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Abstract

In this dissertation, the early development of turbulent vortex rings at

two Reynolds numbers is studied using two-dimensional and Stereoscopic

Particle Image Velocimetry. In the late 1980s’ a similarity theory of

turbulent vortex rings was proposed and tested primarily using a two-

channel tracking Laser Doppler Velocimeter. However, due to the lim-

itations of the experimental technique the tests were inconclusive and

important assumptions could not be checked. Since single-point mea-

surements were used, turbulent vortex ring structures could only be in-

ferred using a complex signal-analysis technique. In the present study,

two-dimensional and stereoscopic Particle Image Velocimetry techniques

provide spatial and temporal resolved measurements of the full field of

the cross-section of turbulent vortex rings, from which a more rigorous

investigation of the similarity theory is possible. Since the region over

which the similarity theory appears to hold starts at about 2.5 orifice di-

ameters downstream, this study focusses on the early development region

from this point to ten diameters downstream. Finally, the ensemble-

averaged turbulent ring velocity contours, vorticity contours, pressure

field contours, as well as Reynolds stresses and turbulence production

contours, are presented. The effects of the turbulent vortex ring posi-

tion dispersion and tilting angle variation on the measurement results

are also studied and quantified. An effort is also made to reconstruct a

three-dimensional turbulent vortex ring velocity field by adopting Tay-

lor’s hypothesis. Some important features are successfully captured. An

azimuthal-averaging method is also developed in an attempt to estimate

the turbulence quantities in cylindrical coordinates. However, because of

various limitations, the three-dimensional reconstruction method is not

perfect, and room for future improvement is discussed.
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Chapter 1

Introduction

Vortex rings, three-dimensional toroidal structures resulting from boundary layer

roll-up, have been observed in various shapes and sizes. Perhaps the most familiar

example of a vortex ring is the smoke ring produced when cigarette smoke is suddenly

ejected through the lips of a smoker, or when there is a sudden ejection of gas from

an exhaust nozzle of a vehicle. A typical structure of a vortex ring is shown in

figure 1.1, where layers of dyed fluid are noticeable. In nature, vortex rings can be

observed in various length scales, from a few kilometres to a few millimetres.

Examples of large-scale vortex rings are the ‘mushroom cloud’ formed during a

nuclear explosion or mushroom-shaped plume formed during a volcanic eruption.

The physics of the mushroom cloud formation after detonation of a nuclear bomb

involves hot gases rotating and rising into a toroidal shape inside the head of the

cloud, while cooler air is drawn into the cloud and upwards to form the ‘vortex-ring

bubble’. Fascinatingly, very similar phenomenon can be observed in laboratories,

e.g. when a water droplet impacts a water surface from a distance above (see

figure 1.2). The physics of a volcanic eruption is very similar to the formation of

cigarette smoke rings, the pyroclastic material exits from the volcano mouth and

roll up into a mushroom shape.

A microburst (downburst) is another large-scale example in nature, which is

opposite to a tornado and is a potential hazard for aircraft. A ring forms when the

wind curls as the cold air of the downburst moves away from the point of impact

with the ground. A similar picture of downburst can be seen at the start of the

launching of a rocket or spacecraft.

1



Figure 1.1: Ejection of smoke from the end of a tube into air. Reynolds number is
approximately 10000. Image taken from van Dyke (1982).

Figure 1.2: Comparison of the vortex structure created by a 2.6mm water drop
50ms after impacting a pool of water after a fall of 35mm (left, inverted) and an
above-ground nuclear test, Nevada, 1957, U.S. Department of Energy (right). Left
image taken from Peck & Sigurdson (1994).

2
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Figure 1.3: Visualisations of medusa flow currents. (A) Jet propulsion in juvenile
Aequorea victoria. A vortex ring (CV) is formed in the water during the bell con-
traction phase, whereas no vortex is formed in the water during the bell relaxation
phase. (B) Jet-paddling in Aurelia aurita. Vortex rings of opposing rotational ori-
entation are formed in the water during bell contraction (CV) and relaxation (RV),
respectively. The stopping vortex can be observed forming near the bell margin
(RV). Image taken from Dabiri et al. (2007).

Smaller-scale vortex rings can be observed when some aquatic species shed vor-

tices from their bodies or produce vortex rings as a means of propulsion for swim-

ming; see figure 1.3. The shed vortices can advance downstream by their self-

induced velocity and form a vortex ring. Such biological propulsion mechanisms

have attracted substantial research, in order to discover an optimal way of swim-

ming. Vortex rings are also seen in human physiological flows, as when the blood

flow enters the cardiac left ventricle during diastole, a vortex ring can form (see

figure 1.4). The physics is also similar to the nozzle vortex ring discussed above, but

it is a periodic process. Researchers have attempted to link some of the properties of

such periodic formations of rings to the evidence of certain cardiac diseases, which

remain leading causes of death worldwide.

Because of its relatively robust capability for momentum delivery, the physics

of vortex rings is widely applied to engineering problems. For instance, there has

been evidence of applying vortex rings for underwater drilling; vortex rings are

also potentially useful for fighting oil-well fires. They are also applied for military

purposes, in developing weapons like vortex cannons or vortex guns. Such weapons

have shown that they are capable of knocking down a 75kg human dummy from 10

3
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Figure 1.4: Vortex ring formation in vivo and in vitro. (a and b) Map of in vivo
blood flow velocity vectors and vorticity (rotation and shear) contours in the left
ventricle (LV) of a human heart during diastole. Images were obtained by magnetic
resonance imaging (MRI) of a healthy adult. The LV boundary is indicated by a
white line. Vortical patterns are indicated by the orientation of velocity vectors
and by vorticity contours. Blue and yellow contours indicate clockwise and counter-
clockwise fluid rotation, respectively. Image taken from Gharib et al. (2006).

meters away. Large vortex cannons are even able to knock down thin walls. Other

examples involve vortex rings’ excellent translation ability due to their self-induced

velocity. Applications have been found in using acoustic guns to measure distances.

The role of vortex rings in mixing has also been recognized in a variety of appli-

cations because of their entrainment capability. They are found to be responsible

in shear layer mixing, and they are also used to help mix chemicals in combustion

chambers to increase the efficiency of combustion and other chemical reactions.

Most of the phenomena and applications are related to turbulent vortex rings,

or highly excited vortex rings. The physics of vortex rings thus certainly deserves

an intensive study in order to understand phenomena in nature.

4
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Chapter 2

Literature Review

The study of laminar vortex rings, as an interesting topic in fluid mechanics, has

attracted at least 50 years of research. Some physics associated with laminar vortex

rings have been summarised in Shariff & Leonard (1992) and Lim & Nickels (1995).

There is not so much literature on turbulent vortex rings, however. In this chapter,

some relevant information about turbulent vortex rings is presented and revised and

the significance of this research activity is also given.

2.1 Slug model

A vortex ring in laboratory studies is usually generated by an impulsive ejection of

fluid through a nozzle or an orifice into a quiescent environment. The inner boundary

layer of the nozzle or the orifice is ejected and rolls up to form a toroidal structure,

which is known as a vortex ring. An example of a nozzle-generated vortex ring is

shown in figure 1.1. Two mathematical models were invented in order to quantify

the formation process. The first model, which is perhaps the most commonly used,

is the slug model. The slug model has been widely adopted by researchers to predict

the circulation of vortex rings. A piston movement through a nozzle is the easiest

example to illustrate the concept of the model; see figure 2.1. The velocity Up(t)

and the stroke length L of the piston motion determine the circulation of the ring

and may be used to define a Reynolds number which partly characterises the nature

of the ring.

In this model, the velocity profile external to the boundary layer across the nozzle

exit plane is assumed to be axisymmetric and top-hat shaped, which is represented

5



2.1 Slug model

Figure 2.1: Illustration of influences of various factors on the slug model. Up denotes
the slug model velocity profile at the tube exit; Up1(t) denotes the profile at the
beginning of the piston motion; Up2(t) denotes the profile at a later time. Up1(t)

and Up2(t) can be functions of time. Thus the piston stroke length L =

∫ T

0

Up(t)dt,

where T is the slug time.

by Up(slug) in figure 2.1. The peak velocity is assumed to be equal to the piston

velocity. (Due to the existence of a thin boundary layer and continuity, the peak

velocity at larger time is always higher than the piston velocity; see Up2(t) in fig-

ure 2.1, which will be discussed further below.) In cylindrical coordinates, the rate

of the circulation Γslug created and ejected by the piston, which is also called the

vorticity flux, can be written as:

d Γslug

d t
=

∫ R

0

ωθuy dr

≈
∫ R

0

−∂uy

∂r
uy dr

≈ 1

2
U2

p (t), (2.1)

where R denotes the nozzle radius (see figure 2.1); Up(t) denotes the piston velocity

history; r, θ and y denote the radial, azimuthal and axial direction of the cylindrical

coordinates, while ωθ is the azimuthal vorticity. The first approximation in 2.1

involves the assumption that in axisymmetric situations, the azimuthal vorticity

ωθ =
∂ur

∂y
− ∂uy

∂r
≈ −∂uy

∂r
, (2.2)

6
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2.1 Slug model

since the boundary-layer equation assumes ∂ur/∂y is negligible compared with

∂uy/∂r. The second approximation in equation 2.1 involves the assumption that

the peak velocity (on the axis of symmetry) is equal to the piston velocity. Thus if

the piston velocity programme is an impulsive start to a constant (i.e. Up(t) = Up,

for t > 0), the total slug circulation produced can be written as

Γslug =

∫ T

0

1

2
U2

p dt

=
1

2
Up

∫ T

0

Up dt

=
1

2
UpL, (2.3)

where T is the slug time and L is the piston stroke length. The Reynolds number

hence can be defined by the slug circulation

Reslug =
Γslug

ν
=
UpL

2ν
.1 (2.4)

If the momentum of the piston motion is assumed to be entirely delivered to the

discharged fluid, the speed of the discharged volume equals the piston speed, and

the idealised slug impulse Islug can be written as

Islug = ρ× voldis × Udis

=

(
1

4
πD2Lρ

)
Up, (2.5)

where D is the nozzle diameter. Note that this is not the true impulse because it

takes no account of the over pressure at the nozzle exit. This point will be discussed

in section 5.1.9.

Didden (1979) made some measurements of the velocity fields in the vicinity of

the nozzle exit using Laser Doppler Velocimeter (LDV) and found that, the actual

circulation produced by the piston motion can be written as

Γ

Γslug
= 1.14 + 0.32

(
L

D

)
−1

, (2.6)

1In this dissertation, unless otherwise indicated, Re is equivalent to Reslug
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2.1 Slug model

by data fitting. This equation is most accurate for Re < 7000 and L/D > 0.6.

Therefore, at these conditions, the slug circulation underestimates the real circula-

tion, and the degree of the underestimation depends on the L/D value. The work in

Maxworthy (1977), however, found that for higher Re, in the range between 30000 to

50000, the slug circulation overestimates the real circulation. The comparison of the

slug circulation and the circulation calculated from various experiments is shown in

figure 2.2. The discrepancies between the real and slug circulations are attributed to

three major causes given in Didden (1979) experimentally and in Nitsche & Krasny

(1994) numerically.

• First, for small times the velocity near the nozzle exit exceeds the instan-

taneous piston velocity due to piston acceleration, the effect of which is to

increase the velocity gradients and hence to increase the vorticity flux.

• Second, at larger times, because the boundary layer becomes thicker, the center

flow velocity will also be appreciably larger than the piston velocity Up.

• Third, the flux of the opposite-sensed vorticity from the nozzle external wall

is entrained into the main ring due to the pressure fields.

The first two factors increase the real value and the third one decreases it. A

schematic illustration of these three factors is shown in figure 2.1.

Later researchers have found other possible influences on the real ring’s circula-

tion. Allen & Chong (2000) used dye visualisation and particle tracking to provide a

scaling law and quantified the growth rate of a piston vortex ring, which is generated

from the separated boundary layer material when the piston advances (Hughes &

Gerrard, 1971). The mature piston vortex may eventually detach from the piston

surface and interact with the primary vortex ring under certain conditions, e.g. when

the piston surface stops flush with the nozzle/orifice exit plane. Cater et al. (2004)

used Particle Image Velocimetry (PIV) to investigate the effect quantitatively and

showed that the imperfect merging of the piston vortex and the primary ring can not

only increase the circulation of the primary ring but also promote the transition of

the ring to turbulent. Nevertheless, the effect of the piston vortex can be eliminated

under other circumstances, for instance, when the piston stops several nozzle/orifice

diameters behind the exit.

8



2.1 Slug model

Figure 2.2: Circulation of vortex rings formed at a pipe exit referred to the cir-
culation predicted by the slug model. Unless indicated, the data are from Didden
(1979). The multiple data points of Maxworthy (1977) at the three L/D values are
for different Reynolds numbers, increasing downward. Figure taken from Shariff &
Leonard (1992).
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2.2 Models for turbulent vortex rings

Unlike most flow phenomena, Reynolds number is not the only important pa-

rameter for predicting the level of turbulence. In the vortex ring formation process,

two other factors also play critical roles, namely dimensionless number L/D and

the history of the piston velocity as a function of time (piston velocity programme).

The history of the piston movement is usually set to be a constant in most of the

experiments. Examples of other piston movement types can be found in Glezer

(1988). Glezer (1988) also did flow visualisation experiments on vortex rings at

various Reynolds numbers and L/D ratios, and combined the results from earlier

researchers, to quantify the conditions (the mapping of Re and L/D) which can

produce turbulent vortex rings immediately upon initiation. Glezer (1988) divided

the turbulent vortex rings into two main types: turbulence from laminar instability

and turbulence upon initiation, on a transition map; see figure 2.3. The mecha-

nism that generates turbulence in the second type of the rings is attributed to the

Kelvin-Helmholtz instability on the cylindrical slug of fluid behind the main spiral.

Another possible explanation is the Rayleigh centrifugal instability caused by the

ingestion of secondary vorticity into the main vorticity roll-up sheet (Maxworthy,

1972).

The second model for describing the vortex ring formation process is the self-

similar roll-up, which is based on the analysis of the roll-up of an inviscid, two-

dimensional vortex sheet. This is so far the only model that attempts to account for

vortex sheet evolution during the formation and gives some insight into the vortex

core structure. This model was applied to the ring formation at a tube exit by

Saffman (1978) for the case of an impulsive-started flow and later was extended by

Pullin (1979) to ring formation at orifice exits and for more general piston speed

programmes. Because this study does not aim to investigate the ring formation

process or the core structure, this model is not discussed in detail.

2.2 Models for turbulent vortex rings

Detailed quantitative data at various downstream locations from the nozzle exit for

various stages of ring development have been given by many researchers, but mostly

for laminar or relatively low Reynolds number cases; some examples can be found

in section 2.3 for both experimental and numerical studies. When the Reynolds

10



2.2 Models for turbulent vortex rings

Figure 2.3: The transition map marked rings at various Re and L/D ratios. •
denotes turbulent rings and + denotes laminar rings. Γo is the slug circulation
Γslug. Figure taken from Glezer (1988).

number is sufficiently high, or the stroke length is sufficiently long, the vortex ring

produced may be turbulent; see section 2.1 and figure 2.3. There have been relatively

few studies of turbulent vortex rings, among which are Maxworthy (1974), Johnson

(1970), Johnson (1971), Sallet & Widmayer (1974). The most comprehensive study

of turbulent vortex ring structure, however, is given in Glezer & Coles (1990), in

which a long-term similarity solution was proposed based on the assumption of the

invariance of the impulse, and experiments were made to examine the ring structure

and turbulence statistics. Maxworthy (1974) and Johnson (1970) also independently

developed models accounting for turbulent vortex rings’ long-term properties, but

their models are empirical or semi-empirical ones. These three models are briefly

discussed here.

2.2.1 The similarity theory

The similarity theory proposed by Glezer & Coles (1990) is based on dimensional

analysis and the invariance of the impulse. It is reviewed here in more detail be-

cause it is the only non-empirical model among the three and serves as the the-
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2.2 Models for turbulent vortex rings

oretical background of the present research activity. Two-channel LDV was used

to acquire two components of velocity at various streamwise and spanwise stations.

This, however only provided instantaneous velocity information at a single point

in the flow field at one probe station, although the two channels give two velocity

components. This limitation is important because, first, spatial structure must be

inferred from temporal information and second, the information is almost ‘blind’ to

the surrounding environment (the relative position in the ring structure where the

velocity information is obtained). To overcome the first limitation, Taylor’s hypoth-

esis (Taylor, 1938) and their similarity theory were applied; to overcome the second,

considerable statistical treatments were unavoidable. They first developed a signa-

ture recognition scheme to filter out the ‘imperfect’ or ‘suspicious’ data points and

applied time-axis shifting before applying conventional statistical methods to obtain

ensemble-averaged structures. It must also be noted that because of the limitation

of LDV, data in the adjacent probe stations are uncorrelated. Their experiments did

seem to show that their turbulent vortex rings follow similarity developments from

as early as 2.5 orifice diameters downstream from the exit. Notwithstanding the

noticeable success of the theory in predicting the mean quantities (e.g. velocities,

circulation, impulse, entrainment) and the turbulence quantities (e.g. stresses and

production), their study, while careful and comprehensive, suffered from a number

of limitations (that were recognised and noted by the authors) which include

• Spatial structure is inferred using Taylor’s hypothesis from single-point mea-

surements, together with the application of similarity theory, i.e. data from all

the streamwise and spanwise probe stations are scaled into a single position

in similarity space, by temporal information.

• Only two components of the velocity were measured.

• Ring dispersion1 was significant and difficult to visualise and correct for when

relying on point measurements, i.e. dispersion can only judged from instanta-

neous velocity components with respect to the ensemble-averaged value.

1The term dispersion is not clearly defined in Glezer & Coles (1990). It is a general term to
indicate the location difference of the ring cores from one instantaneous realisation to another. In
this dissertation, this term refers to the distance from the instantaneous ring core locations to that
of the ensemble-averaged ring.
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2.2 Models for turbulent vortex rings

• The invariance of the impulse was assumed but could not be checked.

Therefore some results may not be true to nature and some detailed physics

could be hidden and masked. The limitations mentioned above thus leave the present

study room to verify and correct their results and reveal more mechanics of turbulent

vortex rings than that presented in Glezer & Coles (1990).

The mathematical background of the similarity theory will be discussed in detail

in chapter 4.

2.2.2 Maxworthy’s model

Maxworthy (1974) performed flow visualisation experiments to measure the vortex

rings’ bubble radius and propagation velocity, and proposed a semi-empirical model

which does not rely on impulse invariance, because impulse was observed to be

continuously lost in the wake. The loss of impulse was modelled by an equivalent

drag. This model of drag together with a model related to ring-bubble entrainment

and a hypothesis of partial self-similarity were assumed to explain and predict the

observed decay of ring propagation velocity and growth of the bubble volume. The

result showed that the radius (hence the bubble volume) and the propagation speed

of a vortex ring grow and decay as power laws of time (with a dimensionless time

properly defined). The results reduce to the similarity scaling law in an extreme

condition. More details can be found in Maxworthy (1974), or in the review articles

Shariff & Leonard (1992) and Lim & Nickels (1995). The model is also briefly

summarised in appendix A.

2.2.3 Johnson’s model

The experimental study by stroboscopic photography and hot-wire anemometry in

Johnson (1970) found that turbulent rings did not reach a similarity stage until

about 1000 diameters away from the ring generator. This model was based on fully-

empirical data fitting, and no strong physical reasoning was given. This model also

gave a power-law function of ring’s propagation distance (and hence velocity) and

radius; see Lim & Nickels (1995) or appendix B.
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2.3 Azimuthal instability

Figure 2.4: Sequential photographes of a Re = 2000 ring in its azimuthal plane.
Dye visualisation. Figure taken from van Dyke (1982).

2.3 Azimuthal instability

Vortex rings which are well formed at the nozzle/orifice exit, under certain condi-

tions, can undergo an instability along the core circumference in the form of waves;

see figure 2.4. This type of azimuthal instability is an important mechanism in the

transition of a laminar vortex ring to turbulence. Although this type of waviness is

most investigated on laminar or transitional rings, it will be shown in chapter 7 that

azimuthal waves are also observed in a fully turbulent ring. In this section, some of

the analyses of the azimuthal waves in a vortex ring are reviewed.

The first experimental work showing the existence of azimuthal waves was Krutzsch

(1939), but the physics of the waves were not studied in detail until the 1970s’, by

a number of experimental and analytical studies, for example Widnall & Sullivan

(1973), Widnall et al. (1974), Maxworthy (1977), Widnall & Tsai (1977), Saffman

(1978), Weigand & Gharib (1994), Dazin et al. (2006a), Dazin et al. (2006b) and

later numerical studies like Shariff et al. (1994) Bergdorf et al. (2007).

Maxworthy (1972) found that the instability develops for Reynolds numbers

based on piston diameter larger than 600. Widnall & Sullivan (1973) suggested

that, in the absence of viscosity, a vortex ring with a thin core is almost always

unstable to a small wave-like perturbation, and also showed that the number of

waves increased with decreasing core size. Their model successfully predicted the

amplification rate and the shape of the instability waves but was not able to predict

14
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2.3 Azimuthal instability

the number of waves. Widnall et al. (1974) developed a model of the waves observed

on a straight filament in Moore & Saffman (1975a), and gave an explanation of the

instability mechanism on a vortex core by considering the effect of the straining field.

They were the first to suggest theoretically that the direction of the growth of the

instability wave should be at 45◦ with respect to the direction of propagation of the

vortex and the result was confirmed later by Maxworthy (1977) and Shariff et al.

(1994). Widnall & Tsai (1977) further refined these ideas and gave a rigorous theory

based on expansion of the steady-flow solution for the ring field and of the unsteady

wave perturbations in an asymptotic series in the core-radius to ring-radius ratio.

Their model predicted the wave number and the growth rate for thin-core vortex

rings with constant vorticity or with a continuous distribution of vorticity in an

ideal fluid. Saffman (1978) used a vortex sheet roll-up model to predict the vorticity

distribution of the core and successfully described the variation of the wavelength

of the instability with Reynolds number for vortex rings produced with a tube.

The models of Widnall & Tsai (1977) and Saffman (1978) were later confirmed by

PIV results in Dazin et al. (2006a) and Dazin et al. (2006b). The observation of

secondary structure outside of the main waves in Dazin et al. (2006b) was further

supported by the numerical results in Bergdorf et al. (2007).

A mean flow inside the vortex ring core usually accompanies the appearance of

the waves, when the amplitude of the waves on the vortex ring becomes significant.

This flow was referred to as an axial flow by Moore & Saffman (1975b) (in a straight

vortex filament) and by Maxworthy (1977) (in a vortex ring core). The axial flow

was also observed in a numerical study in Shariff et al. (1994) by solving the in-

compressible Navier-Stokes equation, in Archer et al. (2008) by Direct Numerical

Simulation (DNS) and in an experimental study in Naitoh et al. (2002) using the

smoke-wire technique. Maxworthy (1977) observed that the axial flow appears after

the wave breaking and takes the form of a propagating wave, while Naitoh et al.

(2002) noticed two types of axial flow and both of which start to increase before the

start of the azimuthal wave breaking and the velocities of the axial flow increase

gradually. They also found that the axial flow was conical shaped, which was in-

ferred by an opposite sensed axial flow in the core centre (inside of the cone) and

the surrounding circumferences (outside of the cone). The magnitude of the veloc-
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ity was found to be about 25% of the ring propagation velocity. Their results were

supported by Archer et al. (2008).

