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THESIS SUMMARY 

Name: Jennifer Elaine Trendell 

Thesis Title: Effects of Oncostatin-M Receptor overexpression on cervical squamous cell 

carcinoma cells and their extracellular vesicles 
 

Cervical carcinoma remains the fourth most common cause of cancer in women worldwide.  

Cytological screening and introduction of prophylactic HPV vaccines have drastically 

decreased incidence rates in high income countries. However, it is still one of the leading 

causes of cancer morbidity in middle and low income countries and the prognosis for 

advanced or recurrent cervical carcinoma remains poor. Further research to enhance the 

current understanding of molecular aberrations driving cervical carcinoma is, therefore, vital 

in order to develop effective novel therapies. 

 

The oncostatin-M receptor (OSMR) frequently undergoes copy-number gain and 

overexpression in squamous cell carcinomas (SCC) at multiple sites, consistently associated 

with an adverse overall survival independent of tumour stage.  OSM-OSMR signalling 

activates STAT3 and MAP-kinase pathways and induces a pro-malignant phenotype 

including increased cell migration, invasion and angiogenesis. Bidirectional communication 

between cancer cells and cells of the tumour microenvironment (TME) is essential for 

tumour progression. There is mounting evidence to suggest that extracellular vesicles (EVs) 

are key mediators of intercellular communication and can promote tumour progression 

through various mechanisms. 

 

The work presented in this PhD thesis aims to determine the effect of OSM-OSMR signalling 

on mRNA and miRNA expression in cervical SCC cells and their extracellular vesicles.  Next 

generation sequencing (NGS) was used to investigate global changes in mRNA and miRNA 

expression. These experiments were performed using SW756 cells, a cervical SCC cell line 

with OSMR copy number gain and overexpression, and an OSMR knock down (KD) SW756 

cell line generated by CRISPR-Cas9. OSM-OSMR signalling was found to be capable of 

modulating both cellular and EV mRNA expression. Treatment of SW756 cells with OSM 

resulted in significant (p≤0.01) upregulation of 225 (cell) and 88 (EV) mRNAs and 

downregulation of 98 (cell) and 202 (EV) mRNAs. Treatment of SW756 OSMR KD cells with 

OSM resulted in no significant changes in cellular or EV mRNA expression. Pathway 

analysis revealed that genes primarily involved in cytokine mediated signalling, hypoxia 

response, interferon response and negative regulation of viral lifecycle, myeloid leukocyte 

activation and angiogenesis were all upregulated in response to OSM, whereas, genes 
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involved in cell cycle regulation, cellular organisation and cell differentiation were 

downregulated.  Effects of OSM-OSMR signalling on cellular and EV miRNA expression was 

found to be less pronounced.  

 

The effect of OSM-OSMR signalling on tumour growth in vivo was also investigated. OSMR 

KD cells had a reduced growth rate following sub-cutaneous transplantation in NOD-SCID 

mice, compared with SW756 cells. Similarly, SW756 cells with constitutive-overexpression of 

OSM grew more quickly than SW756 in vivo. Together, this work indicates that OSM-OSMR 

signalling is an important driver of cervical SCC tumour progression both in vitro and in vivo, 

and demonstrates, for the first time, that OSM-OSMR signalling alters EV composition in 

cervical SCC cells. Subsequent work will focus on elucidating the functional importance of 

these EVs and their effects on cells of the TME.  
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1. INTRODUCTION 

1.1 Cervical cancer incidence and subtypes 

Cervical carcinoma is the fourth most commonly diagnosed cancer and the fourth leading 

cause of cancer mortality in women worldwide with an estimated 570,000 new cases and 

311,000 deaths in 20181. The distribution of cervical cancer is not uniform; incidence rates 

are highest in middle and low-income countries and almost 90% of the world’s cervical 

cancer deaths occur in these regions2. The highest incidence and mortality rates are 

reported in Sub-Saharan Africa, Central and South America, and South-Eastern Asia1 

(Figure 1.1).  

 Figure 1.1: Cervical cancer incidence and mortality 

Cervical cancer: estimated age-standardised A) incidence and B) mortality rates in women 

worldwide in 2018. Data generated from https://gco.iarc.fr/today/online-analysis-map 
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Cervical carcinomas are predominantly epithelial in origin and can be divided into three 

histological subtypes: squamous, adenocarcinoma or other (which include adenosquamous 

carcinoma, neuroendocrine tumours and undifferentiated carcinoma)3. Squamous cell 

carcinomas (SCCs) are the most predominant subtype, accounting for approximately 70-

80% of all cervical carcinomas3. They most commonly arise in squamous epithelial cells 

located within the squamo-columnar junction where squamous cells of the ectocervix meet 

columnar epithelial cells of the endocervix4. Adenocarcinomas (AC) account for 20-25% of 

cervical carcinomas and arise in glandular cells of the endocervical canal3,5. Due to their 

location, adenocarcinomas are often diagnosed at a later stage than squamous cell 

carcinomas5. These two subtypes have been reported to differ in their risk factors6, 

prognosis7, incidence of metastasis8 and sensitivity to radiotherapy treatment9,10. However, 

despite a drive for the development of new subtype-specific treatments, treatment 

recommendations remain predominantly the same for both cervical squamous cell 

carcinoma and adenocarcinoma11.  

 

1.2 Cervical SCC: from pre-cancerous lesions to malignancy  

Persistent infection with human papillomavirus (HPV) has been established as a necessary 

initiating event in cervical carcinogenesis12. Less than 10% of invasive cervical carcinoma 

cases are defined as HPV negative; most of which are non SCCs13,14. It is believed that the 

majority of HPV-negative cervical carcinomas are attributable to false diagnosis, cancers 

associated with non high risk HPV subtypes or false negative results following HPV testing 

due to technical difficulties13,14. However, a small proportion of truly HPV negative cervical 

carcinomas have been reported14,15. It is estimated that 10.4% of women worldwide are 

carriers of cervical HPV DNA, this equates to 291 million women16. There are over 200 HPV 

subtypes17, of which around 40 can infect the genital tract. These are denoted as low risk 

(LR) or high risk (HR) based on their oncogenic capacity18. Of the 15 HR-HPV subtypes 

(HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82), HPV 16 and HPV18 are 

most frequently detected in cervical carcinomas18. HPV16 is the most common subtype 

detected in cervical squamous cell carcinomas whereas HPV18 is most frequently detected 

in cervical adenocarcinomas18,19. This thesis will focus on cervical squamous cell 

carcinomas.  

 

Human papillomaviruses are small non-enveloped double-stranded DNA viruses20. The HPV 

genome can be divided into three domains: an early region, a late region and a long control 

region (LCR). The early region has seven open reading frames (ORFs) which encode eight 

proteins involved in viral gene expression and replication (E1-8) by alternate splicing21. The 
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late region contains two ORFs, L1 and L2, which encode capsid proteins. Finally, the LCR 

contains promoter sequences that direct transcription of both early and late genes and  cis 

elements which regulate viral replication, gene expression and viral packaging20,21.  

 

Cervical SCCs develop from  non-invasive precancerous lesions following persistent 

infection with oncogenic HR-HPV subtypes which infect undifferentiated basal epithelial 

cells; these are the only cells in the stratified cervical epithelium able to undergo active cell 

division22
. Following entry into a cell, HPV genomes are established as extrachromosomal 

episomes in the host nucleus and replicate in synchrony with the host DNA, undergoing low-

level amplification to approximately 100 copies per cell23,24. In these productive infections, 

expression of oncogenic viral E6 and E7 genes are tightly regulated by the viral E2 gene and 

high-level expression is only observed in post-mitotic suprabasal cells25 where viral genomes 

are amplified prior to virion synthesis26.   

 

Cervical SCCs develop through a series of well-defined histological changes involving 

progression from low to high grade squamous intra-epithelial lesions (HSIL and LSIL, 

respectively ; Figure 1.2)27–29. HSILs confer a greater risk of progression to invasive disease 

and often demonstrate integration of the HPV genome into the host chromosomes30.  

Integration is not a normal part of the HR-HPV life cycle and represents an abortive infection 

in which viral gene expression becomes deregulated, and the normal life cycle of the virus 

cannot be completed31. Integration usually results in disruption or deletion of the E1 and/or 

E2 ORF, releasing E6 and E7 from transcriptional repression30,32. Not all cervical cancers 

arise from HPV integration. However, when integration does not occur, there are often 

genetic or epigenetic changes within the regulatory regions of E6 and E733, indicating that 

dysregulation of E6 and E7 is crucial for tumorigenesis17. 

 

A key feature of cervical SCC is genomic instability, caused by dysregulated expression of 

HR-HPV E6 and E7 in proliferating epithelial cells34. The E7 protein binds to and degrades 

the retinoblastoma (RB) tumour suppressor protein, releasing the transcription factor E2F 

from transcriptional repression. HPV viruses are replicated in differentiated epithelial cells 

that are growth arrested and thereby unable to support DNA synthesis20. E2F transactivates 

genes required for DNA replication, such as cyclins A and E, thereby reactivating cellular 

DNA synthesis by host cells, creating an environment that is permissive for viral DNA 

replication35. E2F also activates the tumour suppressor p53, inducing p53-mediated 

apoptosis36. The most well-documented function of the E6 protein is its role in degradation of  

p53, thus preventing the induction of growth arrest and apoptosis in response to E7 

mediated activation of the cell cycle17,37. In addition, E7 has been shown to induce 
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centrosome abnormalities38 and may function as a mitotic mutagen, increasing the chance of 

errors during each round of cell division39. 

Figure 1.2: HPV mediated progression of cervical cancer 
Illustration of the histological changes involved in transformation of normal cervix to 

invasive cancer. Adapted from Woodman et al (2007)
27

  

     

While infection with HR-HPV is a necessary step in cervical carcinogenesis, infection alone 

is not sufficient for progression to malignancy. The majority of HR-HPV infections 

spontaneously resolve and both LSILs and HSILs can regress40,41. While the mechanism for 

this is poorly understood, it has been attributed to the development of HPV antigen specific 

immune response42. Only a small minority of women infected with HR-HPV will ultimately 

develop cervical carcinoma, usually many years after initial infection43. The continuous 

stimulation of cell proliferation and loss of the p53-mediated DNA damage response (as a 

result of deregulated E7 and E6 expression, respectively) promotes the accumulation of 

secondary mutations in the host chromosomes that eventually lead to cancer31.  
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1.3 Cervical cancer screening 

Population-based screening programmes have reduced cervical cancer incidence and 

mortality in high income countries by up to 80% over the last 5 decades44. This was initially 

performed by conventional cytology, also known as the Papanicolaou (Pap) smear test. This 

involves collection of exfoliated epithelial cells from the outer opening of the cervix which are 

then directly smeared onto a glass slide. Slides are then fixed, stained and examined by a 

pathologist for presence of abnormal cells45. This was later replaced by liquid based cytology 

which was shown to produce fewer false negatives than conventional cytology and to reduce 

the number of unsatisfactory tests46,47. Collected cells are directly placed into fixative and 

processed to remove blood, mucus and inflammatory cells. The processing and distribution 

of cells onto slides is automated and results in a homogenous monolayer of cells45.  

 

Recently, several countries have moved to HPV testing as the primary method of population-

based screening for cervical cancer48. HPV testing has been shown to have superior 

sensitivity for the detection of both pre-cancerous disease and cervical cancer compared to 

cytology, providing a 60-70% increase in protection against the development of invasive 

cervical carcinoma. Increased sensitivity also allows for increased screening intervals49–51. 

Following screening, women with positive cytology or HPV tests are investigated by 

colposcopy and directed biopsies. HSIL are treated by loop electrosurgical excision 

procedure (LEEP) or laser excision52.  

 

While screening has led to a dramatic reduction in cervical cancer incidence and mortality in 

high income countries, implementation of screening programmes has not been successful in 

low and middle income countries. This is due to logistical obstacles in health systems and 

lack of infrastructure and funding to support national screening programmes2. As such, there 

has in fact been a rapid increase in cervical cancer incidence and mortality in these regions 

in recent generations. This is most likely due to increased risk factors such as changing 

sexual practices, increased smoking and increased HIV incidence1,2,44.  

 

1.4 Prophylactic HPV vaccine 

The introduction of the prophylactic vaccination for HR-HPV subtypes is expected to further 

decrease cervical cancer incidence and mortality. Three prophylactic HPV vaccines are 

currently available: Cervarix, Gardasil and Gardasil 9. All three vaccines protect against HPV 

16 and 18. Both Gardasil and Gardasil 9 also protect against HPV 6 and 11; LR-HPVs which 

cause genital warts. Moreover, Gardasil 9 protects against 5 additional HR-HPV subtypes: 

HPV 31, 33, 45, 52 and 5853,54. HPV vaccines that are currently available are preventive in 
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nature and are based on the discovery that the HPV L1 capsid protein has the capacity to 

assemble into virus-like particles (VLP) that are indistinguishable from the outer shell of 

authentic virions, but lack the encapsulated HPV viral genome55. Like authentic virions, they 

induce high titres of serum antibodies capable of neutralising HPV, without being infectious 

or oncogenic55. Denatured L1 does not induce neutralising antibodies3 and, therefore, the 

HPV vaccines are comprised of highly purified HPV L1 derived VLPs for different HPV 

subtypes together with an adjuvant designed to further stimulate the immune response56,57.  

 

Gardasil was the first HPV vaccine to be licensed in 2006, followed by Cervarix in 2007 and 

Gardasil 9 in 2014. Since then, multiple high income countries have implemented 

vaccination programmes for girls generally aged from 9 to 12 years old and, more recently, 

for boys as well, leading to dramatic reductions in pre-cancerous disease54,58,59. In 2014, the 

World Health Organization (WHO) endorsed the use of a two-dose schedule instead of the 

previously used three-dose schedule. This reduced delivery costs while maintaining high 

immunogenic protection57. However, similar to cervical screening programmes, vast 

disparities exist in the global implementation of HPV vaccination programmes. In 2016, 71% 

of high income countries had introduced the vaccine compared to 35% of upper middle 

income, 8% of lower middle income and 6% of low income countries60. The average price of 

HPV vaccines has dropped substantially since they were first introduced. In Europe, the 

price of the first-generation Gardasil vaccine has decreased from an average of €101.80 per 

dose in 2007 to €28.40 in 2017, while, the average price of Gardasil 9 in 2016–2017 was 

€49.10 per dose61.  

 

While there was indication of a tiered-pricing strategy, whereby vaccine manufacturers 

charge more per dose from wealthier countries than poorer countries, vaccine prices still 

prohibit the implementation of vaccination programmes in many low to middle income 

countries61. The importance of affordability is demonstrated by the fact that nearly 50% of 

middle income countries that have introduced HPV vaccination programmes over the last 5 

years are located within the Americas region. This is the result of the Pan American Health 

Organisation (PAHO) Revolving Fund, which recently secured a reduced price for HPV 

vaccines, thus facilitating bulk purchases at discounted prices for participating countries
57

. 

However, in the coming years, it is likely that considerably more low income countries will 

introduce national vaccination programmes as the HPV vaccine has recently been added to 

the Global Alliance for Vaccines and Immunisations (GAVI) portfolio57. This allows low 

income countries to apply for support to implement pilot or national vaccination programmes. 

To date, 23 countries have been approved for this pathway, 19 of which are in Africa57,62.  
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1.5 Current treatments for cervical cancer 

Despite promising steps towards increased global uptake of HPV vaccination programmes, 

HPV vaccines are prophylactic and do not treat existing HPV infections53. In the UK, only 

women born after 1991 will have been eligible for vaccination58. Therefore, availability of 

effective treatment regimes for cervical carcinoma remains essential. Like most cancers, the 

stage at diagnosis is one of the most significant prognostic factors. The International 

Federation of Gynecology and Obstetrics (FIGO) staging for cervical cancer63 is summarised 

in Table 1.1.  

 

 

Patients diagnosed with localised early invasive disease (stage IA- IIA) have a 91.8% five-

year relative survival rate64. The primary treatment of early-stage cervical cancer is either 

surgery or radiotherapy11. The type of surgery is determined by stage and whether fertility 

preservation is required. Patients with stage IA disease are treated by conisation or 

trachelectomy with or without pelvic lymph node dissection. A hysterectomy may also be 

performed if fertility preservation is not required11. For patients with IB and IIA disease, 

standard treatment involves radical hysterectomy with bilateral lymph node dissection3. 

These patients may also receive concurrent chemoradiation11,65. Women presenting with 

Table 1.1: FIGO staging for cervical carcinoma.  

Adapted from Bhatla et al (2019)
63

 

STAGE DESCRIPTION 

Stage I Carcinoma is strictly confined to the cervix uteri  

IA 
Invasive carcinoma that can be diagnosed only by microscopy, with 
maximum depth of invasion <5mm 

IB 
Invasive carcinoma with measured deepest invasion ≥5 mm (greater than 
stage IA), lesion limited to the cervix uteri 

Stage II 
Carcinoma invades beyond the uterus, but has not extended onto the 
lower third of the vagina or to the pelvic wall 

IIA 
Involvement limited to the upper two-thirds of the vagina without para-metrial 
involvement 

IIB With para-metrial involvement but not up to the pelvic wall 

Stage III 
Carcinoma involves the lower third of the vagina and/or extends to the 
pelvic wall and/or causes hydronephrosis or non-functioning kidney 
and/or involves pelvic and/or para-aortic lymph nodes 

IIIA 
Carcinoma involves the lower third of the vagina, with no extension to the 
pelvic wall 

IIIB 
Extension to the pelvic wall and/or hydronephrosis or non-functioning kidney 
(unless known to be due to another cause) 

IIIC 
Involvement of pelvic and/or para-aortic lymph nodes, irrespective of tumour 
size and extent  

Stage IV: 
Carcinoma has extended beyond the true pelvis or has involved the 
mucosa of the bladder or rectum 

IVA Spread of the growth to adjacent organs 

IVB Spread to distant organs 
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locally advanced disease (stage IIB – IVA)11 have a 56.3% five year relative survival rate64. 

Standard of care for locally advanced disease involves radiotherapy with concurrent 

adjuvant platinum based chemotherapy, preferably using cisplatin65,66. For patients without 

nodal disease, or with disease limited to the pelvis, radiotherapy will consist of external 

beam radiation therapy (EBRT) and brachytherapy11. Patients with positive para-aortic and 

pelvic lymph nodes will also receive extended field EBRT to also target the lymph nodes11,65. 

However, 25% to 40% of patients with locally advanced disease will relapse66,67. The 

outcome for women diagnosed with metastatic or recurrent cervical cancer is poor, with little 

improvement in survival outcomes over the last three decades67. Women presenting with 

distant metastasis (stage IVB) have a 16.9% five year relative survival rate64. The current 

standard of care for these patients involves chemotherapy with cisplatin and paclitaxel68. The 

recent addition of bevacizumab, a monoclonal antibody that inhibits angiogenesis by binding 

to vascular endothelial growth factor A (VEGFA), has increased overall survival from 13.3 to 

16.8 months69. While modest, this increase represents the most promising improvement in 

advanced and metastatic cervical cancer outcomes in recent years. There is, therefore, an 

urgent need for the development of new targeted therapies for the treatment of cervical 

carcinoma.  

 

Currently, a number of targeted agents have entered clinical trials for the treatment of 

cervical carcinoma. These include: vascular endothelial growth factor receptor (VEGFR) 

inhibitors, immune checkpoint inhibitors using antibodies targeting programmed cell death 

(PD-1) or cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), poly ADP-ribose 

polymerase (PARP) inhibitors which prevent DNA repair and therapeutic vaccines targeting 

HPV E767. Further research to enhance the current understanding of molecular aberrations 

driving cervical carcinoma is vital in order to develop effective new therapies. 

 

1.6 OSMR    

A key feature of advanced cervical SCC is genomic instability, driven by dysregulated 

expression of HR-HPV E6 and E734. The most frequent genomic imbalance in cervical 

carcinoma involves copy number gain and amplification of the short arm of chromosome 5 

(5p)70,71. Previous work in our70 own and other laboratories71,72 has identified candidate 

genes located within this region that show a significant association between gene copy 

number and mRNA expression levels. Initial work by Ng et al (2007)70 first identified the 

potential oncogenic role for Oncostatin M receptor (OSMR) in cervical SCC.  Both cervical 

SCC cell lines and tissue samples derived from patients with LSILs, HSILs or advanced SCC 

were screened by array comparative genomic hybridisation (CGH). The most commonly 
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occurring regions that displayed both copy number and amplification in both cell lines and 

SCC samples were 5p15.2–14.3, 5p13.3, and 5p13.2–13.170.  

 

Three candidate oncogenes at these loci: OSMR (5p13.1), PDZ domain containing protein 3 

(PDZK3; 5p13.3) and triple functional domain (TRIO; 5p15.2–5p14.3), were identified as 

having expression levels that significantly correlated with gene copy number. Gain of OSMR, 

PDZK3, and TRIO were detected in 60.9%, 57.3%, and 54.5% of cervical SCC tumours, 

respectively. While copy number gain of both OSMR and PDZK3 were each associated with 

adverse overall patient survival, only gain of OSMR was found to adversely influence overall 

patient survival independent of tumour stage70. Relative risk of death was 3.6 times greater 

for patients with OSMR copy number gain than those without. Moreover, OSMR 

overexpression was also found to be associated with adverse overall survival in analysis of 

cervical SCC samples using The Cancer Genome Atlas (TCGA) data73 (Figure 1.3). OSMR 

was not found to undergo copy number gain or overexpression in either LSILs or HSILs 

indicating that acquisition of OSMR gain and overexpression occurs relatively late in the 

progression of cervical SCC70. 

 

OSMR is a cell surface cytokine receptor which associates with gp130 to form the high 

affinity receptor for its principal ligand, oncostatin M (OSM). OSM is a glycoprotein belonging 

to the interleukin-6 (IL-6) family of inflammatory cytokines which include: IL-6, IL-11, IL-27, 

IL-35, IL-39, leukaemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), cardiotrophin-like 

cytokine factor 1 (CLCF1), and ciliary neurotrophic factor (CNTF)74. Of these family 

members, OSM shares many structural and biological properties with LIF. Moreover, the 

genes encoding these two cytokines are located less than 20kb apart on chromosome 

22q12, suggesting that these two genes may have evolved by gene duplication75.   
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Figure 1.3: Effect of OSMR copy number gain and overexpression on patient survival  
A) Tissue microarray fluorescence in situ hybridization of a representative primary cervical SCC sample 

displaying gain of OSMR in interphase nuclei. Red = multiple copies of overlapping BAC clones located within 

OSMR. Green = chromosome 5 centromeric BAC control clones (B) Correlations between copy number gain of 
OSMR and clinical outcome in cases of cervical SCC. C) Kaplan–Meier curves showing overall survival for 

cervical SCCs with high vs low expression of OSMR, as determined from TCGA analysis.  

Figures adapted from Ng et al (2007; A+B)
70

 and Kucia-Tran et al (2016; C)
73

.  
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1.7 OSMR and IL6 cytokine family receptor signalling  

While each of the IL-6 family cytokines signals through a distinct receptor, they all utilise a 

common glycoprotein 130 (gp130) subunit in their receptor complexes, which is critical for 

signal transduction76. Common signalling through gp130, in concert with their individual 

cytokine receptor subunits, means that IL-6 family members have both overlapping and 

unique functions77. IL-6 cytokines bind to their respective receptors with low affinity and 

subsequently associate with gp130 to form a high affinity signal transducing hetero dimeric 

or trimeric receptor complex74,78. IL6 cytokine-receptor complexes are depicted in Figure 1.4.  

 

OSM and IL-35 are the only members of this group capable of binding directly to gp13078–81. 

OSM binds with low affinity to gp130 and subsequently recruits either LIFR or OSMR to form 

either type I or type II OSM receptor complexes, respectively78,80,81 (Figure 1.4). OSM-gp130 

complexes bind to OSMR with higher affinity than LIFR80. The ability of OSM to bind gp130 

has been attributed to the presence of a unique α-helical loop between its B and C helixes, a 

structure which is absent in other IL-6 cytokines80.  Whilst not a member of the IL-6 family, 

IL-31 is also able to bind OSMR and signals through a heterodimeric receptor composed of 

OSMR and IL-31 receptor alpha (IL-31RA), in the absence of gp13082. 

 

IL-6 cytokine-receptor complexes transduce intracellular signals via activation of the 

JAK/STAT (janus kinase/ signal transducer and activator of transcription) pathway. Receptor 

associated JAKs phosphorylate tyrosine residues in the cytoplasmic domains of receptor 

subunits (both gp130 and its co-receptors)76,83,84. This leads to the activation of several 

downstream signalling pathways including: STAT proteins, MAPK (mitogen-activated protein 

kinase), PI3K/AKT (phosphoinositide 3-kinase/ AKT) and SRC/YAP/NOTCH  signalling 

cascades76,83,84. Whilst all IL-6 family members share common signal transduction 

pathways84, the degree to which specific pathways are activated can differ depending on the 

cytokine, cell type and physiological setting83.  

 

OSMR has been shown to be a stronger activator of the MAPK pathway than IL-6 or LIF. 

This is due to exclusive recruitment of the adaptor protein SHC  by OSMR, as opposed to 

gp130 mediated recruitment of SHP-2 by other IL6 family receptor complexes, which 

subsequently drives MAPK pathway activation85. OSMR has also been demonstrated to be 

one of the strongest inducers of the JAK/STAT pathway86. OSM-OSMR receptor binding 

leads to phosphorylation of STAT1, STAT3, STAT5B and STAT687. Potent phosphorylation 

of STAT5B is unique to OSM, which is attributable to the presence of a STAT5B recruiting 

tyrosine motif on the OSM receptor88,89. Similarly, activation of STAT6 has not been 

observed for any of the other IL6 cytokines; the mechanisms driving OSM induced STAT6 
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activation remain to be fully elucidated87. Following phosphorylation, STATs dimerise and 

translocate to the nucleus where they bind to STAT specific DNA response elements of 

target genes, modulating gene expression90.  

Figure 1.4: IL-6 family cytokine-receptor complexes 
The gp130 signal transducing subunit is shared by all ten IL-6 family members: IL-6, IL-11, IL-27, 

IL-35, IL-39, LIF, CT-1, CLCF1 and CNTF. These cytokines signal through gp-130 homodimers 

(with or without an additional receptor) or receptor complexes comprised of gp130 and either LIFR, 
WSX-1, IL-12Rβ, IL-23R or OSMR (either as heterodimeric complexes or as heterotrimeric 

complexes with addition of a third receptor).  IL-27, IL-35 and IL-39 are heterodimeric glycoproteins 

composed of disulfide-linked α (p28, p35 or p19, respectively) and β (EBI3) chains. CLCF1 forms a 
complex with the CRLF1 chaperone protein prior to receptor binding. The IL-27 α chain (p28) is also 

able to bind to CRLF1 and signal through a WSX-1, IL-6Rα and gp130 receptor complex. LIFR-

gp130 = type I OSM receptor; OSMR-gp130 = type II OSM receptor. Additionally, IL-35 is able to 
signal in a gp130 independent manner through the IL-12Rβ homodimer receptor complex.  IL-31α is 

also able to signal through OSMR using an OSMR-IL-31Rα receptor complex. OSMR has also been 

shown to form heterodimeric receptor complexes with EGFR in the presence of OSM (gp130 

independent) and with the mutated EGF receptor, EGFRvIII, in glioblastoma. OSMR-EGFRvIII 
complexes do not require a ligand for receptor activation.  * = not a member of IL-6 cytokine family. 

 

 



 

13 
 

In addition to the receptor complexes previously described, OSMR was recently shown to 

form a co-receptor with epidermal growth factor receptor (EGFR) in glioblastoma leading to 

enhanced STAT3 activation (Figure 1.4); this interaction was stimulated by OSM but not 

EGF91. Moreover, OSMR was found to act as an essential co-receptor for the constitutively 

active EGFR mutant receptor, EGFRvIII.  EGFRvIII-OSMR complexes activated STAT3 in 

the absence of ligand binding. OSMR was shown to be a direct transcriptional target of 

STAT3 in glioblastoma; OSMR-EGFRvIII signalling therefore upregulated expression of 

OSMR in a feed-forward loop, driving glioblastoma tumour growth91. Recent work in our 

laboratory has confirmed that OSMR is also a direct target of STAT3 in cervical SCC. OSM-

OSMR signalling led to STAT3 activation and subsequent upregulation of both OSM and 

OSMR signalling, in a feed-forward loop92. Whether this pathway is also mediated by 

EGFRvIII in cervical SCC cells is still to be investigated.  

 

1.8 Investigation of OSM-OSMR signalling in vivo 

Investigation of OSM-OSMR signalling in vivo using mouse models has been complicated by 

the finding that OSM-OSMR binding is species-specific. As previously discussed, human 

OSM (hOSM) has been shown to bind both human LIFR (hLIFR)-gp130 and human OSMR 

(hOSMR)-gp130 heterodimers with high affinity, forming OSMR I and OSMR II complexes, 

respectively78,80,81. However, in the murine system, mouse OSM (mOSM) has been shown to 

predominantly signal via the OSMR II receptor complex; mOSM only binds the murine 

OSMR (mOSMR)-gp130 heterodimer with high affinity, whereas mOSM binds to mouse 

LIFR (mLIFR)-gp130 heterodimers with very low affinity93 (Figure 1.5). Moreover, when 

mOSM binds to mLIFR-gp130, different signal transduction cascades occur compared to 

binding of mouse LIF (mLIF). mLIF-mLIFR binding leads to phosphorylation of STAT1 and 

STAT3 and activation of their respective target genes, whereas mOSM-mLIFR binding only 

leads to phosphorylation of STAT194.  

 

Human OSM is able to signal via mLIFR, activating STAT1 and STAT3 akin to mLIF94. 

However, it is unable to signal via mOSMR93,95 (Figure 1.5). Human LIF is also capable of 

signalling through the mLIFR96. Conversely, neither mOSM or mLIF display cross-species 

reactivity; neither is able to activate signalling via either hOSMR or hLIFR96,97 (Figure 1.5). 

Individual amino acids within the AB loop of mOSM and hOSM have been demonstrated to 

be responsible for species-specific receptor activation97. The presence of Lys-44 within the 

hOSM AB loop appeared to prevent mOSMR activation97. Similarly, the presence of residues 

Asn-37, Thr-40 and Asp-42 within the AB loop in mOSM were shown to be responsible for 

the lack of affinity of mOSM toward mLIFR, hLIFR and hOSMR97. In particular, the Asn37 
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residue replaces a Gly residue that was found to be conserved in both hOSM and hLIFR. 

This Gly residue has been shown to be essential for hOSMR activity, therefore, substitution 

may result in alteration of the secondary structure of the mOSM AB loop preventing receptor 

binding97.  

Figure 1.5: Receptor usage and cross-species reactivity for human, murine and rat 

OSM 
Receptor usage and cross-species reactivity of human, murine and rat OSM (hOSM, mOSM and 

rOSM, respectively) is shown. Receptors are colour coded as follow: blue=gp130, red= LIFRβ, 

green=OSMRβ. Dotted arrow represents low affinity binding, Cylinders depict fibronectin-type III 
domains, circles the Ig-like domain. The location of tyrosine motifs in the intracellular regions are 

shown. Adapted from Hermanns (2015)
87

 

 

Interestingly, rat OSM (rOSM) has been shown to bind to both rat LIFR (rLIFR) and rat 

OSMR (rOSMR) with high affinity, forming both type I and type II receptor complexes 

comparable  to the human system98. Thus, rOSM appears to be more homologous to hOSM 

than to mOSM. This was an unexpected finding as rOSM and mOSM share 60% sequence 

identity while rOSM and hOSM only share 49% sequence identity98. Furthermore, rOSM was 

found to be able to signal through hLIFR but not hOSMR and, conversely, through mOSMR 

but not mLIFR98. Similar to the cross reactivity of hOSM with murine receptors, hOSM was 



 

15 
 

shown to activate rLIFR but not rOSMR. Murine OSM was able to activate rOSMR but not 

rLIFR87, 98 (Figure 1.5).  

 

1.9 Roles of OSM and OSMR in cancer  

OSM is a pleiotropic cytokine which has been shown to have different roles in multiple cell 

types, both in tissue homeostasis and disease. It is known to contribute to liver regeneration, 

bone metabolism, haematopoiesis, metabolism, homeostasis of the central nervous system 

and modulation of the innate immune system in response to infection77,84,87,99. Moreover, it 

has also been shown to play a role in cardiovascular disease, conditions involving chronic 

inflammation (such as rheumatoid arthritis, atherosclerosis, and inflammatory lung and skin 

conditions), tissue fibrosis and cancer77,84,87,100.  

 

OSM is mainly secreted by leucocytes including activated T lymphocytes, neutrophils, 

dendritic cells, monocytes, macrophages, eosinophils and mast cells83,101–103
. Whereas, 

OSMR is expressed by a wide array of non-haematopoietic cells types including endothelial 

cells, hepatic cells, leucocytes, epithelial cells, fibroblasts, glial cells, neurons, smooth 

muscle cells, mesothelial cells, osteoblasts,  adipocytes  and many tumour cell 

types83,100,101,104
.  In the context of cervical SCC, OSMR was found to be almost exclusively 

expressed by tumour cells, while OSM is expressed by infiltrating immune cells73, indicating 

that OSM-OSMR signalling involves interaction of tumour cells with cells of the tumour 

microenvironment (TME). 

 

In the cancer setting, the role of OSM-OSMR signalling appears to be context and cell type 

dependent. OSM has been shown to function as a tumour-suppressor, exerting an anti-

proliferative effect on melanoma105, lung adenocarcinoma106, neuroblastoma107, 

glioblastoma108 and select breast cancer cell lines109,110. Conversely, OSM has also been 

implicated in cancer progression. OSM is elevated in a range of tumours, and has been 

shown to act as tumour promotor in cervical SCC73, skin SCC111, breast cancer112–114, 

prostate cancer115, ovarian cancer116,  endometrial cancer117 and Ewing sarcoma118 by 

promoting tumour cell growth, migration, invasion, epithelial-mesenchymal transition (EMT), 

angiogenesis and/or metastasis. Moreover, OSM has been shown to be elevated in the 

serum of colon cancer patients, and has been implicated as a possible biomarker for 

diagnosis of this disease due to correlation of OSM levels with clinical stage119. In addition, it 

has been demonstrated that OSMR overexpression in breast cancer is associated with a 

pro-malignant phenotype, increased risk of tumour recurrence and reduced overall 
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survival120. OSMR has also been shown to play a role in glioblastoma progression acting as 

a co-receptor for EGFRvIII driving tumour growth independent of OSM91. 

 

1.10 OSM-OSMR signalling in cervical SCC  

Overexpression of OSMR was found to enhance the sensitivity of cervical SCCs to OSM, in 

vitro121. OSM treatment was demonstrated to induce transcription of the pro-angiogenic 

factors VEGFA and inhibitor of DNA binding protein 1 (ID-1) in OSMR over expressing 

cervical SCC cell lines70,121. Conditioned media from OSM stimulated cervical SCC cells was 

shown to induce angiogenesis in an endothelial-fibroblast co-culture system121. Depletion of 

OSMR by small interfering RNA (siRNA) or treatment with neutralising antibodies against 

either OSM or VEGFA were found to abrogate induction of angiogenesis92,121. This 

demonstrates that induction of VEGFA by cervical SCC cells is the principal mechanism by 

which OSM-OSMR signalling promotes angiogenesis in this system (Figure 1.6).  

 

Moreover, OSM-OSMR signalling was found to result in increased cervical SCC cell 

migration and invasion in vitro121. Tissue transglutaminase (TGM2) was identified as an 

essential mediator of this process, and was found to be upregulated in response to OSM 

treatment in OSMR over expressing cervical SCC cell lines122. OSM induced TGM2 localised 

to the cell surface where it interacted with integrin-α5β1 and fibronectin to promote cell 

migration and invasion through an extracellular matrix (ECM) in vitro122 (Figure 1.6). All 

members of the TGM2–integrin-α5β1–fibronectin pathway are upregulated in cervical SCC 

cells, moreover, their expression correlates with disease progression and OSMR levels in 

samples from patients with cervical SCC122.  

 

Additionally, Kucia-Tran et al (2016) demonstrated that OSM stimulation of OSMR over-

expressing cervical SCC cells leads to increased metastatic ability in vivo involving induction 

of EMT like changes73. EMT is characterised by down-regulation of epithelial genes 

(particularly the cell-cell adhesion protein, E-cadherin) and up-regulation of mesenchymal 

markers (including N-cadherin, vimentin, fibronectin and EMT associated transcription 

factors)123. This  leads to loss of epithelial characteristics (such as cell-cell adhesion, cell-

ECM adhesion and apical-basal polarity) and increased mesenchymal  traits (such as 

increased motility, and increased migratory and invasive capacity)124,125. EMT plays a central 

role in development and has also been shown to be critical for tumour progression. EMT 

enables cancer cells to acquire abilities required for the following metastatic processes:  

dissociation from the primary tumour, degradation and invasion of the local ECM, 

intravasation (invasion of endothelial cell lining of blood vessels enabling entry into the 
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circulation) and extravasation from blood vessels into target organs126,127. A complex network 

of multiple signalling cascades induce and regulate EMT, including signalling induced by: 

tumour growth factor β (TGF β), EGFR, fibroblast growth factor (FGF), bone morphogenic 

proteins (BMPs), hepatocyte growth factor (HGF), Wnt/β-catenin, and Notch pathways123,126. 

These signalling cascades induce common EMT-associated transcription factors including 

SNAI1, SNAI2 (also known as SLUG), TWIST, ZEB1 and ZEB2128–130.  

 

Figure 1.6: Pro-malignant effects of OSM-OSMR signalling in cervical SCC cells 

OSM-OSMR binding results in activation of STAT3 and MAPK pathways leading to 

increased transcription of target genes including VEGFA, TGM2 and SNAI1 which 

contribute to increased angiogenesis, cell migration and invasion, and EMT, respectively. 

Adapted from Caffarel and Coleman (2014)
131

.   
 

TCGA analysis of cervical SCC patient samples revealed a significant positive correlation 

between OSMR expression and expression of a number of EMT markers including: 

fibronectin (FN1), FOXC2, HMGA2, integrin-a5 (ITGA5), MMP10, SNAI1, SNAI2 and ZEB73. 

Similar correlations were also observed in head and neck SCCs and lung SCCs. Treatment 
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of OSMR overexpressing cervical SCCs with OSM led to downregulation of the epithelial 

marker, E-cadherin, and upregulation of several mesenchymal markers including 

Fibronectin, SNAI1 and ZEB2. Treatment also resulted in increased expression of the matrix 

metalloproteinases (MMP) MMP9 and MMP1073 which are key mediators of ECM 

degradation132. Phosphorylation of STAT3 was demonstrated to be essential for OSM-

OSMR induced expression of mesenchymal markers (Figure 1.6). In line with the finding that 

OSM-OSMR induced characteristic EMT gene expression in vitro, OSM-OSMR signalling 

was found to enhance the metastatic capacity of cervical SCC cell in vivo. Mice injected 

intravenously with SW756 cells, an OSMR over expressing human cervical SCC cell line, 

showed significantly increased lung colonisation following intraperitoneal administration of 

hOSM compared to mice treated with PBS control73. Pre-treatment of cells with siRNA 

against STAT3 or with an anti-OSM antibody led to reduced lung colonisation, both in the 

presence and absence of exogenous hOSM92.  

 

Subsequent investigation has demonstrated that OSM-OSMR induced activation of pro-

malignant signalling in cervical SCC cells is predominantly mediated by JAK-STAT 

signalling. OSM treatment of OSMR overexpressing cervical SCC cell lines was shown to 

result in phosphorylation of  STAT3, STAT5, AKT and the following MAPKs: MAPK 44/42 

and extracellular signal-regulated kinase 1/2 (ERK 1/2)70,92. Phosphorylation of these targets 

was abrogated by depletion of OSMR but not LIFR, demonstrating that OSM predominantly 

signals via Type II OSMR complexes in cervical SCC cells92. In SW756 cells, OSM induction 

of VEGFA, SNAI1 and TGM2 expression was found to be significantly reduced by both JAK 

inhibitors and STAT3 depletion using siRNA92. Treatment with a PI3K inhibitor partially 

reduced VEGFA expression but had no effect on SNAI1 or TGM2 expression, whereas, 

inhibitors targeting MEK or mTOR (members of the MAPK pathway) had no effect on target 

gene expression92.   

 

Together, these findings suggest that blockade of OSM-OSMR signalling may prove to be a 

promising therapeutic target for the treatment of cervical SCC. Treatment of OSMR 

overexpressing SCC cells with an anti-OSM antibody was found to cause dose-dependent 

inhibition of OSMR target genes, VEGFA, TGM2 and SNAI192. Moreover, the use of an anti-

OSM antibody inhibited OSM-OSMR mediated induction of angiogenesis by cervical SCC 

cells92,121, reduced cervical SCC invasion in vitro and abrogated lung colonisation in vivo92.  

 

Paradoxically, Stroeder et al (2018) have recently shown that OSM treatment sensitises 

cervical SCC cell lines to chemo-radiotherapy induced cell death in vitro133. Moreover, this 
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effect was also observed in radio-resistant cervical SCC cell lines. Blockade of STAT3 

signalling abolished OSM mediated sensitisation to chemo-radiotherapy133. This group has 

previously reported that the pro-apoptotic factor, interferon regulatory factor 1 (IRF1), was 

significantly upregulated in cervical SCC cell lines in response to OSM treatment in a STAT3 

dependent manner134. Ectopic expression of IRF1 was shown to sensitise cervical SCC cells 

to cisplatin (a platinum-based compound that induces DNA damage), and etoposide (a 

topoisomerase II inhibitor) mediated cell death in a dose-dependent manner. Moreover 

knock down of endogenous IRF1 expression with short interfering RNA (siRNA) abrogated 

OSM induced sensitivity of cervical SCC cells to the aforementioned chemotherapeutic 

agents134. However, the authors did not demonstrate whether induction of IRF1 expression 

by OSM led to induced apoptosis in these cell lines in response to chemotherapy. 

Additionally, IRF1 was implicated as a predictive marker for chemo-radiotherapy response: 

patients with complete response to chemo-radiotherapy displayed higher levels of IRF1 

expression in pre-therapeutic biopsies than patients who partially responded to therapy134. 

These studies suggest that OSM-OSMR signalling may have a dual role in cervical cancer. 

Therapeutic blockade of OSM-OSMR signalling to inhibit the pro-malignant effects 

previously described may, therefore, concurrently block OSM induced sensitivity to chemo-

radiation. While further investigation is required to determine whether similar effects are 

observed in vivo, these preliminary findings indicate that therapeutic blockade of OSM-

OSMR signalling may only be effective when administered subsequent to first line treatment 

with chemo-radiation.  

 

1.11 Extracellular Vesicles: background 

OSM-OSMR signalling requires interactions between cancer cells and OSM producing cells 

within the TME and subsequently activates genes involved in remodelling of the TME. One 

of the main aims of this thesis is to investigate whether OSM-OSMR signalling affects the 

cargo of extracellular vesicles (EVs) released from cervical SCC cells.  EVs are a 

heterogeneous group of small, membrane-bound, nanoparticles which play key roles in 

bidirectional cell-cell communication, and have been demonstrated to facilitate interaction of 

cancer cell with cells of the TME135,136. EVs are released by almost all mammalian cell types 

and have been detected in all biological fluids, including: blood, urine, saliva, bile, breast 

milk, semen, ascites and cerebrospinal fluid137. Moreover, EVs are also secreted by plant 

cells, bacteria, archaea, fungi and parasites, suggesting that they are an important 

evolutionarily conserved mechanism of intercellular signalling138,139. EVs have been shown to 

contribute to multiple physiological and pathological processes and, in recent years, have 
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incited particular interest in the cancer field due to their potential for use as diagnostic or 

prognostic markers, as novel therapeutic targets or as therapeutic delivery vehicles140.  

 

1.12 EV subtypes 

Three main classes of EVs have been identified – exosomes, microvesicles and apoptotic 

bodies - which are classified based on their different mechanisms of biogenesis.  Exosomes 

are formed as part of the endocytosis pathway140. The principal role of endocytosis is to 

regulate the composition of the cell surface; this is achieved by internalisation of 

macromolecules and cell surface proteins by invagination of the plasma membrane141. Once 

molecules are internalised they are trafficked through a series of vesicular compartments, 

collectively known as endosomes, which are responsible for either recycling molecules back 

to the plasma membrane or delivering them to the lysosome for degradation141. Endosomal 

compartments undergo maturation from early endosomes to late endosomes, otherwise 

known as multivesicular bodies (MVBs). This process involves invagination of the 

endosomal membrane to form intraluminal vesicles (ILVs) within the lumen of the MVB. 

MVBs are either directed to the lysosome where their contents are degraded or transported 

to the plasma membrane142. Fusion of MVBs with the plasma membrane results in ILV 

release; ILVs are subsequently known as exosomes following their release into the 

extracellular space143 (Figure 1.7A). 

 

In contrast, microvesicles are formed by direct outward budding and fission of the plasma 

membrane144,145 (Figure 1.7B). Both exosomes and microvesicles are composed of a lipid 

bilayer and contain a small cytosol devoid of any cellular organelles146. Whilst exosomes and 

microvesicles are released from viable cells, apoptotic bodies are exclusively released by 

cells undergoing apoptotic cell death. Apoptotic bodies are produced during the process of 

apoptotic cell disassembly. This involves the formation of plasma membrane blebs on the 

cell surface, generation of membrane protrusions and subsequent fragmentation, resulting in 

the release of apoptotic bodies containing nuclear and cytoplasmic components147,148 (Figure 

1.7C). 
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Figure 1.7: Schematic of EV biogenesis and release 

A) Exosomes are of endocytotic origin and are released via fusion of the multivesicular body 

(MVB) with the plasma membrane. B) Microvesicles are released by outward budding of the 

plasma membrane. C) Apoptotic bodies are released from apoptotic cells via the process of 

apoptotic cell disassembly. Adapted from Gurunathan et al (2019)
146

. 

 

1.13 Regulation of EV Biogenesis 
 

1.13.1 Exosomes 

Exosome biogenesis commences with the formation of ILVs within the MVB. This process is 

driven by recruitment of endosomal sorting complexes required for transport (ESCRTs) 

which are also involved in protein sorting into the ILVs. These are composed of around thirty 

proteins that assemble into four different ESCRTs complexes - ESCRT 0, I, II and III, which 

function in a stepwise manner149. ESCRT 0 recognises and sequesters ubiquitinated 

transmembrane proteins in the endosomal membrane and recruits TSG101, involved in the 

ESCRT I complex. ESCRT I and ESCRT II are the initiators and drivers of ILV membrane 

budding whereas ESCRT III is responsible for vesicle scission150. ESCRT proteins function 

in concert with additional non ESCRT proteins including VPS4, VTA1, ALIX and heat shock 

protein 70 (HSP70)151.  
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Exosomes can also be formed in an ESCRT independent manner, via the ceramide 

dependent pathway which relies on the ability of neutral sphingomyelinase enzymes 

(nSMases) to convert sphingomyelin into ceramide152. Accumulation of ceramide promotes 

membrane invagination of ILVs. Knock down (KD) of nSMase expression, or blockade using 

the GW4869 inhibitor has been demonstrated to reduce exosome release152. Additionally, 

the tetraspanins CD9, CD63, CD81, and CD82 are specially enriched in exosomes, and 

have been demonstrated to participate in ESCRT independent ILV biogenesis and protein 

loading153.   

 

EV release is mediated by fusion of the MVB with the plasma membrane. This has been 

shown to be regulated via several RAB GTPases which promote trafficking and docking of 

MVBs to the cell membrane, facilitating fusion and exosome release.  In particular, RAB27A 

and RAB27B have been shown to play key roles in this process154. N-ethylmaleimide-

sensitive factor attachment protein receptors (SNAREs) are also known mediators of MVB 

fusion with the plasma membrane. Two SNARE proteins in particular, vesicle-associated 

membrane protein 7 (VAMP7) and YKT6, have been demonstrated to be necessary for 

exosome release143.  Mechanisms of exosome biogenesis are summarised in Figure 1.2A 

panel i. 

 

1.13.2 Microvesicles 

Compared to exosomes, the biogenesis of microvesicles is less well defined.  A combination 

of factors has been implicated in microvesicle formation and release. These include 

aggregation of phospholipids within plasma membrane microdomains, facilitating membrane 

bending, and contraction of the actin-myosin machinery144,155.  ADP-ribosylation factor 6 

(ARF6), a GTP-binding protein, has been shown to play a regulatory role in microvesicle 

release156. ARF6 acts through phospholipase D and extracellular signal-regulated kinases 

(ERKs) to phosphorylate the myosin light chain kinase (MLCK). MLCK is a contractile protein 

which subsequently activates the myosin light chain promoting contraction of the actin 

cytoskeleton and subsequent microvesicle release156.  

 

A variety of proteins have been shown to be selectively incorporated into microvesicles, 

including proteins that are transported by the ARF-6 regulated endosomal recycling 

pathway, such as major histocompatibility complex class I protein (MHC class I), vesicle 

associated membrane protein 3 (VAMP3), MMP membrane type 1 (MT1-MMP) and β1 

integrin receptors156. Moreover, the ESCRT I subunit, TSG101, has been shown to bind a 

tetrapeptide PSAP motif on arrestin domain-containing protein 1 (ARRDC1), resulting in 

recruitment of TSG101 to the plasma membrane, promoting in turn the release of 
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microvesicles containing TSG101 and ARRDC1157. VPS4 ATPase and the E3 ligand WWP2 

are required for microvesicle formation via this pathway157.  Moreover, calcium-dependent 

processes, RAB proteins (particularly RAB22A) and RHO GTPases, are also believed to 

play a role in microvesicle formation and release145,155. Similar to exosomes, generation of 

ceramide at the plasma membrane has been demonstrated to contribute to microvesicle 

release. In the microvesicle context, ceramide is generated by acidic sphingomyelinase 

rather than neutral sphingomyelinase158. Mechanisms of microvesicle biogenesis are 

summarised in Figure 1.8B panel i. 

 

1.13.3 Apoptotic Bodies 

Formation and release of apoptotic bodies via the process of apoptotic cell disassembly is 

distinct from microvesicle release. The plasma membrane channel pannexin 1 (PANX1)159 

and Rho-associated protein kinase (ROCK  I)160 have been shown to be key regulators of 

this process. ROCK I is cleaved during apoptosis by activated caspases, and subsequently 

drives contraction of actin-myosin filaments leading to membrane blebbing160. Inhibition of 

either PANX1 or ROCK I prevents the release of apoptotic bodies159,160. Apoptotic bodies are 

not homogenous; nuclear materials and mitochondria were found to be distributed to 

subsets of apoptotic bodies147.  

 

1.14 Challenges in EV classification  

EVs have classically been isolated from culture media or biological fluids by sequential 

ultracentrifugation (with or without the inclusion of a density gradient step) which separates 

particles based on their buoyant density161. Whilst ultracentrifugation is still one of the most 

commonly used methods for EV isolation, a number of alternative methods have also been 

developed. These include: precipitation based methods, immunoaffinity isolation using EV 

markers, flow cytometry, ultrafiltration, size-exclusion chromatography and microfluidic 

devices137,162.  

 

Following isolation, EV subtypes are typically distinguished based on their size and 

expression of different membrane proteins. However, this has been complicated by the fact 

that there is no definitive consensus within the literature regarding specific size ranges and 

that different EV subtypes have been shown to have overlapping size ranges. Exosomes are 

typically reported to be 30 -150nm in diameter, whereas microvesicles have a much broader 

size range, and encompass particles from  50nm -1µm153,155,163. Apoptotic bodies are 

generally considered to be much larger, ranging from 1µm - 5µm in diameter; however, 

isolation of much smaller apoptotic bodies, <1µm in size, has also been reported148.  
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Figure 1.8: Biogenesis and marker expression of exosomes and microvesicles 
Schematic of A) Exosome i) biogenesis and ii) marker expression.  
B) Microvesicle i) biogenesis and ii) marker expression.  
Adapted from Van Neil et al (2018)153 
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Moreover, despite different modes of biogenesis, exosomes and microvesicles display a 

similar composition that makes it difficult to ascertain their origin following isolation from 

culture media or biological fluids.  Proteins involved in MVB function, trafficking and ILV 

biogenesis such as ALIX, TSG101, CD9, CD63, CD81, MHC class II or class I molecules, 

HSP 70 and flotillins were traditionally considered to be exosome specific and used as 

markers of successful exosome isolation. However, many of these markers (such as CD9, 

CD63 and CD81) have subsequently been shown to also be present in microvesicles and 

apoptotic bodies164,165. Similarly, MHC class I and class II molecules, HSP70 and flotillins 

have been found in all EV types166. Some of the markers known to be expressed by 

exosomes and microvesicles are summarised in Figure 1.8. Moreover, isolation of distinct 

EV populations based on characteristic marker expression has been further complicated by 

recent identification of subpopulations of exosomes with differential marker expression to 

other exosome populations167. Therefore, there has been a general consensus in the field to 

move towards classification of particles isolated following differential ultracentrifugation at 

100,00 xg (or equivalent isolation protocols) as small EVs (sEVs) rather than exosomes168.  

 

1.15 EV cargo 

EVs play a key role in cell-cell communication by transfer of proteins, lipids, DNA and RNA 

between cells169. EV cargo has been demonstrated to include multiple RNA species 

including (but not limited to): messenger RNA (mRNA), microRNA (miRNA), and long non-

coding RNA (lncRNA)170–172. Importantly, EV cargo can be substantially different to the 

composition of the originating cell, indicating an active and highly controlled sorting 

process173. The content of EVs varies in respect to cell type of origin and physiological 

conditions. Multiple groups have demonstrated that both the number of EVs released, and 

the composition of EVs, can be altered in response to environmental changes. For example, 

exposure to hypoxic conditions, radiation or chemotherapeutic agents have all been shown 

to result in elevated secretion of EVs with altered protein, mRNA and/or miRNA content 

compared to untreated cells174–177.  

 

1.16 Targeting of EVs to recipient cells  

There is a growing body of evidence to suggest that EVs from different sources preferentially 

interact with specific recipient cell types. For example, EVs isolated from oligodendroglial 

cells were shown to be efficiently internalised by microglia cells but not by neurons, 

astrocytes or oligodendrocytes178. Similarly, EVs derived from rat epithelial cells expressing 

oncogenic human HRAS were taken up by fibroblasts and endothelial cells, but not by 

untransformed epithelial cells or astrocytes. Interestingly, when epithelial cells were 
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transformed via ectopic expression of HRAS, they acquired the ability to internalise these 

EVs179. This demonstrates that uptake of EVs by recipient cells may be dependent on the 

specific properties of the recipient cell itself.  

 

Targeting of EVs to specific recipient cells is mediated by the presence of ligands on the EV 

surface binding to corresponding receptors on the cell surface, and vice versa. Several 

ligand/receptor pairs have been identified to be involved in cell-EV interactions; these are 

likely to have specificity related to the cell type of EV origin and of EV uptake. Receptor-

ligand combinations reported to date include binding of integrins to adhesion proteins such 

as vascular cell adhesion molecule (VCAM-1) or intercellular adhesion molecule 1 (ICAM1) 

or integrin binding to ECM proteins such as laminins or fibronectins in a process often 

mediated by tetraspanins150,180. Binding of lectin to proteoglycans or glycolipids and 

phosphotidylserine (PS) to PS receptors such as T cell immunoglobulin and mucin domain 

containing (TIM4) have also been implicated to mediate cell-EV interactions150,180. Receptor-

ligand combinations are summarised in Figure 1.9.  

Figure 1.9: Cell-EV receptor complexes mediating EV uptake 

Schematic of currently known receptor-ligand complexes known to facilitate EV uptake by 

recipient cells. Taken from French et al (2017)
180

.    

 

In some instances, receptor-ligand binding is sufficient to induce signalling cascades within 

the recipient cell, inducing physiological changes without requiring release of EV contents. 

For example, EVs released from mature dendritic cells have been shown to express 

functional MHC II-peptide complexes and ICAM1 on their surface. These EVs can be 

captured by CD8 positive dendritic cells by LFA1-ICAM1 binding (in which LFA1 is 
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expressed by the cell and ICAM1 by the EV). EVs were also demonstrated to act as 

antibody presenting microdomains at the surface of dendritic cells, and were able to activate 

T cells via their MHC II-peptide complex without being internalised by either cell type181. 

Similarly, EVs derived from neural stem/precursor cells have been shown to transfer 

interferon gamma (IFN-γ) from interferon gamma receptors (IFNGR1) on the surface of EVs 

to IFNGR1 on the surface of recipient somatic fibroblast cells. This was demonstrated to 

result in activation of STAT1 signalling in recipient cells182.   

 

However, in most cases, in order to elicit functional effects, it is necessary for EV contents to 

be internalised by the recipient cell, either by direct fusion with the plasma membrane or by 

endocytosis. Endocytotic uptake of EVs by recipient cells can occur by several different 

mechanisms including: clathrin-dependent endocytosis, caveolin-dependent endocytosis, 

phagocytosis, macropinocytosis or involvement of lipid rafts180,183. Multiple studies have used 

fluorescent lipophilic dyes which stain EV membranes or bioluminescent donor cell lines 

producing bioluminescent EVs to directly visualise EV uptake by recipient cells, either by 

confocal microscopy or flow cytometry183. Moreover, EV uptake by recipient cells has also 

been indirectly demonstrated by multiple studies showing functional transfer of EV cargo to 

recipient cells. This indicates that EV cytosol had merged with the cytoplasm of the host cell, 

facilitating the release of EV cargo. An instrumental study of this nature was performed by 

Valadi et al (2007) who demonstrated that EVs isolated from mouse mast cells could transfer 

functional murine mRNA to human mast cells. Murine proteins, not present in the EVs, were 

subsequently identified in the human recipient cells demonstrating that EV delivered mRNAs 

were translated into protein by the recipient cell169. However, while multiple studies to date 

have similarly demonstrated functional delivery of EV cargo to recipient cells, the 

mechanisms regulating escape or active transport of EV cargo out of the endosome into the 

cytosol remains unknown184.  

 

1.17 EVs in cancer  

EVs have been demonstrated to play a key role in cell-cell communication, conferring 

numerous physiological and pathological functions to recipient cells. They are of particular 

interest in the oncology field where bidirectional communication between cancer cells and 

TME is essential for tumour growth and metastasis. The TME comprises the ECM and 

stromal cells including: cancer-associated fibroblasts (CAFs); immune and inflammatory 

cells; blood vessels; and lymphatic vessels185. 
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Currently, eight major ‘hallmarks of cancer’ have been universally acknowledged, which 

describe biological capabilities acquired by cancer cells during neoplastic progression. 

These include: sustained proliferation, evasion of growth suppression, inhibition of 

apoptosis, enabling replicative immortality, induction of angiogenesis, activation of invasion 

and metastasis, reprogramming of energy metabolism and evading immune destruction186. 

EVs released by cancer cells have been demonstrated to contribute to virtually every aspect 

of tumorigenesis described above187,188.  

 

1.17.1 Horizontal transfer of EVs between tumour cells  

EV production is elevated in cancer cells compared to normal cells, leading to the detection 

of high levels of cancer derived EVs in the plasma, ascites and pleural effusions of cancer 

patients189. Tumour derived EVs can facilitate horizontal transfer of oncogenic cargo to other 

cancer cells, enabling aggressive cancer cells to transform less malignant cells within the 

tumour. For example, aggressive glioma cells expressing oncogenic EGFRvIII have been 

shown to transfer EGFRvIII via their EVs to less aggressive glioma cells lacking this isoform. 

