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ABSTRACT

The “nano-indentation continuous stiffness measurement technique” has been employed to analyze the failure dynamics of mesoporous
SiO, based material (Vycor). The depth dependence of the indentation hardness (H), elastic modulus (E), and elastoplastic parameter (§%/P)
shows crackling noise, which has been analyzed to monitor the jerky strain release. The noise is power law distributed with exponents near
~1.5 over several decades, confirming avalanche criticality. This value is in good agreement with literature results obtained by other

techniques and with earthquake statistics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5117499

The breakdown and collapse behavior of porous structures due
to external pressure and deformation is of great importance. Among
others, porous materials have been the object of various studies: e.g.,
for nuclear materials' and CO, capture and storage,2 as models for
studying the effects and the mechanisms prior and during earth-
quakes,” and the collapse of ultralight materials* and artificial and nat-
ural formations (e.g., mines, buildings, and bones).s’8 A general better
understanding of the occurring phenomena helps to increase the pre-
cision of forecasting collapse events. During compression (well before
the final breakdown) of porous materials, sudden changes of the inter-
nal strain field have been found, seen as discontinuities of the stress
displacements. They do not occur continuously, but as coupled events
in avalanches leading to crackling noise. Under slow loading, many
systems generate crackles,” e.g., our earth during earthquakes,”'” a
sheet of paper while crumpling,'’ ferroic materials under electric and
magnetic fields as a result of domain wall movements, ” '° metals and
alloys during martensitic phase transitions'™'” and plastic deforma-
tion,”'? and even steel cantilevers as parts of ultrasensitive gravita-
tional wave detectors.'” An effective way to detect such abrupt strain
field variations, the “jerks,” is to measure the related acoustic emission
(AE) events.”'” The underlying physical process is the formation of
avalanches, seen as sequences of jerks.zo

Nano-indentation has been successfully used as a complementary
method to investigate avalanches in metallic glasses and metals." '
In this study, we extend this approach. We employ the so-called

“continuous stiffness measurement (CSM) technique”*" *° to identify

avalanches in porous materials during indentation. CSM has been used,
e.g. by Greer and Nix™’ to investigate size effects in gold. In this tech-
nique, a small dynamic oscillation is imposed on the applied force or
displacement, and the amplitude and phase of the corresponding signal
are measured with a lock-in amplifier. This dynamic measurement dif-
fers greatly from the static indentation method in that all parameters are
determined as dynamical response functions at a frequency of 100 Hz.

The indentation hardness (H), elastic modulus (E), and elasto-
plastic parameter (S?/P) are functions of the indentation depth and
monitor the collapse behavior (~jerks) of the mesoporous synthetic
silica (SiO,) glass “Vycor” (Corning, Inc., New York) during penetra-
tion. The maximum likelihood (ML) method”® ' was used to charac-
terize the jerk spectra superposed to H, E, and S*/P.

The sample was a polished plane-parallel plate of Vycor. This
material is a nongranular structure composed of a continuous glass
skeleton with a porosity (@) of 0.4 and an average pore diameter of
75nm.”” The mechanical properties were measured with a
Nanomechanics iNano nanoindenter, equipped with a diamond
Berkovich indenter tip that operates in a continuous stiffness mode
(CSM). Using CSM, the sample stiffness (S) is measured continuously
during loading of the indenter.”* *° Fused silica was the reference
material for calibration. The instrument software calculated the hard-
ness (H) and the elastic modulus (E) during the loading process
according to Oliver and Pharr”* with
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HZZ? (1)

where P is the imposed load and A the projected contact area between
the indenter and the sample determined from the shape of the
indenter and using the Oliver and Pharr method.”>”’ The measured
contact stiffness (S) is related to the elastic properties of both the sam-
ple and indenter and the contact area through®*

S= ﬁ\/%Er\/E

where f8 is a constant depending on the indenter geometry (for
Berkovich geometry # = 1.05)* and E, is the reduced modulus given by

(1 - 1/,2) (1—12)
E; + E ’

@)

1

(©)

E,
where E; and v; are the elastic modulus and Poisson’s ratio of the
indenter, respectively (for the diamond indenter, E;= 1141 GPa and
v;=0.07). E and v are the elastic properties of the sample. E, considers
that elastic displacements take place in the sample and in the
indenter.”” A Poisson’s ratio of 0.188 and a target indentation strain
rate of 0.01 s~ have been used. Values of several indents were analyzed
over an indentation depth of 200-1400 nm. Additionally, the material’s
resistance to plastic penetration (P/S%)*"" has been used. It is based on
the directly measured parameters, load (P) and contact stiffness (S),
and is therefore independent of the contact area (A) of the indenter.