2.4 Vortex ring formation time

An interesting phenomenon associated with the formation of vortex rings at long

stroke lengths was not discovered until the work of Gharib et al. (1998), who exam-

ined the vortex-formation process for longer stroke lengths, L/D > 4, and observed

a robust limit on the maximum growth of rings formed using a piston-cylinder ap-

paratus. The dimensionless ratio L/D, the formation number, is also known as

the formation time because L is related to time by L = Upt for a constant piston

velocity.

Gharib et al. (1998) investigated the nozzle-generated vortex ring formation ex-

perimentally by PIV, and found that the primary vortex ring accepts the vorticity

flux from the vortex generator until the formation time L/D ≈ 4. Beyond this time,

the primary ring pinches off such that the extra vorticity ejected from the generator

is rejected by the primary ring and forms a series of trailing rings in the wake due to

the Kelvin-Helmholtz-like instability; see figure 2.5.1 Quantitatively speaking, the

pinch-off happens when the impulse-normalised energy of the primary ring exceeds

the impulse-normalised energy of the feeding shear layer. They also found that the

formation time at which the primary ring pinches off is universal, because the pinch-

off mechanism is independent of the piston velocity and does not depend strongly on

the piston velocity programme (history). However, the numerical study of Rosenfeld

et al. (1998) showed that the vortex formation number could be reduced by as much

as 75%, or increased by 35%, by manipulating the temporal and spatial profiles of

the nozzle exit velocity. The physics of the formation number was subsequently

further explained by models in Mohseni & Gharib (1998) and Mohseni (2001) and

by numerical results in Mohseni et al. (2001).

The numerical study in Mohseni et al. (2001) and later experimental study in

Dabiri & Gharib (2005) suggested that stronger vortices (vortex rings with larger

1The flow visualisation results was also supported by Gan & Nickels (2007), in which an
electrochemical method called ‘Baker’s method’ was used to visualise laminar rings at large stroke
lengths. One of the benefits of the method is that it does not involve any foreign scalar to mark
the flow.
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2.4 Vortex ring formation time

Figure 2.5: Visualisation of vortex rings at downstream position about nine nozzle
diameters for L/D = 2, 3.8, 14.5, at a dimensionless time Upt/D = 8. Figure taken
from Gharib et al. (1998).
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2.4 Vortex ring formation time

circulation) tend to be more energetic and therefore advance the formation number

more rapidly; conversely, the vortex-formation process can be extended by either a

stronger or a larger shear layer feeding the vortex ring, both of which tend to delay

the advancement of the dimensionless vortex formation time. The formation number

is also strongly influenced by the existence of a non-zero background flow (Dabiri &

Gharib, 2004a; Krueger et al., 2003): co-flow decreases the formation number while

counter-flow increases it.

The concept of formation number was later adopted to explain some other general

vortex shedding physics. For example, Jeon & Gharib (2004) studied the flow gen-

erated by a starting circular cylinder and by a steadily oscillating circular cylinder,

aiming to identify the signature of optimal vortex formation in the wake; Milano

& Gharib (2005) studied the vortex wake of an oscillating flat plate and applied

a genetic algorithm to optimize the time-averaged thrust generated by the plate;

Ringuette et al. (2007) studied the wake of an accelerating low-aspect-ratio flat

plate, and investigated the pinch-off of the vortex pair behind the plate. These

studies all suggested a universal formation number ≈ 4 by properly defining it in

different configurations.

The physics of formation number is also closely related to the concept of optimal

vortex formation in application of biological propulsion and physiological flow, which

was mentioned in chapter 1 (e.g. the jellyfish swimming and the blood flow in the

cardiac left ventricle). The entrainment of ambient fluid by the forming vortex ring,

as well as the added mass of non-entrained fluid surrounding the vortex, must be

accelerated with the vortex ring (Dabiri, 2009), and the propulsive reaction force

experienced by the vortex generator is proportional to the sum of the shear layer

source fluid, entrained fluid, and the added mass of the fluid surrounding the vortex

ring (Dabiri, 2005).
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Chapter 3

Experimental Methodology

This chapter introduces the facilities and the tools used to conduct the experiments

of this study and the basic experimental conditions. A brief description of the

apparatus to generate turbulent vortex rings is firstly given in section 3.1. The

properties and component connections and arrangements of the investigation tool of

this study-PIV are given in section 3.2. The PIV working principle with its detailed

error analysis is a wide topic in experimental fluid mechanics, and is out of the scope

of this dissertation. Finally, the experimental condition parameters are discussed

and summarised in section 3.3.

3.1 Apparatus

The apparatus used in the project is the large vortex-ring rig in the hydraulics

laboratory in the Engineering Department, which was designed in 2002. A sketch

of this apparatus is presented in figure 3.1.

The rectangular tank is made of 15mm thick perspex with a bottom cross-

sectional area of 750mm× 750mm and a height of 1500mm. The top of the tank is

uncovered. The tank is therefore transparent from all viewing directions. A 940mm

long tube made from 10mm thick perspex with an inner diameter of ∅146mm is

vertically supported inside a metal frame, and the frame is mounted on the top

of the tank. A PVC piston connected to a brass bar is inserted thought the tube

to work as the piston-nozzle system. The outer diameter of the piston is about

∅144mm and the gap between the tube and the piston is sealed by two o-rings of
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3.2 Image recording tools

∅6mm. The diameter of the piston-nozzle system was specifically designed to give

excellent spatial resolution to the vortex ring formed while there is still a significant

distance from the nozzle to the tank wall to prevent any imaging effects. A perspex

plate of 500mm× 500mm× 20mm is mounted horizontally and flush with the exit

of the tube. A three-dimensional view of the tank is also sketched in figure C.1.

The motion of the piston is driven by a stepper motor supplied by SmartDrive

Ltd. (SMR343-100-E-PN). The motor is wired such that it can provide up to 7Nm

torque at a range of loaded rotation speeds. The motion of the stepper motor is

controlled by a programmable controller Taranis (SmartDrive Ltd.). Taranis also

connects to two limit switches to set the upper and lower bounds of the piston mo-

tion. The velocity programme of the piston motion is determined by programming a

BASIC language written on a PC and uploaded onto the controller. Various velocity

programmes can be specified but only a simple top-hat shaped programme imposing

an impulsive start and stop was used in this research work. The motor is able to

drive the piston at a constant speed of up to 1000mms−1 with an acceleration and

deceleration of about 2000mms−2. The piston movement is carefully calibrated by

a storage oscilloscope and a ruler. In particular, a potentiometer is attached to the

motor shaft, and it is also connected to a storage oscilloscope. If the motor speed

programme is strictly top-hat shaped, a straight slope will be displayed on the oscil-

loscope screen. The exact piston motion duration, read by the oscilloscope, together

with the motion distance, gives the piston movement speed.

In order to study the longer distance/time range of rings, while maintaining

reasonable spatial resolution, a small orifice of D = 50mm is cut in the centre of a

horizontal plate to make the ring generator orifice like. The geometry of this orifice

is shown in figure 3.3. Such a configuration also has the benefit of eliminating the

effect of the piston vortex on the primary vortex ring; see section 2.1 and Cater

et al. (2004).

3.2 Image recording tools

Two-dimensional and stereoscopic PIV are used as the tools for this study. Two

important reasons for the choice of PIV as the basic investigation tool is that, first

it is a non-invasive method, i.e. the flow will not be affected by any instrument placed
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3.2 Image recording tools

Figure 3.1: Schematic diagram of the vortex ring generator. The diagram is not to
scale.
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3.2 Image recording tools

into the flow field; second, it can give planar information about velocities of two and

three components. State-of-the-art camera also offers excellent temporal resolution.

Moreover, because water will be used as the working media, seeding particles with

proper size and density cause negligible distortion of the fluid flow and they can

follow the flow precisely. One of the major weaknesses of such optical measurement

tools is that they do not give a truly instantaneous velocity at a point. The velocity

at a point is an averaged result of a very small volume (spatial resolution, depending

on the cross-correlation interrogation window size) within a very short duration of

time (PIV ∆t). If single-frame single-exposure mode is used, PIV ∆t also indicates

the temporal resolution.1 A Taylor series expansion of position at a point as a

function of time, resulting from motion in an arbitrary direction is

~r(t+ ∆t) = ~r(t) + ~v(t)∆t+
1

2
~a(t)∆t2 + ..., (3.1)

where ~r denotes the position, ∆t is the PIV ∆t, ~v and ~a are the instantaneous

velocity and acceleration respectively. Rearranging equation 3.1, the velocity can

be written as

~v(t) =
~r(t+ ∆t) − ~r(t)

∆t
+ O(∆t). (3.2)

If a very small ∆t is chosen, the error term can be neglected; as ∆t→ 0, equation 3.2

gives the true instantaneous velocity at a point. The PIV ∆t is restricted by the

camera field of view (FOV) and the characteristic velocity scale of the flow (see

Raffel et al., 2007). In this study, PIV ∆t values are in order of milliseconds.

Equation 3.1 also implies

~r(t− ∆t) = ~r(t) − ~v(t)∆t+
1

2
~a(t)∆t2 + ... (3.3)

Thus, equation 3.1 can be added to equation 3.3, only if single-frame single-exposure

mode is used, to given an estimation of acceleration, which can be written as

~a(t) =
~r(t+ ∆t) − 2~r(t) + ~r(t− ∆t)

∆t2
+ O(∆t2)

=
[~r(t+ ∆t) − ~r(t)] − [~r(t) − ~r(t− ∆t)]

∆t2
+ O(∆t2)

=
~v(t) − ~v(t− ∆t)

∆t
+ O(∆t). (3.4)

1Detailed explanations of terminologies: interrogation window size, PIV ∆t, single-frame single-
exposure mode, can be found in Lavision (2007b).
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The last step is a reduction in accuracy level because of equation 3.2. Again, the

error term can be neglected if a very small ∆t is chosen. This acceleration can be

applied to multiple points in space to compute the material derivative

D~u(x, y, z, t)

Dt
=
∂~u(x, y, z, t)

∂t
+ ~u(x, y, z, t) · ∇~u(x, y, z, t), (3.5)

and hence the pressure gradients in each direction with certain approximations made

(see section 5.2.4).

The PIV system is provided by LaVision Ltd. The system consists of four com-

ponents:

• The PC - A CCD-camera image acquisition and processing programme devel-

oped by LaVision Ltd., DaVis 7.2, is installed on the PC. All the raw images

recorded by the cameras are stored in the PC and subsequently analysed by

DaVis 7.2 to give the velocity information. The software is able to analyse

both two-dimensional and stereoscopic PIV data. The working conditions,

e.g. the camera recording frequency and duration, are also set in the software.

• The cameras - A pair of high-speed Photron APX cameras (LaVision High-

SpeedStar 4) are used as the recording devices. They can either be lined up

to provide a larger FOV, or be used to capture the information from the same

area to give stereoscopic PIV data. Each camera has 2Gb buffer memory and

is able to operate at 2000Hz recording rate at 1024 × 1024 pixels sensor res-

olution. The highest camera performance requirement of this study is 600Hz

frame-rate and two seconds duration, which is far below their performance

limit. The cameras are calibrated by a dual-plane calibration plate, and the

image distortions (relatively weak in all the experiments of this study, be-

cause the refractive indices of water and perspex are close) are corrected by a

third-order polynomial fitting process.

• The laser - The particle illumination is realised by a Pegasus-PIV Laser which

consists of a dual-cavity diode pumped Nd:YLF laser head. Each of the heads

is capable of emitting a beam of 527nm wavelength (green colour) and 10mJ

energy under working conditions up to 2000Hz, which is powerful enough to
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illuminate the entire FOV and fast enough to cope with camera working frame-

rates. Because in all the experiments of this study, single-frame single-exposure

recording mode is used, only one of the two laser heads is needed. The laser

beam is converted to a sheet by passing through a cylindrical diverging lens.

The focal length of the cylindrical lens determines the sheet angle. The beam

also passes through two coaxial telescope lenses before the cylindrical lens.

The thickness of the sheet can be adjusted by changing the separation of the

telescope lenses.

• The programmable timing unit - The programmable timing unit is the core

device that takes the command from the PC and trigger the cameras and the

laser to work in the designed manner. In this study, the start of the camera

recording and hence the laser emission (controlled by the cameras) is triggered

by the piston motion. The motor controller Taranis can be programmed to

send a 5V TTL signal once the motor is energised. The TTL signal is used as

the starting command.

A block diagram of all the device (the PIV system and the motor control system)

connections, is shown in figure 3.5. The detailed description of all the devices

and the explanations of the camera calibration process can be found in Lavision

(2007c), Lavision (2007d), Lavision (2007e) and Lavision (2007b). The PIV working

principles can be found in Raffel et al. (2007), Lavision (2007a), Lavision (2007b),

Adrian (1991) and Prasad (2000).

3.3 Experimental conditions

Two-dimensional PIV experiments are carried out for two Reynolds numbers (differ-

ent by a factor of two) in order to investigate the possible dependence of structural

differences on Reynolds numbers. The Reynolds number for the vortex rings, based

on circulation (equation 2.4) is calculated by converting the piston speed and the

stroke length to those effectively for a smaller orifice. The water temperature, sta-

bilised after 48 hours, is measured to be 21◦C (measured by a thermocouple), which

gives a kinematic viscosity ν of 0.984 × 10−6m2s−1. For the first condition, the

effective Re1 is set to 41280 ± 500 (written as 41280 for simplicity in the following
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Figure 3.2: (a): flow visualisation of ring’s centre cross section, using wavelet-based
denoised image of extremely high particle density at Re = 20039; (b): the corre-
sponding vorticity field.

text) in order to match the one in Glezer & Coles (1990). Since the starting portion

of the similarity theory (which starts from about 2.5D downstream of the nozzle

exit, Glezer & Coles, 1990) is of interest, −y/D is limited to eight (where −y is the

downstream distance measured from the orifice exit); for the second condition, the

FOV is increased to about 10D and the effective Re2 is set to 20039±500 (written as

20039 for simplicity in the following text). The effective L/D ratio for the small ori-

fice for both cases is also a match to Glezer & Coles (1990): 3.43. It must be pointed

out that although the transition map in figure 2.3 indicates that at Re ∼= 20000 and

L/D ∼= 3.5, the rings are in transition zone between laminar and turbulent regime,

figure 3.2 suggests that the rings are already turbulent. In both cases, y is limited

to the top half of the tank to eliminate the boundary effect from the tank bottom.

The experimental set-up is summarised schematically in figure 3.3.
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3.3 Experimental conditions

Figure 3.3: Schematic diagram of the testing section in the centre section of the
tank (piston and motor not shown) and the centre section of the horizontal plate.
The diagram is not to scale.
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3.3 Experimental conditions

The centre of the measurement station for the first stereoscopic PIV recording1

is at 224mm (4.48D) downstream from the orifice exit. The FOV covers about 2.7D

in the streamwise direction. A forward backward-scattering (FB) set-up is used, i.e.

both cameras are on the same side of the laser sheet Lavision (2007b). After the

water-perspex-air refraction is taken into consideration, the effective viewing angle

between the two cameras is approximately 90o, giving about the same resolution

for in-plane and out-of-plane velocities. Figure C.1 (A) shows a sketch of the first

stereoscopic recording set-up.

For both two-dimensional and stereoscopic experiments, the FOV is the centre

cross-section of the tank parallel with the tank front wall, which also cuts the orifice

diameter. Therefore the front top surface of the calibration plate needs to lie in this

plane exactly, as does the centre plane of the laser sheet; see figure 3.3. The reason

to choose the centre cross-section is apparent: this section reflects the ring diameter

and all the quantities inferred from this section are equivalent when presented in

Cartesian coordinates and cylindrical coordinates. The orientation of the laser sheet,

due to the working-space restriction, is altered once from horizontal to vertical with

the help of an optical-quality mirror placed underneath the tank at 45o to the ground;

see figure C.1 (A). The laser sheet is set at different thickness for two-dimensional

and stereoscopic recording, respectively. It is typically 1−2mm for two-dimensional

PIV and 4 − 5mm for stereoscopic PIV, because the third direction needs to be

resolved. The laser thickness of the stereoscopic PIV was chosen such that particles

with the maximum characteristic out-of-plane velocity typically displace about a

quarter of the thickness within a chosen PIV ∆t.

The two cameras run in single-frame single-exposure mode, which requires time-

series cross-correlation PIV analysis. This mode gives the best possible temporal

resolution, which equals the PIV ∆t. Camera recording frequency under this mode

determines the PIV ∆t. They are set at 380 Hz (PIV ∆t ≈ 2.6 ms) for the two-

dimensional Re1 case, 200 Hz (PIV ∆t = 5.0 ms) for the two-dimensional Re2 case

and 500 Hz (PIV ∆t = 2.0 ms) for the first stereoscopic case.

The cross-correlation interrogation window size and overlap size are set to 16×16

pixels and 25% to give spatial resolution of 2.48mm and 3.15mm for the two-

1The second stereoscopic PIV recording is for the three-dimensional reconstruction method,
which will be discussed in chapter 7.
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3.3 Experimental conditions

dimensional Re1 and Re2 cases, respectively . They are set to 32×32 pixels and 50%

overlap to give 2.15mm resolution for the first stereoscopic case. Note that these

resolutions, in comparison with the ring diameter, are similar to that of Glezer &

Coles (1990)’s LDV experiments. There are 85 × 85 data points in one camera’s

calculated vector mesh for two-dimensional PIV and 67× 64 data points for stereo-

scopic PIV. The proper choices of the camera recording frequency (hence the PIV

∆t) and the interrogation window size depend on the camera FOV size, as well as

the characteristic velocity of the flow being measured.

The Kolmogorov microscale of length is defined as

ηκ =

(
ν3

ε

) 1

4

, (3.6)

where ν is the kinematic viscosity and ε is the energy dissipation rate per unit mass

(Friedlander & Topper, 1962; Tennekes & Lumley, 1972). The internal dynamics of

turbulence transfers energy from large scales to small scales and this energy transfer

proceeds at a rate dictated by the energy of the large eddies (in order of u2) and

their time scale (in order of l/u). Because this energy must be dissipated, thus, the

dissipation rate may be estimated as (Tennekes & Lumley, 1972)

ε ∼ u2 × u

l
=

u3

l
, (3.7)

provided there exists only one l, where u and l are the characteristic velocity and

length scales of the large eddies, i.e. in turbulent vortex-ring flows, u ∼ Up, l ∼ D.1

Substituting equation 3.7 into 3.6,

ηκ =

(
ul

ν

)
−

3

4

l = Re−
3

4 l. (3.8)

Therefore the spatial resolutions of this study are approximately: 140ηκ for the two-

dimensional Re1 case, 110ηκ for the two-dimensional Re2 case and 120ηκ for the first

stereoscopic case. The experimental parameters are also summarised in table 3.1.

Other optimal conditions, e.g. the size of the seeding particles (the density of

the particles is usually required to be as close to the flow media density as possible),

1The estimation of the dissipation rate is sometimes made by assuming production rate balances
dissipation rate. This argument, however, is not always correct. In some turbulent flows, e.g. grid
turbulence, there is no production because of zero mean strain rate.
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3.3 Experimental conditions

Case PIV ∆t Temporal resol. Spatial resol.
2D Re1 2.6 ms 2.6 ms 2.48 mm ≈ 140 ηκ

2D Re2 5.0 ms 5.0 ms 3.15 mm ≈ 110 ηκ

1st stereoscopic 2.0 ms 2.0 ms 2.15 mm ≈ 120 ηκ

Case Int. window size Int. window overlap
2D Re1 16 × 16 pixel2 25%
2D Re2 16 × 16 pixel2 25%

1st stereoscopic 32 × 32 pixel2 50%

Table 3.1: Experimental parameters. Re1 = 41280, Re2 = 20039. ηκ: the Kol-
mogorov microscale of length. For 1st stereoscopic PIV case, Re = 41280. Abbrevi-
ations: ‘2D’: two-dimensional; ‘resol’: resolution; ‘Int’: interrogation.

particle seeding density (amount of particles per unit volume of the fluid), camera

aperture size (camera exposure time in single-frame single-exposure mode is fixed

by the frame-rate), parameter setting in the cross-correlation computations, post-

processings etc. are explained in detail in Raffel et al. (2007) and Lavision (2007b).

Because the flow field of a vortex ring is neither stationary nor isotropic, the

mean velocities used in turbulence quantity calculations can only be obtained from

an ensemble-averaging process. In order to find the minimum number of realisations

required for statistical convergence, 50 is used as the initial trial number to perform

a convergence test. The time interval between firing vortex rings is set to about

ten minutes, to allow velocity fluctuations in the tank to decay to a negligibly low

level.1 The convergence test is only applied to two-dimensional PIV experiments.

The quantity designed for the the convergence criteria is written as

τN =
1

N

N∑

i=1

[
(ui − uN)2 + (vi − vN)2] , (3.9)

where

uN =
1

N

N∑

i=1

ui vN =
1

N

N∑

i=1

vi, (3.10)

and u, v are the radial and axial velocity component respectively as defined in

figure 3.3. The quantity τN as a function of N is effectively the convergence speed

1This was verified by doing PIV measurements on the flow field just before firing the next
vortex ring (at the end of the ten-minute time interval). Velocity field of negligible magnitude was
obtained.
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Figure 3.4: Convergence test for the number of realisations needed for each Re case.
τN is defined in equation 3.9; τc = τ50. The testing point’s position is about 0.1D
outside the left core centroid (in the core centre region) for both Re cases where the
rings are at 5.5D downstream from the exit. ◦: Re1 = 41280; �: Re2 = 20039. −−:
±10%, − · −: ±5%.

of the turbulent normal stresses. The result of the convergence test is presented in

figure 3.4.

The convergence testing points for both Re cases are put in the core centre

region, where the maximum turbulent stress intensities occur (see figure 5.23 and

5.24), therefore stresses there converge most slowly compared with stresses of points

away from the core centre (see also Gan & Nickels, 2008). Figure 3.4 proves that 50

realisations should guarantee good convergence: after 40 realisations, it converges

within ±5%.
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Figure 3.5: Wiring of the measurement systems. It shows the motor system (marked with red colour) and the PIV
system (marked with blue colour). The only connection between the motor system and the PIV system is the TTL
signal from Taranis, which is the starting signal of the image recording.

31

ExperimentalMethod/experimentalmethodFigs/Circuit.eps


Chapter 4

Theoretical Background

In this chapter, the similarity theory derived in Glezer & Coles (1990) is briefly

summarised and discussed. The important presumption of the theory: impulse

invariance, is firstly discussed in section 4.1. The development of the theory, which

is based on dimensional analysis, and the inferred scaling laws of various quantities

are summarised in section 4.2.

4.1 The impulse invariance

Based on dimensional analysis, the streamfunction of vortex ring motion in un-

bounded fluid can be fully described by its hydrodynamic impulse I, the density of

the fluid ρ and the kinematic viscosity ν. At the same time, the streamfunction is

also a function of space and time. Therefore, the streamfunction can be written as

ψ = f (I, ρ, ν) (4.1)

= g (y, r, t) , (4.2)

where y and r are in cylindrical coordinates, r is the axis in the radial direction

from the axis of symmetry, y is the axis in the streamwise direction from the orifice

exit, and t is the time from the beginning of the piston movement. In Cartesian

coordinates and in centre cross-section (the measurement plane in figure 3.3 or

the laser plane in figure C.1 A), r is equivalent to (x− xo), where xo is spanwise

coordinate of the axis of the symmetrical flow field: the mean ring-centre trajectory
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4.2 The similarity theory

(see the centre-line mark in figure 3.1). The coordinate system adopted in this study

is defined in figure 3.3. Hydrodynamic impulse hence can be written as

I =
1

2
ρ

∫

V

(~r × ~ω) dV, (4.3)

where ~ω is the vorticity vector and V is the entire fluid volume.

