ek ∈ R
d be the k-th canonical vector in R

d.

Streaming Model: A data stream is a vector sequence yt0 ,yt1 ,yt2 , . . . such that ti+1 > ti for all

i ∈ N. We assume that ytj ∈ R
d and tj ∈ N for all j. At time n, the data stream y1, . . . ,yn can be

arranged in a matrix Y ∈ R
d×n. Streaming models assume that, at each timestep, algorithms observe

sub-sequences yt1 , . . . ,ytb of the data rather than the full dataset Y.

Federated learning: Federated Learning [29] is a machine-learning paradigm that considers how a
large number of clients owning different data-points can contribute to the training of a centralised
model by locally computing updates with their own data and merging them to the centralised model
without sharing data between each other. Our method resembles the distributed agglomerative
summary model (DASM) [50] in which updates are aggregated in a “bottom-up” approach following
a tree-structure. That is, by arranging the nodes in a tree-like hierarchy such that, for any sub-tree,
the leaves compute and propagate intermediate results the their roots for merging or summarisation.

Differential-Privacy: Differential privacy [14] is a mathematical framework that measures to what
extent the parameters or predictions of a trained machine learning model reveal information about any
individual points in the training dataset. Formally, we say that a randomised algorithm A(·) taking
values in a set T provides (ε, δ)-differential privacy if

P [A(D) ∈ S] ≤ eεP [A(D′) ∈ S] + δ (1)

for all measurable S ⊂ T and all datasets D and D′ differing in a single entry. Our algorithm extends
MOD-SuLQ [9] to the streaming and non-symmetric setting and guarantees (ε, δ)-differential privacy.
Our extension only requires one pass over the data and preserves the nearly-optimal variance rate
MOD-SuLQ.

3 Federated PCA

We consider a decentralised dataset D = {y1, . . . ,yn} ⊂ R
d distributed across M clients. The

dataset D can be stored in a matrix Y =
[
Y1|Y2| · · · |YM

]
∈ R

d×n with n ≫ d and such that

Yi ∈ R
d×ni is owned by client i ∈ {1, . . . ,M}. We assume that each Yi is generated in a streaming

fashion and that due to resource limitations it cannot be stored in full. Furthermore, under the DASM
we assume that the M clients in the network can be arranged in a tree-like structure with q > 1 levels
and approximately ℓ > 1 leaves per node. Without loss of generality, in this paper we assume that
M = ℓq . An example of such tree-like structure is given in Figure 1. We note that such structure can
be generated easily and efficiently using various schemes [51]. Our procedure is presented in Alg. 1.

Note that Alg. 1, invokes FPCA-Edge (Alg. 3) to privately compute local updates to the centralised
model and Alg. 2 to recursively merge the local subspaces in the tree. To simplify the exposition we
assume, without loss of generality, that every client i ∈ [T ] observes a vector yi

t ∈ R
d at time t ∈ [T ],

but remark that this uniformity in data sampling need not hold in the general case. We also assume
that clients accumulate observations in batches and that these are not merged until their size grows to
bi. However, we point out that in real-world device networks the batch size might vary from client
to client due to heterogeneity in storage capacity and could indeed be merged earlier in the process.
Finally, it is important to note that the network does not need to wait for all clients to compute a global
estimation, so that subspace merging can be initiated when a new local estimation has been computed
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Algorithm 1: Federated PCA (FPCA)

Data: Y =
[
Y1| · · · |YM

]
∈ R

d×n: Data for network with M nodes // (ε, δ): DP parameters // (α, β):
Bounds on energy, see (4) // B: Batch size for clients // r: Initial rank ;

Result: [U′,Σ′] ≈ SVDr(Y) ∈ R
d×r × R

r×r

Federated-PCAε,δ,α,β,r(Y, B)
Compute Tε,δ,d,n minimum batch size to ensure differential privacy, see Lemma 2
Each client i ∈ [M ] : // 1. Initialise clients

Initialises PC estimate to (Ui,Σi)← (0, 0), batch Bi ← [ ], and batch size bi ← Tε,δ,d,n

end
At time t ∈ {1, . . . , n} , each client i ∈ {1, . . . ,M} // 2. Computation of local updates

Observes data-point yi
t ∈ R

d and add it to batch Bi ← [Bi,yi
t]

if Bi has bi columns then

(Ui,Σi)← FPCA-Edgeε,δ,α,β,r(B
i,Ui,Σi)

Reset the batch Bi ← [ ], and set the batch size bi ← B
end

end
/* 3. Recursive subspace merge */
Arrange clients’ subspaces in a tree-like data structure and merge them recursively with Alg. 2 (Fig. 1)

without perturbing the global estimation. This time independence property enables federation as it
guarantees that the principal-component estimations after merging are invariant to permutations in
the data, see Lemma 10. Merge and FPCA-Edge are described in Algs. 2 and 3.
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A A A
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U

Figure 1: Federated model: (1) Leaf nodes (L) independently compute local updates asynchronously,
(2) The subspace updates are propagated upwards to aggregator nodes (A), (3) The process is repeated
recursively until the root node is reached, (4) FPCA returns the global PCA estimate.

3.1 Merging

Our algorithmic constructions are built upon the concept of subspace merging in which two subspaces
S1 = (U1,Σ1) ∈ R

r1×d × R
r1×r1 and S2 = (U2,Σ2) ∈ R

r2×d × R
r2×r2 are merged together to

produce a subspace S = (U,Σ) ∈ R
r×d × R

r×r describing the combined r principal directions of
S1 and S2. One can merge two sub-spaces by computing a truncated SVD on a concatenation of their
bases. Namely,

[U,Σ,VT]← SVDr([λU1Σ1,U2Σ2]), (2)

where λ ∈ (0, 1] a forgetting factor that allocates less weight to the previous subspace U1. In [46, 17],
it is shown how (2) can be further optimised when VT is not required and we have knowledge that
U1 and U2 are already orthonormal. An efficient version of (2) is presented in Alg. 2. Alg. 2 is
generalised in [26] to multiple subspaces when the computation is incremental, but not streaming.
That is, when every subspace has to be computed in full in order to be processed, merged, and
propagated synchronously, which is not ideal for use in a federated approach. Hence, in Lemma 1 we
extend the result in [26] to the case of streaming data. Lemma 1 is proved in the Appendix.

Lemma 1 (Federated SVD uniqueness). Consider a network with M nodes where, at each timestep
t ∈ N, node i ∈ {1, . . . ,M} processes a dataset Di

t ∈ R
d×b. At time t, let Yi

t = [Di
1 | · · · | Di

t] ∈
R

d×tb be the dataset observed by node i and Yt =
[
Y1

t |Y2
t | · · · |YM

t

]
∈ R

d×tMb be the dataset

observed by the network. Moreover, let Zt := [U1
tΣ

1
t | · · · | UM

t ΣM
t ] where [Ui

t,Σ
i
t, (V

i
t)

T ] =

SVD(Yi
t). If

[
Ut,Σt,V

T
t

]
= SVD(Yt) and [Ût, Σ̂t, (V̂t)

T ] = SVD(Zt), then Σ = Σ̂t, and

4
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Algorithm 2: Merger [46, 17]

Data: (U1,Σ1) ∈ R
d×r1 ×R

r1×r1 : First subspace // (U2,Σ2) ∈ R
d×r2 ×R

r2×r2 : Second subspace;

Result: (U′′,Σ′′) ∈ R
d×r × R

r×r merged subspace
Function Merger(U1,Σ1,U2,Σ2) is

Z← UT
1 U2

[Q,R]← QR(U2 −U1Z), the QR factorisation

[U′,Σ′′,∼]← SVDr

([
Σ1 ZΣ2

0 RΣ2

])

U′′ ← [U1,Q]U′

end

Ut = ÛtBt, where Bt ∈ R
r×r is a unitary block diagonal matrix with r = rank(Yt) columns. If

none of the nonzero singular values are repeated then Bt = Ir. A similar result holds if b differs for
each worker as long as b ≥ min rank(Yi

t) ∀i ∈ [M ].

3.2 Local update estimation: Subspace tracking

Consider a sequence {y1, . . . ,yn} ⊂ R
d of feature vectors. A block of size b ∈ N is formed

by taking b contiguous columns of {y1, . . . ,yn}. Assume r ≤ b ≤ τ ≤ n. If Ŷ0 is the empty
matrix, the r principal components of Yτ := [y1, · · · ,yτ ] can be estimated by running the following
iteration for k = {1, . . . , ⌈τ/b⌉},
[Û, Σ̂, V̂T ]← SVDr

([
Ŷ(k−1)b y(k−1)b+1 · · · ykb

])
, Ŷkb ← ÛΣ̂V̂T ∈ R

d×kb. (3)

Its output after K = ⌈τ/b⌉ iterations contains an estimate Û of the leading r principal components

of Yτ and the projection Ŷτ = ÛΣ̂V̂T of Yτ onto this estimate. The local subspace estimation in
(3) was initially analysed in [17]. FPCA-Edge adapts (3) to the federated setting by implementing
an adaptive rank-estimation procedure which allows clients to adjust, independently of each other,
their rank estimate based on the distribution of the data seen so far. That is, by enforcing,

Er(Yτ ) =
σr(Yτ )∑r
i=1 σi(Yτ )

∈ [α, β], (4)

and increasing r whenever Er(Yτ ) > β or decreasing it when Er(Yτ ) < α. In our algorithm, this
adjustment happens only once per block, though a number of variations to this strategy are possible.
Further, typical values for α and β are 1 and 10 respectively; note for best results the ratio α/β should
be kept below 0.3. Letting [r+ 1] = {1, . . . , r+ 1}, [r− 1] = {1, . . . , r− 1}, and 1{·} ∈ {0, 1} be
the indicator function, the subspace tracking and rank-estimation procedures in Alg. 3 depend on the
following functions:

SSVDr(D,U,Σ) = SVDr(D)1{UΣ = 0}+ Merger(U,Σ,D, I)1{UΣ 6= 0}
AdjustRankα,β

r (U,Σ) =
(
[U,~er+1],Σ[r+1]

)
1{Er(Σ) > β}+ (U[r−1],Σ[r−1])1{Er(Σ) < α}

+(U,Σ)1{Er(Σ) ∈ [α, β]}

Note that the storage and computational requirements of the Subspace tracking procedure of Alg. 3
are nearly optimal for the given objective since, at iteration k, only requires O(r(d + kr)) bits of
memory andO(r2(d+kr)) flops. However, in the presence of perturbation masks, the computational
complexity is O(d2) due to the incremental covariance expansion per block, see Sec. 3.3.