This results in transformation of recipients cells, including activation of MAPK and AKT 

signalling pathways, expression of EGFRvIII mediated genes and increased capacity for 

anchorage-independent growth190. Moreover, Zomer et al (2015) used a cre-lox system to 

demonstrate in vivo that EVs released from tumours established from highly malignant MDA-

MB-231 breast cancer cells were taken up by less malignant T47D tumour cells located in 

either proximal or distant sites to the MDA-MB-231 tumour. Uptake of MDA-MB-231 EVs 

resulted in increased migratory behaviour and metastatic capacity of the less malignant 

T47D cells191  

 

1.17.2 EV mediated communication between cancer cells and the TME 

A vast number of studies have demonstrated that tumour-derived EVs interact with multiple 

cell types within the TME to promote tumour growth, angiogenesis, ECM remodelling, 

metastasis and immune evasion135,136. For example, cancer cell derived EVs have been 

shown to drive differentiation of fibroblasts into a myofibroblast-like phenotype typical of 

CAFs, via transfer of specific proteins or miRNAs192,193. Transformed fibroblasts 

subsequently secrete growth factors and cytokines that promote tumour growth and 

angiogenesis192,140. Moreover, EVs secreted by stromal cells are able to reciprocally 

modulate oncogenic capacity of tumour cells187,188,194,195. For instance, EVs secreted by 

CAFs are able to drive proliferation, migration and invasion of cancer cells and increase their 

metastatic capacity in vivo 195,196.  
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Furthermore, tumour derived EVs have been demonstrated to play a role in promoting the 

formation of a pre-metastatic niche. In vivo experiments have revealed that EVs released 

from cancer cells enter the bloodstream and accumulate at future metastatic sites197,198.  

Hoshino et al (2016) demonstrated that EVs from different cancer cell types were found to 

accumulate within different organs. Targeting of EVs to specific organs was shown to be 

regulated by differential integrin expression of the surface of EVs derived from different 

cancer cell types. Integrin-blocking decoy peptides reduced EV uptake by target organs 

which, in turn, reduced metastasis198. Thus EVs appear to induce changes at secondary 

sites that make them more permissive to colonisation by circulating tumour cells197,198.  

 

1.17.3 EVs mediate resistance to therapy 

Additionally, cancer derived EVs have been shown to contribute to resistance of tumours to 

therapeutic agents. Cisplatin resistant ovarian cancer cell lines display increased secretion 

of cisplatin via their EVs compared to non-resistant cell lines, indicating a potential role for 

EVs in the export of drugs from tumour cells199. Moreover, chemo-resistant cancer cells have 

been shown to transmit resistance capacity to chemotherapy sensitive cells by transfer of 

specific miRNAs and proteins via their EVs177,200–202. Similarly, tumour derived EVs are able 

to modulate resistance to radiotherapy. EVs isolated from irradiated head and neck SCC 

cells induced proliferation of non-irradiated recipient SCC cells. Moreover, EV treatment 

resulted in increased survival of recipient cells in response to irradiation following EV 

transfer, demonstrating EV mediated transfer of radiation resistant properties203. 

Furthermore, in some instances EVs have been shown to act as drug decoys, shielding 

tumour cells from targeted therapies187. For example, in B cell lymphoma, EVs expressing 

CD20 on their surface were able to sequester anti-CD20 antibodies, thus enabling 

lymphoma cells to escape from immunotherapy by limiting the amount of antibody available 

to bind to cancer cells204. 

 

1.18 EVs as biomarkers, therapeutic targets and drug delivery vehicles 

As tumour derived EVs contain specific oncogenic cargos and are released into the blood 

stream, ascites and pleural effusions of cancer patients, they have gained attention for  

potential use as biomarkers for diagnosis of cancer and prediction of therapeutic 

response205. For instance, circulating EVs are a promising predictor of therapeutic response 

in Non-Hodgkins Lymphoma. Presence of BCL-6 and c-MYC mRNA in EVs derived from the 

plasma of patients prior to treatment was predictive of reduced response to first line therapy 

and worse progression free survival206.  
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Due to their diverse range of oncogenic properties, blockade of EV mediated intercellular 

signalling could represent a promising novel therapeutic target. This could be achieved by 

inhibiting EV formation or release, targeting of circulating EVs or preventing EV uptake by 

recipient cells207. A number of studies have demonstrated that blockade of EV release, via 

knock down of nSMase2, results in decreased metastatic and pro-angiogenic capacity of 

tumour cells in vivo208,209. Other groups have achieved similar results via therapeutic 

blockade of RAB27A using siRNA210. An alternative strategy would be to target circulating 

EVs. Nishida-Aoki et al (2017) recently used a breast cancer mouse model to demonstrate 

that treatment with anti-CD63 and anti-CD9 antibodies resulted in increased uptake of 

tumour derived EVs by macrophages, resulting in reduction of circulating EVs. Moreover, 

this led to reduced metastasis of breast cancer cells in vivo211. Inhibiting EV uptake by 

recipient cells is another potential mechanism to therapeutically prevent EV mediated 

delivery of oncogenic cargo. However, the pathways involved in EV uptake are less well 

understood and, currently, there are no in vivo studies demonstrating inhibition of EV 

signalling via this mechanism. The strategies discussed above outline some promising 

implications for the development of targeted therapies against EV mediated signalling. 

However, EVs are implicated in a wide range of physiological processes; therefore, it 

remains to be elucidated whether such strategies would prove to be viable therapeutic 

options207. 

 

Interestingly, it has also been suggested that EVs have promising clinical potential as drug 

delivery vehicles. Their stability in circulation and ability to target specific cell types make 

EVs ideal vehicles for delivery of siRNA, chemotherapeutic agents, protein, mRNA or 

miRNAs to target cells while reducing off target toxicity136,207. Loading of EVs can be 

achieved either passively or actively. Passive loading is achieved by exposing cells in culture 

to high levels of the molecule of interest prior to EV isolation. Active incorporation is 

performed following EV collection via co-incubation or electroporation of EVs with molecules 

of interest136. Moreover, EVs can be engineered to express plasmid fusion constructs with 

specific ligands fused to extracellular membrane proteins, thus enabling them to target 

specific cell types136. This was demonstrated by Tian et al (2014)212 who engineered 

immature mouse dendritic cells to express a known EV surface protein, LAMP2B, fused to 

an  αv-integrin-specific iRGD peptide. iRGD binds to αv integrins that are highly expressed 

on tumour cells and tumour-associated vascular. EVs isolated from these cells were loaded 

with the chemotherapeutic agent, doxorubicin. When injected in vivo these EVs specifically 

targeted αv integrin expressing breast cancer cells; targeted delivery of doxorubicin resulted 

in inhibition of tumour growth212. To date, multiple studies have demonstrated effective EV 

mediated delivery of many different types of cargo in a range of cancer models207, 213.   
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2. AIMS 
 

The overall aim of this thesis was to investigate the effects of OSM-OSMR signalling on 

cervical SCC cells and their extracellular vesicles. The work is divided into three sections: 

 

1) Effect of OSM signalling on EV cargo in cervical SCC cells 

In this section, preliminary hypothesis generating experiments were performed in order to 

determine whether OSM-OSMR signalling was capable of modulating cellular and EV 

miRNA expression in cervical SCC cells. These experiments utilised two representative 

cervical SCC cells lines: SW756 cells which have OSMR copy number gain and baseline 

OSMR overexpression and ME180 cells which do not overexpress OSMR. The experiments 

conducted in this section aimed to: 

 

 Confirm that EVs could be successfully isolated by sequential ultracentrifugation from 

these two cell lines. 

 

 Confirm that OSM treatment led to greater activation of downstream targets of OSM-

OSMR signalling in OSMR overexpressing SW756 cells compared to ME180 cells, in 

line with previous experiments utilising these cell lines121,122. 

 

 Determine whether OSM-OSMR signalling was capable of modulating cellular and 

EV miRNA expression. qPCR was used to investigate the expression of a panel of 

nine miRNAs in SW756 and ME180 cells and their EVs in response to OSM.  

 

 Perform functional assays in order to determine whether EVs from PBS and OSM 

treated cells differed in their ability to induce proliferation and migration of cancer 

cells and angiogenesis in endothelial-fibroblast co-cultures. 

 

 Establish an OSMR Knock down (KD) SW756 cell line by CRISPR-Cas9 which could 

later be used to investigate global changes in miRNA and mRNA expression in 

cervical SCC cells and their EVs in response to OSM-OSMR signalling. 

 

The experiments performed in this section demonstrated that EVs could be successfully 

isolated from cervical SCC cell lines. Moreover, OSM-OSMR signalling was found to 

differentially modulate cellular and EV miRNA expression in cervical SCC cell lines with 

different levels of OSMR expression. Finally, an OSMR KD SW756 cell line and a control 

SW756 cell line transfected with an empty CRISPR plasmid (empty plasmid SW756 cells) 

were generated by CRISPR-Cas9. These cell lines were used in subsequent sections. 
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2) NGS of cells and EVs following OSM Treatment 

In this section next generation sequencing (NGS) was performed in order to investigate the 

global effects of OSM-OSMR signalling on cellular and EV miRNA and mRNA expression. 

This was performed using empty plasmid SW756 cells (EP cells) which overexpress OSMR 

and OSMR KD SW756 cells (KD cells) generated in section 1. The experiments conducted 

in this section aimed to: 

 

 Determine the optimum kit to use for small RNA sequencing experiments. This was 

achieved by comparing sequencing results for a single sample sequenced using both 

Nextflex and Somagenics small RNA library preparation kits.  

 

 Determine whether OSM-OSMR signalling altered mRNA and miRNA expression by 

cervical SCC cells and their EVs. To achieve this, EP cells and KD cells were treated 

with either PBS or OSM and RNA collected from both cells and EVs. NGS was 

performed to investigate effects of both OSM treatment and OSMR KD on mRNA 

and miRNA expression.  

 

 Perform pathway analysis in order to elucidate functional effects of differential mRNA 

expression between cell-cell and EV-EV comparisons.  

 

 Use qPCR to verify a subset of mRNAs and miRNAs found to be differentially 

expressed in NGS datasets.  

 

3) Establishing a model to investigate OSM-OSMR signalling in vivo 

In addition to investigating effects of OSM-OSMR signalling on EV mRNA and miRNA 

expression, parallel experiments were performed in order to elucidate the effects of OSM-

OSMR signalling on growth of cervical SCC cells in vivo. The main aim of this section was to 

establish an in vivo model that could be utilised to study the effects of OSM-OSMR signalling 

on primary tumour growth and metastasis. The experiments conducted in this section aimed 

to: 

 Investigate the effect of OSMR KD on cervical SCC growth in vivo, using 

subcutanous xenografts of empty plasmid and OSMR KD SW756 cell lines. 

 

 Investigate the effect of intraperitoneal administration of exogenous hOSM on 

growth of empty plasmid and OSMR KD SW756 subcutaneous xenografts. 

 

 Establish a model in which hOSM was continually delivered to OSMR 

overexpressing SCC cells in vivo. SW756 cells were stably transfected with a 
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plasmid driving hOSM expression; cell lines with varying levels of endogenous 

hOSM production were generated. Whether varying levels of endogenous OSM 

expression affected growth of SW756 subcutaneous xenografts was subsequently 

investigated.  
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3. MATERIALS AND METHODS 

3.1 Cell Culture 

 

3.1.1 Cell Lines 

OSMR copy number and expression in a panel of keratinocyte cell lines derived from 

cervical SCCs has been previously established in our laboratory121. As it was not feasible to 

carry out work with all cell lines previously studied, we selected two representative cervical 

SCC cell lines (Table 3.2). SW756 was selected as a representative cervical SCC cell line 

with baseline OSMR copy number gain and overexpression and ME180 was chosen as a 

representative cell line with normal levels of OSMR (no baseline OSMR overexpression).  

 

OSMR Knock down SW756 cell lines and OSMR overexpressing SW756 cell lines (pOSM) 

generated in sections 3.3 and 3.4, respectively, were also cultured. In addition, VF2 

Table 3.1: Reagents and equipment for cell culture 

Reagent Company 
 

 Glasgow Minimum Essential Medium (GMEM), no Glutamine 
 

 
Sigma-Aldrich, 

St. Louis, MO, USA 

 Penicillin-Streptomycin : 10,000 units penicillin + 10mg 
streptomycin/ ml in 0.9% NaCl (100x stock) 

 

 200mM L-Glutamine (100x stock) 
 

 Dulbecco’s Phosphate Buffered Saline modified without 
calcium chloride and magnesium chloride (PBS) 
 
 

 Dimethyl sulphoxide (DMSO) 
 

Gibco, 
Thermo Fisher Scientific, 

Waltham, MA, USA 

 10X Trypsin-EDTA: porcine trypsin (5g/ml) and EDTA (2g/ml) 
 

 Heat Inactivated Fetal Bovine Serum (FBS) 
 

 100 μg/mL Recombinant Human Oncostatin M Protein (Rh-
OSM) 

R&D Systems, 
Minneapolis, MN, USA 

 Trypan blue stain (2X) 0.4% solution 
 

 Countess cell counting chamber slides 

 Countess Automated cell counter 

 Mr Frosty TM container 

Invitrogen,  Thermo Fisher 
Scientific, 

Waltham, MA, USA 

 Tissue culture flasks - 25 cm
2
 , 75cm

2
 and 175cm

2
 

 

 2ml Cryo.s™ Freezing Tubes ‘cryovials’ 

Griener Bio-one, 
Kremsmünster, Austria 

 15ml and 50ml Falcon Tubes 
Corning, NY, USA 

 6 well plates 

 Cell Lines 
American Type Culture 
Collection (ATCC-LGC, 

Middlesex, UK). 

Table 3.2: Summary of Cervical SCC Cell Lines Used 

Cell 
Line 

ATCC 
Number 

Site of Isolation 
HPV 
Type 

OSMR status 

SW756 CRL-10302 Primary Site 18 OSMR overexpressing 

ME180 HTB-35 Metastatic Site: Omentum 39 
Non-OSMR over-

expressing 

https://www.google.com/search?sa=X&biw=1168&bih=927&q=Kremsm%C3%BCnster&stick=H4sIAAAAAAAAAOPgE-LSz9U3SEvONjGuUgKzjUxLCouMtLSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1h5vYtSc4tzD-_JKwYKAACDiDm9VgAAAA&ved=2ahUKEwiXrcjF-tzjAhUEnVwKHVh6Ao0QmxMoATASegQICxAE
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fibroblasts, a primary cell line established from normal diploid human fibroblasts originating 

from juvenile foreskin material after routine circumcision were also cultured214. These cells 

were kindly provided by Professor Gillian Murphy, The University of Cambridge. 

3.1.2 General Cell Culture 

Cells were maintained in 175cm2 tissue culture flasks in their respective media (Table 3.3) at 

37°C in 5% CO2.  

 

Enzymatic passaging using 1X Trypsin-EDTA (0.5% trypsin, 0.2% EDTA) was performed 

twice weekly when cells reached 80-90% confluence. In brief, culture media was removed by 

aspiration, adherent cells were washed with 20ml of sterile PBS and 5ml of pre-warmed 

Trypsin-EDTA was added to cells. Cells were subsequently incubated at 37°C until they had 

fully detached from the flask surface, as determined by visual inspection under a 

microscope. Cells were then resuspended in 11ml of pre-warmed media to neutralise the 

trypsin and 2ml of this suspension transferred to a new 175cm2 flask along with 20ml pre-

warmed media (1:8 ratio).   

 

3.1.3 Cell Counting and Seeding for Experiments 

Cells were trypsinised and resuspended in media as previously described. 20µl of cell 

suspension was mixed in a 1:1 ratio with 0.4% Trypan blue stain solution and 10µl of the 

mixture added to each chamber of a Countess slide. Trypan blue stains dead cells blue, 

thereby enabling distinction between live and dead cells. The number of live cells present in 

each chamber was determined using a Countess automated cell counter; counts from the 

two chambers were averaged and used to determine the concentration of cells in the original 

sample. Unless otherwise specified, 5x105 cells/well were seeded in 6 well plates and 1x107 

cells were seeded in 175cm2 flasks.  

 

Table 3.3: Culture Media for cell lines used 

Cell Line Media Used  FBS  Other 

SW756 (WT, empty 
plasmid and OSMR KD)  

GMEM 10% 
100 units/ml penicillin, 100 µg/ml 

streptomycin and 2mM L-
glutamine 

SW756 pUNO/pOSM GMEM 10% 
100 units/ml penicillin, 100 µg/ml 

streptomycin and 2mM L-
glutamine, 5 µg/ml of Blasticidin 

ME180 GMEM 10% 
100 units/ml penicillin, 100 µg/ml 

streptomycin and 2mM L-
glutamine 

VF2 DMEM 10% 
100 units/ml penicillin, 100 µg/ml 

streptomycin and 2mM L-
glutamine 
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3.1.4 Cell Freezing and Thawing 

To freeze cell stocks, cells were trypsinised, neutralised in pre-warmed media and counted 

by Countess cell counter. Cells were frozen at a density of 4 x106 cells/cryovial. Cells were 

centrifuged for 4.5mins at 400xg, media was removed by aspiration and cell pellets 

resuspended in freezing media consisting of 90% volume FBS and 10% volume of DMSO, at 

a concentration of 4x106 cells/ml. 1ml of cell suspension was aliquoted per cryovial, and 

vials placed into a Mr FrostyTM container and stored overnight at -80°C to achieve a gradual 

freezing process. After 24hours at -80°C, cryovials were removed from the container and 

transferred to a liquid nitrogen tank.  

 

To thaw cells, cryovials were removed from liquid nitrogen and gently agitated in a water 

bath at 37°C. The cell suspension was then transferred to a 15ml falcon tube and 

centrifuged 4.5mins at 400xg. Supernant was subsequently removed by aspiration and the 

cell pellet resuspended in 5ml of pre-warmed media. This cell suspension was then 

transferred to a 25cm2 flask and incubated at 37°C in 5% CO2. 

 

3.2 Extracellular Vesicle Isolation and Characterisation 

Table 3.4: Reagents and equipment  for EV isolation and characterisation 

Reagent Company 

 Heat Inactivated FBS 
Gibco, Thermo Fisher Scientific, 

Waltham, MA, USA 

 Rh-OSM 
R&D Systems, 

Minneapolis, MN, USA 

 15ml and 50ml Falcon Tubes 

 100mm tissue culture dishes 
Falcon, Corning, NY, USA 

 50ml polycarbonate tubes  

 38.5ml polycarbonate tubes 

 Ultra-Clear ½ x 2 inch centrifuge tubes 

 Avanti J-20 centrifuge 

 JA-20 rotor  

 Optima L-100 XP Centrifuge 

 SW-28 rotor 

 SW-55Ti rotor 

Beckman Coulter Life Sciences, 
Indianapolis, IN, USA 

 0.2µm Minisart syringe filter Sartorius AG, Göttingen, Germany 

 Hexagonal 400 mesh copper grids 

 1% Uranyl acetate 
Agar Scientific Ltd, Stansted, UK 

 Paraformaldehyde Insight Biotechnology Ltd, Wembley, UK 

 Glutaraldehyde 
Sigma-Aldrich, 

St. Louis, MO, USA 

 Eppendorf 5810 R centrifuge Eppendorf, Hamburg, Germany 

 FEI Tecnai™ G2 Transmission Electron 
Microscope 

FEI, Oregon, USA 

 Nanosight NS500 

 Nanoparticle Tracking Analysis (NTA software) 
Malvern Instruments, Malvern, UK 

https://www.google.co.uk/search?sa=X&biw=1177&bih=790&q=G%C3%B6ttingen+Germany&stick=H4sIAAAAAAAAAOPgE-LSz9U3ME4xKamIV-IAsZOyTAy0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUAr7fA4UQAAAA&ved=0ahUKEwid6cbm6oTNAhXKDcAKHYeRAOoQmxMIlQEoATAT
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3.2.1 Preparation of EV depleted media 

FBS was centrifuged at 100,000xg overnight (for approximately 16hours) at 4°C in 38.5ml 

polycarbonate tubes using an Optima L-100 XP Centrifuge with SW-28 rotor. Supernatant 

constituting EV depleted serum was collected, passed through a 0.2µm Minisart syringe and 

used to supplement GMEM media. ‘EV depleted media’, therefore, contained GMEM 

supplemented with 10% EV depleted FBS, instead of normal FBS. 

 

3.2.2 Cell culture for EV collection – comparison of SW756 and ME180 cells 

Experiments were performed using SW756 and ME180 cells. For each experiment three 

100mm tissue culture dishes were plated for each cell line per condition: PBS or OSM were 

treated at 12, 24, 48 and 72 hour timepoints. Cells were seeded at a density of 2x104 

cells/cm2 in 5ml normal media and incubated at 37°C in 5% CO2. Cells were cultured for 

48hours in normal media. Media was then removed by aspiration and cells washed with 

PBS, and media either replaced with fresh normal media (12 and 24 hour timepoints) or with 

EV depleted media supplemented with 10ng/ml Rh-OSM  - consistent with the concentration 

used in previous studies to stimulate sustained (>24 hour) effects of OSM-OSMR 

signalling121,215 - or an equal volume of PBS control (48 and 72 hour timepoints).  Media for 

12 and 24 hour timepoints was replaced with EV depleted media supplemented with 10ng/ml 

Rh-OSM or an equal volume of PBS control at 84 and 72 hours post seeding, respectively. 

After a total period of 96hours (12, 24, and 48 hour timepoints) or 120 hours in culture (72 

hour timepoint) conditioned media was removed from all dishes; supernatant from each set 

of three replicates was pooled (to give a total volume of 15ml) and EVs isolated by 

ultracentrifugation (see section 3.2.3). This protocol is summarised in Table 3.5 and Figure 

3.1. This experiment was repeated three times for both cell lines to provide three biological 

replicates for each condition (each biological replicate contained pooled media from three 

dishes). Following removal and pooling of supernatants, one dish from each condition was 

used to perform a representative cell count, the second was used for cellular RNA extraction 

(section 3.6.2) and the third was used for protein extraction (section 3.8.1).  

 

 



 

39 
 

 

 

Figure 3.1: Illustration of OSM Treatment Protocol  

 

3.2.3 Cell culture for EV collection – all other experiments  

For all other EV experiments, cells were seeded in normal media in 175cm2 flasks at a 

density of 5.71x104 cells/cm2 (1x107 cells/flask) and incubated at 37°C in 5% CO2, unless 

otherwise stated. After 48hours media was removed, cells were washed with PBS and 15ml 

of EV depleted media, either supplemented with 10ng/ml Rh-OSM or an equal volume of 

PBS control was added to cells. After a further 48hours in culture, conditioned media was 

collected into 15ml falcon tubes and EVs isolated as described in section 3.2.4. 

Table 3.5: Summary of Treatment Timepoints 

Treatment Group 

Time in culture prior to 
treatment with OSM/PBS in EV 

depleted media 
 (hours since seeding) 

Duration of 
Treatment 

(hours) 

Total Culture 
Time (hours) 

12hours PBS/OSM 84 12 96 

24hours PBS/OSM 72 24 96 

48hours PBS/OSM 48 48 96 

72hours PBS/OSM 48 72 120 
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3.2.4 EV Isolation 

This protocol has been adapted from Thery et al (2006)161 and is summarised in Figure 3.2. 

Conditioned media was transferred to a 15ml or 50ml falcon tube and spun at 1000xg for 

15mins at 4°C using an Eppendorf 5810R centrifuge to remove live cells from the sample. 

The supernatant was then transferred into a new 15ml or 50ml falcon tube and centrifuged 

again, this time at 2000xg for 15mins, in order to remove dead cells and large cell debris. 

Supernatant was transferred to 50ml polycarbonate tubes, topped up to 20ml with sterile 

PBS, and samples centrifuged at 17,000xg for 20mins at 4°C using an Avanti J-20 centrifuge 

and JA-20 rotor in order to remove apoptotic bodies and cell debris. Supernatant was 

subsequently transferred to 38.5ml polycarbonate tubes and samples spun at 100,000xg for 

80mins at 4°C using an Optima L-100XP Centrifuge with SW-28 rotor. The supernatant was 

discarded and the EV containing pellet re-suspended in 3ml PBS and transferred to an Ultra-

Clear ½ x 2 inch centrifuge tube (‘5ml centrifuge tubes’). Samples were centrifuged at 

100,000xg for 40mins at 4°C using a SW-55Ti rotor. This step was performed to remove 

contaminating protein. Supernatant was discarded and EV pellets either frozen at -80°C for 

future mRNA or miRNA extraction or resuspended in the desired volume of PBS (TEM, 

Nanosight, protein extraction) or media (functional assays) for downstream applications.  
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Figure 3.2: Summary of EV Isolation Protocol 
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3.2.5 EV Characterisation – Transmission Electron Microscopy (TEM) 

EVs were visualised using transmission electron microscopy. Following ultracentrifugation, 

the volume of remaining PBS in which EV pellets were suspended was measured by pipette. 

EVs were then fixed by mixing EV pellets in a 1:1 ratio with 4% PFA, (final concentration 

2%); samples were incubated for 10mins on ice. A 20µl drop of EV suspension was placed 

on a sheet of parafilm and a formvar carbon-coated copper electron microscopy grid placed 

coated-side down on top of the droplet for 2mins. This was repeated using a second droplet 

of EV suspension. Grids were subsequently washed by transfer through three sequential 

50µl droplets of sterile PBS, for a period of 30secs each. Grids were then transferred to a 

50µl droplet of 1% glutaraldehyde for 5mins. Grids were then washed by transfer through 

eight sequential 50µl droplets of nuclease-free water, for a period of 1min per droplet. To 

contrast the sample, grids were transferred to 20µl droplets of 1% uranyl acetate solution for 

2mins and incubated in the dark. Grids were removed from the droplets and then left coated-

side up to air dry. EVs were visualised using a FEI Tecnai™ G2 Transmission Electron 

Microscope operated at 80kV.  

 

3.2.6 EV Characterisation – Nanosight 

Following ultracentrifugation, volume of EV pellets was measured and samples were diluted 

to a total volume of 200µl using PBS. Particle size was quantified using a Nanosight NS500 

with Nanoparticle Tracking Analysis (NTA) Software following manufacturer’s instructions. 

This was performed in collaboration with Carlos Passos Bastos in Dr Nuno Faria’s research 

group at The Department of Veterinary Medicine, Cambridge University. For optimum 

performance, samples were run using a range of 1:250–1:1000 dilutions (prepared in PBS) 

of the original 200µl sample; dilution used for each sample was dependent on the 

concentration of particles present.   

 

The Nanosight NS500 visualises nanoparticles in liquid suspension and provides analysis of 

particle size distribution and concentration based on their rate of Brownian motion. Particles 

are passed through a flow chamber and are illuminated using a laser source. The light 

scatter produced is recorded using a video camera attached to a x20 magnification 

microscope. The camera captures a video of the particles moving under Brownian motion; 

small particles will move further than large particles (Figure 3.3). NTA software tracks 

multiple particles individually but simultaneously and uses the Stokes Einstein equation to 

calculate their hydrodynamic diameters on an individual particle basis216.  

 

Between three and five videos were recorded for each sample replicate. High vibrations 

during recording can result in an overestimation of the particles counted, therefore this was 
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used as a quality control and videos with high levels of vibrations were excluded from 

analysis. Based on the total number of particles counted, the NTA software generates data 

displaying the concentration of particles present in 1nm size bins. These concentrations 

were subsequently corrected by multiplying by the dilution factor in order to determine both 

the total concentration of particles present in each sample replicate and the true 

concentration of particles within each size bin. Mean and mode (i.e. the most frequently 

found) particle size, as well as D10, D50 and D90 values, which refer to the particle size 

which 10%, 50% and 90% of particles in the sample are smaller than, respectively, were 

then calculated. In order to compare samples, the percentage particle concentration for each 

size bin was calculated by dividing the particle concentration for each size bin by the total 

particle concentration for that sample. The total number of EVs present in the sample was 

calculated by multiplying the corrected concentration by the original 200µl sample volume. 

The number of particles released per cell was calculated by dividing this value by the 

number of cells present in the flask at time of EV collection (determined by Countess cell 

counter). For each sample values obtained for two biological replicates were averaged.   

 

Overall true sample concentration = overall concentration x dilution factor 

True sample concentration for each size bin = bin concentration x dilution factor 

Percentage particle concentration = bin concentration / total concentration  

Total EVs present in sample = Overall true sample concentration x sample volume (0.2ml) 

EVs released per cell = total EVs present in sample/ number of cells  

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 3.3: Schematic representation of the Nanosight NTA system  
http://www.malvern.com/en/products/technology/nanoparticle-tracking-analysis

217 
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3.3 Generation of an OSMR Knock down (KD) Cervical SCC Cell Line 

 

OSMR expression was knocked down in the OSMR overexpressing SW756 cervical SCC 

cell line using a CRISPR-Cas9D10A Nickase Based System. The Ensemble Genome Browser 

(www.ensemble.org, build GRCh37.p13) was used to determine the transcripts of the human 

OSMR gene. This gene has five transcripts, three of which are protein coding; this is 

depicted in Figure 3.4. 

 

 

 

Table 3.6: Reagents and equipment for OSMR KD 

Reagent Company 

 BsaI enzyme 

 EcoRI enzyme 

 BbSI enzyme 

 BamHI enzyme 

 T4 Polynucleotide Kinase 

 T4 DNA Ligase 

 10X CutSmart
®
 Buffer 

 10X T4 DNA Ligase Reaction Buffer 

 EcoRI Buffer 

 NEB  Buffer 2.1 

 BamHI Buffer 

New England Biolabs, Ipswich, MA, USA 

 Nuclease-free water 

 DH5α competent cells 

 1Kb DNA ladder (0.5 μg/ μl) 

Invitrogen,  Thermo Fisher Scientific, 
Waltham, MA, USA 

 Agarose Roche, Basel, Switzerland 

 TAE Buffer 

 LB Broth 

 Agar Plates (100 μg/ml Ampicillin) 

 super optimal broth (SOC) media 

Hutchison/MRC Media Kitchen, 
Cambridge, UK 

 Ampicillin Melford Laboratories, Ipswich, UK 

 QIAquick
TM

 gel extraction kit 

 QIAquick PCR purification kit  
Qiagen, Hilden, Germany 

 Ethidium Bromide 10mg/ml in water 

 10X Orange G  loading buffer 

 GenElute™ Plasmid Miniprep Kit 

 Nanodrop 2000 spectrophotometer 

Sigma-Aldrich, St. Louis, MO, United 
States 

 Lipofectamine
®
LTX with PLUS™ Reagent 

 Lipofectamine LTX DNA Transfection Reagent 

 Opti-MEM® Medium 

 PLUS™ Reagent 

Thermo Fisher Scientific, Waltham, MA, 
USA 

 Inoculating loop Copan Diagnostics, Murietta, CA, USA 

 Bio-Rad Gel dock 
Bio-Rad Laboratories, Hercules, CA, 

USA 

 MJ Research Tetrad PTC-225 Peltier Thermal 
Cycler 

Bio-rad Laboratories, Hercules, CA, USA 

http://www.ensemble.org/
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Figure 3.4: Annotation of the human OSMR gene 

A) OSMR gene B) Details of OSMR transcripts 
 

3.3.1 sgRNA Design  

A pair of sense (gRNA1) and antisense (gRNA2) single guide RNAs (sgRNAs) were 

designed using http://crispr.mit.edu to target an exon within transcripts OSMR-001 and 

OSMR-003, as depicted in Figure 3.4.  Protospacer adjacent motifs (PAMs) were removed 

from the 3’ end and the following motifs added to the 5’ end of each sequence to created 

overhangs enabling cloning into BsaI and BbsI sites respectively: forward gRNA – ACCG 

and reverse gRNA – AAAC. sgRNAs were reconstituted in nuclease-free water at a 

concentration of 100µM; sequences are shown in Table 3.7.      

http://crispr.mit.edu/
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3.3.2 Oligo annealing and cloning into backbone vector 

An all-in-one Cas9D10A nickase vector was kindly provided by Professor Stephen Jackson, 

the University of Cambridge218; the structure of this plasmid is detailed in Figure 3.5 below. 

Figure 3.5: Structure of the PX466 Cas9-D10A-GFP Plasmid 
 

The PX466 Cas9-D10A-GFP vector has two BsaI sites located in close proximity to one 

another, with an EcoRI site in between (Figure 3.5). 2µg of vector was linearised using BsaI 

enzyme (Table 3.8). The reaction was incubated at 37°C for 1hour and the enzyme 

subsequently deactivated by incubation at 65°C for 20mins.  

 

Table 3.7: CRISPR sgRNA Sequences 
sgRNA Name Sequence 

OSMR gRNA1 forward ACCGCAAACTCTGACGCGTAGAAT 

OSMR gRNA1 reverse AAACATTCTACGCGTCAGAGTTTG 

OSMR gRNA2 forward ACCGCCACAACCTTCCTTATCATC 

OSMR gRNA2 reverse AAACGATGATAAGGAAGGTTGTGG 

Table 3.8: BsaI digest 

Reagent Volume per Reaction 

PX466 Cas9-D10A-GFP vector (2µg/µl) 1µl 

BsaI enzyme  2µl 

10X CutSmart® Buffer  2µl 

Nuclease-free water  15µl 

TOTAL 20µl 
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An agarose gel was prepared by dissolving 0.5g agarose in 50ml 1xTAE buffer (1%) by 

heating in a microwave. Once cooled, 2µl (10µg) of ethidium bromide was added to the 

solution which was then poured into a gel mould. Once set, the gel was placed in a gel tank 

and covered with 1xTAE buffer. 1.5µl of Orange G 10X loading buffer was added to 10µl of 

linearised or uncut vector and samples were loaded onto the gel along with 6µl (3µg) of 1Kb 

ladder. Samples were run at 110V for 30mins and the gel visualised using a Bio-Rad Gel 

dock. The band corresponding to plasmid linearised with BsaI was cut from the gel and 

subsequently purified using a QIAquickTM gel extraction kit following manufacturer’s 

instructions. Linearised vector at a final concentration of 24ng/µl was obtained.  

3.3.3 Oligonucleotide Annealing and Phosphorylation 

The following reactions, using reagents shown in Table 3.9, were performed for each set of 

sgRNA primer pairs: 

1) OSMR gRNA 1 (Forward + Reverse) 

2) OSMR gRNA 2 (Forward + Reverse) 

 

 

SgRNAs were annealed in a thermocycler using the following programme: 37°C for 30mins; 

95°C for 5mins; then cool down ramp for 1hour to 4°C. Samples were subsequently 

incubated on ice for 15mins and then diluted 1:100 in nuclease-free water.  

 

3.3.4 Ligation of sgRNA1 into vector backbone  

The ligation reaction was set up as shown in Table 3.10. The reaction was incubated 

overnight at 16°C. 

 

 

 

 

 

Table 3.9: Oligonucleotide annealing and phosphorylation 

Reagent Volume per Reaction 

Forward sgRNA (100µM) 1µl 

Reverse sgRNA (100µM) 1µl 

T4 Polynucleotide Kinase  1µl 

10X T4 DNA Ligase Reaction Buffer  1µl 

Nuclease-free water 6µl 

TOTAL 10µl 

Table 3.10: Ligation of sgRNA1 into vector backbone 

Reagent Volume per Reaction 

100ng digested vector (24ng/µl) 4µl 

gRNA1 primer (oligo duplex 1:100 dilution) 2µl 

T4 DNA Ligase  1µl 

10X T4 DNA Ligase Reaction Buffer  5µl 

Nuclease-free water 38µl 

TOTAL 50µl 
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3.3.5 Transformation of Competent DH5α cells 

Ligated plasmid was used to transform DH5α competent cells; 10µl of the ligated plasmid 

was added to 50µl of DH5α cells and incubated on ice for 5mins. The cells were then heat 

shocked at 42°C for 90secs, and returned to ice for a further 90secs. 400µl of super optimal 

broth (SOC) media was added to the cells, which were then shaken at 200rpm for 1hour at 

37°C. Cells were subsequently transferred onto, and spread evenly across, the surface of a 

pre-prepared LB agar plate containing 100μg/ml Ampicillin. The plate was incubated for 

3hours at room temperature and was then turned upside down and incubated overnight at 

37°C. The next day 16 colonies were selected and streaked onto a new agar plate using an 

inoculating loop. Colonies were incubated for 3hours at room temperature; the plate was 

then turned upside down and incubated overnight at 37°C. The loops used to streak the first 

four colonies were subsequently used to inoculate tubes containing 5ml of LB broth with 

100µg/ml Ampicillin. Tubes were incubated for 3hours at room temperature and were 

subsequently shaken at 250rpm at 37°C overnight. In total, one plate with 16 colonies and 4 

individual LB broth inoculated colonies were grown up. 

 

3.3.6 DNA Extraction 

DNA was extracted from each of the four colonies grown up in LB broth. This was performed 

using a GenElute™ Plasmid Miniprep Kit following manufacturer’s instructions. DNA was 

eluted in a final volume of 70µl nuclease-free water. DNA concentrations were subsequently 

measured using a Nanodrop 2000 spectrophotometer.  

 

3.3.7 Confirmation of gRNA1 insertion 

The PX466 Cas9-D10A-GFP vector contains three EcoRI sites, one of which is located 

within the two Bsa1 sites (Figure 3.5) which were targeted for linearisation of the plasmid 

prior to gRNA1 insertion. An EcoRI digest was, therefore, performed to determine if gRNA1 

was inserted successfully. EcoRI digests were performed as shown in Table 3.10, using 

150-200ng DNA.  Samples were incubated at 37°C for 1hour.  

 
 
 
 
 
 
 
 
 
 

10µl of each sample was subsequently run on a 1% agarose gel, as previously described, at 

110V for 30mins and the gel visualised using a Bio-Rad Gel dock. Samples with the 

Table 3.11: EcoRI digest 

Reagent Volume per Reaction 

EcoRI Buffer  1.0µl 

EcoRI enzyme  0.3µl 

150 – 200 ng DNA 0.5µl 

Nuclease-free water 8.2µl 

TOTAL 10µl 
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appropriate number of bands corresponding to gRNA1 insertion were diluted to 100ng/µl, 

and 10µl sent for sequencing at the Department of Biochemistry, University of Cambridge 

(three samples per each insert) using 10µM of primer with the following sequence:  

CTTGATGTACTGCCAAGTGGGC.  

 

3.3.8  Linearisation of Vector by BbSI Digest 

The PX466 Cas9-D10A-GFP vector has two BbSI sites located in close proximity to one 

another, with a BAMHI site in between (Figure 3.5). 2µg of vector DNA was linearised using 

BbSI enzyme (Table 3.12). The reaction was incubated at 37°C for 1hour and the enzyme 

subsequently deactivated by incubation at 65°C for 20mins. Samples were run on a 1% 

Agarose gel. 2µl of each sample (corresponding to 0.2µg DNA) was diluted with 8µl of 

nuclease-free water, and added to 1.5µl of 10X Orange G loading buffer. 0.2µg of uncut 

sample (diluted to 10µl in nuclease-free water) was also loaded onto the gel along with 6µl 

(3µg) of 1Kb ladder. Samples were run at 110V for 30mins and the gel visualised using a 

Bio-Rad Gel dock.  

 

 

 

 

 

 

 

 

3.3.9 Purification of Vector Backbone 

Following BbSI digestion, samples were purified using a QIAquick PCR purification kit 

following manufacturer’s instructions; samples were eluted in 20µl nuclease-free water. This 

kit purifies fragments from 100bp to 10kb in size; therefore, only the vector backbone was 

purified and the small DNA fragment between the two BbSI sites was removed. DNA 

concentration was measured with Nanodrop 2000. 

 

3.3.10 Ligation of sgRNA2 into vector backbone  

Ligation reactions were set up in duplicate according to Table 3.13 for insertion of gRNA2 

into the vector backbone already containing gRNA1. The reaction was incubated overnight 

at 16°C. 

 

 

Table 3.12: Reagents for BbSI digest 

Reagent Volume per Reaction 

DNA conc = 559.7ng/µl 

Vector DNA (2µg) 3.57µl 

BbSI enzyme  0.5µl 

NEB  Buffer 2.1  2µl 

Nuclease-free water 13.93µl 

TOTAL 20µl 
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The following day, 10µl ligated plasmid was used to transform 50µl of DH5α competent cells 

as previously described in section 3.3.5. As in the previous transformation, transformed cells 

were spread across surface of an LB agar plate (containing100μg/ml Ampicillin) and 

incubated overnight at 37°C. The next day, 16 colonies were selected and streaked on a 

new agar plate which was incubated overnight at 37°C. The loops used to streak the first 

four colonies were subsequently used to inoculate tubes containing 5ml of LB broth with 

100µg/ml Ampicillin, which were shaken at 250rpm at 37°C overnight. Therefore, one plate 

with 16 colonies and 4 individual LB broth inoculated colonies were grown. 

 

3.3.11 DNA Extraction 

DNA was extracted from each of the four colonies grown up in LB broth. This was performed 

using a GenElute™ Plasmid Miniprep Kit following manufacturer’s instructions; DNA was 

eluted in a final volume of 70µl nuclease-free water. DNA concentration was subsequently 

measured using Nanodrop 2000. 

 

3.3.12 Confirmation of gRNA2 insertion 

The PX466 Cas9-D10A-GFP vector contains a BamHI site located between the two BbsI 

sites, which were targeted for linearisation of the plasmid prior to gRNA2 insertion (Figure 

3.5). Plasmids with successful insertion of gRNA2 no longer contain a BamHI site and DNA 

remains uncut, whereas plasmids without gRNA2 insert will be linearised following BamHI 

digestion. BamHI digests were performed (Table 3.14) using 200ng DNA.  Samples were 

incubated at 37°C for 1hour.  

 
 
 
 
 
 
 
 
 
 

Table 3.13: Ligation of sgRNA2 into vector backbone 

Reagent  
 

Vector DNA conc = 31.2ng/µl 

Volume per Reaction 

Vector DNA (100ng) 3.21µl 

10X T4 DNA Ligase Reaction Buffer  1µl 

T4 DNA Ligase  2µl 

gRNA2 primer (oligo duplex 1:100 dilution) 2µl 

Nuclease-free water 1.79µl 

TOTAL 10µl 

Table 3.14: BamHI digest 

Reagent Volume per 
Reaction 

BamHI Buffer  1.0µl 

BamHI enzyme  0.3µl 

200 ng DNA 0.4µl 

Nuclease-free water 8.3µl 

TOTAL 10µl 
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10µl of digested samples and paired undigested controls were subsequently run on a 1% 

agarose gel, as previously described, and the gel visualised using a Bio-Rad Gel dock. 

Samples positive for gRNA2 insertion were diluted to 100ng/µl, and 10µl sent for sequencing 

at the Department of Biochemistry using primer (10µM) with the following sequence: 

CTTGATGTACTGCCAAGTGGGC. 

 

3.3.13 Transfection of SW756 cells with OSMR CRISPR Plasmid 

SW756 cells were seeded in 6well plates in antibiotic-free GMEM supplemented with 10% 

FBS and 2mM L-glutamine at a density of 2.6 x106 cells/well. After 48hours, wells had 

reached approximately 70% confluence and were transfected using Lipofectamine®LTX with 

PLUS™ Reagent with either empty PX466 Cas9-D10A-GFP plasmid, subsequently referred 

to as empty plasmid, or plasmids containing sgRNAs against OSMR. Transfections were 

performed in triplicate for each condition as follows: Lipofectamine LTX DNA Transfection 

Reagent (6µl) was diluted in 150µl Opti-MEM® Medium. In a separate tube, 2.5µg plasmid 

DNA was diluted in 175µl Opti-MEM® Medium with the addition of 3.5µl PLUS™ Reagent. 

Diluted DNA was then added to diluted lipofectamine LTX DNA Transfection Reagent and 

incubated at room temperature for 15mins. Media was removed from cells; wells were 

washed in PBS and 2ml fresh antibiotic-free GMEM was added to each well in addition to 

300µl of the plasmid DNA/ Lipofectamine® LTX/ PLUS™ Reagent mixture. Cells were 

incubated at 37°C in 5% CO2. After 8hours transfection media was removed, wells were 

washed with PBS and 2ml fresh antibiotic-free GMEM added.  

 

As the PX466 Cas9-D10A-GFP plasmid encodes enhanced green fluorescent protein 

(EGFP), cellular EGFP expression was used to confer successful cell transfection. A DM LB 

light microscope with 488nm laser and filter (Leica) was used to evaluate EGFP levels at 0, 

24 and 48 hours post transfection.  At 48hours post transfection cells were trypsinised, and 

the number of cells/well determined by Countess cell counter. The three wells transfected 

per condition were combined and centrifuged for 4mins at 400xg. Supernatant was removed 

and cells were washed in PBS, centrifuged for a further 4mins at 400xg and resuspended in 

1ml PBS. EGFP positive cells then underwent single cell sorting using an Astrios EQ flow 

cytometry cell sorter and 488nm excitation laser. Untransfected control sample was used to 

set gating parameters. One EGFP positive cell was plated in each well of a 96 well plate 

containing 50µl antibiotic-free GMEM. Remaining EGFP positive cells for each sample were 

seeded in 6well plates in 1ml of antibiotic-free GMEM – these are subsequently referred to 

as pooled samples. Cell sorting was performed with the assistance of Nigel Miller and Joana 

Cerveira.  
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3.3.14 Confirmation of OSMR KD 

Once cells derived from single cell FACs sorting reached confluence, six colonies for each 

treatment group (empty plasmid and plasmid with gRNAs), as well as the pooled sample 

originating from multiple EGFP positive cells, were selected and bulked up until there were 

enough cells to perform DNA, RNA and protein extractions for investigation of OSMR KD as 

detailed in sections 3.5, 3.6 and 3.8, respectively.        

 

3.3.15 Generation of additional OSMR KD cells lines  

The CRISPR protocol was repeated in order to generate additional OSMR KD cell lines. WT 

SW756 cells were transfected as previously described (section 3.3.13) with empty PX466 

Cas9-D10A-GFP plasmid (empty plasmid) or plasmid containing sgRNAs against OSMR. A 

mock transfection control in which cells were treated with lipofectamine but no plasmid was 

also included. Following single cell sorting of EGFP positive cells by FACS, six clonal cell 

lines transfected with empty plasmid and 36 clonal cell lines transfected with plasmid 

containing sgRNAs against OSMR were expanded for investigation of OSMR KD.  

 

3.4 Generation of SW756 cell lines with endogenous OSM Production 

 

SW756 cells were stably transfected by Justyna Kucia-Tran with both a plasmid conferring 

firefly luciferase (luc2) expression and either a plasmid expressing hOSM under a 

hEF1/HTVT promoter (pUNO1-hOSM plasmid) or an empty control plasmid (pUNO1-mcs 

plasmid) in order to generate a bioluminescent OSMR overexpressing cervical SCC cell line 

with hOSM over-expression.  

 

3.4.1 Transfection of SW756 cells with pGL4.51 plasmid  

In brief, WT SW756 cells were transfected with pGL4.51 plasmid by nucleofection using the 

Amaxa Nucleofector System Kit V following manufacturer’s instructions. 1 x106 cells were 

Table 3.15: Reagents for generation of cell line with endogenous OSM production 

Reagent Company 

 pGL4.51 plasmid Promega, Madison, USA 

 pUNO1-hOSM plasmid 

 pUNO1-mcs plasmid 
InvivoGen, Toulouse, France 

 Amaxa Nucelofector System Kit V 

 pmaxGFP vector 
Lonza, Basel, Switzerland 

 Lipofectamine LTX DNA Transfection 
Reagent 

 Lipofectamine LTX PLUS reagent 

 Opti-MEM® Medium 

 G418 sulfate 

Thermo Fisher Scientific, Waltham, 
MA, USA 
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placed in 100µl electroporation solution along with 0.5µg pGL4.51. Cells were nucleofected 

using programme U-20 and plated in 100mm tissue culture dishes; pmaxGFP vector 

containing green fluorescent protein (GFP) was used as positive control for the transfection 

process. The pGL4.51 plasmid contains the NeoR gene which confers resistance to the 

G418 antibiotic. The day after transfection media was changed and cells selected with 1.2 

mg/ml G418 sulfate for 2 weeks. Stably transfected clonal pools were expanded in media 

containing 0.6mg/ml G418 sulfate. Cells stably transfected with pGL4.51 are referred to as 

SW756-pGL4. 

 

3.4.2 Transfection of SW756 cells with pUNO1-hOSM plasmid 

SW756-pGL4 cells were transfected with pUNO1-mcs or pUNO1-hOSM plasmids (Figure 

3.6) using Lipofectamine LTS with PLUS reagent. 1.9 x106 SW756-pGL4 cells were seeded 

in 6well plates in antibiotic-free GMEM supplemented with 10% FBS and 2mM L-glutamine. 

After 24hours, wells were transfected using Lipofectamine®LTX with PLUS™ Reagent with 

either pUNO1-hOSM or pUNO1-mcs plasmids. Transfections were performed for each 

condition as follows: 3µl of Lipofectamine LTX DNA Transfection Reagent was diluted in 

100µl Opti-MEM® Medium and incubated for 5mins at room temperature. In a separate tube, 

1µg plasmid DNA was diluted in 100µl Opti-MEM® Medium with addition of 1µl PLUS™ 

Reagent. Diluted DNA was then added to diluted Lipofectamine LTX DNA Transfection 

Reagent and incubated at room temperature for 20mins. Media was removed from cells; 

wells were washed in PBS and 800µl fresh antibiotic-free GMEM was added to each well in 

addition to 200µl of the plasmid DNA/Lipofectamine® LTX/PLUS™ Reagent mixture. Cells 

were incubated at 37°C in 5% CO2. Cells transfected with a pmaxGFP vector were used as a 

positive control. After 8hours transfection media was removed, wells were washed with PBS 

and 2ml fresh antibiotic-free GMEM added. The pUNO1-mcs and pUNO1-hOSM plasmids 

both contain the BsrS2R gene which confers resistance to Blasticidin antibiotic. The 

following day, media was changed and cells selected with 5µg/ml Blasticidin for 2 weeks. 

Stably transfected clonal pools were harvested and expanded in Blasticidin-free media. Cells 

transfected with pUNO-mcs plasmid are here onwards referred to as pUNO cells, whereas 

cells transfected with pUNO1-hOSM plasmid will be referred to as pOSM cells.  
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Figure 3.6: Structure of pUNO1-hOSM and pUNO1-mcs plasmids 
A) Schematic of main features of pUNO1 plasmid structure  

B) Structure of pUNO1-hOSM plasmid (OSM overexpressing plasmid) 

C) Structure of pUNO1-mcs plasmid (empty plasmid) 

3.4.3 Re-transfection of SW756 cells with pUNO1-hOSM plasmid  

Transfection of SW756-pGL4 cells pUNO1-mcs or pUNO1-hOSM plasmids (Figure 3.6) was 

repeated as described in section 3.4.2 in order to generate SW756 cells with lower levels of 

hOSM overexpression than the original pOSM cell line. This was performed by Dr Danita 

Pearson. Following Blasticidin selection cells were harvested, counted by Countess cell 

counter and diluted in order to seed 30 cells per 96 well plate, enabling single cell cloning. 

These cells were expanded and levels of OSM determined by ELISA and qPCR. Levels of 

downstream targets were determined by qPCR and western blot. Results are shown for four 

of these clonal cell lines, denoted pOSM clone 1 (pOSMc1), clone 2 (pOSMc2), clone 3 

(pOSMc3) and clone 4 (pOSMc4). Cells transfected with pUNO1-mcs plasmid in this repeat 

experiment are referred to as pUNO2.  
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3.5 DNA Experiments 

 

3.5.1 DNA Extraction 

Adherent cells from a 75cm2 culture flask were trypsinised as previously described (though 

3ml trypsin and 7ml media were used for this size of flask).  2.5ml of cell suspension was 

transferred to a 5ml falcon tube and centrifuged at 400xg for 4.5mins. Supernatant was 

removed and cell pellets were washed in PBS and centrifuged as above. Pellets were 

resuspended in 2ml lysis buffer, mixed and incubated overnight at 37°C to allow digestion. 

Samples were then mixed and 1x volume of phenol added. Samples were shaken by hand 

and centrifuged at 3200xg for 10mins at room temperature. The top aqueous layer was 

transferred to a new 5ml falcon tube; this step was repeated once more. 1x volume of 

saturated chloroform was then added, samples centrifuged at 3200xg for 10mins at room 

temperature and the top aqueous layer transferred to a new 5ml falcon tube. This step was 

repeated once more (i.e. two chloroform extractions). Subsequently, 1/10 th volume sodium 

acetate and 3x volumes cold 100% ethanol (EtOH) were added to samples which were 

mixed by gentle inversion and left overnight at -20°C. Samples were then centrifuged at 

3200xg for 30mins at 4°C. Pellets were then washed in 1ml 70% EtOH, mixed by pipetting, 

transferred to a 1.5ml Eppendorf tube and centrifuged at 16,000xg for 5mins at 4°C. Ethanol 

was removed and pellets allowed to air dry. Pellets were resuspended in TE buffer and left 

overnight at 4°C. The following day DNA concentration was determined using Nanodrop 

2000.  

 

 

Table 3.16: Reagents and buffers for DNA experiments 

Reagent Company 

 1MM Tris-Cl (pH 8) 

Hutchison/MRC Media Kitchen, Cambridge, UK 
 EDTA, 1mM, pH8 

 10% SDS 

  Sodium acetate 

 20mg/ml proteinase K Melford Laboratories, Ipswich, UK 

 Phenol  

 Chloroform 

 Ethanol 

 JumpStart
TM

 Taq DNA 
polymerase  

Sigma-Aldrich, St. Louis, MO, United States 

 0.2ml non-flex PCR tubes Starlab, Milton-Keyes, UK 

 QIAquick PCR purification 
kit 

Qiagen, Hilden, Germany 

Buffer Components 

 TE Buffer  (per Litre) 98.8ml H20 + 1ml 1MM Tris + 200µl  0.5MM EDTA 

 Lysis Buffer  (per ml) 960µl TE Buffer + 40µl 10% SDS + 2.5µl 20mg/ml proteinase K 
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3.5.2 Polymerase Chain Reaction (PCR) 

Primers to assess for genomic loss were designed using the website ‘Primer3’ 

(http://bioinfo.ut.ee/primer3-0.4.0/). Forward and reverse primers were designed to amplify a 

small fragment of the OSMR gene that was targeted by sgRNAs during CRISPR (200-250 

bps) or to amplify a larger fragment (~1kb) for subsequent sequencing, within the region 

targeted. They were designed to be between 18 and 23 nucleotides (nt) in length (optimal 

size = 20 nucleotides). Primer pairs were screened using PRIMER BLAST 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/) in order to identify primers that were 

specific to the intended PCR target. This method uses the Basic Local Alignment Search 

Tool (BLAST) and a global alignment algorithm to screen primers against a user-selected 

database to avoid primer pairs that could result in non-specific amplification. Primers were 

purchased from Sigma Aldrich and reconstituted at 100µM in nuclease-free water. Primer 

sequences are shown in Table 3.17. Primers were subsequently diluted to 2µM for PCR. 

 

DNA samples were diluted to 12.5ng/µl in nuclease-free water. PCR reactions were 

performed using a JumpStartTM Taq DNA polymerase kit (reaction components are listed in 

Table 3.18 below) in 0.2ml non-flex PCR tubes. 

 

PCR reactions were performed using a MJ Research Tetrad PTC-225 Peltier Thermal Cycler 

using the reaction conditions listed in Table 3.19 

 

 

 

 

Table 3.17: PCR Primers for genomic DNA 

Primer Sequence  

OSMR KD gRNA Forward  TGACTCTTCAATCATGCTCCTAT 

OSMR KD gRNA Reverse TTACTTACCACCCAGATGACATT 

OSMR Sequencing Primer Forward GGTATGTTGCTGGTCTCATCG 

OSMR Sequencing Primer Reverse TCTTCGTGGCTCTCTGGAAT 

Table 3.18: PCR Reagents 

Reagent Volume Per Reaction  

10x PCR Buffer 2.5µl 

dNTP mix (2mMol of each base) 2.5µl 

Forward Primer (2µM) 2.5µl 

Reverse Primer (2µM) 2.5µl 

JumpStartTM Taq DNA polymerase 0.5µl 

DNA (12.5ng/ µl) 2.0µl 

Nuclease-free water 12.5µl 

TOTAL  25µl 

http://bioinfo.ut.ee/primer3-0.4.0/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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1.5µl of Orange G 10X loading buffer was subsequently added to 10µl of each sample, and 

run on a 1% agarose gel as previously described, and the gel visualised using a Bio-Rad 

Gel dock. 

 

3.5.3 Sequencing for detection of OSMR KD cell lines 

For PCR performed with OSMR sequencing primers, PCR products were purified from the 

PCR reaction using a QIAquick PCR purification kit, following manufacturer’s instructions; 

samples were eluted in 30µl nuclease-free water. DNA concentration was determined using 

a nanodrop 2000 spectrophotometer. OSMR Sequencing primers (both forward and reverse, 

as listed in Table 3.17) were diluted to 10µM in nuclease-free water. DNA sequencing was 

performed by the Department of Biochemistry, University of Cambridge.  Sequencing data 

was analysed with SnapGene and Synthego ICE software in order to compare sequences 

from each sample (generated using either forward or reverse prime) with those of wild-type 

SW756 cells in order to determine if any changes had occurred to the section of the OSMR 

gene targeted by CRISPR.  

 

 

 

 

 

 

 

 

 

 

 

Table 3.19: PCR Reaction Conditions  

PCR Step Time Temperature  Number of Cycles 

Taq Activation 5mins 94°C 1 

Denaturation 30secs 94°C 

40 Annealing 30secs 55°C 

Extension 30secs 72°C 

Elimination of Enzyme Activity  7mins 72°C 
1 

Hold  unlimited 4°C 
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3.6 RNA Experiments 

 

3.6.1 mRNA Extraction: Cells  

Adherents cells grown in 6 well plates were washed in PBS, homogenised in 1ml TriReagent 

and cell suspensions transferred to 1.5ml Eppendorf tubes. Samples were incubated at 

room temperature for 5mins to permit complete dissociation of the nucleoprotein complex. 

200µl saturated chloroform was added and samples vigorously shaken by hand for 15secs. 

Samples were then incubated at room temperature for a further 2mins before undergoing 

centrifugation at 12,000xg for 30mins at 4°C. Following centrifugation the mixture separated 

into three layers: a lower red phenol-chloroform organic phase, a white protein containing 

interphase and an upper colourless aqueous phase containing RNA. The RNA containing 

aqueous phase was removed to a new Eppendorf tube and 1µl glycogen and 500µl 

isopropyl alcohol added. Samples were mixed thoroughly and incubated overnight at -20°C 

to precipitate RNA. Samples were centrifuged at 12,000xg for 30mins at 4°C. Supernatant 

was removed and discarded and the RNA pellet subsequently washed with 1ml 75% 

ethanol. Samples were briefly vortexed then centrifuged at 7,500xg for 10mins at 4°C. 

Supernatant was discarded and pellets allowed to air-dry for 10mins at room temperature. 