A primary assumption in the derivation of the similarity theory is that the hy-

drodynamic impulse is an invariant. Maxworthy (1974) observed that the vortical

structure is continuously shed from the main ring to the wake and concluded that

a similarity transformation of the ring is not possible. Glezer & Coles (1990), how-

ever, argued that if the hydrodynamic impulse is considered as the total mechanical

impulse of the non-conservative body force required to generate the velocity field

from zero, and if the entire unbounded flow field is considered instead of just the

main ring itself, this quantity should be considered as invariant. It will be shown in

section 5.1 that, even when the entire flow field is considered and the flow structure

is far away from the boundaries, the hydrodynamic impulse I is not very constant.

In fact, a later study (Saffman, 1976) showed that the hydrodynamic impulse is not

equivalent to mechanical impulse, and this point will also be further commented on

in section 5.1.

4.2 The similarity theory

While the similarity transformation does not strictly require the invariance of the

impulse (the local value could be used from a dimensional perspective), it is this

assumption that leads to specific predictions for the variation of the other quantities

of interest. As a result, it is difficult to directly test for similarity without making

this assumption. If the invariance of the hydrodynamic impulse I is accepted, 4.1

and 4.2 can be rewritten as

ψ
( ρ

νI

) 1

2

= f2

[
y

(ρν
I

) 1

2

, r
(ρν
I

) 1

2

,
tρν2

I

]
. (4.4)

Equation 4.4 applies for both laminar and turbulent rings, because the viscosity

is a parameter. If the Reynolds number is sufficiently high and the flow is highly

turbulent, the dependence of the streamfunction on the kinematic viscosity ν can
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4.2 The similarity theory

be neglected, leaving only I and ρ to govern the flow (equation 4.1 and 4.4). Before

the energy of the vortex ring dies out significantly the ring is still considered highly

excited and turbulent. Mathematically, before the circulation Γ has decayed signif-

icantly, the ratio Γ/ν is still large and the effect of the kinematic viscosity is still

considered negligible, i.e. the physics is essentially inviscid dominant, and ν can be

dropped from equation 4.1. This is also one of the reasons why this experiment is

limited to the early development of turbulent vortex rings: at large times viscous

decay and cross-annihilation of vorticity will become important in the ring core area.

Equation 4.4 then becomes

ψt
1

4

(ρ
I

) 3

4

= f3

[
y

( ρ
It

) 1

4

, r
( ρ
It

) 1

4

]
. (4.5)

With a proper pair of spatial and temporal virtual origins defined (yo, to), equa-

tion 4.5 can be written as

S = ψ (t− to)
1

4

(ρ
I

) 3

4

= S (ξ, η) , (4.6)

where S is the dimensionless streamfunction; ξ, η are the dimensionless quantities

for the axial and radial coordinate y and r, respectively:

ξ = (y − yo)

[
ρ

I (t− to)

] 1

4

η = r

[
ρ

I (t− to)

] 1

4

. (4.7)

The velocity components can be derived from the streamfunction in cylindrical

coordinates:

v =
1

r

∂ψ

∂r
u = −1

r

∂ψ

∂y
. (4.8)

Therefore, in similarity coordinates, the dimensionless velocities are

U = u
(ρ
I

) 1

4

(t− to)
3

4 V = v
(ρ
I

) 1

4

(t− to)
3

4 , (4.9)

where u, v are the radial and axial velocity component respectively, as defined

in figure 3.3; U , V are the corresponding dimensionless quantities. It is worth

noting that equation 4.7 and 4.9 are of the same form in Cartesian coordinates and

cylindrical coordinates if only the centre cross-section (the measurement plane in

figure 3.3) is considered. Equation 4.8 has different forms in the two coordinate

systems.

Hence the following set of rules must be satisfied if the rings are to obey the

similarity property (and the impulse is invariant):
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4.2 The similarity theory

1. Take equation 4.7,

ξ

η
=

y − yo

r
, (4.10)

r =
η

ξ
(y − yo) , (4.11)

and because ξ and η are both constants,

r ∼ (y − yo) . (4.12)

2. The first equation in 4.7 also implies

ξ4 = (y − yo)
4

[
ρ

I (t− to)

]
, (4.13)

(y − yo)
4 = ξ4

(
I

ρ

)
(t− to) , (4.14)

and because ξ and (I/ρ) are both constants,

(y − yo)
4

∼ t− to. (4.15)

3. From the second equation of 4.9,

V
1

3 = v
1

3

(ρ
I

) 1

12

(t− to)
1

4 , (4.16)

v−
1

3 = V −
1

3

(ρ
I

) 1

12

(t− to)
1

4 , (4.17)

and because V and I/ρ is are both constants, using 4.15,

v−
1

3 ∼ (t− to)
1

4 (4.18)

∼ (y − yo) . (4.19)

The essence of the similarity theory is that, if the scaling law is correct, with a

pair of virtual space and time origins located, the virtual origins just play the role of

the ‘singular point’ of the universe. In other words, all the quantities associated with

the turbulent vortex ring, e.g. peak vorticity, circulations, stresses and turbulence

productions or even dissipation, when properly scaled, would collapse on to straight

rays (with positive slopes) or on conical surfaces which come out from the origins.
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4.2 The similarity theory

Because positive slopes are not very intuitive when viewing decaying quantities;

for instance, the circulation of the ring decays, hence it may be counter-intuitive

to see a positive slope, even if it has been scaled. All the data presented in this

dissertation are thus plotted following the common method of similarity theories’

representations, which will be explained later.

This similarity theory is not valid for the entire history of a vortex ring. When

significant circulation is lost, the viscous effect will become dominant, so ν cannot

be dropped from equation 4.1, and all the scaling laws need to be reconsidered.
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Chapter 5

Results and Discussion

This chapter presents the experimental results given by the ensemble-averaging pro-

cess. One-dimensional results are presented in section 5.1 and two-dimensional con-

tour information is given in section 5.2.

5.1 The similarity property

This section gives the evolution of various basic and important quantities describing

the turbulent vortex rings: ring growth rates, peak velocities, celerities, core sizes,

bubble volumes, entrainment fractions, and circulations, as functions of downstream

distance, or time, from section 5.1.1 to 5.1.7. These results show that the evolution

of these quantities are basically Reynolds number independent, in the language of

similarity scaling laws. A detailed study of vorticity shedding manner of a typical

individual turbulent vortex ring is described in section 5.1.8, which is found to

be unsteady predominantly. The presumption of the similarity theory: impulse

invariance, is revisited and commented in section 5.1.9 with the support of the

experimental data.

5.1.1 Ring growth rates

The simplest test of the similarity theory is to consider the validity of equation 4.12,

the variation of the ring radius as a function of streamwise distance. The results

are shown in figure 5.1. The ring size is determined by locating the centroids of

both cores in the measurement plane and each core is defined by the area which is
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Figure 5.1: Ring-bubble radius r as a function of downstream distance for both
Reynolds numbers. The grey lines are traces of each of the 50 realisations; ×: the
ensemble-averaged radius based on location; +: the ensemble-averaged radius based
on arrival time; −: the first-order least-squares fit of × for |y|/D > 3.5.

enclosed by a contour of 40% of the peak vorticity of the local core area. The 40%

vorticity criterion is not a unique definition of core size. The vorticity contours in

individual rings are usually very noisy, and the 40% threshold thus puts more weight

on the near-core vorticity and gives a more reliable core centroid location. A more

rigorous investigation of core sizes will be given in section 5.1.4.

The Cartesian coordinates of the core centroid xΛ and yΛ are calculated by the

following formulas:

xΛ =

∫∫
xωdxdy

∫∫
ωdxdy

yΛ =

∫∫
yωdxdy

∫∫
ωdxdy

, (5.1)

where ω is the vorticity of the azimuthal component, or the component normal to
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5.1 The similarity property

the measurement plane, i.e. in two-dimensional Cartesian coordinates,

~ω = ∇× ~u

=

(
∂v

∂x
− ∂u

∂y

)

z

= ωz. (5.2)

The Pade approximation is used to calculate the differentiation in equation 5.2

numerically, which gives an error of O
[
(∆x)4 , (∆y)4] (see Moin, 2001). Pade ap-

proximation is an implicit scheme which requires the solution of a matrix equation.

Note that at L/D ∼= 3.5, formation wake phenomena appear (see Gharib et al.,

1998) and due to the highly turbulent nature of the rings, vorticity is continuously

shed from the ring bubble area. There are two points worth emphasising here:

1. Gharib et al. (1998) indicated that the formation wake starts to be visible

for 3.6 6 L/D 6 4.5, while in this experiment, at L/D = 3.43 a significant

formation wake is already observed. Two reasons may be responsible for the

shorter formation time: first, more energetic or stronger vortices can advance

the formation time more rapidly (see section 2.4); second, a different ring-

generator configuration is used in this experiment, which may influence the

shear layer stability.

2. The detailed vorticity shedding deserves further study. The falling of the

ring bubble circulation from the ensemble-averaged results seems to show a

continuous loss (see figure 5.15), but the ensemble-averaging process can smear

some interesting details of the individual behaviour. The vorticity shedding

pattern of an individual ring is further discussed in section 5.1.8.

To minimize the error in determining the centroids, the wake is excluded when

determining the core area. It is worth noting that individual realisations are also

very important in the study of turbulent vortex rings, since the inevitable dispersion

in core position and geometry tends to smear out actual behaviour. It is for this

reason that each of the 50 individual realisations is plotted (grey lines in figure 5.1).

Moreover, since the y-axis, the downstream position, is plotted as the abscissa, it is

more sensible to ensemble-average quantities based on location.
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The entire FOV is divided into a number of stations along the streamwise direc-

tion starting from the orifice exit; see figure 5.2. The distance between neighbouring

stations is 0.05D. All the 50 realisations are ensemble-averaged when the appar-

ent centre of the ring bubble (judged from the locations of the two core centroids)

reaches each station, regardless of the arrival time (indicated by the PIV image

number). The difference of the arrival times of the 50 rings is very small, which will

be indicated later in section 5.2.1.

As can be seen in figure 5.1, compared with the result of averaging based on

arrival time (the plus sign data), averaging based on stations(the cross sign data)

fits the individual trace zone (grey zone) better, especially at early times. A first-

order least-squares fit is applied for stations after 3.5D downstream of the orifice

exit, from which the virtual origins can be determined, which are yo = +74.32D for

Re1 rings and yo = +76.37D for Re2 rings. The ‘+’ sign indicates upstream of the

orifice exit level.

Furthermore, from the slopes of these fitting lines, the (ring bubble) growth

rates (cone angles) can also be estimated, which are 0.0176 and 0.0174 respectively.

These numbers are comparable with the results of early experiments: the cone angles

typically vary from 0.0091 to 0.0168, in Johnson (1970), Sallet & Widmayer (1974)

and Glezer & Coles (1990). The agreement with the early research is one reason

why this plot is used to determine the virtual origin. Note that different approaches

are used to determine the ring radius in this study compared with some of the early

research, where flow visualisation was used. Core vorticity centroids are not always

located at the rotating centre of a passive scalar, especially for turbulent cores, for

which the vorticity contour is not always exactly circular. Hence the growth rate

here is slightly different from the flow visualisation results.

Individual traces for Re2 are obviously more scattered. The reason is that a

turbulent vortex ring has an azimuthal wave-like instability, similar to that analysed

for laminar and transient rings in section 2.3; see figure 2.4, 7.2 and 7.3. For the

lower Reynolds number case, the rings move slower so the waves may have bigger

amplitudes at the same streamwise location. This situation makes the core centroids

look more scattered in the measurement plane. Due to their turbulent nature, the

shed vorticity from the core along the azimuthal direction is highly unlikely to be

uniform, the consequence of which is the uneven distribution of local circulation
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5.1 The similarity property

Figure 5.2: Illustration of virtual stations in the flow field. The neighbouring sta-
tions are spaced for 0.05D, where D is the orifice diameter. Station 1 is at 0.5D
downstream from the orifice exit. Two typical vortex rings are shown when they
reach the station i. The variation of the core positions is exaggerated.
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5.1 The similarity property

along the azimuthal direction, causing the ring to tilt and disperse from the mean

trajectory. These are important properties of turbulent vortex rings, hence one

cannot apply an artificial treatment such that the cores appear exactly on top of

each other. This point will be returned to in section 5.2.

5.1.2 Peak velocities

The virtual origins just estimated are used to determine other similarity quantities.

First the peak velocity in the field of interest (FOI) is plotted against streamwise dis-

tance in figure 5.3. The peak instantaneous velocity, which is in the axial direction,

is located on the centre of the ring bubble axis. This axis is shown as the ideal ring

centre trajectory in figure 5.2, for the ensemble-averaged ring. The dimensionless

peak velocity Vpeak can be calculated from equation 4.9 and 4.14 as

Vpeak = vpeak

(ρ
I

) 1

4

(t− to)
3

4

= vpeak

(ρ
I

) 1

4
[
(y − yo)

4 ξ−4
(ρ
I

)] 3

4

= vpeak

(ρ
I

)
(y − yo)

3 ξ−3. (5.3)

Both plots in figure 5.3 show that similarity theory slightly underestimates the

decay of the peak velocity.1 The disagreement is less clear for Re1 rings, where it

is only noticeable at the last few points, but it is reasonable to anticipate that the

deviation will grow further downstream. It is worth emphasising, that this is the

quantity which Glezer & Coles (1990) used to determine the virtual origin, via a free

first-order least-squares fit applied to a v
−1/3
peak against y plot (equation 4.19), which

is shown in figure 5.4. The fitting lines of these figures indicate a different pair of

virtual origins: +51.72D and +43.86D for Re1 and Re2 rings respectively. If these

origins are fixed in equation 4.12, a first-order least-squares fit of figure 5.1 would not

be as good and the growth rate (the cone angle) indicated would be unreasonably

large, if compared with the early experiments.

1In this dissertation, when quantities are plotted as a function of ring streamwise distance
and scaled accordingly to the similarity theory, they will be constant, if the similarity theory is
satisfied.
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Figure 5.3: Peak axial velocity vpeak on the ring centre trajectory as a function of
downstream distance. Velocity is scaled accordingly to similarity theory. Grey lines
are the traces of each of the 50 realisations; +: the ensemble-averaged value from
individual realisations; −: the zero-order least-squares fit of + for |y|/D > 3.5, which
represents the perfect similarity-theory fitting. The virtual origin yo is obtained from
figure 5.1.
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tance. Grey lines are the traces of each of the 50 realisations; +: the ensemble-
averaged value from individual realisations; −: the first-order least-squares fit of +,
for |y|/D > 3.5.
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5.1.3 Ring celerities

Interestingly, the results of this experiment show that the similarity theory seems

to predict the ring translation speed, or celerity, very well. Because the ring bub-

ble and the ring core structure can be clearly observed moving downstream at a

certain speed, it is possible to numerically compute this speed based on the ring

core streamwise location as a function of time. If equation 4.7 is differentiated, the

equation for translation speed can be obtained. Equation 4.7 can be rearranged to

be

(y − yo) = ξ

(
I

ρ

) 1

4

(t− to)
1

4 . (5.4)

Differentiate y with respect to time t,

ut =
dy

dt
=

1

4
ξ

(
I

ρ

) 1

4

(t− to)
−

3

4

=
1

4
ξ

(
I

ρ

) 1

4 [
(y − yo)

4 ξ−4
(ρ
I

)]
−

3

4

=
1

4
ξ4

(
I

ρ

)
(y − yo)

−3 . (5.5)

Therefore,

ξ =
[
4ut

(ρ
I

)
(y − yo)

3
] 1

4

. (5.6)

From equation 4.9 and 5.5, the dimensionless celerity can be written as

Ut = ut

(ρ
I

) 1

4

(t− to)
3

4

=
1

4
ξ

(
I

ρ

) 1

4

(t− to)
−

3

4

(ρ
I

) 1

4

(t− to)
3

4

=
1

4
ξ. (5.7)

The dimensionless streamwise distance |ξ| is plotted in figure 5.5. The strong

noise at the beginning is due to the incomplete formation process: the main ring

has not pinched off yet. Note that according to Maxworthy’s turbulent vortex ring

model (see appendix A), CD takes a value between 1.8 and 2.7. Equation A.11 then

gives a scaling law: ut ∼ (y−yo)
−4.8−(y−yo)

−5.7, which would not give a reasonable

fit for the current data. This is one of the reasons Maxworthy’s model is not used as

45



5.1 The similarity property

1 2 3 4 5 6 7 8
15

20

25

30

35

40

|y|
Re2=20039

/D

[4
 u

t (
ρ/

I)
 (

y−
y o)3 ]1/

4

1 2 3 4 5 6
15

20

25

30

35

40

|y|
Re1=41280

/D

[4
 u

t (
ρ/

I)
 (

y−
y o)3 ]1/

4

Figure 5.5: Ring celerity ut scaled accordingly to similarity theory. The dimension-
less quantity |ξ| is determined from this plot, which is the quantity on the ordinate;
the dimensionless celerity Ut = (1/4) ξ. Grey lines are the traces of each of the
50 realisations; +: the ensemble-averaged value from individual realisations; −:
the zero-order least-squares fit of + for |y|/D > 3.5, which represents the perfect
similarity-theory fitting. The virtual origin yo is obtained from figure 5.1.

the best candidate of the theoretical support for this study. The discrepancy could

be mainly due to the different experimental approaches - PIV experiments give much

higher spatial and temporal resolution than the experiment in Maxworthy (1974).

5.1.4 Ring core size

The measured/computed ring celerities can be compared with theoretical celerities.

Theoretically, a vortex ring with a thin core propagates at a speed u∗t which depends
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on its instantaneous parameters, and can be written as1

u∗t =
Γ

4πRb

{
log

(
8Rb

δ

)
+ C + O

[
δ

Rb

log

(
δ

Rb

)]}
, (5.8)

where the asterisk is used to differentiate the theoretical value from the measured

one; Γ is the circulation of the ring, Rb and δ respectively denote the instantaneous

ring bubble and core radii, and C is a constant depending on the core vorticity

distribution profile. For a Gaussian core vorticity distribution, C ≈ −0.558 (Lim

& Nickels, 1995; Saffman, 1970; Shariff & Leonard, 1992), where Gaussian core

vorticity distribution (as a function of the radial distance r, from the peak) is given

as

ω(r) =
Γ

πδ2
exp

[
−r

2

δ2

]
. (5.9)

Equation 5.8 works well for a thin core ring with an isolated bubble volume,

therefore it makes sense to equate Γ to the bubble circulation instead of the total

circulation for the turbulent ring case, because the shed circulation from a turbulent

ring bubble is usually weak and in a rather random distribution pattern, and thus

does not produce self-induced propagation velocity. Also because the equation is

derived for steady laminar rings, velocities calculated from ensemble-averaged rings

are compared with u∗t . The instantaneous bubble circulation can be obtained from

figure 5.15, and the averaged instantaneous ring bubble radius can be obtained from

figure 5.1, thus they give an instantaneous theoretical speed u∗t . The ring core radius

need to be determined.

Because the vorticity distribution in the core area is roughly described by a two-

dimensional Gaussian distribution, it is difficult to find a characteristic threshold to

define the core radius with a strong reason. (If the distribution is a two-dimensional

top-hap shaped, the radius can be definitely defined at the discontinuities.) A dif-

ferent useful definition is therefore adopted here. The ring core radius is considered

to be “the radius at which the tangential velocity is at a maximum”(Saffman, 1978).

This point will be revisited later. Thus, as long as the points of the core centroid

and the points of the maximum tangential velocity can be located, the radius is

computable.

1Strictly speaking, because equation 5.8 is only valid for a thin-cored steady laminar vortex
ring, it is not valid for a thick core turbulent ring. This equation is not expected to describe the
ring velocity particularly well, it merely serves as a theoretical reference.
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Figure 5.6: This figure shows the method used to determine the ring core size. The
ensemble-averaged vorticity and velocity fields when the rings reach 5.5D down-
stream of the orifice exit after the core centroid shifting correction method (sec-
tion 6.2) is plotted. Traces − denote the vorticity profiles, Traces − denote the ve-
locity profiles, −− show the six distances characterising the core size. Re = 20039.
(a): spanwise cut through the ring centre; (b) and (c): streamwise cut through the
two cores.
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Figure 5.7: The ring core sizes as a function of streamwise distances for both
Reynolds numbers. � Re = 20039; ◦ Re = 41280. The two solid lines are the
averaged core sizes.

In figure 5.6, the ensemble-averaged Re = 20039 ring at 5.5 orifice diameters

downstream is used to illustrate the method to compute the core radius. The way

of calculating the core centroid position has been discussed in section 5.1.1. Slices

in radial and axial directions are cut through the ring bubble centre location (span-

wise) and the two core centroids (streamwise), respectively. Hence there are six

points characterising the core radius. For instance, from figure 5.6(a), two cores

radii are determined by locating the two maximum positive axial velocities and the

corresponding core centroids; figure 5.6(b) illustrates that radius of the left core is

determined by locating the extreme magnitudes (both positive and negative) of the

radial velocities; similarly, figure 5.6(c) is for the right core. The six characteristic

radii are averaged to quantify the core radius at 5.5D downstream.1 The results of

the core radius for the two Reynolds numbers are plotted in figure 5.7.

It must be stressed that the core radius computed from the ensemble-averaged

1Ideally, to clearly identify the contours of the maximum tangential velocity, the ring should
be put in a reference frame such that the ring moves at the same speed as the observer, as in
section 5.1.5. By changing the reference frame, closed contours of various tangential velocities
enclose the corresponding core can be marked theoretically. However, because these contours are
not necessarily perfectly circular and the centroid does not necessarily locate the exact centre,
it is extremely difficult, if not impossible, to find the tangential angle along the contour, there-
fore difficult to identify the contour of the maximum tangential velocity. This method was thus
abandoned.
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velocity and vorticity contours is strongly correlated with the level of apparent

dispersion, i.e. at a more downstream location, the radius would appear larger,

and this would not be the true radius. Therefore in order to exclude the dispersion

effect, the averaged vorticity and velocity contours used in calculating the radius are

the ones after the centroid position shift corrections (see section 6.2). Note that the

circulation is computed from the ensemble-averaged vorticity contour. The results

would be the same if individual circulation were computed first, before the averaging

process, because

Γ =

∮

C

~u · dr =

∮

C

~u · dr. (5.10)

It may be a little counter-intuitive to see the ring core radius decrease down-

stream. The reason could be, first, that at such high Reynolds numbers, vorticity

viscous diffusion is relatively weak and the duration of time for the plotted distances

is too short for the vorticity diffusion to make a significant effect, and moreover, as

mentioned before, the vortex stretching due to the increase of ring-bubble diameter

can cancel the vorticity diffusion effect; second, the ring core radius is not uniform

in the azimuthal direction due to its turbulent nature (see figure 7.2 or 7.3), which

influences the ensemble-averaged results. The scattering in radius for both Reynolds

numbers in figure 5.7 are within 10% of the averaged value.

The determination of the core radius by the maximum tangential velocity criteria

is not arbitrary. It can be shown by a simplified analytical model that, this radius

is closely related to the standard deviation of a Gaussian distribution. For the sake

of easy analysis, the vorticity distribution around a vortex ring core is assumed to

be axisymmetric Gaussian about the core centre. In the centre plane of the ring

(the PIV measurement plane, see figure 3.3), there are effectively two axisymmetric

Gaussian cores with one positive valued and the other negative. Mathematically, a

simplified model of equation 5.9 can be written as

ω(r) = A exp

(
−r

2

δ2
s

)
, (5.11)

where δs is the standard deviation of the Gaussian distribution, r is the radius from

the origin and A = ω(0), which is a constant.