P/$? is directly proportional to H and 1/E? expressed by """
P 1nH
SRyR )

P/S’ is known to give a good approximation for H/E? for materials
with a significantly lower modulus than diamond,” which is the case

(a)1.94 L L L L i 3x10°
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for Vycor. In this study, we use the inverse parameter S*/P, the elasto-
plastic factor.
The maximum likelihood estimation (MLE) method”® has been
used to analyze the jerk spectra®’ ' by
:| -1

zn: In
i=1

with x;, i=1,...,n, being the observed values of x such that x; > Xpin,
while € (defined as a positive quantity) is the exponential parameter
indicated by a plateau in the results of the analysis. The standard
error’” is expressed as

Xi
&(Xmin) = 1 47

©)

Xmin

i) =1 <l> .
vn n

From nano-indentation measurements, we obtained an average
elastic modulus for Vycor of ~17.2 * 0.4 GPa in excellent agreement
with manufacturers specifications (2.5 x 10°psi) and with literature
data.”® Our value is also close to that calculated from Resonant
Ultrasound spectroscopy (15.8 GPa) by Koppensteiner et al.”> We
measured an average indentation hardness of ~1.57 = 0.04 GPa and
an elastoplastic parameter of ~249.9 = 9GPa. E is directly related
to interatomic bonding and H denotes the resistance to plastic defor-
mation, while the directly measurable $?/P is connected to both via
Eq. (4). These mechanical parameters depending on the internal struc-
ture have been used to monitor the ongoing volume collapse of Vycor
caused by the penetration of the indenter tip.

The depth evolution of H, E, and $?/P is shown in Fig. 1. The jerk
spectra were constructed as the square of the first derivative of the pri-
mary depth dependences. No smoothing of the original data was used.
The jerks are hence a measure for the energy change ~(3H)?, (3E)%,

(o —

(6)
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FIG. 1. Depth evolution of (a) H, (b) E,
and (c) S?P with the related squares of
their derivatives (jerk-spectra). The total
number of recorded signals is N = 22 552.
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and (6S/P)%, per unit depth change.”” Deng et al.”* have already simu-
lated such behavior where sudden drops in hardness are indeed not
smooth curves but contain jerks and subjerks during the drop. The
method of identifying jerks as the squares of the slopes includes these
effects and is hence more reliable than the registration of simple drop
spectra. The review of Hardiman et al.”” provides further details. Yield
points were observed in GaAs and Fe-3 wt. %Si single crystals when
surfaces were indented.”’ The closeness of our results to the energy
exponents in mean field theory (1.33-1.6) is relevant to identify the
physical origin of the jerk spectra. Similarly, Budrikis et al.*' have
explored indentation in a theoretical model and concluded that the
size distribution of avalanches follows a much smaller exponent of
1.29 which can be estimated to relate to an energy exponent well below
the mean field limit. A full analysis of the atomic mechanisms and
thereby the exact identification of the power law exponents, namely,
“energy” or “size,” is intended by future molecular dynamics simula-
tion. The effect of the squaring of the slopes has already been simu-
lated.” It was shown that the statistical analysis is not significantly
influenced, while the statistics of the dataset is much improved for the
squared datasets (see the supplementary material).

Figure 2 depicts the ML analysis of six indents. The depth evolu-
tion of (dH/dDepth)z, (dE/dDepth)Z, and [d(SZ/P)/dDepth]2 indicates
flat plateaus over around 3 decades that define an exponent around
1.5. This exponent is in good agreement with previous measurements
using a Dynamical Mechanical Analyzer (DMA),”””" which provide a
similar energy exponent from fitting of the power law distributions
and a slightly higher value of ¢ ~ 1.7 from MLE. Our value is close to
that from AE spectroscopy (1.39).”"” In comparison with mean field

L B e e e
10*10° 10 10° 10° 107 10° 10° 10 10" 10%

theory, our experimental exponent lies between the limits 1.33 and
1.667 for fast and force integrated jerks, respectively.'”*’ From the
view of earthquake statistics,” our exponent is in excellent agreement
with that suggested by Kagan."* The histograms of the probability dis-
tribution function (PDF) of the binned jerks are shown as log-log plots
(see insets in Fig. 2).

In summary, we showed that the nano-indentation in Vycor using
continuous stiffness measurements is suitable to detect avalanches in
porous materials. The mechanical properties (i.e., indentation hardness,
elastic modulus, and elastoplastic parameter) as a function of depth are
sensitive parameters to monitor the chain reactions of collapsing pores
during indentation. E directly mirrors the breaking of bonds and pro-
vides the best defined plateau. Using the maximum likelihood method,
we obtain an exponent ~1.5 that is in good agreement with literature
data for energy exponents in Vycor. We found mean-field behavior in
good approximation. In addition, our measurements provide further
evidence for the strong similarity between the failure of porous Vycor
and earthquake statistics. If it criticality represents the “interface”
between ordered and disordered states,” nano-indentation CSM is an
excellent technique (related to its small scale) to drive a system to several
critical points without provoking a complete breakdown of the material.

See the supplementary material for the exemplary effect of the
squaring of the slopes.
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