RNA was resuspended in an appropriate volume of nuclease-free water and heated to 60°C 

Table 3.20: Reagents for RNA Experiments 

Reagent Company 

 Qiazol  

 miRNeasy Mini Kit  

 miRNeasy Serum/Plasma Kit  

 miRNeasy Serum/Plasma Cel-miR-39 Spike-In 
Control 

Qiagen, 
Hilden, Germany 

 MS2 bacteriophage RNA 
Roche Diagnostics, Risch-Rotkreuz, 

Switzerland 

 Chloroform 

 Ethanol 

 TriReagent 

 Isopropyl alcohol   

 Glycogen 

 mRNA qPCR primers 

Sigma Aldrich, 
St Louis, MO, USA 

 Distilled water (DNase/RNase Free)  

 Universal Template cDNA made from  
Universal Human Reference RNA (Ambion) 

Thermo Fisher Scientific, 
Waltham, MA, USA 

 Quantitect Reverse Transcription Kit Qiagen, Hilden, Germany 

 Taqman MicroRNA Reverse Transcription Kit   

 Taqman MicroRNA Primers 

 Taqman MicroRNA Probes  

Applied Biosystems, Foster City, 
CA, USA 

 

 2X qPCR Bio Sygreen Lo-Rox Mix  PCR Biosystems Ltd, London, UK 

 Flat top full skirt 96 well qPCR plate SSI bio, Lodi, CA, USA 

https://www.google.co.uk/search?sa=X&biw=1920&bih=955&q=Risch-Rotkreuz+Switzerland&stick=H4sIAAAAAAAAAOPgE-LUz9U3MI83zbJUAjPTynMKC7S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQCcivuGRAAAAA&ved=0ahUKEwi0nunRtIfNAhXqA8AKHf8hCroQmxMIhgEoATAO
https://www.google.co.uk/search?sa=X&biw=1920&bih=955&q=Risch-Rotkreuz+Switzerland&stick=H4sIAAAAAAAAAOPgE-LUz9U3MI83zbJUAjPTynMKC7S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQCcivuGRAAAAA&ved=0ahUKEwi0nunRtIfNAhXqA8AKHf8hCroQmxMIhgEoATAO
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for 10mins to promote resuspension. RNA concentration was quantified using a Nanodrop 

2000.  

 

3.6.2 Total RNA Extraction (mRNA + miRNA): Cells  

Adherent cells were trypsinised and counted as previously described. 3.5 x106 cells per 

sample were centrifuged for 4.5mins at 400xg, cell pellets resuspended in 700µl Qiazol lysis 

reagent and vortexed for 30secs. Samples were then incubated at room temperature for 

5mins. 140µl saturated chloroform was added and samples vigorously shaken by hand for 

15secs. Samples were then incubated at room temperature for a further 2mins before 

undergoing centrifugation at 12,000xg for 15mins at 4°C. The upper aqueous RNA 

containing phase was removed to a new Eppendorf tube and 1.5x volumes 100% ethanol 

added and mixed thoroughly. Total RNA was extracted using a miRNeasy Mini Kit with 

RNeasy Mini spin columns according to manufacturer’s instructions. Samples were 

subsequently eluted through two sequential centrifugations at 8,000xg for 1min using 30µl of 

nuclease-free water to obtain a total elution volume of 60µl. 

 

3.6.3 Total RNA Extraction (mRNA + miRNA): EVs and plasma 

Following ultracentrifugation, EV pellets were resuspended in 200µl PBS; for plasma 

samples 200µl was used. Reagents (Table 3.21) were added to each sample. For samples 

used for qPCR analysis MS2 was used as a RNA carrier and cel-miR-39-3p spike in control 

added. 10µg/sample glycogen was used as a RNA carrier for samples to be used for next 

generation sequencing (NGS); cel-miR-39-3p spike-in control was not added.  

 

Table 3.21: Reagent volumes for EV total RNA Extraction 

Solution 

Volume per 
sample 

Downstream 
application: 

qPCR 

Volume per 
sample 

Downstream 
application: 

NGS 

Qiazol 1000µl 1000µl 

MS2 Stock Solution (0.8 µg/µl) 1.56µl - 

Cel-miR-39-3p spike-in control  (1.6 x 108 copies/µl) 3.5µl - 

Glycogen (6.41µg/µl) - 1.56µl 

TOTAL 1005.06µl 1001.56µl 

 

Samples were mixed by vortexing and incubated at room temperature for 5mins. 200µl 

chloroform was added to each sample. Samples were mixed again, incubated at room 

temperature for 2mins then centrifuged for 15mins at 12000xg at 4°C. The RNA containing 

aqueous phase was collected into a new Eppendorf tube and 1.5 x Vol of 100% EtOH added 

to each sample; samples were mixed thoroughly. Total RNA was extracted using a 
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miRNeasy Serum/Plasma Kit and RNeasy MinElute spin columns following manufacturer’s 

instructions. Samples were subsequently eluted through two sequential centrifugations at 

16,000xg for 1min using 14µl (elution 1) and 10µl (elution 2) of nuclease-free water to obtain 

a total volume of 24µl. 

 

3.6.4 Total RNA Extraction (mRNA + miRNA): Tumour Tissue 

Frozen tissue samples were weighed and homogenised in Qiazol lysis reagent (700ul/30mg 

of tissue). This was performed in 50ml falcon tubes using an Omni µH handheld micro tissue 

homogenizer (Omni International, Kennesaw, GA, USA). Samples were then allowed to 

dissociate for 5mins at room temperature, saturated chloroform added (140l/30mg starting 

material) and samples shaken vigorously by hand for 15secs. Samples were incubated at 

room temperature for 2mins then centrifuged at 12,000xg for 15mins at 4°C. The upper 

aqueous RNA containing phase was removed to a new tube, 1.5x volumes 100% ethanol 

was added and mixed thoroughly. Total RNA was extracted using a miRNeasy Mini Kit with 

RNeasy Mini spin columns according to manufacturer’s instructions. Samples were split over 

multiple spin columns if more that 30mg start material was used. Samples were pooled 

following elution so that one final sample was obtained for each tumour sample. RNA 

concentration was quantified using a Nanodrop 2000. 

 

3.6.5 Reverse Transcription: mRNA 

 

The Quantitect Reverse Transcription Kit was used to reverse transcribe mRNA into 

complementary DNA (cDNA) following manufacturer’s instructions. RNA samples were 

diluted to 1µg in a total volume of 12µl nuclease-free water and 2µl gDNA Wipeout Buffer 

(7X) added. Samples were incubated at 42°C for 2mins to eliminate genomic DNA and 

reagents listed in Table 3.22 were subsequently added (final sample volume = 20µl). 

Samples were mixed and run on a MJ Research Tetrad PTC-225 Peltier Thermal Cycler 

under the following conditions: 42°C for 30mins and 95°C for 5mins. Samples prepared 

without the addition of reverse transcriptase or RNA template were used as negative 

controls. cDNA was subsequently diluted 1:80 in nuclease-free water before being used as 

template for PCR.  

 

Table 3.22: Reagents used for Reverse Transcription (mRNA) 

Reagent Volume per Sample 

Quantiscript RT Buffer (5X) 4µl 

RT Primer Mix 1µl 

Quantiscript Reverse Transcriptase 1µl 

TOTAL 6µl 
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3.6.6 Primer Efficiency 

Quantitative Real-Time PCR was performed using qPCR Bio Sygreen Lo-Rox Mix and a 

RealPlex2 MasterCycler (Eppendorf, Hamburg, Germany). This system uses a fluorescent 

dye that binds to double stranded DNA molecules by intercalating between the DNA bases. 

When the dye is free in the reaction mix it emits only a small amount of fluorescence; when 

bound to DNA the structure of the dye is altered and a much greater fluorescent signal is 

emitted. As primers are extended by Taq polymerase and template replication occurs, the 

dye is intercalated into the replicated strand, and thus total amount of fluorescence 

increases with the number of cycles performed. Increase in fluorescent intensity is directly 

proportional to increase in double stranded DNA, and therefore levels of fluorescence is 

measured at the end of each amplification cycle to determine how much cDNA has been 

amplified. 

 

PCR is an exponential process until one of the reagents becomes limited (plateau phase). 

The cycle threshold (Ct) value is defined as the cycle in which there is a significant increase 

in fluorescence above the threshold level (i.e. amount of background fluorescence) and 

amplification is in its exponential phase. The more abundant the template sample, the 

quicker this point is reached, thus giving earlier Ct values.  

 

‘Primer efficiency’ reflects how well target cDNA is amplified per cycle using a specific set of 

primers: ideally target cDNA will double per cycle and this would correspond to a primer 

efficiency of 2.0. Universal template cDNA was used to test primer efficiency of each pair of 

primers used. cDNA (5ng/µl) was diluted 1:2, 1:4, 1:10, 1:50 and 1:100 in nuclease-free 

water. A 12µl/well mastermix, comprising 10µl 2x qPCR Bio Sygreen Lo-Rox Mix and 2µl of 

relevant primer pair (4µM; Table 3.24), was added to a 96 well PCR plate along with 8µl of 

diluted template cDNA.  Each cDNA sample dilution was run in triplicate. Quantitative-PCR 

was performed on a RealPlex2 MasterCycler (Table 3.23); melt curve analysis was also 

performed to confirm amplification of a single PCR product by each primer pair.  

 

Table 3.23: qPCR conditions for primer efficiency   
Step Temperature  Time  

Initial denaturation 95°C 2mins  

Denaturation 95°C 5secs 

45 cycles Annealing 65°C 25secs 

Extension 76°C 8secs 

Melt curve 

78°C 8mins 

3 cycles 
95°C 15secs 

65°C 15secs 

95°C 15secs 
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Primer efficiency was calculated using an Excel Primer Efficiency Calculator programme 

designed by Dr Ian Roberts. Percentage copy number of target cDNA in each dilution 

compared to the original undiluted sample was calculated (neat = 100%, 1:2 = 50%, 1:4 = 

25%, 1:10 = 10%, 1:50 = 2% and 1:100 = 1%).  The log of these values was calculated and 

plotted versus Ct value for each cDNA dilution. Linear regression was performed to 

determine a line of best fit, and the slope of the line calculated. Primer efficiency values were 

then calculated using the following equation: 

 

Primer efficiency value = 10(-1/slope) – 1 

Primer efficiency percentage = 10(primer efficiency value) 

 

 

Table 3.24: mRNA primers used for qPCR analysis 

Gene 
Primer 

Efficiency 

Primer 
Efficiency 

% 

 Forward Primer Sequence 
(5’  3’) 

Reverse Primer Sequence  
(5’ 3’) 

HMBS 2.01 102.3 GGCAATGCGGCTGCAA GGGTACCCACGCGAATAC 

RPL13A 1.97 93.3 CCTGGAGGAGAAGAGGAAAGAGA TTGAGGACCTCTGTGTATTTGTCAA 

YWHAZ 2.00 100.0 ACTTTTGGTACATTGTGGCTTCAA CCGCCAGGACAAACCAGTAT 

H1_KIAA1199 
(CEMIP) 

2.06 114.8 ATTTCTTGGAGGTGAAGATG ACTTCAATGTAAGCGAAGTC 

H1_CHI3L1 2.09 123.0 TGTACCCACATCATCTACAG ACAGACAAGAGAGTCTTCAG 

H1_CPA4 1.89 77.6 AGAAATGGAGACGAGATCAG GGGAGATTTCCAGAAATTGAG 

H1_EGFR 1.98 95.5 AGTGCCTGAATACATAAACC GTAGTGTGGGTCTCTGC 

H1_FMOD 1.95 89.1 AACAGTCTAACCAACAATGG CTCATTGATCCTATTGCCTTG 

H1_LIFR 1.98 95.5 AAGTTTATCCCCATACTCCTAC CCTGGTAAATGCCAAGAAAG 

H1_OSM 2.08 120.2 TCCTTGCACTCCTGTTTC GATACGTATATAGGGGTCCAG 

H1_OSMR 2.01 102.3 GTGTACAAGATTCTACTGG GTTTCCCTTCCAAATAACA 

H1_PCSK1N 1.88 75.9 ACGTCCAGAGCAACTTAC TTGCTTCAGATCATGTTTATTG 

H1__PLAUR 1.99 97.7 AATCCTGGAGCTTGAAAATC CAGTCAATGAGGAAAGTCTC 

H1_PLCB4 1.91 81.3 AGAATGATGAAATTGAGCCC AGATCTTCTATATCTGTCCGAG 

H1_PTPRR 2.05 112.2 CTTCGTATGGATAGAGGTGG GAGATTGATGGTCTGACAAG 

H1_RAB38 2.07 117.5 GATATCGCAGGTCAAGAAAG TCGAAGACAATAAATGCACC 

H1_SERPINA1 FAILED FAILED TAAGGATTCTCGAGTGAGAG TGTCCTCGTCCGTATTTAAG 

H1_SNAI1 1.91 81.3 TCGGAAGCCTAACTACAGCGA AGATGAGCATTGGCAGCGAG 

H1_STAT3 2.01 102.3 GGTACATCATGGGCTTTATC TTTGCTGCTTTCACTGAATC 

H1_TGM2 1.94 87.1 CTTCATTTTGCTCTTCAAC AGGATCCCATCTTCAAACTG 

H1_VEGFA 2.04 109.6 AATGTGAATGCAGACCAAAG GACTTATACCGGGATTTCTT 
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3.6.7 Quantitative Real-Time PCR (qPCR): mRNA 

cDNA samples diluted 1:80 in nuclease-free water were used as template for qPCR. A 

12µl/well mastermix comprising 10µl 2X qPCRBio Sybergreen Mix Lo-Rox and 2µl of 

relevant primer pair (4µM; Table 3.24) were added to a 96 well PCR plate along with 8µl of 

template cDNA. Each gene/sample under investigation was run in triplicate. Quantitative-

PCR was performed on a RealPlex2 MasterCycler (Table 3.25).  

 

The comparative Ct method described by Pfaffl et al (2001)219 was used to calculate the 

relative expression levels of target genes in each sample. This method compares the Ct 

value of a target gene to Ct levels of an endogenous control gene within each sample. 

Relative expression levels (fold change) are calculated by comparing gene expression levels 

in each sample to those of a comparator sample (i.e. OSM treated compared to PBS control) 

while taking into account primer efficiency of each gene: 

 

Abundance = 2-CT gene – CT endogenous control 

Fold Change = Primer Efficiency Target Gene (CT control sample – CT treated sample) 

                         Primer Efficiency Endogenous Control (CT control sample – CT treated sample) 

 

Three endogenous control genes, HMBS, RPL13A and YWHAZ, were used for analysis220. 

Abundance and fold change were plotted using Graph Pad Prism software and analysed for 

statistical significance using a one way ANOVA with Tukey’s multiple comparison post-hoc 

test (when comparing multiple sample groups) or unpaired T-tests (when comparing two 

groups of samples). P values of ≤0.05 were regarded as significant. 

 

 

 

 

 

 

 

 

 

Table 3.25: qPCR conditions for mRNA qPCR 

PCR Step Temperature  Time  

Initial denaturation 95°C 2mins  

Denaturation 95°C 5secs 

40 cycles Annealing 65°C 25sec 

Extension 76°C 8sec 
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3.6.8 Reverse Transcription: miRNA 

 

  

 

 

 

 

 

 

 

Following RNA extraction samples were diluted to 15ng/µl in nuclease-free water. Taqman 

MicroRNA Reverse Transcription Reagents (Table 3.26) were used to reverse transcribe 

miRNA into cDNA using stem-looped primers, as depicted in Figure 3.7. Separate 

mastermixes were prepared for each miRNA under investigation using miRNA specific 

TaqMan miRNA primers; details of miRNA primers are listed in Table 3.27. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: miRNA reverse transcription using Taqman stem-loop primers 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/4364031_TaqSmallRNA_UG.pdf 
 

Samples were incubated on ice for 5mins then run on a MJ Research Tetrad PTC-225 

Peltier Thermal Cycler under the following conditions: 16°C for 30mins (pre-incubation), 

42°C for 30mins (annealing/extension), and 85°C for 5mins (enzyme inactivation). Samples 

Table 3.26: Reverse Transcription (miRNA) 

Reagent Volume per Sample 

Nuclease-free water  0.7µl 

RT Buffer (10X) 1.0µl 

0.1x dNTPs (10mM)  1.0µl 

0.1x RNase Inhibitor (2units/μL) 1.3µl 

MultiScribe™ Reverse Transcriptase (50units/μL)  0.67µl 

Specific TaqMan miRNA Primer (5X) 2.0µl 

Relevant RNA (15ng/µl) 3.33µl 

TOTAL 10µl 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/4364031_TaqSmallRNA_UG.pdf
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prepared without the addition of reverse transcriptase or RNA were used as negative 

controls. 

 

3.6.9 Quantitative Real-Time PCR (qPCR): miRNA 

Cellular and EV miRNA expression was quantified by q-PCR. For each sample, the reagents 

shown in Table 3.28 were added to a 96 well PCR plate; separate mastermixes were 

prepared for each miRNA under investigation using miRNA specific TaqMan miRNA probes. 

Probe details are shown in Table 3.27. 

 

 

 

 

 

 

 

 

For each gene under investigation, cDNA samples were run in triplicate. Quantitative-PCR 

was performed on a RealPlex2 MasterCycler under the following settings: 95°C for 10mins 

(Taqman enzyme activation) and then 40 cycles of 95°C for 15secs (denaturation) and 60°C 

for 1min (annealing/extension).  

Table 3.27: miRNA Assay Primers and Probes 

Assay Name 
NCBI 

Accession  
Number 

miRBase 
Accession 

Number 

Control Sequence/ 
Mature miRNA Sequence 

RNU 24 NR_002447  
ATTTGCTATCTGAGAGATGGTGATGACA
TTTTAAACCACCAAGATCGCTGATGCA 

Cel-miR-39-3p  MIMAT0000010 UCACCGGGUGUAAAUCAGCUUG 

hsa-miR-9-3p  MIMAT0000442 AUAAAGCUAGAUAACCGAAAGU 

hsa-miR-10b-5p  MIMAT0000254 UACCCUGUAGAACCGAAUUUGUG 

hsa-miR-23b-3p  MIMAT0000418 AUCACAUUGCCAGGGAUUACC 

hsa-miR-29b-3p  MIMAT0000100 UAGCACCAUUUGAAAUCAGUGUU 

hsa-miR-30b-5p  MIMAT0000420 UGUAAACAUCCUACACUCAGCU 

hsa-miR-31-5p  MIMAT0000089 AGGCAAGAUGCUGGCAUAGCU 

hsa-miR-34c-5p  MIMAT0000686 AGGCAGUGUAGUUAGCUGAUUGC 

hsa-miR-101-3p  MIMAT0000099 UACAGUACUGUGAUAACUGAA 

hsa-miR-126-5p  MIMAT0000444 CAUUAUUACUUUUGGUACGCG 

hsa-miR-194-3p  MIMAT0004671 CCAGUGGGGCUGCUGUUAUCUG 

Table 3.28:  q-PCR (miRNA) mix per sample 

Reagent Volume per Sample 

2X qPCR Bio Sygreen Lo-Rox Mix 7.5µl 

Nuclease-free water 5.42µl 

Specific TaqMan miRNA Probe (20X) 0.75µl 

Specific RT Product 1.33µl 

TOTAL 15µl 

http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000420
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Figure 3.8: Schematic of miRNA qPCR using Taqman probes 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/4364031_TaqSmallRNA_UG.pdf 
 

Each Taqman probe mix for qPCR contains miRNA-specific forward and reverse primers 

and a miRNA-specific probe. Probes have a reporter dye on their 5’ end and a non-

fluorescent quencher (NFQ) dye and a minor groove binder (MGB) at their 3’ end. The MGB 

increases the probe’s melting temperature without increasing its length. During PCR the 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/4364031_TaqSmallRNA_UG.pdf
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forward and reverse primers anneal to complementary sequences along the denatured 

cDNA template strands. The probe anneals to a complementary sequence located between 

the forwards and reverse primer sites. Proximity of the probe’s reporter dye to the NFQ 

suppresses the reporter fluorescence. During polymerisation, DNA polymerase cleaves 

probes that are hybridised to the target sequence, releasing the reported dye which results 

in an increase in fluorescence which can be detected by the RealPlex machine. Cleavage 

only occurs if the target sequence is amplified during PCR. Extension of the probe does not 

occur during polymerisation as its 3’ end is blocked by the NFQ dye and MGB. This is 

summarised in Figure 3.8.  

 

Due to their specificity, primer efficiency is not expected to vary between different Taqman 

miRNA primers and probes. They are expected to have a primer efficiency of 2.0. Therefore, 

primer efficiency analysis was not performed and relative expression was calculated via the 

double delta Ct method (ΔΔCT), summarised in Figure 3.9.  Within each experiment the 

sample with the lowest cel-miR-39 spike-in Ct was identified; this is the sample with the 

greatest number of copies of cel-miR-39 and therefore had the greatest RNA extraction 

efficiency. RNA extraction efficiency was corrected between samples from the same 

experiment by subtracting this value from the cel-miR-39 Ct values of all other samples; 

producing an RNA extraction correction factor for each sample. The levels of an 

endogenous control miRNA (‘housekeeper miRNA’; RNU24 or miR-30b) within each sample 

were subsequently corrected for RNA extraction efficiency by subtracting the RNA extraction 

correction factor from the HK Ct value. RNU24 and miR-30b were selected as HK miRNAs 

as they were previously shown to be abundant and stably expressed across several cervical 

and non-cervical cell lines commonly used within our laboratory (Shivani Bailey, 

unpublished) and have previously been demonstrated to be reliable housekeepers for qPCR 

analysis of miRNA expression in cervical tissue samples221. The relative expression level of 

each target miRNA (ΔCT) was calculated by normalising target miRNA Ct values to Ct 

values for the HK miRNA. These values were transformed using the logarithmic equation 

Y=2^ (-ΔCT) to give gene abundance relative to HK expression. ΔCT values for each sample 

were then normalised (ΔΔCT) to ΔCT values from calibrator samples (i.e. cells treated with 

PBS control) and transformed using the logarithmic equation Y=2^ (-ΔΔCT) to give fold change. 

Abundance and fold change were plotted using Graph Pad Prism software and analysed for 

statistical significance using a one way ANOVA with Tukey’s multiple comparison post-hoc 

test or Unpaired T-tests. P values of ≤0.05 were regarded as significant.  
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Figure 3.9: Summary of miRNA fold change calculation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RNA Extraction Correction Factor  
= CT cel-miR-39 (sample) –CT cel-miR-39 (lowest per experiment) 
 
RNA Extraction Efficiency Correction  
= CT HK miRNA (sample) – RNA Extraction Correction Factor (sample) 
 
ΔCT = CT target miRNA – CT HK miRNA (corrected for RNA extraction efficiency) 
 
Abundance = 2-ΔCT 
 
ΔΔCT = ΔCT sample - ΔCT calibrator sample (i.e. PBS control) 
 
Fold difference = 2-ΔΔCT 
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3.7 Next Generation Sequencing 

 

SW756 empty plasmid and SW756 OSMR KD cell lines (generated in section 3.3) and their 

resultant EVs were used for these experiments. Cells were treated with OSM or PBS control 

for 48hours prior to EV collection.  

 

3.7.1 Optimisation of library preparation for small RNA sequencing 

An initial optimisation experiment was performed to determine the best library preparation kit 

to use for small RNA sequencing of EVs, which have low input quantities of RNA. Following 

RNA extraction (section 3.6.3), RNA concentration and quality of individual EV preparations 

were determined by a 4200 TapeStation using a high sensitivity RNA Screen Tape assay 

and TapeStation Analysis Software (Agilent Technologies, Santa Clara, CA, USA). This was 

performed by Cambridge Genomic Services, Department of Pathology, Cambridge. 

Concentrations for each of the four EV samples are shown in Table 3.30. 

 

Table 3.30: Concentration of RNA obtained from single EV preparations 

Sample Concentration Volume 
Total amount of 
RNA per EV prep 

SW756 Empty Plasmid + PBS - EVs 1140 pg/µl 20µl 22.8ng 

SW756 Empty Plasmid + OSM - EVs 777 pg/µl 20µl 15.5ng 

SW756 OSMR KD + PBS - EVs 745 pg/µl 20µl 14.9ng 

SW756 OSMR KD + OSM - EVs 1160 pg/µl 20µl 23.2ng 

AVERAGE 955.5 pg/µl 20µl 19.1ng 

 

As collection of EVs is a labour-intensive process, cellular RNA from SW756 empty plasmid 

cell, diluted to a similar concentration as would be obtained from EVs, was used to select 

which small RNA sequencing kit to use. For each library prep kit, three aliquots of 30ng ‘low 

input’ and three aliquots of 250ng ‘high input’ RNA were used. Three aliquots of 100ng 

‘medium input’ RNA were also included for the Somagenics library preparation kit. 

Experimental design is depicted in Figure 3.10.  

Table 3.29:  Reagents used for Next Generation Sequencing  

Reagent Company 

 Somagenics Real-Seq®-AC miRNA 
Library Kit for Illumina sequencing  

Somagenics, Santa Cruz, CA, USA 

 NEXTFLEX® Small RNA-Seq Kit v3 
Bioo Scientific Corporation, Austin, TX, 

USA 

 SMART-Seq® v4 Ultra® Low Input RNA kit 
Takara Bio USA Inc, Mountain View, CA, 

USA 

 Nextera® XT DNA kit Illumina, San Diego, CA, USA 
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Figure 3.10: Experimental design for comparison of small RNA library preparation kits 

 

Libraries were prepared according to manufacturer’s instructions by Cambridge Genomic 

Services. Samples were then run on a NextSeq500, with a 75 cycles High Output kit, at a 

final concentration of 1.8pM with 20% PhiX spike-in control. Bioinformatic analysis was 
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performed by Dr Anton Enright and Stephanie Wenlock (section 3.7.4). NEXTFLEX® Small 

RNA-Seq Kit v3; using gel free size selection and bead clean up protocol was selected as 

the optimum small RNA library preparation method. An input of 30ng RNA was selected for 

subsequent experiments.  

 

3.7.2 Sequencing - Sample Collection 

An average of ~19ng RNA was found to be obtained from a single EV isolation experiment 

(Table 3.30). In order to obtain enough material to split samples for mRNA and miRNA 

library preparation and sequencing, five EV preps were pooled per ‘biological replicate’ so 

that each replicate would contain ~100ng RNA. Therefore, treatments of cells with 

PBS/OSM and subsequent isolation of EVs were performed 25 times so that so that five EV 

preps could be combined for each experimental condition, producing five pooled replicates 

per treatment group (five replicates per condition x five pooled samples = 25 individual EV 

isolations per experimental condition). Treatment of SW756 empty plasmid cells typically 

results in reduction of cell number; two different batches of OSM were used for these 

experiments – potency of OSM has previously been found to vary between batches. To 

ensure that ‘biological replicates’ comprised evenly distributed samples, the following factors 

were taken into consideration when deciding which five samples/ replicate to pool: cell stock 

(as multiple vials of cells were defrosted for this experiment), cell passage number, batch of 

OSM used and fold change in cell number of empty plasmid cells following OSM treatment.  

  

Total RNA extraction from cell samples was performed as described in section 3.6.2; phenol-

chloroform extraction was performed for each individual sample. Following the addition of 

1.5x volume 100% ethanol per sample, five samples per condition were pooled, mixed in a 

15ml falcon tube and split between two spin columns. The remainder of the protocol was 

conducted as previously described. Following elution the eluates from the two spin columns 

were combined to give a total volume of 120µl for each biological replicate.  

A similar protocol was employed for pooling of EV samples. Total RNA extraction from EVs 

was performed as described in section 3.6.3. Phenol-chloroform extraction was performed 

for each individual sample. Following the addition of 1.5x volume 100% ethanol per sample,  

five samples per condition were pooled, mixed in a 15ml falcon tube and the remainder of 

the protocol was conducted as previously described using a single spin column. Final elution 

volume was 24µl for each biological replicate.  

 

3.7.3 Library Preparation  

Libraries preparation was performed by Cambridge Genomic Services. Quality and RNA 

concentration for each EV sample were determined using an Agilent 2100 Bioanalyser 
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G2938B (Agilent Technologies).  Cellular RNA concentration and quality were determined 

using a 4200 TapeStation using a RNA Screen Tape assay and TapeStation Analysis 

Software (Agilent Technologies). Samples were split for miRNA and mRNA library 

preparation.  

 

mRNA cDNA libraries were prepared using a SMART-Seq® v4 Ultra® Low Input RNA kit 

using 5ng input RNA, according to manufacturer’s instructions. cDNA was subsequently 

input into the Nextera® XT DNA kit for library preparation according to manufacturer’s 

instructions. miRNA libraries used 30ng input RNA in a total volume of 10.5µl and were 

prepared with a NEXTFLEX® Small RNA-Seq Kit v3, using the gel-free size selection and 

bead clean up protocol according to manufacturer’s instructions. Samples were run on a 

NextSeq 500, using a 75 cycles High Output kit, at a final concentration of 1.8pM with 10% 

or 20% PhiX (mRNA and small RNA, respectively).  

 

3.7.4 Bioinformatic Analysis – mRNA 

The bioinformatics analysis detailed in this section was performed by Dr Anton Enright, 

Stephanie Wenlock and Dr Stephen Smith. Quality control was performed on raw data using 

FastQC v0.11.4. Reads were trimmed using TrimGalore v0.4.1 and mapped to Ensembl 

Homo_sapiens.GRCh38 (release 92) reference genome using STAR v2.5.2a. The number 

of reads that mapped to genomic features was calculated using HTSeq v0.6.0222. Either a 

DESeq2223 or EdgeR224 normalisation procedure was applied to raw counts generated by 

HTSeq. Statistical analysis was performed in order to investigate differential gene 

expression between samples. This was executed using three different analysis packages – 

DeSeq2, EdgeR and EdgeR Voom. The negative binomial Wald’s test was used to 

determine significant differences between groups. A log fold change (LFC) threshold of +/-

0.5 and a False Discovery Rate (FDR) significance threshold of ≤0.05 were applied. 

 

3.7.5 Bioinformatic Analysis – miRNA 

The bioinformatics analysis detailed in this section was performed by Dr Anton Enright, 

Stephanie Wenlock and Dr Stephen Smith. Adapter stripping, filtering of low quality 

basecalls and removal of the Nextflex 4 nucleotide add-ons, were completed using a custom 

Perl script and Reaper tool225. Cleaned and filtered reads were mapped against all known 

mature miRNA sequences in miRBase using Chimira226. Raw counts generated by Chimira 

for each sample, were plotted in R.  A DESEq2 normalisation procedure was subsequently 

applied to the raw counts223.  Statistical analysis was performed to investigate differential 

miRNA expression between samples. The negative binomial Wald’s test was used to 
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determine significant differences between groups. A LFC of +/-0.5 and a FDR significance 

threshold of 0.05 were applied.  

 

3.8 Protein Experiments  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.31: Reagents for protein work 

Reagent Company 

 RIPA buffer (1X) 

 RIPA buffer (10X) 

 Protease and phosphatase inhibitor mini tablets 

 Pierce BCA Protein Assay Kit 

 Bovine serum albumin for BCA (vials) 

Pierce, Thermo Fischer Scientific, 
Waltham, MA, USA 

 96 well flat bottom microtitre plate 

 20x Transfer Buffer 

 Restore western blot stripping buffer 

 BSA for western blot 

 Expedeon Two-Color SDS marker 

 SeeBlue™ Plus2 Pre-stained Protein Standard 

Thermo Fisher Scientific, Waltham, 
MA, USA 

 NuPAGE LDS sample buffer (4x) 

 NuPAGE sample reducing agent (10x) 

 NuPAGE antioxidant 

 NuPAGE MOPS SDS running buffer(20x) 

 4-12% NuPAGE Bis-Tris Mini Gels 

Invitrogen, Life Technologies, 
Thermo Fisher Scientific, Waltham, 

MA, USA, 

 Ponceau-S Staining Solution 

 Methanol 

Sigma Aldrich, 
St Louis, MO, USA 

 Immobilon-P  microporous polyvinylidene fluoride (PVDF) 
Membrane 

Millipore Sigma, Billerica, MA, USA 

 Blotting Paper 
Sartorius Stedim Biotech, 

Aubagne, France 

 Dulbecco’s Phosphate Buffered Saline (PBS) 

 ELISA grade BSA 

 Glycerol 

 Tween-20 

Sigma Life Sciences, Sigma 
Aldrich, St Louis, MO, USA 

 TBS 
Hutchison/MRC Media Kitchen, 

Cambridge, UK 

 Milk powder 
Marvel, Premier Foods, St. Albans, 

UK 

 human OSM DuoSet ELISA containing (ELISA substrate 
solution, anti-OSMR detection antibody, ELISA stop 
solution) 

 High-binding 96-well microtiter plates 

R&D Systems, Minneapolis, MN, 
USA 

 ECL western blotting detection reagents 

 ECL prime western blotting detection reagents 

Amersham, GE Healthcare, Little 
Chalfont, UK 
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3.8.1 Protein Extraction – Cells  

Following cell culture in 6 well plates, media was removed and cells were washed with PBS. 

100µl/well 1xRIPA buffer supplemented with protease and phosphatase inhibitors (1 

tablet/10ml) was added and plates incubated on ice for 5mins. Cells were detached using a 

cell scraper and lysate transferred to a 1.5ml eppendorf tube. Samples were incubated on 

ice for 30mins, with occasional agitation by gentle pipetting, and 1/10 th volume 80% glycerol 

subsequently added. Cell debris was removed by centrifugation of samples at 16,000 xg for 

15mins at 4°C. Supernatant was transferred to a new tube and protein concentration 

measured by Bicinchoninic Acid (BCA) assay.  

 

3.8.2 Protein Extraction – EVs 

Following ultracentrifugation the volume of EV suspension was measured by pipette. Either 

the entire sample, or a small proportion of the sample, was resuspended in 10x RIPA buffer 

supplemented with protease and phosphatase inhibitors (1tablet/ml). This depended on 

whether samples would be used for western blot or if protein quantification was performed 

on a small aliquot prior to resuspension of a required quantity of EVs in media for functional 

assays, respectively. 1/10th volume of 10x RIPA buffer was added to samples to achieve a 

final 1x RIPA concentration. Samples were mixed by pipette and incubated on ice for 

20mins. Samples were then centrifuged at 16,000xg for 15mins at 4°C and supernatant 

removed to a new Eppendorf tube.  

 

3.8.3 Protein Quantification 

Protein concentration of each sample was determined using a Pierce BCA protein assay kit. 

First, a standard curve was prepared by dilution of 2µg/µl BSA in 1x RIPA buffer (cell 

standard curve) or 10x RIPA diluted 1:10 in PBS (EV standard curve) to the following 

concentrations: 2, 1.8, 1.6, 1.4, 1.2, 1, 0.833, 0.667, 0.5, 0.333, 0.167, 0.08 and 0 µg/µl. 

Table 3.32: Buffers for protein experiments 

Buffer Component 

 1x Transfer Buffer 
850ml dH20 + 100ml methanol + 50ml 20x Transfer 

Buffer + 1ml antioxidant  

 BSA buffer 1x TBS + 5% BSA + 0.1% Tween-20 

 Blocking buffer  1x TBS + 5% milk powder + 1% Tween-20 

 Antisera Buffer  1x TBS + 5% milk powder + 0.1% Tween-20 

 WB Wash Buffer 1x TBS + 0.1% Tween-20 

 ELISA Wash Buffer 1x PBS + 0.05% Tween 

 ELISA Dilutant PBS + 1% ELISA grade BSA 

 ELISA substrate solution  
1:1 mixture of colour reagent A (H2O2) and colour reagent 

B (tetramethylbenzidine) 
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Protein collected from cell samples was diluted at a 1:4 or 1:7 dilution in RIPA buffer, 

whereas EV samples were not diluted. 3µl of each standard and sample were loaded in 

triplicate onto a 96 well flat bottom microtitre plate. Pierce BSA assay reagents A and B were 

mixed in a 50:1 ratio and 100µl/well added. The plate was then incubated for 30mins at 37°C 

in the dark. Presence of protein in the alkaline medium results in reduction of Cu2+ to Cu+ 

(biuret reaction); subsequent chelation of Cu+ with two BCA molecules produces a purple-

coloured reaction product which enables protein concentration to be determined 

colourmetrically with high sensitivity. The absorbance of each sample was measured after 

the 30min incubation at a wavelength of 570nm using a Dynex Technologies plate reader 

and Revelation software. The BSA standards were used to form a standard curve of known 

protein concentration by plotting known protein concentration (x axis) against absorbance at 

570nm (y axis). This was then used to extrapolate the protein concentration of each sample.  

 

3.8.4 SDS Page  

According to the results of protein quantification by BCA assay, 20µg of protein for each 

sample was diluted in PBS to a total volume of 13µl or 15µl, depending on whether SDS 

Page would be performed under reducing or non-reducing conditions, respectively. 5µl 

NuPAGE LDS sample buffer (4x) and 2µl NuPAGE sample reducing agent (10x; if using 

reducing conditions) were added to each sample to obtain a final protein concentration of 1 

µg/µl (in a total volume of 20µl). Samples were mixed by vortexing, briefly centrifuged, and 

then denatured by heating to 95°C for 10mins.  

 

Precast 4-12% Nu-PAGE Bis-Tris mini gels were placed in an XCell SureLock Mini-Cell 

(Thermo Fisher Scientific), in front of the buffer core. The gel tension wedge was locked in 

place behind the buffer core and the central buffer core chamber filled to capacity with 200ml 

1x NuPAGE MOPS SDS running buffer (diluted in ddH20) containing 500µl NuPAGE 

antioxidant. The outer chamber was filled to the level of the mini gel well base with 500ml 1x 

MOPS SDS running buffer without antioxidant. 7µl of Expedeon Two-Color SDS marker or 

SeeBlue™ Plus2 Pre-stained Protein Standard  was loaded in the first well of the mini gel 

and, depending on the size of the gel, the following volumes of protein sample were loaded: 

15µl (for 15 well gels) or 20µl (12 well gels). Proteins were separated by electrophoresis at 

150V for 2hours. 

 

3.8.5 Western Blot  

A PVDF membrane and two pieces of 3MM blotting paper were cut to the size of a SDS-

PAGE gel. The PVDF membrane was activated by incubation in 100% methanol for 15 sec 

followed by a 2min rinse in distilled water (dH2O). The PVDF membrane was then 
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transferred to ice-cold 1x transfer buffer for at least 5min to equilibrate.  Blotting paper and 

four blotting sponges were also pre-soaked in 1x transfer buffer.  

 

Following electrophoresis, protein samples separated by SDS-PAGE were transferred to the 

PVDF transfer membrane using the XCell SureLock Mini-Cell and XCell IITM blot module 

(Thermo Fisher Scientific). The gel cassette was removed from the mini-cell and the two 

plates of the cassette separated using a gel knife. Wells of the gel were subsequently 

removed with a gel knife and a piece of pre-soaked filter paper was placed on top of the gel. 

The gel and filter paper were carefully peeled away from the cassette and the equilibrated 

PVDF membrane placed on top of the gel, ensuring no air bubbles were present. An 

additional piece of pre-soaked filter paper was placed on top of the membrane.  

 

Two pre-soaked blotting sponges were placed on top of the cathode core of the XCell IITM 

blot module.  The filter paper – gel – membrane – filter paper ‘sandwich’ was placed on top 

of the sponges and an additional two pre-soaked sponges placed on top of the ‘sandwich’. 

The lid of the blot module was placed on top and the whole assembly inserted into the XCell 

SureLockTM Mini-Cell (Figure 3.11). The blot module was filled with 1x transfer buffer; ice-

cold dH20 was added to the outer reservoir.  The protein transfer was performed for 2hours 

at 30 V at 4°C.  

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Depiction of protein transfer 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/blotmod_pro.pdf   
 

After completion of the transfer, the blot module was dismantled and, if necessary, the PVDF 

membrane stained with Ponceau-S Staining Solution to assess the quality of the protein 

transfer. Following ponceau-S staining, membranes were washed first with dH2O, then three 

times for 5mins in WB wash buffer. Membranes were then incubated in either BSA buffer or 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/blotmod_pro.pdf
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blocking buffer for 1hour at room temperature with constant shaking, depending on whether 

primary antibodies were phosphorylated or unphosphorylated, respectively.  

 

Membranes were incubated at 4°C overnight with constant shaking with primary antibody 

diluted in BSA buffer or antisera buffer, depending on whether primary antibodies were 

phosphorylated or unphosphorylated, respectively (Table 3.33). The following day, the 

membranes were washed three times for 5mins with WB wash buffer and incubated for 

1hour at room temperature with constant shaking in species-specific HRP-conjugated 

secondary antibodies diluted in BSA buffer or antisera buffer (again depending on whether 

primary antibody is phosphorylated or not, respectively).  

 

Following three further washes with WB wash buffer, the membrane was developed using 

enhanced standard chemiluminescence (ECL) or ECL prime western blotting detection 

reagents according to the manufacturer’s instructions and exposed onto autoradiography 

films at various time-points in a dark room. If required, primary antibodies were stripped from 

the membrane with Restore western blot stripping buffer for 10mins at room temperature in 

the dark. Blots were then washed with WB wash buffer, blocked in either BSA buffer or 

blocking buffer and re-probed with different primary antibodies.  

 

Table 3.33: Antibodies for Western Blot 
 

Antibody Name 
Host 

Species 
Dilution Conditions 

Company and Catalogue 
Number 

P
R

IM
A

R
Y

 A
N

T
IB

O
D

IE
S

 

OSMR rabbit 1:500 
Reducing 

Non-phosphorylated 
Santa Cruz, SC-30010 

STAT3 mouse 1:1000 
Reducing 

Non-phosphorylated Cell Signalling Technology, 9139 

Phospho-STAT3 rabbit 1:1000 
Reducing 

Phosphorylated 
Cell Signalling Technology, 9145 

SNAI1 rabbit 1:1000 
Reducing 

Non-phosphorylated 
Cell Signalling Technology, 3879 

Alix mouse 1:200 
Reducing 

Non-phosphorylated  
Santa Cruz, sc53540 

CD63 mouse 1:200 
Non-reducing 

non- phosphorylated 
Invitrogen, 10628D 

CD9 mouse 1:500 
Non-reducing 

non- phosphorylated 
Invitrogen,10626d 

Cytochrome C1 mouse 1:100 
Reducing 

Non-phosphorylated 
Santa Cruz, sc-514435 

β-Actin mouse 1:100,000 
Reducing 

Non-phosphorylated 
Abcam, ab6276 

S
E

C
O

N
D

A
R

Y
 

A
N

T
IB

O
D

IE
S

 anti mouse HRP 
conjugated 
antibody 

goat 1:2000 N/A Dako, P044701 

anti rabbit HRP 
conjugated 
antibody 

goat 1:2000 N/A Dako, P044801 
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3.8.6 ELISA for hOSM expression 

Secretion of hOSM by OSMR overexpressing cell lines was measured by hOSM DuoSet 

ELISA according to manufacturer’s instructions by Dr Danita Pearson. OSM capture 

antibody was diluted to 2µg/ml in PBS and 100µl/well used to coat high-binding 96-well 

microtiter plates, which were incubated overnight at room temperature. The following day 

conditioned media was harvested and cell number determined by Countess cell counter in 

order to normalise OSM concentration. Conditioned media was centrifuged at 12,000xg for 

1min to remove cell debris. Plates were washed three times with ELISA wash buffer and 

incubated for 1hour with 300µl/well of ELISA dilutant. 100µl of OSM standards of varying 

known OSM concentration or conditioned media from cell culture were then added to each 

well in duplicate and incubated for 2hours at room temperature. Plates were then washed in 

ELISA wash buffer and subsequently incubated for 2hours with 100µl of anti-OSM detection 

antibody (30ng/ml in ELISA dilutant) at room temperature. Plates were subsequently washed 

in ELISA wash buffer and incubated for 20mins in the dark at room temperature in 100µl/well 

of streptavidin-horse radish peroxidase (HRP; diluted 1:200 in ELISA dilutant). Plates were 

washed again and 100µl of substrate solution added to each well. Samples were incubated 

at room temperature for 20mins in the dark at room temperature before 50µl of ELISA stop 

solution was added to each well and absorbance measured at a wavelength of 450nm with 

background subtraction of 570nm using a Dynex Technologies plate reader with Revelation 

software. Absorbance for OSM standards of different known concentrations were used to 

generate a standard curve which was then used to extrapolate OSM concentration in test 

samples based on their absorbance.  

 

3.9 Functional Assays 

 

 

 

 

 

 

 

For cell growth and migration assays, EVs were collected by ultracentrifugation from SW756 

or ME180 cells treated with PBS/OSM in EV depleted media for 48hours. Quantity of EV 

protein was determined by performing a BCA assay on a small aliquot of sample. 

 

 

 

Table 3.34: Reagents and equipment for functional assays 

Reagent Company 

 V2A kit  Cellworks, Buckingham, UK 

 MTT cell growth Assay kit Merck Millipore, Burlington, MA, USA 

 Isopropyl alcohol 

 HCL 

Sigma Aldrich, 
St Louis, MO, USA 

 DM LB light microscope  

 DC500 digital camera  
Leica, Wetzlar, Germany 
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3.9.1 Cell growth 

SW756 cells were seeded at a concentration of 2 x104 cells/well in 6 well tissue culture 

plates in normal media. After 24hours in culture, media was removed and wells were 

washed with sterile PBS. 1.5ml of fresh EV depleted media supplemented with 1µg of EVs 

from PBS or OSM treated SW756 cells or PBS control of an equal volume was added to the 

6 well plates. Cells were trypsinised and counted by Countess cell counter at the following 

timepoints: 3, 5 and 7 days post treatment. Three wells were counted for each experimental 

condition at each timepoint.    

 

Alternatively, cell numbers were inferred from MTT (3-(4,5-dimethythiazol2-yl)-2,5-diphenyl 

tetrazolium bromide) assays. Cells were seeded and treated with PBS/OSM as described 

above and measured at 3, 5, 7 and 10 days post treatment with MTT. MTT is a colorimetric 

assay which measures mitochondrial metabolic rate, and is therefore used to indirectly 

reflect viable cell number. MTT is a yellow substrate that is reduced by mitochondrial 

succinate dehydrogenase in living cells to an insoluble, dark purple coloured formazan 

precipitate. When solubilised with isopropanol, its absorbance at 570nm compared to that of 

media only control can be used to infer changes in cell number227. At each timepoint, media 

was removed, wells washed with PBS and 0.5ml fresh media added.  0.5ml 12mM MTT was 

added per well and incubated at 37°C in 5% CO2 for 2hours. 0.5ml solubilisation solution 

(0.04N HCL in isopropyl alcohol) was added per well and gently mixed. 100µl/sample was 

loaded in triplicate on a 96 well flat bottom microtitre plate. The absorbance of each sample 

was measured at a wavelength of 570nm using a Dynex Technologies plate reader and 

Revelation software. For each timepoint, cell viability was calculated by normalisation of 

sample absorbance to that of a control media only sample. 

 

3.9.2 Migration Assay 

In order to determine whether EVs derived from OSMR overexpressing cells had an effect 

on cell migration the following experiments were performed: 

 Addition of EVs derived from PBS/OSM treated SW756 cells to SW756 recipient cells 

 Addition of EVs derived from PBS/OSM treated SW756 cells to VF1 recipient cells 

 Addition of EVs derived from PBS/OSM treated ME180 cells to ME180 recipient cells 

 

SW756 and ME180 cells were seeded at a concentration of 5 x105 cells/well in 6 plates; 

whereas VF2 cells were seeded at a concentration of 4 x105 cells/well. After either 48hours 

(SW756 and ME180 cells) or 7 days (VF2 cells) in culture cells reached confluency and a 

line was scored down the centre of each well using a 1ml pipette tip. Media was removed 
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and cells were washed in sterile PBS. 2ml of fresh EV depleted media supplemented with 

one of the following experimental conditions was added to each well in triplicate: 

1) 0.1µg EVs (ME180 and SW756 recipient cells only) 

2) 1µg EVS (ME180 and SW756 recipient cells only) 

3) 10µg EVS (all 3 recipient cell lines) 

4) 2ml EV depleted conditioned media (supernatant from EV ultracentrifugation 

following first 100,000 xg spin to pellet EVs; ME180 and SW756 recipient cells only) 

5) OSM Treated (10ng/ml; VF2 recipient cells only) 

6) PBS control (equal volume to EVs; all 3 recipient cell lines) 

 

Closure of scratches was visually assessed at regular intervals for the next 20hours and 

photographed using a using a DM LB light microscope with DC500 digital camera (both 

Leica, Wetzlar, Germany). Marks were drawn on the base of the well to ensure that 

photographs for each timepoint were taken at the same position. Data analysis was 

performed using Image J software. Scratch diameter was measured at two separate fields of 

view for each well at each timepoint. Percentage wound closure at each timepoint was 

calculated as follows: 

% wound closure = 100 –   Diameter at 𝑥 hours x100 
                                            Diameter at 0 hours 
 

Percentage wound closure was averaged for both fields of view to obtain a single value for 

each well at each timepoint. The three biological replicates for each treatment group were 

subsequently averaged at each timepoint.  

 

3.9.3 Angiogenesis Assay 

Angiogenesis assays were performed using a V2A kit (Cellworks, Buckingham, UK) 

according to manufacturer’s instructions. This kit utilises co-cultures of human umbilical vein 

endothelial cells (HUVECs) and primary human fibroblasts. Cells were thawed in V2a 

seeding media and evenly seeded into 24 well plates. Cells were cultured for 24hours at 

37°C in 5% CO2, media was then aspirated and 0.5ml of the following treatment added to 

each well:   

1) Untreated control (V2a growth medium only) 

2) VEGFA positive control (at a final concentration of 2pg/µl V2a growth medium) 

3) Suramin negative control (0.02mM in V2a growth medium) 

4) Conditioned media from SW756 cells treated with PBS control 

5) Conditioned media from SW756 cells treated for 48hours with 10ng/ml Rh-OSM  
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6) EVs isolated from SW756 cells treated with PBS control  

7) EVs isolated from SW756 cells treated with 10ng/ml Rh-OSM  

 

Cells were treated with the conditions described above every 48hours for a total period of 14 

days (treatment added on days 2, 4, 6, 8, 10, 12). Media was removed by aspiration at each 

timepoint and fresh V2a media supplemented with the respective treatment added to cells. 

Each treatment condition was performed in duplicate.  

 

For wells treated with conditioned media from SW756 cells, donor SW756 cells were 

cultured in 6 well plates. After 48hours in culture, media was removed, wells were washed 

with PBS and cells were treated with media supplemented with 10ng/ml Rh-OSM or an 

equal volume of PBS control. After a further 48hours, conditioned media was collected from 

these cells and centrifuged for 5mins at 6000xg to remove detached cells.  Media was then 

diluted 1:1 in V2a growth media and 0.5ml added to relevant wells of the angiogenesis 

assay.   

 

For wells treated with EVs from SW756 cells: donor SW756 cells were cultured in 175cm2 

flasks. After 48hours in culture, media was removed, wells were washed with PBS and cells 

were treated with EV depleted media supplemented with 10ng/ml Rh-OSM or an equal 

volume of PBS control. After 2hours treatment media was removed and cells were washed 

with PBS. Fresh EV depleted media was added to cells, and they were cultured for a further 

48hours. Media was subsequently collected and EVs isolated by ultracentrifugation. EV 

pellets were resuspended in 1ml V2A media and 0.5ml added to relevant wells of the 

angiogenesis assay.  

 

After 14 days culture wells were washed in PBS and fixed with 0.5ml of ice-cold 70% ethanol 

for 30mins at room temperature. Ethanol was removed and wells washed 3 times with 0.5ml 

blocking buffer (PBS supplemented with 1% BSA). Wells were probed for CD31 in order to 

visualise tubules. Mouse anti-human CD31 (provided in V2a kit) was diluted 1:400 in 

blocking buffer and 0.5ml added to each well. The plate was incubated for 1 hour at 37°C; 

primary antibody was then removed and wells washed three times with 0.5ml PBS for 5mins 

at room temperature. 0.5ml goat-anti-mouse IgG Alkaline Phosphatase (AP) linked 

secondary antibody (provided in V2a kit) was added to wells at a 1:500 dilution in blocking 

buffer. Wells were incubated with secondary antibody for 1hour at 37°C. Secondary antibody 

was then removed and wells washed three times with 0.5ml dH20 for 5mins at room 

temperature. Staining was then performed using 5-bromo-4-chloro-3-indolyl-phosphate/nitro 

blue tetrazolium (BCIP/NBT). Two BCIP/NBT tablets (provided in V2a kit) were dissolved in 
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20ml dH20. This solution was then filtered using a 0.2µM filter. 0.5ml was added to each well 

and incubated at room temperature for 5mins until tubules developed a dark purple colour. 

Wells were then washed three times with dH20 and left to air dry. Five images were 

subsequently taken at five different fields of view for each well using a DM LB light 

microscope with x4 objective and a DC500 digital camera. Images were subsequently 

analysed using AngioSys 2.0 Image Analysis Software (Cell works); this calculated the 

tubule length, total number of branches, total number of junctions and mean branch length 

for each image.  These were then averaged to provide a single value/well. Measurements 

from two independent wells were used per condition.  

 

3.10 In vivo Experiments 

All procedures were performed under the project licence number PPL 80/2610 and personal 

licence number IC038BAB6. All mice were maintained in conventional cages within a 

specific pathogen-free animal facility and were treated in strict accordance with the local 

ethical committee (University of Cambridge Licence Review Committee) and the UK Home 

Office guidelines.  

 

3.10.1 Subcutaneous xenograft of human OSMR KD cervical SCC cells  

Subcutaneous tumours were induced in 6 week old female NOD-SCID mice (NOD.CB17-

Prkdcscid/NCrCrl; Charles River Ltd.). Injection sites (right hand side flanks) were shaved and 

sterilised with HiBiSCRUB antimicrobial skin cleanser (Mölnlycke Health Care, Gothenburg, 

Sweden) prior to injection. 5 x106 SW756 empty plasmid or SW756 OSMR KD cells (as 

detailed in section  3.3) were injected subcutaneously (SC) in a total volume of 200µl sterile 

PBS; 6 mice were injected for each cell line. Mice were injected intraperitoneally (IP) daily 

with 1200ng Rh-OSM (approximately 60ng/g bodyweight) in 100µl PBS, or an equal volume 

of PBS control, for 13 days beginning on the day of subcutaneous cell injection. Thus 

treatment groups were as follows: 

 

 SC injection SW756 empty plasmid cells + IP injection OSM (n=3) 

 SC injection SW756 empty plasmid cells + IP injection PBS control (n=3) 

 SC injection SW756 OSMR KD cells + IP injection OSM (n=3) 

 SC injection SW756 OSMR KD cells + IP injection PBS control (n=3) 

 

Mice were weighed and their tumours measured with digital calipers (VWR, Radnor, PA, 

USA) daily during the 13 day period of IP OSM/PBS injection. After completion of IP 

injections, mice were weighed and SC tumours measured three times per week. Length and 
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width of tumours were measured and tumour volume calculated according to the following 

formula228: 

 

Tumour volume (mm3) = width2 x length 
                                                 2 
 
Experimental endpoint was reached when tumour volume reached 1500mm3, if the weight of 

the mouse decreased by 20%, if the surface of the tumour appeared inflamed or ulcerated, if 

the mouse developed ascites or dyspnoea, or if notable changes in posture and/or 

behaviour were observed. Once endpoint was reached, mice were anesthetised with 

isoflurane and their blood collected by cardiac puncture as described in section 3.10.3. Mice 

were then culled by cervical dislocation (while still anesthetised) and dissected to determine 

whether metastasis had occurred.  For each mouse the tumour, lungs, diaphragm, liver, 

spleen, mesentery, cervix, femurs and brain were all collected, photographed, weighed and 

fixed in formalin. Prior to fixation, tumour samples were divided into 3 pieces by scalpel and 

either:  

1) fixed in formalin 

2) flash frozen in an Eppendorf tube on dry ice and transferred at -80°C freezer for 

subsequent RNA extraction 

3) placed in an Eppendorf tube containing DMEM media and placed on ice for 

subsequent ex vivo growth and EV isolation  

 

3.10.2 Subcutaneous xenograft of human cervical SCC cells with endogenous OSM 

production  

Subcutaneous tumours were induced in 6 week old female NOD-SCID mice as described 

above by injection of either 5 x106 SW756 pOSM cells (n=6) or 5 x106 SW756 pUNO cells 

(n=6; cell lines detailed in section 3.4.2) in a total volume of 200µl sterile PBS. This 

experiment was performed together with Dr Marta Paez-Ribes and Valtteri Tulkki. Mice were 

weighed and their tumours measured with digital callipers three times per week; tumour 

volume was calculated as described in section 3.10.1. Mice injected with pOSM cells 

displayed rapid weight loss and the experiment was, therefore, terminated after three weeks. 

Mice were culled by cervical dislocation and their tumours, lungs, livers, spleens, femurs and 

brains were all collected, photographed, weighed and fixed in formalin.  

 

This experiment was subsequently repeated using human cervical SCC cell lines with lower 

levels of endogenous human OSM production than pOSM cells, as described in section 

3.4.3. 6 week old female NOD-SCID mice were subcutaneously injected with pUNO2, 

pOSM_c2 or pOSM_c3 cells; n=3 for each group; 5 x106 cells in a total volume of 200 µl 
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sterile PBS were injected. Mice were weighed and their tumours measured with digital 

callipers three times per week; tumour volume was calculated as described in section 3.10.1.  

 

Experimental endpoint was reached when tumour volume reached 1500mm3, if the weight of 

the mouse decreased by 20%, if the surface of the tumour appeared inflamed or ulcerated, if 

the mouse developed ascites or dyspnoea, or if notable changes in posture and/or 

behaviour were observed. Once endpoint was reached, mice were anesthetised with 

isoflurane and their blood collected by cardiac puncture described in section 3.10.3. Mice 

were then culled by cervical dislocation (while still anesthetised) and dissected to determine 

whether metastasis had occurred.  For each mouse the tumour, lungs, diaphragm, liver, 

spleen, mesentery, cervix, femurs and brain were all collected, photographed, weighed and 

fixed in formalin. Prior to fixation, tumour samples were divided into 3 pieces by scalpel and 

either:  

1) fixed in formalin 

2) flash frozen in an Eppendorf tube on dry ice and transferred at -80°C freezer for 

subsequent RNA extraction 

3) placed in an Eppendorf tube containing DMEM media and placed on ice for 

subsequent ex vivo growth and EV isolation  

 

3.10.3 Supplementary methods 

See supplementary methods for details of the following protocols: 

 Plasma collection by cardiac puncture 

 Ex vivo tumour culture and EV isolation 

 H&E staining of tissue sections 
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4. RESULTS: Effect of OSM signalling on EV cargo in cervical SCC 
cells 

 

4.1 Introduction 

 

4.1.1 MicroRNA Biogenesis  

MicroRNAs (miRNAs) are small non-coding RNA molecules, approximately 20-23 

nucleotides long, which can regulate gene expression at the post-transcriptional level by 

inducing RNA degradation or translational suppression of a target mRNA229. Mature miRNAs 

are either processed from introns of transcripts of protein coding genes230, if the DNA 

sequences encoding for them are intragenic, or from transcripts originating from their own 

specific promoters if their genes are located within intergenic non-coding regions231. 

Moreover, miRNAs can be encoded as individual genes or in clusters that are transcribed 

together as polycistronic transcripts232. 

 

The transcription of most mammalian miRNAs is driven by RNA Polymerase II and produces 

primary miRNA transcripts (pri-miRNA) which are long, polyadenylated molecules that fold 

into double-stranded stem-loop structures233. Pri-miRNAs are cleaved in the nucleus by the 

microprocessor complex which is composed of DROSHA, a RNAse III endonuclease, and 

DiGeorge syndrome critical region gene 8 (DGCR8), a double-stranded RNA binding 

protein234. Cleavage produces a 60-70 nucleotide stem loop intermediate known as 

precursor miRNA (pre-miRNA)234. Pre-miRNAs are subsequently exported to the cytoplasm 

by EXPORTIN 5 (EXP5) where they are cleaved by a second RNAse III endonuclease, 

DICER, in concert with the transactivation response element RNA-binding protein (TRBP)235. 

This step removes the terminal loop, resulting in a 20-25 nucleotide long mature double 

stranded miRNA236,237.  