A single perfect two-dimensional Gaussian core (described by equation 5.11)

is now considered. It is here further assumed that the Gaussian distribution in
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equation 5.11 is the cross-section of an infinitely long filament and it is isolated, i.e.

there is no influence from the existence of the other core. If the geometrical centre of

this ideal core is placed in the origin of a two-dimensional polar coordinate system

(r, β), by the definition of circulation, the tangential velocity vβ(r) can be written

as

vβ(r) =
Γ(r)

2πr
. (5.12)

Here it is assumed that the the tangential velocity is not a function of angular

position β. The radial velocity vr(r) is orthogonal, and is irrelevant to the calculation

of the circulation Γ(r). From equation 5.24, Γ(r) can be deduced from the vorticity

distribution

Γ(r) =

∫ r

0

ω(r)2πr dr. (5.13)

Combining equation 5.11, 5.12 and 5.13,

vβ(r) =
1

2πr

∫ r

0

A exp

(
−r

2

δ2
s

)
2πr dr

= −1

2
δ2
s

A

r

∫ r

0

exp

(
−r

2

δ2
s

)
d

(
−r

2

δ2
s

)

=

(
Aδ2

s

2

)
1

r

[
1 − exp

(
−r

2

δ2
s

)]
. (5.14)

Now let α = r/δs, such that equation 5.14 reduces to

vβ(α) =

(
Aδs
2

)
1

α

[
1 − exp

(
−α2

)]
. (5.15)

The radius where the maximum tangential velocity occurs can be found by plot-

ting the function

f(α) =
1

α

[
1 − exp

(
−α2

)]
, (5.16)

or by finding the root of
d[f(α)]

dα
= 0. (5.17)

Equation 5.16 and 5.17 are plotted in figure 5.8. It is clear that v(β) is at its

maximum at α = 1.12, or r = 1.12δs. In order to compare the maximum v(β)

to the experimental value, it is necessary to calculate δs. This is done by fitting

a Gaussian distribution to the measured averaged core vorticity distribution. The
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Figure 5.8: Determination of the location of the theoretical maximum tangential
velocity

four characteristic vorticity distributions illustrated in figure 5.6 (two in (a) and one

in each of (b) and (c)), are first normalised by their maximum values (thus ω(0) = 1

in equation 5.11) and then averaged. A Gaussian curve is then fitted to find the

standard deviation corresponding to the minimum r.m.s. value. The Gaussian fit is

shown in figure 5.9.

Figure 5.9 gives δs = 0.141D as a best fit, which then further gives a radius

where maximum vβ(r) locates: r = 1.12 × 0.141D = 0.158D. Figure 5.7 reads a

value of 0.171D at 5.5D for Re = 20039 rings. The difference between the measured

radius and the theoretical one is 0.013D, or 1.3%D. The small discrepancy is due

to the imperfect Gaussian core of the experimental data (see figure 5.9) and the

assumptions made for deriving the analytical radius.

Because the computed instantaneous radius has an undesired scattering (fig-

ure 5.7), the averaged core radius is used in equation 5.8 to calculate the theoretical

ring celerities u∗t . The measured and the theoretical celerities are plotted in fig-

ure 5.10 for both Reynolds numbers. The trend of the measured values agrees

very well with the theoretical ones but the theory overestimates the true celerities.

This is again because, first, equation 5.8 assumes thin-core laminar rings and sec-
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imental data (a 85× 85 matrix for one camera, see section 3.3) has been refined by
a factor of ten by two-dimensional cubic spline interpolation, in order to improve
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ond, the core vorticity is not strictly Gaussian (see figure 5.9), which affects the

value C takes in equation 5.8. The influence on the theoretical celerity by the core

radius is insensitive because of the logarithmic term, with 10% change of δ caus-

ing a 3% change of u∗t . This means that whether it is strictly a thin-core ring or

not is not sensitive to the theoretical celerity. Nevertheless, the neglected term is

O [δ/Rb log (δ/Rb)] ∼ O (−0.3); if this term corrects C to take an effective value of

-0.8 in the computation of equation 5.8, then the theoretical curves fit the measured

data very well; see figure 5.10.

5.1.5 Ring bubble volume

If the ring translation velocity is subtracted from the ring’s instantaneous velocity

field, the resultant velocity field will be that of an observer moving at the same

velocity as the ring, i.e. the reference frame will be moving at the same velocity as

the ring. Assuming that the ring is completely isolated, two stagnation points can

be found with one located at the windward tip and the other at the leeward tip.

Because of the existence of a wake, only the windward stagnation point is easily

recognised but that is enough to determine the stagnation streamline which forms

an open ellipse. Figure 5.11 shows a typical ensemble-averaged vortex ring in the

moving reference frame, in which the vortex-ring bubble is clearly seen and only one

of the stagnation points - the windward stagnation point - can be determined. The

streamlines are plotted by a time advancing scheme of virtual particles in a frozen

velocity field, such that they are tangential to the velocity vector everywhere.

The streamlines can also be plotted by computing the streamfunctions numer-

ically. If the velocity field is assumed to be perfectly axisymmetric, in cylindrical

coordinates, the streamfunction ψ is associated with the azimuthal vorticity ωθ by:

∂2ψ

∂y2
+
∂2ψ

∂r2
− 1

r

∂ψ

∂r
= −ωθr (5.18)

or
∂2ψ

∂y2
+
∂2ψ

∂r2
− uy = −ωθr, (5.19)

where r, y, θ represent the radial, axial and azimuthal directions in the cylindrical

coordinate system. With proper mixed boundary conditions set (ψ = 0 on the axis

of symmetry; ∂ψ/∂y = −urr on the top and bottom boundaries; ∂ψ/∂r = uyr on
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Figure 5.11: The streamline pattern of an ensemble-averaged vortex ring of Re =
41280 in a reference frame moving at the same velocity as the ring at 5.55D down-
stream from the orifice exit. The colour bar denotes the absolute vorticity intensity
of the ring with the unit of sec−1. − denotes the traced stagnation streamline
which ends at the maximum radius; −− denotes the mirror imaged of − based on
the centre-line. − denote the streamlines. The black −− box will be explained in
section 5.2.2.
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the maximum radial distance boundary), streamfunctions can be computed by a

two-dimensional implicit method (Moin, 2001). Therefore, not only the pattern of

the streamlines, but also the numerical value of each streamline can be known. The

streamfunction value is not required for determining the bubble volume; the pattern

is almost the same as shown in figure 5.11, so it is not shown here.

With the approximation that the bubble is an axisymmetric oblate spheroid, (the

red-coloured solid and broken lines in figure 5.11 show that the centre section of the

bubble in the PIV measurement plane is close to an ellipse), it is possible to compute

the volume of the bubble by numerical integration. In order to locate the windward

stagnation point more precisely, the original data-point mesh is first refined by a

factor of ten using two-dimensional cubic spline interpolation, after which this refined

mesh is also used to increase the accuracy of the numerical integration scheme. The

volume of the ring bubble can be approximated by

Ωbubble = 2 ×
∫ yb

ya

πr2(y) dy, (5.20)

where ya denotes the y coordinate of the windward stagnation point and yb denotes

the y coordinate of the point at the centre of the ellipse; r(y) is determined by the

stagnation streamlines, with r(y) = 0 on the axis of symmetry.

The ring bubble volume can be represented by a dimensionless variable Ω̂, by

taking equation 4.7 and 4.14:

Ω = 2

∫ yb

ya

πr2(y) dy

= 2

∫ ξb

ξa

π

{
η

[
I

ρ
(t− to)

] 1

4

}2

d

{
ξ

[
I

ρ
(t− to)

] 1

4

}

= 2

∫ ξb

ξa

πη2

(
I

ρ

) 1

2

(t− to)
1

2

(
I

ρ

) 1

4

(t− to)
1

4 dξ

= 2π

(
I

ρ

) 3

4

(t− to)
3

4

∫ ξb

ξa

η2 dξ

= 2π (y − yo)
3 ξ−3

∫ ξb

ξa

η2 dξ

= (y − yo)
3 ξ−3Ω̂. (5.21)
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Figure 5.12: Ring bubble volume as a function of downstream distance calculated
from the ensemble-averaged velocity field. ◦: Re1 rings; �: Re2 rings. The volume
is scaled accordingly to the similarity theory. − the zero-order least-squares fit
for |y|/D > 3.5, which represents the perfect similarity-theory fitting. The virtual
origin yo is obtained from figure 5.1.

Hence

Ω̂ =
ξ3Ω

(y − yo)
3 . (5.22)

The scaled ring volume as a function of streamwise distance is plotted in fig-

ure 5.12.

It can be observed that the two data sets obey the similarity theory quite well

after 3.5D. There is a subtle waviness in the two data sets, which may indicate

an oscillation of the ensemble-averaged ring bubble. The reason for this is left for

future study. It may be related to vorticity shedding from the core area or it may be

related to the waviness on the core changing the imaged cross-sectional area (and

hence the inferred ensemble-averaged volume).

5.1.6 Entrainment fraction

Fluid entrainment fractions for vortex rings can also be computed from the ring

bubble volumes. The entrainment fraction is defined in the same way as Dabiri &

Gharib (2004b) for the purpose of comparing the quantity to that of the laminar
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Figure 5.13: The entrainment fraction κ as a function of time calculated from the
ensemble-averaged velocity field. ◦: Re1 case; �: Re2 case. − the first-order least-
squares fit for T > 0.72sec and T > 1.56sec for Re1 and Re2 rings, respectively.

rings’.

κ(t) =
Ωbubble(t) − Ωejected(t)

Ωbubble(t)
= 1 − Ωejected(t)

Ωbubble(t)
, (5.23)

where κ is the entrainment fraction, Ωbubble is the ring bubble volume, Ωejected is

the total volume of the fluid ejected from the orifice during the formation process

and all three quantities are functions of time. In contrast to the laminar rings

of comparable L/D in Dabiri & Gharib (2004b), which indicate an entrainment

fraction of about 0.3, figure 5.13 shows two major differences: first the entrainment

fraction is negative, meaning that the ring bubble volume is smaller than the fluid

volume ejected from the piston nozzle, in which the formation wake is responsible

for the missing part; second the laminar ring shows a fairly constant entrainment

fraction as a function of time while entrainment fractions in figure 5.13 increase

with time with slopes of 0.050 and 0.033 for Re1 and Re2 respectively. Note that

the bubble volumes of turbulent rings at two Reynolds numbers are similar at the

same downstream distances as shown in figure 5.12 but Re = 41280 rings travels

much faster than the Re = 20039 rings; the ratio of the real celerities of the two

Res can be calculated from figure 5.5.
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Figure 5.14: Schematic diagram of the contour of the circulation integral.

5.1.7 Circulation

As mentioned above, vorticity is continuously shed from the ring bubble volume to

the wake and it is in the wake where most cancellation and annihilation of opposite-

signed vorticity takes place. This mechanism causes the circulation of the ring

bubble area and the entire FOV to decrease. The circulation of a vortex ring is

defined as a line integral of the closed loop A → B → C → D → A in figure 5.14.

If the Kelvin-Stokes theorem is applied to the velocity field, the circulation can be

written as

Γ =

∮

L

~u · dr =

∫

E′

∇× ~u · ds

=

∫

E′

~ω · ds, (5.24)

where L is the closed loop ABCDA enclosing region E ′, and E ′ denotes half of the

area of interest (see figure 5.14). If the bubble circulation is computed, the integral

range E ′ is reduced to half of the bubble region. If E ′ is infinitely large, i.e. the

three boundaries of the contour BC, CD, DA can be placed far enough from the

ring and the wake, their contour integral is negligible. Thus, the closed loop integral
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can be reduced to

Γ ≈
∫ B

A

~u · dr =

∫
−∞

0

v · dy. (5.25)

The dimensionless circulation Γ̂ can then be calculated from equations 4.9, 4.7 and

4.14 as

Γ =

∫
−∞

0

v · dy =

∫
−∞

0

V

(
I

ρ

) 1

4

(t− to)
−

3

4 · d

[
ξ

(
I

ρ

) 1

4

(t− to)
1

4

]

=

∫
−∞

0

(
I

ρ

) 1

2

(t− to)
−

1

2 V · dξ

=

(
I

ρ

) 1

2

(t− to)
−

1

2

∫
−∞

0

V · dξ

=

(
I

ρ

)
(y − yo)

−2 ξ2

∫
−∞

0

V · dξ

=

(
I

ρ

)
(y − yo)

−2 ξ2Γ̂. (5.26)

Therefore,

Γ̂ =
(ρ
I

) (y − yo)
2

ξ2
Γ. (5.27)

From equation 5.24, it can be easily shown that

Γ̂ =

∫
−∞

0

V · dξ =

∫

ε′
ω̂ · dξdη, (5.28)

where ε′ denotes half of the area of interest ε in similarity coordinates; ω̂ is the

dimensionless vorticity which will be defined in equation 5.31.

The plot of the circulation is presented in figure 5.15, which has been scaled

according to the similarity scaling law (equation 5.27). The circulation is computed

from the ensemble-averaged vorticity contours. Equation 5.10 shows that the aver-

aged circulation is independent of the order of the averaging processes. The theory

underestimates the decay of the bubble circulation by a very small factor up to the

extent of the FOV. It is not very clear in the Re1 rings, but downstream there is a

small deviation. While the circulation of the bubble decays roughly in line with the

similarity theory the circulation of the entire field decays much more rapidly. This

then may be predominantly due to annihilation of vorticity in the wake. Although
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Figure 5.15: Circulation as a function of streamwise distance computed from

ΓB′ =

∫

B′

ωθdxdy, based on the ensemble-averaged vorticity contours for both Re

rings. �: the whole flow field, where B′ represents left/right half of the entire
flow fields; ◦: the ring bubble area, where B′ represents the rectangular region of
1.4D in the streamwise direction and 1.2D in the radial direction aside on the ring’s
mean trajectory; +: the wake part, equal to the difference between � and ◦. The
circulations of the ring bubble area are scaled according to the similarity law (equa-
tion 5.27), in which the two − are the zero-order least-squares fits for |y|/D > 3.5
with yo obtained from figure 5.1.
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vorticity leaving the PIV measurement plane due to three-dimensional effects may

also be responsible, since there is a weak anisotropy in the wake, this effect is not

believed to be as important as the annihilation effect. Further downstream, the

amount of vorticity obtained from shedding from the ring bubble is not enough to

compensate for that being continuously annihilated in the wake. The vorticity shed-

ding process only involves the lowest level around the ring cores, therefore the effect

is less significant. This is discussed next.

5.1.8 Instantaneous vorticity shedding pattern

The continuous falling pattern of the ring bubble circulation (the amount of the

single-signed vorticity) shown in figure 5.15 is the ensemble-averaged behaviour. In

this section, the vorticity shedding pattern of an individual ring is investigated.

Because the ring is highly turbulent, the viscous effect is insignificant compared

with the inviscid effect, thus it is believed that the inviscid vorticity shedding is

the major cause of the circulation reduction while the viscous annihilation effect

is rather weak, if not insignificant at all, although ultimately viscosity kills all the

circulation. Figure 5.16 shows snapshots at six streamwise distances of a typical

Re = 20039 ring, which illustrate the vorticity contours around its left core.

The computational algorithm is designed such that the connected contour of a

specified level enclosing the core centroid is traced. Closed contours of the same level

but not enclosing the core are not included for circulation computation. This algo-

rithm is designed specially for tracking the inviscidly shed vorticity, which will show

abrupt changes in the circulation plot, while if annihilation is the only mechanism,

the change would be smooth. The robustness of the algorithm is clearly shown by

figure 5.16 (b), in which a closed contour of the same level to the ‘south-east’ of the

core is not marked by the black line, or by the sudden drop of circulation between

(a) and (b) on the red trace and between (d) and (e) on the blue trace.

Figure 5.16 (a), (b), (c) show that inviscid shedding of vorticity blobs is only

associated with the lower vorticity levels and the shedding process is accompanied by

a reattachment or reconnection process. This can be observed in (c), an increase of

the red trace circulation is due to some part of the blob in the south-east corner of (b)

being entrained into the core. For the next higher vorticity levels (inner contours),
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Figure 5.16: The vorticity shedding pattern of an instantaneous Re = 20039 ring.
Only the circulation and the vorticity contours of the left core are shown. − ◦ −,
−∗− and −+− denote the circulations enclosed by the vorticity level ωθ = −15s−1

(about 14% of the peak vorticity level), −30s−1 and −45s−1 respectively. Contour
levels in (a)-(f): -95.0(5.0)-15.0, higher and lower levels not shown. (a), (b), (c)
correspond to the − ◦ − data, − indicates the connected ωθ = −15s−1 contour;
(d), (e), (f) correspond to the − ∗ − data, − indicates the connected ωθ = −30s−1

contour.
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the ‘diffusion’ of higher vorticity to lower levels is also by inviscid shedding, as

shown by (d) and (e). The reattachment is even clearer in this level, shown by

(e) and (f), and by the abrupt increase of circulation of the blue trace, just before

(f). The circulation plot of ωθ = −45s−1 contour does not show any noticeable

abrupt change, which suggests that the viscous effect has the major responsibility

in the inner most core regions. It is worth mentioning that Weigand & Gharib

(1994) observed a step-like shedding of vorticity of a Re = 7500 ring with a long

term behaviour, which is also supported by the numerical results in Bergdorf et al.

(2007). The ‘step’ is believed to be due to the same shedding pattern shown here

in figure 5.16. However, in this study, it is more sawtooth-like due to reattachment

events. The discrepancy is probably because of the fact that it is not the long-term

behaviour being focused in this study, the ring may not have decayed enough and

the stepwise shedding has not started yet.

Because the bubble circulation decay of an instantaneous turbulent vortex ring in

this study is predominantly an unsteady effect, strictly speaking, the similarity the-

ory can only give a long-term general prediction of it, but not a local instantaneous

description.

5.1.9 Hydrodynamic impulse

The hydrodynamic-impulse invariance is an important assumption in deriving the

similarity theory. This quantity is discussed here with the experimental evidence.

The hydrodynamic impulse of a vortex ring is calculated from equation 4.3. In the

case of an axisymmetrical flow, the impulse vector is along the streamwise direction

and can be derived from equation 4.3:

Iy =
1

2
ρ

∫

V

(rωθ) dV

=
1

2
ρ

∫
∞

0

rωθ · 2πr dr

∫ 0

−∞

dy

= πρ

∫
∞

0

∫ 0

−∞

ωθr
2 dydr

= πρ

∫

E′

ωθr
2 ds, (5.29)
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Figure 5.17: Hydrodynamic impulse as a function of streamwise distance computed
from equation 4.3, based on the ensemble-averaged vorticity contours for both Re
rings. The quantity is normalised by slug impulse. �: the whole flow field; ◦:
half of the ring bubble area, which is simplified as a rectangular region of 1.4D in
the streamwise direction and 1.2D in the radial direction aside on the ring’s mean
trajectory; +: the wake part, equal to the difference between � and ◦; −: the
maximum impulse level of the whole flow field.

where y, r and θ denote the streamwise, radial and azimuthal directions; E ′ refers

to half of the FOV shown in figure 5.14. The integral range can be altered for

computing full field (E ′) and bubble impulses (B′) respectively, as those used for

computing circulation.

The variation of the hydrodynamic impulse as a function of streamwise distance

is presented in figure 5.17, in an attempt to show how the decay of the circulation

is related to the behaviour of the impulse. A small decay is observed in the bubble

impulse which agrees with Maxworthy (1974), as well as the full-field impulse, al-

though it is much less severe than the decay of the full-field circulation. The amount
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of decay of the full-field impulse up to the last points in figure 5.17 is about 8% and

16% for Re1 and Re2 rings, respectively and the decay of the bubble impulse is

about 5% and 10%, respectively (note the different end points for the two cases).

On one hand, the increase of the ring radius (see figure 5.1) leads to an increase

in impulse (see equation 4.3, 5.29); on the other hand, the vortical structures shed

from the bubble are less intense, and hence result in only a small loss of ring im-

pulse. The slug model underestimates both impulse and circulation (Didden, 1979;

Lim & Nickels, 1995; Shariff & Leonard, 1992), for reasons given in section 2.1. It is

noteworthy that the impulse involved in the similarity theory is the hydrodynamic

impulse, which is computed from equation 4.3. Saffman (1976) derived the impulse

required to set a region of fluid into unsteady vortical motion that includes an extra

term, which is not always easy to measure empirically. This impulse is written as

I =
1

2
ρ

∫

V

(~r × ~ω) dV + ρ

∫

S

φndS , (5.30)

where n is the unit normal vector of the surface S , directed into the region of

compact vorticity; φ is the velocity potential at the surface S of the body. Physically,

the second term is associated with the momentum of vortex ring added-mass (non-

entrained fluid of non-zero velocity surrounding the ring bubble, as mentioned in

the end of section 2.4). Notwithstanding the dominance of the first term in many

circumstances - hence it is often used by itself for force estimation - the second term

can be substantial sometimes (Krueger & Gharib, 2003).

5.1.10 Virtual time origins

Finally, the virtual time origins of both Reynolds number cases can be determined

by plotting the ring locations against arrival times (equation 4.15), as is shown in

figure 5.18. The two virtual time origins are T = −2.61sec and T = −5.28sec for

Re1 and Re2 rings, respectively.

5.2 The raw turbulence quantities

Section 5.2.1 presents the two-dimensional contours of the ensemble-averaged vortex

ring structures: the velocity components and vorticity contours. Section 5.2.2 and
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Figure 5.18: Determination of the virtual time origins by intersecting the line to the
time axis. Grey lines are the traces of each of the 50 realisations.
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5.2.3 present the intensity distribution of the turbulent stresses and production in the

ring centre cross-section. Section 5.2.4 presents the results of the pressure gradient

distribution in the centre cross-section, and hence pressure distribution. All of these

contour plots are shown in the similarity coordinates, and the Reynolds number

independence is also verified.

5.2.1 The mean structure

If the similarity theory is considered to work well in this experiments, at least over

some distance, the velocity components can be scaled accordingly to equation 4.9.

In order to verify the validity of the scaling law, testing ranges are set for the ring-

bubble centre position from −4D to −6D for the Re1 rings and −5.5D to −7.5D

for the Re2 rings, in the streamwise direction, such that rings are located as far

downstream as possible while the whole ring structure can still be seen. Velocity

components at each station within the testing ranges are then scaled according

to equation 4.9. Figure 5.19 shows that the scaling law works well and curves of

both Reynolds numbers tend to collapse, indicating that Reynolds number is not a

strong factor influencing the mean velocity, although the higher Reynolds number

rings have a slightly more ‘peaked’ core. Mean velocity and vorticity contours are

presented from figure 5.20 to figure 5.22 by taking equation 4.7 for scaling the

coordinates and 4.9 for scaling the velocities. The dimensionless vorticity can be

easily derived as

ω̂θ =
∂V

∂η
− ∂U

∂ξ

=
(ρ/I)

1

4 (t− to)
3

4 ∂v

(ρ/I)
1

4 (t− to)
−

1

4 ∂x
− (ρ/I)

1

4 (t− to)
3

4 ∂u

(ρ/I)
1

4 (t− to)
−

1

4 ∂y

= (t− to)

(
∂v

∂x
− ∂u

∂y

)

= (t− to)ωθ. (5.31)

It is worth noticing that, even though figure 5.3 indicates that the similarity

theory does not work perfectly for the entire data range presented, for the range

tested here, the theory works well. The time scale involved in equation 4.9 is set to

be the averaged arrival time of the 50 rings at the station being tested. The largest
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Figure 5.19: Velocity components at all the testing stations scaled by similarity
theory for two Reynolds number cases. The axial component is chosen to cut the
two core centres (at each station locations); the radial component is chosen to be
0.1D below the core centre, simply because this quantity vanishes across the centres.
− traces: Re1 = 41280; − traces: Re2 = 20039.

arrival time difference at a station is typically below ±0.06sec for Re1 rings and

±0.15sec for Re2 rings, which are negligible compared to the virtual time origins to.