3.3 Differential Privacy: Streaming MOD-SuLQ

Given a data matrix X ∈ R
d×n and differential privacy parameters (ε, δ), the MOD-SuLQ algorithm

[8] privately computes the k-leading principal components of

A =
1

n
XXT +Nε,δ,d,n ∈ R

d×d, (5)

the covariance matrix of X perturbed with a symmetric random Gaussian matrix Nε,δ,d,n ∈ R
d×d.

This symmetric perturbation mask is such that (Nε,δ,d,n)i,j ∼ N (0, ω2) for i ≥ j where

ω := ω(ε, δ, d, n) =
d+ 1

nε

√
2 log

(
d2 + d

2δ
√
2π

)
+

1

n
√
ε
. (6)
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Materialising (5) requires O(d2) memory which is prohibitive given our complexity budgets. We can
reduce the memory requirements to O(cdn) by computing XXT incrementally in batches of size

c ≤ d. That is, by drawing Nd×c
ε,δ,d,n ∈ R

d×c and merging the non-symmetric updates

Ak,c =
1

b
X
[
(XT )(k−1)c+1 · · · (XT )ck

]
+Nd×c

ε,δ,d,n (7)

using Alg. 2. In Lemma 2 we extend the results in [8] to guarantee (ε, δ)-differential privacy in
(7). While the SuLQ algorithm [5], guarantees (ε, δ)-differential privacy with non-symmetric noise

matrices, it requires a variance rate of ω2 = 8d2 log2(d/δ)
n2ε2 , which is sub-optimal with respect to the

O(d
2 log(d/δ)
n2ε2 ) guaranteed by Lemma 2. Lemma 2 is proved in the Appendix.

Lemma 2 (Streaming Differential Privacy). Let X = [x1 · · ·xn] ∈ R
d×n be a dataset with ‖xi‖ ≤ 1,

Nε,δ,d,n ∈ R
d×d and A = 1

nXXT +Nε,δ,d,n. Let {v1, . . . ,vd} be the eigenvectors of 1
nXXT and

{v̂1, . . . , v̂d} be the eigenvectors of A. Let

ω(ε, δ, d, n) =
4d

εn

√
2 log

(
d2

δ
√
2π

)
+

√
2√
εn

. (8)

1. If (Nε,δ,d,n)i,j ∼ N (0, ω2) independently, then (7) is (ε, δ)-differentially private.

2. If n ≥ Tε,δ,d,n := ω−1
0

[
4dε−1

√
2 log

(
d2δ−1(2π)−1/2

)
+
√
2ε−1

]−1

, then (7) is (ε, δ)-

differentially private for a noise mask with variance ω2
0 .

3. Iteration (7) inherits MOD-SuLQ’s sample complexity guarantees, and asymptotic utility
bounds on E [|〈v1, v̂1〉|] and E [‖v1 − v̂1‖].

Alg. 3 uses the result in Lemma 2 for X = B ∈ R
d×b and computes an input-perturbation in a

streaming way in batches of size c. Therefore, the utility bounds for Alg. 3 can be obtained by setting
n = b in (8). If c is taken as a fixed small constant the memory complexity of this procedure reduces
to O(db), which is linear in the dimension. A value for ε can be obtained from Apple’s differential

Algorithm 3: Federated PCA Edge (FPCA-Edge)

Data: B ∈ R
d×b: Batch Y{(k−1)b+1,...,kb} // (Ûk−1, Σ̂k−1): SVD estimate for Y{1,...,(k−1)b} // r:

Initial rank estimate // (α, β): Bounds on energy, see (4) // (ε, δ): DP parameters // r: Initial rank
estimate

Result: (Û, Σ̂), principal r-subspace of Y{1,...,kb}.

Function FPCA-Edgeε,δ,α,β,r(B, Ûk−1, Σ̂k−1) is

/* Streaming MOD-SuLQ */
(U,Σ)← (0, 0)
for ℓ ∈ {1, . . . , d/c} do

Bs ←
1
b
B(B{(ℓ−1)c+1,...,ℓc})

T +Nd×c
ε,δ,d,b such that

(
Nd×c

ε,δ,d,b

)

i,j
∼ N (0, ω2) and ω as in (8)

(U,Σ)← SSVDr(Bs,U,Σ)
end
/* Subspace tracking */

(Û′, Σ̂′)← Merger(U,Σ, Ûk−1, Σ̂k−1)

(Û, Σ̂)← AdjustRankα,β
r (Û′, Σ̂′)

end

privacy guidelines [1]. However, in our experiments, we benchmark across a wider spectrum of
values.

4 Experimental Evaluation

All our experiments were computed on a workstation using an AMD 1950X CPU with 16 cores
at 4.0GHz, 128 GB 3200 MHz DDR4 RAM, and Matlab R2020a (build 9.8.0.1380330). To foster
reproducibility both code and datasets used for our numerical evaluation are made publicly available
at: https://www.github.com/andylamp/federated_pca.

6
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4.1 Differential Privacy empirical evaluation 7

4.1 Differential Privacy empirical evaluation

To quantify the loss with the application of differential private that our scheme has we compare
the quality of the projections using the MNIST standard test set [30] and Wine [10] datasets which
contain, respectively, 10000 labelled images of handwritten digits and physicochemical data for
6498 variants of red and white wine. To retrieve our baseline we performed the full-rank PCA on
the MNIST and (red) Wine datasets and retrieved the first and second principal components, see
Figs. 2a and 2e. Then, on the same datasets, we applied FPCA with rank estimate r = 6, block
size b = 25, and DP budget (ε, δ) = (0.1, 0.1). The projections for Offline PCA, FPCA with no
DP mask, FPCA with DP mask, and vanilla MOD-SuLQ for the MNIST and (red) Wine datasets
are shown in Fig. 2. We note that for a fair comparison with MOD-SuLQ, the rank estimation was
disabled in this first round of experiments. It can be seen from Fig. 2 that in all cases FPCA learnt
the principal subspace of Offline PCA (up to a rotation) and managed to preserve the underlying
structure of the data. In fact, in most instances it even performed better than MOD-SuLQ. We note
that rotations are expected as the guarantees for our algorithm hold up to a unitary transform, see
Appendix C.
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Figure 2: MNIST and Wine projections, for (a,e) Offline PCA, (b,f) F-PCA without DP mask, (c,g) F-
PCA with DP mask, (d,h) (symmetric) MOD-SuLQ. Computed with DP budget of (ε, δ) = (0.1, 0.1).

To evaluate the utility loss with respect to the privacy-accuracy trade-off we fix δ = 0.01 and plot
qA = 〈v1, v̂1〉 for ε ∈ {0.1k : k ∈ {1, . . . , 40}} where v1 and v̂1 are defined as in Lemma 2.

Synthetic data was generated from a power-law spectrum2 Yα ∼ Synth(α)d×n ⊂ R
d×n using

α ∈ {0.01, 0.1, .5, 1}. The results are shown in Figure 3 where we see that a larger ε increases the
utility, but at the cost of lower DP. Quantitatively speaking, our experiments suggest that the more
uniform the spectrum is, the harder it is to guarantee DP and preserve the utility.

4.2 Computational performance evaluation

Figs. 4a, 4b, 4c evaluate the performance of FPCA-Edge against other streaming algorithms. The
algorithms considered in this instance are: FPCA-Edge (on a single node network), GROUSE [4],
Frequent Directions (FD) [11, 33], the Power Method (PM) [39], and a variant of Projection Approxi-
mation Subspace Tracking (PAST) [52], named SPIRIT (SP) [43]. In the spirit of a fair comparison,
we run FPCA-Edge without its DP features, given that no other streaming algorithm implements DP.
The algorithms are tested on: (1) synthetic datasets, (2) the humidity, voltage, temperature, and light
datasets of readings from Berkeley Mote sensors [12], (3) the MNIST and Wine datasets used in

2If Y ∼ Synth(α)d×n iff Y = UΣVT with [U,∼] = QR(Nd×d), [V,∼] = QR(Nd×n), and Σi,i =
i−α, and Nm×n is an m× n matrix with i.i.d. entries drawn fromN (0, 1).
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(a) F-PCA (with mask).
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(b) MOD-SuLQ (non-symmetric).
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(c) MOD-SuLQ (symmetric).

Figure 3: Utility loss of qA for (a) F-PCA, (b) non-symmetric MOD-SuLQ, and (c) symmetric
MOD-SuLQ using δ = 0.05, N = 5k, and d = 20 across different ε and Yα ∼ Synth(α)d×n.

the previous section. Figs. 4a and 4b report log(RMSE) errors with respect to the offline full-rank
PCA and show that FPCA exhibits state-of-the-art performance across all datasets. On the other
hand, Fig. 4c shows that the computation time of FPCA scales gracefully as the ambient dimension
d grows, and even outperforms SPIRIT.
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(d) FPCA: Total time
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(e) FPCA: PCA computation time
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Figure 4: (a)-(c) Approximation and execution benchmarks against other streaming algorithms for a
single-node network and without DP masks, (d)-(f) Computational scaling of FPCA on multi-node
networks with binary-trees of depth ℓ = log2(node count).

Figs. 4d, 4e, 4f show the evaluation of FPCA in a simulated federated computation environment.
Specifically, they show the average execution times required to compute PCA on a dataset Yα ∼
Synth(α)d×N when fixing d = 103 and varying n ∈ {640k, 1.28M, 1.92M, 2.56M, 3.2M}. Fig. 4d
shows the total computation time of the federated computation, while Figs. 4e and 4f show respectively
the time spent computing PCA, and merging subspaces. Fig. 4d shows a regression after exceeding
the number of physical cores in our machine. However, the amortised cost shows that with sufficient
resources the federation can scale horizontally. More details can be found in Appendix D.4.

5 Discussion & Conclusions

In this work, we introduced a federated streaming and differentially private algorithm for computing
PCA. Our algorithm advances the state-of-the-art from several fronts: It is time-independent,
asynchronous, and differentially-private. DP is guaranteed by extending the results in [8] to the
streaming and non-symmetric setting. We do this while preserving the same nearly-optimal asymptotic
guarantees provided by MOD-SuLQ. Our algorithm is complemented with several theoretical
results that guarantee bounded estimation errors and robustness to permutations in the data. We
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have supplemented our work with a wealth of numerical experiments that show that shows that
Federated-PCA compares favourably against other methods in terms of convergence, bounded
estimation errors, and low memory requirements. An interesting avenue for future work is to study
Federated PCA in the setting of missing values while preserving differential privacy.