 

Finally, in a process known as RNA-induced silencing complex (RISC) loading, the double-

stranded miRNAs are loaded onto ARGONAUTE (AGO) proteins which select one strand to 

become the mature miRNA (guide strand) and discards the other strand (known as the 

passenger strand)237. Mature miRNAs are approximately 19–25 nucleotides long and are 

denoted as miRNA-5p or miRNA-3p depending on whether the guide strand was generated 

from the 5’ or 3’ arm of the precursor double stranded miRNA. This process, summarised in 

Figure 4.1, is the primary ‘canonical’ pathway of miRNA biogenesis. In addition to the 

pathway described, there also exist alternative pathways for miRNA biogenesis in which 

mature miRNAs are produced independent of some of the factors mentioned above238. 
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Figure 4.1: Canonical pathway of microRNA biogenesis 

Taken from Treiber et al (2019)
232

 
 

4.1.2 miRNA regulation of mRNA levels  

Mature miRNA-RISC complexes interact with complementary sequences on mRNA targets 

called miRNA response elements (MRE). These are generally located in the mRNA’s 3’-

untranslated region (UTR); however, miRNAs have also been shown to target regions in 5′ 

UTRs and ORFs239,240. miRNAs can regulate gene expression at the post-transcriptional 

level either by mRNA cleavage or translational repression. The degree of miRNA-mRNA 

complementarity is a key factor in determining which regulatory mechanism is employed. 

Perfect complementarity between miRNAs and their target mRNAs results in AGO2-

mediated cleavage of the RNA241. However, complete sequence complementarity between 

mammalian miRNA and their mRNA targets is rare242. Most mammalian miRNAs bind to 

mRNA with mismatches and bulges with the first 8 nucleotides at the 5’ end of the miRNA, 

known as the seed region, providing most of the pairing specificity243. Binding can occur in 
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seed regions with 6, 7 or 8 nucleotides of complementarity; termed 6-mers, 7-mers and 8-

mers, respectively244,245. In this instance, mRNA cleavage by AGO2 is inhibited, and AGO 

proteins instead recruit additional protein partners to mediate mRNA silencing through a 

combination of translational repression and mRNA destabilisation. This is achieved via 

multiple mechanisms including: deadenylation and degradation, 5’ capping and ribosome 

detachment238,246.  

 

4.1.3 Dysregulation of miRNAs in cervical cancer  

Individual miRNAs are capable of binding to hundreds of target mRNAs. Likewise,  individual 

mRNAs can be bound by multiple miRNAs247,248. Moreover, computational analysis has 

predicted that >60% of human protein coding genes are regulated by miRNAs249,250. Thus 

miRNAs regulate many physiological processes and dysregulated miRNA expression has 

been demonstrated to play a key role in the development and progression of cancers. 

Altered miRNA expression profiles in cancer have been shown to be driven by multiple 

mechanisms including (but not limited to): genetic alterations, epigenetic changes (such as 

histone modifications and aberrant DNA methylation)251, defects in miRNA biogenesis 

machinery and altered transcription factor activity252.  

 

miRNA loci are frequently located at fragile sites and cancer associated genomic regions253. 

Previous work in our laboratory has shown that, in addition to OSMR, chromosome 5p copy 

number gain and amplification in cervical cancer are associated with copy number gain and 

overexpression of DROSHA, the miRNA processing enzyme involved in cleavage of pri-

miRNAs to pre-miRNAs254. Elevated DROSHA overexpression in cervical SCC resulted in 

global changes in miRNA profiles, which were shown to contribute to increased motility and 

invasiveness of these cells254,255. Dysregulated miRNA expression has also been shown to 

result from other common chromosomal alterations in cervical cancer including gain of 

chromosomes 1q and 3q and loss of chromosome 11q256. 

 

Moreover, miRNA expression profiles have been demonstrated to undergo progressive 

changes between normal cervical tissue, cervical intraepithelial neoplasia and cervical 

SCC256–259. Some studies have attributed such changes to expression of the HR-HPV 

oncogenes E6 and E7259–261. miRNA loci have also been shown to occur at a higher 

incidence near HPV integration sites than in the rest of the genome; genomic deletions, 

amplifications or rearrangements in these regions may drive aberrant miRNA expression253. 

Additionally, various research groups have identified miRNA profiles which were found to be 

promising biomarkers for diagnosis of cervical cancer262–264 and prediction of patient 

survival264–266. Comprehensive reviews of miRNAs implicated in cervical cancer have been 
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published, for example, Granados-Lopez et al. (2014)267, He et al. (2016)268 and Pardini et 

al. (2018)269.  

 

4.1.4 Role of EVs in miRNA transport 

miRNAs are actively exported from cells270 and can stably exist extracellularly in body fluids 

despite high extracellular RNase activity. Mechanisms by which extracellular miRNAs are 

shielded from degradation include association with other molecules, such as the RNA-

binding proteins AGO2 or nucleophosmin 1 (NPM1)270 or packaging into EVs169,271,272. 

Packaging of miRNAs into EVs has been shown to be a specific and selective process; 

however, the mechanisms mediating this process are still poorly understood. Various factors 

have so far been implicated to facilitate this process including: RNA-binding protein Y-box 

protein I (YBX1)273, sumoylated heterogeneous nuclear ribonucleoprotein A2/B1 

(hnRNPA2B1)274 and endosomal sorting complexes required for transport (ESCRT)173.  

 

EVs play a key role in cell-cell communication by transfer of miRNAs as well as DNA, 

proteins, lipids and mRNAs between cells169. Bidirectional communication between cancer 

cells and the TME is essential for tumour progression and metastasis.  There is mounting 

evidence to suggest that tumour-derived EVs interact with cells of the TME to promote 

tumour growth, angiogenesis, extracellular matrix (ECM) remodelling, metastasis and 

immune evasion135,136.  

 

4.1.5 Role of EVs in miRNA transport 

Experiments detailed in this chapter were performed using two representative cervical SCC 

cell lines with differing levels of OSMR expression. SW756 cells were selected as a 

representative cell line with OSMR copy number gain and overexpression and ME180 cells 

were selected as a cell line with average OSMR expression. These two cells lines have been 

extensively characterised in previous publications by our research group70,121. In preliminary 

experiments, cellular and EV expression of a panel of miRNAs was investigated in response 

to OSM treatment. These miRNAs were selected from the literature for having a known role 

as a tumour promoter or suppressor in cervical SCC or displaying an expression profile that 

significantly correlated with OSMR or STAT3 expression in TCGA analysis of patients 

samples with cervical SCC (OSMR: Figure S4. 1, STAT3: Figure S4. 2). A brief summary of 

each miRNA investigated, and its suspected role in cervical cancer, is provided in Table 4.1. 
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Table 4.1: miRNA selected for investigation 

Suspected Role in Cervical Cancer: Tumour Promoters 

miR-9 

 

miR9 is significantly upregulated in cervical SCC compared to normal cervix 
and is associated with reduced overall survival275,276. Elevated levels of  miR-
9 in cervical SCC is  associated with both gain of chromosome 1q256 and 
activation by HPV E6277. Its upregulation has been shown to result in 
increased proliferation and migration of cervical SCC cells in vitro256 and 
increased tumour growth in vivo, associated with dysregulation of apoptosis 
due to downregulation of FOXO3276. Moreover, miR-9 has been implicated as 
a possible prognostic marker for cervical carcinoma276. miR-9 expression was 
found to correlate negatively with STAT3 expression in TCGA analysis of 

cervical SCC samples.   

miR-31 

miR-31 was found to be significantly upregulated in cervical carcinoma 
compared to normal cervix, and in cervical cancer cell lines278,279,280. 
Moreover, increased expression of miR-31 was found to significantly correlate 
with increased FIGO stage, increased lymph node metastasis and vascular 
invasion and reduced overall survival278,279,280.  Overexpression of miR-31 has 
been shown to promote cervical cancer cell proliferation, migration, invasion 
and EMT in vitro and tumour growth in vivo278,279,280. Overexpression of miR-
31 in cervical carcinoma is believed to be driven by both DROSHA copy 
number gain and overexpression255 and  HPV16 E6/E7 expression279. miR-31 
overexpression results in downregulation of BAP1280 and ARID1A278 

expression in cervical cancer cells. miR-31 expression was found to correlate 
positively with OSMR expression in TCGA analysis of cervical SCC samples.   

Suspected Role in Cervical Cancer: Tumour Suppressors 

miR-10b 

miR-10b has been shown to be significantly downregulated in cervical 
carcinoma compared to normal cervix, and in cell lines from cervical cancer 
cells281,282. Overexpression of miR-10b in vitro has been shown to result in 

inhibition of cervical cancer cell proliferation, migration and invasion and 
increased apoptosis281,282. Downregulation of miR-10b in cervical cancer may 
possibly be a result of HPV mediated methylation of TFAP2 binding element 
located within the miR-10b  promoter282. Potential targets of miR-10b include 
IGF-1R281 and TIAM1281. 

miR-23b 

miR-23b expression has been shown to be downregulated in HR-HPV 
positive cervical cancer tissues and cell lines262. Moreover, miR-23b 
downregulation is associated with cancer progression with significantly lower 
levels detected in cervical cancer biopsies compared to LSIL and HSILs283. 
Downregulation of miR-23b in cervical carcinoma has been shown to be a 
result of both inactivation of p53 by HPV 16 E6284 and methylation of the miR-
23b promoter283, and results in increased cell migration and invasiveness284. 
Overexpression of miR-23b resulted in downregulation of its suggested 
targets: UPA283,284, C-MET and ZEB1283. miR-23b expression was found to 

correlate negatively with OSMR expression in TCGA analysis of cervical SCC 
samples.   

miR-29b 

miR-29b was found to be significantly downregulated in cervical cancer and 
HSIL tissues compared to normal cervix285,286. miR-29b was shown to 
suppress invasion, EMT and angiogenesis of cervical cancer cells in vitro and 
inhibit tumour growth in vivo by supressing STAT3 signalling285. miR-29b has 
been identified as a therapeutic target: it is upregulated in cervical cancer cell 
lines and cervical cancer tissues in response to treatment with cisplatin285 and 
has also been shown to enhance radio-sensitivity of radio-resistant cervical 
cancer cells both in vitro and in vivo286. 

miR-101 miR-101 has been shown to be significantly downregulated in cervical cancer 
tissues compared to normal cervix287,288,289,290 and is also downregulated in 
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cervical cancer cell lines289,291. Downregulation of miR-101 was associated 
with poor overall survival289,290. Overexpression of miR-101 in cervical cancer 
cells has been shown to result in inhibition of proliferation, invasion and cell 
cycle progression, and increased apoptosis in vitro291,292 and decreased 

tumour growth in vivo289.  This has been reported to occur via downregulation 
of a number of miR-101 targets including COX-2287,291, CXCL6289, JAK2288 
and FOS292.  miR-101 expression was found to correlate negatively with 
OSMR expression in TCGA analysis of cervical SCC samples.   

miR-126 

miR-126 is significantly downregulated in cervical cancer tissues and cell 
lines, compared to normal cervix and normal cervical epithelial cell lines, 
respectively293,294,295. This downregulation has been reported to be temporarily 
and spatially specific, occurring in the stromal endothelium in the early 
invasive stage of cervical cancer296. Downregulation of miR-126 was shown 
to be associated with cancer progression, metastasis and decreased overall 
survival295. Restoration of miR-126 expression in cervical cancer cells in vitro 
results in increased apoptosis via downregulation of BCL212294 and 
decreased cell proliferation, migration and invasion via inhibition of ZEB1 
which in turn resulted in suppression of MMP2, MMP9, p-JAK2 and p-STAT3 
expression293. Furthermore, miR-126 was shown to suppress angiogenesis 
and tumour growth in vivo296. 

Suspected Role in Cervical Cancer: Unclear 

miR-34c 

The role of miR-34c in cervical carcinoma remains to be fully elucidated.  
miR-34c has been shown to be upregulated in CIN I-III compared to normal 
cervical epithelium256,257.  Moreover, the miR-34c promoter is significantly 
hypomethylated in CIN I-III and  SCC tissues compared to normal cervical 
epithelium297. While upregulation in cervical carcinoma suggests miR-34c 
may play an oncogenic role, Córdova-Rivas et al (2019) recently 
demonstrated that miR-34c inhibited cervical cancer cell proliferation and 
migration in vitro298. miR-34 has been selected for investigation as its 

expression has been shown to correlate positively with OSMR expression in 
analysis of TGCA data of patients with cervical SCC. 

miR-194 

The known role of miR-194 in cervical cancer is limited. Liu et al (2019) 

reported miR-194 to be significantly upregulated in patients with cervical 
cancer and found that high levels of miR-194 were associated with both 
recurrence and conversely also prolonged overall survival299. Whereas, Park 
et al (2014) found that miR-194 was specifically upregulated in cervical 

adenocarcinoma but not cervical SCC300. miR-194 has been selected for 
investigation as its expression has been shown to negatively correlate with 
OSMR expression in analysis of TGCA data of patients with cervical SCC. 

 

4.1.6 CRISPR-Cas9 

Subsequent experiments in this chapter detail how OSMR expression was knocked down in 

the OSMR overexpressing SW756 cell line using a CRISPR-all-in-one Cas9D10A nickase 

vector system218. Type II Clustered, regularly interspaced, short palindromic repeats 

(CRISPR)-Cas systems function in the adaptive immune response of prokaryotes, enabling 

them to attack invading genetic elements such as bacteriophages and plasmids. The 

CRISPR-Cas9 system has been adapted to perform genome editing in mammalian cells301. 

To create gene disruptions, small 20 nucleotide non-coding guide RNAs (sgRNAs) are 

designed to be complementary to target regions of DNA, neighbouring protospacer adjacent 
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motifs (PAM). sgRNAs guide Cas9 nuclease to induce site-specific DNA cleavage resulting 

in double strand breaks (DSBs) in the DNA. The Cas9-gRNA complex will bind any genomic 

sequence with a PAM; however, cleavage will only occur if sufficient homology exists 

between the sgRNA and the target sequence. DSBs are subsequently repaired by the non-

homologous end joining DNA repair pathway (NHEJ) or the homology directed repair (HDR) 

pathway. NHEJ is error prone and frequently results in small nucleotide insertions or 

deletions at the repair site which can result in frameshift mutations leading to premature stop 

codons within the open reading frame (ORF) of the targeted gene. Alternatively, knockins 

can be created by HDR.  

 

However, in addition to the target gene, gRNAs are likely to have partial homology to other 

sites throughout the genome and creation of DSBs in these regions can have ‘off-target’ 

effects. One method to reduce off-target effects is the use of mutant Cas9 nickases, such as 

Cas9D10A, which, unlike wild-type Cas9, contain only one active catalytic domain and are 

therefore only able to induce single strand breaks (SSBs) which can be repaired using the 

intact DNA strand as template218. In order to create DSBs, a double-nicking strategy is used 

which employs two paired sgRNAs that direct Cas9 nickases to target opposite strands of a 

target DNA sequence, thus minimising off-target effects218.  For the CRISPR experiments 

performed in this body of work, an all-in-one plasmid designed by Chiang et al (2016) was 

used which contains dual sgRNAs under the control of a U6 promoter and Cas9D10A nickase 

coupled to EGFP218.  

 

4.1.7 Chapter Aims 

The aim of this chapter was to investigate whether OSM-OSMR signalling was capable of 

modulating cellular and EV miRNA expression in cervical SCC cells. Experiments were 

performed using two representative cervical SCC cell lines with differing levels of OSMR 

expression:  SW756 cells and ME180 cells. In preliminary experiments, cellular and EV 

expression of a panel of miRNAs was investigated in response to OSM treatment. Functional 

assays were subsequently employed in order to determine whether EVs from PBS and OSM 

treated cells differed in their ability to induce proliferation and migration of cancer cells and 

angiogenesis in endothelial-fibroblast co-cultures. Subsequent experiments detailed in this 

chapter aimed to establish an OSMR KD SW756 cell line by CRISPR-Cas9 which could later 

be used to investigate global changes in miRNA and mRNA expression in cervical SCC cells 

and their EVs in response to OSM-OSMR signalling.  
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4.2 Confirmation of EV isolation from SW756 and ME180 cells  

Initial experiments were carried out to establish that EVs could be successfully isolated from 

the conditioned media of SW765 and ME180 cell lines. For all EV experiments in this 

chapter, cells were treated as follows unless otherwise stated. SW756 or ME180 cells were 

treated for 48 hours in EV depleted media supplemented with either 10ng/ml OSM or PBS 

control. EVs were subsequently isolated by sequential ultracentrifugation, as described in 

Figure 3.2. This protocol is based on the ultracentrifugation protocol described by Théry et al 

(2006)161 and separates particles according to their buoyant density. For experiments that 

used EV depleted conditioned media, supernatant was collected following the first 100,000 

xg spin in the EV isolation protocol. The terminology summarised in Table 4.2 will be used 

herein to describe treatment conditions. 

 

Following ultracentrifugation, EV pellets were visualised by transmission electron microscopy 

(TEM; Figure 4.2). Spherical structures with cup-shape morphology stereotypical of EVs 

were identified in samples from both cell lines. EV populations were heterogeneous and 

ranged in size from approximately 50-200nm.  As expected, EVs were not detected in a 

control sample of EV depleted culture media that was subjected to the same 

ultracentrifugation protocol as the experimental samples (results not shown).  

Table 4.2: Summary of abbreviations used to describe treatment conditions 

Abbreviation Description 

SW756-PBS-cells SW756 cells treated with PBS 

SW756-OSM-cells SW756 cells treated with OSM 

ME180- PBS-cells ME180 cells treated with PBS 

ME180-OSM-cells ME180 cells treated with OSM 

SW756-PBS-EVs EVs isolated from SW756 cells following PBS treatment 

SW756-OSM-EVs EVs isolated from SW756 cells following OSM treatment 

ME180- PBS-EVs EVs isolated from ME180 cells following PBS treatment 

ME180-OSM-EVs EVs isolated from ME180 cells following OSM treatment 

SW756-PBS-CM Total conditioned media from SW756 cells following PBS treatment  

SW756-OSM-CM Total conditioned media from SW756 cells following OSM treatment  

SW756- PBS-DM EV depleted conditioned media from SW756 cells following PBS treatment 

SW756-OSM-DM EV depleted conditioned media from SW756 cells following OSM treatment 

ME180-PBS- DM EV depleted conditioned media from ME180 cells following PBS treatment 

ME180-OSM-DM EV depleted conditioned media from ME180 cells following OSM treatment 
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Figure 4.2: Visualisation of EVs by Transmission Electron Microscopy (TEM) 

EV preparations isolated by ultracentrifugation were mounted onto carbon coated copper 

microscopy grids and visualised using a FEI Tecnai™ G2 Transmission Electron 

Microscope. Samples were fixed with 2% PFA and 1% glutaraldehyde and negatively 

contrasted with 1% uranyl acetate. Images depict EVs isolated from (A) SW756 cells or (B) 

ME180 cells at i) low (scale bar = 500nm) or ii) high (scale bar = 100nm) magnification. 
 

To further characterise the isolated EVs, particle size was investigated by NanoSight in 

collaboration with Carlos Passos Bastos in Dr Nuno Faria’s research group at The 

Department of Veterinary Medicine, Cambridge University. Following ultracentrifugation EVs 

were resuspended in an equivalent volume of PBS and particle size was measured using a 

NanoSight and NTA software (Figure 4.3). This method establishes the concentration of 

particles present in 1nm size bins. An accurate representation of particle size within a 

sample can be determined using the mean and mode (the value that appears most often) 

particle sizes in addition to D10, D50 and D90 values, which refer to the size which 10%, 

50% and 90% of particles in the sample are smaller than, respectively (depicted in Figure 

4.3A).  
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Figure 4.3: NanoSight analysis of EVs isolated from SW756 and ME180 cells 
NanoSight analysis showing size distribution of EVs extracted from culture medium of SW756 and 
ME180 cervical SCC cell lines treated with OSM or PBS control.  (A) Schematic of how D10, D50 

and D90 values are calculated from percentage undersize graphs. D10, D50 and D90 refer to the 

particle size which 10%, 50% and 90%  of particles are smaller than, respectively. (B) Number of EV 

particles released per cell for each condition (C) size of particles produced by SW756 cell line (D) 
size of particles produced by ME180 cell line. N=2 for each condition.   
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Both SW756 and ME180 EVs were found to have similar size distributions and to be 

composed of heterogeneous populations of multiple sized particles. SW756 EVs had an 

average particle size of 125nm (Figure 4.3C), whereas ME180 EVs were slightly larger with 

average particle size of 138nm (Figure 4.3D). For both cell lines the average particle size 

was larger than the mode, reflecting the presence of a small population of larger particles in 

the 200-400nm size range. Treatment with OSM did not appear to affect size of EVs 

released by either cell line. As expected, particles were not detected in a PBS control 

sample (results not shown). One of the main limitations of this technique is that it detects all 

particles present in the sample, not just EVs. However, particles detected were within the 

expected EV size range and were consistent with the size range of particles with 

stereotypical EV morphology observed by TEM.   

 

The total number of EVs present in each sample was calculated by multiplying the particle 

concentration by the input volume. The number of particles released per cell was 

subsequently calculated by dividing this value by the number of cells present in the flask at 

the time of EV collection. There were no obvious differences between either the mean 

number of EVs released per cell for SW756 or ME180 cell lines or in the mean number of 

EVs released by either cell line in response to OSM treatment; however there was a high 

degree of variability between replicates (Figure 4.3B). This may reflect limitations of this 

technique; NTA analysis has previously been shown to have high inter-experimental 

variability when used to determine particle concentration. This has been attributed to 

variations in the number of particles detected between video replicates of the same sample 

and limitations in detecting particles <50nm in diameter302,303.  

 

In conclusion these experiments demonstrated that EVs could be successfully isolated by 

sequential ultracentrifugation from both SW756 and ME180 cells. EVs derived from both cell 

lines were of similar size and displayed stereotypical EV morphology. Treatment with OSM 

had no effect on EV size or the number of EVs released per cell.  

 

4.3 SW756 and ME180 cell line validation 

The effects of OSM-OSMR signalling on cellular and EV miRNA expression was 

subsequently investigated. SW756 and ME180 cells were treated for 12, 24, 48 or 72 hours 

with EV depleted media supplemented with 10ng/ml OSM or PBS control. Total RNA was 

extracted from both cells and EVs for each treatment group.  
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SW756-PBS-cells and ME180-PBS-cells at the 48 hour timepoint were used for validating 

cervical SCC cell lines in order to confirm that they were behaving as previously described 

and represented cervical SCC cell lines with differing levels of OSMR expression. As 

expected, SW756 cells were found to have significantly higher baseline expression of OSMR 

than ME180 cells at both the mRNA (5.8 fold, Figure 4.4B) and protein (Figure 4.4A) levels, 

as determined by qPCR and western blot, respectively (western blot was performed by 

Valtteri Tulkki). Western blots performed for OSMR throughout this thesis display multiple 

bands. The predicted molecular weight for full length OSMR is 180 kDa (according to the 

datasheet sheet supplied by Santa Cruz for the anti-OSMR antibody used). 

 

Figure 4.4: Expression of OSMR and known targets in SW756 and ME180 cell lines 

SW756 and ME180 cells following 48 hours culture in media supplemented with PBS 

control. A) Western blot displaying OSMR protein expression. B-E) Quantitative RT-PCR 

for B) OSMR, C) VEGFA, D) TGM2 and E) SNAI1 mRNA expression. Fold change in gene 

expression in SW756 cells compared to ME180 cells is shown. Error bars represent SEM, 

n=3 independent experiments for each condition. Values were analysed for statistical 

significance using a using Unpaired T-test with Welch’s correction. * = P≤0.05, ** = P≤0.01, 

*** = P≤0.001, **** = P≤0.0001. 
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OSM-OSMR signalling is known to activate STAT3 signalling in cervical SCC cells. 

Therefore, baseline mRNA levels of known downstream targets of STAT3 signalling were 

also investigated by qPCR. Expression of VEGFA was 4.3 fold greater in SW756-PBS-cells 

compared to ME180-PBS-cells (Figure 4.4C). ME180-PBS-cells were found to express very 

low levels of TGM2 and SNAI1; expression of these mRNAs was 20,500 and 39 fold greater 

in SW756-PBS-cells, respectively (Figure 4.4D-E). 

 

Treatment with OSM appeared to result in upregulation of OSMR in SW756-OSM-cells 

(Figure 4.5A) at all timepoints, however due to variability between replicates, difference in 

treated and untreated cells did not reach statistical significance.  OSMR expression was also 

upregulated in ME180-OSM-cells at all timepoints; upregulation was statistically significant at 

12, 24 and 72 hours (Figure 4.5E). Greater upregulation of OSMR was observed in ME180-

OSM-cells at 12 and 72 hour timepoints, compared to SW756-OSM-cells. However, even 

following treatment with OSM, OSMR levels in ME180-OSM-cells remained less than that of 

SW756-PBS-cells.   

 

Treatment with OSM appeared to induce VEGFA expression in SW756-OSM-cells at all 4 

timepoints compared to SW756-PBS-cells. However, due to variability between replicates, 

differences in VEGFA expression between treatment groups was only found to be 

statistically significant at 72 hours post treatment (Figure 4.5B), where a 4.8 fold increase in 

VEGFA levels was observed in SW756-OSM-cells. VEGFA was also significantly 

upregulated in ME180-OSM-cells at 72 hours post treatment with OSM compared to ME180-

PBS-cells; however upregulation was to a lesser extent than that observed in SW756 cells 

(1.4 fold; Figure 4.5F). TGM2 expression was significantly upregulated in SW756-OSM-cells 

at 12 hours post OSM treatment i (Figure 4.5C); mRNA levels remained elevated up to 48 

hours post treatment, however, differences at these timepoints were not statistically 

significant. TGM2 levels in ME180-OSM-cells did not change at any of the timepoints 

investigated (Figure 4.5G). In SW756-OSM-cells SNAI1 was upregulated at all timepoints; 

however, this was not found to be statistically significant (Figure 4.5D). No significant 

difference in SNAI1 expression was observed between ME180-PBS-cells and ME180-OSM-

cells at any timepoint (Figure 4.5H). Together, these findings indicate that OSMR 

overexpressing SW756 cells are overall more responsive to OSM treatment than non-OSMR 

overexpressing ME180 cells, as demonstrated by their greater upregulation of the 

downstream STAT3 targets VEGFA, TGM2 and SNAI1 in response to treatment.  
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Figure 4.5: Response of SW756 and ME180 cell lines to OSM Treatment (mRNA) 

Quantitative RT-PCR for SW756 and ME180 cells treated for 12, 24, 48 or 72 hours with 10ng/ml 
OSM or PBS control. Fold change in gene expression in OSM treated cells was normalised to PBS 

control at corresponding timepoints. A-D) SW756 cells E-H) ME180 cells. A+E) OSMR, B+F) 

VEGFA, C+G) TGM2, D+H) SNAI1. Error bars represent SEM, n=3 independent experiments for 

each condition. Values were analysed for statistical significance using a using Unpaired T-test with 
Welch’s correction * =.P≤0.05, ** = P≤0.01. 
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4.4 QPCR analysis of cellular and EV miRNA levels in response to OSM   

The experiments discussed above confirmed that SW756 and ME180 cells represented two 

cervical SCC cell lines with differing levels of OSMR expression and response to OSM. 

OSM-OSMR signalling was shown to affect transcription of downstream mRNA target genes, 

consistent with previous findings from our research. Whether OSM-OSMR signalling was 

also capable of modulating cellular and EV miRNA expression was subsequently 

investigated. As previously described, a panel of nine miRNAs was selected for investigation 

(Table 4.1). 

 

Baseline levels of these 9 miRNAs were investigated by qPCR in SW756 and ME180 cells 

and EVs, collected at 12, 24, 48 and 72 hour timepoints from PBS control samples (Figure 

S4. 3A,B,D,E); miRNA expression was normalised to the endogenous control RNU24. In 

both cell lines, all 9 miRNAs were enriched in EVs compared to cells. miR-31, which is 

believed to act as a tumour promoter in SCC, was the most abundant miRNA in both 

SW756-PBS and ME180-PBS cells and EVs. With the exception of miR-23b, which was 

significantly more abundant in ME180-PBS-EVs at 72 hours compared to 48 hours (Figure 

S4. 3D), there was no difference in miRNA expression levels between timepoints for either 

PBS treated cells or EVs.  

 

As miRNA abundance in PBS treated cells and EVs did not vary at different timepoints, the 

potential differences in baseline miRNA expression in SW756 and ME180 cells lines was 

compared at a single representative timepoint (48 hours). The majority of miRNAs appeared 

to be expressed at higher levels in SW756-PBS compared to ME180-PBS cells and EVs; 

however, this difference was not statistically significant. miR-9 and miR-31 were expressed 

at significantly lower levels in SW756-PBS-cells compared to ME180-PBS-cells (Figure S4. 

3C). miR-31 was also shown to be expressed at significantly lower levels in SW756-PBS-

EVs compared to ME180-PBS-EVs (Figure S4. 3F). 
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Figure 4.6: Effect of OSM treatment on cellular miRNA expression 
Quantitative RT-PCR for SW756 (A-D) and ME180 (E-H) cells treated for 12 (A, E), 24 (B, F), 48 

(C, G) or 72 (D, H) hours with 10ng/ml OSM or PBS control. Fold change in miRNA expression in 

OSM treated cells was normalised to PBS control at corresponding timepoints. Error bars represent 
SEM, n=3 independent experiments for each condition. Values were analysed for statistical 

significance using unpaired T-tests with Welch’s correction. * =.P≤0.05, ** = P≤0.01, *** = P≤0.001.  
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Figure 4.7: Effect of OSM treatment on EV miRNA expression  

Quantitative RT-PCR for SW756 (A-D) and ME180 (E-H) EVs treated for 12 (A, E), 24 (B, F), 48 

(C, G) or 72 (D, H) hours with 10ng/ml OSM or PBS control. Fold change in miRNA expression in 
EVs from OSM treated cells was normalised to EVs from PBS treated controls at corresponding 

timepoints. Error bars represent SEM, n=3 independent experiments for each condition. Values were 

analysed for statistical significance using unpaired T-tests with Welch’s correction. * =.P≤0.05, ** = 
P≤0.01, *** = P≤0.001.  
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Treatment with OSM had varied effects on cellular (Figure 4.6) and EV (Figure 4.7) miRNA 

expression in each cell line. OSM had little effect on cellular miRNA expression at the 12, 24 

or 48 hour timepoints for either cell line (Figure 4.6. A, B, E, F). While not statistically 

significant, there was an interesting trend in modest upregulation of multiple miRNAs in 

SW756-OSM-cells at the 48 hour time point (Figure 4.6C). At the 72 hour timepoint, miRNA 

response to OSM was more varied: in SW756 cells, miR-9 was significantly upregulated, 

whereas, miR-34c and miR-194 were significantly downregulated (Figure 4.6D). Similarly, in 

ME180-OSM-cells miR-9 was significantly upregulated, whereas, expression of miR-23b, 

miR-34c and miR-101 were significantly downregulated (Figure 4.6H). 

 

The effect of OSM treatment on SW756 and ME180 EV miRNA expression was also less 

pronounced at 12 and 24 hour timepoints than later timepoints (Figure 4.7). At the 48 hour 

timepoint all miRNAs under investigation, except for miR-194, appeared upregulated in 

SW756-OSM-EVs; however, due to high levels of variability between replicates differences 

did not reach statistical significance (Figure 4.7C). This is similar to the expression pattern 

observed for SW756-OSM-cells at the same time point, however much greater upregulation 

was observed in the EVs. At 72 hours all miRNAs were upregulated in SW756-OSM-EVs 

and upregulation of five of the nine miRNAs were found to be statistically significant (Figure 

4.7D). Upregulation was greater than that observed in cells at this timepoint (fold change 

ranged from 1.6-4.0). OSM appeared to have a less substantial impact on ME180-OSM-EV 

miRNA expression at 48 and 72 hour timepoints. miRNA levels remained predominantly 

unchanged in response to OSM at both the 48 hour (Figure 4.7G) and 72 hour timepoints 

(Figure 4.7H).  

 

This data suggests that OSM treatment had a greater impact on EV miRNA expression in 

the SW756 OSMR-overexpressing cell line compared to ME180 EVs, a non-OSMR 

overexpressing cell line. Greatest changes in both cellular and EV miRNA expression were 

observed at later timepoints, following 48 and 72 hour treatment with OSM. Levels of the 

STAT3 targets TGM2 and SNAI1 appeared to begin to decline in SW756 cells at 72 hour 

timepoint. Therefore, 48 hours was selected for all subsequent experiments as both mRNAs 

and miRNAs were upregulated in SW756 cells in response to OSM at this timepoint (Figure 

4.5).  
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4.5 EV Functional Assays 

As OSM-OSMR signalling was found to alter EV miRNA cargo, subsequent experiments 

were performed to determine whether changes in EVs following OSM treatment of cervical 

SCC cells had any functional effects. To achieve this, following ultracentrifugation, the 

amount of EV protein was determined by BCA assay and a specified amount of EVs was 

diluted in fresh EV depleted media and added to either naive tumour cells or other cells of 

the TME.  

 

4.5.1 Effect of EVs on cancer cell growth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Effect of SW756 EVs on SW756 cell growth  

SW756 cells were seeded at a concentration of 2x10
4
 cells/well. After 24 hours in culture, 

media was removed and 1.5ml of fresh EV depleted media added, supplemented with 1µg of 

EVs from PBS or OSM treated SW756 cells or PBS control of an equal volume. Cells were 

counted by countess at 3, 5 and 7 days post treatment. N=3 for each experimental condition at 

each timepoint. Values were analysed for statistical significance at individual timepoints 

using one way analysis of variance (ANOVA) with Tukey’s multiple comparison post-hoc 

tests.  
 

 

 



 

104 
 

Seven of the nine miRNAs investigated (miR-9, miR-31, miR-10b, miR-29b, miR-101, miR-

126 and miR-34c) have previously been linked to either positively or negatively regulating 

cervical SCC proliferation. As these miRNA were found to be altered in SW756 EVs in 

response to OSM-OSMR signalling, it was subsequently investigated whether SW756-PBS-

EVs and SW756-OSM-EVs had differing functional effects on cervical SCC growth. The 

addition of 1µg of SW756-PBS-EVs or SW756-OSM-EVs to naive SW756 cells had no effect 

on cell growth at any of the three times points investigated (3, 5 and 7 days) compared to 

cells treated with PBS control (Figure 4.8).   

 

4.5.2 Effect of EVs on Cell Migration  

It has previously been shown in our  laboratory that  treatment of SW756 cells with OSM 

leads to increased cell migration121. Six of the nine miRNAs investigated (miR-9, miR-31, 

miR-10b, miR-23b, miR-126 and miR-34c) have previously been linked to regulation of 

cervical SCC cell migration. It was therefore investigated whether SW756-OSM-cells could 

confer their migratory advantage to naïve SW756 cells via their EVs. 

 

Either SW756 or ME180 cells were used as recipient cells for the migration assays. A 

scratch was made in the centre of confluent wells and media containing 0.1µg, 1µg or 10µg 

of EVs from PBS or OSM treated donor cells added. SW756 and ME180 recipient cells were 

treated with EVs isolated from their corresponding cell lines. Closure of scratches was 

visually assessed at regular intervals and percentage wound closure calculated 

 

SW756 cells treated with PBS were found to have significantly increased migration 

compared to PBS treated ME180 cells (Figure 4.9A). Moreover, SW756 and ME180 

responded in opposing ways to treatment with EV depleted media or EVs. SW756 cells 

treated with SW756-PBS-DM displayed significantly reduced migration at the 13 hour 

timepoint compared to cells treated with PBS control; migration also appeared reduced at 16 

and 20 hours post treatment in SW756-PBS-DM treated SW756 cells compared to cells 

treated with PBS control; however differences were not statistically significant. Treatment 

with SW756-OSM-DM also appeared to reduce migration at all three timepoints; however, 

results did not reach statistical significance (Figure 4.9B panel i). Similarly, treatment of 

SW756 cells with SW756-PBS-EVs and SW756-OSM-EVs appeared to result in reduced cell 

migration at all timepoints for all three concentrations of EVs investigated (Figure 4.9B 

panels ii–iv). Treatment of SW756 cells with the highest EV concentration, 10µg, led to 

significantly reduced migration at the 13 hour timepoint regardless of whether EVs originated 

from SW756-OSM-cells or SW756-PBS-cells (Figure 4.9 panel iv).  
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Interestingly, the opposite effect was observed in ME180 cells. Treatment with both ME180-

PBS-DM and ME180-OSM-DM appeared to increase cell migration at all three timepoints 

(Figure 4.9C panel i). Similarly, treatment of ME180 cells with either ME180-PBS-EVs or 

ME180-OSM-EVs resulted in increased cell migration at all timepoints for all three 

concentrations of EVs investigated (Figure 4.9C panels ii–iv). However, these differences 

were not found to be statistically significant. 

 

This data indicates that SW756 and ME180 cells release differing factors, either directly into 

the conditioned media, or packaged into their EVs, which have opposing effects on migration 

of other cancer cells. Untreated SW756 cells were found to migrate more quickly than 

ME180 cells. It was hypothesised that, as a result of their increased baseline migratory 

capacity, SW756 cells may release factors that inhibit cell migration in a negative feedback 

mechanism to regulate migration of cells away from the primary tumour site. Conversely, as 

ME180 cells had reduced baseline migratory capacity, negative feedback may not be 

required and factors released from these cells instead promote migration of other cancer 

cells.  
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Figure 4.9: Effect of cervical SCC derived EVs on migration of cervical SCC cells 
After 48 hours culture SW756 and ME180 cells were scratched with a 1ml pipette. Media containing  PBS 

control, 0.1µg, 1µg or 10µg of EVs or EV depleted conditioned media from PBS or OSM treated cells was 

added and wound closure assessed over a 20 hour period. A) Comparison of wound closure in SW756 and 

ME180 cells treated with PBS control. Treatment of B) SW756 cells or C) ME180 with i) EV depleted 

conditioned media (DM) ii) 0.1µg EVs iii) 1µg EVs or iv) 10ug EVs from PBS or OSM treated SW756 (B) or 

ME180 cells (C). N=3 for each experimental condition at each timepoint. Error bars represent SD. Values were 

analysed for statistical significance at each timepoint using unpaired T-tests with Welch’s correction (A) or one 

way ANOVA with Tukey’s multiple comparison post-hoc tests (B and C).  * =P≤0.05, ** = P≤0.01. 
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Similar experiments were also performed using SW756 donor cells and VF-2 recipient cells; 

normal diploid human fibroblasts originating from juvenile foreskin material. Wells were 

scratched as previously described and VF2 cells treated with media supplemented with 

either 10ng/ml OSM or an equal volume of PBS control, or with either 10µg of SW756-PBS-

EVs or SW756-OSM-EVs. 

  

Figure 4.10: Effect of SW756 EVs on migration of VF2 fibroblasts 
After 7 days culture VF2 cells were scratched with a 1ml pipette. Media containing PBS control, 10ng/ml Rh-

OSM, or 10µg of EVs from PBS or OSM treated cells was added and wound closure assessed over a 20 hour 

period. Comparison of wound closure in A) all 4 treatment groups, B) PBS and OSM treated VF2 cells and C) 
VF2 cells treated with EVs from PBS or OSM treated cells are shown. N=3 for each experimental condition at 

each timepoint. Error bars represent SD. Values were analysed for statistical significance at each timepoint 

using a one way ANOVA with Tukey’s multiple comparison post-hoc tests. 

 

Treatment with OSM had no significant effect on migration of VF2 cells at all timepoints 

compared to cells treated with PBS control (Figure 4.10). Similarly, treatment with either 

SW756-PBS-EVs or SW756-OSM-EVs had no significant effect on VF2 migration compared 

to treatment with PBS control. OSM has previously been shown to promote migration of 

OSMR overexpressing cervical SCC cells in a dose-dependent manner121. However, 

SW756-OSM-EVs did not confer this migratory advantage when EVs were used to treat 
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naive cancer cells or VF2 cells. This may possibly be due to the fact that concentrations of 

downstream factors of OSM-OSMR signalling were at too low a concentration in the EVs to 

have functional effects compared to SW756-PBS-EVs or PBS control.  Additional replicates 

should be included to reduce variability and to allow for better assessment of statistical 

differences between treatment groups.  

 

4.5.3 Effect of EVs on Angiogenesis 

Subsequent experiments aimed to determine whether SW756-PBS-EVs and SW756-OSM-

EVs had an effect on angiogenesis. Angiogenesis assays were performed using HUVECs 

and primary human fibroblasts co-cultures. Previous experiments using the same assay 

have shown that treatment of co-cultures with SW756-OSM-CM lead to increased 

angiogenesis compared to treatment with SW756-PBS-CM92. For these experiments SW756 

cells were treated with a 2 hour pulse of OSM or PBS control. Media was then replaced and 

conditioned media collected 48 hours later. Therefore, for this experiment EVs were 

collected from SW756 cells treated in the same way. 

 

Co-cultures were treated with media supplemented with the following: media control, VEGFA 

positive control, suramin negative control, SW756-PBS-CM or SW756-OSM-CM (48 hours 

continuous treatment) and SW756-PBS-EVs or SW756-OSM-EVs (2 hour treatment pulse). 

Representative images from the angiogenesis assay for each treatment condition are shown 

in Figure 4.11A. Treatment of co-cultures with both SW756-PBS-CM and SW756-OSM-CM 

led to significantly increased angiogenesis in a similar manner to co-cultures treated with  

VEGFA (Figure 4.11B). They displayed increased total tubule length and increased number 

of junctions and branches compared to media control. Mean branch length was also 

significantly reduced in co-cultures treated with VEGFA or SW756-OSM-CM (Figure 4.11B 

panel ii), likely as a result of the increased number of branches and junctions. Thus, factors 

present in SW756 conditioned media were capable of promoting angiogenesis. Moreover, 

SW756-OSM-CM appeared to induce angiogenesis at higher levels than SW756-PBS-CM.  
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Figure 4.11: Effect of EVs on Angiogenesis Assay 
A) Representative images of CD31 stained tubules in HUVEC-primary fibroblast co-cultures treated 

every 48 hours with i) media control, ii) VEGFA, iii) suramin, iv) conditioned media from SW756 

cells treated with PBS, v) conditioned media from SW756 cells treated with OSM, vi) EVs isolated 

from SW756 cells treated with PBS and vii) EVs from SW756 cells treated with OSM.  B) AngioSys 
2.0 Image Analysis Software was used to quantify i) total tubule length, ii) mean branch length, iii) 

number of junctions and iv) number of branches for images collected from 5 different fields of view 

for each sample. N=2 independent replicates for each condition. Values were analysed for statistical 
significance using an ANOVA with Tukey’s multiple comparison post-hoc tests. * =P≤0.05, ** = 

P≤0.01, *** = P≤0.001 and **** = P≤0.0001. 
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Co-cultures treated with SW756-PBS-EVs or SW756-OSM-EVs displayed increased total 

tubule length, number of junctions and number of branches compared to co-cultures treated 

with control media. However, differences were not found to be statistically significant (Figure 

4.11B). No differences were evident between co-cultures treated with SW756-PBS-EVs or 

SW756-OSM-EVs. Therefore, while cervical SCC derived EVs appeared to have some effect 

on angiogenesis, this was to a lesser extent than that observed for EV depleted conditioned 

media. This indicates that soluble EV-independent factors are responsible for the majority of 

the angiogenic effects observed. SW756 cells were shown in earlier experiments to secrete 

VEGFA. Therefore, while VEGFA and other pro-angiogenic factors may be packaged into 

the EVs, they may not be present at levels high enough to have a substantial impact on 

angiogenesis.  

 

While the miRNA cargo of EVs isolated from cervical SCC cells was found to be altered in 

response to OSM treatment, we were unable to identify the functional significance of these 

changes using the various assays described above. It is difficult to elucidate the functional 

relevance of these changes when only a small number of miRNAs was investigated. 

Therefore, we subsequently aimed to determine the overall effects of OSM treatment on 

cellular and EV mRNA and miRNA expression.  

 

4.6 Generation of an OSMR KD SW756 cell line 

Preliminary experiments using cell lines with different baseline levels of OSMR expression – 

SW756 and ME180 cells – indicated that OSM-OSMR signalling was capable of modulating 

cellular and EV miRNA expression. These experiments focused on a small panel of miRNAs; 

therefore, we aimed to implement a global approach using next generation sequencing in 

order to determine the overall effects of OSM treatment on cervical SCC cellular and EV 

mRNA and miRNA expression. The aim was to identify pathways that were altered in 

response to OSM-OSMR signalling in both cells and EVs in order to assist in the design of 

future experiments to investigate functional effects.  

 

In order to eliminate confounding effects of comparing two cervical SCC cell lines that are 

likely to vary in more aspects than just their levels of OSMR expression, it was determined 

that creating an OSMR KD cell line would be a more appropriate control. A CRISPR-Cas9 

approach was therefore used to generate an OSMR KD SW756 cell line. This was 

performed using a CRISPR-all-in-one Cas9D10A nickase vector system218 which contains dual 

sgRNAs under the control of a U6 promoter and Cas9D10A nickase coupled to EGFP218. 
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4.6.1 Cloning of gRNAs into vector backbone  

A pair of sense (gRNA1) and antisense (gRNA2) gRNAs were designed to target an exon 

within transcripts OSMR-001 and OSMR-003, as depicted in (Figure 3.4). The structure of 

the PX466 Cas9-D10A-GFP vector is shown in (Figure 3.5). The vector was linearised by 

BsaI digest and gRNA1 ligated into the vector backbone.  Ligated plasmid was used to 

transform DH5α competent cells. DNA was extracted from four resultant colonies and 

gRNA1 insertion confirmed by EcoRI digest (Figure 4.12A). The PX466 Cas9-D10A-GFP 

vector contains three EcoRI sites, one of which is located between the two BsaI sites (Figure 

3.5) in which the gRNA1 was inserted. Therefore, EcoRI digestion can be used to diagnose 

successful cloning, since digestion of the original plasmid (i.e. plasmid without gRNA1 

insertion) will produce 3 fragments (4kb, 5kb and 0.8kb in size) whereas, plasmids with 

insertion of gRNA1 will only be cut twice, producing two fragments 9kb and 0.8kb in size.   

DNA from three colonies was identified as having the appropriate number of bands 

corresponding to successful insertion of gRNA1 (Figure 4.12A) and these were denoted 

gRNA1 colonies A-C. DNA from these colonies was sent for sequencing and all were 

confirmed to have successful insertion of gRNA1 (Figure S4. 4). DNA from the colony with 

the greatest DNA concentration was selected for subsequent experiments.  

 

Figure 4.12: CRISPR – Confirmation of gRNA insertion into vector 
(A) EcoRI digest to confirm gRNA1 insertion (1 = 1Kb ladder; 2-5 = Plasmid + gRNA1, colonies A-

D, respectively). B) BamHI digest to confirm gRNA2 insertion (1= 1Kb ladder, 2 = Colony A 
undigested, 3= colony A digested with BamHI, 4 = Colony B undigested, 5= colony B digested with 

BamHI, 6 = Colony C undigested, 7= colony C digested with BamHI, 8 = Colony D undigested, 9= 

colony D digested with BamHI, 10 = plasmid containing gRNA1 only undigested, 11= plasmid 
containing RNA1 only digested with BamHI). 
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Vector containing gRNA1 was subsequently linearised by BbSI digestion and gRNA2 was 

ligated into the vector backbone. Ligated plasmid was used to transform DH5α competent 

cells and DNA was extracted from four resultant colonies and gRNA2 insertions confirmed 

by BamHI digest. The PX466 Cas9-D10A-GFP vector contains a BamHI site located 

between the two BbsI sites. Colonies with successful insertion of gRNA2 will no longer 

contain a BamHI site, whereas plasmids without gRNA2 insertion will be linearised following 

BamHI digestion. DNA from all four colonies was unaffected by BamHI digest corresponding 

to successful gRNA2 insertion (Figure 4.12B). These were denoted gRNA1+gRNA2 colonies 

A-D. DNA from these colonies was sent for sequencing and all were confirmed to have 

successful insertion of both gRNA1 and gRNA2 (Figure S4. 5). The colony with the highest 

DNA concentration was selected for subsequent experiments. 

 

4.6.2 Transfection of SW756 cells with OSMR CRISPR Plasmid 

SW756 cells were transfected with either empty PX466 Cas9-D10A-GFP plasmid (empty 

plasmid) or plasmid containing sgRNAs against OSMR. Experimental design is depicted in 

Figure 4.13A. As the PX466 Cas9-D10A-GFP plasmid encodes EGFP, cellular EGFP 

expression was used to confer successful cell transfection. Only cells transfected with 

PX466 Cas9-D10A-GFP plasmid were found to express EGFP (Figure 4.13B).  

 

EGFP positive cells then underwent single cell sorting; untransfected control samples were 

used to set gating parameters. For cells transfected with empty plasmid or plasmids 

containing sgRNAs against OSMR, a single EGFP positive cell was plated in each well of a 

96 well plate. Remaining EGFP positive cells for each sample were seeded in 6 well plates – 

these are later referred to as “pooled samples”. Cell sorting was performed with the 

assistance of Nigel Miller and Joana Cerveira. 
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Figure 4.13: Transfection of SW756 cells with PX466 Cas9-D10A-GFP plasmid 

A) Schematic of experimental design. B) EGFP expression in SW756 cells transfected with: 

i) untransfected control, ii) empty plasmid iii) plasmid containing sgRNAs.  

 

4.6.3 Confirmation of OSMR KD – genomic DNA 

Once cells derived from single cell FACs sorting reached confluence, 6 colonies for each 

treatment group (empty plasmid and plasmid with sgRNAs) were selected and bulked up 

until there were enough cells to perform DNA, RNA and protein extractions. Pooled samples 

were also expanded.  Genomic DNA primers were designed to amplify a small fragment of 

the OSMR gene (240 base pairs in length) that was targeted by the CRISPR gRNAs. PCR 

was performed on genomic DNA collected from SW756 cells that had been transfected with 

either empty plasmid or plasmid containing sgRNAs (Figure 4.14A). All clonal cell 

populations transfected with empty plasmid displayed a band of the expected size for wild-

type OSMR (Figure 4.14A). From the cells transfected with plasmid containing gRNAs 

targeting OSMR, only clone 5 appeared to have a mutation that altered the size of the 

fragment amplified (Figure 4.14A).  
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C. 

 

Figure 4.14: Detection of genomic mutations in OSMR following CRISPR 

A) PCR using primers designed to amplify a 240bp region with gRNA sites. P = pooled, non 

clonal samples. B) PCR of genomic DNA using sequencing primers designed to amplify a 

region of 1006bp spanning the gRNA sites. C) Summary of Synthego ICE analysis of 

sequencing results, following alignment of each sample to sequences from Wild-Type 

SW756 cells.  

 
Subsequently, sequencing primers were designed to amplify a larger fragment (1006bp) 

within the region targeted by CRISPR. PCR was performed on wild type SW756 cells, 

SW756 cells transfected with empty plasmid (clones 1, 4 and 6 were selected) and SW756 

cells transfected with OSMR KD plasmid (clones 1-6). When PCR products were run on an 

agarose gel, OSMR KD Clone 5 was the only cell line that appeared to have a perturbed 

band (Figure 4.14B). PCR products were purified and sent for sequencing using both 

forward and reverse primers. Sequencing data was analysed with SnapGene (results not 

shown) and Synthego ICE software: sequences from each sample (using either forward or 

reverse prime) was compared with that of wild-type SW756 cells in order to determine if any 

changes had occurred to the targeted section of the OSMR gene. Synthego ICE calculates 

 
Forward Sequencing 

Primer 
Reverse Sequencing 

Primer 

Indel % KO Score Indel % KO Score 

Empty Plasmid Clone 1 0 0 0 0 

Empty Plasmid Clone 4 0 0 0 0 

Empty Plasmid Clone 6 43 21 0 0 

OSMR KD Clone 1 0 0 0 0 

OSMR KD Clone 2 0 0 0 0 

OSMR KD Clone 3 0 0 0 0 

OSMR KD Clone 4 0 0 0 0 

OSMR KD Clone 5 57 55 43 37 

OSMR KD Clone 6 0 0 0 0 
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the percentage of insertions and/or deletions of bases (indels) and generates a knock out 

(KO) score for each sample. As indicated by PCR, only OSMR KD clone 5 was found to 

have an altered OSMR sequence. Representative read outs of Synthego ICE analysis 

displaying sample alignment, discordance and indel plots compared to wild-type are shown 

for OSMR KD clone 2 (no changes to DNA sequence) and OSMR KD clone 5 (altered DNA 

sequence) in Figure S4. 6. The results of the analysis for all clones investigated are 

summarised in Figure 4.14C. OSMR KD Clone 5 was found to have KO scores of 55 and 37 

when alignment of sequencing reads was performed using forward and reverse primers, 

respectively.   

 

4.6.4 Confirmation of OSMR KD – protein  

Knock down of OSMR protein expression was subsequently confirmed by western blot in 

OSMR KD clone 5 (Figure 4.15). While clones 1, 3 and 6 also appeared to have reduced 

protein levels compared to WT, mutations were not detected in the genomic DNA sequences 

and therefore only clone 5 was selected for further experiments. All empty plasmid clones 

displayed protein OSMR levels similar to that of WT SW756; empty plasmid clone 1 was 

selected for further experiments. From here onwards OSMR KD clone 5 will be referred to as 

SW756 OSMR KD cells and empty plasmid clone 1 will be referred to as SW756 empty 

plasmid cells. 

Figure 4.15: Clonal OSMR protein expression following CRISPR 
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4.7 Characterisation of OSMR KD Cell Line 

Empty plasmid and OSMR KD SW756 cell lines generated by CRISPR-Cas9 were further 

characterised to determine their response to OSM. Abbreviations shown in Table 4.3 will be 

used from here onwards.  

 

Baseline levels of OSMR mRNA were unchanged in EP-PBS-cells compared to WT-PBS-

cells (Figure 4.16). OSMR expression was found to be significantly reduced in KD-PBS-cells 

compared to both WT-PBS-cells and EP-PBS-cells (Figure 4.16A). Baseline levels of 

downstream STAT3 targets VEGFA, TGM2 and SNAI1 were unchanged in KD-PBS-cells 

compared to WT-PBS-cells control.  In response to 48 hours treatment with 10ng/ml OSM, 

WT-OSM-cells and EP-OSM-cells displayed similar patterns of expression of downstream 

STAT3 targets; OSMR, VEGFA, TGM2 and SNAI1 were all found to be significantly 

upregulated to similar levels in both cell lines (Figure 4.16B-E). Conversely, in KD-OSM-

cells, no upregulation in OSMR, VEGFA, TGM2 or SNAIL mRNA levels was detected 

following treatment with OSM. Levels of EGFR were also investigated (Figure 4.16F). OSM 

has been shown to signal via an OSMR-EGFR receptor complex in glioblastoma91. 

Moreover, OSM was previously shown to increase levels of EGFR protein but not mRNA in 

SW756 cells92. Therefore, OSMR may increase EGFR protein stability. Baseline levels of 

EGFR were unaltered across all three cell lines. Treatment with OSM led to a small but 

significant increase in EGFR expression in EP-OSM-cells. 

Table 4.3: Summary of abbreviations used for CRISPR cell lines  

Abbreviation Description 

WT cells Wild type SW756 cells 

EP cells Empty plasmid SW756 cells 

KD cells OSMR KD SW756 cells 

WT-PBS-cells SW756 wild-type cells treated with PBS 

WT-OSM-cells SW756 wild-type cells treated with OSM 

WT-PBS-EVs EVs isolated from wild-type SW756 cells following PBS treatment 

WT-OSM-EVs EVs isolated from wild-type SW756 cells following OSM treatment 

EP-PBS-cells SW756 empty plasmid cells treated with PBS 

EP-OSM-cells SW756 empty plasmid cells treated with OSM 

EP-PBS-EVs EVs isolated from empty plasmid SW756 cells following PBS treatment 

EP-OSM-EVs EVs isolated from empty plasmid SW756 cells following OSM treatment 

KD-PBS-cells OSMR KD SW756 cells treated with PBS 

KD-OSM-cells OSMR KD SW756 cells treated with OSM 

KD-PBS-EVs EVs isolated from OSMR KD SW756 cells following PBS treatment 

KD-OSM-EVs EVs isolated from OSMR KD SW756 cells following OSM treatment 
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As previously discussed, some previous experiments by our research group used a 2 hour 

pulse of OSM, followed by RNA collection 48 hours later, rather than continuous treatment 

for 48 hours92. It was hypothesised that this protocol might be preferable for EV experiments, 

as it would reduce the likelihood of free OSM being co-isolated with EVs during 

ultracentrifugation. In order to determine whether this was a plausible treatment regime for 

use, response of these three cell lines to a 2 hour pulse of treatment with OSM was 

investigated. Treatment with a 2 hour pulse of OSM was not found to be sufficient to activate 

upregulation of OSMR or its downstream targets at 48 hours after treatment in WT-OSM-

cells or EP-OSM-cells (Figure 4.17). As expected, no changes in KD-OSM-cells were 

detected in response to treatment. All subsequent experiments detailed in this thesis 

involving treatment of cervical SCC cells with OSM were performed for a continuous 48 hour 

period, rather than 2 hour pulse.  
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Figure 4.16: mRNA expression – 48 hour treatment with OSM 

Quantitative RT-PCR for SW756 Wild-type, empty plasmid and OSMR KD cell lines 

following 48 hours treatment with 10ng/ml OSM or PBS control. A) Baseline levels of 

OSMR in PBS treated samples compared to WT control. B-F) Fold change in gene 

expression in PBS and OSM treated samples relative to WT+PBS control. Changes in mRNA 

expression of B) OSMR C) VEGFA D) TGM2 E) SNAI1 and F) EGFR were investigated. 

Error bars represent SEM, n=3 independent experiments for each condition. Values were 

analysed for statistical significance using a one way ANOVA with Tukey’s multiple 

comparison post-hoc tests. * =.P≤0.05, ** = P≤0.01, *** = P≤0.001, **** = P≤0.00001. 
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Figure 4.17: mRNA expression – Treatment with OSM using a 2 hour pulse 

Quantitative RT-PCR for SW756 Wild-type, empty plasmid and OSMR KD cell lines 

following a 2 hour pulse of treatment with 10ng/ml OSM or PBS control. RNA was extracted 

48 hours after treatment. A) Baseline levels of OSMR in PBS treated samples compared to 

WT control. B-F) Fold change in gene expression in PBS and OSM treated samples relative 

to WT+PBS control. Changes in mRNA expression of B) OSMR C) VEGFA D) TGM2 E) 

SNAI1 and F) EGFR were investigated. Error bars represent SEM, n=3 independent 

experiments for each condition. Values were analysed for statistical significance using a one 

way ANOVA with Tukey’s multiple comparison post-hoc tests. * =.P≤0.05, ** = P≤0.01, 

*** = P≤0.001, **** = P≤0.00001. 
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Response of these 3 cell lines to OSM treatment was also investigated at the protein level 

(Figure 4.18). As previously shown in Figure 4.15 baseline levels of OSMR protein 

expression were reduced in KD-PBS-cells compared to WT-PBS-cells and EP-PBS-cells. 

KD-PBS-cells also displayed reduced baseline levels of pSTAT3 protein expression 

compared to WT-PBS-cells and EP-PBS-cells, but did not differ in their levels of Total 

STAT3. Treatment for 48 hours with OSM did not appear to alter OSMR protein expression 

in any of the three cell lines. However, WT and EP cells expressed greater levels of pSTAT3 

in response to treatment with OSM for 48 hours. KD-OSM-cells did not display increased 

expression of pSTAT3 compared to KD-PBS-cells (Figure 4.18A). 

 

Previous experiments by Kucia-Tran et al (2018)92 have shown that ME180 cells, a non 

OSMR overexpressing cell line, display upregulation of OSMR and pSTAT3 protein 

expression in the first 8 hours following treatment with OSM. However, upregulation is not 

maintained at 48 hours post-treatment. Therefore, in order to confirm that OSMR was truly 

knocked down in the newly-generated cell line, protein was collected from WT, EP and KD 

cells at 30 minutes and 1 hour post treatment with OSM (Figure 4.18B).  