It must be clarified that when the real coordinates x and y are scaled to similarity

ones ξ and η, in equation 4.7, the grid spacings ∆ξ and ∆η are slightly different for

different times. The time duration of the testing range for the two Reynolds numbers

are typically 0.35sec and 0.71sec, respectively, which can be deduced from figure 5.10

or 5.5 or 5.18. This gives grid spacing differences of about ±1% (see equation 4.7).

The non-uniform spacing grids (between times) could be interpolated to give uniform

ones, but this would significantly increase algorithm difficulties and computational

expense. Because the differences are typically about 1%, interpolation is not applied,

and the grid spacings used in all the similarity contours shown below are computed
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Figure 5.20: Radial velocity U contours in similarity coordinates.
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Figure 5.21: Axial velocity V contours in similarity coordinates.
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Figure 5.22: Vorticity ∂V/∂η − ∂U/∂ξ contours in similarity coordinates, obtained
from the velocity contours.

from the averaged arrival times in the testing range, when applying equation 4.7.

When quantities are presented in similarity coordinates, essentially they have

gone through a double averaging process. The first involves averaging the 50 reali-

sations at each of the stations described in figure 5.2, to give an averaged contour.

There are 41 stations in the testing range (2D for both Reynolds numbers) be-

cause the station spacing is 0.05D. The similarity scaling law, equation 4.9 and 4.7

(effectively a Taylor’s hypothesis reconstruction, Taylor, 1938) indicates a second

averaging of these 41 stations. Therefore each contour here is the average of 2050

instantaneous realisations, although they are not all independent.

5.2.2 The turbulence stresses

In order to better understand the turbulence structure, it is necessary to examine

the turbulence stresses and production. Since the mean structure appears to follow

similarity well, turbulence quantities (stresses and production, Davidson, 2004; Ten-

nekes & Lumley, 1972) here are scaled using the similarity transformations and they

are presented in similarity coordinates in figures 5.23 to 5.25 and figure 5.29, for rings

of both Reynolds numbers. The relationships between the dimensional quantities
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and the similarity quantities can be deduced from equation 4.9. Particularly,

− U ′U ′ = −u′u′

(ρ
I

) 1

2

(t− to)
3

2

−V ′V ′ = −v′v′

(ρ
I

) 1

2

(t− to)
3

2

−U ′V ′ = −u′v′

(ρ
I

) 1

2

(t− to)
3

2 , (5.32)

where the superscript prime, here-and-after denotes the velocity fluctuation.

Peak turbulence quantities can be clearly identified and are found to be located

very close to the mean vortex cores. When comparing these structures with the LDV

results1, perhaps the most distinguishable difference is the degree of asymmetry,

which is partly because of the different experimental approaches. Note that the

LDV results are perfectly symmetrical since they were measured at only one side

and reflected for presentation in the contour plots; see figure D.1, D.2 and D.3. This

small asymmetry also exposes the most important contributor of the turbulence

quantities, dispersion, the reasons for which have been discussed in section 5.1.1.

The second obvious difference, is the existence of secondary cores beside the main

cores shown in the LDV results, which seems only be possible when rings are located

exactly at the same location and are of the same size and shape. This difference will

be further discussed in chapter 6.

Because the core centroids have a random scatter in the centroid cluster plot;

see figure 5.26, small details near the core centre (if they exist) will be smoothed

away by the averaging process. In order to examine how dispersion affects the stress

level and distribution, the core dispersion level is plotted in figure 5.27. The core

dispersion is quantified by the r.m.s. value γ, which is defined as

γ =

√
1

N
ΣN

[
(xc − xc)

2 + (yc − yc)
2], (5.33)

where N = 50 (realisations), xc and yc are the ensemble-averaged core location coor-

dinates, xc and yc are instantaneous core location coordinates of a single realisation.

In figure 5.27, γ is normalised by the mean core centroid streamwise location.

Note that the effect of dispersion is to add to the turbulence intensities, since it

adds an extra effective fluctuation. Figure 5.27 is able to explain several facts: first,

1From here onwards, LDV results refer to the results presented in Glezer & Coles (1990).
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Figure 5.23: Contours of radial normal Reynolds stresses −U ′U ′ in similarity coor-
dinates. Higher levels in the core centre area are not shown.
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Figure 5.24: Contours of axial normal Reynolds stresses −V ′V ′ in similarity coor-
dinates. Higher levels in the core centre area are not shown.
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Figure 5.25: Contours of Reynolds shear stresses −U ′V ′ in similarity coordinates.
Higher levels in the core centre area are not shown.

the Re1 rings have a more symmetrical dispersion, therefore stresses and production

contours are more symmetrical; second, the left core dispersion is more severe in

the Re2 plot, which causes the intensities of the left core to exceed that of the right

core in figure 5.24; third, dispersion increases as the ring moves downstream, which

may be the reason why the turbulence intensity level does not decay (shown in

figure 5.28), while the similarity theory predicts that, the stress level at every point

will decrease as t−3/2 or y−6, hence the level of the stress integrated over the bubble

area will decrease as t−1 or y−4. The radial component of the Reynolds stress is

used to illustrate this relationship. From equation 4.9, 4.7 and 4.14,

∫

B

−u′u′ drdy =

∫

S

−U ′U ′

(
I

ρ

) 1

2

(t− to)
−

3

2

[(
I

ρ

) 1

2

(t− to)
1

2

]
dξdη

=

(
I

ρ

)
(t− to)

−1

∫

S

−U ′U ′ dξdη

= ξ4

(
I

ρ

)2

(y − yo)
−4

∫

S

−U ′U ′ dξdη, (5.34)

where B and S denote the centre cross-sectional area of the ring bubble volume in
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Figure 5.26: The left-hand-side core centroid footprints cluster at station 102 (see
figure 5.2) for 50 the realisations of Re = 41280 rings. × denotes each of the core
centroids; ◦: the intersection point of the station 102 line and the first-order fit of
the ring core trajectory; −− denotes a 5mm radius circle centred at ◦; −·− denotes
a 10mm radius circle centred at ◦.
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Figure 5.27: The r.m.s. of the apparent core centroids dispersion with respect to the
mean core centroid streamwise location, equation 5.33. This quantity is normalised
by the rings’ streamwise location. Therefore a horizontal line indicates an increasing
dispersion level. ×: left core; +: right core.
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real and similarity coordinates, respectively. Because

ξ4

(
I

ρ

)2 ∫

S

−U ′U ′ dξdη = const., (5.35)

then ∫

B

−u′u′ drdy ∼ t−1
∼ (y − yo)

−4 (5.36)

and ∫

S

−U ′U ′ dξdη = ξ−4
(ρ
I

)2

(y − yo)
4

∫

B

−u′u′ drdy. (5.37)

The same procedure can also be applied to the other two stresses. It must be

emphasised here that the integral of stresses over a planar bubble area is used to

reveal the stresses dependence on time and downstream distance. If the assumption

of axisymmetry is adopted, it is always possible to estimate the stress levels in a

three-dimensional bubble volume. This however, is not done, because it will not

give more information, since it would be inferred from the two-dimensional results.

Despite the differences, general agreement with the broad features noted in the

LDV results is apparent, for instance, a wake can only be observed in the radial

component of the normal stresses, not in the axial component; see figure D.1 and

D.2.

In figure 5.28, the summation of the magnitude of the Reynolds stress over the

ring bubble area as a function of ring streamwise location is plotted. The magnitudes

of the total stress in the bubble region can be written as
∫

B

|τ | dB =

∫

B

|τ | drdy, (5.38)

where τ = −u′u′,−v′v′, or −u′v′. In order to exclude the effect of the wake, the

three stress levels are only computed in the ring bubble area. For simplicity, the

bubble area is chosen to be a rectangular region of 1.4D in streamwise direction

and 2.4D in radial direction, which is big enough to include the bubble but small

enough to exclude the wake (see figure 5.11). For bubble circulation and impulse

computation, only half of this rectangular region is needed, i.e. 1.4D in streamwise

direction and 1.2D in radial direction, as mentioned in the captions of figure 5.15

and 5.17. Note that 5.55D is closed to the end of the FOV, which is 6D, and the

bubble volume increases from the orifice exit to 6D (see figure 5.12). Therefore the
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Figure 5.28: The summation of the magnitude of the Reynolds stress over the ring

bubble area

∫

B

|τ | dB/U2
pB as a function of ring streamwise location. τ : −u′u′,

−v′v′ or −u′v′; B: the rectangular region of 1.4D in streamwise direction and 2.4D
in radial direction; see figure 5.11. +: axial normal Reynolds stress; ×: radial
normal Reynolds stress; •: Reynolds shear stress.

rectangular region can cover all the elliptical bubbles in the testing range. This

integrand (over the rectangular area) is approximately equal to the integrand over

the elliptical bubble area, because the stress levels outside the elliptical bubble area

are insignificant. This rectangular-region is used for both cases and in all similar

calculations below. Referring to figure 5.12, one finds that the bubble volume of the

two Re rings only differs by less than 10%.

5.2.3 The turbulence production

The turbulence production is thought to be mainly due to the large scales, hence it

can be estimated (whereas it is believed that the spatial resolution is not sufficient
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to calculate the dissipation in these measurements - see section 3.3 - so this will not

be attempted). In two-dimensional Cartesian coordinates, turbulence production

can be written as

p = −u′

iu
′

jeij = −
3∑

i=1

3∑

j=1

(
1

2
u

′

iu
′

j

∂ui

∂xj

+
1

2
u

′

iu
′

j

∂uj

∂xi

)
, (5.39)

where ui, uj are mean velocities and u
′

i, u
′

j are velocity fluctuations; eij is the

strain-rate tensor for the mean velocities. The subscripts of the above equation

can only go up to two because of the lack of information of the third component

using two-dimensional PIV analysis. The mathematical relationship between the

raw turbulence production and its dimensionless form can be deduced in a similar

way as equation 5.32. Take term −u′u′∂u/∂x as an example. Because ∂u/∂x has

the same dimension as vorticity, from equation 5.31 and 5.32,

− U ′U ′
∂U

∂η
=

(ρ
I

) 1

2

(t− to)
3

2

(
−u′u′

)
(t− to)

∂u

∂x

=
(ρ
I

) 1

2

(t− to)
5

2

(
−u′u′

∂u

∂x

)
. (5.40)

Therefore

P =
(ρ
I

) 1

2

(t− to)
5

2 p. (5.41)

The two-dimensional production contour is presented in similarity coordinates in

figure 5.29 according to the similarity scaling law of equation 5.41. Following a

similar procedure as equation 5.34,

∫

B

p drdy =

∫

S

P

(
I

ρ

) 1

2

(t− to)
−

5

2

[(
I

ρ

) 1

2

(t− to)
1

2

]
dξdη

=

(
I

ρ

)
(t− to)

−2

∫

S

P dξdη

= ξ8

(
I

ρ

)3

(y − yo)
−8

∫

S

P dξdη, (5.42)

where B and S denote the centre cross-sectional area of the ring bubble volume in

real and similarity coordinates. Hence
∫

S

P dξdη = ξ−8
(ρ
I

)3

(y − yo)
8

∫

B

p drdy. (5.43)
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Figure 5.29: Turbulence production contours in similarity coordinates. Only the
first four terms in equation 5.45 are included. Higher levels in the core centre area
are not shown.

In an attempt to investigate components in the third direction, stereoscopic PIV

measurements were made to provide the planar information of the out-of-plane ve-

locity component, such that the subscripts are able to be increased to three for some

terms in equation 5.39. Thus among the nine terms in the production expression,

seven can be determined. The divergence free condition gives

∂w

∂z
= 0 −

(
∂u

∂x
+
∂v

∂y

)
, (5.44)

leaving only ∂u/∂z and ∂v/∂z undetermined. The description of the stereoscopic

PIV set-up has been given in section 3.3. Stereoscopic measurements have only been

made for the Re1 = 41280 case. It is believed that the effect of the involvement of

the additional velocity information is similar in the Re2 = 20039 case. Equation 4.9

is also used to scale the dimensional velocity into similarity forms U and V for the

stereoscopic PIV results. For the out-of-plane component, the similarity velocity

and coordinate are similar as U and η, which can be named W and ζ . Thus, the
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Figure 5.30: Part of the turbulence production in similarity coordinates. Higher
levels in the core centre area are not shown. The figure on the right is calculated
from all the seven terms in equation 5.45, the one on the left is produced using
the first four terms aiming to show the effect of the third velocity component to
the resultant contour. Note that the core centroid locations (ξ, η) are conserved in
similarity coordinates, despite the independent experimental set-up.

similarity-scaled production P becomes

P =

(
−U ′U ′

∂U

∂η

)
+

(
−U ′V ′

)(
∂U

∂ξ
+
∂V

∂η

)
+

(
−V ′V ′

∂V

∂ξ

)

+

(
−W ′W ′

∂W

∂ζ

)
+

(
−U ′W ′

∂W

∂η

)
+

(
−V ′W ′

∂W

∂ξ

)
. (5.45)

Figure 5.30 to figure 5.32 show that the turbulence production is predominantly

reflected in the x−y plane (the two-dimensional PIV measurement plane). In other

words, the production is mainly contributed by the terms

(
−U ′U ′

∂U

∂η

)
+

(
−U ′V ′

)(
∂U

∂ξ
+
∂V

∂η

)
+

(
−V ′V ′

∂V

∂ξ

)
, (5.46)

with the contribution from the out-of-plane components

(
−W ′W ′

∂W

∂ζ

)
+

(
−U ′W ′

∂W

∂η

)
+

(
−V ′W ′

∂W

∂ξ

)
(5.47)
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Figure 5.31: Part of the turbulence production; normal components from left
to right: −U ′U ′∂U/∂η, −V ′V ′∂V /∂ξ, −W ′W ′∂W/∂ζ in similarity coordinates.
Higher levels in the core centre area are not shown.
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Figure 5.32: Part of the turbulence production; shear components from left to right:
−U ′V ′∂U/∂ξ, −U ′V ′∂V /∂η, in similarity coordinates. Higher levels in the core cen-
tre area are not shown. −V ′W ′∂W/∂ξ and −U ′W ′∂W/∂η are not shown, because
their intensities are too low, about 5% of the others.
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generally weak except for the one which comes from the normal stress. It should be

noted that in many studies, the vortex ring is assumed to be axisymmetric, hence

cylindrical coordinates are frequently applied. In cylindrical coordinates, turbulence

production is written as

pcyl =

(
−u′u′

∂u

∂r

)
+

(
−u′v′

)(
∂u

∂y
+
∂v

∂r

)
+

(
−v′v′

∂v

∂y

)
+

(
−w′w′

) u
r
, (5.48)

where y and r denote the axial and radial direction; u, v and w denote the radial,

axial and azimuthal velocity components. In similarity coordinates, equation 5.48

can be written as

Pcyl =

(
−U ′U ′

∂U

∂η

)
+

(
−U ′V ′

)(
∂U

∂ξ
+
∂V

∂η

)
+

(
−V ′V ′

∂V

∂ξ

)
+

(
−W ′W ′

) U
η
,

(5.49)

in which only the term (
−W ′W ′

) U
η

(5.50)

accounts for the out-of-plane component.

Note that the first four terms in equation 5.45 and 5.49 are exactly the same.

Thus different coordination systems applied only affect the rest of the terms. In

order to investigate this effect, equation 5.47 and 5.50 are plotted and compared,

in figure 5.33, from left to right. The two plots in figure 5.33 are comparable. The

small difference of the intensity levels near the cores might be due to terms related

to ∂u/∂z and ∂v/∂z, which cannot be computed. The strong noise near the centre

of equation 5.50 plot is due to the low value of η.

Reynolds stresses obtained from the stereoscopic PIV recordings are also pre-

sented in figure 5.34 and figure 5.35 as a comparison with figure 5.23 to figure 5.25.

For Reynolds normal stresses, the −W ′W ′ component is comparable with (but

smaller than) −U ′U ′ , but they are about half of the −V ′V ′. The non-negligibility of

the out-of-plane component occurs for two main reasons: first, the rings are strongly

three-dimensional and are possibly dispersed in a direction with a component per-

pendicular to the PIV plane; second, there possibly exists significant azimuthal

velocities along the core region (see section 2.3), which is also reflected in the az-

imuthal component in figure 7.5. The main contribution to the Reynolds shear
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Figure 5.33: The comparison of the turbulence production in Cartesian (left) and
cylindrical (right) coordinates. Equation 5.47 and 5.50 are computed and plotted,
respectively.
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Figure 5.34: Reynolds normal stresses: −U ′U ′ , −V ′V ′, −W ′W ′ in similarity coor-
dinates. Higher levels in the core centre area are not shown.
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Figure 5.35: Reynolds shear stresses: −U ′V ′ , −U ′W ′, −V ′W ′ in similarity coordi-
nates. Higher levels in the core centre area are not shown.
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Figure 5.36: Instantaneous velocity contours in azimuthal plane presented in sim-
ilarity coordinates when the PIV measurement plane approximately cuts through
the ring core. From left to right: U , V , W ; the symbol assignment is consistent
with the two-dimensional results. Zero contour level is bypassed. The PIV plane of
the two-dimensional or the first stereoscopic set-up is along η direction. Note that
U , V , W are in Cartesian coordinates.
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stresses is reflected by the components in the two-dimensional PIV measurement

plane.

To further explore the existence and importance of the −W ′W ′ component,

the second stereoscopic set-up is adopted. The second set-up and experimental

conditions are discussed in detail in section 7.1. The three instantaneous velocity

components are presented in figure 5.36, in similarity coordinates. Although these

are not Reynolds stresses, the strong three-dimensional structure is clearly observed

and the importance of the −W ′W ′ is expected. The importance of this quantity

can also be seen in figure 7.1. The Reynolds stresses and other statistical quantities

obtained from this experimental set-up will be discussed in section 7.2.

5.2.4 The pressure gradients

When the PIV measurements are operated in single-frame single-exposure mode

(see section 3.3), in which time-series cross-correlation is necessary, time-dependent

information can be resolved, and it becomes possible to compute the ensemble-

averaged pressure gradients from the velocity information. The ensemble-averaged

incompressible Navier-Stokes equation is written as

Du

Dt
= −1

ρ
∇p+ g + ν∇2u, (5.51)

or
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g + ν∇2u, (5.52)

where p in this section denotes the pressure. The continuity equation is written as

∇ · u = 0. (5.53)

The incompressible Navier-Stokes equation can be reduced to the incompressible

Euler equation for turbulent vortex ring applications because at high Reynolds num-

bers, the inertial term dominates the viscous term. In other words, over the length

scale which can be resolved in this experiment, viscous effects are not important.

This point will be further commented at the end of this section. Thus equation 5.51

can be reduced to
Du

Dt
= −1

ρ
∇p+ g. (5.54)
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Expanding the vector form into three components, equation 5.54 can be written as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(5.55)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ gy (5.56)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
, (5.57)

where gy = −9.8ms−2, and similarly, equation 5.53 is written as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (5.58)

Results from the first stereoscopic PIV measurements which is described in sec-

tion 3.3, are used in order to compute as many terms in equation 5.54 as possi-

ble. Equation 5.57 is completely known, with equation 5.58 giving (∂w/∂z) (cf.

equation 5.44). The only two terms that cannot be computed are w (∂u/∂z) and

w (∂v/∂z). The three acceleration terms ∂u/∂t, ∂v/∂t and ∂w/∂t can be computed

by equation 3.4, while all the spatial derivatives can be computed by the Pade ap-

proximation scheme (see section 5.1.1). The first stereoscopic PIV measurement is

only applied to Re = 41280 rings; the three components of the pressure gradient of

these rings are presented in figure 5.37 in similarity coordinates. The relationship

between the dimensional and the corresponding similarity pressure gradient per unit

mass of fluid can be derived from equation 4.9, because the velocity vector u decay

is well predicted by the similarity theory, and so is Du/Dt. In particular,

〈
1

ρ
∇p

〉
=

(
1

ρ
∇p

)(ρ
I

) 1

4

(t− to)
7

4 , (5.59)

where 〈〉 here, and in this section, denotes a similarity quantity.

Because the flow of this study is of constant density, the gravity term gy simply

contributes to a hydrostatic pressure, which also takes the same effect in a still fluid,

it is not included when plotting figure 5.37. It is the pressure due to the dynamics

of the ring that is of interest. Moreover, because gy is constant, mathematically, it

cannot be included in the time-dependent similarity scaling of equation 5.59.

Two primary conclusions can be drawn from the pressure gradient plots in fig-

ure 5.37: first, the pressure gradient in the azimuthal direction,
〈
(1/ρ)

(
∂p/∂z

)〉
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Figure 5.37: Pressure gradients in the three principle directions computed from equa-

tion 5.54 with the gravity term gy excluded; from left to right:
〈
(1/ρ)

(
∂p/∂x

)〉
,

〈
(1/ρ)

(
∂p/∂y

)〉
,
〈
(1/ρ)

(
∂p/∂z

)〉
in similarity coordinates. Higher levels in the

core centre area are not shown.

(note that the plot is for the centre plane in Cartesian coordinates), is negligible com-

pared to the in-plane components
〈
(1/ρ)

(
∂p/∂x

)〉
and

〈
(1/ρ)

(
∂p/∂y

)〉
, meaning

that there is an extremely weak, if any, azimuthal pressure gradient existing, which

might be responsible for the weak azimuthal velocity (see section 7.2); second, the

distribution of the in-plane pressure gradients in the η and ξ directions, which are

of about the same magnitude, are associated with the centrifugal acceleration for

the vortex core to rotate in the centre plane. In the moving reference frame seen

from the bubble1, if the particle paths close to the core centroid are approximately

circular, the relationship of the pressure gradient and the centrifugal acceleration is

expressed as

−1

ρ

∂p

∂r
=
v2

r
r̂, (5.60)

where r̂ is the unit (inward) normal vector; v is the particle speed, and r is the

radius of the path considered. The minus sign is to make the direction of the

pressure gradient and the centrifugal acceleration consistent. To make the second

1It will be shown later in this section that, change of reference frame will not alter the pressure
distribution, if it is presented in similarity space.

88

ResultsDiscussions/resultsdiscussionsFigs/pressuregrad_nog.eps


5.2 The raw turbulence quantities

ξ R
e1

η
Re1

 

 

−0.5 0 0.5

−25.8

−25.6

−25.4

−25.2

−25

−24.8

−24.6

η
Re1

 

 

−0.5 0 0.5

−25.8

−25.6

−25.4

−25.2

−25

−24.8

−24.6

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

1000

2000

<
(1

/ρ
)(

∂ 
p 

/ ∂
 r

)>

η
Re1

−500 0 5001000 1500 2000

(a) (b)

(c)

Figure 5.38: The centrifugal acceleration associated with the (radial) pressure gra-
dient (equation 5.60), plotted in similarity coordinates. (a): the local radial compo-

nent
〈
(1/ρ)

(
∂p/∂r

)〉
, (b): the local tangential component

〈
(1/ρ)

(
∂p/∂β

)〉
, (c):

the intensity distribution along the trace −− in (a).

point clearer, the pressure-gradient distribution in the vicinity of the two cores are

plotted in figure 5.38, in local polar coordinates.