6 Broader Impact

PCA is an ubiquitous and fundamental tool in data analysis and machine learning pipelines and
also has important societal applications like poverty measurement. Computing PCA on large-scale
data is not only challenging from the computational point of view, but also from the public policy
point of view. Indeed, new regulations around data ownership and privacy like GDPR have imposed
restrictions in data collection and storage. Our work allows for large-scale decentralised computation
of PCA in settings where each compute node - be it large (servers), thin (mobile phones), or super-thin
(cryptocurrency blocks) - contributes in an independent an asynchronous way to the training of a
global model, while ensuring the ownership and privacy of the data. However, we note that our
algorithmic framework is a tool and, like all tools, is subject to misuse. For example, our framework
could allow malicious users to extract embeddings out of user data to be used for surveillance,
user fingerprinting, and many others not so desirable use-cases. We firmly believe, however, that
the positives outweigh the negatives and this work has the potential to unlock information from
decentralised datasets for the benefit of society, all while guaranteeing high-quality outputs and
stringent privacy properties.
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Supplementary Material

This comes as supplementary material to the paper Federated Principal Component Analysis. The
appendix is structured as follows:

1. Federated-PCA’s local update guarantees,

2. Federated-PCA’s differential privacy properties,

3. In-depth analysis of algorithm’s federation,

4. Additional evaluation and discussion.

Furthermore, we complement our theoretical analysis with additional empirical evaluation on syn-
thetic and real datasets which include details on memory consumption.

A Local Update Guarantees

We note that the local updating procedure in Algorithm 3 inherits some theoretical guarantees
from [17]. We leverage on these to provide a bound for the adaptive case. Specifically, let µ be an
unknown probability distribution supported on R

d with zero mean. The informal objective is to find
an r-dimensional subspace U that provides the best approximation with respect to the mass of µ. That
is, provided that y is drawn from µ, the target is to find an r-dimensional subspace U that minimises
the population risk. This is done by solving

min
U∈G(d,r)

E
y∼µ
‖y −PUy‖22 (9)

where the Grassmanian G(d, r) is the manifold of all r-dimensional subspaces in R
d and PU ∈ R

d×d

is the orthogonal projection onto U . Unfortunately, the value of µ is unknown and cannot be used
to directly solve (9), but provided we have access to a block of samples {yt}τt=1 ∈ R

d that are
independently drawn from µ, then (9) can be reformulated using the empirical risk by

min
U∈G(d,r)

1

τ

τ∑

t=1

‖yt −PUyt‖22 . (10)

Given that
∑τ

t=1 ‖yt −PUyt‖22 = ‖Yτ −PUYτ‖2F , it follows by the EYM Theorem [16, 38], that

PUYτ is the best rank-r approximation to Yτ which is given by Ŷτ = SVDr(Yτ ). Therefore,

U = span(Ŷτ ), which implies that ‖Yτ −PUYτ‖2F = ‖Yτ − Ŷτ‖2F = ρ2r(Yτ ), so the solution of
(10) equals ρ2r(Yτ )/τ . For completeness the theorem is shown below.

Theorem 1 ([17]). Suppose {yt}τt=1 ⊂ R
d are independently drawn from a zero-mean Gaussian

distribution with covariance matrix Ξ ∈ R
d×d and form Yτ = [y1 · · ·yτ ] ∈ R

d×τ . Let λ1 ≥ · · · ≥
λd be the eigenvalues of Ξ and ρ2r = ρ2r(Ξ) be its residual. Define

ηr =
λ1

λr

+

√
2αρ2r

p
1
3 λr

, (11)

Let Ŷτ be defined as in (3), U = span(Ŷτ ) and α, p, c be constants such that 1 ≤ α ≤
√
τ/ log τ ,

p > 1 and c > 0. Then, if b ≥ max(αp
1
3 r(p

1
6 − 1)−2, cαr) and τ ≥ pη2rb, it holds, with probability

at most τ−cα2

+ e−cαr that

‖Yτ − Ŷτ‖2F
τ

. Gα,b,p,r,τ

E
y∼µ
‖y −PUy‖22 . Gα,b,p,r,τ + α(d− r)λ1

√
log τ

τ

where

Gα,b,p,r,τ =
αp

1
3 4pη

2
r

(p
1
3 − 1)2

min

(
λ1

λr

ρ2r, rλ1 + ρ2r

) (
τ

pη2
rb

)pη2
r−1
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A.1 Interpretation of each local worker as a streaming, stochastic solver for PCA 14

The condition τ ≥ pη2rb is only required to obtain a tidy bound and is not necessary in the general
case. When considering only asymptotic dominant terms Theorem 1 reduces to,

‖Yτ −PUYτ‖2F ∝
(τ
b

)pη2
r−1

‖Yτ − Ŷτ‖2F (12)

Practically speaking, assuming rank(Ξ) ≤ r and ρ2r(Ξ) =
∑d

i=r+1 λi(Ξ) we can read that,

PUYτ = Ŷτ = Yτ meaning that the outputs of offline truncated SVD and [17] coincide.

A.1 Interpretation of each local worker as a streaming, stochastic solver for PCA

It is easy to interpret each solver as a streaming, stochastic algorithm for Principal Component
Analysis (PCA). To see this, note that (9) is equivalent to maximising Ey∼µ‖UUTy‖2F over

Z = {U ∈ R
d×r : UTU = Ir×r} The restriction UTU = Ir×r can be relaxed to UTU 4 Ir,

where A 4 B denotes that B−A is a positive semi-definite matrix. Using the Schur’s complement,
we can formulate this program as

max E
y∼µ
〈UUT ,yyT 〉

s. t.

[
In U

UT Ir

]
< 0 (13)

Note that, (13) has an objective function that is convex and that the feasible set is also conic and
convex. However, its gradient can only be computed when the probability measure µ is known, since

otherwise Ξ = E[yyT ] ∈ R
d×d is unknown. If µ is known, and an iterate of the form Ŝt is provided,

we could draw a random vector yt+1 ∈ R
d from the probability measure µ while moving along

the direction of 2yt+1y
T
t+1Ŝt. This is because E[2yt+1y

T
t+1Ŝt] = 2ΞŜt which is then followed by

back-projection onto the feasible set Z . Namely,

Ŝt+1 = P
(
St + 2αt+1yt+1y

T
t+1Ŝt

)
, (14)

One can see that in (14), P(A) projects onto the unitary ball of the spectral norm by clipping at one
all of A’s singular values exceeding one.

A.2 Adaptive Rank Estimation

Our algorithm provides a scheme to adaptively adjust the rank of each individual estimation based on
the distribution seen so far. This can be helpful when there are distribution shifts and/or changes in
the data over time. The scheme uses a thresholding procedure that consists in bounding the minimum
and maximum contributions of σr(Yτ ) to the variance

∑r
i=1 σi(Yτ ) of the dataset. That is, by

enforcing

EYτ

r =
σr(Yτ )∑r
i=1 σi(Yτ )

∈ [α, β], (15)

for some α, β > 0 and increasing r whenever Er(Yτ ) > β or decreasing it when Er(Yτ ) < α. As a
guideline, from our experiments a typical ratio of α/β should be less or equal to 0.2 which could be
used as an reference point when picking their values. This ensure that each client will have a bounded
Frobenius norm at any given point in time. With this procedure, we are able to bound the global error
as

ρrmax(α,β)(Ykb) ≤ Yerr ≤ ρrmin(α,β)(Ykb). (16)

Proof. At iteration k ∈ {1, . . . ,K}, each node computes Ŷlocal
kb , the best rank-r approximation of

Ykb using iteration (3). Hence, for each k ∈ {1, . . . ,K}, the error of the approximation is given by

‖Ykb − Ŷlocal
kb ‖F = ρr(Ykb). Let rmin = rmin(α, β) and rmax = rmax(α, β) > 0 be the minimum

and maximum rank estimates in when running FPCA. The result follows from

ρrmax(α,β)(Ykb) ≤ Yerr ≤ ρrmin(α,β)(Ykb).

Where Yerr = ‖Ykb − Ŷlocal
kb ‖F
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Furthermore, we can express the global bound in a different form which can give us a more descriptive
overall bound. To this end we know that for each local worker its ‖ · ‖F accumulated error any given
time is bounded by the ratio of the summation of its singular values.

Lemma 3. Let ‖ · ‖MF ∈ {1, . . . ,M} be the error accumulated for each of the M clients at block τ ;

then, after merging operations the global error will be
∑M

i=1 EYτ

M .

Proof. By Equation (15) we know that the error is deterministically bounded for each of the M
clients at any given block τ . Further, we also know that the merging as in (Algorithm 2) is able
to merge the target subspaces with minimal error and thus at any given block τ we can claim that∑M

i=1 EYτ

M +cm where cm is a small constant depicting the error accumulated during the merging
procedure of the subspaces, thus when asymptotically eliminating the constant factors the final error

is
∑M

i=1 EYτ

M .

B Privacy Preserving Properties of Federated PCA

In this section we prove Lemma 2, which summarises the differential privacy properties of our method.
The arguments are based on the proofs given by [8]. Lemma 4 proves the first part of Lemma 2 by
extending MOD-SuLQ to the case of non-symmetric noise matrices. The second part of Lemma 2 is
a direct corollary of Lemma 4. The third part follows directly from Lemmas 8 and 9.

Lemma 4 (Differential privacy). Let X ∈ R
d×n be a dataset with orthonormal columns and

A = 1
nXXT . Let

ω(ε, δ, d, n) =
4d

εn

√
2 log

(
d2

δ
√
2π

)
+

√
2√
εn

, (17)

and Nε,δ,d,n ∈ R
d×d be a non-symmetric random Gaussian matrix with i.i.d. entries drawn from

N (0, ω2). Then, the principal components of 1
nXXT +Nε,δ,d,n are (ε, δ)-differentially private.

Proof. Let N, N̂ ∈ R
d×d be two random matrices such that Ni,j and N̂i,j are i.i.d. random variables

drawn from N (0, ω2). Let D = {xi : i ∈ [n]} ⊂ R
d be a dataset and let D̂ = D ∪ {x̂n} \ {xn}.

Form the matrices

X = [x1, . . . ,xn−1,xn] (18)

X̂ = [x1, . . . ,xn−1, x̂n]. (19)

Let Y = [x1, . . .xn−1]. Then, the covariance matrices for these datasets are

A =
1

n
[YYT + xnx

T
n ] (20)

Â =
1

n
[YYT + x̂nx̂

T
n ]. (21)

Now, let G = A+B and Ĝ = Â+B̂ and consider the log-ratio of their densities at point H ∈ R
d×d.

log
fG(H)

f
Ĝ
(H)

=
1

2ω2

d∑

i,j=1

(
−(Hi,j −Ai,j)

2 + (Hi,j − Âi,j)
2
)

=
1

2ω2

d∑

i,j=1

(
2

n
(Ai,j −Hi,j)(x̂nx̂

T
n − xnx

T
n )i,j +

1

n2
(x̂nx̂

T
n − xnx

T
n )

2
i,j

)

=
1

2ω2

d∑

i,j=1

(
2

n
(Ai,j −Hi,j)(x̂n,ix̂n,j − xn,ixn,j) +

1

n2
(x̂n,ix̂n,j − xn,ixn,j)

2

)
.