 

In parallel with 48 hours of treatment, pSTAT3 protein expression was increased in WT and 

EP cells following 30 minutes or 1 hour of treatment with OSM (Figure 4.18B). While slight 

upregulation of pSTAT3 was also observed in OSMR KD cells at both 30 minutes and 1 hour 

timepoints in response to OSM, levels were substantially lower than that observed for WT-

OSM-cells and EP-OSM-cells. Therefore, these cells are likely to have partial knock-down of 

OSMR expression rather than being complete knock-outs.  
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Figure 4.18: Western blot for confirmation of OSMR KD 

Levels of OSMR, pSTAT3, Total STAT3 and β-ACTIN protein in wild-type, empty plasmid 

and OSMR KD SW756 cells treated with OSM or PBS control for A) 48 hours or B) 30 

minutes or 1 hour. 
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The effect of OSMR KD on cell growth was subsequently investigated using both direct cell 

counts and MTT assay. Both methods showed that there was no difference in growth 

between WT-PBS-cells and EP-PBS-cells. MTT assay found cell growth of KD-PBS-cells to 

be significantly reduced compared to WT-PBS-cells (Figure 4.19B panel i), and a similar but 

non-significant trend was observed using cell counts (Figure 4.19A panel i). Both 

measurement methods revealed that treatment with OSM led to a significant reduction in cell 

number of WT-OSM-cells and EP-OSM-cells. No changes in growth were observed in KD-

OSM-cells compared to KD-PBS-cells (Figure 4.19). Taken together these results indicated 

that knock down of OSMR results in the inability of cells to maintain prolonged response to 

OSM. Moreover, KD cells have reduced proliferation compared to their OSMR expressing 

counterparts and this finding is in agreement with similar experiments performed in mouse 

SCC cell lines where OSMR KD also impaired cell growth (Valtteri Tulkki, unpublished) 
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Figure 4.19: Effect of OSMR KD on cell growth 
Cell growth was measured by A) automated cell counting using a countess (n=4 for each condition) or B) MTT 

viability assay (n=3 for each condition). i) Comparison of cell growth in WT, empty plasmid and OSMR KD 

cell lines. ii) Effect of OSM treatment on growth of WT SW756 cells. iii) Effect of OSM treatment on growth of 

empty plasmid SW756 cells. iv) Effect of OSM treatment on growth of OSMR KD SW756 cells. Values were 

analysed for statistical significance using i) one way ANOVA with Tukey’s multiple comparison post-hoc tests 
or ii-iv)  unpaired T-tests with Welch’s correction * =.P≤0.05, ** = P≤0.01. 
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4.8 EV Isolation from SW756 Empty Plasmid and OSMR KD Cell Lines 

The experiments detailed in this chapter have confirmed that an OSMR KD SW756 cell line 

was successfully generated by CRISPR-Cas9. Prior to use of this cell line for investigation of 

global effects of OSM-OSMR signalling on cellular and EV miRNA and mRNA expression, it 

was first necessary to confirm that EVs could be successfully isolated from these cells. EVs 

were isolated from wild type, empty plasmid and OSMR KD SW756 cell lines by 

ultracentrifugation and characterised based on their size, morphology and expression of EV 

markers. 

 

Figure 4.20: NanoSight analysis of EVs isolated from cell lines generated by CRISPR 

NanoSight analysis showing size distribution of EVs extracted from culture medium of 

SW756 A) WT B) emty plasmid and C) OSMR KD cell lines lines treated with 10ng/ml 

OSM or PBS control.  (D) Number of EV particles released per cell for each condition. N=2 

for each condition (except OSMR KD + OSM where n=3).   
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As previously described for SW756 and ME180 cell lines, NanoSight was used to determine 

particle size (Figure 4.20). EVs isolated from all three cell lines were found to have similar 

size distributions and to be composed of heterogeneous populations of multiple sized 

particles. EVs isolated from WT-PBS-cells, EP-PBS-cells and KD-PBS-cells had similar 

average particles sizes: 125nm (Figure 4.20A), 129nm (Figure 4.20B) and 129nm, 

respectively (Figure 4.20C). For all three cell lines the average particle size was larger than 

the mode, reflecting the presence of a small population of larger particles in the 200-400nm 

size range. Treatment with OSM did not affect the size of EVs released by any of the three 

cell lines. There were also no significant differences between cell lines in the number of EVs 

released per cell or in the number of EVs released in response to OSM treatment (Figure 

4.20D). As such, OSM-OSMR signalling did not appear to alter the size or quantity of EVs 

released by SW756 cells.  

 

EV morphology from each of the three cell lines was investigated by TEM. The presence of 

spherical structures with a cup-shape morphology stereotypical of EVs was identified in 

samples from WT, EP and KD cells (Figure 4.21A). As reflected by NanoSight, EV 

populations were heterogeneous as expected and ranged in size from approximately 50-

300nm. To further confirm that the particles isolated were EVs, western blot was performed 

for the following proteins which are known to be enriched in EVs: ALIX, a protein involved in 

MVB biogenesis, CD63 and CD9, tetraspanins known to be enriched in EVs, particularly 

exosomes304,305. Samples were also probed for cytochrome C, a mitochondrial protein 

expected to be under-represented in EVs306 (Figure 4.21B).  ALIX, CD63 and CD9 were all 

found to be highly expressed by EVs isolated from all three cell lines. While enriched in EVs, 

these markers were also detected in the cellular extracts. Cytochrome C was found to be 

enriched in cell extracts compared to EVs (Figure 4.21B).  Taken together this data 

demonstrates that OSMR does not appear to have any influence on the size, number or 

structure of EVs released or on the expression of stereotypical EV markers.  
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Figure 4.21: Confirmation of EV isolation - TEM and WB for EV markers 
A-C) EV preparations isolated by ultracentrifugation were visualised using Transmission 

Electron Microscopy. Samples were fixed with 2% PFA and 1% glutaraldehyde and 

negatively contrasted with 1% uranyl acetate. Images depict EVs isolated from (A) WT (B) 

Empty Plasmid or (C) OSMR KD SW756 cells at i) low (scale bar = 500nm) or ii) high 

(scale bar = 100nm) magnification. (D) Western blot of protein extracted from SW756 WT, 

empty plasmid and OSMR KD cells and EVs. Samples were probed for markers known to be 

enriched in EVs: ALIX, CD63 and CD9. Probing for Cytochrome C was performed as a 

negative control.  
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4.9 Repeat CRISPR 

Having confirmed that OSMR was successfully knocked down in a clonal SW756 cell line by 

CRIPSR, and that EVs (characterised by their size, morphology and expression of expected 

EV markers) could be effectively isolated by ultracentrifugation, the empty plasmid and 

OSMR KD SW756 cell lines detailed in this chapter (and their respective EVs) were 

subsequently used for next generation sequencing experiments as detailed in Chapter 5. 

However, the CRISPR experiments detailed above only generated a single clonal cell line 

with verified KD of OSMR, at the DNA, mRNA and protein levels. It is possible that clonal 

cell lines may contain other non-CRISPR associated mutations that influence gene 

expression. Therefore, the CRISPR protocol was repeated in order to generate additional 

OSMR KD SW756 cell lines for validation of sequencing results. 

 

WT SW756 cells were transfected with empty plasmid or plasmid containing sgRNAs against 

OSMR as previously described. In these experiments a mock transfection control, in which 

cells were treated with lipofectamine alone, was also included. As in the previous CRISPR 

experiments, only cells transfected with empty vector or vector containing sgRNAs 

expressed EGFP (Figure S4. 7). Following single cell sorting of EGFP positive cells, six 

clonal cells derived from SW756 cells transfected with empty plasmid and 36 clonal cell lines 

derived from SW756 cells transfected with plasmid containing sgRNAs against OSMR were 

expanded for investigation of OSMR KD. PCR was performed for these clones as previously 

described using genomic DNA primers designed to amplify a small 240p fragment within the 

OSMR region targeted by sgRNAs (Figure S4. 8A). All clonal cell populations transfected 

with empty plasmid displayed a band of the expected size for WT OSMR (Figure S4. 8Ai). 

Out of the cells transfected with plasmid containing gRNAs targeting OSMR, 23 of the 36 

clones displayed bands of a different size to that of WT control (Figure S4. 8A panels i-iii).  

 

Similarly, sequencing primers designed to amplify a 1006bp fragment spanning both gRNA 

sites confirmed that all 6 clones transfected with empty plasmid produced fragments similar 

in size to the WT fragment, whereas 20 of the 36 clones treated with sgRNA against  OSMR 

had bands of perturbed size (Figure S4. 8Bi-iii). PCR products for all 6 empty plasmid cells 

lines and all 36 OSMR KD cell lines were sent for sequencing using both forward and 

reverse primers. Sequencing data was analysed with SnapGene (results not shown) and 

Synthego ICE software as previously described. Sequences from each sample (using either 

forward or reverse prime) were compared with that of WT SW756 cells. The results of the 

Synthego analysis for all clones investigated is summarised in Table 4.4. Only clones with 

altered sequences detected by both Synthego ICE and Snapgene alignment methods were 

selected for further investigation (highlighted in yellow in Table 4.4).  



 

128 
 

 

 

 

 

 

Table 4.4 Summary of CRISPR2 sequencing alignments 
Summary of Synthego ICE analysis of sequencing results, samples were aligned with sequences from Wild-
Type SW756 cells. Red = samples with mutations detected by Synthego ICE. Yellow = samples selected for 

further analysis which displayed an altered sequence when using both Synthego ICE and Snapgene analysis  

 
Forward Sequencing 

Primer 
Reverse Sequencing 

Primer 

Indel % KO Score Indel % KO Score 

Empty Plasmid Clone 1 0 0 0 0 

Empty Plasmid Clone 2 17 13 0 0 

Empty Plasmid Clone 3 0 0 0 0 

Empty Plasmid Clone 4 0 0 0 0 

Empty Plasmid Clone 5 0 0 0 0 

Empty Plasmid Clone 6 0 0 0 0 

OSMR KD Clone 1 42 35 45 34 

OSMR KD Clone 2 0 0 0 0 

OSMR KD Clone 3 63 63 56 53 

OSMR KD Clone 4 60 57 60 57 

OSMR KD Clone 5 80 55 75 52 

OSMR KD Clone 6 0 0 0 0 

OSMR KD Clone 7 42 32 52 48 

OSMR KD Clone 8 2 0 0 0 

OSMR KD Clone 9 75 41 54 39 

OSMR KD Clone 10 82 58 80 53 

OSMR KD Clone 11 0 0 0 0 

OSMR KD Clone 12 0 0 0 0 

OSMR KD Clone 13 10 10 9 7 

OSMR KD Clone 14 28 25 27 24 

OSMR KD Clone 15 6 6 28 26 

OSMR KD Clone 16 0 0 0 0 

OSMR KD Clone 17 66 61 69 65 

OSMR KD Clone 18 69 61 72 53 

OSMR KD Clone 19 0 0 0 0 

OSMR KD Clone 20 0 0 0 0 

OSMR KD Clone 21 57 49 64 55 

OSMR KD Clone 22 13 13 14 13 

OSMR KD Clone 23 45 38 58 55 

OSMR KD Clone 24 66 55 67 55 

OSMR KD Clone 25 11 0 10 0 

OSMR KD Clone 26 1 1 3 3 

OSMR KD Clone 27 0 0 0 0 

OSMR KD Clone 28 10 10 0 0 

OSMR KD Clone 29 55 55 61 60 

OSMR KD Clone 30 73 64 80 78 

OSMR KD Clone 31 65 58 67 62 

OSMR KD Clone 32 0 0 0 0 

OSMR KD Clone 33 48 28 45 23 

OSMR KD Clone 34 69 65 77 75 

OSMR KD Clone 35 52 32 55 50 

OSMR KD Clone 36 71 69 75 75 
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Knock-down of OSMR and pSTAT3 protein expression in these selected clones was 

subsequently investigated by western blot (Figure 4.22). OSMR KD clones 3, 30, 15, 23 and 

35 appeared to have reduced baseline levels of the two proteins compared to wild-type 

SW56 cells and empty plasmid clones. Response to treatment with OSM was then 

investigated for this subset of OSMR KD clones and two empty plasmid clones (clone 1 and 

4).  

Figure 4.22: OSMR and pSTAT3 protein expression in untreated CRISPR2 clones 

Western blot for OSMR, pSTAT3, Total STAT3 and β-Actin in untreated clones from 

repeated CRISPR experiment  
 

Baseline levels of OSMR mRNA were unchanged in empty plasmid clones 1 and 4 

compared to WT SW756 cells (Figure 4.23Ai). Baseline levels of OSMR mRNA expression 

were found to be significantly reduced in OSMR KD clone 3. While they appeared 

downregulated in the other 4 clones investigated, differences were not significant. OSMR KD 

had no effects on baseline levels of VEGFA (Figure 4.23Aii). As expected, treatment for 48 

hours with OSM led to significant upregulation in OSMR and VEGFA mRNA expression by 

both newly-generated empty plasmid SW756 cell lines. Treatment with OSM did not lead to 

significant upregulation of OSMR expression by any of the 5 OSMR KD clones. However, 

upregulation of OSMR in response to OSM in clones 15 and 35 appeared greater than that 

observed for the other OSMR KD clones. Accordingly, clones 15 and 35 displayed significant 

upregulation in VEGFA levels in response to treatment with OSM (Figure 4.23A panel ii); 

whereas levels in clone 3, 30 and 23 remained unchanged. VEGFA was upregulated to a 
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lesser extent in these cell lines than in empty plasmid cell lines (CRISPR 2 OSMR KD clone 

15 – 4.6 fold, clone 35 – 3.7 fold; CRISPR 2 Empty Plasmid Clone 1 = 5.7 fold, clone 4 - 9.0 

fold increase).  

 

Treatment of these cells for either 30 minutes or 48 hours with OSM led to upregulation of 

pSTAT3 in both newly-generated SW756 empty plasmid cell lines at both time points, similar 

to WT SW756 cells and empty plasmid cells generated from the first CRISPR experiment 

(Figure 4.23B).  Baseline levels of pSTAT3 were reduced in all 5 KD cells lines compared to 

WT or empty plasmid SW756 controls. However, OSMR KD clones 15, 23 and 35 still 

appeared to be responsive to OSM-OSMR signalling and following treatment with OSM 

upregulation of pSTAT3 expression was detected in these cell lines at both the 30 minute 

and, to a lesser extent, 48 hour timepoints (Figure 4.23B). Levels of pSTAT3 in response to 

OSM in OSMR KD clones 3 and 30 were closer to those observed for OSMR KD cells from 

the first CRISPR experiment. Accordingly, OSMR KD clones 3 and 30 were selected for 

validation of sequencing results. They will subsequently be referred to as OSMR KD 2 (KD2) 

and OSMR KD 3 (KD3), respectively. SW756 empty plasmid clone 1 cells were selected as 

the control cell line for validation experiments as they displayed OSM-OSMR activation at 

similar levels to WT SW756 cells and SW756 empty plasmid cells generated from the first 

set of CRISPR experiments; they will subsequently be referred to as SW756 empty plasmid 

2 (EP2).  
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Figure 4.23: Response of CRISPR2 OSMR KD clones to OSM Treatment   

A) Response of newly generated CRISPR cell lines to 48 hours treatment with OSM. qPCR for i) 

OSMR and ii) VEGFA mRNA expression is shown. N = 6 for each condition. Fold change in gene 

expression compared to WT PBS treated SW756 cells is shown.  Values were analysed for statistical 

significance using a one way ANOVA with Tukey’s multiple comparison post-hoc tests. * =.P≤0.05, 

** = P≤0.01, ** = P≤0.001 and **** = P≤0.0001. B) Western blot for protein expression of OSMR, 

pSTAT3, total STAT3 and beta actin following i) 30 minutes or ii) 48   hours treatment with OSM.  
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4.10 Chapter Discussion 

4.10.1 EV Isolation and characterisation 

Two representative cervical SCC cell lines with differing levels of baseline OSMR expression 

were used to elucidate whether OSM-OSMR signalling altered miRNA expression in cervical 

SCC cells and their extracellular vesicles. EVs were successfully isolated from conditioned 

media of both SW756 and ME180 cells and were found to be morphologically similar. TEM 

revealed heterogeneous populations of cup-shaped spherical structures stereotypical of 

EVs. This cup-shaped morphology is most likely caused by EV collapse following 

dehydration during the TEM sample preparation process161,307. Moreover, EVs isolated from 

both SW756 and ME180 cells were found to have similar size distributions and to be 

composed of heterogeneous populations of multiple sized particles. Treatment with OSM did 

not affect size or number of EVs released per cell for either cell line. A heterogeneous 

population was expected as a density gradient step was not included in the isolation 

protocol. Thus, the population of EVs isolated most likely represents exosomes and small 

microvesicles. The density gradient step was excluded as recent research has highlighted 

that, while it aids in the removal of contaminating proteins, it is not necessarily possible to 

separate exosomes and microvesicles based on their size alone308. Moreover, typical 

markers historically thought to be exosome specific, such as CD9, CD63 and CD81, have 

been shown to be expressed by both MVs and apoptotic bodies164,165. Isolation of distinct EV 

populations based on characteristic marker expression has been further complicated by 

recent identification of different subpopulations of exosomes with differential marker 

expression to other exosome populations167,309. Therefore, the experiments detailed in this 

thesis focused on the effects of OSM-OSMR signalling on a mixed EV population rather than 

trying to determine effects on exosomes or microvesicles alone.  

 

4.10.2 SW756 and ME180 cell line validation 

Having shown that EVs could be successfully isolated from both SW756 and ME180 cells, 

the effects of OSM-OSMR signalling on cellular and EV miRNA expression were 

subsequently investigated. In order to validate the system, it was first investigated whether 

treatment of these cells with OSM produced changes in expression of the pro-tumorigenic 

markers VEGFA, SNAI1 and TGM2, which have previously been shown to be downstream 

of OSM-OSMR signalling70,122. Findings were in agreement with previously published 

data121,122. As expected, SW756 cells were found to have significantly higher basal 

expression of OSMR, VEGFA, TGM2 and SNAI1 than ME180 cells. Treatment of these cells 

with OSM for 12, 24, 48 or 72 hours led to upregulation of OSMR at all timepoints in both cell 

lines. Levels of OSMR upregulation were greater in ME180 cells compared to SW756 cells; 
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this is consistent with previous experiments by Winder et al (2011) using the same two cell 

lines121. However, it is important to note that even following treatment with OSM, OSMR 

levels in OSM-treated ME180 cells remained less than that of untreated SW756 cells.   

 

Treatment with OSM led to induction of VEGFA in SW756 cells at all timepoints. Similarly, 

TGM2 and SNAI1 appeared upregulated in these cells at the 12, 24 and 48 hour timepoints 

in response to OSM. In ME180 cells VEGFA expression was also upregulated, to a lesser 

extent, in response to OSM, whereas levels of TGM2 and SNAI1 remained unchanged. The 

differences in response to OSM between these two cell lines are similar to previous 

observations92 and confirm that, as expected, OSMR-overexpressing SW756 cells were 

more responsive to OSM treatment than non-OSMR overexpressing ME180 cells.  

 

4.10.3 Analysis of cellular and EV miRNA levels in response to OSM   

The effect of OSM-OSMR signalling on cellular and EV miRNA expression was 

subsequently investigated in these two cell lines; 9 miRNAs were selected from the literature 

for investigation. MiR-31, which is believed to act as a tumour promoter in cervical SCC, was 

the most abundantly expressed miRNA in cells and EVs from both cell lines. This is in 

accordance with previous reports that miR-31 is expressed at high levels in cervical SCC cell 

lines278,279,280. Moreover, miR-31 was found to be expressed at significantly higher levels in 

ME180 cells and EVs than SW756 cells and EVs, respectively. Previous work by our 

research group has shown that DROSHA copy number gain and overexpression in cervical 

SCC drives miR-31 overexpression. Both SW756 and ME180 cell lines were found to 

overexpress DROSHA compared to normal cervix. Moreover, ME180 cells were shown to 

have greater levels of miR-31 expression than SW756 cells, consistent with the results of the 

current study255.  

 

Treatment with OSM had the greatest effects on cellular and EV miRNA expression at the 48 

and 72 hour timepoints. Multiple miRNAs were upregulated in both SW756-OSM-cells and 

ME180-OSM cells at the 48 hour time point. At the 72 hour timepoint miRNA expression was 

more varied. In SW756-OSM-cells; miR-9 and miR-31, which have been implicated in 

cervical SCC tumour progression
256,276,278–280

, were significantly elevated, as was miR-126. 

In contrast, miR-23b, miR-34c and miR-194 were found to be significantly downregulated. A 

similar pattern of expression was seen in ME180-OSM-cells at this timepoint: miR-9, miR-

29b and miR-126 remained significantly upregulated, whereas expression of miR-23b, miR-

34c and miR-101 were significantly downregulated. OSM-OSMR signalling is known to 

activate STAT3 and MAP-kinase pathways and induce a pro-malignant phenotype including 

increased cell migration, invasion and angiogenesis92,73. It was therefore hypothesised that 
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OSM treatment would lead to upregulation of suspected tumour promoting miRNAs and 

downregulation of suspected tumour suppressing miRNAs in SW756 cells, but would have 

little effect on miRNA expression in ME180 cells. However, this was not the case as miRNAs 

were upregulated in both cell lines irrespective of their suspected role in tumour progression. 

Interestingly, miR-29b and miR-126 were upregulated in response to OSM in both cell lines 

at the 48 hour timepoint. Both of these miRNAs have been shown to be significantly 

downregulated in cervical cancer and are believed to inhibit tumour growth by suppressing 

STAT3 signalling285,293. Therefore, their upregulation in response to treatment with OSM 

could, potentially, be part of a negative feedback loop explaining changes in miRNA 

expression between the 48 and 72 hour timepoints. 

 

Similar to cells, the effect of OSM treatment on SW756 and ME180 EV miRNA expression 

was most pronounced at 48 and 72 hours. All miRNAs under investigation, except for miR-

194, appeared upregulated in SW756-OSM-EVs at the 48 hour timepoint; this mirrors the 

expression pattern observed for cells. MicroRNA levels remained elevated in SW756-OSM-

EVs at the 72 hour timepoint; upregulation was greater than that observed in cells. The rise 

in cellular miRNA at 48 hours, followed by a decline at 72 hours could, therefore, potentially 

be due to packaging of miRNAs into EVs. OSM appeared to indiscriminately upregulate all 9 

miRNAs in SW756 EVs at the 48 hour and 72 hour timepoints, regardless of whether they 

had suspected roles as tumour promoters or suppressors. OSM had a less substantial 

impact on ME180 EV miRNA expression; expression remained predominantly unchanged in 

response to OSM at all timepoints. Thus, OSM appeared to have a greater impact on 

altering EV miRNA expression in the SW756 OSMR-overexpressing cell line compared to 

ME180 EVs, a non-OSMR overexpressing cell line. Moreover, duration of treatment with 

OSM appeared to be important for both cellular and EV miRNA expression, with greatest 

changes observed following 48 and 72 hours of treatment with OSM.  

 

4.10.4 EV Functional Assays  

As OSM-OSMR signalling was found to alter EV miRNA cargo, subsequent experiments 

were performed in an attempt to elucidate the functional effects of these changes. Various 

studies have demonstrated that EVs isolated from adenocarcinoma310, gastric cancer311 and 

hepatoma312 cell lines stimulate proliferation of corresponding recipient cancer cells. This is 

likely to be due to horizontal transfer of factors promoting cell growth in a positive feedback 

loop311.  Seven of the nine miRNA investigated in this chapter have previously been shown 

to either promote (miR-9, miR-31) or inhibit (miR-10b, miR-29b, miR-101, miR-126 and miR-

34c) cervical SCC proliferation (Table 4.1). As these miRNAs were found to be altered in 

SW756-OSM-EVs, it was investigated whether SW756-PBS-EVs and SW756-OSM-EVs had 
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differing functional effects on cervical SCC growth. Experiments detailed in this chapter 

showed that treatment of SW756 cells with OSM led to reduction in cell growth in vitro. 

However, SW756-OSM-EVs did not confer this reduction in cell growth to recipient SW756 

cells. SW756-PBS-EVs also had no impact on cell growth. Previous studies that have shown 

positive effects of cancer derived EVs on proliferation of recipient cancer cells used much 

higher concentrations of EVs than the current experiment. Concentrations ranged from 

10µg/ml to  400µg/ml310–312, compared to 0.67µg/ml (1µg in a total volume of 1.5ml media) 

used in the current study. Therefore, if the experiment was repeated with higher doses of 

EVs functional effects on SW756 cell proliferation may be observed. However, it is debatable 

whether treatment with such high concentrations of EVs would accurately reflect 

physiological conditions.   

 

Similarly, whether EVs derived from OSM treated cervical SCC cells affected migration of 

recipient cervical SCC cells was investigated. Six of the nine miRNAs investigated in this 

chapter have previously been shown to either promote (miR-9 and miR-31) or inhibit (miR-

10b, miR-23b, miR-126 and miR-34c) migration of cervical SCC cells. It has previously been 

shown in our laboratory that treatment of SW756 cells with OSM leads to increased cell 

migration121. It was therefore investigated whether SW756-OSM-cells could confer their 

migratory advantage to naïve SW756 cells via their EVs. Cell lines with varying levels of 

OSMR expression were found to differ in their migratory capacity; untreated SW756 cells 

were found to migrate significantly faster than ME180 cells. However, differences in 

migration between these cell lines may not necessarily be a result of varying levels of OSMR 

expression; migration may be driven by different mechanisms in each cell line. For example, 

ME180 cells were demonstrated to express much higher levels of miR-205 than SW756 

cells. Overexpression of this miRNA has been shown to promote growth and migration of 

multiple cervical SCC cell lines (including SW 756 cells)313. Similarly, ME180 cells have been 

shown to express higher levels of EGFR than SW756 cells314.  EGF signalling through 

EGFR has been shown to induce EMT and promote cell migration in ME180 cells314.  

 

Interestingly, treatment of SW756 recipient cells with both EV-depleted SW756 conditioned 

media and SW756 EVs resulted in reduced cell migration. The opposite effect was observed 

in ME180 cells. Treatment of ME180 cells with ME180 conditioned media or ME180 EVs 

appeared to increase cell migration. For both cell lines, no significant differences were 

observed between recipient cells treated with OSM-CM and OSM-EVs compared to PBS-

DM and PBS-EVs, respectively. This data indicates that SW756 and ME180 cells release 

differing factors, either directly into the conditioned media or packaged into their EVs, which 

have opposing effects on migration of other cancer cells. This effect appeared to be 
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independent of OSM. Suppression of SW756 migration following treatment with SW756-EVs 

or SW756-DM was an unexpected finding, as previous studies in multiple cancer cell types 

have found that cancer derived EVs transfer migratory properties to other cancer cells315. It 

is possible that as they display high baseline migratory behaviour, SW756 cells may release 

factors that inhibit cell migration, via a negative feedback mechanism to regulate migration of 

cells away from the primary tumour site. Conversely, as ME180 cells had reduced baseline 

migratory capacity, negative feedback may not be required, and factors released from these 

cells may instead promote migration of other cancer cells. It would be interesting to repeat 

these experiments to determine whether conditioned media and EVs from SW756 and 

ME180 cells have the same effect on recipient cells of the opposite cell type.  

 

Similar experiments were also performed using SW756 donor cells and VF-2 recipient cells, 

normal diploid human fibroblasts. Fibroblasts are one of the many cell types found in the 

tumour microenvironment and play a key role in ECM remodelling316. Treatment with OSM 

promoted migration of VF2 cells. Response of these cells to OSM is unsurprising as stromal 

cells have been shown to ubiquitously express OSMR and demonstrate OSM-induced signal 

transduction100,83. Moreover, the role of OSM-OSMR signalling in fibroblasts has been 

investigated in multiple disease contexts317,318. Treatment of VF2 cells with SW756-EVs had 

little effect on VF2 migration, independent on whether EVs were isolated from PBS or OSM 

treated cells.  

 

One of the main limitations of the migration experiments used in this chapter was the 

variability of scratch diameters; scratches were manually inflicted on monolayer cells using a 

1ml pipette tip. The variability of initial scratch widths contributed to the high level of 

variability between replicates, thus making statistical analysis challenging. To address this, I 

attempted to repeat these experiments using IBIDI 2 well wound healing assay culture 

inserts (IBIDI GmbH, Gräfelfing, Germany). This system is comprised of a two chamber 

insert which is stuck to the bottom of a tissue culture plate. Cells are plated within the two 

chambers and, once confluent, the insert is removed leaving an even 500µm cell-free gap 

between the cells from each chamber. This gap is more consistent than the manual scratch 

used for the migration assays described above. Unfortunately, SW756, ME180 and VF2 

cells would not grow in these chambers; this is most likely due to the glue used to bind the 

chambers to bottom of the well.  

 

Previous experiments performed in our laboratory demonstrated that treatment of HUVEC-

primary fibroblast co-cultures with SW756-OSM-CM leads to increased angiogenesis 

compared to co-cultures treated SW756-PBS-CM. This pro-angiogenic effect was abrogated 
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when co-cultures were treated with SW756-OSM-CM that had been pre-treated with an anti-

OSM antibody92. For these experiments SW756 cells were treated with a 2 hour pulse of 

OSM or PBS control. Media was then replaced and conditioned media collected 48 hours 

later. As the conditioned media used for these experiments was not EV depleted, we 

subsequently investigated whether transfer of angiogenic factors was mediated by the EVs.  

 

In the current experiment, EVs were collected from SW756 cells treated with a 2 hour pulse 

of PBS or OSM, similar to the previous experiment. EV isolation by ultracentrifugation has 

been shown to result in co-isolation of non EV proteins, predominantly those of high 

molecular weight and protein aggregates319. While the final PBS wash step aims to limit such 

contamination, non EV proteins may still be co-isolated during the ultracentrifugation 

protocol. Therefore, we hypothesised that treatment with a 2 hour pulse of OSM followed by 

media replacement may be optimal for use in EV experiments. This is due to the fact that it 

is likely to reduce confounding effects of transfer of OSM that was not taken up by treated 

cells to recipient cells when co-isolated with EVs.  

 

Treatment of co-cultures with both SW756-PBS-CM and SW756-OSM-CM (48 hour 

continuous treatment) led to significantly increased angiogenesis in a similar manner to co-

cultures treated with VEGFA. Moreover, while not statistically significant, SW756-OSM-CM 

appeared to induce angiogenesis at higher levels than SW756-PBS-CM. This was consistent 

with previous findings and is unsurprising as SW756 cells have been shown to secrete 

VEGFA both in the absence of OSM and at increased levels following OSM treatment. Co-

cultures treated with SW756-PBS-EVs or SW756-OSM-EVs (2 hour pulse) displayed subtle 

increases in angiogenesis compared to control media. However, differences were not found 

to be statistically significant. No differences were evident between co-cultures treated with 

SW756-PBS-EVs or SW756-OSM-EVs. This finding indicates that soluble, EV-independent 

factors were responsible for the majority of the angiogenic effects observed. While VEGFA 

and other pro-angiogenic factors may be packaged into the EVs, they may not be present at 

levels high enough to have a substantial impact on angiogenesis.  

 

Subsequent experiments demonstrated that a 2 hour pulse of OSM was not sufficient to 

generate upregulation of pSTAT3 targets that could be detectable 48 hours after treatment. 

Further issues with induction of STAT3 targets led us to test different batches of OSM 

ordered from R&D systems and to discover that batches varied in their potency, as 

determined by their ability to activate the STAT3 targets OSMR, VEGFA, TGM2 and SNAIL 

in SW756 cells (results not shown). For subsequent experiments each new batch of OSM 

was tested following purchase prior to its experimental use (results not shown). Differences 
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between batches of OSM may explain why the 2 hour pulse of treatment used in Kucia-Tran 

et al (2018)92 was still sufficient to activate downstream signalling and promote 

angiogenesis. Thus, it is not clear whether the lack of difference between effects of EVs 

isolated from PBS or OSM treated SW756 cells on angiogenesis is due to the fact that OSM 

treatment was insufficient to activate downstream signalling in these cells or whether effects 

were simply not propagated in the EVs. These experiments will, therefore, be repeated in the 

future using EVs collected from SW756 cells treated for a continuous 48 hour period with 

OSM or PBS control.  

 

While the miRNA cargo of EVs isolated from cervical SCC cells was found to be altered in 

response to OSM treatment, we were unable to identify the functional significance of these 

changes using the assays described above. This does not necessarily mean that EVs 

isolated from cervical SCC cells treated with OSM or PBS control do not have differential 

functional affects when put back on to cancer cells themselves or cells of the TME. The 

wrong assays may simply have been selected for investigation or suboptimal concentrations 

of EVs may have been used. One of the main limitations of interpretation of the functional 

assays discussed above was that experiments were not performed to demonstrate 

successful uptake of EVs by recipient cells. Therefore, it is difficult to conclude whether lack 

of functional effects is due to the lack of EV uptake or whether EVs simply do not transfer 

signals which mediate cancer cell growth, migration or angiogenesis. This could be achieved 

by visualisation of EV uptake using a fluorescent lipophilic dye such as PKH67 to stain 

vesicles or by creation of bioluminescent donor cell lines320.  

 

4.10.5 Generation of an OSMR KD SW756 cell line  

The experiments described indicated that OSM-OSMR signalling was capable of influencing 

cervical SCC EV cargo. Moreover, EVs derived from cervical SCC cell lines appeared to 

have modest effects on cancer cell migration and angiogenesis. We subsequently aimed to 

adopt a global approach in order to investigate the overall effects of OSM-OSMR signalling 

on mRNA and miRNA expression by cervical SCC cells and their EVs. In order to achieve 

this, OSMR KD SW756 cell lines were successfully generated by CRISPR-Cas9. These cell 

lines were confirmed to have reduced levels of OSMR mRNA and protein expression 

compared to WT and EP SW756. OSMR KD cells were not responsive to OSM treatment; 

no upregulation of pSTAT3, OSMR, VEGFA, TGM2 or SNAIL was detected following 48 

hours treatment with OSM. However, slight upregulation in pSTAT3 protein expression was 

detected in OSMR KD cells at 30 minute or 1 hour timepoints following treatment with OSM. 

This upregulation was substantially lower than that observed for WT and EP cells. Therefore, 

these cells are likely to have partial knock-down of OSMR expression rather than being 
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complete knock-outs. This is not surprising as SW756 cells possess multiple copies of the 

OSMR gene, therefore gRNAs may not have targeted all copies present. As levels of  OSMR 

in these cells and activation of downstream targets of OSM-OSMR signalling were 

substantially reduced; they were deemed to have a sufficient degree of OSMR KD for use as 

an OSMR non-responsive cell line in subsequent sequencing and in vivo experiments 

 

Diminished response of OSMR KD cells to OSM was further characterised by the finding that 

treatment with OSM result in reduced growth of WT and EP SW756 cells, but had no effect 

on growth on OSMR KD cells. This is not surprising as OSM is a well-known cytostatic 

cytokine in multiple cell types87. Reduced cell growth in response to OSM treatment was 

used as read out that OSM was functioning as expected in subsequent sequencing 

experiments.  

 

EVs were successfully isolated from WT, EP and OSMR KD SW756 cell lines; all were found 

to be of similar size and morphology. Treatment with OSM did not affect size or quantity of 

EVs released by any of the three cell lines. Proteins which are known to be enriched in EVs - 

Alix, CD63 and CD9304,305 - were all found to be highly expressed by WT, EP and KD EVs. 

While enriched in EVs, these markers were also detected in the cellular extracts. This is as 

expected because, in addition to being EV markers, tetraspanins are also localised to cell 

membranes and endosomes while ALIX is known to be present in the cytosol321. 

 

4.10.6 Summary  

The experiments detailed in this chapter constitute a promising pilot study to demonstrate 

that OSM-OSMR signalling is capable of differentially modulating cellular and EV miRNA 

expression in cervical SCC cell lines with different levels of OSMR expression. However, the 

functional impact of these changes remains to be elucidated.  In order to investigate global 

changes in miRNA and mRNA expression in response to OSM treatment, an OSMR KD 

SW756 cell line was successfully generated by CRISPR-Cas9. It was shown that EVs of 

expected size, morphology and marker expression could be successfully isolated from 

SW756 empty plasmid and OSMR KD cell lines. Consequently, SW756 empty plasmid and 

OSMR KD cells and their respective EVs were used for next generation sequencing 

experiments detailed in Chapter 5. 

 

 

 



 

140 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

141 
 

5. RESULTS: NGS of cells and EVs following OSM Treatment 

5.1 Introduction 
 

5.1.1 RNA cargo of extracellular vesicles 

To date, multiple studies have demonstrated the presence of lipids, proteins and nucleic 

acids within EVs isolated from both biological fluids and cell conditioned media. The use of 

high throughput sequencing methods has revealed the presence of many different RNA 

species within EVs including: miRNA, mRNA, lncRNA, tRNA, small nuclear RNA (snRNA), 

piwi-interacting RNA (piRNA), small nucleolar RNA (snoRNA), small conditional RNA 

(scRNA), ribosomal RNA (rRNA), circular RNA (circRNA), vault RNA (vRNA), signal 

recognition particle RNA (SRP-RNA), long Ro-associated Y RNAs (Y RNA), long 

interspersed elements (LINEs) and long terminal repeats (LTRs)170–172.  

 

The majority of studies performed to date have focused on the small RNA fraction of EV 

cargo, with miRNAs being the principal RNA species selected for investigation. However, 

recent studies have also demonstrated the importance of mRNA cargo, and have shown that 

functional mRNAs can be transferred via EVs to recipient cells where they are capable of 

altering cell phenotype following translation by the recipient cells169,209,322–324.  

 

Studies that have used NGS to investigate EV cargo tend to focus on either long or small 

RNAs, due to the inclusion of size selection steps during library preparation325. This chapter 

aimed to investigate the effect of OSM-OSMR signalling on both miRNA and mRNA 

expression by cervical SCC cells and their extracellular vesicles. This was achieved by a 

dual sequencing approach whereby, following RNA extraction, samples were split for both 

mRNA and small RNA library preparation and sequencing. 

 

5.1.2 Library preparation – mRNA sequencing 

In general, the key steps required for NGS library preparation involve: fragmentation of 

target sequences to desired length, reverse transcription of RNA to produce double stranded 

DNA and attachment of oligonucleotide adaptors to fragment ends326. One of the major 

limitations of cDNA library preparation is that the majority of cDNA clones are not full length, 

either as a result of premature termination of reverse transcription or 5’-terminal sequence 

loss. This results in underrepresentation of cDNA 5’ ends in cDNA libraries327. While several 

methods exist for constructing full-length cDNAs from large amounts of RNA, it is still 

challenging to build cDNA libraries with low input amounts of RNA328. To address this, 

mRNA libraries were prepared using a SMART-Seq® v4 Ultra® Low Input RNA kit. This kit 
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uses switching mechanism at 5’ end of RNA template (SMART) technology. This 

technique exploits the unique template switching activity of the moloney murine leukaemia 

virus (MMLV) reverse transcriptase, allowing enrichment of full-length cDNAs and 

incorporation of defined PCR adaptors to both ends of cDNA during first-strand synthesis 

without the need of an adapter ligation step327–329. This ensures that the final cDNA libraries 

contain the 5’ end of the mRNA, thereby maintaining a true representation of the original 

mRNA transcripts. It has been shown to produce higher quality libraries than other low RNA 

input library preparation kits330. These libraries were then pre-amplified and subsequently 

fragmented and tagged using the Nextera XT DNA Kit. This uses a Tn5 transposase enzyme 

to simultaneously fragment the DNA and add specific adaptors to both ends of the 

fragments; these adaptors are subsequently used to amplify the insert DNA by PCR326.  

 

5.1.3 Library preparation – small RNA sequencing  

Prior to small RNA sequencing of OSM treated cervical SCC cells and their EVs, preliminary 

experiments were performed to determine the optimum small RNA library preparation kit for 

use. Small RNA library preparation typically involves a two-adaptor protocol, in which 

adaptors are ligated to both the 5’ and 3’ ends of the miRNA (Figure 5.1A) using RNA ligase. 

miRNAs are then reverse transcribed and amplified by PCR, at which point barcodes and 

sequencing index primers are added. Libraries are then size selected using either gel or 

bead based purification methods325,326. However, small RNA library preparation is prone to 

the introduction of bias.  Certain adaptor-miRNA pairs are favoured during adaptor ligation 

and PCR amplification resulting in under or over representation of miRNA subsets in the final 

library; this means that sequencing results may not reflect original miRNA abundance. 

Moreover, adaptor dimerisation and inefficient size-selection from gels may impede miRNA 

enrichment325,326,331.  

 

In the current study two different small RNA library preparation kits were tested: 

NEXTFLEX® Small RNA-Seq Kit v3 and Somagenics Real-Seq®-AC miRNA Library Kit for 

Illumina sequencing. The Nextflex kit employs a standard two-adaptor protocol (Figure 5.1A) 

in which the last four nucleotides at the ligation-junction are randomised to minimise 

sequence-dependent ligation bias and to reduce the formation of adapter-dimer 

products332,333. To reduce adapter-dimer formation, adapters are added sequentially, with 

inclusion of intermediate steps to remove excess unligated 3’ adapter using a magnetic-

bead based method and enzymatic digestion prior to addition of the 5’ adaptor. Size 

selection can be performed with either a gel-free protocol using Nextflex cleanup beads 

(recommended for RNA inputs >200ng) or a PAGE based size selection method 

(recommended for RNA inputs < 200ng).  
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In comparison, the somagenics kit utilises a single adapter protocol in which an adaptor is 

ligated to the 3’ end of the miRNA and ligation products are circularised prior to sequencing 

(Figure 5.1B). A blocking oligonucleotide is added prior to circularisation that binds to the 5’- 

end of unligated adaptors, thereby preventing adapter dimerisation. Size selection is 

conducted using a bead based method. This method has been shown to reduce sequencing 

bias, allowing for identification of wider variety of miRNAs than other library preparation 

kits331.  

 

 

 

5.1.4 Bioinformatic Analysis – Comparison of different statistical packages 

Three different statistical analysis packages were used to investigate differential gene 

expression for the mRNA sequencings experiments described in this chapter: DESeq2, 

EdgeR and EdgeR voom. DESeq2 and EdgeR are similar analysis packages that differ in 

the way that data is normalised and differential gene expression is calculated. Both 

packages assume a null hypothesis that most genes are not differentially expressed. 

Normalisation of samples improves the count data and enables better comparison between 

samples. DESeq2 uses relative log expression to normalise samples. The ratio of read 

counts in each sample for each individual gene is calculated and compared to the geometric 

mean of the gene across all samples. The assumption is that non-differentially expressed 

genes should have similar read counts across samples leading to a ratio of 1. The median of 

ratios for all genes within a sample is then used as a correction factor which is applied to all 

read counts334. In comparison, EdgeR uses a trimmed means of M values (TMM) method to 

normalise counts. One lane is considered the reference sample, while all others are 

 Figure 5.1: Adapter ligation for library preparation 
A) Standard two adaptor ligation protocol 
B) Somagenics single-adaptor ligation plus circularisation protocol 
Image from Barberán-Soler et al (2018)331 
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considered as test samples.  Highly expressed genes and genes with a high degree of 

variation are excluded. For each test sample, a weighted average of log ratios of the 

remaining genes compared to the reference sample is calculated. According to the null 

hypothesis of no differentially expressed genes, the TMM ratio should be close to 1. 

Therefore, the TMM value is used to estimate a normalisation factor which is applied to the 

library size. To obtain normalised read counts these normalisation factors are scaled by the 

mean of the normalised library sizes; raw read counts are subsequently divided by these re-

scaled normalisation factors to produce normalised read counts334 

 

Moreover, these programmes employ different statistical algorithms in order to calculate 

differential gene expression between pairs of samples using their respective normalisation 

strategies. Both DEseq2 and EdgeR use an exact test, related to a Fishers exact test, under 

negative binomial distribution strategy and Bayes theorem. In addition, DESeq2 models the 

observed relationship between mean and variance when estimating dispersion. EdgeR 

voom uses the EdgeR normalisation strategy and subsequently transforms normalised 

counts to logarithmic (base 2) scale. Mean-variance relationships are then estimated to 

determine the weight of each observation prior to linear modelling.  All three strategies use 

the Benjamin–Hochberg approach to adjust for multiple testing, producing FDR values as 

opposed to p-values for each gene under investigation335,336.  

 

5.1.5 Chapter Aims  

In this chapter, I first aimed to determine the optimum kit for use for small RNA sequencing 

experiments. This was achieved by comparing sequencing results for a single sample 

sequenced using both Nextflex and somagenics small RNA library preparation kits. 

Following selection of the Nextflex small RNA library preparation kit, the main aim of this 

chapter was to determine whether OSM-OSMR signalling affected mRNA and miRNA 

expression by cervical SCC cells and their EVs. To achieve this, SW756 empty plasmid cells 

and OSMR KD cells were treated with either PBS or OSM and RNA was subsequently 

collected from both cells and EVs. NGS was performed to investigate the effects of both 

OSM treatment and OSMR KD on mRNA and miRNA expression. Differential mRNA and 

miRNA expression between cell-cell and EV-EV comparisons was investigated. Changes 

were verified by qPCR and functional significance elucidated by pathway analysis.  
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5.2 Selection of RNA carrier for NGS  

The miRNeasy Serum/Plasma Kit (used to extract total RNA from EV samples) recommends 

the use of RNA from the bacteriophage MS2 as a RNA carrier in order to improve RNA yield 

during RNA extraction. Biological RNA carriers should not be used for NGS as they may 

result in non-specific hybridisation or amplification. Nuclease-free glycogen is an alternative 

RNA carrier that does not interfere with NGS analysis337. As previous RNA extraction 

experiments were performed with MS2, experiments were performed to determine whether 

extraction using glycogen would produce similar yields of RNA.  

 

Tapestation analysis revealed that the average RNA concentration of individual EV 

preparations isolated from one 175cm2 flask of EP cells was ~19ng (Table 3.30). Six 

independent EV preparations were pooled, and then split again into six equal aliquots. RNA 

was then extracted using a miRNeasy Serum/Plasma Kit with the addition of MS2, glycogen 

or no carrier, using two EV aliquots per protocol. Following RNA extraction, RNA 

concentration was measured by nanodrop (Figure S5. 1A). Samples extracted with MS2 

carrier had the highest RNA concentration reflecting the presence of the MS2 RNA in these 

samples. 

 

Levels of two endogenous housekeeping miRNAs (RNU24 and miR-30b) were investigated 

in RNA samples extracted using the three different carrier methods. No significant 

differences were observed in Ct values for either of these housekeeping miRNA when 

comparing samples from the three extraction methods (Figure S5. 1B). Levels of miR-31 and 

miR-126, which were previously shown to be expressed at high and low levels in SW756 

cells, respectively, were subsequently investigated. Levels of these miRNA were normalised 

to RNU24 (Figure S5. 1Ci) or miR-30b (Figure S5. 1Cii). While there were no significant 

changes in miR-31 or miR-126 expression, inclusion of MS2 or glycogen as an RNA carrier 

appeared to result in higher levels of both these miRNAs being detected. Therefore, 

glycogen was used during RNA extraction of EV sequencing samples.  
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5.3 Selection of small RNA library preparation kit  

Initial experiments were performed in order to confirm the optimum method for small RNA 

library preparation. The aim was to determine which kit performed most consistently when 

using low input quantities of RNA. The following library preparation kits and methods were 

compared: 

 

1) Somagenics Real-Seq®-AC miRNA Library Kit for Illumina sequencing (Somagenics) 

 

2) Nextflex® Small RNA-Seq Kit v3; using PAGE gel size selection and clean up 

protocol (Nextflex-gel) 

 

3) Nextflex® Small RNA-Seq Kit v3; using gel free size selection and bead clean up 

protocol (Nextflex-bead) 

 

Collection of EVs by ultracentrifugation is a labour-intensive process. Therefore, cellular 

RNA from EP cells was used, diluted to a similar concentration as that which would be 

obtained from EV preparations. Quantities of RNA used for each library preparation kit are 

shown in Table 5.1. Samples for each condition were run in triplicate. Following library 

preparation, samples were run on a NextSeq500, with a 75 cycles High Output kit, at a final 

concentration of 1.8pM with 20% PhiX spike-in control.  

Table 5.1: RNA quantities used for comparison of sequencing kits 

 
Quantity of 
RNA used 

Equivalent number 
of pooled EV preps 

Condition using this quantity 
of RNA 

Low input 30 ng ~2 
Somagenics, Nextflex-gel and 

Nextflex-bead 

Medium input 100 ng ~5 Somagenics only 

High input 250 ng >13 
Somagenics, Nextflex-gel and 

Nextflex-bead 
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5.3.1 Bioinformatic Analysis  

The bioinformatics analysis detailed in this section was performed by Dr Anton Enright and 

Stephanie Wenlock using the pipeline shown in Table 5.2. 

Table 5.2: Bioinformatics pipeline used for analysis of small RNA sequencing data 

Step 
Programme 

Used 
Details 

1. 
Quality 
Control 

custom perl 
script and 

Reaper tool225 

1. Adapter stripping 
2. Filtering of low quality basecalls 
3. Removal of the Nextflex 4 nucleotide add-ons 
4. Generation of Reaper plots to assess sample 
quality 

2. 
Map Reads to 

Genome 
Chimira226 

Cleaned and filtered reads were mapped against all 
known mature miRNA sequences in miRBase 

3. 
Plot Pre-

normalised 
Counts 

R 
These display raw counts generated by Chimira. 
For each sample the total number of reads mapped 
to known miRNAs are shown   

4. 
Count 

Normalisation 
DESeq2223 

Normalisation of samples improves the count data 
and enables better comparison between samples. 
See section 5.1.4 for details of DESeq2 
normalisation method 

5. 

Sample 
Clustering: 

Generation of 
Heatmaps 

R 

A variance stabilising transformation (VST) was 
applied to the data, which takes into account 
variance of low count data. Sample-to-sample 
Pearson correlations using VST transformed data 
were plotted by heatmap 

6. 

Sample 
Clustering: 

Generation of 
 t-SNE plots 

R 
Sample clustering was visualised by generation 
of t-Stochastic Neighbour Embedding (t-SNE) 
plots338 

7. 

Analysis of 
differential 

miRNA 
expression 

DESeq2223 
 

Statistical analysis to compare differential 
expression of individual miRNAs between samples. 
The negative binomial Wald’s test was used to 
determine significant differences between groups. 
An LFC threshold of +/-0.5 and an FDR 
significance threshold of 0.05 were applied. 

8. 

Visualisation 
of Differential 

miRNA 
Expression 

R 

The following plots were generated for each 
comparison: 
1. Scatterplots (produced using median miRNA 
counts) 
2. Volcano plots 

 

All samples passed quality control (results not shown). Percentage of reads for each sample 

mapping to miRNA, rRNA, snoRNA and tRNA are shown in Figure S5. 2A. Samples 

prepared with the Somagenics library prep kit had substantially greater rRNA contamination 

than samples prepared via either of the two Nextflex protocols. Pre-normalised counts are 

shown in Figure S5. 2B. Somagenics samples displayed substantially lower raw counts 

compared to Nextflex samples, therefore raw counts for these two types of analysis were 

separately normalised so that the higher Nextflex counts did not result in overcorrection and 
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skewing of the Somagenics counts. Separately normalised and subsequently recombined 

counts are shown in Figure S5. 2C. 

 

Sample clustering was visualised by heatmap (Figure S5. 3A) and t-SNE plots (Figure S5. 

3B). Both these techniques demonstrated differences between samples prepared using 

somagenics or nextflex kits. Somagenics samples for all three RNA inputs investigated 

(30ng, 100ng and 250ng) were tightly clustered indicating a high degree of similarity been 

samples. For Nextflex, clustering appeared to be based on RNA input quantity rather than 

gel or gel-free bead selection protocols. All Nextflex samples (independent of protocol or 

input RNA quantity) were more similar to one another than to samples prepared using the 

Somagenics kit.  

 

Statistical analysis was then performed in order to compare levels of individual miRNAs 

detected by each kit. Scatterplots (not shown) were produced using median miRNA counts 

to compare both input RNA quantities and different library prep kits. Correlation coefficients 

for each comparison are summarised in Table 5.3.  

 

Table 5.3: Summary of correlation coefficient for each comparison 

Comparison Type Group A Group B 
Correlation 
Coefficient 

Within Kit  
(comparison of input RNA 

quantities) 

Somagenics 30ng Somagenics 100ng 0.998 

Somagenics 30 ng Somagenics 250ng 0.996 

Nextflex-gel 30 ng Nextflex-gel 250 ng 0.972 

Nextflex-bead 30ng NextFlex-bead 250ng 0.969 

Nextflex Protocol  
(Gel vs bead selection) 

Nextflex-gel 30 ng NextFlex-bead 30ng 0.989 

Nextflex-gel 250 ng NextFlex-bead 250ng 0.997 

Between Kits  
(Somagenics vs Nextflex) 

Somagenics 30ng NextFlex-gel 30 ng 0.776 

Somagenics 30ng NextFlex-bead 30ng 0.771 

Somagenics 250 ng NextFlex-gel 250 ng 0.839 

Somagenics 250 ng NextFlex-bead 250ng 0.834 

 

Analysis performed for each individual kit revealed that there was little difference in levels of 

individual miRNAs detected when using different input RNA quantities. Similarly, for the 

Nextflex kit, miRNA levels for gel and bead library preparation methods showed a high 

degree of similarity. Greatest differences were observed when comparing samples from 

Nextflex (either protocol) and somagenics kits. Therefore, only 30ng RNA samples for the 

Somagenics and Nextflex-gel protocols were selected for further investigation.  A large 

number of miRNA were found to be differentially expressed when the same original sample 

was prepared using the two different kits (Figure 5.2A).  
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5.3.2 Validation of results by qPCR   

To determine which kit more accurately represented the true miRNA levels in the original 

sample, confirmatory qPCR was performed. miRNAs were selected for investigation from the 

scatterplot of Somagenics 30ng versus Nextflex-gel 30ng samples (Figure 5.2B). Both 

miRNA that were differentially expressed between kits and those with a high degree of 

correlation were selected for investigation. Selected miRNAs are highlighted in red in Figure 

5.2B. Raw Ct values (i.e. not normalised to endogenous control) were plotted for each 

miRNA investigated versus sequencing results obtained using either library preparation kit. 

Sequencing results using the Nextflex-gel were found to correlate significantly with qPCR 

results (Figure 5.3A), whereas sequencing results using the Somagenics kit did not 

significantly correlate (Figure 5.3B).  Therefore, the Nextflex kit was chosen for small RNA 

sequencing experiments. 

 

As little difference was seen between gel and bead protocols, the Nextflex-bead protocol 

was selected for subsequent sequencing experiment as it is less labour intensive. An input 

of 30ng RNA was selected as this would mean that fewer EV isolations would need to be 

performed.   



 

150 
 

 

Figure 5.2: Comparison of Somagenics and Nextflex miRNA library prep kits 
A) Volcano plot of differential gene expression. Log2 fold change in gene expression is plotted 

against –log10 adjusted p value. Positive and negative fold changes represent miRNAs expressed 
at higher or lower levels in nextflex samples compared to somagenics samples, respectively. 

miRNAs expressed at significantly (P≤0.05) different levels between the two kits are shown in red. 

B) Scatterplot of median miRNA counts of Somagenics vs Nextflex kits. miRNA selected for 

investigation by qPCR are shown in red.   
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 Figure 5.3: qPCR Validation of miRNA Sequencing Kits 

Correlation of miRNA Ct values determined by qPCR and median miRNA counts from 

sequencing using either A) Nextflex kit (30ng RNA, gel protocol) or B) Somagenics kit 

(30ng RNA).  
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5.4 Sample collection and pooling of replicates 

Once the best kit to use was established, samples were collected for mRNA and small RNA 

sequencing to determine the effects of OSM-OSMR expression on cervical SCC cells and 

their EVs. The experimental design for sequencing experiments is shown in Figure 5.4. EP 

and KD cells were treated with OSM or PBS control; EVs were subsequently isolated by 

ultracentrifugation.  

 

Quantification of RNA using Tapestation had shown that the average amount of RNA 

obtained from an individual EV preparation isolated from one 175cm2 flask of cells was ~19 

ng (Table 3.30). In order to obtain enough material to perform both mRNA and miRNA library 

preparation and sequencing, five EV preparations were pooled per ‘biological replicate’ so 

that each replicate would contain ~100ng RNA. Corresponding cell samples were also 

pooled.  Thus OSM/PBS treatment of EP and KD cells was performed 25 times and 

replicates for each condition pooled into groups of five, in order to produce a total of five 

‘biological replicates’ for sequencing. Fold change in cell number in response to OSM 

treatment, cell passage number, cell stock (as multiple vials of cells were defrosted) and 

batch of OSM used were taken into consideration when deciding which five samples to pool 

per replicate. 

 

Treatment of EP cells with OSM was previously shown to result in a reduction of cell number 

(Figure 4.19). This was therefore used as an indicator of whether activation of OSM-OSMR 

signalling had occurred. Consistent with this previous observation, cell number was 

significantly reduced in EP-OSM-cells (18.9% reduction on average) compared to EP-PBS-

cells (Figure S5. 4A+B). However, the extent of this reduction was not consistent for all 

preparations. No significant differences in cell counts were seen in KD-PBS-cells compared 

to EP-PBS-cells and treatment with OSM had no significant effect on KD cell number. Fold 

change in cell number compared to EP-PBS-cells is summarised for each individual 

experiment in Figure S5. 4C. To determine whether the varied extent of growth reduction 

corresponded to unequal activation of the OSM-OSMR pathway, ten samples were selected 

for qPCR investigation. These included four ‘control samples’: two samples from 

experiments with the greatest reduction in cell number in response to OSM across all 

technical replicates (replicates 14 and 16); and two which displayed a reduction in cell 

number closest to the average (replicates 1 and 25). Six samples which appeared least 

responsive to OSM were then selected, i.e. experiments in which EP cell samples displayed 

the least reduction in cell number in response to OSM treatment.   
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 Figure 5.4: Sequencing Experimental Design 
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All 10 replicates selected for qPCR investigation were found to display upregulation of 

OSMR and VEGFA mRNA levels in response to OSM treatment, regardless of whether a 

reduction in cell number was observed (Figure S5. 5A).  Moreover, no significant correlation 

was found between cell number and fold change in OSMR (R2 = 0.27) or VEGFA (R2 = 0.19) 

expression when linear regression analysis was performed (Figure S5. 5B+C).  

 

The potential effect of cell passage number on response to OSM-OSMR signalling was also 

investigated in the same 10 samples. Passage was found to significantly correlate with 

baseline OSMR expression in both untreated SW756 empty plasmid (Figure S5. 6A panel i) 

and OSMR KD cells (Figure S5. 6B panel i). For both cell lines, baseline levels of OSMR 

expression decreased as passage number increased. However, no significant correlation 

was observed between baseline levels of VEGFA expression and passage number for either 

SW756 empty plasmid (Figure S5. 6A panel ii) or OSMR KD (Figure S5. 6B panel ii) cell 

lines. This data suggested that cell passage number (i.e. time in culture before treatment) 

may have some effect on the level of gene expression and therefore passage number was 

considered when grouping samples. 

 

To keep passage numbers as similar as possible throughout the duration of the experiment, 

cells used for the EV extraction experiments were from three replicate frozen stocks, and 

any potential difference associated with this was further investigated. No difference was 

found in OSMR or VEGFA expression in KD-PBS-cells from any of the three stocks used 

(Figure S5. 6D). EP-PBS-cells from ‘thaw 3’ had significantly lower baseline levels of OSMR 

mRNA expression than cells from the other two stocks (Figure S5. 6C panel i); however, no 

significant changes in baseline VEGFA levels were detected (Figure S5. 6C panel ii). 