The pressure gradients in the Cartesian coordinates (the similarity coordinates)

can be converted to local radial and tangential pressure gradients for each core

in figure 5.37: p(ξ, η) 7→ p(r, β), where r and β are the local radial and angular

coordinates of a point with respect to each of the cores, β being positive anti-

clockwise. In particular:

〈
1

ρ

∂p

∂r

〉
=

〈
1

ρ

∂p

∂y

〉
sin β +

〈
1

ρ

∂p

∂x

〉
cosβ

〈
1

ρ

∂p

∂β

〉
=

〈
1

ρ

∂p

∂y

〉
cosβ −

〈
1

ρ

∂p

∂x

〉
sin β. (5.61)
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When applying equation 5.61, the left half and the right half of the flow field have

to be treated separately, and for each half, the origin is set at the corresponding

core centroid, which can be read from (ξ, η) or table 8.1.

Figure 5.38 (a) or (c) can also serve as a criterion to estimate the vortex ring

core radius, i.e. by locating the radius at which
〈
(1/ρ)

(
∂p/∂r

)〉
is maximum.

Returning to figure 5.37, note that the azimuthal pressure gradient is completely

determined (or computed), see equation 5.57. The two terms which cannot be com-

puted,
〈
w∂u/∂z

〉
and

〈
w∂v/∂z

〉
are not necessarily zero, because in an individual

ring, they should not be zero due to the turbulent nature. To have a reasonable

guess of the magnitude of these two terms from the data available, it is estimated

that in an instantaneous ring, |w∂u/∂z| ≈ |w∂u/∂x| and |w∂v/∂z| ≈ |w∂v/∂x|.
The contour plots of these two estimated terms show that their magnitudes are less

than 10% of the terms plotted in figure 5.37. The plots are not shown here. The

estimated terms do not have any physical meaning; they are only expected to be

mathematically similar to the non-computable terms.

It is also interesting to compare the relative magnitudes of the in-plane time-

dependent acceleration term
〈
∂u/∂t

〉
and the convection term

〈
u · ∇u

〉
in equa-

tion 5.54. The plots are presented in figure 5.39 and 5.40. Because the azimuthal

components of these terms are very small and insignificant, they are not plotted.

The time dependent acceleration of the radial velocity component
〈
∂u/∂t

〉
is

about three times larger than that for the streamwise velocity
〈
∂v/∂t

〉
. This is

not surprising, because the ring travels in the streamwise direction at a consider-

able speed, see section 5.1.3; in particular, if one examines the velocity field of an

instantaneous ring, which is similar to figure 5.20 and 5.21, in zones of the highest

velocity gradients (near the core, shown by the contour density), contour shapes are

parallel with the ring travel direction for the V component but perpendicular for

the U component. Therefore the change of U over a small time is expected to be

larger. The contours of time-dependent acceleration terms are noisier compared to

the contours of the convection terms. The convective accelerations in the radial and

streamwise directions are of similar intensities.

After the pressure gradients are known, it is possible to estimate the pressure

distribution in the PIV measurement plane. This is done by first computing the
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Figure 5.39: The in-plane acceleration terms:
〈
∂u/∂t

〉
and

〈
∂v/∂t

〉
in similarity

coordinates. Higher levels in the core centre area are not shown.
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Figure 5.40: The in-plane convection terms of the material derivative:〈
u (∂u/∂x) + v (∂u/∂y)

〉
and

〈
u (∂v/∂x) + v (∂v/∂y)

〉
in similarity coordinates.

Higher levels in the core centre area are not shown.
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pressure on the ring centre trajectory, and then integrating along the radial (x)

direction. This can be written as

1

ρ
p(y)

∣∣∣∣
x

=

∫ x

0

1

ρ

∂p(y)

∂x
dx+

1

ρ
p(y)

∣∣∣∣
x=0

. (5.62)

In this section p(y) denotes the pressure distribution in the y direction. It does not

mean that pressure p is only a function of y, Since p is a function of all three spatial

variables x, y, z.

The first term on the right side of equation 5.62 can be computed by numerical

integration of the data from figure 5.37. The hydrostatic term gy is again excluded,

because this term simply gives a pressure distribution of p(y) = −ρgy. There are

two experimentally independent ways to calculate p(y) on the ring centre trajectory.

One is the direct integration along the y direction using (1/ρ) (∂p/∂y) obtained

earlier. The other one does not require the pressure gradients, i.e. it does not need

highly temporally resolved velocity information. The second method, which involves

solving the steady Bernoulli equation, can serve as a validation of the pressure-

gradient computation, and it is illustrated first below.

In an axisymmetric vortex ring, there must be a streamline on the axis of sym-

metry, i.e. it is a single-valued streamfunction on the axis of symmetry (see sec-

tion 5.1.5)1. Moreover, on this streamline, only streamwise velocity exists. There-

fore, the pressure distribution p(y) on x = 0 can be calculated by Bernoulli equation.

It must be stressed that, in a fixed reference frame (e.g. one attached to the tank

or the camera), because the ring structure is moving downstream, the flow field is

unsteady: ∂u/∂t 6= 0, and the steady Bernoulli equation is invalid. In order to

overcome this problem, a uniform upwash flow against the ring at a velocity equals

to the ring’s instantaneous translation velocity is superimposed, after which the flow

pattern would be just like that plotted in figure 5.11. Because the ring celerity is

not constant, neither is the superimposed velocity, the resultant velocity is also a

function of time; the unsteady problem is still not solved. Equation 5.56 in this

situation is written as

∂ (v − ut)

∂t

∣∣∣∣
x=0

+ (v − ut)
∂ (v − ut)

∂y

∣∣∣∣
x=0

= −1

ρ

∂p

∂y

∣∣∣∣
x=0

; (5.63)

1Here it is assumed that the wake of the ensemble-averaged turbulent vortex ring is also
axisymmetric.
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note that the ring translation velocity ut is negative. Nevertheless, in similarity

space, equation 5.63 appears steady. It is because all the terms in the equation obey

the same similarity scaling, and all the time functions can be cancelled. Therefore,

in similarity variables, equation 5.63 is written as
〈
∂ (V − Ut)

∂t

〉 ∣∣∣∣
η=0

+ (V − Ut)
∂ (V − Ut)

∂ξ

∣∣∣∣
η=0

= −
〈

1

ρ

∂p

∂y

〉 ∣∣∣∣
η=0

, (5.64)

and 〈∂ (V − Ut) /∂t〉 = 0. It is necessary to clarify that this term means the time-

dependent acceleration at a fixed point in the similarity space. So 〈∂V/∂t〉 6= 0

because the ring structure moves downstream in the similarity space at a constant

speed Ut, which is a negative quantity, due to its self-induced velocity.

The steady Bernoulli equation can then be applied:
〈

1

ρ
p(y)

〉 ∣∣∣∣
η=0

+
1

2
[V (ξ) − Ut]

2

∣∣∣∣
η=0

=

〈
1

ρ
p1

〉 ∣∣∣∣
η=0

+
1

2
[V1 − Ut]

2

∣∣∣∣
η=0

, (5.65)

hence
〈

1

ρ
(p(y) − p1)

〉 ∣∣∣∣
η=0

= −1

2
[V (ξ) − Ut]

2

∣∣∣∣
η=0

+
1

2
[V1 − Ut]

2

∣∣∣∣
η=0

, (5.66)

where V (ξ) and Ut can be obtained using the same method as discussed in sec-

tion 5.1.2 and 5.1.3, and
〈

1

ρ
p(y)

〉
=

(
1

ρ
p(y)

)(ρ
I

) 1

2

(t− to)
3

2 . (5.67)

In similarity space, the measured pressure distribution at any point on η = 0,

in the reference frame which moves at a constant velocity of Ut, should read the

same as if measured in the fixed reference frame. In other words, the physics is not

affected by a new reference frame, as long as it is inertial and not moving at a too

high speed, because the principle of special relativity states that:

“If a system of coordinates K is chosen so that, in relation to it, physical laws

hold good in their simplest form, the same laws hold good in relation to any other

system of coordinates K’ moving in uniform translation relatively to K.” (Einstein

et al., 1952).

The term [V (ξ) − Ut] on η = 0 is plotted in figure 5.41 (a) and the pressure

distribution
〈
(1/ρ) (p(y) − p1)

〉
on η = 0 computed from equation 5.66, is plotted
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Figure 5.41: The estimated pressure on the ring centre trajectory, plotted against
the streamwise distance by two approaches. (a) The ring streamwise velocity dis-
tribution on its centre trajectory as seen by the ring; (b) the streamwise pressure
gradient distribution on the centre trajectory of the ring as seen by the cameras,
computed from equation 5.54; (c) the pressure distribution on the ring centre tra-
jectory as a function of the streamwise distance, − computed by equation 5.68, −
computed by equation 5.66. All the quantities are plotted in similarity coordinates.
The data is from the stereoscopic PIV measurements for Re1 = 41280.

94

ResultsDiscussions/resultsdiscussionsFigs/wallpressure.eps


5.2 The raw turbulence quantities

as the red trace in figure 5.41 (c). The reference point ‘1’ is chosen to be the first

point available in the streamwise direction.

As mentioned earlier, alternatively, the pressure distribution
〈
(1/ρ) p(y)

〉
on the

centreline η = 0 can also be inferred by a more straight-forward way, in the fixed

or stationary reference frame. Because the pressure gradient contours in the three

principle directions in the fixed reference frame have been obtained (figure 5.37),

p(y) on x = 0 can be calculated by integrating the streamwise pressure gradient:

1

ρ
p(y)

∣∣∣∣
x=0

=

∫ y

1

1

ρ

∂p(y)

∂y

∣∣∣∣
x=0

dy +
1

ρ
p1

∣∣∣∣
x=0

. (5.68)

The quantity
〈
(1/ρ) (∂p/∂y)

〉
on η = 0 is plotted in figure 5.41 (b) and the pressure

distribution
〈
(1/ρ) (p(y) − p1)

〉
on η = 0 computed by equation 5.68 is plotted as

the blue trace in figure 5.41 (c). The scaling laws in equation 5.59 and 5.67 are used

to convert the two terms into the corresponding similarity quantities.

Figure 5.41 (c) shows that the results from the two approaches agree well, with

the blue trace, calculated from the pressure gradient integration, slightly exceeding

the red trace, calculated from the steady Bernoulli equation. This could be at-

tributed to the term
〈
w∂v/∂z

〉
, which cannot be measured. Another factor is that

the pressure gradient terms are affected by the ring dispersion more than the celer-

ity, because the individual ring celerity can be obtained from PIV measurements

directly and are not affected by small dispersions much; while pressure gradients

are, because they are inferred by spatial derivatives, which are strong functions of

dispersion.

Figure 5.41 shows a limited region along the streamwise distance, approximately

the bubble size, although it is the most important part of the flow field. In order to

see the pressure distribution further outside the bubble, figure 5.41 is re-plotted in

figure 5.42 using the results from the two-dimensional PIV measurements of Re =

20039 rings (the FOV for the two-dimensional PIV measurements is about twice

as big as the FOV of stereoscopic PIV measurements). Note that the computable

terms in equation 5.55 and 5.56 are the same for two-dimensional and stereoscopic

PIV measurements.

The Reynolds number independence is again verified by comparing figure 5.41

and 5.42. They both indicate a maximum dimensionless pressure difference of
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Figure 5.42: Re-plot of figure 5.41 for Re2 = 20039 rings using the data from two-
dimensional PIV measurements. The subscript 2 refers to a point different from
point 1 in figure 5.41 and equation 5.66.
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Figure 5.43: The pressure field in the PIV measurement plane computed from equa-
tion 5.62. Contours are plotted from stereoscopic PIV data. The very weak positive
valued contours are not plotted. Re1 = 41280.

about 40. The plots of
〈
(1/ρ) (∂p/∂y)

〉
show a higher maximum intensity dif-

ference in Re = 20039 rings. This is because on the centreline, the low-magnitude〈
(1/ρ) (∂p/∂y)

〉
is ‘contaminated’ by the higher levels from the core area due to

stronger dispersion of the lower Reynolds number rings; see figure 5.27. Moreover,

the influence of the wake on the streamwise pressure gradient is also clear in fig-

ure 5.42 (b); see the wavy portion upstream. Note also that the temporal error levels

when computing the time-dependent acceleration term O(∆t) (see equation 3.4) are

different due to different FOVs and Reynolds numbers for the different experiments.

The error levels are of order 0.002sec and 0.005sec respectively, with the one for

the stereoscopic PIV measurement lower. Because of the computational error of the

other terms of the incompressible Euler equation, and the terms which cannot be

computed, this error is not critical, and is presumably negligible.

When the pressure distribution on the ring centre trajectory (axis of symmetry)

is obtained, the pressure distribution in the entire PIV plane is readily computed

by equation 5.62. This is shown in figure 5.43.

The pressure magnitude plotted in figure 5.43 is based on the reference pressure

p1 in equation 5.65, so it is the relative magnitude. The contour shape agrees

with figure 5.38 (a) which shows that the pressure is balanced by the centrifugal
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Figure 5.44: The viscous terms reflected in the PIV measurement plane.

From left to right:
〈
ν

(
∂2u/∂x2 + ∂2u/∂y2

)〉
,

〈
ν

(
∂2v/∂x2 + ∂2v/∂y2

)〉
,

〈
ν

(
∂2w/∂x2 + ∂2w/∂y2

)〉
.

acceleration. The minimum relative pressure in the flow field occurs at the two core

centroids.

The pressure contours shown in figure 5.43 should be roughly correct, although

the derivation does not start from the complete incompressible Navier-Stokes equa-

tion. One may raise the question as follows: as velocity decreases away from the ring

centre, the local Reynolds number decreases, the viscous terms become of a similar

order to the inertial terms, even if they are small; this means that physically, is it not

suitable to simplify the incompressible Navier-Stokes equation to the incompressible

Euler equation. Instead, solutions of the full incompressible Navier-Stokes equation

become necessary; however, the spatial resolution of this experiment may not be

enough to correctly estimate the viscous effect, which is normally only important

at very small scales. The fact is that away from the ring centre, the shear, or the

strain rate is not expected to be large, so the viscous term can still be insignificant.

At larger spatial resolution, viscous terms always remain at an insignificant level;

see figure 5.44. Note that the contour levels in figure 5.44 are only 0.1% of those in

figure 5.37.

The scaling law of the viscous term is the same as for the pressure gradient term,
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with 〈
ν∇2u

〉
=

(
ν∇2u

)(ρ
I

) 1

2

(t− to)
3

2 . (5.69)

Note that
〈
∂2u/∂z2

〉
,

〈
∂2v/∂z2

〉
and

〈
∂2w/∂z2

〉
are inaccessible, but they are

expected to be very small, of the same order as the terms shown in figure 5.44.

99



Chapter 6

Turbulence Quantity Corrections

This chapter proposes a method to decompose the raw turbulence quantity into

various factors. Because the flow field of turbulent vortex rings is not stationary,

turbulence quantities are only computable by ensemble-averaging procedure. Thus,

to correctly quantify the degree of turbulence due to velocity intensity fluctuation

of a single ring, requires to ensemble-averaging points which are at the same relative

location in the global structure of every ring. Various factors like core dispersion,

bubble shape variation, can all be considered as turbulence sources, because single

realisations are added regardless whether the core and the bubble position or shape

are the same or not, as long as the bubble centres are at the same streamwise

location (see section 5.1.1). An effort to estimate the quantitative contribution of

these factors to the raw turbulence intensities as discussed in section 5.2 is presented

in this chapter. Section 6.1 proves the importance of dispersion, section 6.2 and 6.3

describe the decomposition operations.

6.1 Source of turbulence

Since it is believed that core dispersion makes a significant contribution to the total

turbulent stresses, it is logical to attempt to decompose the total Reynolds stresses

τ into several possible contributions. In order to see the effect of dispersion on

the results of turbulence stresses more intuitively, stresses generated from artificial

dispersion are plotted in figure 6.1. An instantaneous velocity field is taken to act

as an ensemble-averaged velocity field, then this field is slightly shifted to create
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an artificial fluctuation, which is only due to dispersion but not shape variation.

Mathematically the artificial fluctuation is written as

u′(x, y) = u(x+ ∆x, y + ∆y) − u(x, y)

v′(x, y) = v(x+ ∆x, y + ∆y) − v(x, y), (6.1)

where u′ and v′ denote the artificial fluctuation; u, v are the two velocity components.

If there is no dispersion, ∆x = ∆y = 0, there will be no velocity fluctuation and

these stresses vanish. The effect of the amount of dispersion on the stress magnitude

is plotted in figure 6.1. For comparison purpose, the magnitudes of the real stresses∫

S

| − ρu′u′| dxdy,
∫

S

| − ρv′v′| dxdy
∫

S

| − ρu′v′| dxdy (where S is the velocity field

area) of Re = 20039 rings at about 8D downstream distance are about 0.01, 0.02

and 0.004 respectively, which can be deduced from figure 5.28. This corresponds

to about 3 ∼ 5mm (6% ∼ 10% D) dispersion. Note that this is just a very rough

estimation; figure 5.28 and figure 6.1 are not really comparable because the real

stresses are ensemble-averaged ones. The real dispersion level can be deduced from

figure 5.27.

The decomposition of Reynolds stresses can be written as

τtotal = τ
(1)
position + τ

(2)
radius+tilt + τ

(3)
intensity + τ

(4)
shape, (6.2)

where τtotal represents the raw stresses which are shown from figure 5.23 to fig-

ure 5.25. Position, radius, tilt and shape are all apparent properties reflected by

the core positions which might be due to azimuthal waves. These effects all come

from the ensemble-averaging process. The same equation can also be applied to the

turbulence production,

ptotal = p
(1)
position + p

(2)
radius+tilt + p

(3)
intensity + p

(4)
shape. (6.3)

The τtotal contours are directly obtained from the experiments, including all the

factors on the right-hand-side of equation 6.2 and without any artificial correction.

It now becomes possible to estimate the percentage of contributions to the raw

stresses due to these factors. In this chapter, algorithms are designed in an attempt

to separate and quantify the contributions from these factors. It should be stressed

that the quantified results are not claimed to be accurate, since the accurate results

would require ensemble realisations of fully three-dimensional data over a volume.
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Figure 6.1: An example of the effect of dispersion on the three components of

Reynolds stresses,

∫

S

−ρu′u′ dxdy,
∫

S

−ρv′v′ dxdy and

∫

S

−ρu′v′ dxdy. An instanta-

neous ring of Re = 20039 at about 8D downstream from the orifice exit is tested,
so the stresses are not ensemble averaged ones.
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6.2 Centroid position shift

6.2 Centroid position shift

The easiest factor to filter out in equation 6.2 is (1), due to dispersion of position.

In other words, the first algorithm is designed to shrink the core centroid footprint

cluster at each station (see figure 5.26) to one point, or to bring down the curves in

figure 5.27 towards zero. At each station described in section 5.1.1, the left and right

halves of a single ring are considered to be uncorrelated, and each half is shifted until

the core centroid of the corresponding half collapses with a destination point. The

destination points are chosen to be the intersection points of each station line in a

streamwise position and the fitting lines in figure 5.1. A typical destination point is

shown in figure 5.26, which is the intersection of the left fitting line and station 102

(5.55D downstream from the orifice exit). The shifting process can be divided into

two steps:

1. Shift in y direction. Note that for one realisation (one ring), PIV cameras

record hundreds of images based on the recording frequency set. The criterion

of the image number selection from each realisation of the ensemble-averaging

process has been described in section 5.1.1. The image number of each real-

isation is now reselected such that the centroid y-coordinate of each half of

the ring should be closest to the corresponding station line. For instance near

station 102 (see figure 5.26), the 50 image numbers are reselected such that

the 50 footprints are close sufficiently to station 102, within ±0.8mm. The

consequence of the y-shift is shown in figure 6.2. There are only 20 footprints

shown, the reason for which will be given below. In fact there is no artificial

shifting in this step, only the reselecting process is operated.

2. Shift in x direction. The images from the two cameras are connected giving

the full FOV, after which the connected vorticity field is refined ten times by

cubic spline interpolation such that the resolution is artificially increased by

ten times. The benefit from this refinement is that the error in the x-direction

shifting can be reduced to a very small amount. Note that the data points

are discretized. For instance, the scatter of the footprints in figure 6.2 in

the x-direction after this step will be within ±(1/10)×2.48mm = ±0.248mm,

where 2.48mm is the raw grid spacing. The ring radius at each station number
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The first order fit
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trajectory

Figure 6.2: The left-hand-side core centroid footprints cluster reselected at station
102 (see figure 5.26) for 20 realisations of Re = 41280 cases. × denotes each of
the core centroids; −− denotes a 2mm radius circle centred at ◦; − · − denotes a
5mm radius circle centred at ◦. The station 102 line and the averaged core centroid
trajectory are also shown.
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6.2 Centroid position shift

calculated from the fitting lines of figure 5.1 is used as the standard ring radius,

regardless of the true radius of each ring produced. For example, at station

102, the standard radius is about 35mm, or 0.7D (see the x-coordinate of ‘◦’
in figure 5.26 and 6.2). The standard radius is also marked in figure 6.3. For

further averaging, each of the shifted velocity matrix needs to have the same

size, therefore it is not possible to keep the width of the original FOV matrix.

The new width is set to 2.0D (for half of the ring), giving the total width 4.0D

(see figure 6.3), which is a suitable width for the x-direction shift.

The consequence of the x-axis and y-axis centroid shift is sketched in figure 6.3,

where the left core centroid of two typical rings collapse at the destination point of

station i.

A primary effect after the core centroid position shift is shown in figure 6.4. The

first observation is that the maximum dimensionless vorticity levels of the rings at the

two Reynolds numbers are comparable now (compared to figure 5.22). The second

one is that the vorticity contours are slightly elongated, perhaps most obviously at

the lowest contour level. This is because the deviations of the centroid cluster are

not the same in the y-direction and the x-direction, within ±0.8mm and ±0.248mm,

respectively. Figure 6.5, 6.6, 6.7 and 6.8 show the three Reynolds stress contours and

the production contour. It is clear that the maximum intensities of these contours

are significantly reduced, compared with the raw quantity contours in section 5.2.1.

A quantitative calculation of the reduction will be given later. The contour shapes

are basically retained, with the core easily located, except for the axial and shear

component of the Re = 20039 rings. Reasons for this are given below.

The shifting process described above does not filter out factor (2) in equation 6.2

and 6.3. This is because shifting in rectangular grids does not change the ring’s

apparent tilting angle (judged from the positions of the two cores) in the PIV plane,

and it does not correct the curvature differences around the core due to the ring

size difference. It is clearly shown in figure 6.3. The result of applying this process

is an overestimation of the stresses towards the centre of the ring (towards the axis

of symmetry). In an effort to reduce this overestimation, 20 realisations whose core

centroids are closest to the destination points are used in the averaging process.

Because of this, in figure 6.2, only 20 footprints are shown. This overestimation is
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6.2 Centroid position shift

Figure 6.3: A schematic diagram showing the left halves of two typical vortex rings
shifting towards station i. The diagram shows that the shifting process is not capable
of filtering out the size and tilting angle effect. The sketch is not to scale and the
size difference and the tilting angles are exaggerated for the sake of illustration.
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Figure 6.4: Vorticity ∂V/∂η − ∂U/∂ξ contours in similarity coordinates, obtained
from velocity contours, after applying centroid position shift.
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Figure 6.5: Radial normal Reynolds stresses −U ′U ′ contours in similarity coordi-
nates, after applying centroid position shift. Higher levels in the core centre area
are not shown.
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Figure 6.6: Axial normal Reynolds stresses −V ′V ′ contours in similarity coordinates,
after applying centroid position shift. Higher levels in the core centre area are not
shown.
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Figure 6.7: Reynolds shear stresses −U ′V ′ contours in similarity coordinates, after
applying centroid position shift. Higher levels in the core centre area are not shown.
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6.3 Column decomposition
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Figure 6.8: Turbulence production contours in similarity coordinates, after applying
centroid position shift. Only the first four terms in equation 5.45 are included.
Higher levels in the core centre area are not shown.

still clear though, for instance in figure 6.5, where an obvious secondary core appears

on the inner side of the main core; and in figure 6.7, where the diagonal structures

near the cores are amplified; and the wake in figure 6.8. Therefore the collapse of

the apparent ring cores does not guarantee a good collapse of the ring bubbles.