(22)
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Note that if x,y ∈ R
d are such that ‖x‖ = ‖y‖ = 1 are unit vectors, then

d∑

i,j=1

(xixj − yiyj)
2 ≤ 4. (23)

Moreover,

d∑

i,j=1

(x̂n,ix̂n,j − xn,ixn,j) ≤
d∑

i,j=1

|x̂n,ix̂n,j |+
d∑

i,j=1

|xn,ixn,j | (24)

≤ 2 max
z:‖z‖≤1

d∑

i,j=1

zizj (25)

≤ 2 max
z:‖z‖≤1

‖z‖21 (26)

≤ 2 max
z:‖z‖≤1

(
√
d‖z‖2)2 (27)

≤ 2d. (28)

Using these observations to bound (22), and using the fact that for any γ ∈ R the events {∀ i, j :
Ni,j ≤ γ} and {∃ i, j : Ni,j > γ} are complementary, we obtain that for any measurable set S of
matrices,

P(G ∈ S) ≤ exp

(
1

2ω2

(
4

n
dγ +

4

n2

))
+ P(∃ i, j : Ni,j > γ). (29)

Moreover, if γ > ω, we can use the union bound with a Gaussian tail bound to obtain

δ := P(∃ i, j : Ni,j > γ) = P




d⋃

i,j=1

{Ni,j > γ}




≤
d∑

i,j=1

P (Ni,j > γ)

≤
d∑

i,j=1

(
1√
2π

e−
γ2

2ω2

)

=
d2√
2π

e−
γ2

2ω2 (30)

Now, solving for γ in (30) we obtain,

γ = ω

√
2 log

(
d2

δ
√
2π

)
(31)

Substituting (31) in (29) we can give an expression for (ε, δ)-differential privacy by letting

ε =
1

2ω2

(
4

n
d

(
ω

√
2 log

(
d2

δ
√
2π

))
+

4

n2

)
. (32)

This yields a quadratic equation on ω, which we can rewrite as

2εω2 − 4

n
d

(
ω

√
2 log

(
d2

δ
√
2π

))
ω − 4

n2
= 0. (33)
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Using the quadratic formula to solve for ω in (33) yields,

ω =
2d

εn

√
2 log

(
d2

δ
√
2π

)
± 2

εn

√
2d2 log

(
d2

δ
√
2π

)
+

ε

2

≤ 2d

εn

√
2 log

(
d2

δ
√
2π

)
+

2

εn

(√
2d2 log

(
d2

δ
√
2π

)
+

√
ε

2

)

=
4d

εn

√
2 log

(
d2

δ
√
2π

)
+

√
2√
εn

.

To prove the utility bound in Lemma 8 of Streaming MOD-SuLQ, we will Lemmas 5, 6, and 7.

Lemma 5 (Packing result [8]). For φ ∈ [(2πd)−1/2, 1), there exists a set C ⊂ S
d−1 with

|C| = 1

8
exp

(
(d− 1) log

1√
1− φ2

)
(34)

and such that |〈µ,v〉| ≤ φ for all µ,v ∈ C.

Lemma 6 (Kullback-Leibler for Gaussian random variables). Let Σ be a positive definite matrix and
let f and g denote, respectively, the densities N (a,Σ) and N (b,Σ). Then,

KL(f || g) = 1

2
(a− b)TΣ(a− b). (35)

Proof. The proof follows directly by using the definition of the Kullback-Leibler divergence and
simplifying.

Lemma 7 (Fano’s inequality [53]). LetR be a set and Θ be a parameter space with a pseudo-metric
d(·). Let F be a set of r densities {f1, . . . , fr} onR corresponding to parameter values {θ1, . . . , θr}
in Θ. Let X have a distribution f ∈ F with corresponding parameter θ and let θ̂(X) be an estimate
of θ. If for all i, j, d(θi, θj) ≥ τ and KL(fi || fj) ≥ γ, then

max
j

Ej

[
d(θ̂, θj)

]
≥ τ

2

(
1− γ + log 2

log r

)
. (36)

We are now ready to give a bound on the utility for Streaming MOD-SuLQ. We note that the proof
for Lemma 8 is identical as the one given in [8] except for a few equations where the dimension

of the object considered changes from
d(d+1)

2 to d2. We also note that while the utility bound has
the same functional form, it is not identical to the one given in [8] since it depends on the value of
ω = ω(ε, δ, d, n) given in Lemma 2.

Lemma 8 (Utility bounds). Let d, n ∈ N and ε > 0 be given and let ω be given as in Lemma 2, so
that the output of Streaming MOD-SuLQ is (ε, δ) differentially private for all datasets X ∈ R

d×n.
Then, there exists a dataset with n elements such that if v̂1 denotes the output of the Streaming
MOD-SuLQ and v1 is the top eigenvector of the empirical covariance matrix of the dataset, the
expected correlation 〈v1, v̂1〉 is upper bounded,

E [|〈v1, v̂1〉|] ≤ min
φ∈Φ


1− 1− φ

4


1− 1/ω2 + log 2

(d− 1) log 1√
1−φ2

− log 8




2

 (37)

where

Φ ∈
[
max

{
1√
2πd

,

√
1− exp

(
−2 log(8d)

d− 1

)
,

√
1− exp

(
−2/ω2 + log 256

d− 1

)}]
. (38)
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Proof. Let C be an orthonormal basis in R
d. Then, |C| = d, so solving for φ in (34) yields

φ =

√
1− exp

(
−2 log(8d)

d− 1

)
. (39)

For any unit vector µ let A(µ) = µµ
T + N where N is a symmetric random matrix such that

{Ni,j : i ≤ i ≤ j ≤ d} are i.i.d. N (0, ω2) and ω2 is the noise variance used in the Streaming
MOD-SuLQ algorithm. The matrix A(µ) can be thought of as a jointly Gaussian random vector on
d2 variables. The mean and covariance of this vector is

E[µ] = (µ2
1, . . . ,µ

2
d,µ1µ2, . . . ,µd−1µd,µ2µ1, . . . ,µdµd−1) ∈ R

d2

, (40)

Cov[µ] = ω2Id2×d2 ∈ R
d2×d2

. (41)

For µ,ν ∈ C, the divergence can be calculated using Lemma 6 yielding

KL(fµ || fν) ≤
1

ω2
. (42)

For any two vectors µ,ν ∈ C, we have that |〈µ,ν〉| ≤ φ, so that −φ ≤ −〈µ,ν〉. Therefore,

‖µ− ν‖2 = 〈µ− ν,µ− ν〉 (43)

= ‖µ‖2 + ‖ν‖2 − 2〈µ,ν〉 (44)

= 2(1− 〈µ,ν〉) (45)

≥ 2(1− φ). (46)

From (42) and (46), the set C satisfies the conditions of Lemma 7 with F = {fµ : µ ∈ C}, r = K

and τ =
√
2(1− φ), and γ = 1/ω2. Hence, this shows that for Streaming MOD-SuLQ,

max
µ∈C

Efµ [‖v̂ − µ‖] ≥
√
2(1− φ)

2

(
1− 1/ω2 + log 2

logK

)
(47)

As mentioned in [8] this bound is vacuous when the term inside the parentheses is negative which
imposes further conditions on φ. Setting K = 1/ω2 + log 2, we can solve to find another lower
bound on φ:

φ ≥
√
1− exp

(
−2/ω2 + log 256

d− 1

)
(48)

Using Jensen’s inequality on the left hand side of (47) yields

max
µ∈C

Efµ [2(1− |〈v̂,µ〉|)] ≥ (1− φ)

2

(
1− 1/ω2 + log 2

logK

)2

(49)

so there is a µ such that

Efµ [|〈v̂,µ〉|] ≤ 1− (1− φ)

4

(
1− 1/ω2 + log 2

logK

)2

. (50)

Now, consider the dataset D = [µ · · ·µ] ∈ R
d2×n. This dataset has covariance matrix equal to

µµ
T and has top eigenvector equal to v1 = µ. The output of the algorithm Streaming MOD-SuLQ

applied to D approximates µ, so satisfies (50). Minimising this equation over φ yields the required
result.

Lemma 9 (Sample complexity). For (ǫ, δ) and d ∈ N, there are constants C1 > 0 and C2 > 0 such
that with

n ≥ C1
d3/2

√
log(d/δ)

ε

(
1− C2

(
1− Efµ [|〈v̂,µ〉|]

))
, (51)

where µ is the first principal component of the dataset X ∈ R
d×n and v̂ is the first principal

component estimated by Streaming MOD-SULQ.
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Proof. Using (50), and letting Efµ [|〈v̂,µ〉|] = ρ, we obtain,

2
√
1− ρ ≥ min

φ∈Φ

√
1− φ


1− 1/ω2 + log 2

(d− 1) log 1√
1−φ2

− log 8


 (52)

Picking φ so that the fraction in the right-hand side becomes 0.5, we obtain,

4
√
1− ρ ≥

√
1− φ. (53)

Moreover, as d, n→∞, this value of φ guarantee implies an asymptotic of the form

log
1√

1− φ2
∼ 2

ω2d
+ o(1). (54)

This implies that φ = Θ(ω−1d−1/2), and by (8) that ω & d2(εn)−2 log(d/δ). Therefore, there exists

C > 0 such that ω2 > Cd2(nε)−2 log(d/δ). Since φ = Θ(ω−1d−1/2) we have that for some D > 0

φ2 ≤ D
n2ε2

d3 log(d/δ)
. (55)

By (53) we get

(1− 16(1− ρ)) ≤ D
n2ε2

d3 log(d/δ)
(56)

Solving for n in (56) yields

n ≥ C1
d3/2

√
log(d/δ)

ε
(1− C2(1− ρ)), (57)

for some constants C1 and C2.

C Federated PCA Analysis

In this section we will present a detailed analysis of Federated-PCA in which we will describe the
merging process in detail as well as provide a detailed error analysis in the streaming and federated
setting that is based is based on the mathematical tools introduced in [26].