Therefore, cell stock may have had some impact on gene expression and was therefore 

taken into account when grouping samples.  

 

Finally, as differences between the potency of OSM batches have been observed in the lab 

(data not shown), differences in upregulation of OSM-OSMR targets were investigated for 

the two different OSM batches used. WT, EP and KD SW756 cells were treated for 48 hours 

with PBS control or OSM from either of the two batches and expression of OSMR, VEGFA, 

TGM2 and SNAI1 investigated by qPCR (Figure S5. 7). No significant differences were 

observed in upregulation of OSMR, VEGFA or TGM2 in response to OSM treatment in any 

of the three cell lines when comparing the two different OSM batches (Figure S5. 7A-C). 

However, while differences in SNAI1 upregulation in response to treatment with different 

OSM batches were not observed for WT and KD cells, treatment of EP cells with OSM batch 
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2 led to significantly greater upregulation of SNAI1 than treatment with OSM batch 1 (Figure 

S5. 7D). Therefore, OSM batch was considered when grouping samples. 

 

As a result of these investigations, all parameters described above were taken into careful 

consideration when deciding which 5 samples to pool per biological replicate. The replicates 

selected (shown in Figure 5.5) were considered to contain evenly distributed samples. 

 

 

 

 Figure 5.5: Sample Pooling for NGS 

A) Passage number, cell thaw, batch of OSM and fold change in empty plasmid cell number 

in response to OSM for each of the 25 EV/cell replicate preparations. Passage numbers were 

ranked from lowest to highest. B) Samples were sorted into groups of 5 replicates, each group 

contained samples to produce similar average cell passage and fold change in cell number 

values. Samples from cell thaws 1-3 and OSM batches 1 and 2 were evenly distributed across 

the five groups so that each group contained samples from each condition.  
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5.5 mRNA Sequencing  

mRNA cDNA libraries were prepared using a SMART-Seq® v4 Ultra® Low Input RNA kit 

and a Nextera® XT DNA kit for library preparation using 5ng input RNA. Samples were 

run on a NextSeq 500, using a 75 cycles High Output kit, at a final concentration of 1.8pM 

with 10% PhiX. 

 

5.5.1 Bioinformatic Analysis  

The bioinformatics analysis detailed in this section was performed by Dr Anton Enright, 

Stephanie Wenlock and Dr Stephen Smith using the pipeline shown in Table 5.4. 

 

 

Table 5.4:Bioinformatics pipeline used for analysis of mRNA sequencing data 

Step 
Programme 

Used 
Details 

1. Quality Control 
FastQC 
v0.11.4 

 

2. Trim Reads 
TrimGalore 

v0.4.1 
 

3. 
Map Reads to 

Genome 
STAR 

v2.5.2a 

Reads were mapped to Ensembl 
Homo_sapiens.GRCh38 (release 92) reference 
genome 

4. 

Calculate 
number of 

reads mapping 
to genomic 

features 

HTSeq 
v0.6.0222 

 

5. 
Plot Pre-

normalised 
Counts 

R 
These display raw counts generated by HTSeq. For 
each sample the total number of reads mapped to 
known protein coding genes   

6. 
Count 

Normalisation 

DESeq2223 or 
EdgeR 

normalisation 
procedure224 

Normalisation of samples improves the count data 
and enables better comparison between samples. 
See section 5.1.4 for details of normalisation 
methods 

7. 

Sample 
Clustering: 

Generation of 
Heatmaps 

R 

A VST was applied to the data, which takes into 
account variance of low count data. Sample-to-
sample Pearson correlations using VST transformed 
data were plotted by heatmap 

8. 

Sample 
Clustering: 

Generation of 
t-SNE plots 

R 
Sample clustering was visualised by generation of t-
SNE plots338 

9. 

Analysis of 
Differential 

gene 
expression 

DESeq2223, 
EdgeR224 or 
EdgeR voom 

 

Statistical analysis to compare differential expression 
of individual genes between samples. The negative 
binomial Wald’s test was used to determine 
significant differences between groups. A LFC 
threshold of +/-0.5 and a FDR significance threshold 
of ≤0.05 were applied. 
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Following mRNA sequencing, all samples passed quality control (data not shown). As 

expected, protein coding genes represented the main type of RNA in all samples. EV 

samples were found to map to a lower proportion of protein coding genes than cell samples.  

Pre-normalised counts are shown in Figure S5. 8A. Either a DESeq2 normalisation 

procedure223 (Figure S5. 8B) or EdgeR normalisation procedure224 (Figure S5. 8C) was 

applied to raw counts. Sample clustering was subsequently visualised by heatmap and t-

SNE plots (Figure S5. 9C+D). Both these techniques demonstrated similarities between the 

two normalisation methods. Cells and EVs from all treatment groups appeared to cluster 

separately, indicating differences between cellular and EV cargo. Moreover, KD and EP 

samples were found to cluster separately.  

 

Statistical analysis was performed in order to investigate differential gene expression 

between samples. This was executed using three different analysis packages – DESeq2, 

EdgeR and EdgeR Voom. Differential gene expression was investigated using all three 

analysis methods for the following cell-cell and EV-EV comparisons shown in Table 5.5.  Key 

comparisons are shown in red. 

Table 5.5: Comparisons for analysis of differential expression 

(Key comparisons shown in red) 

 Cell-Cell comparisons EV-EV comparisons 

1. EP-PBS-cells versus EP-OSM-cells EP-PBS-EVs versus EP-OSM-EVs 

2. KD-PBS-cells versus KD-OSM-cells KD-PBS-EVs versus KD-OSM-EVs 

3. EP-PBS-cells versus KD-PBS-cells EP-PBS-EVs versus KD-PBS-EVs 

4. EP-PBS-cells versus KD-OSM-cells EP-PBS-EVs versus KD-OSM-EVs 

5. EP-OSM-cells versus KD-PBS-cells EP-OSM-EVs versus KD-PBS-EVs 

6. EP-OSM-cells versus KD-OSM-cells EP-OSM-EVs versus KD-OSM-EVs 

10. 

Visualisation of 
Differential 

Gene 
Expression for 
each statistical 

package 

R 

The following plots were generated for each 
comparison, using each of the three statistical 
packages (DESeq2, EdgeR and EdgeR voom): 
1. Scatterplots (produced using median mRNA 
counts) 
2. Volcano plots 

11. 
Comparison of 

statistical 
packages 

UpSet R 
package339 

UpSet plots were generated for each comparison to 
visualise intersecting genes that were significantly up 
or down regulated by all three statistical packages 
(DESeq2, EdgeR and EdgeR voom). UpSet plots 
also visualise numbers of genes that were only 
found to be significantly up or down regulated by one 
or two of the packages, but not shared by all three 
packages. A LFC threshold of +/-0.5 and a FDR 
significance threshold of ≤0.01 were applied. 
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Figure 5.6: Correlation Plot - Empty Plasmid+ PBS vs Empty Plasmid+OSM 

Correlation plots of differential gene expression for SW756 empty plasmid + PBS versus 

SW756 empty plasmid + OSM A) cells or B) EVs. Analysed using i) DESeq2 ii) EdgeR or 

iii) EdgeR voom. Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) 

are shown in red. All other genes are shown in blue.  
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Figure 5.7: Correlation Plot - Empty Plasmid+ OSM vs OSMR KD+OSM 
Correlation plots of differential gene expression for SW756 empty plasmid + OSM versus 

SW756 OSMR KD + OSM A) cells or B) EVs. Analysed using i) DESeq2 ii) EdgeR or iii) 

EdgeR voom. Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are 

shown in red. All other genes are shown in blue.  
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Scatterplots were produced to compare median counts for all six comparisons for both cells 

and EVs. EP-PBS versus EP-OSM (Figure 5.6) and EP-OSM versus KD-OSM (Figure 5.7) 

were the two key comparisons to demonstrate differences in OSM-OSMR signalling in both 

cells and EVs.  All other comparisons performed are shown in supplementary figures. Cells: 

DESeq2 - Figure S5. 10, Cells: EdgeR - Figure S5. 11. Cells: EdgeR Voom - Figure S5. 12, 

EVs: DESeq2 - Figure S5. 13, EVs: EdgeR - Figure S5. 14 and EVs: EdgeR Voom - Figure 

S5. 15.  

 

Differences in gene expression for each set of comparisons, using each of the three analysis 

methods, were also visualised using volcano plots. Volcano plots for the two main 

comparisons are shown in Figure 5.8 and Figure 5.9. All other comparisons performed are 

shown in supplementary figures. Cells: DESeq2 -Figure S5. 16, Cells: EdgeR - Figure S5. 

17, Cells: EdgeR Voom -Figure S5. 18, EVs: DESeq2 -Figure S5. 19, EVs: EdgeR - Figure 

S5. 20 and EVs: EdgeR Voom - Figure S5. 21.  

 

As expected, treatment of EP cells with OSM led to significant changes in gene expression 

compared to cells treated with PBS control. Similar changes in gene expression were 

observed in the EVs (Figure 5.6 and Figure 5.8). Treatment of KD cells with OSM did not 

lead to significant changes in gene expression in cells or EVs (Figure S5. 10-Figure S5. 

21B). This is consistent with previous findings from our research group that that OSM 

predominantly signals via OSMR and not LIFR in SW756 cervical SCC cells92. EP cells and 

their EVs displayed significantly different expression profiles compared to KD cells and EVs, 

respectively. As expected, since the OSMR KD cell line is not responsive to OSM treatment, 

these differences were greatest when both cell lines were treated with OSM (Figure 5.7, 

Figure 5.9). Together, these results confirm previous findings that OSM-OSMR signalling 

alters mRNA expression of cervical SCC cells and demonstrate, for the first time, that OSM-

OSMR signalling is capable of altering cervical SCC cell EV cargo.  

 
Broadly similar results were observed when differential gene expression was investigated 

using any of the three different statistical packages (DESeq2, EdgeR or EdgeR voom).  

However, some differences were seen. For instance, correlation plots and volcano plots 

generated by DESeq2 and EdgeR analysis seemed similar in terms of the number of 

significantly altered genes, whereas EdgeR voom identified more genes as being 

differentially expressed. A more thorough comparison of the different statistical packages 

was therefore undertaken.  

 
 
 



 

161 
 

Figure 5.8: Volcano Plot - Empty Plasmid+ PBS vs Empty Plasmid+OSM  
Volcano plots of differential gene expression for SW756 empty plasmid + PBS versus 

SW756 empty plasmid + OSM A) cells or B) EVs. Analysed using i) DESeq2 ii) EdgeR or 

iii) EdgeR voom. Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) 

are shown in red. All other genes are shown in black. Top 50 most significantly changed 

mRNA are labelled. 
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 Figure 5.9: Volcano plot - Empty Plasmid+ OSM vs OSMR KD+OSM 
Volcano plots of differential gene expression for SW756 empty plasmid + OSM versus 

SW756 OSMR KD + OSM A) cells or B) EVs. Analysed using i) DESeq2 ii) EdgeR or 

iii) EdgeR voom. Genes with significant differential expression (≥+/-0.5 LFC; FDR 

≤0.05) are shown in red. All other genes are shown in black. Top 50 most significantly 

changed mRNA are labelled. 
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5.5.2 Comparison of DESeq2, EdgeR and EdgeR Voom results   

UpSet plots were generated by Dr Stephen Smith in order to compare commonly up and 

downregulated genes for each comparison produced by DESeq2, EdgeR and EdgeR voom. 

For this analysis a LFC threshold of +/-0.5 and a FDR significance threshold of ≤0.01 were 

applied. This is more stringent than the FDR ≤0.05 significance threshold used for 

generation of the correlation and volcano plots; this was done to restrict the size of gene lists 

produced for subsequent pathway analysis to the most significant only. Table 5.6 details the 

information displayed on each UpSet plot for each comparison. 

 

Table 5.6: Explanation of data displayed on UpSet plots for each comparison 

DE= Differentially expressed (LFC of +/-0.5 and a FDR significance threshold of ≤0.01) 

Category 
Column 
(left to 
right) 

Details 

DE by all 
three 

packages 

1 
number of genes upregulated in all three statistical packages, 
shown in red 

2 
number of genes downregulated in all three statistical 
packages, shown in blue 

DE by two 
packages 

only 

3 number of genes upregulated in EdgeR voom and EdgeR, only 

4 number of genes upregulated in EdgeR voom and DESeq2, only 

5 number of genes upregulated in EdgeR and DESeq2, only 

6 number of genes downregulated in EdgeR voom and EdgeR, only 

7 number of genes downregulated in EdgeR voom and DESeq2, only 

8 number of genes downregulated in EdgeR and DESeq2, only 

DE by 
one 

package 
only 

9 number of genes upregulated in EdgeR voom, only 

10 number of genes upregulated in EdgeR, only 

11 number of genes upregulated in DESeq2, only 

12 number of genes downregulated in EdgeR voom, only 

13 number of genes downregulated in EdgeR, only 

14 number of genes downregulated in DESeq2, only 

 

Figure 5.10 and Figure 5.11 show UpSet plots for cell-cell and EV-EV comparisons, 

respectively.  For all comparisons, the sample listed on the left is considered the control 

sample and the one on the right the comparator sample. The KD-PBS versus KD-OSM 

comparison was excluded from both cell and EV analysis as no genes were found to have 

significantly altered expression in response to OSM treatment in this cell line.   
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Figure 5.10: Cell-Cell comparisons – common up and down-regulated genes 

Comparison of genes with significant (FDR = ≤0.01) up or down regulation across analysis 

methods (DESeq2, EdgeR and EdgeR voom)  
 

 



 

165 
 

 Figure 5.11: EV-EV comparisons-common up and down-regulated genes 

Comparison of genes with significant (FDR ≤0.01) up or down regulation across analysis 

methods (DESeq2, EdgeR and EdgeR voom)  
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The number of significantly (FDR ≤0.01) up or down regulated genes identified using each 

package varied when comparing either cell or EVs samples. When comparing cell samples 

(Figure 5.10) EdgeR voom identified the greatest number of up or down regulated genes, 

followed by DESeq2 then EdgeR, which was the most stringent method. In contrast, 

DESeq2 detected the greatest number of significantly downregulated genes for EV-EV 

comparisons (Figure 5.11), followed by EdgeR voom then EdgeR. More variability was 

observed when investigating which package detected the greatest number of upregulated 

genes for EV-EV comparisons. As no statistical analysis is superior to another, only genes 

that were found to be up or downregulated across all three statistical packages for each 

comparison were selected for further investigation. 

 

A greater degree of discrepancy in up and downregulated genes detected by DESeq2, 

EdgeR and EdgeR analyses was observed when levels of gene expression in cells were 

directly compared to EVs (Figure 5.12). Cell-EV comparisons did not investigate differences 

in gene expression in response to OSM-OSMR signalling, but instead highlighted 

differences in gene expression between cells and EVs of the same treatment group. 

Approximately 2600-3000 genes were found by all three analysis methods to be significantly 

up or down regulated in EVs compared to cells for all treatment groups (Figure 5.12). This is 

much greater than the number of genes found to have significantly altered expression in cell-

cell and EV-EV comparisons following treatment with OSM or OSMR KD. There was a high 

degree of inconsistency between statistical methods when cell-EV comparisons were 

performed. This finding highlights the challenges in directly comparing sequencing results for 

cell and EV samples and is likely driven by differential expression of low count genes and EV 

GC skew.  
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Figure 5.12: Cell-EV comparisons – common up and down-regulated genes  

Comparison of genes with significant (FDR ≤0.01) up or down regulation across analysis 

methods (DESeq2, EdgeR and EdgeR voom)  
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5.5.3 Comparison of cellular and EV mRNA expression   

Subsequent analysis focused on comparing genes that were up or downregulated in both 

cells and EVs in response to treatment. Only genes that were found to be significantly up or 

down regulated (FDR ≤0.01) by all three analysis methods were selected for comparison. 

Similarities and differences in cellular and EV expression profiles for each of the following 

comparisons detailed in Table 5.7 were visualised by Venn diagram using Venn Diagram 

Plotter software (Pacific Northwest National Laboratory, omics.pnl.gov; Figure 5.13): 

 

Table 5.7: Summary of data shown in Venn diagrams (mRNA) 

 
Cell-Cell 

comparisons 
EV-EV comparisons 

For each pair of comparisons Venn 
Diagram shows 

1. 
EP-PBS-cells versus 

EP-OSM-cells 
EP-PBS-EVs versus  

EP-OSM-EVs  Genes that were commonly up or 
down regulated in both cell and 
EV comparisons (i.e. commonly 
DE genes in both cell and EVs) 
 

 Genes that were up or down 
downregulated in cell-cell or EV-
EV comparisons only (i.e. genes 
with DE unique to either cells or 
EVs) 

2. 
EP-PBS-cells versus 

KD-PBS-cells 
EP-PBS-EVs versus  

KD-PBS-EVs 

3. 
EP-PBS-cells versus 

KD-OSM-cells 
EP-PBS-EVs versus  

KD-OSM-EVs 

4. 
EP-OSM-cells  

versus KD-PBS-cells 
EP-OSM-EVs versus 

 KD-PBS-EVs 

5. 
EP-OSM-cells  

versus KD-OSM-cells 
EP-OSM-EVs versus 

KD-OSM-EVs 

 

Treatment of EP-cells with OSM led to global changes in gene expression in both the cells 

and their resultant EVs. Interestingly, these results appear to highlight both similarities and 

differences in cells and EVs in response to OSM-OSMR signalling. For all comparisons 

investigated, overlapping cohorts of genes were found to be up or down regulated in both 

cells and EVs; however, numbers of up or down regulated genes differed between cells and 

EVs. In response to OSM treatment more genes were upregulated (225) than 

downregulated (98) in EP-cells, whereas the opposite was observed for EVs (88 

upregulated, 202 downregulated; Figure 5.13A). Similarly, compared to EP-cells, more 

genes were downregulated in KD-cells than upregulated, regardless of PBS or OSM 

treatment (Figure 5.13B-E). On the other hand, a greater number of genes were upregulated 

than downregulated, regardless of treatment in KD-EVs compared to EP-EVs.  As expected, 

comparison of EP-OSM and KD-OSM produced the greatest number of disparately 

expressed genes in both cell and EV comparisons. This is consistent with the selective 

activation of OSM-OSMR signalling in the EP cell line. More genes were found to be 

significantly downregulated (543) than upregulated (216) in KD-OSM-cells compared to EP-

OSM-cells, whereas more genes were upregulated (847) than downregulated (212) in KD-

OSM-EVs compared to EP-OSM-EVs (Figure 5.13E).  
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Figure 5.13: Comparison of genes with common or unique DE in cells and EVs  

Comparison of genes with significant (p≤0.01) up or down regulation for all three analysis 

methods (DESeq2, EdgeR and EdgeR voom) in cells and EVs from each treatment group.  
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5.5.4 mRNA Pathway analysis    

Pathway analysis was then performed using Metascape software340 for the following cell-cell 

and EV-EV comparisons: EP-PBS versus EP-OSM and EP-OSM versus KD-OSM. Only 

genes that were found to be significantly up or downregulated (FDR ≤0.01) using all three 

analysis methods were selected for comparison.  

 

Metascape allows pathway and process analysis using multiple ontology sources. The 

current analysis used the following sources: KEGG Pathway, GO Biological Processes, 

Reactome Gene Sets, Canonical Pathways and CORUM. The enrichment background uses 

all genes in the human genome. Terms with a p-value of ≤0.01, a minimum count of three, 

and an enrichment factor (the ratio between the observed counts and the counts expected 

by chance) of > 1.5 were collected and grouped into clusters based on their membership 

similarities. Metascape uses kappa scores as the similarity metric when performing 

hierarchical clustering on the enriched terms; sub-trees with a similarity of > 0.3 are 

considered a cluster. It chooses the most statistically significant term within a cluster to 

represent the cluster340. 

 

The top 20 most significant clusters for the EP-PBS versus EP-OSM (Figure 5.14) and EP-

OSM versus KD-OSM comparisons (Figure 5.15) are shown in graphical format, ranked 

based on their p values. To further capture the relationship between the terms, terms with 

the most significant p-values from the 20 top clusters were visualised as a network plot using 

cytoscape341 (generated by Metascape package). Network plots for EP-PBS versus EP-

OSM and EP-OSM versus KD-OSM comparisons are shown in Figure S5. 22 and Figure S5. 

23, respectively.  

  

In response to OSM treatment, the most significantly upregulated pathways in EP-cells 

included: cytokine mediated signalling, myeloid leucocyte activation, response to decreased 

oxygen levels, interferon signalling, regulation of viral life cycle and replication and 

angiogenesis (Figure 5.14A panel i and Figure S5. 22A panel i). Similar pathways were 

found to be the most downregulated in KD-OSM-cells compared to EP-OSM-cells (Figure 

5.15B panel i and Figure S5. 23B panel i). Upregulation of similar pathways was also 

observed in EP-OSM-EVs compared to EP-PBS-EVs (Figure 5.14A panel ii and Figure S5. 

22A panel ii). 

 

As observed with cells, similar pathways that were upregulated in EP-OSM-EVs compared 

to EP-PBS-EVs, were downregulated in KD-OSM-EVs compared to EP-OSM-EVs (Figure 

5.15B panel ii and Figure S5. 23B panel ii). One notable difference between cells and EVs 
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was that, while pathways involved in angiogenesis were upregulated in EP-cells in response 

to OSM and downregulated in KD-cells, angiogenic pathways did not appear to be altered in 

EVs from either comparison.  

 

In EP-cells, treatment with OSM led to significant downregulation of pathways involved in 

PI3K-AKT signalling, tissue remodelling, negative regulation of differentiation and focal 

adhesion (Figure 5.14B panel i and Figure S5. 22B panel i) compared to EP-PBS-cells. 

Some similarities were observed in KD-cells; KD-cells-OSM were found to have upregulation 

of actin-filament based process, focal adhesion, pathways involved in differentiation and 

regulation of cell migration (Figure 5.15A panel i and Figure S5. 23A panel i) compared to 

EP-cells-OSM. Pathways downregulated in EP-OSM-EVs compared to EP-PBS-EVs differed 

from those observed to be downregulated in EP-OSM-cells. Most significantly 

downregulated pathways included those involved in cell cycle regulation and division and 

pathways involved in cellular organisation – such as signalling by Rho GTPases, actin 

filament based processes and microtubule based processes (Figure 5.14B panel ii and 

Figure S5. 22B panel ii). Similar pathways were upregulated in KD-OSM-EVs compared to 

EP-OSM-EVs ((Figure 5.15A panel ii and Figure S5. 23A panel ii). 
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 Figure 5.14: Pathway analysis - Empty Plasmid + PBS vs Empty Plasmid + OSM  
Metascape analysis of top 20 most significantly enriched terms in gene lists for SW756 

empty plasmid + PBS versus SW756 empty plasmid + OSM comparison.  

A) Upregulated pathways in i) cells and ii) EVS.  

B) Downregulated pathways in i) cells and ii) EVs.   
 

 
 



 

174 
 

 

 
 
 
 
 
 
 



 

175 
 

 
 
Figure 5.15: Pathway analysis - Empty Plasmid + OSM vs OSMR KD + OSM 
Metascape analysis of top 20 most significantly enriched terms in gene lists for SW756 

empty plasmid + OSM versus SW756 OSMR KD + OSM comparison.  

A) Upregulated pathways in i) cells and ii) EVS.  

B) Downregulated pathways in i) cells and ii) EVs 
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Therefore, in general similar pathways were over or under represented in both cervical SCC 

cells and EVs in response to OSM-OSMR signalling. However, genes found to be 

differentially expressed in EVs did not identically mirror mRNA expression of the original cell, 

leading to some differences in pathway analysis. This suggests that mRNAs are selectively 

packaged into EVs in response to OSM-OSMR signalling.  

 

5.5.5 Validation of mRNA sequencing results     

In order to validate sequencing results, some mRNAs were selected for qPCR investigation. 

Briefly, genes that were found to be significantly up or down regulated (log FC +/- 0.5; FDR 

≤0.01) across all three analysis methods (DESeq2, EdgeR and EdgeR voom) were ranked. 

The top ten most up or down regulated genes for each analysis method are shown in Table 

5.8. Note that actual rankings of differentially expressed genes for each individual analysis 

will differ as they are calculated based on all differentially expressed genes detected by the 

specific analysis method, rather than only including genes common to all analysis methods.  
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Table 5.8: Top 10 most up and down regulated genes  
Ten most up and down regulated genes for each analysis method (out of cohort of gene with statistically 

significant differential expression for all three analysis methods). Genes are ranked by log FC; FDR for each 

gene is also shown.  Genes selected for qPCR validation are highlighted in red or blue. Analysis is shown for the 

following key comparisons: 

A) EP-PBS-cells versus EP-OSM-cells 

B) EP-PBS-EVs versus EP-OSM-EVs 

C) EP-OSM-cells versus KD-OSM-cells 

D) EP-OSM-EVs versus KD-OSM-EVs 

A 

Empty Plasmid Cells + PBS vs Empty Plasmid Cells + OSM 

DESeq2 EdgeR EdgeR Voom 

Gene log FC FDR Gene log FC FDR Gene log FC FDR 

U
P

R
E

G
U

L
A

T
E

D
 

1 ATP8B4 6.64 4.6 x10
-5

 SERPINA1 6.64 1.1 x10
-132

 SERPINA1 6.62 1.1 x10
-23

 

2 SERPINA1 6.63 2.7 x10
-42

 CHI3L1 6.58 2.5 x10
-115

 CHI3L1 6.55 4.5 x10
-19

 

3 CHI3L1 6.57 3.5 x10
-99

 ATP8B4 6.40 3.5 x10
-9

 ATP8B4 5.08 3.3 x10
-6

 

4 CEMIP 4.65 9.9 x10
-74

 CEMIP 4.67 1.4 x10
-79

 CEMIP 4.64 1.0 x10
-23

 

5 ADAM8 4.50 4.5 x10
-27

 ADAM8 4.50 1.7 x10
-42

 CASP14 4.54 5.1 x10
-16

 

6 CASP14 4.47 6.7 x10
-47

 CASP14 4.47 3.6 x10
-46

 ADAM8 4.52 2.7 x10
-12

 

7 C9orf84 4.11 1.5 x10
-12

 C9orf84 4.05 3.8 x10
-12

 C9orf84 4.03 1.3 x10
-8

 

8 CYSLTR1 3.88 4.6 x10
-15

 SLCO4A1 3.88 1.2 x10
-61

 SLCO4A1 3.86 5.1 x10
-28

 

9 SLCO4A1 3.87 1.0 x10
-277

 CYSLTR1 3.87 5.1 x10
-20

 CYSLTR1 3.86 3.4 x10
-10

 

10 GRAMD1B 3.72 1.3 x10
-9

 GRAMD1B 3.66 8.5 x10
-11

 GRAMD1B 3.59 3.4 x10
-7

 

D
O

W
N

R
E

G
U

L
A

T
E

D
 

1 PTPRR -5.25 1.2 x10
-3

 PTPRR -4.65 2.0 x10
-5

 PTPRR -4.23 3.5 x10
-7

 

2 ANKRD1 -4.03 2.9 x10
-4

 ANKRD1 -3.81 1.4 x10
-7

 IGFL2-AS1 -3.86 1.4 x10
-7

 

3 IGFL2-AS1 -3.95 2.6 x10
-5

 IGFL2-AS1 -3.73 1.8 x10
-6

 ANKRD1 -3.64 4.4 x10
-5

 

4 CPA5 -3.83 2.8 x10
-6

 CPA5 -3.68 2.4 x10
-8

 CPA5 -3.61 1.4 x10
-7

 

5 CPA4 -3.39 1.1 x10
-49

 CPA4 -3.36 1.4 x10
-50

 CPA4 -3.48 3.3 x10
-21

 

6 PDGFB -3.14 1.5 x10
-7

 PDGFB -3.08 1.6 x10
-10

 PTPRB -3.20 5.6 x10
-4

 

7 PRLR -3.12 2.9 x10
-3

 IL7R -3.05 7.5 x10
-29

 KRT83 -3.18 1.1 x10
-4

 

8 KRT83 -3.08 3.2 x10
-5

 KRT83 -2.99 7.4 x10
-06

 PRLR -3.14 5.0 x10
-4

 

9 IL7R -3.08 2.9 x10
-40

 PRLR -2.94 7.5 x10
-04

 PDGFB -3.13 5.5 x10
-6

 

10 PTPRB -2.86 1.8 x10
-4

 KRT81 -2.84 1.2 x10
-36

 IL7R -3.05 7.2 x10
-15

 
 

B 

Empty Plasmid EVs + PBS vs Empty Plasmid EVs + OSM 

DESeq2 EdgeR EdgeR Voom 

Gene log FC FDR Gene log FC FDR Gene log FC FDR 

U
P

R
E

G
U

L
A

T
E

D
 

1 SERPINA1 5.42 1.6 x10
-80

 SERPINA1 5.33 2.9 x10
-111

 SERPINA1 5.44 1.7 x10
-15

 

2 CHI3L1 3.76 2.9 x10
-15

 CHI3L1 3.62 1.8 x10
-22

 CHI3L1 3.62 5.1 x10
-7

 

3 TNFRSF21 2.85 1.3 x10
-20

 TNFRSF21 2.80 3.7 x10
-35

 TNFRSF21 3.03 1.0 x10
-8

 

4 SLCO4A1 2.58 4.5 x10
-48

 SLCO4A1 2.46 2.8 x10
-27

 SLCO4A1 2.58 1.1 x10
-11

 

5 CASP14 2.39 6.4 x10
-15

 CASP14 2.26 2.5 x10
-13

 ADAM8 2.53 1.1 x10
-3

 

6 CTSL 2.27 3.0 x10
-46

 CTSL 2.19 1.4 x10
-30

 CASP14 2.32 1.7 x10
-7

 

7 ADAM8 2.24 1.6 x10
-4

 ADAM8 2.10 1.6 x10
-4

 CTSL 2.25 2.0 x10
-12

 

8 OASL 2.11 6.5 x10
-10

 OASL 2.02 7.8 x10
-12

 OASL 2.18 7.3 x10
-7

 

9 CTSB 2.06 9.5 x10
-101

 NAMPT 1.98 2.7 x10
-27

 NAMPT 2.06 3.9 x10
-13

 

10 NAMPT 2.06 4.6 x10
-40

 CTSB 1.97 2.3 x10
-30

 CTSB 2.05 3.4 x10
-17

 

D
O

W
N

R
E

G
U

L
A

T
E

D
 

1 CPA4 -2.79 2.9 x10
-32

 CPA4 -2.89 2.2 x10
-41

 CPA4 -2.79 3.0 x10
-8

 

2 AMOT -1.69 8.0 x10
-7

 AMOT -1.81 5.7 x10
-11

 AMOT -1.69 6.9 x10
-4

 

3 KRT81 -1.61 1.8 x10
-6

 KRT81 -1.71 2.3 x10
-21

 NPTX1 -1.63 2.4 x10
-6

 

4 NPTX1 -1.59 4.2 x10
-16

 NPTX1 -1.70 1.4 x10
-15

 C2orf15 -1.61 2.6 x10
-5

 

5 LINC02454 -1.56 1.2 x10
-5

 LINC02454 -1.66 7.6 x10
-5

 KRT81 -1.61 3.7 x10
-11

 

6 C2orf15 -1.54 1.5 x10
-9

 C2orf15 -1.64 4.3 x10
-10

 LINC02454 -1.55 4.5 x10
-4

 

7 SORBS2 -1.48 1.9 x10
-20

 SORBS2 -1.62 7.3 x10
-16

 SORBS2 -1.52 2.3 x10
-8

 

8 MT-CYB -1.48 8.8 x10
-9

 MT-CYB -1.60 1.8 x10
-13

 MT-CYB -1.48 1.7 x10
-6

 

9 MT-CO3 -1.40 4.6 x10
-8

 MT-CO3 -1.53 5.4 x10
-13

 MT-CO3 -1.41 3.2 x10
-6

 

10 GYG2 -1.40 2.7 x10
-9

 GYG2 -1.51 7.7 x10
-8

 TNS3 -1.40 8.9 x10
-6
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C 

Empty Plasmid Cells + OSM vs OSMR KD Cells + OSM 

DESeq2 EdgeR EdgeR Voom 

Gene log FC FDR Gene log FC FDR Gene log FC FDR 

U
P

R
E

G
U

L
A

T
E

D
 

1 PLCB4 7.96 5.0 x10
-9

 PLCB4 7.31 9.1 x10
-29

 PLCB4 6.95 3.0 x10
-15

 

2 ACTG2 7.73 3.7 x10
-8

 ACTG2 7.08 2.6 x10
-25

 ACTG2 6.62 2.6 x10
-12

 

3 ANKRD1 6.30 7.8 x10
-11

 ANKRD1 6.05 3.6 x10
-27

 ANKRD1 5.85 6.2 x10
-11

 

4 ZFPM2 5.57 3.8 x10
-4

 ZFPM2 5.35 8.9 x10
-5

 ADARB2 4.92 4.7 x10
-9

 

5 ADARB2 5.31 5.1 x10
-5

 ADARB2 4.88 1.0 x10
-8

 CPA5 4.76 2.3 x10
-11

 

6 PTPRR 5.25 7.2 x10
-4

 CPA5 4.82 3.2 x10
-17

 IGFL2-AS1 4.23 7.5 x10
-9

 

7 CPA5 5.02 3.2 x10
-11

 PTPRR 4.63 1.3 x10
-5

 PTPRR 4.18 3.3 x10
-7

 

8 LPAR4 4.80 5.7 x10
-3

 SYTL5 4.57 7.9 x10
-3

 ZFPM2 4.16 3.8 x10
-7

 

9 SYTL5 4.78 3.5 x10
-3

 LPAR4 4.56 7.6 x10
-3

 RAB38 4.15 2.7 x10
-7

 

10 PTPRQ 4.73 7.8 x10
-3

 PTPRQ 4.53 6.1 x10
-3

 ELAVL2 3.92 5.6 x10
-10

 

D
O

W
N

R
E

G
U

L
A

T
E

D
 

1 FMOD -10.10 1.4 x10
-14

 FMOD -10.10 6.1 x10
-53

 FMOD -8.67 1.3 x10
-19

 

2 TCF4 -9.62 8.7 x10
-13

 TCF4 -9.62 6.1 x10
-53

 TCF4 -8.18 1.7 x10
-15

 

3 PARM1 -8.39 2.1 x10
-9

 PARM1 -8.39 4.2 x10
-22

 SERPINA1 -7.75 2.1 x10
-21

 

4 SELENBP1 -7.80 1.4 x10
-8

 SELENBP1 -7.81 4.4 x10
-16

 PARM1 -6.88 4.2 x10
-11

 

5 SERPINA1 -7.77 4.3 x10
-

153
 

SERPINA1 -7.80 1.0 x10
-155

 PCSK1N -6.73 2.0 x10
-14

 

6 DSC2 -7.17 3.5 x10
-7

 DSC2 -7.17 1.0 x10
-12

 SELENBP1 -6.36 3.9 x10
-13

 

7 ZNF468 -7.12 9.1 x10
-7

 ZNF468 -7.13 7.0 x10
-13

 CLDN10 -6.21 1.2 x10
-11

 

8 PCSK1N -7.07 2.4 x10
-14

 GALC -6.95 1.6 x10
-10

 CHI3L1 -5.95 2.1 x10
-19

 

9 GALC -6.94 2.0 x10
-6

 PCSK1N -6.85 7.7 x10
-38

 RPL39L -5.91 3.5 x10
-11

 

10 RPL39L -6.91 8.7 x10
-7

 RNF180 -6.68 1.2 x10
-9

 F13A1 -5.82 3.6 x10
-11

 

 

D 

Empty Plasmid EVs + OSM vs OSMR KD EVs + OSM 

DESeq2 EdgeR EdgeR Voom 

Gene log FC FDR Gene log FC FDR Gene log FC FDR 

U
P

R
E

G
U

L
A

T
E

D
 

1 KISS1 3.49 1.1 x10
-7

 KISS1 3.69 6.2 x10
-12

 RAB38 3.77 1.1 x10
-6

 

2 RAB38 3.48 2.6 x10
-6

 RAB38 3.69 4.4 x10
-10

 KISS1 3.40 2.9 x10
-8

 

3 TAGLN 3.27 5.0 x10
-62

 TAGLN 3.51 1.8 x10
-73

 TAGLN 3.31 3.0 x10
-14

 

4 KRT86 2.77 1.3 x10
-4

 KRT86 2.98 6.1 x10
-6

 KRT86 2.75 2.5 x10
-5

 

5 KRT81 2.61 1.8 x10
-99

 KRT81 2.86 1.2 x10
-59

 KRT81 2.64 1.7 x10
-18

 

6 S100A4 2.58 2.1 x10
-37

 DDR2 2.84 6.2 x10
-43

 S100A4 2.61 1.3 x10
-11

 

7 DDR2 2.58 1.3 x10
-44

 S100A4 2.83 7.7 x10
-38

 DDR2 2.59 1.2 x10
-13

 

8 CPA4 2.49 7.8 x10
-26

 ACTG2 2.77 5.7 x10
-11

 KRT83 2.54 2.5 x10
-4

 

9 ACTG2 2.48 2.9 x10
-6

 CPA4 2.75 8.9 x10
-38

 CPA4 2.52 8.2 x10
-8

 

10 C2orf15 2.39 7.1 x10
-25

 C2orf15 2.64 8.2 x10
-31

 ACTG2 2.50 4.0 x10
-5

 

D
O

W
N

R
E

G
U

L
A

T
E

D
 

1 PCSK1N -5.80 6.0 x10
-10

 SERPINA1 -5.39 9.4 x10
-117

 SERPINA1 -5.75 1.0 x10
-16

 

2 SERPINA1 -5.63 2.0 x10
-91

 PCSK1N -5.37 3.3 x10
-21

 PCSK1N -5.24 2.7 x10
-12

 

3 RPL39L -4.14 2.8 x10
-10

 RPL39L -3.84 2.3 x10
-12

 RPL39L -3.73 8.8 x10
-8

 

4 CA2 -3.57 1.4 x10
-23

 CA2 -3.30 5.3 x10
-24

 CA2 -3.53 6.9 x10
-11

 

5 CHI3L1 -3.17 8.9 x10
-17

 CHI3L1 -2.91 4.3 x10
-19

 CHI3L1 -3.05 1.0 x10
-6

 

6 SELENBP1 -3.06 2.3 x10
-7

 IFIT2 -2.82 2.9 x10
-33

 ITGA2 -3.01 1.6 x10
-9

 

7 IFIT2 -3.05 1.1 x10
-27

 SELENBP1 -2.76 3.5 x10
-6

 IFIT2 -2.97 2.9 x10
-10

 

8 ITGA2 -2.97 6.2 x10
-25

 ITGA2 -2.71 3.9 x10
-30

 CSF3 -2.95 1.4 x10
-4

 

9 CTSL -2.93 4.8 x10
-73

 CTSL -2.69 4.8 x10
-45

 SELENBP1 -2.93 3.5 x10
-6

 

10 AL355916.1 -2.85 1.2 x10
-7

 AL355916.1 -2.65 2.3 x10
-8

 AL355916.1 -2.93 4.5 x10
-6

 

 

Of these genes, CHI3L1, CEMIP, CPA4, PTPRR, FMOD, PLCB4, PCSK1N and RAB38, 

were selected for qPCR validation. Other known targets of OSM-OSMR signalling were also 

selected for investigation: OSMR, VEGFA, TGM2, SNAI1 and PLAUR. Levels of 

upregulation and downregulation of these 5 genes in both cells and EVs from the two 

comparisons investigated (EP-PBS versus EP-OSM and EP-OSM versus KD-OSM) are 
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shown in Table S5. 1. A summary of the expression patterns of each of the selected genes 

is shown in Table 5.9.  

Table 5.9: Summary of expression of genes selected for qPCR validation 

✔=significantly up or down regulated; x = not significantly up or downregulated 

Top 10 = ranked within the top 10 most up or down regulated genes for that comparison. 

Upregulation is shown in pink, downregulation in blue.  It is not possible for a gene to be both up 

and down regulated in a single comparison. Therefore, if a gene is found to be up or 
downregulated, the paired box is shaded grey.  

GENES 

Empty Plasmid + PBS vs Empty 
Plasmid + OSM 

Empty Plasmid + OSM vs OSMR KD + 
OSM 

UPREGULATED DOWNREGULATED UPREGULATED DOWNREGULATED 

Cells EVs Cells EVs Cells EVs Cells EVs 

CHI3L1 ✔Top 10 ✔Top 10     ✔Top 10 ✔Top 10 

CEMIP ✔Top 10 ✔     ✔ ✔ 

CPA4   ✔Top 10 ✔Top 10 ✔ ✔Top 10   

PTPRR  x ✔Top 10 x ✔Top 10 x  x 

FMOD x x x x   ✔Top 10 ✔ 

PLCB4 x x x x ✔Top 10 x  x 

PCSK1N x x x x   ✔Top 10 ✔Top 10 

RAB38 x x x x ✔ ✔Top 10   

OSMR ✔ ✔     ✔ ✔ 

VEGFA ✔ ✔     ✔ ✔ 

TGM2 ✔ ✔     ✔ ✔ 

SNAI1 x x x x  x ✔ x 

PLAUR ✔ ✔     ✔ ✔ 

 

A brief summary of each of these genes is provided in Table 5.10. OSMR, VEGFA, TGM2 

and SNAI1 have previously been described.  

Table 5.10: Summary of genes selected for qPCR investigation 

Gene Details 

CHI3L1 

Chitinase 3 Like 1, also known as YKL-40. Elevated levels of CHI3L1 in 
cervical cancer are associated with poor prognosis and reduced survival342. 
CHI3LI has been shown to promote both angiogenesis342and vascular 
mimicry343 in cervical cancer. Moreover, OSM has been shown to induce 
CHI3L1 expression in glioma cells344,345 and  skin cells  of patients with 
systemic sclerosis346 

CEMIP 

Cell migration-inducing and hyaluronan-binding protein, also known as 
KIAA1199 has been shown to be upregulated in several cancers, including oral 
SCC,  and is associated with poor overall survival347.  Downstream targets of 
CEMIP include ERK1/2348, PI3K/AKT349 and Wnt/β-catenin signalling 
pathways347. Its role in cervical cancer and relationship to OSM-OSMR 
signalling remains unknown.    

CPA4 
Carboxypeptidase A4. CPA4 has been found to be elevated in non-small cell 
lung cancer350,351 and triple-negative breast cancer352 and was associated with 
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poor prognosis and metastasis. It promoted invasion and migration of lung 
cancer cells350 and was implicated in EMT in breast cancer cells352. While 
CPA4 has been reported to be underexpressed in HPV positive cervical 
tumours353, its role in cervical cancer and relationship with OSM-OSMR 
signalling have not been investigated.   

PTPRR 

Protein tyrosine phosphatase receptor type R. PTPRR has been shown to be 
silenced in cervical cancer via DNA methyltransferases 3B methylation, leading 
to activation of MAPK signalling and EMT354. Overexpression of PTPRR has 
been shown to lead to reduced growth of cervical SCC lines, reduced 
expression of EMT markers and reduced expression of HPV E6 and E7 genes 
in vitro. Moreover, overexpression of PTPRR was shown to lead to reduced 
tumour growth and metastasis in vivo354. Whether PTPRR plays a role in OSM-

OSMR signalling remains to be elucidated. 

FMOD 

Fibromodulin. FMOD is a member of the small-leucine-rich-proteoglycan family 
and is known to play role in ECM remodelling, angiogenesis and modulation of 
TGFβ activity355. It has been shown to play a pro-tumorigenic role in multiple 
cancers including chronic lymphocytic leukaemia, glioblastoma and prostate 
cancers355.  Its role in cervical cancer and relationship to OSM-OSMR 
signalling remains unknown.    

PLCB4 

 

Phospholipase C beta 4. The role of PCLB4 in cancer is unclear. In appears to 
play a pro-oncogenic role in uveal melanoma356 and gastrointestinal stromal 
tumours357 whereas it has been implicated as a tumour suppressor in non-
small cell lung cancer (NSCLC)358. The role of PLCB4 in cervical cancer and 
whether it is a target of OSM-OSMR signalling have not been investigated. 

PCSK1N 

Proprotein convertase subtilisin/kexin type 1 inhibitor, also known as proSAAS. 
Very little is known about PCSK1N. It has been shown to be a precursor for 
neuropeptides359 and may play a role in glucose metabolism360. Whether it 
plays a role in cancer, or is involved in the OSM-OSMR signalling pathway, 
has not been investigated. 

RAB38 

RAB38, a ras-related gtp-binding protein, is a member of the small GTPase 
super family. RAB GTPases mediate vesicle formation, vesicle movement and 
membrane fusion. RAB38 is believed to contribute to endoplasmic reticulum-
related transport361. RAB38 has been shown to be expressed in melanoma362, 
glioma363 and pancreatic cancer364 and is associated with poor prognosis and 
progression. Its role in cervical cancer is unknown; however, Santin et al 

(2006)365 identified RAB38 as one of many genes downregulated in cervical 
carcinoma compared to normal cervical keratinocytes in microarray data. 
Whether RAB38 expression is modulated by OSM-OSMR signalling has not 
previously been investigated.  

PLAUR 

Plasminogen activator, urokinase receptor. PLAUR encodes UPAR, a cell 
membrane receptor that forms multi-protein complexes with neighbouring 
transmembrane receptors, such as integrins FPRL-1 and EGFR. It has been 
shown to be overexpressed in multiple cancers including NSCLC and 
glioblastoma and plays a role in tumour growth, invasion, angiogenesis and 
metastasis366,367. Moreover, soluble PLAUR has been identified as a plasma 
biomarker of multiple cancer types including cervical cancer368. Interestingly, 
PLAUR has also been shown to be elevated in EVs from patients with gefitinib-
resistant NSCLC367. Previous work in our laboratory has shown that PLAUR is 
overexpressed in cervical SCC tissues with OSMR overexpression and 
upregulated in cervical SCC cell lines with OSMR overexpression (SW756 and 
CaSki cells) in response to OSM treatment121. OSM has also been shown to 
induce UPAR expression in endothelial cells leading to increased migration369. 
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Validation of sequencing results by qPCR was performed using the same RNA samples that 

were used for sequencing, i.e. EP cells and KD cells treated with PBS or OSM (n=3) and 

their resultant EVs (n=5). In addition, qPCR was performed on samples from the additional 

OSMR KD cell lines generated by the second CRISPR experiment (section 4.9; EP2, KD2 

and KD3; n=3) treated with the same experimental design as the other samples. 

Unfortunately, EV mRNA could not be accurately detected using our standard qPCR 

pipeline. Therefore, results shown are for cellular mRNA expression only. Levels of OSMR, 

VEGFA, TGM2 and SNAI1 expression in each cell line, are shown in Figure 5.16. OSMR 

and VEGFA were found to be significantly upregulated in EP and EP2 cell lines in response 

to OSM treatment, but not in any of the three KD cell lines. This is consistent with 

sequencing results and previous work92,121. TGM2 and SNAI1 were also upregulated in both 

EP and EP2 cells in response to OSM; however these changes were not statistically 

significant (Figure 5.16C+D). 

 

Figure 5.16: Sequencing validation - known OSM-OSMR downstream targets 
qPCR for A) OSMR B) VEGFA C) TGM2 and D) SNAI1 expression in Empty Plasmid and OSMR KD SW756 
cells (CRISPR1) and Empty Plasmid 2 and OSMR KD 2 and OSMR KD 3 SW756 cells (CRISPR2) in response to 

OSM. For all cell lines, fold change is shown relative to Empty Plasmid 1 + PBS control. Error bars represent SEM. 

Values were analysed for statistical significance using a using a one way ANOVA with Tukey’s multiple 

comparison post-hoc tests. P≤0.05 were regarded as significant; * = P≤0.05, ** = P ≤0.01, *** = P≤0.001 and **** 

= P ≤0.0001. Black stars represent significant change in gene expression compared to Empty Plasmid + PBS 

(CRISPR1); all other comparisons between groups in CRISPR1 are shown in purple. Red stars represent significant 

change in gene expression in groups in CRISPR compared to Empty Plasmid 2 + PBS (CRISPR2); all other 

comparisons between groups in CRISPR2 are shown in blue.   

 



 

182 
 

Levels of CHI3L1, CEMIP and PLAUR, which were all found by NGS to be upregulated in 

EP-cells in response to OSM and downregulated in KD-cells, were subsequently 

investigated (Figure 5.17A-C). There was no difference in baseline expression of CHI3L1 

and CEMIP for any of the cell lines investigated (Figure 5.17A+B). While this was also the 

case for PLAUR in KD-PBS-cells and KD2-PBS-cells, KD3-PBS-cells were, in fact, found to 

have elevated baseline levels of PLAUR compared to EP cell lines. CHI3L1, CEMIP and 

PLAUR were all found to be significantly upregulated in EP and EP2 cell lines in response to 

OSM; this response was mostly abrogated in KD cells lines. Interestingly, while OSM 

treatment did not affect PLAUR expression in KD3 cells, baseline levels of PLAUR in this cell 

line were significantly elevated compared to EP-PBS-cells and EP2-PBS-cells. Level of 

PLAUR transcription in KD3-PBS-cells was similar to levels observed for EP2-OSM-cells 

(Figure 5.17C).  

 

Analysis of sequencing data revealed that levels of CPA4 and PTPRR were downregulated 

in EP-cells in response to OSM treatment. This finding was confirmed by qPCR; in response 

to OSM treatment, CPA4 expression levels were significantly reduced in EP and EP2 cell 

lines (Figure 5.17D). Treatment with OSM did not affect CPA4 levels in any of the three KD 

cell lines. Levels of PTPRR were also downregulated in EP and EP2 cell lines in response to 

OSM treatment; however, this downregulation was not statistically significant (Figure 5.17E). 

Moreover, PTPRR appeared to be expressed at higher levels in untreated KD cell lines than 

EP cell lines; though again this was not statistically significant.  

 

Expression of PLCB4 and RAB38 was then investigated. Neither of these genes was found 

by NGS to be changed in EP-cells following treatment with OSM though both were 

upregulated in KD-cells compared to EP-cells. Consistent with NGS results, levels of PLCB4 

and RAB38 remained unaltered in EP and EP2 cell lines in response to OSM in qPCR 

experiments (Figure 5.18A+B) and RAB38 was upregulated in KD-cells treated with either 

PBS or OSM compared to the paired EP-cells (Figure 5.18B). However, no differences in 

RAB38 levels were detected in KD2 and KD3 cell lines compared to EP-cells or EP2-cells. 

PLCB4 was also found to be significantly upregulated in KD-PBS-cells compared to both EP- 

PBS-cells and EP-OSM-cells (Figure 5.18A) However, no differences in PLCB4 expression 

were seen in the CRISPR2 cell lines (EP2, KD2 or KD3). 

 

 Finally, levels of FMOD and PCSK1N were investigated by qPCR. These genes were 

downregulated in KD-cells compared to EP-cells in NGS analysis. Similar to NGS results, no 

difference in FMOD or PCSK1N expression was detected in EP or EP2 cells in response to 

treatment with OSM (Figure 5.18C+D). Both genes were downregulated in both KD-PBS-
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cells and KD-OSM-cells compared to EP-PBS-cells and EP-OSM-cells. However, CRISPR2 

cell lines did not behave in the same manner. There was no significant difference in baseline 

FMOD expression in EP2-cells compared to KD2-cells or KD3-cells. FMOD was, however, 

reduced in KD3-cells compared to EP-cells (both in the presence and absence of OSM). All 

CRISPR2 cell lines displayed significantly reduced levels of baseline PCSK1N expression 

compared to EP-PBS-cells; however, there were no differences in PCSK1N expression 

between the CRISPR2 cell lines.  

 

While overall these results confirm the expression patterns observed by NGS, they also 

highlight differences in the cell lines generated from the two CRISPR experiments, especially 

in regard to genes that were found to be primarily altered in KD cells such as PLCB4, 

RAB38, FMOD and PCSK1N.  
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Figure 5.17: Sequencing validation – targets up or downregulated in response to OSM 

qPCR for A) CHI3L1 B) CEMIP C) PLAUR D) CPA4 and E) PTPRR expression in Empty Plasmid and 
OSMR KD SW756 cells (CRISPR1) and Empty Plasmid 2 and OSMR KD 2 and OSMR KD 3 SW756 

cells (CRISPR2) in response to OSM. For all cell lines, fold change is shown relative to Empty Plasmid + 

PBS control. Error bars represent SEM. Values were analysed for statistical significance using a using a 
one way ANOVA with Tukey’s multiple comparison post-hoc tests. P≤0.05 were regarded as significant; 

* = P≤0.05, ** = P ≤0.01, *** = P≤0.001 and **** = P ≤0.0001. Black stars represent significant change 

in gene expression compared to Empty Plasmid 1 + PBS (CRISPR1); all other comparisons between 

groups in CRISPR1 are shown in purple. Red stars represent significant change in gene expression in 
groups in CRISPR compared to Empty Plasmid 2 + PBS (CRISPR2); all other comparisons between 

groups in CRISPR2 are shown in blue. 
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5.5.6 TCGA analysis 

Having validated some of the most differentially expressed genes that were shown to be 

potentially involved in OSM-OSMR signalling, their correlation with OSMR or STAT3 

expression in clinical cervical SCC samples was investigated to explore the clinical 

relevance of the observed changes. This was performed using publicly available data from 

patient cervical SCC samples on TCGA; 251 cervical SCC samples were available for 

investigation. To account for multiple testing, a p value of ≤0.01 was considered adequate for 

a significant correlation. This analysis was performed by Dr Stephen Smith.  

Figure 5.18: Sequencing validation –targets with altered expression OSMR KD cells 
qPCR for A) PLCB4 B) RAB38 C) FMOD and D) PCSK1N in Empty Plasmid and OSMR KD  

SW756 cells (CRISPR1) and Empty Plasmid 2 and OSMR KD 2 and OSMR KD 3 SW756 cells 

(CRISPR2) in response to OSM. For all cell lines, fold change is shown relative to Empty 

Plasmid + PBS control. Error bars represent SEM. Values were analysed for statistical 

significance using a using ANOVA with Tukey’s multiple comparison post-hoc tests. P≤0.05 

were regarded as significant; * = P≤0.05, ** = P ≤0.01, *** = P≤0.001 and **** = P ≤0.0001. 

Black stars represent significant change in gene expression compared to Empty Plasmid 1 + PBS 

(CRISPR1); all other comparisons between groups in CRISPR1 are shown in purple.  
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Of the genes upregulated in response to OSM-OSMR signalling in NGS samples, only 

CEMIP and PLAUR showed a significant positive correlation with OSMR expression in 

cervical SCC samples (Figure 5.19). Interestingly, despite being downregulated in KD cells, 

PCSK1N displayed a significant negative correlation with OSMR expression in TCGA 

samples. While from the downregulated genes, CPA4, RAB38 and PTPRR were all, 

unexpectedly, found to have a significant positive correlation with OSMR expression. This 

was despite being downregulated in EP-cells in response to OSM treatment (CPA4 and 

PTPRR) or upregulated in KD-OSM-cells compared to EP-OSM-cells (RAB38; Figure 5.20). 

 

Of the genes upregulated in response to OSM-OSMR signalling in NGS samples, CHI3L1 

was found to positively correlate, and PCSK1N to negatively correlate with STAT3 

expression in cervical SCC samples (Figure 5.21). None of the downregulated genes 

showed a significant correlation with STAT3 (Figure 5.22).  
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Figure 5.19: OSMR correlation with genes upregulated by OSM-OSMR signalling 

TCGA analysis of 251 cervical SCC samples. Correlation of OSMR with A) CHI3L1 B) 

CEMIP C) PLAUR D) FMOD and E) PCSK1N expression is shown. All of these genes were 

shown by NGS to be upregulated in response to OSM-OSMR signalling.  p ≤0.01 is 

considered significant. Significant correlations are shown in red. 
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Figure 5.20: OSM correlation with genes downregulated by OSM-OSMR signalling 

TCGA analysis of 251 cervical SCC samples. Correlation of OSMR with A) CPA4 B) 

PTPRR C) PLCB4 and D) RAB38 expression is shown. All these genes were shown by 

NGS to be downregulated in response to OSM-OSMR signalling. p ≤0.01is considered 

significant. Significant correlations are shown in red. 
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Figure 5.21: STAT3 correlation with genes upregulated by OSM-OSMR signalling 

TCGA analysis of 251 cervical SCC samples. Correlation of STAT3 with A) CHI3L1 B) 

CEMIP C) PLAUR D) FMOD and E) PCSK1N expression is shown. All these genes were 

shown by NGS to be upregulated in response to OSM-OSMR. p ≤0.01 is considered 

significant. Significant correlations are shown in red. 
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Figure 5.22: STAT3 correlation with genes downregulated by OSM-OSMR signalling 

TCGA analysis of 251 cervical SCC samples. Correlation of OSMR with A) CPA4 B) PTPRR C) 

PLCB4 and D) RAB38 expression is shown. All these genes were shown by NGS to be 

downregulated in response to OSM-OSMR signalling. p ≤0.01 is considered significant. Significant 
correlations are shown in red. 
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5.6 miRNA Sequencing Results  

miRNA libraries were prepared using a NEXTFLEX® Small RNA-Seq Kit v3, using the gel 

free size selection and bead clean up protocol as previously described. 30ng of input RNA 

was used per sample. Samples were run on a NextSeq500, with a 75 cycles High Output kit, 

at a final concentration of 1.8pM with 20% PhiX.  

 

5.6.1 Bioinformatic Analysis – sample normalisation and clustering 

The bioinformatics performed in this section was performed by Dr Anton Enright, Stephanie 

Wenlock and Dr Stephen Smith using the pipeline detailed in Table 5.2.  All samples passed 

quality control (data not shown).  Raw, pre-normalised counts generated by Chimira are 

shown in Figure S5. 24A. Samples 1A (EP-PBS-cell, replicate 1), 2D (KD-OSM-cell, 

replicate 2) and 9D (KD-OSM-EV, replicate 4) had notably lower counts than other samples 

in the same treatment groups. Chimira analysis revealed that these samples contained a 

high proportion of reads mapping to spike-in control and low proportion mapping to miRNAs 

(data not shown). This suggests that library preparation may not have been successful for 

these samples and they were therefore excluded prior to normalisation.  

 

A DESeq2 normalisation procedure was subsequently applied to the raw counts223 (Figure 

S5. 24B). Sample clustering is shown by heatmap (Figure S5. 24C) and t-SNE plot (Figure 

S5. 24). As seen for mRNA, cells and EVs appeared to cluster separately, consistent with 

the predicted differences between cellular and EV miRNA cargos. Similar patterns of 

clustering were observed for both cells and EVs in response to treatments. KD-PBS and KD-

OSM were tightly clustered, showing little difference between these two groups. EP-OSM 

clustered separately from KD-PBS or KD-OSM.  

 

Differential miRNA expression was investigated for the comparisons shown in Table 5.5 

(same comparisons as performed for analysis of mRNA expression) using a LFC threshold 

of +/-0.5 and a FDR significance threshold of ≤0.05.  Scatterplots were produced to compare 

median counts for all six comparisons for both cells and EVs.  As with mRNA analysis, the 

two key comparisons to demonstrate differences in OSM-OSMR signalling in both cells and 

EVs were EP-PBS versus EP-OSM and EP-OSM versus KD-OSM (Figure 5.23). All other 

comparisons performed are shown in Figure S5. 25 (cells) and Figure S5. 26 (EVs). 