The magnitudes of the total stress in the bubble region, equation 5.38, are plotted

in figure 6.9. It shows that this method filters up to 30% of the total stresses,

especially for Re2, when the apparent dispersion is strong. Figure 6.9 illustrates the

effectiveness of the filtering and clearly shows the size of the possible contribution of

the apparent core-position dispersion to the total stresses. It should be noted that

it includes the stress overestimation in the ring centre area. The magnitude of the

production in the bubble volume will be given at the end of section 6.3.

6.3 Column decomposition

For the purpose of subtracting factor (2) from equation 6.2, a technique is borrowed

from the analysis of Glezer & Coles (1990) that was applied to their LDV data.

Each column in the resultant data mesh (the vector field mesh) is assumed to be
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Figure 6.9: The summation of the magnitude of the Reynolds stress over the ring

bubble area

∫

B

|τ | dB/U2
pB as a function of ring streamwise location after shifting

each core centroid to the desired collapse point. τ : −u′u′, −v′v′ or −u′v′; B: the
rectangular region of 1.4D in streamwise direction and 2.4D in radial direction, see
figure 5.11. +: axial Reynolds normal stress; ×: radial normal Reynolds stress; •:
Reynolds shear stress. The grey markers are reproduced from figure 5.28.
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6.3 Column decomposition

uncorrelated with the neighbouring columns. The velocity mesh grid for the two-

dimensional PIV recording is 85 × 85, thus effectively there are 85 LDV testing

stations across the radial direction. A single instantaneous realisation recorded by

the PIV equivalently gives 85 LDV velocity traces. (It must be noted that they are

not exactly equivalent, because LDV gives a velocity trace of a time function, while

PIV results in a space function for a specific time.) In this way, data at each column

has no idea about what happens in the neighbouring columns. The algorithm is

summarised in the following steps.

1. If one column is considered, for each of the 50 rings produced, the PIV image

number (at a particular time) corresponding to the minimum r.m.s. of veloc-

ity components with respect to the ensemble-averaged velocity components at

that column is picked out. To reduce the computational expense, only ±20 im-

ages of the original image number are involved in the searching process. (This

corresponds to ±52.6ms in Re = 41280 rings and ±100ms in Re = 20039

rings.) The first ensemble-averaged velocity components are calculated from

the raw averaging process which is described in section 5.1.1. These ensemble

averaged values will be updated after the second step. This process is equiv-

alent to the time-shifting process in Glezer & Coles (1990). However, instead

of shifting the axial velocity component only to find the minimum r.m.s., in

this method, both axial and radial components are taken into consideration.

In order to take into account the small dispersion in the spanwise direction in

the PIV plane, the neighbouring three columns (hence seven columns in total)

are included for searching for the minimum r.m.s. PIV image number (time

point). Therefore, for one realisation, there are in total 7× (2 × 20 + 1) = 287

u, v trace pairs involved in searching for a best-fit trace pair.

2. After the first step, there are 50 velocity trace pairs (including both u and v

components) from 50 rings corresponding to one column station (the effective

LDV station), after which these 50 r.m.s. values are further sorted to find the

smallest 30 r.m.s. values. The final 30 trace pairs at one column station are

used to find the new ensemble-averaged velocities of two components.
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6.3 Column decomposition

3. The processes described above are iterated to obtain the final result for one

column. The same process is applied to all the 85 columns to obtain the

final corrected two-dimensional velocity fields and hence the stress fields and

production fields.

Figure 6.10 shows the 50 raw velocity traces at a typical column position, before

the column shifting treatment. After the iteration, the best 30 fitted traces corre-

sponding to that column are plotted in figure 6.11. The two figures clearly show the

effect of the column shifting treatment: the level of fluctuation is significantly re-

duced. With more iterations applied, the fitting quality is expected to be improved

(the r.m.s. values can be further reduced). Ideally, iterations would be repeated

until some stress quantities, like the ones plotted in figure 6.13, converge to certain

values, but more iterations will seriously increase the computational expense. Due

to this consideration, only a single iteration is applied, but that already reduces the

stress level remarkably, which will be shown later.

Notice that, at each column, the two velocity components in one pair are corre-

lated, in other words, the r.m.s. mentioned above takes the minimum value of the

following term

√√√√ 1

N

y=N∑

y=1

[u(y) − u(y)]2 +
1

N

y=N∑

y=1

[v(y) − v(y)]2, (6.4)

where N is the number of data points available in the streamwise direction. It should

be stressed that velocity traces are not corrected by the circulation factor as for the

LDV results. Multiplying circulation factors defined as

z =

∫
∞

0

u(y)dy
∫

∞

0

u(y)dy

κ =

∫
∞

0

v(y)dy
∫

∞

0

v(y)dy

(6.5)

by each of the velocity trace will further reduce the fluctuation, i.e. bring each of

the traces even closer to the averaged one (see figure 6.11). This is not attempted

though: the reason will be given later.

A primary check for the effectiveness of this method is again by plotting the

vorticity contours, which are presented in figure 6.12. The basic contour shapes and
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Figure 6.10: Typical velocity traces at one PIV data column scaled by effective piston
velocity Up at seven orifice diameters downstream from the orifice exit, before the
column shifting process is applied. In this plot, all 50 realisations are shown by −,
with the raw averaged traces shown by −. Up = 0.25m/s; Re = 20039.
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Figure 6.11: Typical velocity traces at one PIV data column scaled by effective
piston velocity Up at seven orifice diameters downstream from the orifice exit, after
the column shifting process and the iteration is applied. In this plot, 30 traces with
the minimum r.m.s. values are shown by −, with the iterated averaged traces shown
by −. Up = 0.25m/s; Re = 20039.
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Figure 6.12: Vorticity ∂V/∂η − ∂U/∂ξ contour in similarity coordinates, obtained
from velocity contours, after applying column shift.

levels are comparable with figure 6.4. It is the lowest level, where the contour lines

deviate from a quasi-closed circular loop, which reflects the effect of neighbouring

column un-correlation.

The magnitudes of the three Reynolds-stress components in the ring bubble

region are plotted in figure 6.13 . Note that the maximum scale in figure 6.13 is only

20% of that in figure 5.28 and figure 6.9. The stresses are also plotted in similarity

scaling and shown in figure 6.14. This shows that stresses do not decay perfectly

as similarity theory predicts (plots are still flat in figure 6.13), which means that

either the testing range is not long enough, or factor (4) in equation 6.2 still plays a

significant role which is subtracted. To subtract factor (4) requires that, on top of

the algorithm described above, at each column the velocity traces need to be scaled

to have the same standard deviation for both velocity components individually,

e.g. by multiplying the circulation factors in equation 6.5 by each of the selected

trace, but this process would decouple the two velocity components (i.e. destroy the

Reynolds shear stress), which is undesirable. It is for this reason that this factor

(4) is not processed. Note that the procedure used in the LDV results treated the

u and v signatures differently and separately - something the researchers regretted

at a later stage (as stated in Glezer & Coles, 1990). The decomposition procedure
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Figure 6.13: The summation of the magnitude of the non-dimensionalised Reynolds

stress over the ring bubble area

∫

B

|τ | dB/U2
pB as a function of ring streamwise lo-

cation after adopting the column decomposition method. τ : −u′u′, −v′v′ or −u′v′ ;
B: the rectangular region of 1.4D in streamwise direction and 2.4D in radial direc-
tion; see figure 5.11. +: axial Reynolds normal stress; ×: radial normal Reynolds
stress; •: Reynolds shear stress.

116

TurbulenceQuantityCorrections/correctionsFigs/stresses_1Dshift.eps


6.3 Column decomposition

5.5 5.9 6.3 6.7 7.1 7.53.5 3.9 4.3 4.7 5.1 5.5
0

0.1
0.2
0.3
0.4
0.5

R
ad

ia
l

5.5 5.9 6.3 6.7 7.1 7.53.5 3.9 4.3 4.7 5.1 5.5
0

0.1
0.2
0.3
0.4
0.5

A
xi

al

5.5 5.9 6.3 6.7 7.1 7.5
|y|

Re2=20039
/D

3.5 3.9 4.3 4.7 5.1 5.5
0

0.015

0.03

0.045

0.06

|y|
Re1=41280

/D

S
he

ar

Figure 6.14: The magnitude of the non-dimensionalised Reynolds stresses in the
bubble area scaled by the similarity scaling law as a function of ring streamwise lo-

cation after the column decomposition method is applied. Radial component:

∫

B

|−

u′u′|dB (ρ/I)2 (y − yo)
4 /ξ4; axial component:

∫

B

| − v′v′ |dB (ρ/I)2 (y − yo)
4 /ξ4;

shear component

∫

B

| − u′v′|dB (ρ/I)2 (y − yo)
4 /ξ4, according to equation 5.37. �:

Re1 case; ◦: Re2 case. −: the zero-order least-squares fits of � and ◦ with the fixed
virtual origins yo obtained from figure 5.1.
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Figure 6.15: Contours of radial normal Reynolds stresses −U ′U ′ in similarity coor-
dinates after the column decomposition method has been applied.

here is then a significant improvement for this reason (and in other details).

The contours of the Reynolds stresses and the production are reproduced in

figures 6.15 to 6.18, after the column decomposition method has been applied, or

after factor (1) and (2) have been filtered from equation 6.2. Although they do not

precisely obey the similarity theory, they are still scaled and presented in similarity

coordinates, in order to check the quality of the fitting and to find the similarity

constants, which will be listed in table 8.1. The stress intensities in the radial and

axial components are comparable now, and the degree of symmetry is increased. Due

to the low magnitudes, a very weak wake appears in the left figure of figure 6.16,

but not in the right figure, nor in the left figure of figure 5.24. The wake here is

not the one shed from the ring structure, but the one that belongs to the formation

process. This formation wake is also visible in the left figure of figure 6.17, but it

is merged with the wake shed from the ring bubble. It should be noted that, with

correction, the values for the quantities are very similar to those found in the LDV

results, whereas before correction they were significantly higher; see the plots in

appendix D. Of course the LDV results were also corrected for dispersion but via a

more complex procedure (which was necessary due to the fact that the researchers

only had single-point measurements).
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Figure 6.16: Contours of axial normal Reynolds stresses −V ′V ′ in similarity coor-
dinates after the column decomposition method has been applied.
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Figure 6.17: Contours of Reynolds shear stresses −U ′V ′ in similarity coordinates
after the column decomposition method has been applied.
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Figure 6.18: Turbulence production contour in similarity coordinates after the sec-
ond correction method has been applied.

Finally, the turbulence production level in the bubble region is plotted in fig-

ure 6.19, for the raw quantities together with the filtered quantities after applying

the two filtering algorithms discussed in this chapter. Similar to equation 5.38, the

magnitudes of the production level in the bubble region can be written as
∫

B

|p| dB =

∫

B

|p| drdy. (6.6)

There are a few points worth noting once more, even though they are similar

to those mentioned for the stress plots. First, the raw levels are quite different

even in dimensionless form (scaled by piston velocity and slug circulation). Like

the similarity theory, the non-dimensionalising process only accounts for the mag-

nitude but not for the dispersion, therefore a higher level in the Re2 plot is reason-

able (see figure 5.27). Second, after the first correction method (centroid position

shift) is applied, the production levels for the two cases both decrease to the level

of 0.025, meaning that after the centroid dispersion is excluded, the evidence for

Reynolds number independence is already revealed. Third, as with the stress plots

in figure 6.13, application of the second correction method (column decomposition)

reduces the level by about another 50% and the plots are much smoother. However,
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Figure 6.19: The summation of the magnitude of the non-dimensionalised turbulence

production over the bubble area

∫

B

|p| dB/ρU2
p Γslug as a function of ring streamwise

location. The production p is calculated from equation 5.39 for i, j up to 2, +: the
raw quantity ptotol; ×: after pposition is filtered; •: after pposition and pradius+tilt are
filtered.
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Figure 6.20: The magnitude of the non-dimensionalised turbulence pro-

duction in the bubble area

∫

B

|p| dB scaled by the similarity scaling law
∫

B

|p| dB (ρ/I)3 (y − yo)
8 /ξ8, according to equation 5.43, as a function of ring

streamwise location after the column decomposition is applied. The production
p is calculated from equation 5.39 for i, j up to 2. �: Re1 case; ◦: Re2 case. −:
the zero-order least-squares fits of � and ◦ with the fixed virtual origins yo obtained
from figure 5.1.

if data in figure 6.19 are presented in similarity coordinates (see figure 6.20), it is

noticeable that the similarity theory does not work perfectly as well, probably for

the same reasons discussed for the stresses.
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Chapter 7

A Three-Dimensional
Representation

This chapter presents an effort in an attempt to reconstruct a three-dimensional

quantitative visualisation of a single vortex ring by adopting the idea of Taylor’s

hypothesis, or Taylor’s ‘frozen turbulence’ hypothesis. Section 7.1 gives a brief

background of Taylor’s hypothesis and an introduction of the procedure of the recon-

struction process. The result of the recontruction is shown, and some key features of

the vortex ring are successfully captured. Section 7.2 proposes an azimuthal averag-

ing method in cylindrical coordinates, based on the instantaneous three-dimensional

velocity information, showing mean velocity and vorticity contours and contours of

turbulence quantities.

7.1 The reconstructed velocity field

Taylor’s hypothesis (Taylor, 1938; Townsend, 1976) states that “if the velocity of the

airstream which carries the eddies is very much greater than the turbulent velocity,

one may assume that the sequence of changes in U at the fixed point are simply

due to the passage of an unchanging pattern of turbulent motion over the point”.

In other words, if the relative turbulence intensity u′ is assumed to be small enough

compared to the mean advection speed U

u′

U
� 1, (7.1)
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7.1 The reconstructed velocity field

the time-history of the flow signal from a stationary probe can be regarded as that

due to advection of a frozen spatial pattern of turbulence past the probe with the

mean advection speed U , i.e.

u (y, t) = u (y − U∆t, t+ ∆t) (7.2)

where ∆t is the time delay and should not be a too large value. Taylor’s hypothesis

is effectively a method to transfer the time dependent measurement results to a

spatial domain.

The accuracy of Taylor’s hypothesis is determined by equation 7.1. Theoretically,

if u′ → 0, the flow field structure would be like a solid (‘frozen’) body passing through

the testing station. A finite u′ means that the different points or layers of data of

the subsequently reconstructed flow field along the advection direction belong to

different times, so the reconstructed flow field is not strictly a snapshot. If, however,

the convection velocity goes to infinity, the time scale for the flow structure to pass

the station is effectively zero, and so is the time difference for points on advection

path. Because in a real flow problem, U cannot go to infinity, Taylor’s hypothesis

is only valid if the level of turbulence u′ is sufficiently low.

A vortex ring advects downstream due to its self-induced velocity, and the speed

of the advection has been given in figure 5.5 and equation 5.7. The dimensionless

advection speed Ut for rings of two Reynolds numbers is typically about 6.0 (see

figure 5.5 and equation 5.7). When a single vortex ring is to be reconstructed,

turbulence intensities will only be due to factor (3) in equation 6.2, i.e. there will

be no ensemble-averaging effects. Therefore, the relative dimensionless turbulence

intensities −U ′U ′ and −V ′V ′ are most likely to be the ones in figure 6.15 and 6.16,

which are typically below 4. Thus result of equation 7.1 can be estimated as:

u′

U
=
U ′

Ut
<

2

6.0
≈ 0.33. (7.3)

Although equation 7.1 does not strictly hold, a mean structure can still be suc-

cessfully reconstructed. For this purpose, the PIV plane needs to be oriented per-

pendicularly to the ring advection direction, parallel to the x-direction in figure 3.3

and stereoscopic recording is required. In this arrangement, the PIV plane is located

at 6D downstream from the orifice exit. Due to physical space restrictions, smaller
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7.1 The reconstructed velocity field

streamwise locations are difficult to measure. A backward backward-scattering (BB)

camera arrangement is used, i.e. the two cameras are on different sides of the laser

sheet (see Lavision, 2007b). In order to orient the laser sheet horizontally, a second

optical mirror is placed between the two cameras, at 45o to the horizontal direction.

The laser sheet is reflected twice. Figure C.1 B shows the sketch of this stereoscopic

recording setup. After the water-perspex-air refraction is taken into consideration,

the effective angle between the two cameras is approximately 120o, which is quite

near to the minimum requirement of the BB setup (Raffel et al., 2007) but the

maximum value that can be reached in the physical space. The spatial resolution in

this setup is 1.69mm and only Re1 = 41280 rings are studied. In this experiment,

the Cartesian coordinate system is also adopted with the +y axis points to the +x

direction in figure 3.3 but +x axis outward such that the +z axis points upward.1

These are the default assignment of the stereoscopic PIV arrangement. The x, y, z

components are labelled by î, ĵ, k̂ respectively.

A typical instantaneous PIV velocity - vorticity field looks like that in figure 7.1,

in which only the in-plane velocity vectors are plotted and the vorticity is the one

calculated from the in-plane velocities which is ωk̂. The turbulence is indicated

by the directions and relative lengths of the vectors and the fluctuations of the

vorticity contours. Velocity contours for a typical snapshot of this type can be

found in figure 5.36.

In order to visualise the vortex ring structure, after Taylor’s reconstruction of

velocity field, the vorticity magnitude is shown. In the three-dimensional case, the

vorticity vector has three components. In Cartesian coordinates, the vorticity vector

is written as

~ω = ∇× ~u
(
î, ĵ, k̂

)

=

(
∂uk

∂xj

− ∂uj

∂xk

)
î −

(
∂uk

∂xi

− ∂ui

∂xk

)
ĵ +

(
∂uj

∂xi

− ∂ui

∂xj

)
k̂. (7.4)

Therefore,

ωî =
∂w

∂y
− ∂v

∂z

1Such coordinate assignment in three-dimensional representations is for convention’s sake: the
upward direction is indicated by +z, instead of by +y as in the previous chapters.
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Figure 7.1: An instantaneous presentation of velocity vectors (shown by the arrows)
and vorticity (shown by the contours) in the azimuthal plane in physical/dimensional
coordinates when the ring centre is about to reach the PIV measurement plane. Only
the velocity vectors in the azimuthal (x − y) plane are shown. The vorticity is in
the streamwise direction. Re = 41280.
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7.2 The azimuthal-averaged turbulence quantities

ωĵ = −
(
∂w

∂x
− ∂u

∂z

)

ωk̂ =
∂v

∂x
− ∂u

∂y
. (7.5)

where ui = u, uj = v and uk = w; xi = x, xj = y and xk = z. The magnitude of

the vorticity is

ωm =

√
ωî

2
+ ωĵ

2
+ ωk̂

2
(7.6)

where ωm denotes the magnitude of the vorticity and ωî, ωĵ, ωk̂ are defined in

equation 7.5.

After the reconstruction process, the structures of the vortex ring-bubble and

wake can be clearly observed in figure 7.2, in which the strong level of the turbu-

lence can be indicated by the degree of the surface smoothness of each isosurface

level and the streamline patterns. It must be pointed out that in order to visualise

the ring bubble by streamlines, the ring needs to be put in a reference frame which

moves at the ring’s translation speed downstream. This is realised by simply adding

the translation velocity of the ring at the PIV testing location1 on to the instanta-

neous streamwise velocity at every data point. The computation of vorticities is not

affected by adding a constant to the velocity field.

The extent of irregularity of the streamline patterns can be clearly distinguished

between upstream and downstream of the ring bubble, and the existence of a strong

wake is clearly shown. A wavy core is also obvious, which verifies the existence of

the azimuthal waves. In order to see the effect of this waviness on the apparent core

dispersion encountered in the two-dimensional PIV results, the compact vortex ring

core is reproduced in figure 7.3, with three viewing angles presented. It is easy to

see this effect in the second figure. (The PIV plane of the two-dimensional recording

is in the y-z plane.)

7.2 The azimuthal-averaged turbulence quantities

If the vortex ring bubble is considered to be axisymmetric, it is possible to compute

the turbulence quantities by azimuthal averaging a single realisation, instead of by

1It is assumed here that the ring navigation velocity in the vicinity of the PIV testing location
is constant, while the decuction of figure 5.5 or a small extrapolation of figure 5.10 shows that it
is a function of streamwise distances and hence time.
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7.2 The azimuthal-averaged turbulence quantities

Figure 7.2: A three-dimensional vorticity magnitude Isosurface. Isosurface levels
are 150s−1, 100s−1, 50s−1. Streamlines are shown in the second figure. The colour
bar shows the streamwise velocity level. Re = 41280.
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7.2 The azimuthal-averaged turbulence quantities

Figure 7.3: A vortex-ring core represented in physical coordinates. The level of the
vorticity magnitude is ωm = 150s−1.

ensemble averaging. The vortex-ring wake is not necessarily axisymmetric, but since

the turbulence intensity in the wake is normally low compared to that in the bubble

volume (see the contour plots in section 5.2.2 and 5.2.3), the asymmetry of the wake

is not believed to be very important.

The azimuthal averaging process is illustrated in figure 7.4, in which a cylindrical

coordinate system is used and the averaging process begins at θ = 0 and ends at

θ = 2π. An initial step is to locate the ‘best’ centre point, or a proper axis of

symmetry. It is because the results from the azimuthal-averaging process depend

heavily on the location of this axis. The axis is found by the least-squares fit of

the core area to a circle. In figure 7.4, two co-centric circles with radius 35mm and

40mm are plotted to prove the quality of the fitting.

Because the raw data is stored in Cartesian grids, at smaller radii, there are

fewer points to average. In order to improve this shortage, the grid is refined by a

factor of ten by two-dimensional cubic spline interpolation to increase the number of

data points at small radius. However, there are still different numbers of data points

at different radii. In other words, quantities at different radii converge to different

extents. Unless one intentionally uses fewer points at larger radii, fully overcoming

the problem requires storing the raw data directly into a polar-coordinated mesh,

which is not easily achievable.

The method is attempted first with velocity fields, albeit imperfectly. Because
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7.2 The azimuthal-averaged turbulence quantities

Figure 7.4: A schematic diagram showing the azimuthal averaging process in cylin-
drical coordinates. Only one azimuthal plane is shown. Rad denotes the radial
direction and θ denotes the azimuthal direction, positive anti-clockwise; − and −−
denote circles of 35mm and 40mm in radius and centred at the origin.
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7.2 The azimuthal-averaged turbulence quantities

of the discretized Cartesian grids, the points searching for each radius follows the

rule below after the best-fitted centre is located:

r 6

√
(x− xc)

2 + (y − yc)
2 < r +

√
2

10
∆h, (7.7)

where r denotes the radial distance from the best-fitted centre (xc, yc); ∆h =

1.69mm, which is the spatial resolution, 10 denotes the refinement factor and
√

2

denotes the diagonal of a square grids. Thus it gives an uncertainty of
√

2∆h/10 =

0.24mm.