C.1 Asynchronous Independent Block based SVD

We begin our proof by proving Lemma 1 (Streaming partial SVD uniqueness) which applies in the
absence of perturbation masks and is the cornerstone of our federated scheme.

Proof. Let the reduced SVD r representation of each of the M nodes at time t be,

Yi
t =

r∑

j=1

ui
jσ

i
j(v

i
j)

T = Ûi
tΣ̂

i
t(V̂

i
t)

T , i = 1, 2, . . . ,M. (58)

We also know that each of the blocks Yi
t ∈ [M ] can be at most of rank d. Note that in this instance,

the definition applies for only fully materialised matrices; however, substituting each block of Yt
i

with our local updates procedure as in Algorithm 3 then will generate an estimation of the reduced
SVD r of that particular Yt

i block with an error at most as in (12) subject to each update chunk being

in R
d×b with b ≥ min rank(Yi

t) ∀i ∈ [M ].

Now, let the singular values of Yt be the positive square root of the eigenvalues of YtY
T
t , where as

defined previously Yt is the data seen so far from the M nodes; then, by using the previously defined
streaming block decomposition of a matrix Yt we have the following,

YtY
T
t =

M∑

i=1

Yi
t(Y

i
t)

T =
M∑

i=1

Ûi
tΣ̂

i
t(V̂t

i
)T (V̂i

t)(Σ̂
i
t)

T (Ûi
t)

T =
M∑

i=1

Ûi
tΣ̂

i
t(Σ̂

i
t)

T (Ui
t)

T (59)
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Equivalently, the singular values of Zt are similarly defined as the square root of the eigenvalues of
ZtZ

T
t .

ZZT =

M∑

i=1

(Ûi
tΣ̂

i
t)(Û

i
tΣ̂

i
t)

T =

M∑

i=1

Ûi
tΣ̂

i
t(Σ̂

i
t)

T (Ûi
t)

T (60)

Thus YtY
T
t = ZtZ

T
t at any t, hence the singular values of matrix Zt must surely equal to those of

matrix Yt. Moreover, since the left singular vectors of both Yt and Zt will be also eigenvectors
of YtY

T
t and ZtZ

T
t , respectively; then the eigenspaces associated with each - possibly repeated -

eigenvalue will also be equal thus Ût = Û′
tBt. The block diagonal unitary matrix Bt which has p

unitary blocks of size p× p for each repeated eigenvalue; this enables the singular vectors which are

associated with each repeated singular value to be rotated in the desired matrix representation Ût. In
case of different update chunk sizes per worker the result is unaffected as long as the requirement for
their size (b) mentioned above is kept and their rank r is the same.

C.2 Time Order Independence

Further, a natural extension to Lemma 1 which is pivotal to a successful federated scheme is the
ability to guarantee that our result will be the same regardless of the merging order in the case there
are no input perturbation masks.

Lemma 10 (Time independence). Let Y ∈ R
d×n. Then, if P ∈ R

n×n is a row permutation of the
identity. Then, in the absence of input-perturbation masks, FPCA(Y) = FPCA(YP).

Proof. If Y = UΣVT is the Singular Value Decomposition (SVD) of Y, then YP = UΣ
(
VTP

)
.

Since V′ = PTV is orthogonal, UΣ(V′)T is the SVD of YP. Hence, both Y and YP have the
same singular values and left principal subspaces.

Notably, by formally proving the above Lemmas we can now exploit the following important
properties: i) that we can create a block decomposition of Yt for every t without fully materialising
the block matrices while being able to obtain their SVDr incrementally, and ii) that the result will
hold regardless of the arrival order.

C.3 Subspace Merging

In order to expand the result of Lemmas 1 and 10 we must first present the full implementation
of Algorithm 4. This algorithm is a direct consequence of Lemma 1, with the addition of a forgetting
factor λ that only gives more weight to the newer subspace.

Algorithm 4: BasicMerge algorithm

Data: U1 ∈ R
d×r1 , first subspace

Σ1 ∈ R
r1×r1 , first subspace singular values

U2 ∈ R
d×r2 , second subspace

Σ2 ∈ R
r2×r2 , second subspace singular values

r ∈ [r], , the desired rank r
λ1 ∈ (0, 1), forgetting factor
λ2 ≥ 1, enhancing factor
Result: U′ ∈ R

d×r, merged subspace, Σ′ ∈ R
r×r, merged singular values

Function BasicMerge(U1, Σ1, U2, Σ2, λ1, λ2) is
[U′,Σ′, ˜]← SVDr([λ1U1Σ1, λ2U2Σ2])

end

C.3.1 Improving upon regular SVD

As per Lemma 1 we are able to use this algorithm in order to merge two subspaces with ease, however
there are a few things that we could improve in terms of speed. Recall, that in our particular care we
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do not require VT , which is computed by default when using SVD; this incurs both computational
and memory overheads. We now show how we can do better in this regard.

We start by deriving an improved version for merging, shown Algorithm 5; notably, this algorithm
improves upon the basic merge (Algorithm 4) by exploiting the fact that the input subspaces are
already orthonormal. In this case, we show how we can transform the Algorithm 4 to Algorithm 5.
The key intuition comes from the fact that we can incrementally update U by using U ← QpUR.
To do this we need to first create a subspace basis which spans U1 and U2, namely span(Qp) =
span([U1,U2]). This is done by performing [Qp,Rp] = QR([λ1U1Σ1, λ2U2Σ2]) and use Rp to
perform an incremental update. Additionally, it is often the case that the subspaces spanned by U1

and U2 to intersect; in which case the rank of Q is less than the sum r1 and r2. Typically, practical
implementations of QR will permute R pushing the diagonal zeros only after all non-zeros which
preserves the intended diagonal shape in the upper left part of R. However, this behaviour has no
practical impact to our results; as in the event this occurs, Q is always permuted accordingly to reflect
this [49]. Continuing, we know that Qp is orthogonal but we are not finished yet since Rp is not
diagonal, so an extra SVD needs to be applied on it which yields the singular values in question
and the rotation that Qp requires to represent the new subspace basis. Unfortunately, even if this
improvement, this technique only yields a marginally better algorithm since the SVD has to now be
performed at a much smaller matrix, namely, Rp.

Algorithm 5: FasterMerge algorithm

Data: U1 ∈ R
d×r1 , first subspace

Σ1 ∈ R
r1×r1 , first subspace singular values

U2 ∈ R
d×r2 , second subspace

Σ2 ∈ R
r2×r2 , second subspace singular values

r ∈ [r], , the desired rank r
λ1 ∈ (0, 1), forgetting factor
λ2 ≥ 1, enhancing factor
Result: U′ ∈ R

d×r, merged subspace
Σ′ ∈ R

r×r, merged singular values
Function FasterMerge(U1, Σ1, U2, Σ2, λ1, λ2,r) is

[Qp,Rp]← QR(λ1U1Σ1 | λ2U2Σ2)
[UR,Σ

′, ˜]← SVDr(Rp)
U′ ← QpUR

end

Now we will derive our final merge algorithm by showing how Algorithm 5 can be further improved
when VT is not needed and we have knowledge that U1 and U2 are already orthonormal. This is

done by building a basis U′ for span((I−U1U1
T )U2) via the QR factorisation and then computing

the SVD decomposition of a matrix X such that

[U1Σ1,U2Σ2] = [U1,U
′]X. (61)

It is shown in [46, Chapter 3] in an analytical derivation that this yields an X of the form

X =

[
UT

1 U1Σ1 UT
1 U2Σ2

U′TU1 U′TU2Σ2

]
=

[
Σ1 UT

1 U2Σ2

0 RpΣ2

]

The same technique appears to have been independently rediscovered in [17] as the merging procedure
for each block is identical. The Algorithm 6 below shows the full implementation.

The algorithm shown above is the one of the essential components of our federated scheme, allowing
us to quickly merge incoming subspaces as they are propagated upwards. To illustrate the practical
benefits of the merging algorithm we conducted an experiment in order to evaluate if the algorithm
performs as expected. Concretely, we created synthetic data using Synth(1)d×n with d = 800 and
n ∈ {800, 1.6k, 2.4k, 3.2k, 4k}; then we split each dataset into two equal chunks each of which was
processed using Federated-PCA with a target rank of 100. Then we proceeded to merge the two
resulting subspaces with two different techniques, namely, with the Equation (2) and Algorithm 6
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Algorithm 6: Merger [46, 17]

Merger(U1,Σ1,U2,Σ2)
Data:
r ∈ [r], rank estimate;

(U1,Σ1) ∈ R
d×r1 × R

r1×r1 , 1st subspace;

(U2,Σ2) ∈ R
d×r2 × R

r2×r2 , 2nd subspace;

Result: (U′,Σ′) ∈ R
d×r × R

r×r merged subspace;
Function Merger(U1, Σ1, U2, Σ2) is

Z← UT
1 U2;

[Q,R]← QR(U2 −U1Z);

[Ur,Σ
′,∼]← SVDr

([
Σ1 ZΣ2

0 RΣ2

])
;

U′ ← [U1,Q]Ur;

end

as well as find the offline subspace using traditionally SVD. We then show in Figure 5 the errors
incurred with respect to the offline SVD against the resulting merged subspaces and singular values
of the two techniques used, as well as their execution. We can clearly see that the resulting subspaces
are identical in all cases and that the error penalty in the singular values is minimal when compared
to eq. (2); as expected, we also observe that derived algorithm is faster while consuming less memory.
Critically speaking, the speed benefit is not significant in the single case as presented; however, these
benefits can be additive in the presence of thousands of merges that would likely occur in a federated
setting.
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(b) Singular Value errors.
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Figure 5: Illustration of the benefits of Algorithm 6, in of errors of subspace (fig. 5a), singular values
(fig. 5b), and its execution speed (fig. 5c).

C.4 Federated Error Analysis

In this section we will give a lower and a upper bound of our federated approach. This is also based
on the mathematical toolbox we previously used [26] but is adapted in the case of streaming block
matrices.

Lemma 11. Let Yi
t ∈ R

d×tMb, i = [M ] for a any time t and a fixed update chunk size b. Further-

more, suppose matrix Yi
t at time t has block matrices defined as Yi

t =
[
Y1

t |Y2
t | · · · |YM

t

]
, and

Zt at the same time has blocks defined as Zt =
[
(Y1

t )r|(Y2
t )r| · · · |(YM

t )r
]
, where r ≤ d. Then,

‖(Zt)r −Yt‖F ≤ ‖(Z)r − Zt‖F + ‖Zt −Yt‖F ≤ 3‖(Yt)r −Yt‖F holds for all r ∈ [d].