Differences in miRNA expression for each set of comparisons were also visualised using 

volcano plots. Volcano plots for the two main comparisons are shown in Figure 5.24. All 

other comparisons performed are shown in supplementary figures: cells (Figure S5. 27) and 

EVs (Figure S5. 28). 
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Figure 5.23: miRNA scatterplots 

Correlation plots of differential gene expression for: 

A) EP-PBS-cells versus EP-OSM-cells 

B) EP-PBS-EVs versus EP-OSM-EVs 

C) EP-OSM-Cells versus KD-OSM-cells 

D) EP-OSM-EVs versus KD-OSM-EVs 

miRNA with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in blue.  
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Figure 5.24: miRNA Volcano Plots 

Volcano plots of differential gene expression for: 

A) EP-PBS-cells versus EP-OSM-cells 

B) EP-PBS-EVs versus EP-OSM-EVs 

C) EP-OSM-Cells versus KD-OSM-cells 

D) EP-OSM-EVs versus KD-OSM-EVs 

miRNA with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red.  

All other genes are shown in black. Top 50 most significantly changed mRNA are labelled 
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Surprisingly, very few miRNAs were found to be altered in EP cells and EVs in response to 

treatment with OSM. More miRNAs were significantly altered in KD cells and EVs compared 

to EP cells and EVs; however, significantly changed miRNAs were fewer than expected, 

particularly as the preliminary qPCR experiments described in chapter 4 had suggested 

multiple changes following OSM-OSMR interaction. The numbers of miRNAs with differential 

expression for each comparison are shown in Table 5.11.  In general, more miRNAs were 

differentially expressed in EVs than in cells. EP-OSM versus KD-OSM was the comparison 

that produced the greatest number of differentially expressed in miRNAs for both cell and EV 

comparisons.  

 

Table 5.11: Number significantly altered miRNA per comparison 

COMPARISON 

CELLS v CELLS EVs v EVs 

UP 
REGULATED 

DOWN 
REGULATED 

UP 
REGULATED 

DOWN 
REGULATED 

EP-PBS versus EP-OSM 1 2 3 6 

EP-PBS versus KD-PBS 2 9 3 11 

EP-PBS versus KD-OSM 4 8 5 9 

EP-OSM versus KD-PBS 8 13 11 17 

EP-OSM versus KD-OSM 13 13 11 17 

KD-PBS versus KD-OSM 1 0 0 0 

 

5.6.2 Comparison of cellular and EV miRNA expression   

Similarities and differences in cellular and EV miRNA expression profiles for each of the 

comparisons shown in Table 5.12 were visualised by Venn diagram using Venn Diagram 

Plotter software (Pacific Northwest National Laboratory, omics.pnl.gov; Figure 5.25).  

 

Table 5.12: Summary of data shown in Venn diagrams (miRNA) 

 
Cell-Cell 

comparisons 
EV-EV comparisons 

For each pair of comparisons 
Venn Diagram shows 

1. 
EP-PBS-cells versus 

EP-OSM-cells 
EP-PBS-EVs versus  

EP-OSM-EVs 
 miRNAs that were commonly up 

or down regulated in both cell 
and EV comparisons (i.e. 
commonly DE miRNA in both 
cell and EVs) 
 

 miRNAs that were up or down 
downregulated in cell-cell or EV-
EV comparisons only (i.e. 
miRNA with DE unique to either 
cells or EVs) 

2. 
EP-PBS-cells versus 

KD-PBS-cells 
EP-PBS-EVs versus  

KD-PBS-EVs 

3. 
EP-PBS-cells versus 

KD-OSM-cells 
EP-PBS-EVs versus  

KD-OSM-EVs 

4. 
EP-OSM-cells  

versus KD-PBS-cells 
EP-OSM-EVs versus 

 KD-PBS-EVs 

5. 
EP-OSM-cells  

versus KD-OSM-cells 
EP-OSM-EVs versus 

KD-OSM-EVs 
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Figure 5.25: Comparison of Cells and EV miRNA  

Comparison of miRNA with significant (p≤0.05) up or down regulation in cells and EVs 

from each treatment group.  
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For all comparisons investigated, overlapping cohorts of genes were found to be up or down 

regulated in both cells and EVs.  While the low number of differentially expressed miRNAs 

led us to question whether there were technical issues with library preparation, the overlap of 

differentially expressed miRNAs in both cell and EV comparisons suggests that these 

miRNAs could be biologically relevant.  

 

All miRNAs with significantly altered expression levels in the two key comparisons are 

shown in Table 5.13. Results for all other comparisons are shown in Table S5. 2 (cell-cell 

comparisons) and Table S5. 3 (EV-EV comparisons). miRNAs that were found to be 

differentially regulated in both cells and EVs for the EP-PBS versus EP-OSM and EP-OSM 

versus KD-OSM comparisons were selected for further investigation. Mir-146b-5p, mir-148a-

3p, mir-224-5p, mir-342-3p, mir-363-3p and hsa-mir-452-5p were upregulated in response to 

OSM-OSMR signalling, whereas mir-30a-5p, mir-30c-1-5p, mir-92a-1-3p and mir-503-5p 

were considered to be downregulated in response to OSM-OSMR signalling. 
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Table 5.13: miRNA with significantly altered expression 
miRNAs that were up or down regulated in both cells and EVs for the same comparison were colour 

coded : 

Empty plasmid + PBS vs Empty plasmid + OSM: red = upregulated, blue = downregulated 

Empty plasmid + OSM vs OSMR KD + OSM: green = upregulated, purple = downregulated 
 UPREGULATED DOWNREGULATED 

miRNA log2FC 
adjusted P 

value 
miRNA log2FC 

adjusted P 

value 

EP-PBS 
versus 

EP-OSM 

CELL vs 

CELL 

hsa-mir-146b-

5p 
2.09 4.41 x10

-29
 hsa-mir-30a-5p -1.20 8.14 x10

-8
 

   
hsa-mir-30a-3p -1.14 1.44 x10

-8
 

EV vs 

EV 

hsa-mir-146b-
3p 

3.10 3.01 x10
-3

 hsa-mir-33b-3p -6.13 3.18 x10
-4

 

hsa-mir-146b-
5p 

1.71 1.80 x10
-41

 hsa-mir-33b-5p -5.40 0.014 

hsa-mir-130a-
3p 

0.54 0.025 hsa-mir-181b-2-
5p 

-2.01 3.95 x10
-3

 

   hsa-mir-30b-5p -0.71 0.023 

   hsa-mir-30c-1-
5p 

-0.65 0.023 

   hsa-mir-30a-5p -0.64 1.75 x10
-4

 

EP-OSM 
versus KD-

OSM 

CELL vs 
CELL  

hsa-mir-369-3p 4.40 0.012 hsa-mir-148a-
3p 

-5.68 6.73 x10
-19

 

hsa-mir-940-3p 3.69 6.04 x10
-3

 hsa-mir-20b-5p -4.12 0.032 

hsa-mir-122-5p 2.41 7.52 x10
-4

 hsa-mir-146b-

5p 
-3.07 7.21 x10

-64
 

hsa-mir-941-1-

3p 
1.56 7.19 x10

-3
 hsa-mir-363-3p -2.81 6.78 x10

-
10 

hsa-mir-92a-2-
3p 

1.54 0.019 hsa-mir-660-5p -2.05 0.012 

hsa-mir-30c-2-
3p 

1.49 0.032 hsa-mir-452-5p -1.85 2.50 x10
-3

 

hsa-mir-30a-5p 1.30 7.35 x10
-10

 hsa-mir-195-5p -1.50 6.04 x10
-3

 

hsa-mir-30a-3p 1.28 1.27 x10
-11

 hsa-mir-378a-
3p 

-1.27 0.011 

hsa-mir-19b-1-
3p 

1.23 0.037 hsa-mir-342-3p -1.17 7.52 x10
-4

 

hsa-mir-503-5p 1.07 0.024 hsa-mir-224-5p -0.99 7.96 x10
-4

 

hsa-mir-30c-1-
5p 

1.02 6.04 x10
-3

 hsa-mir-132-3p -0.95 0.024 

hsa-mir-335-3p 1.01 0.011 hsa-mir-29a-3p -0.56 0.022 

hsa-mir-92a-1-

3p 
0.66 6.04 x10

-3
 hsa-mir-27b-3p -0.52 6.04 x10

-3
 

 EV vs 

EV 

hsa-mir-33b-3p 7.16 9.06 x10
-6

 hsa-mir-663b-
3p 

-5.06 0.017 

hsa-mir-182-3p 5.05 0.041 hsa-mir-410-3p -3.49 0.041 

hsa-mir-181b-2-

5p 
1.88 0.011 hsa-mir-146b-

3p 
-2.59 0.017 

hsa-mir-503-5p 1.34 9.26 x10
-6

 hsa-mir-146b-
5p 

-2.55 6.84 x10
-82

 

hsa-mir-20a-5p 0.99 4.13 x10
-5

 hsa-mir-363-3p -2.48 1.21 x10
-14

 

hsa-mir-424-5p 0.97 0.033 hsa-mir-494-3p -1.39 9.51 x10
-3

 

hsa-mir-221-5p 0.81 0.046 hsa-let-7c-5p -1.36 5.75 x10
-5

 

hsa-mir-30c-1-
5p 

0.77 4.30 x10
-3

 hsa-mir-148a-
3p 

-1.15 0.017 

hsa-mir-92a-1-
3p 

0.76 8.05 x10
-7

 hsa-mir-452-5p -1.09 0.023 

hsa-mir-30a-5p 0.76 5.21 x10
-6

 hsa-mir-340-3p -1.00 0.017 

hsa-mir-505-3p 0.62 0.015 hsa-mir-126-3p -0.98 0.045 

   hsa-mir-205-5p -0.95 0.036 

   hsa-mir-342-3p -0.90 2.00 x10
-4

 

   hsa-mir-122-5p -0.80 0.013 

   hsa-mir-224-5p -0.68 2.09 x10
-3

 

   hsa-mir-486-1-
5p 

-0.65 0.012 

   hsa-mir-99a-5p -0.61 0.034 



 

198 
 

5.6.3 TCGA analysis 

To explore the clinical significance of these miRNAs, the correlation between the ten 

miRNAs selected for further investigation and OSMR or STAT3 expression in clinical cervical 

SCC samples were investigated. This was performed by Dr Stephen Smith and, as for the 

mRNA analysis, data from 251 cervical SCC samples collected in the TCGA database were 

utilised. To account for multiple testing, a p value of ≤0.01 was considered adequate for a 

significant correlation. 

 

Of the miRNAs overexpressed in response to OSM-OSMR signalling in NGS samples 

(Figure S5. 29), only miR-363 was found to have a significant correlation with OSMR; 

however, the levels of miR-363 were unexpectedly found to negatively correlate with OSMR 

(Figure S5. 29E). None of the miRNAs that were down-regulated in response to OSM-OSMR 

signalling were found to correlate with OSMR expression in cervical SCC samples (Figure 

S5. 30). Moreover, of the miRNAs investigated, none displayed expression that correlated 

with STAT3 expression in cervical SCC samples (Figure S5. 31 and Figure S5. 32). 

 

5.6.4 qPCR validation of miRNA sequencing results  

As experiments described in Chapter 4 had identified some miRNAs that changed 

significantly following treatment with OSM, it was expected that at least some of these 

miRNAs would be differentially expressed in the NGS samples. However, none of these 

miRNAs were found to display differential gene expression in any of the cell-cell 

comparisons. Only MiR-126-3p was found to be significantly downregulated in KD-OSM-EVs 

compared to EP-OSM-EVs (Figure 5.26D panel ii). 

 

The low number of differentially expressed miRNAs in the NGS dataset, and the lack of 

consistency between NGS results and previous qPCR findings, raised the possibility that the 

NGS data may not accurately reflect the true impact of OSM-OSMR signalling on differential 

miRNA expression. To try to address the inconsistencies between the original experiment 

described in chapter 4 and the NGS results, four of the miRNAs previously found to be 

upregulated in WT-OSM-EVs were investigated by qPCR in the sample sets used for NGS. 

Interestingly, qPCR analysis of the cell samples used for sequencing confirmed previous 

findings that miR9-3p, miR-23b, miR-29b and miR-126 were significantly upregulated in EP-

OSM-cells (Figure 5.26). Moreover, miR9, miR-23b and miR-126 were all found to be 

significantly downregulated in KD-cells. qPCR validation could not be performed on EV 

samples as not enough material remained following NGS.   
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Figure 5.26: miRNA validation 
Comparison of  i) qPCR and ii) NGS sequencing results for A) miR-9, B) miR-23b, C) miR-29b and 

D) miR-126 expression in EP and KD SW756 cells treated for 48 hours with OSM or PBS control. 
Levels of these miRNA in EV samples are also shown for NGS analysis. qPCR Values were analysed 

for statistical significance using a using a one way ANOVA with Tukey’s multiple comparison post-

hoc tests. P≤0.05 were regarded as significant; * = P≤0.05, ** = P ≤0.01, *** = P≤0.001 and **** = P 
≤0.0001. Stars are colour coded to convey which comparisons were significant.  
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5.7 Chapter discussion and summary  

5.7.1 mRNA Sequencing – bioinformatic  analysis  

Next generation sequencing of cervical SCC cell and EV content is reported in this chapter. 

As expected, protein coding genes represented the main RNA type in all samples prepared 

with the mRNA library preparation kit and a higher proportion of reads were found to map to 

protein coding genes in cell samples compared to EVs. This is consistent with previous 

studies which have demonstrated enrichment of lncRNAs, antisense RNAs and transcripts 

derived from pseudogenes in EVs370–372. Heatmaps and tSNE plots of normalised counts 

revealed that cell and EV samples from all treatment groups appeared to cluster separately, 

which is consistent with the inherent differences between cellular and EV cargo which are 

independent of OSMR expression or OSM treatment. Reassuringly, for both cells and EVs, 

EP-OSM clustered separately from KD-PBS or KD-OSM, while EP-PBS constituted a third 

cluster.  

 

There is no gold standard for which statistical package performs best for analysis of mRNA 

sequencing data335. Therefore, combining analysis from multiple approaches and selecting 

genes that are found to be differentially regulated across different statistical packages for 

further investigation, is considered an optimum way of obtaining the most reliable and 

accurate results. Therefore, we applied these principles to our investigations. Differential 

mRNA expression was investigated using three different statistical packages: DeSeq2, 

EdgeR and EdgeR voom. Statistical methods were consistent with one another when used 

to rank which cell-cell and EV-EV comparisons had the greatest amount of differential gene 

expression. 

 

Previous studies have shown that DESeq2 and EdgeR perform similarly, owing to the fact 

that they share analogous statistical models335,336. The analysis reported here for cell-cell 

comparisons are in agreement with these findings. Interestingly DESeq2 is thought to be 

more conservative than EdgeR335,336, though we found that EdgeR appeared to be the most 

conservative of the three analysis methods. For EV-EV comparisons, the statistical package 

detecting the most differentially expressed genes varied between comparisons. This could 

potentially be due to the fact that expression levels are lower in EVs compared to cells, and 

are, therefore, likely to display differences in dispersion, which was one of the parameters 

used for statistical analysis. Inconsistency between comparisons drove the decision to select 

only genes for further investigation that were found to be differentially expressed by all three 

analysis methods, as these are most likely to represent true biological variations. There was 
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a substantial overlap in the genes identified by the three packages for all comparisons 

performed.  

 

5.7.2 mRNA Sequencing – overview of results  

Treatment of OSMR overexpressing EP SW756 cells with OSM led to global changes in 

gene expression in both the cells and their resultant EVs. Similarly, OSMR KD cells and their 

EVs displayed markedly different basal expression profiles compared to EP cells and EVs, 

respectively. As expected, comparison of EP-OSM and KD-OSM produced the greatest 

number of disparately expressed genes in both cell and EV comparisons. Whereas, 

treatment of KD cells with OSM did not lead to significant changes in gene expression in 

either cells or EVs. Together, these results are consistent with previous qPCR results 

(detailed in Chapter 4) which demonstrated that OSM activated expression of downstream 

targets of OSM-OSMR signalling in EP-cells but not KD-cells. If OSM signalled through LIFR 

we would still expect to see changes in gene expression in response to OSM treatment in 

OSMR KD cells. Therefore, the current experiment corroborates previous findings from our 

research group that OSM predominantly signals via OSMR and not LIFR in SW756 cells92. 

Moreover, these results demonstrate for the first time that OSM-OSMR signalling is capable 

of altering the mRNA cargo of EVs released from cervical SCC cells. 

 

Interestingly, while there was overlap between genes that were up or down regulated in both 

cells and EVs in response to OSM treatment or OSMR knockdown, the number of genes 

found to be differentially expressed varied between cells and EVs for each comparison. For 

example, when comparing EP-OSM and KD-OSM, more genes were found to be 

significantly downregulated (543) than upregulated (216) in the KD-OSM-cells, whereas 

more genes were upregulated (847) than downregulated (212) in KD-OSM-EVs. However, 

pathway analysis revealed that, in response to OSM-OSMR signalling, transcriptional 

changes in both cells and EVs contributed to over or under representation of similar 

pathways. This indicates that, while the EV cargo reflects transcripts which were differentially 

expressed in the cell of origin in response to OSM-OSMR signalling, individual mRNAs can 

be selectively packaged into EVs. This is consistent with previous findings that transcripts 

can be exclusively expressed by EVs169,373, or differentially enriched compared to their cells 

of orgin169,373,374, which is indicative of selective mRNA packaging into EVs. In the current 

investigation differentially expressed genes were defined as having a LFC threshold of +/-0.5 

and a FDR significance threshold of ≤ 0.01. Therefore, it is possible that if a less stringent 

FDR was used (e.g. ≤ 0.05) there may be greater overlap in the genes found to be 

differentially expressed when comparing cell-cell and EV-EV comparisons.  
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In EP cells and EVs, treatment with OSM led to: upregulation of pathways involved in 

cytokine mediated signalling, myeloid leucocyte activation, hypoxia signalling, interferon 

signalling, negative regulation of viral life cycle and angiogenesis. Similar pathways were 

found to be downregulated in both cells and EVs following OSMR KD. On the other hand, 

OSM treatment resulted in: downregulation of pathways involved in PI3K-AKT signalling, 

tissue remodelling, negative regulation of differentiation and focal adhesion in EP cells. 

Some of these pathways were also upregulated in KD cells. Thus, similar pathways were 

found to be over represented in response to OSM-OSMR signalling in EP cells and EVs and 

under represented following OSMR KD (and vice versa). For most comparisons, pathways 

found to be up or down regulated in the EVs closely mirrored their cells of origin. However, 

pathways that were downregulated in EP EVs in response to OSM differed from those 

described for the corresponding cell-cell comparison. Pathways involved in cell cycle 

regulation and regulation of division and cellular organisation were downregulated in EVs in 

response to OSM. Similar pathways were upregulated in KD EVs compared to EP EVs.  

 

As expected, pathways implicated in cellular response to OSM-OSMR signalling in the 

current NGS experiments were similar to those identified in previous experiments by our 

research group. These experiments used microarray to investigate gene expression in 

SW756 and CaSki cells (another OSMR overexpressing cervical SCC cell line) at various 

timepoints following OSM treatment121. The same technique was also used to compare gene 

expression in cervical SCC clinical samples deemed to have OSMR overexpression. The 

key pathways identified by microarray to be altered in clinical samples and in both cell lines 

in response to OSM treatment were related to: increased cell migration and invasion, 

angiogenesis, signal transduction and apoptosis121. It is, therefore, reassuring that the 

results from the current study are consistent with these findings. One of the main differences 

between these studies was that apoptosis was not found to be a key pathway altered in 

response to OSM-OSMR signalling in the current investigation. This is consistent with 

experiments conducted to validate microarray pathway analysis; treatment of SW756 and 

CaSki cells with OSM had no effect on the cell cycle or number of apoptotic cells121.   

 

The current study corroborated previous microarray results, and identified similar genes and 

pathways found to be differentially expressed in OSMR overexpressing cells in response to 

OSM treatment.  However, it also demonstrated that removal of OSMR (via CRISPR-Cas9 

mediated KD) led to global changes in basal gene expression compared to OSMR 

expressing EP cells. As these changes occurred in the absence of exogenous OSM, this 

indicates that OSMR overexpressing cervical SCC cells endogenously produce OSM, which 

is capable of driving functionally significant OSM-OSMR signalling in an autocrine manner. 
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This is consistent with previous experiments by our research group in which forced 

expression of OSMR in cervical SCC cells with low baseline levels of OSMR expression led 

to increased phosphorylation of STAT3 in the absence of OSM92. Similarly, treatment of 

SW756 cells with anti-OSM antibody led to a significant reduction in the invasive capacity of 

SW756 cell in vitro and reduced lung colonisation following tail vein injection in vivo, in the 

absence of exogenous OSM92. Moreover, the results from the current study demonstrate, for 

the first time, that OSM-OSMR signalling in cervical SCC (either in the presence or absence 

of endogenous OSM) leads to global changes in EV mRNA cargo. 

 

Microarray platforms require a priori knowledge of the query genome and therefore suffer 

from design bias as they only detect transcripts which hybridise to specific probes selected 

in the aray375. On the other hand, NGS is less biased than microarray, requires no a priori 

knowledge of the genome and facilitates detection of novel transcripts, splice junctions and 

non coding RNAs375.  Therefore, the data generated by the current study could be used for 

subsequent investigations outwith the scope of this thesis, for example investigation of gene 

splicing in cervical SCC cells and EVs in response to OSM-OSMR signalling.  

 

5.7.3 Pathway analysis  

Activation of cytokine mediated signalling was found to be the most enriched pathway in 

both cells and EVs in response to OSM-OSMR signalling. This is unsurprising given the 

known role of OSM as pleiotropic cytokine capable of activating STAT, MAPK, PI3K/AKT 

and SRC/YAP/NOTCH  signalling cascades76,83,84. Packaging of these signals into EVs is 

likely to be a mechanism which facilitates the perpetuation of these signalling cascades to 

other cancer cells or to cells of the TME.  

 

Consistent with the previous array experiments, pathways involved in angiogenesis were 

upregulated in SW756 cells in response to OSM-OSMR signalling121. Interestingly, these 

pathways did not appear to be upregulated in the EVs, either in response to OSM 

stimulation or following OSMR KD. In the array experiment, genes involved in angiogenesis 

were differentially expressed at 4, 12 and 24 hours post OSM treatment, but did not remain 

activated at the 48 hour timepoint121. This indicates that OSM-OSMR signalling has the 

greatest impact on transcription of genes involved in this pathway at early timepoints 

following stimulation with OSM. In the current experiment, gene expression was investigated 

at 48 hours post-treatment with OSM. While genes involved in angiogenesis remained 

upregulated in cells at this timepoint in response to OSM-OSMR signalling, results from the 

array experiment suggest that greater activation may have been observed at earlier 

timepoints. Similarly, it is possible that upregulation of this pathway might have been 
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observed in EVs at earlier timepoints. In line with this hypothesis, VEGFA - which was 

previously shown to be the key mediator of OSM-OSMR induced angiogenesis by cervical 

SCC cells92,121 - was found to be significantly upregulated in EP EVs in response to OSM 

treatment, and downregulated in KD EVs compared to EP EVs.  

 

One of the key pathways shown to be upregulated in cells and EVs in response to OSM-

OSMR signalling was response to low oxygen conditions (hypoxia). As tumours grow they 

rapidly outgrow their blood supply, therefore tumours tend to have a significantly lower 

oxygen concentration than healthy tissues376. Hypoxia induces a number of intracellular 

signalling pathways, most notably the hypoxia-inducible factor (HIF) pathway, involving 

activation of HIF1α and HIF2α transcription factors (TFs)376. These TFs control the 

expression of numerous target genes involved in angiogenesis (e.g. VEGFA), tissue 

remodelling (e.g. plasminogen activator inhibitor 1; PAI), metabolism and the cell cycle. As a 

result, HIFs are considered to master regulators of angiogenesis, an essential process for 

tumour growth and progression377–380. 

 

OSM has previously been shown to induce expression of HIF1α in hepatocytes378, 

adipocytes, breast cancer associated macrophages381 and cervical SCC cells121 under 

normoxic conditions. Moreover, OSM induced upregulation of HIF-1α has been shown to 

induce a M2 polarised phenotype in breast cancer associated macrophages; this is 

associated with pro-tumoural function381,382. Recent work in our laboratory has shown that 

inhibition of HIF-1α in cervical SCC cells results in downregulation of genes involved in 

matrix remodelling, angiogenesis and metabolic adaptation (Valtteri Tulkki, unpublished). 

Therefore, in cervical SCC activation of HIF signalling is likely to be one of the key 

mechanisms by which OSM-OSMR promotes angiogenesis, in addition to direct activation of 

VEGFA92,121. In the current experiment, genes involved in hypoxia signalling were 

upregulated in both cells and EVs in response to OSM-OSMR signalling. This is consistent 

with previous findings from the array experiment, in which OSM was shown to induce 

expression of hypoxia-inducible factor 1 alpha (HIF1α) and hypoxia-inducible factor 2 alpha 

(HIF2α) in both SW756 and CaSki cells121. 

 

HIFs and their target genes have previously been reported in extracellular vesicles derived 

from hypoxic glioblastoma (GBM) and nasopharyngeal carcinoma cells383,384. EVs derived 

from GBM cells are enriched in mRNA from HIF-1α target genes. These EVs were 

demonstrated to promote angiogenesis and induced endothelial cells to secrete cytokines 

required for pericyte migration. Moreover, EVs from hypoxic GBM cells were able to promote 

migration of other GBM cells in vitro and promote tumour growth and angiogenesis in vivo383. 
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Similarly, EVs from nasopharyngeal carcinoma (NPC) cells have been shown to contain 

functionally active HIF-1α mRNA which promote migration and invasion of NPC cells in vitro, 

consistent with induction of an EMT phenotype384. While we did not observe enrichment of 

angiogenic pathways in cervical SCC EVs, upregulation of HIF and HIF inducible genes in 

EVs may be a mechanism by which cervical SCC interact with cells of the TME to promote 

angiogenesis via stimulation of angiogenic pathways in recipient cells (rather than transfer of 

pro-angiogenic factors). Therefore, it would be interesting to repeat the angiogenesis assay 

(detailed in chapter 4) using EP-EVs and KD-EVs isolated from cells at a range of timepoints 

following treatment with PBS or OSM (using continuous treatment, rather than a 2hour pulse 

as previously performed). 

 

In addition, myeloid leucocyte activation was found to be another key pathway upregulated 

in cells and EVs in response to OSM-OSMR signalling. Myeloid leucocytes include tumour 

associated macrophages, myeloid-derived suppressor cells (MDSCs), dendritic cells, 

monocytes and tumour associated neutrophils385. Tumour cells hijack the capacity of 

myeloid cells to produce inflammatory mediators, growth factors involved in tumour 

proliferation and angiogenesis and enzymes that degrade matrix proteins386. Furthermore, 

they take advantage of myeloid cells’ ability to regulate T cell response, thus creating an 

immunosuppressive microenvironment386. Immune cells are the main source of OSM within 

the tumour microenvironment. OSM secretion has been shown to attract neutrophils and 

macrophages to tumour sites, which in turn produce more OSM, and promote M2 

polarisation and tumour progression387. The current findings implicate that, in response to 

OSM-OSMR signalling, EVs released from cervical SCC cells could be key mediators of 

these processes. In order to elucidate the functional impacts of enrichment of this pathway, 

functional assay will need to be performed. For example, EP-EVs and KD-EVs from cells 

treated with PBS or OSM could be added to macrophages in order to investigate whether 

EVs mediated leucocyte activation and HIF-1α induced polarisation. This could be achieved 

by subsequent qPCR for M2 markers expression, such as Arg-1 and COX-2, in treated 

cells382.  

 

5.7.4 mRNA Sequencing – sequencing validation  

Genes that were found to be highly up or downregulated in SW756 cells and EVs in 

response to OSM-OSMR signalling were selected for validation by qPCR. These genes 

included CHI3L1, CEMIP, CPA4, PTPRR, FMOD, PLCB4, PCSK1N and RAB38. 

Unfortunately, EV mRNA could not be accurately detected using our standard qPCR 

pipeline, therefore future experiments will use a reverse transcription kit specifically designed 
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for amplification of low input RNA samples, such as the SuperScript™ II Reverse 

Transcriptase kit (Invitrogen)388.  

 

Levels of CHI3L1, CEMIP and PLAUR were all found by NGS to be upregulated in EP-OSM 

cells and EVs compared to EP-PBS cells and EVs. Moreover, all three were downregulated 

in KD-OSM cells and EVs compared to EP-OSM cells and EVs, respectively. These findings 

were corroborated by qPCR. PLAUR has previously been shown to be overexpressed in 

cervical SCC tissues and cell lines with OSMR overexpression following treatment with 

OSM121. Moreover, PLAUR may be a downstream target of HIF signalling. It has been 

shown to be induced under hypoxic conditions in breast cancer cells and drives EMT389. As 

OSM-OSMR signalling is known to induce hypoxic signalling under normoxic 

conditions121,378,381, it is likely that positive correlation of PLAUR with OSMR expression in 

TCGA data is a result of PLAUR being downstream of OSM-OSMR signalling. PLAUR has 

been shown to promote EMT and survival of GBM cells366. It is detected in EVs derived from 

NSCLC cells; moreover, inhibition of PLAUR in this cell type resulted in increased 

apoptosis367. Thus, in cervical SCC, transport of PLAUR via EVs may be a form of paracrine 

signalling to promote survival and EMT of tumour cells located in close proximity or at distant 

sites (such as metastatic deposits).  

 

Expression of CHI3L1 has previously been shown to be induced in glioma cells344,345 and 

skin cells of patients with systemic sclerosis346 in response to OSM and is a known target of 

STAT3 signalling390. Therefore, it is unsurprising that CHI3L1 was found to be upregulated in 

response to OSM-OSMR signalling in cervical SCC and to positively correlate with STAT3 

expression in TCGA analysis of cervical SCC tissues. On the other hand, CEMIP was 

identified as a novel target of OSM-OSMR signalling; moreover, CEMIP expression was 

shown to correlate positively with OSMR expression in TCGA analysis of cervical SCC 

samples. The high levels of upregulation of CHI3L1 and CEMIP in response to OSM 

treatment would make them good candidates for investigation of whether upregulation of 

OSM-OSMR induced genes can be transferred via the EVs to recipient cells. CHI3L1 has 

been shown to promote both angiogenesis342 and vascular mimicry343 in cervical cancer, 

therefore endothelial cells and naive tumour cells would be the recipient cells of choice for 

experiments designed to determine the role of these three genes in cervical SCC.  

 

CPA4 and PTPRR, which were downregulated in the NGS experiments in response to OSM-

OSMR signalling, were also downregulated by qPCR analysis; however, only 

downregulation of CPA4 was found to be statistically significant. The role of CPA4 in cervical 

SCC is unknown. However, CPA4 has previously been reported to be underexpressed in 
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HPV positive cervical tumours353. PTPRR was previously found to reduce growth of cervical 

SCC lines, reduce expression of EMT markers and reduce expression of HPV E6 and E7 

genes in vitro and tumour growth and metastasis in vivo354. Therefore, the observation that 

OSM-OSMR signalling reduces PTPRR expression is in line with promotion of an EMT 

phenotype in cervical SCC cells73. Interestingly, TCGA analysis revealed that CPA4 

expression positively correlated with OSMR expression in clinical cervical SCC samples, 

despite being downregulated in EP-cells in response to OSM treatment. CPA4 has 

previously been shown to promote invasion and migration of lung cancer cells350 and was 

implicated in EMT in breast cancer cells352. Therefore, downregulation of CPA4 in response 

to OSM-OSMR signalling is unexpected. The NGS and qPCR experiments performed only 

used tumour cells; therefore, differences between these results and TCGA data may 

potentially be due to interactions with cells of the TME, involved in regulating CPA4 

expression. It would, therefore, be interesting to investigate whether OSM treated EVs 

confer downregulation of CPA4 and PTPRR to recipient cells and whether similar 

downregulation of CPA4 was observed in co-cultures of SCC cells in combination with other 

cells of the TME.  

 

PLCB4 and RAB38 were found to be upregulated in KD-cells (both) and EVs (RAB38) 

compared to EP-cells in both NGS and qPCR experiments. While the role of PLCB4 in 

cervical cancer is unknown, RAB38 has previously been shown to be downregulated in 

microarray analysis of cervical carcinoma compared to normal cervical keratinocytes365. The 

current experiments therefore suggest that downregulation of RAB38 may be driven by 

OSM-OSMR signalling. TCGA analysis revealed that RAB38 expression positively correlated 

with OSMR expression in clinical cervical SCC samples, despite current findings that RAB38 

is upregulated in KD-cells compared to EP-cells. The differences between TCGA and 

NGS/qPCR analyses are difficult to explain. Interestingly, RAB38 was not upregulated in 

KD2-cells or KD3-cells. These cell lines were generated by single cell cloning; therefore, 

upregulation of RAB38 may be specific to this clonal cell line and not down stream of OSM-

OSMR signalling. It is therefore not a good candidate for further investigation.  

 

Finally, levels of FMOD and PCSK1N were both shown to be downregulated in KD cells and 

EVs by NGS analysis and qPCR. In contrast, TCGA analysis revealed that PCSK1N 

expression negatively correlated with STAT3 expression in cervical SCC samples. FMOD 

was also downregulated in one of the additional OSMR KD cell lines (KD 3) whereas no 

difference in PCSK1N expression was observed between cell lines generated by the repeat 

CRISPR experiment (EP2, KD2, KD3). FMOD is known to play role in ECM remodelling, 

angiogenesis and modulation of TGFβ activity and has been shown to play a pro-
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tumorigenic role in multiple cancers355. The role of PCSK1N in cancer is less clear; however, 

it has been shown to play a role in glucose metabolism360. As these genes are upregulated 

in OSMR overexpressing cervical SCC cells and EVs, it would therefore be interesting to 

investigate whether these genes are capable of promoting ECM remodeling, angiogenesis 

and cell growth in a cervical SCC system.  

 

While overall these results confirm the expression patterns observed by NGS, they also 

highlight differences in the cell lines generated from the two CRISPR experiments. 

Differential expression of this panel of genes may be affected by the different extents of 

OSMR KD between cell lines. CHI3L1, CEMIP, PLAUR, CPA4 and PTPRR would be the 

superior candidates for subsequent investigation as they displayed similar patterns of 

expression in NGS experiments and qPCR using two different empty plasmid and three 

OSMR KD SW756 cell lines. The key next step for elucidating the effects of OSM induced 

differential mRNA expression in cervical SCC EVs will be to investigate whether EVs are 

capable of delivering these mRNA to recipient cells  (such as other cancer cells and cells of 

the TME), to determine whether mRNAs are translated within recipient cells and 

subsequently to investigate functional effects. CHI3L1, CEMIP and PLAUR are upregulated 

in EP cells and EVs in response to OSM treatment, and expressed at higher levels in EP 

cells and EVs than KD cells or EVs. Therefore, a preliminary experiment could investigate 

whether treatment of KD-cells with EP-OSM-EVs leads to upregulation of these genes in the 

recipient cell. Similarly, as CPA4 and PTPRR are downregulated in EP cells and EVs in 

response to OSM, and upregulated following OSMR KD, it would be interesting to determine 

whether treatment of EP-cells with KD-EVs leads to upregulation of these genes.  

 

5.7.5 Selection of small RNA library preparation kit 

In order to confirm the optimum method for small RNA library preparation, the performance 

of two different library preparation kits was compared: Somagenics and Nextflex. Significant 

differences in miRNA expression were observed when comparing samples prepared using 

each kit. Sequencing results obtained using the Nextflex kit correlated more closely with 

qPCR results than the somagenics kit; indicating that the Nextflex kit most accurately 

represented the true miRNA levels in the original sample. Therefore, the Nextflex kit was 

deemed to be the optimum kit for use for small RNA sequencing and was selected for the 

subsequent cellular and EV sequencing experiment.  

 

In a previous study comparing multiple library preparation kits across multiple samples sets, 

Coenen-Stass et al (2018) demonstrated superior performance of the Nextflex kit. It was 

found to produce negligible primer dimerisation, less quantification bias and greater 
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enrichment for miRNA reads compared to other library preparation kits currently on the 

market325. The Somagenics kit, however, was not included in this analysis. At the time 

experiments in the current study were performed, no studies had been published comparing 

performance of the Somagenics kit to other leading library preparation kits on the market. A 

recent publication by the group that developed the Somagenics protocol compared its 

performance to the Nextflex kit and to four other library preparation kits331. In contrast to our 

findings, the authors claimed that the Somagenics kit had less quantification bias, detected 

more miRNAs than any of the other kits and mapped most closely to qPCR results. 

Consistent with our findings, the Somagenics kit was found to have the lowest percentage of 

miRNA reads and greatest percentage of reads mapping to other classes of small RNA than 

any other kit. The comparisons performed in this study used samples containing 1µg of 

RNA. This is substantially greater than the quantities of RNA used in the current 

investigation (30-250ng). Therefore, it is plausible that while the Somagenics kit might show 

superior performance compared to the Nextflex kit when using high input quantities of RNA, 

it performs poorly with lower RNA inputs.  

 

5.7.6 miRNA Sequencing   

Differential miRNA expression was investigated in the same samples that were used for 

mRNA sequencing. Similar to mRNA sequencing, cells and EVs of all treatment groups 

appeared to cluster separately, indicating differences between cellular and EV miRNA cargo. 

EP-OSM cells and EVs were found to cluster separately from KD-PBS or KD-OSM cells and 

EVs, respectively.  

 

The pilot experiment detailed in Chapter 4 used qPCR to investigate expression of a panel 

of nine miRNAs in SW756 and ME180 cells and their EVs in response to OSM. As 

previously discussed, a high proportion of the miRNAs investigated appeared to be 

upregulated in SW756 cells and EVs in response to OSM. We therefore hypothesised that 

these findings would be indicative of more wide-scale changes in miRNA expression in 

OSMR overexpressing cervical SCC cells and EVs. However, NGS analysis revealed that, 

surprisingly, only three miRNAs were found to display significantly differential expression in 

EP-cells and only nine in the corresponding EP-EVs in response to OSM. More miRNAs 

were significantly altered in KD-cells (26 in total) and KD-EVs (30 in total) compared to EP 

cells and EVs, respectively. However, the number of differentially expressed miRNAs was 

still much fewer than expected based on the preliminary qPCR experiments described in 

Chapter 4.   
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In general, more miRNAs were differentially expressed in EVs than in cells. For all 

comparisons investigated, overlapping cohorts of genes were found to be up or down 

regulated in both cells and EVs.  While the low number of differentially expressed miRNA led 

us to question whether there were technical issues with the library preparation, overlap of 

differentially expressed miRNAs in both cell and EV comparisons indicates that these 

miRNAs could be biologically relevant. Therefore, it is possible that changes in miRNA 

expression were too subtle to be detected as statistically significant. Moreover, while the 

initial kit selection experiment demonstrated that the Nextflex kit performed equally well with 

30ng and 250ng samples, this experiment was done with a single cellular sample that was 

diluted and split into multiple aliquots. Therefore, it is unlikely to have reflected the variation 

in miRNA levels that might be expected between cell or EV replicates. While miRNAs have 

been the most studied RNA species in EV cargo to date, several studies have reported 

relatively low abundance of miRNAs in EVs171,391 with rRNA suggested to be the most 

abundant small RNA present in EVs171. In fact, previous work by Wei et al (2017) has 

indicated that non rRNA species are expressed at very low levels in EVs, with approximately 

one miRNA being present per EV, and most abundant miRNAs being present at the level of 

one copy per 10 EVs392.  

 

Two cell samples and one EV sample were removed prior to sample normalisation as they 

were found to have low counts and to predominantly map to spike-in controls, indicating 

issues with library preparation. This means that these groups had either 2 (cells) or 4 (EVs) 

replicates. Low abundance of miRNAs and an underpowered number of replicates may have 

contributed to low numbers of differentially expressed miRNAs. Therefore, while it would 

have been more labour intensive, higher input quantities of RNA may have resulted in 

greater consistency between replicates leading to detection of more miRNAs with statistically 

significant changes in expression between comparisons. Moreover, changes in miRNA 

expression may be subtle. Reducing the stringency of what was considered differential 

expression may have identified more miRNAs to be targets of OSM-OSMR signalling in 

cervical SCC cells and their EVs. Analysis performed in this way may have displayed a 

closer resemblance to PCR results.  

 

In line with this theory, four of the miRNAs found to be upregulated in WT SW756 cells and 

EVs in response to OSM treatment in the experiments performed in Chapter 4, were 

investigated by qPCR. This was performed on EP and KD cell samples used for the 

sequencing experiment. qPCR results confirmed previous findings that miR9-3p, miR-23b-

3p, miR-29b-3p and miR-126-5p were significantly upregulated in EP-cells in response to 

OSM. Moreover, miR9-3p, miR-23b-3p and miR-126-5p were all found to be significantly 
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downregulated in KD-cells. Despite being significantly altered in qPCR analysis, none of 

these miRNAs displayed differential expression in any of the NGS cell-cell comparisons. 

Only miR-126-3p was found to be significantly downregulated in KD-OSM-EVs compared to 

EP-OSM-EVs. Lack of consistency between NGS and qPCR data is likely to reflect 

variability between replicates and the fact that a low number of counts were detected by 

NGS for these miRNAs. 

 

miRNAs that were found to be either up or down regulated in NGS samples for both cells 

and EVs for the EP-PBS versus EP-OSM, and EP-OSM versus KD-OSM comparisons, were 

selected for further investigation. Mir-146b-5p, mir-148a-3p, mir-224-5p, mir-342-3p, mir-

363-3p and mir-452-5p were considered to be upregulated in response to OSM-OSMR 

signalling, whereas mir-30a-5p, mir-30c-1-5p, mir-92a-1-3p and mir-503-5p were considered 

to be downregulated in response to OSM-OSMR signalling. TCGA analysis found that miR-

363 was the only miRNA with significant correlation with OSMR expression in clinical 

cervical SCC samples. Unexpectedly, the levels of miR-363 were found to correlate 

negatively with OSMR. Differences in NGS and TCGA results may be due to the 

contributions of other cells of the TME in TCGA.  

 

Interestingly, many of these miRNAs have previously been reported to be associated with 

OSM and STAT3 signalling. Mir-146b has previously been shown to be induced by OSM in 

hepatocytes393, and miR-148a has been shown to target gp130 leading to a reduction in 

STAT3 phosphorylation in cardiomyocytes394. Upregulated expression of both miR-146b and 

miR-148a has been shown to be associated with the OSM pathway in breast cancer cell 

lines395. miR-224-5p was found to negatively regulate JAK-STAT3 signalling in osteoblasts396 

and colorectal cancer cells397. Moreover, mir-452 expression has been shown to be 

downregulated by VEGFA, a downstream target of OSM-OSMR signalling, in breast cancer 

cells398.  miR-30a is a known tumour-suppressor which targets SNAI1 in NSCLC399 and is 

downregulated by STAT3 in head and neck SCC400. Furthermore, miR-92a has been 

reported to be upregulated in response to STAT3 in endothelial cells and to target 

suppressor of cytokine signalling 5 (SOCS5), an inhibitor of JAK-STAT signalling401. Finally 

miR-503 is downregulated in ovarian cancer cells; overexpression of miR-503 leads to 

inhibition of STAT3 activation402. 

 

It appears unlikely that the majority of miRNAs found to be up or down regulated in response 

to OSM-OSMR signalling in both SW756 cells and EVs would have previously demonstrated 

links to OSM and STAT3 by chance. Therefore, this suggests that while only a small number 

of miRNAs were found to be differentially expressed in cervical SCC cells and EVs in 
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response to OSM-OSMR signalling, those that were found to be dysregulated are likely to be 

of functional significance. Future work will focus on validating NGS results by qPCR. mRNA 

targets of these miRNAs will be investigated using sylamer, a statistical algorithm created by 

Van Dongen et al (2008)403. Functional significance of differentially expressed miRNAs could 

subsequently be investigated in both cells and EVs using functional assays, miRNA 

inhibitors and miRNA mimics.   

 

5.7.7 Summary   

Together, the results shown in this chapter demonstrate that OSM-OSMR signalling is 

capable of modulating both cellular and EV mRNA and miRNA expression in cervical SCC 

cells. While there was overlap in up and downregulated mRNA and miRNAs in both cells 

and EVs, OSM-OSMR induced packaging of RNAs into EVs appeared to be a selective 

process. Treatment of OSMR overexpressing SW756 cells with OSM led to: upregulation of 

pathways involved in cytokine mediated signalling, myeloid leucocyte activation, hypoxia 

signalling, interferon signalling, negative regulation of viral life cycle and angiogenesis in 

both cells and EVs.  Whereas, pathways involved in PI3K-AKT signalling, tissue remodelling, 

negative regulation of differentiation and focal adhesion were downregulated in cells, whilst 

pathways involved in cellular organisation were downregulated in EVs.  

 

Subsequent investigation will focus on validation of mRNA and miRNA sequencing results in 

EVs and will employ functional assays in order to elucidate the biological significance of 

miRNAs and mRNAs found to be differentially regulated in cervical SCC cells in response to 

OSM-OSMR signalling.  
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6. RESULTS: Establishing a model to investigate OSM-OSMR 

signalling in vivo 

6.1 Introduction 

In addition to investigating the effects of OSM-OSMR signalling on EV mRNA and miRNA 

expression, parallel experiments were performed in order to elucidate the effects of OSM-

OSMR signalling on growth of cervical SCC cells in vivo. One of the challenges in studying 

OSM-OSMR interactions in a mouse model is the lack of homology between human and 

murine OSM. hOSM signals through mouse LIFR but not mouse OSMR, whereas mOSM 

does not activate any of the human receptors97. Therefore, an exogenous source of hOSM 

must be added to the experimental system when using a xenograft mouse model to study 

OSM-OSMR signalling.  

 

Delivery of cancer cells by direct injection into the bloodstream is commonly used as a 

model of metastasis. These models measure the ability of circulating tumour cells to: survive 

in circulation, undergo extravasation from blood vessels into target organs (which involves 

invasion of the endothelial cell lining of blood vessels and degradation of the basement 

membrane) and survive and establish metastasis in the extravascular tissue404,405. Due to 

the fact that cells are injected directly into the bloodstream, these models only recapitulate 

the late stages of metastasis, and do not model the early stages such as local invasion and 

intravasation into the blood stream404. Moreover, the organs in which metastasis occur are 

highly dependent on site of tumour cell injection – tail vein injections are the most commonly 

used and predominantly lead to lung colonisation whereas other models, such as intra-portal 

vein and intra-carotid injection, mostly lead to liver and brain colonisation, respectively404. 

  

Initial experiments by our research group relied on the tail vein model. Bioluminescent 

SW756 cells were generated by stable transfection with a pGL4.51 luciferase reporter 

vector. Cells were injected into the tail vein of NOD-SCID mice and, subsequently, mice 

were treated three times a week by intraperitoneal injection with 1µg hOSM or PBS control. 

Tumour growth was tracked by weekly injection with D-luciferin, which leads to transcription 

of luciferase by SW756 cells. This results in bioluminescent light emission that can be 

detected non-invasively using an in vivo imaging system (IVIS), which uses a light-sensitive 

camera to detect light emitted from the animals, thereby enabling tracking of cancer cells in 

vivo406. Treatment with OSM led to an increase in lung metastasis compared to mice treated 

with PBS control (Figure 6.1A)73. Subsequent experiments revealed that pre-treatment of 

SW756 cells with siRNA against STAT3, or with an anti-OSM antibody prior to injection, led 

to reduced lung colonisation, both in the presence, and absence, of exogenous hOSM92.   
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Figure 6.1: Previous investigation of OSM-OSMR signalling in SW756 cells in vivo 

A) Tail vein model of metastasis: luciferase positive SW756 were injected into tail vein of 

NOD SCID mice. 1g of hOSM or PBS control was delivered three times a week by 

intraperitoneal injection. Lung colonisation, measured by IVIS, is shown. B) Spontaneous 

model of metastasis: luciferase positive SW756 cells were injected subcutaneously in 

NOD SCID mice. 1µg of hOSM or PBS control was delivered three times a week by 

peritumoural injection. Primary tumour growth is shown.  

Adapted from Kucia-Tran et al (2016)
73
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Spontaneous metastasis assays represent a better model for investigation of primary tumour 

growth and all stages of the metastatic cascade. These models involve transplantation of 

tumour cells or tissue to either the region from which tumour cells were originally derived 

(orthotopic site) or to accessible regions with high levels of vascularisation such as the skin 

(ectopic sites)404,407. Therefore, previous work also attempted to establish a spontaneous 

metastasis model in order to investigate the effect of OSM-OSMR signalling on cervical SCC 

growth in vivo. Bioluminescent SW756 cells were injected subcutaneously into NOD SCID 

mice; mice were subsequently treated three times a week by peritumoral injection with 1µg 

of hOSM or PBS control73. Tumour growth was measured externally by calipers. Xenografts 

treated with OSM or PBS control displayed no difference in primary tumour growth rate 

(Figure 6.1B). However, at the experimental endpoint, following removal of xenografts and 

visceral organs, a slight increase in skeletal metastasis was detected by IVIS in mice that 

had received OSM treatment73.  

 

Similar results were obtained in experiments later reported by Tawara et al (2018) using 

breast cancer cell lines. As seen for SW756 cells, treatment with OSM reduced growth of 

these cell lines in vitro408 but no difference in primary tumour growth was observed in vivo 

following peritumoral injection with OSM113. Moreover, injection with OSM resulted in 

increased lung and spine metastasis113. Increased lung colonisation of cervical SCC in vivo, 

in response to OSM, was consistent with the finding that OSM treatment leads to increased 

EMT of these cells in vitro73. However, the lack of effects of OSM treatment on primary 

tumour growth was unexpected, as the pro-angiogenic response observed following OSM 

treatment in vitro92,121 was predicted to further facilitate tumour growth.  It was, therefore, 

important to ensure that OSM had been provided to the tumour in the most efficient manner.  

 

6.2 Aims  

Leading on from this work, this chapter aimed to conduct further experiments in order to 

potentially establish a better model to study the effects of OSM-OSMR signalling on primary 

tumour growth and metastasis in cervical SCC. To achieve this, subcutaneous xenografts 

were established using empty plasmid and OSMR KD SW756 cells generated in Chapter 4 

by CRISPR-Cas9. hOSM was delivered by intraperitoneal injection and the effects on 

tumour growth were investigated. Subsequent experiments then aimed to establish a model 

with continued delivery of hOSM. To achieve this SW756 cell lines with varying levels of 

endogenous hOSM expression were generated and validated in vitro. These cell lines were 

subequently used to establish subcutaneous xenografts in vivo. 
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6.3 SW756 empty plasmid and OSMR KD xenografts  

To assess whether a different route of OSM delivery would result in different effects on 

primary tumour growth, NOD SCID mice were injected subcutaneously with 5x106 SW756 

empty plasmid (EP) cells. Mice were then injected intraperitoneally with 1.2µg hOSM 

(approximately 60ng/g bodyweight) or PBS control, every day, for 13 days following the 

subcutaneous cell injection. Moreover, in order to better investigate the effect of OSM-

OSMR signalling on the growth of cervical SCC cells in vivo, a group of mice was injected 

with the OSMR KD cells generated by CRISPR-Cas9 in Chapter 4. These mice were treated 

with OSM or PBS control in the same manner as the mice injected with EP cells.   

 

As well as the route of administration of OSM, the schedule and amount of OSM delivered 

were changed from previous experiments.  Previously, 1µg of OSM was given three times a 

week, whereas in these experiments OSM was given daily and immediately after the 

injection of the cells to provide a signal for angiogenesis in the period of early tumour 

establishment. The dose of hOSM for the current experiments was selected from the 

literature from previous studies in which IP delivery of OSM was performed and found to 

have functional effects in vivo. In particular, multiple studies investigating the effects of OSM 

on cardiovascular murine models have used daily IP injections of 60ng/g hOSM409–412 and, 

therefore, this dose was used for the current experiment. Due to the cost and the number of 

injections required, it was not possible to deliver OSM for the duration of the tumour growth 

experiment. Therefore, IP injections of OSM were given for the first 13 days following tumour 

cell injection, corresponding to the period of early tumour establishment. 

 

Three mice were injected for each of the four treatment conditions (EP + PBS/OSM and KD 

+ PBS/OSM). Each mouse was culled at separate times once the experimental endpoint 

was reached; this was defined as the tumour volume reaching 1500mm3. However, mice 

were also culled if any of the following conditions were observed: a 20% decrease in body 

weight, tumour inflammation or ulceration, development of ascites or dyspnoea. Tumours 

larger than 650mm3 were included in the analysis. Two mice (one mouse from each of the 

EP cell treatment groups) developed ascites within the first 30 days following tumour cell 

injection and were, therefore, culled before the experimental endpoint. These mice did not 

have palpable subcutaneous tumours as expected at this timepoint but were found to have 

ascites and visible metastasis in the abdominal cavity. It is probable that the subcutaneous 

injections were suboptimal in these mice and tumour cells were directly introduced into the 

abdominal wall. These mice were, therefore, excluded from subsequent analysis of tumour 

growth and survival.  
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KD cells were previously shown to have reduced tumour growth compared to WT SW756 

cells in vitro (Figure 4.19). In line with this, KD cells were found to have a significantly 

reduced growth rate in vivo compared to OSMR expressing EP cells (Figure 6.2). Moreover, 

in the absence of OSM, mice injected with EP cells had a significantly reduced survival rate 

compared to those injected with KD cells (Figure 6.2D panel i). Treatment with OSM led to a 

significant growth reduction of both EP and KD cells in vivo (Figure 6.2A). Moreover, survival 

of mice injected with EP cells was significantly reduced following treatment with OSM (Figure 

6.2D panel iii). When comparing EP and KD cells from each treatment group, EP cells were 

found to have significantly increased tumour growth and reduced survival rate compared to 

KD cells in either PBS or OSM treated mice (Figure 6.2C+D).  

 

The weights of mice were not significantly altered between any of the four treatment groups 

(Figure 6.3A). No macro-metastases were detected visually in the lungs (Figure 6.3D), livers 

(Figure 6.3E) or any other organs (spleen, diaphragm, heart, mesentery, brain; images not 

shown) of mice from any of the four experimental groups. Any damage to the lungs pictured 

in Figure 6.3D is most likely attributable to cardiac puncture which was performed at the 

experimental endpoint. Therefore, treatment did not appear to affect metastasis. Similarly, 

different groups did not display significant differences in lung and liver weights relative to 

total body weight at the time of the experimental endpoint (Figure 6.3B+C).  

 

Tumour RNA expression was subsequently investigated by qPCR. As expected, OSMR KD 

tumours displayed significantly reduced levels of OSMR expression compared to EP 

tumours (Figure 6.4A). Levels of LIFR, STAT3, VEGFA, TGM2 and SNAI1 were not 

significantly altered between tumours of different groups (Figure 6.4). While statistically 

significant changes were not detected, levels of hOSM and TGM2 appeared greatest in 

OSMR KD tumours treated intraperitoneally with OSM (Figure 6.4C+F). Levels of VEGFA 

and SNAI1 also appeared upregulated in both EP and OSMR KD tumours following 

treatment with OSM compared to tumours treated with PBS control (Figure 6.4E+H).   
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Figure 6.2: SW756 empty plasmid and OSMR KD xenografts - tumour growth 
Six week old female NOD SCID mice were injected subcutaneously with 5 x106 SW756 EP or OSMR KD cells. 

Mice were injected IP with 1.2µg hOSM or PBS control, daily for 13 days beginning on the day of 

subcutaneous cell injection. A) Tumour growth of all four treatment groups. B) Tumour morphology at 

experimental endpoint. C) Tumour growth. D) Survival of i) Mice with EP and OSMR KD cell xenografts 

treated with PBS control. ii) Mice with EP and OSMR KD cell xenografts treated with OSM.  iii) Summary of 

comparisons of treatment groups, detailing significant differences between groups in regards to C) tumour 

growth or D) Survival. N=2 (EP + PBS/OSM) or N=3 (OSMR KD + PBS/OSM). Statistical analysis performed 

using a nonlinear random effects model (tumour growth) or log rank mantel-cox test (survival analysis). * 

=.P≤0.05, ** = P≤0.01, *** = P≤0.001, **** = P≤0.0001.  
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Figure 6.3: SW756 empty plasmid and OSMR KD xenografts - weight and organs  
Six week old female NOD SCID mice were injected subcutaneously with 5 x10

6
 SW756 empty plasmid or 

OSMR KD cells. Mice were injected IP with 1.2µg hOSM or PBS control, daily for 13 days beginning on the 
day of subcutaneous cell injection. A) Average body weight for each treatment group. Average percentage 

body weight of B) Lungs and C) Liver and morphology of D) Lungs and E) Livers of mice in each treatment 

group at experimental endpoint. B+C) Values were analysed for statistical significance using a one way 

ANOVA with Tukey’s multiple comparison post-hoc tests. P≤0.05 were regarded as significant; ns = not 

significant   
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Genes that were identified by NGS analysis to be up or downregulated in SW756 cells and 

EVs following activation of OSM-OSMR signalling or OSMR KD were also investigated 

(Figure 6.5). Genes shown within the red box are those that were found by NGS to be 

altered both in EP cells following treatment with OSM, and in KD cells in comparison to EP 

cells. Those shown in the blue box are genes that were not found to be altered in EP cells in 

response to OSM but were altered in KD cells compared to EP cells. No significant 

differences were detected in gene expression between EP tumours treated with PBS control 

or OSM. Similarly, no differences were detected in OSMR KD tumours when comparing the 

two treatment groups.  

 

No significant difference was detected in CH13L1 or CEMIP expression between any of the 

four treatment groups (Figure 6.5A+B). CEMIP appeared downregulated in OSMR KD 

tumours compared to EP tumours; however, results were not found to be statistically 

significant. PLAUR (Figure 6.5C) was found to be significantly downregulated in OSMR KD 

tumours compared to EP tumours, which was consistent with NGS results and in vitro qPCR 

validation of the cell lines used for these experiments. No significant difference was 

observed in CPA4 or PTPRR (Figure 6.5D+E) expression between any of the four groups; 

however, CPA4 appeared upregulated in OSMR KD tumours compared to EP tumours.  

 

From the genes demonstrated by NGS to be significantly altered in KD cells (Figure 6.5, blue 

box, F-H), only RAB38 and PCSK1N were found to be significantly altered in tumour 

samples. RAB38 (Figure 6.5G) was upregulated in OSMR KD tumours compared to EP 

tumours, whereas PCSK1N was found to be downregulated (Figure 6.5I). This is consistent 

with NGS results and in vitro qPCR validation of the cell lines used for these experiments. 

FMOD also appeared to be downregulated in OSMR KD tumours; however, results were not 

statistically significant.  
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Figure 6.4: Tumour mRNA expression 

qPCR for A) OSMR B) LIFR C) hOSM D) STAT3 E) VEGFA F) TGM2 and H) SNAI1 

expression in tumour samples. Fold change is shown relative to EP + PBS control tumours. 

Error bars represent SEM. Values were analysed for statistical significance using a using a 

one ANOVA with Tukey’s multiple comparison post-hoc tests. P≤0.05 were regarded as 

significant; * = P≤0.05, ns = not significant.  
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Figure 6.5: Tumour mRNA expression – genes identified from sequencing 

qPCR for A) CHI3L1 B) CEMIP C) PLAUR D) CPA4 E) PTPRR F) PLCB4 G) RAB38 H) 

FMOD and I) PCSK1N expression in tumour samples. Fold change is shown relative to EP + 

PBS control tumours. Red box = genes altered in NGS analysis in both EP cells treated with 

OSM and following OSMR KD. Blue box = genes altered in NGS analysis following OSMR KD 

only. Error bars represent SEM. Values were analysed for statistical significance using a using a 

one way ANOVA with Tukey’s multiple comparison post-hoc tests. P≤0.05 were regarded as 

significant; * = P≤0.05, ** = P ≤0.01, *** = P≤0.001 and **** = P ≤0.0001.  
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Figure 6.6: Generation of SW756 cell line with OSM overexpression  

SW756 cells were stably transfected with a plasmid expressing hOSM (pOSM cells) or an 

empty control plasmid (pUNO cells). A) ELISA to confirmation levels of OSM secretion 

by pUNO and pOSM cells. B) Baseline levels of SNAI1, FN1, ZEB2, MMP9 and MMP10 

expression in pUNO and pOSM cells as determined by qPCR. Values were analysed for 

statistical significance using unpaired T-tests with Welch’s correction. * =.P≤0.05, ** = 

P≤0.01, *** = P≤0.001. Figures generated by Justyna Kucia-Tran (PhD thesis).  