In order to make better comparison with the two-dimensional results, the assign-

ment of the coordinates are changed to the same as for the two-dimensional results

and the quantities are non-dimensionalised by equation 4.9 and presented in simi-

larity coordinates calculated from equation 4.7. Figure 7.5 shows the dimensionless

velocities Uθ (radial), Vθ (axial), Wθ (azimuthal) and the dimensionless vorticity ω̂θ,

where:

ω̂θ =
∂Vθ

∂η
− ∂Uθ

∂ξ
, (7.8)

and the subscript θ, here-and-after denotes an azimuthal-averaged result, ξ, η denote

the axial and radial direction in cylindrical coordinates. The velocity components

in cylindrical coordinates can be converted from those in Cartesian coordinates. At

an arbitrary point in the first quadrant (see figure 7.4), the instantaneous velocities

in cylindrical coordinates can be derived by:

uθ = u cos θ + v sin θ

wθ = −u sin θ + v cos θ

vθ = w, (7.9)

where u, v and w are the velocity components in the three principle directions, in

the Cartesian coordinates; uθ, vθ and wθ are the radial, axial and azimuthal velocity

components, respectively in cylindrical coordinates. Similar relationships can be

derived for points in the other three quadrants.

The first observation of figure 7.5 is that the location of the core is conserved

in the similarity coordinates. The second is that there is more noise towards the

axis of symmetry in all the contour plots (a)-(d), which is presumably due to the

smaller number of data points for averaging in the centre area. There is a weak mean
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Figure 7.5: The mean structures of velocity and vorticity calculated by azimuthal-
averaging: averaging along the θ direction in similarity coordinates. Contours shown
are Uθ (radial), Vθ (axial), Wθ (azimuthal) and ω̂θ (azimuthal) in (a), (b), (c) and
(d), respectively.
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7.2 The azimuthal-averaged turbulence quantities

azimuthal velocity in the azimuthal component Wθ plot (figure 7.5 c): an elongated

region of positive mean velocity can be observed in the wake, while a weak negative

mean velocity can be observed in the core centre region. The existence of a mean

azimuthal velocity in the core region is not surprising, as a number of researchers

have also observed such behaviour, which has been reviewed in section 2.3. This

could also be attributed to the inaccuracy of the azimuthal-averaging method, which

will be discussed later. The opposite-sensed mean velocity in the inner region may

be partly due to the noise and partly due to a possible mechanism of conservation of

angular momentum of the vortex-ring bubble. The streamline pattern in figure 7.2

is evidence for the mean azimuthal velocity. If it is difficult to see the weak mean

motion in the core, some spiral streamlines can be clearly seen in the wake. It must

be noted that the mean azimuthal velocities in these two regions are still much

weaker than the radial and axial components: Uθ, Vθ.

If the mean velocity structure is correct, the turbulence stresses and production

can also be computed by means of azimuthal-average, based on the mean velocities.

The three components of Reynolds normal stresses are written as

−U ′

θU
′

θ, −V ′

θV
′

θ , −W ′

θW
′

θ, (7.10)

where the subscript θ refers to the azimuthal averaging process, in order to dif-

ferentiate to the quantities from ensemble-averaging process. Similarly the three

components of Reynolds shear stresses are written as:

−U ′

θV
′

θ , −U ′

θW
′

θ, −V ′

θW
′

θ. (7.11)

Similar to equation 5.49, the turbulence production from azimuthal averaging is

written as

Pθ =

(
−U ′

θU
′

θ

∂Uθ

∂η

)
+

(
−U ′

θV
′

θ

)(
∂Uθ

∂ξ
+
∂Vθ

∂η

)
+

(
−V ′

θV
′

θ

∂Vθ

∂ξ

)

+

(
−W ′

θW
′

θ

Uθ

η

)
. (7.12)

The shape of the contour plots of the normal stresses and the production (fig-

ure 7.6 and 7.8) basically agree well with the ensemble-averaged results, except for

some disparities in the contour levels. In particular, the wake is only visible in the
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Figure 7.6: Azimuthal-averaged Reynolds normal stresses - averaging along the θ
direction in similarity coordinates. Contours shown are −U ′

θU
′

θ, −V
′

θV
′

θ and −W ′

θW
′

θ,
respectively.
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Figure 7.7: Azimuthal-averaged Reynolds shear stresses - averaging along the θ
direction in similarity coordinates. Contours shown are −U ′

θV
′

θ , −U ′

θW
′

θ and −V ′

θW
′

θ,
respectively.

radial and azimuthal normal stress components and compared with the in-plane

(radial and axial, ξ and η) components, the out-of-plane (azimuthal, θ) components

are smaller, for both of the figures. The Reynolds shear stress plot (figure 7.7) has

a significant discrepancy compared with figure 5.35; the possible reasons will be

considered now.

In general all the contour plots produced by azimuthal average are noisier than

those produced by the ensemble average. One of the reasons has been given, which

is the extent of convergence. There are at least three more possible reasons for the

noisiness and the inaccuracy of this azimuthal averaging method:

1. The first two reasons are associated with the degree of axisymmetry of the

vortex ring structure. The terminology of axisymmetry relates to two direct

effects in the computation of turbulence quantities by azimuthal averaging.

The first effect is the degree of the circularity of the ring projected in the

azimuthal plane, or the radius variation. One may argue that the radial vari-
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Figure 7.8: Azimuthal-averaged turbulence production - averaging along the θ di-
rection in similarity coordinates. From left to right: sum of the first four terms in
equation 7.12, the fifth term in equation 7.12, sum of all the five terms in equa-
tion 7.12.
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7.2 The azimuthal-averaged turbulence quantities

ation is also a factor for the level of turbulence of a vortex ring, nevetheless,

it is always ideal to average quantities at the same relative positions in a ring,

i.e. to set the averaging path to follow the core shape, so that it reflects the

fluctuation more precisely. For argument’s sake, if the ring produced is (tem-

porarily) elliptical when projected in the azimuthal plane, the averaging path

would ideally also be elliptical, following the core. Figure 7.4 shows the ring

core projected in an azimuthal plane and the eccentricity from a perfect circle

is clearly seen in the ‘southeast’ portion.

2. The second effect is the degree of core waviness and the mean tilting angle, or

the axial variation. Ideally the azimuthal average in this aspect requires that

the core is flat and level in the azimuthal plane. If the tilting angle is large,

it is no longer suitable to average along paths in a plane normal to the axial

direction in cylindrical coordinates.

3. The core azimuthal waves may be changing (both their amplitudes and phase

angles) on a time scale similar to the advection time for the ring structure

to pass through the testing station, although this time scale is relatively very

small.

4. Although the vortex-ring bubble advects downstream at a finite speed, the

wake, which has no mean momentum, does not advect. Therefore Taylor’s

hypothesis does not ‘freeze’ the wake, and the contour plots of the wake part

are less accurate.

In addition to the noisiness, the averaged core shape is slightly elongated in the

axial direction (see figure 7.5 (d)), which may suggest that the effect of reason 2

exceeds the effect of reason 1. The magnitudes of turbulence quantities are especially

sensitive to the lack of axisymmetry (point 1 and 2 above) due to the small streamline

curvature in the core region which helps answer the questions why the turbulence

intensities are higher and the contour shapes are different for the Reynolds shear

stresses when they are compared with the ensemble-averaged results.
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7.3 Future perspective and implications

7.3 Future perspective and implications

Because the waviness along the core is an intrinsic property of a turbulent vortex

ring during its development, it is inevitable and should not be corrected artificially

when one attempts to compute the turbulence quantities. The azimuthal averaging

is a sensible method to account for the effect of the amplitude of the core wavi-

ness on the turbulence quantities. The main point for future improvement of the

three-dimensional reconstruction discussed in this chapter is to increase its accuracy.

There are at least two aspects worth future investigation.

First, in order to freeze the ring structure better, the results of equation 7.3 needs

to be closer to zero. Nevertheless, it is expected that for fully turbulent vortex ring,

the level of turbulence intensity u′ scales with Reynolds number (because u′ ∼ Up),

hence scales with vortex ring circulation Γ and the advection speed ut. Simply

increasing Reynolds number will not improve the situation. Certain treatments

independent of the ring will be necessary. A possible way is to move the recording

PIV plane (cameras and the laser sheet together) against the ring advection direction

- an ‘active scanning’ process. Equation 7.3 shows that by simply moving the PIV

testing plane at the same speed as the ring, it can bring down the ratio u′/ut

significantly to less than 0.167 (doubling the denominator). Moreover, to resolve

the wake correctly, an ‘active scanning’ seems to be compulsory.

Second, the conventional statistical study of non-stationary turbulent flow by an

ensemble-averaging process is often useful. As has been pointed out in the begin-

ning of Chapter 6, to accurately correct the effect of dispersion or shape variation,

requires fully three-dimensional data. If the active scanning method guarantees a

nearly accurate raw three-dimensional velocity field, the correction based on ensem-

ble averaging can be realized and can possibly give a better result. Furthermore, it

is also possible to incorporate the ensemble averaging and azimuthal averaging in

order to compute the turbulence quantities.

If the ring is in a transient regime, it is not quite turbulent and the bubble volume,

and hence the ring core, is still quite compact and isolated, the active scanning or

even the ‘passive scanning’ (stationary PIV testing plane) method will be accurate

enough. Therefore, some important properties of the azimuthal instabilities (waves),

e.g. the wave number, amplitude, shape, angle and mode, in various conditions
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7.3 Future perspective and implications

(as discussed in section 2.3) can be revisited with fully three-dimensional velocity

information (hence vorticity and other inferred quantities) supported.

It has to be pointed put that, there exists an upper limit of the active scanning

speed, it is not allowed, even if it is capable to go to infinity. In other words, it is

never possible to capture a true ‘frozen’ flow field. It is because if the flow is really

frozen, there will be no particle displacement, thus the PIV will fail to work. In

order to allow a particle displacement, a PIV ∆t has to be given at one slice, which

is in the order of millisecond. In summary, there will be a trade off for the scanning

speed, but an optimal scanning speed is always possible to find.

There is probably a solution for the problem of zero particle displacement at

an extremely high scanning speed Uscan: a second stereo recording system can be

introduced, aligning with the first system in the scanning path, and with a spacing l

to the first one. Thus the value of l/Uscan effectively gives the PIV ∆t. Theoretically,

this dual-system arrangement allows the choice of the Uscan value to a much higher

value: at a fixed Uscan, PIV ∆t can be adjusted by setting the spacing l between

the two systems (two laser sheets) very carefully. By choosing a very high value of

Uscan, one approaches a truly ‘frozen’ and instantaneous flow structure.

The state-of-the-art tomographic PIV is also a candidate to give truly instanta-

neous three-dimensional velocity information of a flow field. However, tomographic

PIV would encounter some difficulties when a large volume of the flow is to be ex-

amined. To reach the same FOV as the current expariment, a minimum required

FOV will be 100mm3 (see figure 7.3). This means that first of all, this volume

needs to be illuminated; the laser intensity would be very weak when it is diffused

to such a large volume. Second, it would be extremely difficult for the cameras to

be focused on such a deep FOV (which means the aperture needs to be very small)

while accepting enough light during a very short shutter opening time. Therefore, if

tomographic PIV is to be used, one can only produce small vortex rings, but small

rings will reduce the spatial resolution, probably to an undesirable level.
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Chapter 8

Conclusions

Overall, for the streamwise range considered, the similarity theory seems to predict

the behaviour of the circulation decay, velocity decay and growth rate very well. In

the case of the turbulence quantities the situation is more difficult to assess because

the ring dispersion has a much stronger effect on the results. After applying basic

and reasonable corrections, however, it does seem that the similarity theory is valid.

The vital differences observed in these two Reynolds number cases, perhaps, is

the degree of apparent scattering of core centroids which can be seen in figure 5.1

and figure 5.27. As has been emphasised, the apparent scattering is part of the

nature of turbulent rings due to azimuthal waves, and because the waves travel in

the azimuthal direction, the PIV plane can cut at local peaks or valleys of the waves

not necessarily in a totally random fashion. In other words, there could be a trend

that at a certain streamwise location, waves rotate at azimuthal angles such that on

one side, cores appear more scattered than on the other. To prove this possibility,

the three-dimensional measurements of vortex-ring cores as described in chapter 7

are a potential solution, but a large number of realisations are necessary. (Of course,

the imperfection of the ring generator could be another possibility, although it is

believed to be a minor factor.) This could also be a reason why in figure 5.27 Re2

case, the two curves split at about |y|/D = 5.5 and soon after |y|/D = 7 they merge

again. (Notice that 50 realisations should guarantee convergence; see figure 3.4.)

The amplitude of the waves directly relates to the degree of instability, which is a

function of ring propagation time and distance. The detailed investigation of this

scattering trend will be left for future study.
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When quantities are plotted to verify the similarity theory, they are scaled with

the virtual origins fixed and the zero-order least-squares fits are applied. If the sim-

ilarity theory works, the experimental data should follow the fitting lines precisely.

The fitting of the data are very sensitive to the locations of the origins, which are

obtained from figure 5.1. The Re2 case in figure 5.1 is more scattered, it makes sense

to imagine that if the outer part of the individual traces are used to fit,1 a nearer

origin may be obtained which changes the plots slightly and leads to better fits in

some figures, like in figure 5.3.

The results presented have shown that all the ensemble-averaged quantities mea-

sured in this experiment are not strong functions of Reynolds number when the

rings are produced as turbulent and at least up to Re = 41280, although the tur-

bulence quantities, after correction, still indicate slightly different similarity quan-

tities. Therefore the elimination of ν in equation 4.1 is a reasonable assumption.

The physical explanation of the validity of this elimination, which was mentioned in

section 4.2, is the inertial term exceeding the viscous term. This argument is also

supported by the instantaneous results of vortex shedding (see section 5.1.8), where

the dominant vortex-shedding process is inviscid and a function of the ring core size

(see section 5.1.4, where the viscous diffusion effect is not clearly seen to cause the

core radius to increase).

Although the hydrodynamic impulse of the entire flow field, after some com-

putational error is excluded (as described in section 5.1), drops, the drop is not

significant, at least for the first few orifice diameters (see figure 5.17); furthermore,

since the similarity theory works for the ring bubble area, it makes sense to consider

the ring bubble impulse instead of the full field impulse, and this quantity is fairly

constant. The vortical structure shedding as observed by Maxworthy (1974), by flow

visualisation, does not indicate significant impulse loss from the ring bubble. When

all the assumptions are valid, similarity theory predicts the development of single-

point properties only e.g. Reynolds stresses and turbulence production. When the

ensemble-averaging process is applied to obtain these quantities, to properly verify

the theory requires that all the realisations are ideal in the sense that they are of

the same location, size, tilting angle and shape. This is not possible because of the

1By using the outer part, it is suggested that the inner parts do not reveal the true ring radius,
they are rather influenced either by the azimuthal waves or by the dispersion.

141



effect of core dispersion, which is inherent in the nature of turbulent vortex rings

and it is the core dispersion that has a significant effect on the results. The con-

tribution from the intensity fluctuation to the turbulence quantities is shown to be

below 10% of the raw, or the total level, and because the shapes of the turbulent

vortex rings differ, perfect similarity decay is not seen. Despite the imperfection

in the similarity decay, they are least-squares fitted to give the similarity constants

presented in table 8.1. Some parts of this research activity have been contributed

to Gan & Nickels (2010).

A three-dimensional reconstruction method following the idea of Taylor’s hy-

pothesis is also attempted in order to give an approximate three-dimensional velocity

field. The method has some success in capturing the ring-core waviness, albeit suffer-

ing from the intrinsic limitations of Taylor’s hypothesis. It shows that the azimuthal

waviness does not only exist in a ring’s transitional regime from laminar to turbulent,

it can appear in a fully turbulent ring. With the aid of the fully three-dimensional

information, the vortex stretching effect is also presented, which is verified to be

closely related to the source of the turbulence production. An azimuthal-averaging

process is also proposed in an attempt to give a two-dimensional averaged contour

based on a single realisation. This averaging process shows some agreement with the

traditional ensemble-averaged results, but it is not believed to be a perfect method,

because of the limitations mentioned. A possible cure is the active scanning method

applied on ensemble realisations, as discussed in section 7.3.

142



Figure number Quantities on the ordinate The similarity constants Re1 Re2 LDV

5.5
[
4ut (ρ/I) (y − yo)

3]1/4 |ξ| 25.463 26.380 25.0
5.5 |Ut| 6.36 6.60 6.25
5.1 η 0.225 0.232

5.3* |vpeak| (ρ/I) (y − yo)
3 /ξ3 |Vpeak| 15.464 15.177

5.15*

[∫

B′

ω dxdy

]
(ρ/I) (y − yo)

2 /ξ2

∫

S′

ω̂ dξdη 6.869 7.096 7.71

5.12

[∫ yb

ya

πx2 dy

]
ξ3/ (y − yo)

3

∫ ξb

ξa

πη2 dξ 0.076 0.078 0.048

6.14*

∫

B

| − u′u′|dB (ρ/I)2 (y − yo)
4 /ξ4

∫

S

|U ′U ′ |dξdη 0.199 0.242

6.14*

∫

B

| − v′v′|dB (ρ/I)2 (y − yo)
4 /ξ4

∫

S

|V ′V ′ |dξdη 0.176 0.215

6.14*

∫

B

| − u′v′|dB (ρ/I)2 (y − yo)
4 /ξ4

∫

S

|U ′V ′ |dξdη 0.014 0.011

6.20*

∫

B

|p| dB (ρ/I)3 (y − yo)
8 /ξ8

∫

S

|P |dξdη 5.50 7.05

Table 8.1: Similarity constants obtained from the data. LDV represents the results from Glezer & Coles (1990).
Re1 = 41280, Re2 = 20039. Ut is the similarity quantity corresponding to the ring translation velocity (equa-
tion 5.7). ∗: quantities that do not obey the similarity theory perfectly, but least-squares fitting is still applied to
find the approximate similarity quantities. ω̂: The dimensionless vorticity (equation 5.31); B: the bubble region in
dimensional/physical coordinates; B′: half of the bubble region for circulation calculation in dimensional/physical
coordinates; S: the bubble region in similarity coordinates; S ′: half of the bubble region for circulation calcula-
tion in similarity coordinates. P : the dimensionless turbulence production, calculated from the first four terms in
equation 5.45. Note that the LDV circulation is computed for the full flow field, however figure 5.15 shows that
the full-field circulation deviates from the similarity theory significantly. The circulation shown here is the bubble
circulation.
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Appendix A

Maxworthy’s model for turbulent
vortex rings

There are two assumptions made for deriving the mathematical description of the

long-term behaviour of turbulent vortex ring: the turbulent core and its co-travelling

bubble are assumed to be geometrically similar at all times and the Reynolds number

is large enough for viscosity to be unimportant in determining the gross properties

of the flow. The growth rate of the ring bubble volume is proportional to the ring

instantaneous surface area and propagation velocity:

d

d t

(
4

3
πR3k1

)
= 4πR2Uα′k2,

therefore,
dR3

d t
= 3αR2U, (A.1)

where α = α′k2/k1, which is an entrainment coefficient and k1, k2 are coefficients

which relate the actual volume and surface area of the ring to those of an equivalent

sphere of radius R. Similarly, the equation of impulse loss rate can be modelled by

an equivalent drag force:

d I

d t
=

d

d t

(
2πρR3Uk3

)
= −1

2
C

′′

DρU
2πR2k4,

which reduces to
d

d t

(
R3U

)
= −1

4
C

′

DU
2R2, (A.2)
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where C
′

D = C
′′

Dk4/k3, which is a drag coefficient, and k3, k4 are again geometrical

coefficients to account for the shape factor. The ring propagating velocity can be

written as

U =
d x

d t
, (A.3)

where x is the streamwise distance.

The above three equations serve as the governing equations to seek the scaling

law of U and R (with respect to t).

Equation A.1 can be reduced to

dR

d t
= αU. (A.4)

By refering to equation A.3,
dR

d x
= α. (A.5)

Therefore,
dR3

d x
= 3αR2.

Equation A.2 and A.3 give

d

d x

(
R3U

)
= −1

4
C

′

DUR
2, (A.6)

which can be expanded and rearranged to give

∫ U

Uo

dU

U
= −

∫ R

Ro

(
C

′

D

4α
+ 3

)
dR

R
. (A.7)

Integration and simplification gives

U = R

[
−

(
C

′

D
/4α

)
−3

]

= R
[−CD−3]

, (A.8)

where U = U/Uo, R = R/Ro and CD = C
′

D/4α. If two more dimensionless numbers

are defined as t = t/tc and tc = Ro/αUo, combining equation A.4 and A.8, it can

be shown that

R =
[
(CD + 4) t+ 1

] 1

CD+4 (A.9)

U =
[
(CD + 4) t+ 1

]
−

CD+3

CD+4 , (A.10)

because R = 1 when t = 0.
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Thus the scaling law becomes

R ∼ t1/(CD+4)

U ∼ t−(CD+3)/(CD+4)

U ∼ R−(CD+3)
∼ x−(CD+3). (A.11)

Note that when CD → 0, scaling law in equation A.11 reduces to the results of the

similarity theory. The value of CD in Maxworthy (1974) is found to be between 1.8

and 2.7 by curve fitting of his experimental data.
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Appendix B

Johnson’s model for turbulent
vortex rings

Johnson (1970) found that for distances of 70 diameters from the nozzle, the be-

haviour of turbulent vortex rings can be accurately described by the following em-

pirical equations

(t− to)

To
= C

(
x− xo

D

) 2

3

, (B.1)

and

2
R

D
= K

(
x− xo

D

) 1

6

, (B.2)

where K and C are constants and to and xo are virtual origins in time and space

respectively. To is the time scale for vortex ring generation, R is the radius of the

ring and D is the diameter of the vortex generator.

Equation B.1 can be arranged to:

(
x− xo

D

)
= C

′

(
t− to
To

) 3

2

,

where C
′

is another constant. Differentiating the above equation with respect to

time, the dimensionless ring propagation velocity U/Uo can be calculated as

U

Uo
= C

′′

(
t− to
D

) 1

2

, (B.3)

where Uo is a velocity scale from the apparatus. Thus,

U ∼ (t− to)
1

2
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∼ (x− xo)
1

3 . (B.4)

From equation B.1,

R ∼ (t− to)
1

4

∼ (x− xo)
1

6 . (B.5)

This model shows that the ring propagation velocity U increases with down-

stream distance, which is not very reasonable, because the energy of the ring always

decays.

The large discrepancies between Johnson’s scaling law and the other two scaling

laws could be partly because of the difficulty of quantifying the effect of initial

conditions in different experiments, and partly because of the different ranges of the

data used to empirical fitting. Seventy diameters downstream could be too much

for the ring to maintain a high level of turbulence, thus the viscous effect may be

important.
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Appendix C

Schematic views of stereoscopic
recordings

149



Figure C.1: Schematic diagrams of the stereoscopic recording set-ups. A: the first type, for centre-cross section;
B: the second type, for three-dimensional reconstruction method. Note that the laser sheet is invisible without the
seeding reflection. The sketch is not to scale.
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Appendix D

Results from Laser Doppler
Velocimeter measurements

The contour plots of various turbulence quantities from LDV measurements are

shown here. These results are taken from Glezer & Coles (1990). Note that in all

these plots, LDV results use different definitions of the quantities, in which the minus

signs are all not included. For instance, the streamwise Reynolds stress is written

as V ′V ′ instead of −V ′V ′. Similarly the production term (equation 5.49) is also

calculated without the minus signs included in the stress terms, i.e. PLDV = −PPIV ,

where PPIV refers to the production in equation 5.49.
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Figure D.1: LDV streamwise Reynolds stress V ′V ′ in similarity coordinates. Con-
tour levels: 0.25(0.25)2.00.

Figure D.2: LDV radial Reynolds stress U ′U ′ in similarity coordinates. Contour
levels: 0.5(0.5)4.5.
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Figure D.3: LDV Reynolds shear stress U ′V ′ in similarity coordinates. Contour
levels: -0.7(0.2)0.3.

Figure D.4: LDV turbulence production, the sum of the first four terms in equa-
tion 5.49 in similarity coordinates. Contour levels: -300(100)300. Zero level by-
passed.
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