Proof. We base our proof on an invariant at each time t the matrix Yt, although not kept in memory,
due to the approximation described in appendix A can be treated as such for the purposes of this
proof. Thus, we have the following:

‖(Zt)r −Yt‖F ≤ ‖(Zt)r − Zt‖F + ‖Zt −Yt‖F
≤ ‖(Yt)r − Zt‖F + ‖Zt −Yt‖F
≤ ‖(Yt)r −Yt‖F + 2‖Zt −Yt‖F.

We let (Yi
t)r ∈ R

d×tMb, i = 1, 2, . . . ,M denote the ith block of (Yt)r, we can see that
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‖Zt −Yt‖2F =

M∑

i=1

‖(Yi
t)d −Yi

t‖2F ≤
M∑

i=1

‖(Yi
t)r −Yi

t‖2F = ‖(Yt)r −Yt‖2F.

Hence, if we combine these two estimates we complete our proof.

To bound the error of the federated algorithm, we use Lemma 11 to derive a lower and an upper bound
of the error. Suppose that we choose a r ≤ d which is a truncated version of Yt while also having the
depth equal to 1. We can improve over Lemma 11 in this particular setting by requiring no access on

the right singular vectors of any given block - e.g. the Vi
t

T
. Furthermore, it is possible to also show

that this method is stable with respect to (small) additive errors. We represent this mathematically
with a noise matrix Ψ.

Theorem 2. Let Yt ∈ R
d×tMb at time t has its blocks defined as Yi

t ∈ R
d×tMb, i = [M ], so that

Yt =
[
Y1

t |Y2
t | · · · |YM

t

]
. Now, also let Zt =

[
(Y1

t )r
∣∣ (Y2

t )r
∣∣ · · ·

∣∣ (YM
t )r

]
, Ψt ∈ R

d×tMb, and

Zt
′ = Zt +Ψt. Then, there exists a unitary matrix Bt such that

∥∥∥
(
Zt

′
)
r
−YtBtt

∥∥∥
F
≤ 3
√
2‖(Yt)r −Yt‖F +

(
1 +
√
2
)
‖Ψt‖F

holds for all r ∈ [d].

Proof. Let Y′
t =

[
Y1

t

∣∣Y2
t

∣∣ · · ·
∣∣YM

t

]
. Note that Y′

t = Yt by Lemma 1. Thus, there exists a

unitary matrix Bt
′′ such that Y′

t = YtBt
′′. Using this fact in combination with the unitary invariance

of the Frobenius norm, one can now see that
∥∥(Zt

′
)
r
−Y′

t

∥∥
F

=
∥∥(Zt

′
)
r
−YtBt

′′
∥∥
F

=
∥∥∥
(
Zt

′
)
r
−YtBt

′
∥∥∥
F
=
∥∥∥
(
Zt

′
)
r
−YtBt

∥∥∥
F

for some (random) unitary matrices Bt
′ and Bt. Hence, it suffices to bound the norm of∥∥(Zt

′
)
r
−Y′

t

∥∥
F

.

Having said that, we can now do
∥∥(Zt

′
)
r
−Y′

t

∥∥
F
≤
∥∥(Zt

′
)
r
− Zt

′
∥∥
F
+
∥∥Zt

′ − Zt

∥∥
F
+ ‖Zt −Y′

t‖F

=

√√√√
d∑

j=r+1

σ2
j (Zt +Ψt) + ‖Ψt‖F + ‖Zt −Y′

t‖F

=

√√√√√
⌈ d−r

2 ⌉∑

j=1

σ2
r+2j−1(Zt +Ψt) + σ2

r+2j(Zt +Ψt) + ‖Ψt‖F + ‖Zt −Y′
t‖F

≤

√√√√√
⌈ d−r

2 ⌉∑

j=1

(σr+j(Zt) + σj(Ψt))
2
+ (σr+j(Zt) + σj+1(Ψt))

2
+ ‖Ψt‖F + ‖Zt −Y′

t‖F

the result follows from applying Weyl’s inequality in the first term [25].

By the application of the triangle inequality on the first term we now have the following

∥∥(Zt
′
)
r
−Y′

t

∥∥
F
≤

√√√√
d∑

j=r+1

2σ2
j (Zt) +

√√√√
d∑

j=1

2σ2
j (Ψt) + ‖Ψt‖F + ‖Zt −Y′

t‖F

≤
√
2 (‖(Zt)r − Zt‖F + ‖Zt −Y′

t‖F) +
(
1 +
√
2
)
‖Ψt‖F.

Finally, Lemma 11 for bounding the first two terms concludes the proof if we note that ‖(Y′
t)r −

Y′
t‖F = ‖(Yt)r −Yt‖F.
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Now, we introduce the final theorem which bounds the general error of Federated-PCA with respect
to the data matrix Yt and up to multiplication by a unitary matrix.

Theorem 3. Let Yt ∈ R
d×tMb and q ≥ 1. Then, Federated-PCA is guaranteed to recover an

Y
q+1,1
t ∈ R

d×tMb for any t such that
(
Y

q+1,1
t

)
r
= YtBt +Ψt, where Bt is a unitary matrix, and

‖Ψt‖F ≤
((

1 +
√
2
)q+1 − 1

)
‖(Yt)r −Yt‖F.

Proof. For the purposes of this proof we will refer to the approximate subspace result for Y
p+1,i
t

from the merging chunks as

Zt
p+1,i :=

[(
Zt

p,(i−1)tMb+1
)
r

∣∣∣ · · ·
∣∣∣
(
Zt

p,itMb
)
r

]
,

for p ∈ [q], and i ∈ [M/(tMb)p]. Which, as previously proved is equivalent to Yt, for any t and up
to a unitary transform. Moreover, Yt will refer to the original - and, potentially full rank - matrix with

block components defined as Yt =
[
Y1

t |Y2
t | · · · |YM

t

]
, where M = (tMb)q. Additionally, Y

p,i
t

will refer to the respective uncorrupted block part of the original matrix Yt whose values correspond

to the ones of Zt
p,i. 3

Hence, Yt =
[
Y

p,1
t |Yp,2

t | · · · |Yp,M/(tMb)(p−1)

t

]
holds for all p ∈ [q + 1], in which

Y
p+1,i
t :=

[
Y

p,(i−1)tMb+1
t

∣∣∣ · · ·
∣∣∣Yp,itMb

t

]

for all p ∈ [q], and i ∈ [M/(tMb)p]. For p = 1 we have Zt
1,i = Yi

t = Y
1,i
t for i ∈ [M ] by

definition. Our target is to bound
(
Zt

q+1,1
)
d

matrix with respect to the original matrix Yt, which
can be done by induction on the level p. Concretely, we have to formally prove the following for all

p ∈ [q + 1], and i ∈ [M/(tMb)(p−1)]

1.
(
Zt

p,i
)
r
= Y

p,i
t W p,i +Ψp,i

t , where

2. Bt
p,i is always a unitary matrix, and

3. ‖Ψp,i
t ‖F ≤

((
1 +
√
2
)p − 1

)∥∥∥(Yp,i
t )d −Y

p,i
t

∥∥∥
F

.

Notably, requirements 1 − 3 are always satisfied when p = 1 since Zt
1,i = Yi

t = Y
1,i
t for all

i ∈ [M ] by definition. Hence, we can claim that a unitary matrix Bt
1,i for all i ∈ [M ] satisfying

(
Zt

1,i
)
d
=
(
Y

1,i
t

)
r
=
(
Y

1,i
t

)
r
Zt

1,i = Y
1,i
t Bt

1,i +
((

Y
1,i
t

)
r
−Y

1,i
t

)
Bt

1,i,

where Ψ1,i :=
((

Y
1,i
t

)
r
−Y

1,i
t

)
W 1,i has

‖Ψ1,i
t ‖F =

∥∥∥
(
Y

1,i
t

)
r
−Y

1,i
t

∥∥∥
F
≤
√
2
∥∥∥
(
Y

1,i
t

)
r
−Y

1,i
t

∥∥∥
F
. (62)

Moreover, let’s assume that conditions 1− 3 hold for some p ∈ [q]. In which case, we can see see
from condition 1 that

3Meaning, Zt

p,i is used to estimate the approximate singular values and left singular vectors of Y
p,i
t for all

p ∈ [q + 1], and i ∈ [M/(tMb)p−1]
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Zt
p+1,i :=

[(
Zt

p,(i−1)tMb+1
)
r

∣∣∣ · · ·
∣∣∣
(
Zt

p,itMb
)
r

]

=
[
Y

p,(i−1)tMb+1
t Bt

p,(i−1)tMb+1 +Ψ
p,(i−1)tMb+1
t

∣∣∣ · · ·
∣∣∣Yp,itMb

t Bt
p,itMb +Ψp,itMb

t

]

=
[
Y

p,(i−1)tMb+1
t Bt

p,(i−1)tMb+1
∣∣∣ · · ·

∣∣∣Yp,itMb
t Bt

p,itMb
]
+
[
Ψ

p,(i−1)tMb+1
t

∣∣∣ · · ·
∣∣∣ Ψp,itMb

t

]

=
[
Y

p,(i−1)tMb+1
t

∣∣∣ · · ·
∣∣∣Yp,itMb

t

]
B̃t + Ψ̃t,

where Ψ̃t :=
[
Ψ

p,(i−1)tMb+1
t

∣∣∣ · · ·
∣∣∣ Ψp,itMb)

t

]
, and

B̃t :==




Bt
p,(i−1)tMb+1 0 0 0

0 Bt
p,(i−1)tMb+2 0 0

0 0
. . . 0

0 0 0 Bt
p,i(tMb)




.

Of note is that B̃t is always unitary due to its diagonal blocks all being unitary by condition 2 (and

hence, by construction). Hence, we can claim that Zt
p+1,i = Y

p+1,i
t B̃t + Ψ̃t.

Following this, we can now bound

∥∥∥
(
Zt

p+1,i
)
r
−Y

p+1,i
t B̃t

∥∥∥
F

by the use of similar argument to

that we employed during the the proof of Theorem 2.

∥∥∥
(
Zt

p+1,i
)
r
−Y

p+1,i
t B̃t

∥∥∥
F
≤
∥∥(Zt

p+1,i
)
r
− Zt

p+1,i
∥∥
F
+
∥∥∥Zt

p+1,i −Y
p+1,i
t B̃t

∥∥∥
F

=

√√√√
d∑

j=r+1

σ2
j

(
Y

p+1,i
t B̃t + Ψ̃t

)
+ ‖Ψ̃t‖F

≤

√√√√
d∑

j=r+1

2σ2
j

(
Y

p+1,i
t B̃t

)
+

√√√√
d∑

j=1

2σ2
j (Ψ̃t) + ‖Ψ̃t‖F

=
√
2
∥∥∥Yp+1,i

t −
(
Y

p+1,i
t

)
r

∥∥∥
F
+
(
1 +
√
2
)
‖Ψ̃t‖F. (63)

Appealing to condition 3 in order to bound ‖Ψ̃t‖F we obtain

‖Ψ̃t‖2F =
tMb∑

j=1

‖Ψp,(i−1)tMb+j
t ‖2F ≤

((
1 +
√
2
)p
− 1
)2 tMb∑

j=1

∥∥∥(Yp,(i−1)tMb+j
t )r −Y

p,(i−1)tMb+j
t

∥∥∥
2

F

≤
((

1 +
√
2
)p
− 1
)2 tMb∑

j=1

∥∥∥(Yp+1,i
t )jd −Y

p,(i−1)n+j
t

∥∥∥
2

F
,

where (Yp+1,i
t )jr denotes the block of (Yp+1,i

t )d corresponding to Y
p,(i−1)n+j
t for j ∈ [tMb].

Hence,

‖Ψ̃t‖2F ≤
((

1 +
√
2
)p
− 1
)2 tMb∑

j=1

∥∥∥(Yp+1,i
t )jd −Y

p,(i−1)tMb+j
t

∥∥∥
2

F

=
((

1 +
√
2
)p
− 1
)2 ∥∥∥(Yp+1,i

t )r −Y
p+1,i
t

∥∥∥
2

F
. (64)
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By using both (63) and (64) we can claim that

∥∥∥
(
Zt

p+1,i
)
r
−Y

p+1,i
t B̃t

∥∥∥
F
≤
[√

2 + (1 +
√
2)
((

1 +
√
2
)p
− 1
)] ∥∥∥

(
Y

p+1,i
t

)
r
−Y

p+1,i
t

∥∥∥
F

=

((
1 +
√
2
)p+1

− 1

)∥∥∥
(
Y

p+1,i
t

)
r
−Y

p+1,i
t

∥∥∥
F
. (65)

In the above, of note is that

∥∥∥
(
Zt

p+1,i
)
r
−Y

p+1,i
t B̃t

∥∥∥
F
=
∥∥∥
(
Zt

p+1,i
)
r
−Y

p+1,i
t Bt

p+1,i
∥∥∥
F

where

Bt
p+1,i is always unitary. Hence, we can see that conditions 1 - 3 hold at any t and any p+ 1 with

Ψp+1,i
t :=

(
Zt

p+1,i
)
r
−Y

p+1,i
t Bt

p+1,i.

Theorem 3 proves that at any given time t, Federated-PCA will accurately compute low rank

approximations Yt of the data seen so up to time t so long as the depth of the tree is relatively small.
This is a valid assumption in our setting since we expect federated deployments to be shallow and
have a large fanout. That is, we expect that the depth of the tree will be low and that many nodes will
be using the same aggregator for their merging procedures. It is also worth mentioning that the proof
of Theorem 3 can tolerate small additive noise (e.g. round-off and approximation errors) in the input
matrix Yt at time t. Finally, we fully expect that, at any t, the resulting error will be no higher than
min rank(Yi

t) ∀i ∈ [M ] and no lower than max rank(Yi
t) ∀i ∈ [M ]

D Further Evaluation Details

In addition to the traditional MNIST results presented in the main paper, we further evaluate FPCA
against other competing methods which show that it performs favourably both in terms of accuracy
and time when using synthetic and real datasets.

D.1 Synthetic Datasets

For the tests on synthetic datasets, the vectors {yt}τt=1 are drawn independently from a zero-mean
Gaussian distribution with the covariance matrix Ξ = SΛST , where S ∈ O(d) is a generic basis
obtained by orthogonalising a standard random Gaussian matrix. The entries of the diagonal matrix
Λ ∈ R

d×d (the eigenvalues of the covariance matrix Ξ) are selected according to the power law,
namely, λi = i−α, for a positive α. To be more succinct, wherever possible we employ MATLAB’s
notation for specifying the value ranges in this section.

To assess the performance of Federated-PCA, we let Yt = [y1, · · · ,yt] ∈ R
d×t be the data

received by time t and ŶFPCA
t,r be the output of FPCA at time t. 4 Then, the error incurred by FPCA

is
1

t
‖Yt − ŶFPCA

t,r ‖2F , (66)

Recall, that the above error is always larger than the residual of Yt, namely,

‖Yt − ŶFPCA
t,r ‖2F ≥ ‖Yt −Yt,r‖2F = ρ2r(Yt). (67)

In the expression above, Yt,r = SVDr(Yt) is a rank-r truncated SVD of Yt and ρ2r(Yt) is the
corresponding residual.

Additionally, we compare Federated-PCA against GROUSE [4], FD [11], PM [40] and a version of
PAST [43, 52]. Interestingly and contrary to FPCA, the aforementioned algorithms are only able
to estimate the principal components of the data and not their projected data on-the-fly. Although,
it has to noted that in this setup we are only interested in the resulting subspace U along with its
singular values Σ but is worth mentioning that the projected data, if desired, can be kept as well.

4Recall, since block-based algorithms like Federated-PCA, do not update their estimate after receiving
feature vector but per each block for convenience in with respect to the evaluation against other algorithms
(which might have different block sizes or singular updates), we properly interpolate their outputs over time.
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More specifically, let Ŝgt,r ∈ G(d, r) be the span of the output of GROUSE, with the outputs of the
other algorithms defined similarly. Then, these algorithms incur errors

1

t
‖Yt −PŜv

t,r
Yt‖2F , v ∈ g, f, p,FPCA,

where we have used the notation PA ∈ R
d×d to denote the orthogonal projection onto the subspace

A. Even though robust FD [33] improves over FD in the quality of matrix sketching, since the
subspaces produced by FD and robust FD coincide, there is no need here for computing a separate
error for robust FD.

Throughout our synthetic dataset experiments we have used an ambient dimension d = 400, and for
each a ∈ (0.001, 0.1, 0.5, 1, 2, 3) generated N = 4000 feature vectors in R

d using the method above.

This results in a set of with four datasets of size R
d×N . Furthermore, in our experiments we used a

block size of b = 50 for FPCA, while for PM we chose b = d. FD & GROUSE perform singular
updates and do not need a block-size value. Additionally, the step size for GROUSE was set to 2 and
the total sketch size for FD was set 2r. In all cases, unless otherwise noted in the respective graphs
the starting rank for all methods in the synthetic dataset experiments was set to r = 10.

We evaluated our algorithm using the aforementioned error metrics on a set of datasets generated as
described above. The results for the different a values are shown in Figure 7, which shows FPCA can
achieve an error that is significantly smaller than SP while maintaining a small number of principal
components throughout the evolution of the algorithms in the absence of a forgetting factor λ. When
a forgetting factor is used, as is shown in 6 then the performance of the two methods is similar.
This figure was produced on pathological datasets generated with an adversarial spectrum. It can
be seen that in SPIRIT the need for PC’s increases dramatically for no apparent reason, whereas
Federated-PCA behaves favourably.
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Figure 6: Performance measurements across the spectrum (when using forgetting factor λ = 0.9).

Additionally, in order to bound our algorithm in terms of the expected error, we used a fixed rank
version with a low and high bound which fixed its rank value r to the lowest and highest estimated
r-rank during its normal execution. We fully expect the incurred error of our adaptive scheme to fall
within these bounds. On the other hand, Figure 6 shows that a drastic performance improvement
occurs when using an exponential forgetting factor for SPIRIT with value λ = 0.9, but the generated
subspace is of inferior quality when compared to the one produced by FPCA.
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(c) α = 0.5.
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Figure 7: Pathological examples for adversarial Spectrums.

Figures 8a and 8b show the results of our experiments on synthetic data Synth(α)d×n ⊂ R
d×n

with (d, n) = (400, 4000) generated as described above. In the experiments, we let λ be the
forgetting factor of SP. Figure 6 compares FPCA with SP when (α, λ) = (1, 0.9) and Figure 7 when
(α, λ) = (2, 1). While Federated-PCA exhibits relative stability in both cases with respect to the
incurred || · ||F error, SP exhibits a monotonic increase in the number of principal components
estimated, in most cases, when λ = 1. This behaviour is replicated in Figures 8a and 8b where
RMSE subspace error is computed across the evaluated methods; thus, we can see while SP has better
performance when λ = 1 the number of principal components kept in most cases is unusually high.
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Figure 8: Resulting subspace U comparison across different spectrums generated using different α
values.

D.2 Real Datasets

To further evaluate our method against real datasets we also report in addition to the final subspace
errors the Frobenious norm errors over time for all datasets and methods we used in the main paper.
Namely, we used one that contains light, volt, and temperature readings gathered over a significant
period of time, each of which exhibiting different noteworthy characteristics5. These datasets are
used in addition to the MNIST and Wine quality datasets discussed in the main paper. As with the
synthetic datasets, across all real dataset experiments we used an ambient dimension d and N equal
to the dimensions of each dataset. For the configuration parameters we elected to use a block size
of b = 50 for FPCA and b = d for PM. The step size for GROUSE was again set to 2 and the
total sketch size for FD equal to 2r. Additionally, we used the same bounding technique as with the
synthetic datasets to bound the error of FPCA using a fixed r with lowest and highest estimation of
the r-rank and note that we fully expect FPCA to fall again within these bounds. Note, that most
reported errors are logarithmic; this was done in order for better readability and to be able to fit in the
same plot most methods - of course, this is also reflected on the y-axis label as well. We elected to do
this as a number of methods, had errors orders of magnitude higher which posed a challenge when
trying to plot them in the same figure.

D.2.1 Motes datasets

In this we elaborate on the findings with respect to the Motes dataset; below we present each of the
measurements included along with discussion on the findings.

Humidity readings sensor node dataset evaluation. Firstly, we evaluate against the motes dataset
which has an ambient dimension d = 48 and is comprised out of N = 7712 total feature vectors thus
its total size being R

48×7712. This dataset is highly periodic in nature and has a larger lower/higher
value deltas when compared to the other datasets. The initial rank used for all algorithms was r = 10.
The errors are plotted in logarithmic scale and can be seen in Figure 9a and we can clearly see
that FPCA outperforms the competing algorithms while being within the expected FPCA(low) &
FPCA(high) bounds.

Light readings sensor node dataset evaluation. Secondly, we evaluate against a motes dataset
that has an ambient dimension d = 48 and is comprised out of N = 7712 feature vectors thus
making its total size R

48×7712. It contains mote light readings can be characterised as a much more
volatile dataset when compared to the Humidity one as it contains much more frequent and rapid
value changes while also having the highest value delta of all mote datasets evaluated. Again, as with
Humidity dataset we used an initial seed rank r = 10 while keeping the rest of the parameters as
described above, the errors over time for all algorithms is shown in Figure 9d plotted logarithmic
scale. As before, FPCA outperforms the other algorithms while being again within the expected
FPCA(low) & FPCA(high) bounds.

5Source of data: https://www.cs.cmu.edu/afs/cs/project/spirit-1/www/data/Motes.zip
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Temperature readings sensor node dataset evaluation. The third motes dataset we evaluate
contains temperature readings from the mote sensors and has an ambient dimension d = 56 containing
N = 7712 feature vectors thus making its total size R

56×7712. Like the humidity dataset the
temperature readings exhibit periodicity in their value change and rarely have spikes. As previously
we used a seed rank of r = 20 and the rest of the parameters as described in the synthetic comparison
above, the errors over time for all algorithms is shown in Figure 9b plotted in logarithmic scale. It
is again evident that FPCA outperforms the other algorithms while being within the FPCA(low) &
FPCA(high) bounds.

Voltage readings sensor node dataset evaluation. Finally, the fourth and final motes dataset we
consider has an ambient dimension of d = 46 contains N = 7712 feature vectors thus making its
size R

46×7712. Similar to the Light dataset this is an contains very frequent value changes, has large
value delta which can be expected during operation of the nodes due to various reasons (one being
duty cycling). As with the previous datasets we use a seed rank of r = 10 and leave the rest of
the parameters as described previously. Finally, the errors over time for all algorithms is shown
in Figure 9c and are plotted in logarithmic scale. As expected, Federated-PCA here outperforms the
competing algorithms while being within the required error bounds.

D.2.2 MNIST

To evaluate more concretely the performance of our algorithm in a streaming setting and how the
errors evolve over time rather than just reporting the result we plot the logarithm of the frobenious
norm error over time while using the MNIST dataset used in the main manuscript. From our results
as can be seen from Figure 9e Federated-PCA consistently outperforms competing methods and
exhibits state of the art performance throughout.

D.2.3 Wine

The final real dataset we consider to evaluate and plot the evolving errors is the (red) Wine quality
dataset, in which we also used in the main manuscript albeit, as with MNIST, we only reported the
resulting subspace quality error. Again, as we can see from Figure 9f Federated-PCA performs
again remarkably, besting all other methods in this test as well.

D.2.4 Real dataset evaluation remarks

One strength of our algorithm is that it has the flexibility of not having its incremental updates to be
bounded by the ambient dimension d - i.e. its merges. This is especially true when operating on a
memory limited scenario as the minimum number of feature vectors that need to be kept has to be a
multiple of the ambient dimension d in order to provide their theoretical guarantees (such as in [39]).
Moreover, in the case of having an adversarial spectrum (e.g. α > 1), energy thresholding can quickly
overestimates the number of required principal components, unless a forgetting factor is used, but at
the cost of approximation quality and robustness as it can be seen through our experiments. Notably,
in a number of runs SP ended up with linearly dependent columns in the generated subspace and
failed to complete. This is an inherent limitation of Gram-Schmidt orthonormalisation procedure used
in the reference implementation and substituting it with a more robust one (such as QR) decreased its
efficiency throughout our experiments.
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Figure 9: Comparisons against the Motes dataset containing Humidity (fig. 9a), Temperature (fig. 9b),
Volt (fig. 9c), and Light (fig. 9d) datasets with respect to the Frobenious norm error over time; further,
we compare the same error over time for the MNIST (fig. 9e) and (red) Wine quality (fig. 9f) datasets.
We compare against SPIRIT (SP), FPCA, non-adaptive FPCA (low/high bounds), PM, & GROUSE;
Frequent directions was excluded due to exploding errors.
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D.3 Differential Privacy

Due to spacing limitation we refrained from showing the projections using a variety of differential
privacy budgets for the evaluated datasets; in this section we will show how the projections behave for
two additional DP budgets, namely for: ε ∈ {0.6, 1} and δ = 0.1 for both datasets. The projections
for MNIST can be seen in Figure 10; the quality of the projections produced by Federated-PCA
appear to be closer to the offline ones Figure 10a than the ones produced by MOD-SuLQ for both
DP budgets considered.
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(b) FPCA (with masks), (ε, δ) = (0.6, 0.1).
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(c) MOD-SuLQ, (ε, δ) = (0.6, 0.1).
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(d) FPCA (with masks), (ε, δ) = (1, 0.1).
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(e) MOD-SuLQ, (ε, δ) = (1, 0.1).

Figure 10: MNIST projections using different differential privacy budgets, at the top (fig. 10a) is the
full rank PCA while on the left column is Federated-PCA with perturbation masks and on the right
column MOD-SuLQ using DP budget of ε ∈ {0.6, 1} and δ = 0.1 while starting from a recovery
rank of 6. Note here that Federated-PCA exhibits remarkable performance producing higher quality
projections than MOD-SuLQ in both cases.

However, on the Wine quality dataset projections seen in Figure 11 it seems that MOD-SuLQ can
produce projection that are closer to the offline ones than Federated-PCA but not too far apart.
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Notably, this can be attributed to the higher sample complexity required by Federated-PCA as it is
an inherently streaming method and the (red) Wine dataset is considerably smaller than MNIST.
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(b) FPCA (with masks), (ε, δ) = (0.6, 0.1).
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(c) MOD-SuLQ, (ε, δ) = (0.6, 0.1).
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(d) FPCA (with masks), (ε, δ) = (1, 0.1).
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(e) MOD-SuLQ, (ε, δ) = (1, 0.1).

Figure 11: (red) Wine quality projections using different differential privacy budgets, at the top
(fig. 11a) is the full rank PCA while on the left column is Federated-PCA with perturbation masks
and on the right column MOD-SuLQ using DP budget of ε ∈ {0.6, 1} and δ = 0.1 while starting
from a recovery rank of 6. Note here that due to the higher sample complexity requirements of
Federated-PCA the projections appear slighly worse.
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D.4 Federated Evaluation

To provide additional information with respect to the evaluation we also report the amortised execution
times per number of workers, as if the workers exceed the number of available compute nodes in our
workstation then computation cannot be completed in parallel thus hindering the potential speedup.
In Figure 12 we show the amortised total (fig. 12a), PCA (fig. 12b), and merge (fig. 12c) times
respectively - these results, as in the main text, use Federated-PCA without perturbation masks
but a similar result would apply to this case as well. These results indicate, that in the presence of
enough resources, Federated-PCA exhibits an extremely favourable scalability curve emphasising
the practical potential of the method if used in conjunction with thin clients (i.e. mobile phones).
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(a) Amortised execution time.
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(b) Amortised PCA time.

2 4 8 16 32 64

node count

0

0.02

0.04

0.06

0.08

ti
m

e
 (

s
)

T=640K

T=1280K

T=1920K

T=2560K

T=3200K

(c) Amortised time spent merging.

Figure 12: Amortised execution times for total (fig. 12a), PCA (fig. 12b), and merge (fig. 12c)
operations respectively.

D.5 Memory Evaluation

We benchmarked each of the methods used against its competitors and found that our Federated-PCA
performed favourably. With respect to the experiments, in order to ensure accurate measurements,
we started measuring after clearing the previous profiler contents. The tool used in all profiling
instances was MATLAB’s built-in memory profiler which provides a rough estimate about the memory
consumption; however, it has been reported that can cause issues in some instances.

These empirical results support the theoretical claims about the storage optimality of FPCA. In terms
of average and median memory allocations, FPCA is most of the times better than the competitors.
Naturally, since by design, PM requires the materialisation of larger block sizes it requires more
memory than both FPCA as well as FD. Moreover, GROUSE, in its reference implementation
requires the instantiation of the whole matrix again; this is because the reference version of GROUSE
is expected to run on a subset of a sparse matrix which is copied locally to the function - since in
this instance we require the entirety of the matrix to be allocated and thus results in a large memory
overhead. An improved, more efficient GROUSE implementation would likely solve this particular
issue. Concluding, we note that although Federated-PCA when using perturbation masks consumes
slightly more memory, this is due to the inherent added for supporting differential privacy; however,
this cost appears to be in line with our O(db) memory bound and not quadratic with respect to d, as
with competing algorithms.

Table 1: Average / median memory allocations (Kb) for a set of real-world datasets.

Humidity Light Voltage Temperature

FPCA (with mask) 166.57 / 81.23 Kb 172.00 / 99.17 Kb 289.02 / 143.79 Kb 257.00 / 195.30 Kb

FPCA (no mask) 138.11 / 58.99 Kb 104.00 / 76.03 Kb 204.58 / 23.47 Kb 187.74 / 113.28 Kb
PM 905.45 / 666.11 Kb 685.48 / 685.44 Kb 649.12 / 644.35 Kb 657.57 / 668.27 Kb
GROUSE 2896.61 / 2896.62 Kb 2896.84 / 2896.62 Kb 2772.86 / 2772.62 Kb 3379.62 / 3376.62 Kb
FD 162.70 / 117.92 Kb 170.48 / 127.91 Kb 114.46 / 112.66 Kb 196.11 / 118.59 Kb
SP 476.68 / 405.01 Kb 1009.03 / 508.11 Kb 348.84 / 351.98 Kb 541.56 / 437.61 Kb
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D.6 Extended Time-Order Independence Empirical Evaluation

The figures show the errors for recovery ranks r equal to 5 (13a), 20 (13b), 40 (13c), 60 (13d), and
80 (13e). It has to be noted, that legends which are subscripted with s (e.g. grs) compare against the
SVD output while the others against its own output of the perturbation against the original Y. We
remark that when trying a full rank recovery (i.e. r = 100), SPIRIT failed to complete the full run as
it ended up in some instances with linearly dependent columns, while the other methods perform
similarly to the previous examples.
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(a) Permutation errors for recovery rank r = 5.
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(b) Permutation errors for recovery rank r = 20.
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(c) Permutation errors for recovery rank r = 40.

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-25

-20

-15

-10

-5

0
e

rr
o

rs
 (

lo
g

(r
m

s
e

))
fpca

fpca
s

pm

pm
s

gr

gr
s

sp

sp
s

fd

fd
s

(d) Permutation errors for recovery rank r = 60.
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(e) Permutation errors for recovery rank r = 80.

Figure 13: Mean Subspace errors over 20 permutations of Y ∈ R
100×10000 for recovery rank r equals

5 (a), 20 (b), 40 (c), 60 (d), and 80 (e).
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