 

6.4 SW756 xenografts with endogenous OSM production 

In the previous experiments, the addition of exogenous hOSM reduced the speed of tumour 

growth of both EP and OSMR KD tumours. This was an unexpected result, as we expected 

OSM to accelerate tumour growth in the EP cells due its ability to induce angiogenesis 

following interaction with OSMR. It was hypothesised that different outcomes may be 

observed depending on the dose and duration of OSM delivery. Subsequent experiments, 

therefore, aimed to develop a model in which OSM was continually delivered, as would be 

expected in a physiological tumour setting. In order to accomplish this, a SW756 cell line 

which overexpressed OSM was generated for use in xenograft experiments. 

 

SW756 cells were stably transfected by Justyna Kucia-Tran with a plasmid expressing 

human OSM under a hEF1/HTVT promoter (pOSM cells) or an empty control plasmid 

(pUNO cells). This led to the generation of a polyclonal OSMR overexpressing cervical SCC 

cell line also overexpressing human OSM. pOSM cells were confirmed by ELISA to have 

increased levels of OSM production compared to pUNO cells (Figure 6.6A). Moreover, 

similar to treatment of WT SW756 cells with exogenous OSM, pOSM cells were found to 

have a reduced growth rate in vitro, to have a more mesenchymal phenotype and to be 

more invasive than pUNO cells (data not shown). In line with this, pOSM cells displayed 

greater basal expression of the following EMT markers than pUNO cells: SNAI1, FN1, ZEB2, 
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MMP and MMP10 (Figure 6.6B). ELISA and qPCR validation of these cell lines was 

performed by Justyna Kucia-Tran (unpublished, PhD thesis).  

  

 
 
 
 

Figure 6.7: Subcutaneous xenograft of pOSM and pUNO cells 

Female six week old NOD-SCID mice were injected subcutaneously with 5 x10
6
 pUNO or 

pOSM cells (n=6 per group). A) Tumour Growth B) Body weight C) Photos of tumours at 

experimental endpoint D) Lung and E) Liver weight as a percentage of body weight at 

experimental endpoint. Values were analysed for statistical significance using unpaired T-

tests with Welch’s correction. * =.P≤0.05, ** = P≤0.01, *** = P≤0.001, **** = P≤0.0001. 
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Subcutaneous injections were performed in NOD-SCID mice using 5 x106 pUNO or pOSM 

cells (Figure 6.7). These experiments were performed together with Dr Marta Paez-Ribes 

and Valtteri Tulkki. pOSM cells grew significantly faster than pUNO cells in vivo (Figure 

6.7A); however, mice injected with pOSM cells rapidly lost weight (Figure 6.7B), resulting in 

the termination of the experiment within three weeks of tumour cell injection. At the 

experimental endpoint, tumours in mice injected with pOSM cells were visibly larger than 

those injected with pUNO cells (Figure 6.7C). However, tumours from both groups were very 

small (<250mm3). Liver and lung toxicity were visible in mice injected with pOSM cells. 

Livers from mice injected with pOSM cells showed hepatocyte necrosis and inflammatory 

cell infiltrate and also displayed increased weight relative to total body weight, compared to 

mice injected with pUNO cells (Figure 6.7E; Figure 6.8A+B). Similarly, the lungs of mice 

injected with pOSM cells showed alveolar wall thickening due to oedema, resulting in 

increased lung weight relative to total body weight (Figure 6.7D; Figure 6.8C+D), compared 

to mice injected with pUNO cells. No signs of metastasis were histologically detected in the 

lungs or livers.  

Figure 6.8: Liver and lung toxicity in mice injected with pOSM cells  

Representative images of H&E staining of either:  

Livers from NOD-SCID mice injected subcutaneously with A) pUNO or B) pOSM cells 

Lungs from NOD-SCID mice injected subcutaneously with C) pUNO or D) pOSM cells. 

H&E staining was performed by Valtteri Tulkki.  
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Subsequently, we aimed to establish a xenograft mouse model using a SW756 cell line 

overexpressing endogenous hOSM, but at lower levels than the pOSM cells, in the hope that 

this would result in less toxicity and would, therefore, allow for investigation of tumour growth 

over a longer time period. Transfection of SW756 cells with the plasmid expressing human 

OSM under a hEF1/HTVT promoter or an empty control plasmid was repeated by Dr Danita 

Pearson. OSM levels were investigated in four clonal cell lines derived from cells transfected 

with OSM plasmid (termed pOSM clones 1-4) by qPCR (Figure 6.9A) and ELISA (Figure 

6.9B). Cells transfected with empty plasmid expressed similar levels of OSM as WT SW756 

cells. pOSM clones 1-4 (pOSM_c1 – pOSM _c4) had varying levels of OSM secretion. All 

four clones produced more OSM than a clonal SW756 cell line obtained from cells 

transfected with an empty plasmid (Figure 6.9A+B). There were some differences between 

these clonal cell lines and the polyclonal pOSM cell line. All four clones were found to 

express lower levels of hOSM mRNA than the polyclonal pOSM cell line (Figure 6.9A); 

however, when hOSM protein was investigated by ELISA, pOSM_c4 appeared to secrete 

more hOSM protein than the polyclonal pOSM cell line (Figure 6.9B). Basal levels of OSMR, 

pSTAT3, STAT3 and SNAI1 in these cell lines were subsequently investigated by western 

blot (Figure 6.9C). Levels of OSMR and total STAT3 did not appear to vary between cell 

lines. Expression of pSTAT3 and SNAI1 downstream targets of OSM-OSMR signalling were 

both highest in pOSM and pOSM_c3 cells (Figure 6.9C).  

 

Empty plasmid clonal SW756 cells (termed pUNO2) and pOSM_c2 and pOSM_c3 were 

selected for subsequent experiments. pOSM_c2 was used to investigate the effects of low 

levels of OSM overexpression, whereas pOSM_c3 was used to investigate the effects of 

high levels of OSM overexpression; OSM was expressed in this clonal cell line at lower 

levels than in the original pOSM cell line. Expression of known downstream targets of OSM-

OSMR signalling such as OSMR, VEGFA, TGM2, SNAI1 and hOSM (Figure 6.10) as well as 

additional targets identified by NGS (Figure 6.11) were investigated by qPCR. This was 

performed using multiple replicates (n=3). 
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Figure 6.9: Generation of additional SW756 cell lines with endogenous OSM production 
Characterisation of additional OSM overexpressing SW756 cell lines. Cells were transfected with 

plasmid expressing human OSM (pOSM clones 1-4) or empty plasmid (pUNO2). Expression of hOSM 

and downstream targets in newly generated cell lines was compared to WT SW756 cells and pOSM 
cells from the original transfection experiment. A) qPCR for OSM mRNA expression B) ELISA for 

OSM protein secretion C) Western blot for OSMR, p-STAT3, STAT3, SNAI1 and β-Actin protein 

levels. N=1. Experiments performed by Dr Danita Pearson.  
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As previously shown, pOSM_c2 and pOSM_c3 cells were found to express higher levels of 

hOSM than WT SW756 or pUNO2 cells. pOSM_c2 cells displayed a 31-fold increase in 

hOSM expression compared to WT SW756 cells; however, this increase was not found to be 

statistically significant. While not statistically significant, this is a notable difference in hOSM 

expression. Lack of statistical significance is likely due to high variability between replicates 

of the pOSM_c2 treatment group, evidenced by a SEM of ±23.1. pOSM_c3 cells displayed a 

905-fold increase in hOSM expression compared to WT SW756 cells; expression of hOSM 

in these cells was significantly greater than that of any of the other cell lines tested (Figure 

6.10A). OSMR was significantly upregulated in WT SW756 cells in response to treatment 

with OSM (Figure 6.10A). OSM overexpressing pOSM_c3 cells displayed significant 

upregulation of OSMR compared to pUNO2 cells. Interestingly, despite the vast upregulation 

in OSM expression, levels of OSMR in these cells were less than those observed for WT 

SW756 in response to OSM treatment. Similarly, VEGFA was shown to be upregulated in 

both WT SW756 cells treated with OSM and pOSM_c3 cells; upregulation was greatest in 

WT SW756 cells following OSM treatment (Figure 6.10C). Conversely, levels of TGM2 and 

SNAI1 were significantly upregulated in pOSM_c3 cells compared to WT SW756 cells and 

pUNO2 cells; little upregulation was observed in WT SW756 cells in response to OSM 

treatment (Figure 6.10D+E).  

Figure 6.10: mRNA expression in SW756 cell lines with endogenous OSM production 

qPCR for A) OSMR B) hOSM C) VEGFA D) TGM2 and E) SNAI1 expression in WT 

SW756 cells treated with PBS or OSM for 48 hours, untreated pUNO2 cells, untreated 

pOSM_2 and pOSM_3 cells. Fold change is shown relative to WT SW756 + PBS control. 

Error bars represent SEM. Values were analysed for statistical significance using a one way 

ANOVA with Tukey’s multiple comparison post-hoc tests. P≤0.05 were regarded as 

significant; * = P≤0.05, ** = P ≤0.01, *** = P≤0.001 and **** = P ≤0.0001. Stars are colour 

coded to highlight which pairs of comparisons are significantly different. 
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In sequencing experiments, CHI3L1, CEMIP and PLAUR were all upregulated in EP SW756 

cells in response to OSM treatment and downregulated in KD cells. Levels of CHI3L1 and 

CEMIP appeared to correlate with levels of OSM expression. Both were upregulated in WT 

SW756 cells treated with OSM compared to cells treated with PBS, and were also 

upregulated in pOSM_c2 and pOSM_c3 cells compared to pUNO2 cells (Figure 6.11A+B).  

Levels of both CH13L1 and CEMIP were greatest in pOSM_c3 cells which had higher levels 

of hOSM expression than pOSM_c2 cells. While levels of CH13L1 were substantially 

upregulated in WT cells treated with OSM and pOSM_c3 cells, differences in expression 

between groups was not found to be statistically significant due to high levels of variability 

between replicates (Figure 6.11A).  pOSM_c3 cells were found to have significantly higher 

levels of CEMIP than any of the other cell lines (Figure 6.11B). PLAUR was also significantly 

upregulated in pOSM_c3 cells compared to WT SW756 cells treated with PBS, pUNO2 and 

pOSM_c2 cells (Figure 6.11C).  

 

In sequencing experiments, CPA4 and PTPRR were both downregulated in EP cells in 

response to OSM treatment and upregulated in KD cells. In the current experiment both 

genes appeared downregulated in WT SW756 cells following OSM treatment; however, 

differences were not statistically significant (Figure 6.11D+E). Both genes also appeared to 

be downregulated in pOSM_c3 cells (with high levels of OSM expression) compared to 

pUNO2 cells; downregulation of CPA4 was statistically significant (Figure 6.11D).  

 

Expression of PLCB4 and RAB38, which were upregulated in KD cells, and FMOD and 

PCSK1N, which were downregulated in KD cells in NGS analysis, were subsequently 

investigated. None of these genes was found to be altered in NGS analysis of EP cells in 

response to treatment with OSM. PLCB4 was found to be significantly downregulated in WT 

SW756 cells following treatment with OSM, compared to cells treated with PBS control 

(Figure 6.11F). Expression was also significantly reduced in pUNO2, pOSM_c2 and 

pOSM_c3 cells compared to WT SW756 cells. The greatest reduction in PLCB4 expression 

was observed in pOSM_c3 cells. Interestingly, RAB38 was expressed at significantly higher 

levels in pUNO2 cells than all other cell lines. pUNO2 cells were expected to behave in a 

similar way to WT SW756 cells, as they were only transfected with empty plasmid. However, 

pUNO2 is a clonal cell line derived from SW756 cells and this may, therefore, emphasise 

differences between clonal and polyclonal cell lines. FMOD was found to be significantly 

upregulated in pOSM_c3 cells compared to all other cell lines (Figure 6.11H). Interestingly, 

PCSK1N was found to be significantly downregulated in pOSM_c2 and pOSM_c3 cell lines 

compared to the other three cell lines (Figure 6.11I). This was an unexpected result as 

PCSK1N was found in NGS analysis to be downregulated in the KD cell line. Taken 
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together, these results further confirm that pOSM_c2 and pOSM_c3 cell lines overexpress 

OSM, resulting in differential activation of downstream targets of OSM-OSMR signalling 

compared to pUNO2 cells.  

  

Figure 6.11: mRNA expression of sequencing markers in vitro 

qPCR for A) CHI3L1 B) CEMIP C) PLAUR D) CPA4 E) PTPRR F) PLCB4 G) RAB38 H) 

FMOD and I) PCSK1N expression in WT SW756 cells treated with PBS or OSM for 48 

hours, untreated pUNO2 cells, untreated pOSM_2 and pOSM_3 cells. Fold change is shown 

relative to WT SW756 + PBS control. Red box = genes altered in NGS analysis in both EP 

cells treated with OSM and following OSMR KD. Blue box = genes altered in NGS analysis 

following OSMR KD only. Error bars represent SEM. Values were analysed for statistical 

significance using a one way ANOVA with Tukey’s multiple comparison post-hoc tests. 

P≤0.05 were regarded as significant; * = P≤0.05, ** = P ≤0.01, *** = P≤0.001 and **** = P 

≤0.0001. Stars are colour coded to highlight which pairs of comparisons are significantly 

different.  
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Growth of these cells was subsequently investigated in vivo. Six week old female NOD-SCID 

mice were subcutaneously injected with 5 x 106 pUNO2, pOSM_c2 or pOSM_c3 cells. Three 

mice were injected for each cell line. Each mouse was culled at separate time points once 

experimental endpoint was reached; this was defined as the tumour volume reaching 

1500mm3. However, mice were also culled if any of the following conditions were observed: 

a 20% decrease in body weight, tumour inflammation or ulceration, development of ascites 

or dyspnoea. If tumours were larger than 650mm3 they were included in the analysis. One 

mouse from the pOSM_c2 group was excluded as it had to be culled due to tumour 

ulceration.  

 

Both pOSM_c2 (low OSM) and pOSM_c3 (high OSM) xenografts displayed a significantly 

increased growth rate compared to pUNO2 cells. Increase in tumour growth appeared to be 

dependent of levels of OSM; pOSM_c3 tumours were found to have a significantly increased 

growth rate compared to pOSM_c2 tumours (Figure 6.12A). Interestingly, pOSM_c3 tumours 

displayed an initial lag phase: in the first 40 days following tumour cell injection these cells 

appeared to grow more slowly than either pUNO2 or pOSM_c2 cells. Following this period, 

growth of pOSM_c3 tumour volume rapidly increased, and tumours became bigger than 

those from either of the other two cell lines. Tumour morphology at experimental endpoint is 

shown in Figure 6.12B; no obvious differences were observed in tumour morphology 

between treatment groups. 

 

Unlike the previous experiment, tumours with endogenous OSM production did not result in 

rapid weight loss of NOD SCID mice. No significant differences in weight were detected 

between any of the three treatment groups (Figure 6.12C). Mice with pOSM_c3 OSM 

producing tumours had significantly reduced survival compared to mice with pUNO2 tumours 

(Figure 6.12D). There was no significant difference in survival between mice with pUNO2 

tumours and mice with pOSM_c2 (low OSM) tumours. 

 

In the previous experiment, pOSM xenografts resulted in lung and liver toxicity, 

characterised by increased lung and liver weight relative to total body weight compared to 

mice injected with pUNO cells. In the current experiment, no significant difference in lung 

weight relative to total body weight was observed between any of the three treatment groups 

(Figure 6.12Ei). Interestingly, in contrast to the previous experiment, mice with pOSM_c3 

xenografts displayed significantly reduced liver weights relative to total body weight when 

compared to either of the other two treatment groups (Figure 6.12E panel ii). 
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Figure 6.12: SW756 xenografts with varying levels of endogenous OSM production  
Six week old female NOD SCID mice were injected subcutaneously with 5x106 pUNO2, pOSM_c2 or 

pOSM_c3 SW756 cells. A) Tumour growth. B) Tumour morphology at experimental endpoint. C) Total body 

weight. D) Survival E) i) Lung and ii) Liver weight as a percentage of body weight at experimental endpoint. 

N=3.  Statistical analysis performed using: a nonlinear random effect model (tumour growth), log rank mantel-

cox (survival) and one way ANOVA with Tukey’s multiple comparison post-hoc tests (comparison of 

percentage lung and liver weight between groups).  Error bars represent SEM. * =.P≤0.05, ** = P≤0.01, *** = 

P≤0.001, **** = P≤0.0001.  
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Lung and liver morphology were subsequently investigated. Small white nodules which 

appeared to be macro-metastases were detected visually in the lungs of mice from all three 

treatment groups (Figure 6.13A). However, it is possible that these regions are attributable to 

damage caused by cardiac puncture performed at experimental endpoint. Histological 

investigation of lung tissue will therefore be needed to confirm whether lung metastasis has 

occurred. No obvious macro-metastases were detected in the livers (Figure 6.13B) or any 

other organs (spleen, diaphragm, heart, mesentery, brain; images not shown) of mice from 

any of the three experimental groups.  
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Figure 6.13: SW756 xenografts with endogenous OSM – lung and liver morphology 

6 week old female NOD SCID mice were injected subcutaneously with 5 x10
6
 pUNO2, 

pOSM_c2 or pOSM_c3 SW756 cells. A) Lung and B) Liver morphology for each mouse at 

experimental endpoint (once tumour reached 1500mm
3
) is shown. Black arrows indicate 

possible macro-metastasis. Images not to scale.  
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6.5 Chapter discussion and summary  

Experiments detailed in this chapter aimed to establish an in vivo model for investigating the 

effects of OSM-OSMR signalling on cervical SCC growth. The establishment of a successful 

model would be highly valuable for investigating therapeutic blockade of OSM-OSMR 

signalling. Previous experiments by our research group have shown that, when OSMR 

overexpressing SW756 cells were injected into the tail vein of NOD-SCID mice, there was an 

increase in lung metastasis in mice treated with IP injections of hOSM compared to PBS 

control73. Tail vein models only recapitulate the late stages of metastasis; therefore, we 

wanted to establish a model which would also allow for investigation of the effects of OSM-

OSMR signalling on primary tumour growth and early stages of metastasis. 

 

OSMR copy number gain and overexpression in cervical SCC are associated with adverse 

overall survival, independent of tumour stage70. Treatment of OSMR overexpressing SW756 

cells with OSM has been shown to promote angiogenesis in vitro121. Moreover, OSM aided 

lung colonisation of SW756 cells in vivo following OSM injection in the tail vein model73.  

Together these results led us to hypothesise that treatment of OSMR overexpressing cells 

with OSM may aid tumour establishment by promoting vascularisation of the tumour, thereby 

promoting tumour growth. We have previously shown that OSM promotes promote EMT-like 

changes in OSMR overexpressing cervical SCC cells such as downregulation of E-cadherin 

and upregulation of several mesenchymal markers122,73 leading to increased migration and 

invasion in vitro121. It is, therefore, possible that reduced growth of SW756 cells in vitro 

following OSM treatment is not due to a reduction in cell proliferation but instead due to 

increased cell detachment following OSM induced EMT-like changes. This has previously 

been demonstrated to be true for OSMR overexpressing breast cancer cells in response to 

treatment with OSM114.  

 

6.5.1 SW756 empty plasmid and OSMR KD xenografts  

In the current study OSMR overexpressing empty plasmid SW756 cells and OSMR KD 

SW756 cells were used in order to investigate the effects of OSM-OSMR signalling on 

cervical SCC growth in vivo. When injected subcutaneously in NOD SCID mice, KD cells 

were found to have a significantly reduced growth rate compared to EP cells in the absence 

of OSM. Moreover, mice with OSMR KD tumours displayed a significantly increased overall 

survival compared to mice injected with EP cells. KD cells were previously demonstrated to 

have reduced basal levels of STAT3 phosphorylation compared to EP cells in the absence 

of OSM (Chapter 4). In addition, NGS analysis revealed that 48 genes were significantly 

upregulated in KD-PBS-cells compared to EP-PBS-cells, and 100 genes were significantly 

downregulated (Chapter 5). These findings are consistent with previous experiments by our 
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research group which demonstrated that forced expression of OSMR in cervical SCC cell 

lines without baseline OSMR overexpression led to increased phosphorylation of STAT3 in 

the absence of OSM92. Similarly, in the tail vein model, treatment with an anti-OSM antibody 

reduced lung colonisation in the absence of exogenous OSM92. Together, these findings 

demonstrate that overexpressing cervical SCC cells endogenously produce OSM, which is 

capable of driving functionally significant OSM-OSMR signalling in an autocrine manner. 

Blockade or KD of OSMR is therefore capable of reducing tumour cell growth in the absence 

of exogenous OSM by blockage of this autocrine signalling loop.  

 

Surprisingly, the addition of exogenous hOSM led to reduced growth of both EP and KD 

SW756 cells in vivo. Moreover, mice with EP tumours displayed significantly reduced overall 

survival following OSM treatment compared to mice treated with PBS control.  The weights 

of mice were not significantly altered by OSM injection and no macro-metastases were 

detected in any of the organs. No significant differences were detected in tumour mRNA 

expression following treatment with OSM for either cell line. Treatment of EP cells with OSM 

was previously shown to result in significantly increased expression of OSMR, VEGFA and 

TGM2 in vitro (Figure 4.16). Moreover, CHI3L1, CEMIP and PLAUR were found to be 

significantly upregulated in EP cells in response to OSM, while CPA4 was significantly 

downregulated in both NGS analysis (Table 5.9) and qPCR validation (Figure 5.17). 

Whereas, treatment of OSMR KD cells with OSM was shown to have no effect on mRNA 

expression in vitro (Figure 4.16, Figure S5. 16B. Figure S5. 17B, Figure S5. 18B and Figure 

5.17). Lack of differences in mRNA expression in EP tumours treated with PBS or OSM is 

likely to be due to the timepoint at which tumours were collected; OSM was administered by 

IP injection for the first 13 days following tumour cell injection. Individual mice were culled 

once tumours reached 1500mm3; survival for mice in all treatment groups was between 45 

and 93 days post tumour cell injection. Therefore, tumours were collected between 32 and 

80 days after the last dose of OSM or PBS control was administered. While it appeared to 

have a residual effect on tumour growth, direct effects of OSM treatment on expression of 

known OSM-OSMR targets is likely to have been lost by this timepoint. It is possible that this 

is a result of cells that were responsive to OSM migrating away from the tumours themselves 

or undergoing apoptosis, or that the tumour cells have reverted to their pre-treatment state. 

Therefore, continued delivery of OSM is likely to be necessary for the maintenance of these 

effects.  

 

Differences were, however, detected in mRNA expression of OSMR KD tumours compared 

to OSMR expressing EP tumours. As expected, OSMR KD tumours displayed significantly 

reduced levels of OSMR mRNA expression compared to EP tumours. Consistent with NGS 
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data, OSMR KD tumours also displayed significant downregulation of PLAUR and PCSK1N 

and upregulation of RAB38. As previously discussed, both PLAUR and RAB38 have been 

shown previously to correlate positively with OSMR expression in patient cervical SCC 

samples. Reduced expression of PLAUR in OSMR KD tumours is consistent with previous 

findings from our laboratory that demonstrated that lower levels of PLAUR are detected in 

cervical SCC tissues without OSMR overexpression121. Similarly, RAB38 has been shown  to 

be downregulated in cervical carcinoma compared to normal cervical keratinocytes365, thus 

downregulation of RAB38 may be mediated by OSM-OSMR signalling.  

 

Reduced size of EP tumours in response to OSM treatment may possibly be a result of OSM 

induced EMT of cancer cells, as previously discussed. While we initially hypothesised that 

OSM would promote angiogenesis, and thereby promote tumour establishment, induction of 

EMT may have promoted migration of OSMR overexpressing cells away from the primary 

tumour site. While macro-metastasis was not detected in any of the organs, it is possible that 

subsequent histological analysis of lungs, liver, spleen and femurs may reveal differences in 

levels of micro-metastasis between mice with EP tumours treated with OSM or PBS control. 

The previous subcutaneous experiment conducted in our laboratory using SW756 cells and 

peritumoural injection of OSM revealed a slight increase in skeletal metastasis in mice that 

had received OSM treatment73. Tracking of cells with luciferase labelling and IVIS may, 

therefore, have facilitated identification of small metastatic deposits.   

 

However, tumour growth was reduced in both EP and KD cell lines in response to OSM 

treatment to a similar extent, suggesting that OSM was perhaps acting through the same 

mechanism to regulate growth in both cell lines. This was unexpected and reduced growth of 

the KD cell line in response to OSM treatment is more challenging to explain. In vitro 

experiments have demonstrated that KD cells are functionally unresponsive to OSM 

stimulation. No upregulation in pSTAT3, OSMR or downstream targets of OSM-OSMR 

signalling were upregulated following OSM treatment; similarly, treatment with OSM had no 

effect on the growth of OSMR KD cells in vitro. Moreover, NGS analysis did not detect 

differential mRNA or miRNA expression in these cells following OSM treatment. Previous 

investigation of OSM-receptor transduction in WT SW756 cells has revealed that OSM 

induced activation of STAT3, STAT5, AKT and ERK1/2 was abrogated by depleting OSMR, 

but not by depleting LIFR, indicating that OSM was acting predominantly through OSMR in 

these cells92. However, while not statistically significant, LIFR and VEGFA mRNA expression 

appeared upregulated in tumours from both cell lines in response to treatment with OSM. 

Therefore, it is possible that activation of LIFR in response to hOSM may have contributed to 

the cytostatic effects observed in both EP and KD cells. Moreover, growth effects could also 
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possibly be attributed to hOSM signalling through mLIFR expressed by murine cells of the 

TME rather than OSM-OSMR induced activation of tumour cells. 

 

An alternative explanation for OSM reduction of both EP and OSMR KD tumours in 

response to OSM may be due to the route of OSM delivery. In the previous experiment, 

peritumoural injection of OSM did not result in reduced growth of WT SW756 cells73. 

Similarly, Tawara et al (2018) observed that peritumoural injection of hOSM did not affect 

primary tumour growth in an orthotopic breast cancer model. However, treatment led to an 

increased number of circulating tumour cells and increased  lung metastasis113. Conversely, 

in a synergenic breast cancer model comparing growth of WT and OSM KD cells,  OSM 

expression was shown to result in reduced growth of primary tumours while simultaneously 

promoting bone metastasis114. Thus, route of delivery of OSM may be an important factor in 

regulating tumour growth. Local release of OSM would be more representative of OSM-

OSMR signalling within the TME.  

 

6.5.2 OSMR KD in a syngeneic cervical SCC model 

Parallel experiments performed by Valtteri Tulkki (PhD thesis, manuscript in preparation) 

investigated the use of an immunocompetent mouse model to investigate OSM-OSMR 

signalling in vivo. This model used PDSC5.2 cells, a murine skin SCC cell line. Importantly, 

the transgenic mice from which PDSC5.2 cells were derived express the HPV-16 E6 and E7 

oncogenes under the control of the keratinocyte specific K14 promoter413. Moreover, this cell 

line expresses high levels of mOSMR and responds to mOSM in a similar manner as 

SW756 cells respond to hOSM (Valtteri Tulkki, PhD thesis, manuscript in preparation). 

Similar to the experiments detailed in this thesis, CRISPR was performed to knock-down 

mOSMR expression in PDSC5.2 cells. WT and OSMR KD PDSC5.2 cells were injected 

subcutaneously into either WT FVB or OSMR KO FVB mice. This enabled investigation of 

the effects of OSM-OSMR signalling in both tumour cells and cells of the TME. As this was a 

syngeneic model, there was no need to add exogenous OSM. 

 

Removal of OSMR from either the tumour cells or from the TME resulted in significant 

reductions in tumour growth (Figure 6.14A) and increased survival (Figure 6.14B) compared 

to WT PDSC5.2 cells grown in WT FVB mice (WT-WT tumours). OSMR KD PSC5.2 tumours 

in OSMR KO FVB mice grew the slowest and displayed significantly higher overall survival. 

Moreover, WT-WT tumours were more invasive and displayed increased angiogenesis 

compared to the other groups. They also displayed higher levels of dendritic cell, M2 

macrophages, inflammatory macrophages and PD-L1 positive myeloid cell infiltration.   
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Figure 6.14: PDSC5.2 immunocompetent mouse model  
OSMR KD PDSC5.2 cells were generated by CRISPR-Cas9. WT and OSMR KD PDSC5.2 cells 

were subcutaneously injected into either WT FVB or OSMR KO FVB mice. A) Tumour growth 
and B) Survival. Statistical analysis was performed using an one-way ANOVA (tumour growth) or 

Prism survival curve analysis (survival). * = P≤0.05, ** = P ≤0.01, *** = P≤0.001 and **** = P 

≤0.0001. N=6 for WT PDSC5.2/WT FVB and OSMR KD PDSC5.2/WT FVB, n=7 for WT 
PDSC5.2/OSMR KO FVB and n=4 for OSMR KD PSC5.2/OSMR KO FVB.  

Valtteri Tulkki (PhD thesis, manuscript in preparation). 
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In the immunocompetent mouse model, OSM-OSMR signalling (both within tumour cells and 

the TME) was shown to drive primary tumour growth. In line with the xenograft experiment, 

OSMR KD was shown to result in reduced tumour growth. In agreement with this, murine 

skin SCC cells have previously been demonstrated to grow more slowly in OSM KO mice, 

resulting in reduced M2 polarisation in the TME111. These results contrasted with the results 

for the xenograft experiment detailed in this chapter, in which IP injection with hOSM led to 

reduced growth of human cervical SCC cells. In the immunocompetent mouse system 

mOSM will be continually delivered to OSMR overexpressing tumour cells by immune cells 

present in the TME, leading to constant activation of OSM-OSMR signalling. It is, therefore, 

possible that differences in tumour growth in the human xenograft model compared to the 

syngeneic mouse model may be due to the duration of OSM delivery. hOSM was only 

delivered for the first 13 days of the experiment during the initial period of tumour 

establishment. Junk et al (2017) demonstrated that OSM promotes cancer cell plasticity; 

treatment of transformed human mammary epithelial cells with OSM led to the acquisition of 

breast cancer stem cell (CSC)-like properties such as anchorage independent growth. 

However,  removal of OSM resulted in the loss of mesenchymal/CSC properties even after 

sustained long-term OSM exposure, indicating that sustained OSM exposure is necessary 

for the maintenance of these phenotypes414.  

 

6.5.3 SW756 xenografts with endogenous OSM production 

Subsequent experiments, therefore, aimed to test a model in which OSM was continually 

delivered, as would be expected in a physiological tumour setting. In order to accomplish 

this, OSMR overexpressing SW756 cells were stably transfected with a plasmid expressing 

human OSM (pOSM cells) or a control plasmid (pUNO). When subcutaneously injected in 

NOD-SCID mice, pOSM cells were found to grow significantly faster than pUNO cells. 

However, OSM overexpression led to rapid weight loss resulting in termination of the 

experiment within three weeks of tumour cell injection whilst tumours were still <250mm3. 

Although this was unexpected at the time, treatment of mice with hOSM has previously been 

demonstrated to result in weight loss and pancreatic and white fat atrophy, consistent with 

cachexia113,95. As this phenotype is not seen in mice treated with mOSM, it is believed to be 

a result of hOSM signalling through mLIFR95. Livers from mice injected with pOSM cells 

displayed hepatocyte necrosis and inflammatory cell infiltrate and also displayed increased 

weight relative to total body weight, compared to mice injected with pUNO cells. The 

hepatocyte toxicity observed in this experiment is, therefore, likely to be a result of hOSM 

signalling via the mLIFR. Activation of mLIFR (albeit by mLIF) has previously been shown to 

result in extramedullary hemopoiesis and necrosis within mouse livers415. Overexpression of 

mOSM has also been shown to impact the liver, resulting in severe liver fibrosis without 
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necrotic damage of hepatocytes416. However, as mOSM has very low affinity for the mLIFR 

receptor, it is unlikely that this effect is mediated by signalling via the LIFR. Similarly, lungs 

of mice injected with pOSM cells had alveolar wall thickening due to oedema, resulting in 

increased lung weight relative to total body weight, compared to mice injected with pUNO 

cells. OSM has been shown to be overexpressed in lungs of patients with pulmonary fibrosis 

and delivery of mOSM was found to be a potent mediator of lung inflammation and fibrosis in 

mice417. However, there is little information in the literature on the phenotypic effects on the 

lungs following activation of mLIFR by hOSM or mLIF. It is nonetheless plausible that the 

toxicity seen in the lungs is induced by mechanisms similar to those seen in the liver.  

 

6.5.4 SW756 xenografts with reduced endogenous OSM production 

We then tested whether expression of endogenous hOSM at a lower level than that found in 

the pOSM cells resulted in less systemic toxicity but also had a quantifiable effect on the 

growth of the tumour cells. Transfection of SW756 cells was repeated using the same hOSM 

expression plasmid. Multiple clones were selected for in vitro validation by qPCR, ELISA and 

western blot. These clones were found to have differing levels of hOSM expression and 

basal activation of downstream targets of OSM-OSMR signalling. Empty plasmid SW756 

cells (pUNO2) and OSM overexpressing pOSM_c2 and pOSM_c3 cells were selected for 

subsequent in vivo experiments. pOSM_c2 had low levels of OSM overexpression compared 

to WT SW756 cells (31-fold increase), whereas pOSM_c3 had high levels of OSM 

overexpression (900-fold increase compared to WT cells). Both cell lines expressed lower 

levels of OSM than the original pOSM cell line.  

 

OSM overexpressing pOSM_c3 cells displayed significant upregulation of OSMR compared 

to pUNO2 cells. Interestingly, despite the vast upregulation in OSM expression, levels of 

OSMR in these cells were less than those observed for WT SW756 cells in response to 

OSM treatment. Similarly, VEGFA was upregulated to greater levels in WT SW756 cells 

following treatment with OSM than in pOSM_c3 cells. Conversely, levels of TGM2 and 

SNAI1 were significantly upregulated in pOSM_c3 cells compared to WT SW756 cells and 

pUNO2 cells. Little upregulation was observed in WT SW756 cells in response to OSM 

treatment. This may, therefore, convey differences in gene activation in short-term versus 

sustained activation of OSM-OSMR signalling.   

 

Expression levels of genes identified to be targets of OSM-OSMR signalling by NGS 

experiments (Chapter 5) were subsequently investigated. Both CHI3LI and CEMIP were 

upregulated in OSM treated WT SW756 cells and in OSM overexpressing pOSM_c2 and 

pOSM_c3 cells. Levels of both CH13L1 and CEMIP were greatest in pOSM_c3 cells which 
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have higher levels of hOSM expression than pOSM_c2 cells. While changes in CH13L1 

expression were not found to be statistically significant, pOSM_c3 cells had significantly 

higher levels of CEMIP than any of the other cell lines. Moreover, PLAUR was also 

significantly upregulated in pOSM_c3 cells. All three of these genes were previously shown 

in NGS experiments to be upregulated in EP cells and EVs in response to OSM treatment 

and downregulated in KD cells and EVs. PLAUR has previously been shown to play a role in 

tumour growth, invasion, angiogenesis and metastasis in glioblastoma and NSCLC366,367. 

Moreover, PLAUR may be a downstream target of HIF signalling. It has been shown to be 

induced under hypoxic conditions in breast cancer cells and drives EMT389. Moreover, 

CHI3LI has been shown to promote both angiogenesis342and vascular mimicry343 in cervical 

cancer. Therefore, we would predict that growth of these cell lines in vivo would produce 

tumours with increased angiogenesis and metastasis compared to pUNO2 cells.      

   

In sequencing experiments, CPA4 and PTPRR were both downregulated in EP cells in 

response to OSM treatment and upregulated in KD cells. In the current experiment both 

genes appeared downregulated in pOSM_c3 cells compared to pUNO cells; downregulation 

of CPA4 was statistically significant. FMOD was found to be significantly upregulated in 

pOSM_c3 cells compared to all other cell lines; this gene was shown to be downregulated in 

KD cells in NGS experiments but unaffected in EP cells following OSM treatment. 

Upregulation in pOSM_c3 cells, but not in WT SW756 cells, following OSM treatment may 

be due to the significantly elevated levels of OSM in pOSM_C3 cells. Interestingly, PCSK1N 

was found to be significantly downregulated in pOSM_c2 and pOSM_c3 cell lines compared 

to the other three cell lines. This was an unexpected result as PCSK1N was found in NGS 

analysis to be downregulated in the KD cell line. 

 

Taken together these findings predominantly corroborate findings from NGS experiments; 

targets that appeared up or down regulated in SW756 cells following OSM treatment 

displayed similar patterns of expression in OSM overexpressing cells. These genes may, 

therefore, be involved in key pathways that mediate functional effects of OSM-OSMR 

signalling. Unexpected expression of certain genes such as reduced and increased 

expression of PLCB4 and RAB38, respectively, in pUNO2 cells compared to WT SW756 

cells may be explained by the fact that SW756 cells are a polyclonal cell line, whereas 

pUNO2 and pOSM_c2 and pOSM_c3 cell lines are derived from single cell colonies. Within 

polyclonal cell populations there is expected to be variability in gene expression between 

individual cells. Transfection of SW756 cells with pOSM or pUNO plasmids, followed by 

single cell selection and subsequent expansion of single cell colonies, may have selected for 



 

243 
 

sub populations of cells that display differential gene expression compared to the polyclonal 

population as a whole.  

 

OSM promoted in vivo tumour growth of human cervical SCC cells with OSMR 

overexpression in a dose dependent manner. When injected subcutaneously into NOD-

SCID mice, both pOSM_c2 (low OSM) and pOSM_c3 (high OSM) cells displayed a 

significantly increased growth rate compared to pUNO2 cells. Moreover, pOSM_c3 tumours 

were found to have a significantly increased growth rate compared to pOSM_c2 tumours. 

Mice with pOSM_c3 (high OSM) tumours had significantly reduced survival compared to 

mice with pUNO2 tumours; however, there was no difference in survival between mice with 

pUNO2 and mice with pUNO_c2 (low OSM) tumours.  

 

Interestingly, pOSM_c3 tumours displayed an initial lag phase in the first 40 days following 

tumour cell injection. During this period the volume of these tumours was less than that of 

either pUNO2 or pOSM_c2 tumours. Growth of pOSM_c3 cells subsequently underwent a 

rapid increase in growth rate, overtaking either of the other two cell lines. This is consistent 

with the initial experiment in which the addition of OSM led to reduced growth of both EP 

and OSMR KD tumours. Again, this initial lag phase may possibly be explained by the 

induction of an EMT phenotype in SW756 cells in response to OSM-OSMR signalling. This 

may initially result in increased migration of tumour cells away from the injection site, thereby 

initially reducing the growth of the primary tumour. Cells remaining at the primary site may 

then have had a selective growth advantage as a result of high OSM expression but would 

have taken a while to surpass the growth of pUNO2 and pOSM_c2 tumours due to the initial 

depletion of tumour cells following migration. On the other hand, it is also possible that OSM, 

in fact, inhibited tumour growth, as seen in the previous experiment. Subsequent exponential 

growth of pOSM_c3 cells could be a result of increased signalling via LIFR rather than 

OSMR, possibly due to methylation of OSMR. Previous work by Underhill-Day et al (2006) 

has shown that signalling of OSM through OSMR and LIFR has antagonistic effects in breast 

cancer cells. Treatment of these cells with both OSM and a LIFR antagonist enhanced the 

cytostatic activity of OSM. Moreover, while treatment of these cells with OSM induced a 

fibroblast-like phenotype indicative of EMT, treatment with LIF has a less pronounced effect 

on cell morphology, with cells remaining predominantly epithelial-like418. Therefore, while 

OSM had previously been shown to signal predominantly through OSMR in SW756 cells92, it 

is possible that high levels of OSM expression promotes EMT and subsequent migration of 

OSMR overexpressing cells away from the primary tumour. Greater levels of OSM-LIFR 

signalling in the remaining cells may abrogate the cytostatic effects of OSM-OSMR 

interactions, leading to the rapid growth of these tumours.  
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Differences in the syngeneic system provide further evidence for a potential interplay 

between OSM-OSMR and OSM-LIFR in the xenograft system. Unlike hOSM, mOSM only 

binds the murine OSMR (mOSMR)-gp130 heterodimer with high affinity, whereas mOSM 

binds to mouse LIFR (mLIFR)-gp130 heterodimers with very low affinity93. Therefore, the 

observation that OSMR KD from both tumour cells and the TME led to reduced tumour 

growth is likely to be mediated entirely by mOSM-mOSMR signalling. In these experiments 

no initial lag phase was observed in WT PDSC5.2 tumours grown in WT FVB mice. 

However, there are further complexities in comparing the mouse and human systems: 

hOSM-hOSMR receptor binding leads to phosphorylation of STAT1, STAT3, STAT5B and 

STAT687, whereas mOSM-mOSMR binding solely leads to phosphorylation of STAT1 and 

STAT3, similar to hOSM-hLIFR binding88,89. Thus, further investigation is required to fully 

elucidate the extent to which effects are mediated by hOSMR or hLIFR in the xenograft 

system.  

 

In the initial experiment OSM was administered by IP injection for the first 13 days following 

tumour cell injection. The subsequent OSM overexpression experiment suggests that, if 

injections had continued for the duration of the experiment, exponential growth of these 

tumours could possibly have occurred, similar to the pOSM_c3 tumours. This could have 

resulted in an overall increased growth compared to tumours of mice injected with PBS 

control. It is possible that cessation of OSM administration may instead have perpetuated 

the initial negative effects of OSM on cell growth. While these experiments don’t explain the 

response of the KD cell lines to OSM, they indicate that effects of OSM on tumour growth in 

vivo may be dependent on both dose and duration of OSM delivery. Continued delivery of 

OSM by OSM overexpressing cervical SCC cells more accurately reflects the sustained 

delivery of OSM that would be observed within the TME of patients with OSMR 

overexpressing cervical SCC tumours. Investigation of the effects of temporal OSM 

expression during different stage of tumour establishment could be further investigated using 

OSMR overexpressing cervical SCC cells that overexpress OSM under the control of a 

tetracycline inducible system such as that used by Tawara et al (2018)113 to investigate the 

effect of OSM-OSMR signalling on breast cancer cell growth in vivo.  

 

Mice with pOSM_c3 tumours displayed significantly reduced liver weight relative to total 

body weight compared to mice from either of the other two treatment groups. Increased liver 

weight in response to OSM overexpression in the first experiment is likely to have been a 

result of acute injury resulting in immune cell infiltration due to hOSM signalling through 

mLIFR. It is important to note that these mice were culled at a much earlier timepoint. 

Reduced liver weight in pOSM_c3 tumours may, therefore, be attributable to chronic injury, 



 

245 
 

as a result of hOSM signalling through mLIFR, resulting in increased cell death. In contrast 

to the preliminary pOSM experiment, pOSM_c2 and pOSM_c3 tumours did not result in 

rapid weight loss of NOD SCID mice; no significant differences in weight were detected 

between any of the three treatment groups throughout the duration of the experiment. 

Similarly, no toxic effects were observed in the lung, nor were any significant differences in 

lung weight relative to total body weight detected between experimental groups. Therefore, 

this represents a promising model for investigation of the effects of OSM-OSMR signalling 

on cervical SCC growth in vivo. This model could be used for future experiments 

investigating therapeutic blockade of either OSM or OSMR on tumour growth.  

 

6.5.5 Future directions 

Small white nodules resembling macro-metastases were visually detected in the lungs of 

individual mice from each treatment group. Histological investigation was not possible in the 

time frame of this thesis. Subsequent investigation will include performing histological 

analysis of sections prepared from lungs, liver, spleen, and femurs from mice from each 

treatment group in order to determine whether metastasis can be detected in any of these 

organs and whether there are differences in the degree of metastasis between mice from 

different treatment groups. This could be achieved using antibodies against human specific 

markers such as MHC class 1 antigens,  HLA-A, HLA-B and HLA-C, which should not be 

expressed by murine cells419. 

 

For both in vivo experiments, once mice reached experimental endpoint, cardiac puncture 

was performed prior to cervical dislocation in order to collected plasma. Tumour pieces were 

also collected and underwent 24 hours ex vivo culture in DMEM media. After 24 hours EVs 

were isolated from the culture media by ultracentrifugation. RNA was extracted from both 

plasma and EVs isolated from ex vivo tumour cultures. Unfortunately, the current pipeline for 

reverse transcription and qPCR used in our laboratory was not sensitive enough to detect 

differential mRNA expression in the plasma and tumour derived EVs. Reverse transcription 

using kits designed for lower input quantities of RNA may allow for investigation of whether 

EV and plasma mRNA expression differ between treatment groups and further work should 

be done to pursue this. 

 

Additionally, following tumour resection, tumour fragments were stored in liquid nitrogen for 

future orthotopic implantation into the cervix. Orthotopic implantation involves tumour 

engraftment in the region from which tumour cells were originally derived. This approach has 

previously been optimised in our laboratory using the immunocompetent PDSC5.2 cell 

model.  Fragments from subcutaneous tumours are sutured to the cervix of naive mice, 
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allowing for the development of cervical tumours. Orthotopic tumour models more closely 

mimic the tumour microenvironment and allow for more accurate replication of tumour-

stroma interactions, local invasion and lymphatic and haematogenous dissemination than 

subcutaneous xenograft models420.  

 

Most importantly, to fully understand the effects of OSM-OSMR tumour growth, it would be 

useful to further interrogate OSM-OSMR and OSM-LIFR signalling within these tumours. 

This could be achieved by using CRISPR to KD LIFR or OSMR in the OSM overexpressing 

pOSM_c3 cells and pOSM2 cells or by treatment of these two cell lines with either LIFR or 

OSMR inhibitors or antibodies. Subsequent growth of these cells in vivo with KD or 

therapeutic blockade or OSMR or LIFR would demonstrate whether effects from current 

experiments are truly a result of OSM signalling via OSMR rather than LIFR. Future 

experiments should include tracking of bioluminescent cells by IVIS in order to detect effects 

on metastasis.  

 

Both the OSM overexpressing subcutaneous model detailed in this chapter and an 

orthotopic model derived from these tumours would provide a useful model for investigation 

of therapeutic blockade of OSM-OSMR signalling in cervical cancer. Few options currently 

exist for therapeutic blockade of OSM-OSMR signalling. This could be achieved either by 

targeting OSM using monoclonal antibodies or soluble receptor fusion proteins, or by 

antibodies directed against OSMR itself (Figure 6.15). In a phase II clinical trial by GSK, 

humanised antibodies against OSM were used to treat rheumatoid arthritis. Unfortunately 

treatment was ineffective due to the fact the antibody bound OSM with less affinity than the 

OSM receptor and, therefore, could not remove the ligand efficiently enough421. More 

recently GSK have commenced an additional phase II trial using a redesigned anti-OSM 

antibody with higher affinity for OSM  for the treatment of diffuse cutaneous systemic 

sclerosis100. This is the same antibody previously used by our laboratory which successfully 

inhibited lung colonisation in the tail vein model of cervical SCC92. These studies represent 

the only two clinical trials to date which have therapeutically targeted OSM-OSMR signalling. 

Two humanised anti-OSMR antibodies are currently reported to be in pre-clinical 

development100. Moreover, Brolund et al (2011) have recently developed a murine fusion 

protein comprising the ligand-binding domain of mouse OSMR and gp130 which binds to 

mOSM422. We have recently used this fusion protein to inhibit OSM induced activation of 

STAT3 signalling in PDSC5.2 cells in vitro (results unpublished). However, no homologous 

humanised fusion protein currently exists.  
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Figure 6.15: Options for therapeutic blockade of OSM-OSMR signalling 

OSM-OSMR signalling could be pharmacologically targeted by various approaches, 

including (A) monoclonal antibodies and receptor fusion proteins that neutralize OSM (B) 

monoclonal antibodies that target OSMR (C) bispecific reagents that target both OSM or 

OSMR and other inflammatory cytokines or tissue‐specific factors; and (D) small molecule 

inhibitors that target signal transduction mediators downstream of OSMR, such as 

JAK/STAT inhibitors. Taken from West et al (2018)
100

. 
 

6.5.6 Chapter Summary  

This chapter aimed to establish a mouse model which allowed for investigation of the effects 

of OSM-OSMR signalling on in vivo growth and metastasis of human cervical SCC cells. For 

all the experiments discussed in this chapter tumour xenografts were established by 

subcutaneous injection of cells into immunocompromised NOD SCID mice. OSMR KD 

SW756 cells were found to have significantly reduced growth rate in vivo than OSMR 

overexpressing empty plasmid SW756 cells. Administration of exogenous hOSM by IP 

injection for the first 13 days following tumour establishment led to reduced tumour growth of 

both cell lines. Experiments in which hOSM was continually delivered demonstrated a more 

complex scenario which was dependent on the amount of OSM produced. Overall, SW756 

cells with constitutive OSM overexpression had a significantly increased growth rate in vivo 

compared to SW756 cells which did not express OSM. However, whether these effects were 
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completely mediated by OSM-OSMR signalling or involved interplay between OSM and LIFR 

remains to be elucidated. Whether OSM overexpressing cells had increased metastatic 

potential and/or effects on the tumour vasculature is still to be evaluated by histological 

analysis. Together, these experiments indicate that effects of OSM on cervical SCC tumour 

growth may be dependent on both dose and duration of OSM delivery. Continued delivery of 

OSM by OSM overexpressing cervical SCC cells more accurately recapitulates the 

sustained delivery of OSM that would be observed within the TME of patients with OSMR 

overexpressing cervical SCC tumours. Therefore, we believe that this represents a 

promising model for investigation of the effects of OSM-OSMR signalling on cervical SCC 

growth in vivo, and could be used for investigation of therapeutic blockade of OSM-OSMR 

signalling using humanised antibodies or fusion proteins. 
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7. CONCLUDING DISCUSSION  

 

7.1 Project Context 

The implementation of population-based screening programmes  that test for HPV infection 

or use cytology to identify abnormal cells indicative of pre-cancerous disease have 

successfully reduced cervical cancer incidence and mortality in high-income countries by up 

to 80% over the last 5 decades44. Moreover, the introduction of nationwide prophylactic 

vaccination programmes against HR-HPV subtypes is expected to further decrease cervical 

cancer incidence and mortality. Dramatic reductions in pre-cancerous disease have already 

been observed in countries that have implemented nationwide vaccination programmes 

since the first vaccine was licensed in 2006 54,58,59. Currently, however, there is great 

disparity in the global implementation of nationwide programmes for HPV vaccination and 

screening for pre-cancerous disease.  As such, cervical carcinoma remains the fourth most 

commonly diagnosed cancer and the fourth leading cause of cancer mortality in women 

worldwide1. Moreover, the HPV vaccination does not treat existing HPV infections53 and 

multiple generations of women will not have been eligible for vaccination because of its 

relatively recent implementation58. Outcomes for women diagnosed with metastatic or 

recurrent cervical cancer is poor, with little improvement in survival outcomes over the last 

three decades67. Therefore, there is an urgent need for the development of new targeted 

therapies for the treatment of cervical carcinoma. 

 

The development of targeted therapies requires a thorough understanding of the molecular 

mechanisms driving tumour progression. Previous work in our laboratory has focused on the 

role of OSMR as a driver of cervical SCC. OSMR frequently undergoes copy-number gain 

and overexpression in cervical SCC and is associated with adverse overall survival 

independent of tumour stage70,73.  Moreover, OSM-OSMR signalling activates STAT3 

signalling inducing a pro-malignant phenotype including increased cell migration, invasion 

and angiogenesis73,92,121,122. Bidirectional communication between cancer cells and cells of 

the TME is essential for tumour progression. EVs have been demonstrated to be key 

mediators of intercellular communication and promote tumour progression through various 

mechanisms187,188. Therefore, this thesis aimed to investigate whether OSM-OSMR 

signalling was capable of modulating the cargo of EVs released from cervical SCC cells, as 

a mechanism of perpetuating oncogenic signals to other cancer cells and to cells of the 

TME.  
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7.2 Overview and discussion of findings 

7.2.1 Chapter 4 

The experiments detailed in Chapter 4 demonstrated that EVs could be successfully isolated 

by sequential ultracentrifugation from cervical SCC cell lines. These vesicles were of the 

expected size range for sEVs and were enriched for ALIX, CD63 and CD9, three markers 

known to be expressed by both exosomes and microvesicles. Treatment of cervical SCC 

cells with OSM did not affect the size or quantity of EVs released. Having shown that EVs 

could be successfully isolated, a pilot study was conducted to determine whether OSM-

OSMR signalling modulated miRNA expression by cervical SCC cells and their EVs. We 

selected miRNAs for investigation in this pilot study as they are the most commonly 

investigated of the RNA species present in EV cargo. Multiple groups have previously 

demonstrated that cancer cells release EVs containing functional miRNAs that are capable 

of modulating RNA expression in recipient cells promoting pro-tumourigenic phenotypes in 

both other cancer cells and cells of the TME423–425. 

 

In a pilot study a panel of nine miRNAs was selected for investigation in two cervical SCC 

cell lines: SW756 cells (which have OSMR copy number gain and baseline OSMR 

overexpression); and ME180 cells which have normal baseline levels of OSMR expression. 

It was initially hypothesised that OSM treatment would lead to upregulation of suspected 

tumour-promoting miRNAs and downregulation of suspected tumour-suppressing miRNAs in 

SW756 cells, but have little effect on miRNA expression in ME180 cells. However, this was 

not the case as miRNAs were upregulated in both cell lines in response to OSM treatment, 

irrespective of their suspected role in tumour progression. The impact of OSM treatment on 

modulating EV miRNA expression was notably greater in SW756 EVs compared to ME180 

EVs. These experiments, therefore, constituted a promising pilot study to demonstrate that 

OSM-OSMR signalling is capable of differentially modulating cellular and EV miRNA 

expression in cervical SCC cell lines with different levels of OSMR expression.  

 

The functional impact of these changes was then interrogated using growth, migration and 

angiogenesis assays. These assays were selected as OSM-OSMR signalling has previously 

been demonstrated to impact on these processes. However, we were unable to determine 

functional differences between EVs isolated from PBS or OSM treated cells. This does not 

necessarily mean that EVs isolated from cervical SCC cells treated with OSM or PBS do not 

have differential functional affects when taken up by cancer cells themselves or cells of the 

TME. There were multiple limitations to these experiments that may have affected their 

outcomes. For example, concentrations of EVs used may have been too low to confer 
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functional effects, cell treatment may have been suboptimal (i.e. short pulse of OSM 

treatment used for angiogenesis assay) and EV uptake was not demonstrated. Moreover, 

PBS and OSM EVs may have been found to have differential functional effects if alternative 

recipient cells types or different functional assays had been selected for investigation. These 

experiments highlighted the necessity to undertake a targeted approach in order to elucidate 

whether OSM-OSMR signalling propagated any functionally significant changes via the EVs. 

An OSMR KD SW756 cell line was subsequently generated by CRISPR-Cas9 for this 

purpose.  

 

7.2.2 Chapter 5 

The experiments detailed in Chapter 5 describe the use of NGS to investigate global 

changes in cellular and EV mRNA and miRNA expression profiles in response to OSM-

OSMR signalling. Treatment of OSMR overexpressing EP SW756 cells with OSM resulted in 

global changes in gene expression in both cells and their resultant EVs. OSM-OSMR 

signalling led to over representation of pathways involved in: cytokine mediated signalling, 

myeloid leucocyte activation, hypoxia signalling, interferon signalling, negative regulation of 

viral life cycle and angiogenesis in both cells and EVs. On the other hand, pathways 

involved in PI3K-AKTsignalling, tissue remodelling, negative regulation of differentiation and 

focal adhesion were downregulated in cells whereas pathways involved in cell cycle 

regulation and regulation of division and cellular organisation were downregulated in EVs.  

These findings were in line with a smaller selection of pathways previously found to be over 

represented in microarray analysis of mRNA expression in response to OSM treatment in 

SW756 and CaSki cell lines and clinical cervical SCC samples with OSMR 

overexpression121. The results presented in this thesis, therefore, build upon our current 

knowledge of the effects of OSM-OSMR signalling in cervical SCC cells. In addition, we 

identified novel pathways for investigation and demonstrated that OSMR KD results in global 

changes in gene expression, in both cells and EVs. Moreover, the current results 

demonstrate, for the first time, that OSM-OSMR signalling is capable of altering the mRNA 

cargo of EVs released from cervical SCC cells. Similar genes and pathways were found to 

be differentially expressed in both cervical SCC cells and EVs in response to OSM-OSMR 

signalling. Therefore, EVs may play a role in the transmission of OSM-OSMR mediated pro-

tumorigenic signals to other cancer cells and to cells of the TME. 

 

Nine genes that were found to be highly up or downregulated in both SW756 cells and EVs 

in response to OSM-OSMR signalling were selected for validation by qPCR. This was 

performed using the same cell samples as used for NGS (EP or KD cells + PBS/OSM) and 

RNA from additional cell lines generated by a second CRISPR experiment (EP2, KD2, KD3). 
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CHI3L1, CEMIP and PLAUR were shown to be consistently upregulated in EP cells in 

response to OSM, and downregulated in KD cells; whereas CPA4 and PTPRR were found to 

be consistently downregulated in EP cells in response to OSM. Therefore, these five genes 

were identified as promising candidate genes for subsequent investigation in future EV 

experiments. 

 

The pilot study conducted in Chapter 4 led us to hypothesise that OSM-OSMR signalling 

would result in wide-scale changes in cellular and EV miRNA expression. However, small 

RNA sequencing detected substantially fewer differentially expressed miRNAs in cervical 

SCC cells and EVs in response to OSM-OSMR signalling than expected. Ten miRNAs were 

found to be differentially expressed in both cells and their corresponding EVs. Many of these 

miRNAs have previously been reported to be associated with OSM and STAT3 signalling. 

As the number of differentially expressed miRNAs was lower than expected, four miRNA 

shown in Chapter 4 to be differentially expressed in SW756 cells and EVs in response to 

OSM were investigated by qPCR in the sequencing samples. This was in order to 

investigate whether the same changes previously described could be observed in these 

latter experiments. All four were found to be significantly upregulated in EP cells in response 

to OSM, and three were found to be significantly downregulated in KD cells, despite not 

being detected as significant in NGS analysis. Lack of consistency between NGS and qPCR 

data likely reflects variability between replicates. Changes in miRNA expression may also be 

subtle. Therefore, if less stringent FDR and LFC thresholds were used for the analysis of the 

NGS data, it is possible that in agreement with qPCR results, more miRNA may be identified 

as being targets of OSM-OSMR signalling in cervical SCC cells and their EVs. 

 

7.2.3 Chapter 6 

In Chapter 6, parallel experiments were conducted to elucidate the effects of OSM-OSMR 

signalling on the growth of cervical SCC cells in vivo. In an initial experiment tumour 

xenografts were established by subcutaneous injection of EP or KD SW756 cells into NOD-

SCID mice. KD cells were found to have a significantly reduced growth rate in vivo than 

OSMR overexpressing EP cells. Administration of exogenous hOSM by IP injection for the 

first 13 days following tumour establishment led to reduced tumour growth of both cell lines. 

The response of the KD cell line to OSM was unexpected, and suggested that the 

experimental system was sub-optimal.  

 

Experiments in which hOSM was continually delivered demonstrated a more complex 

scenario which was dependent on the amount of OSM produced. pOSM-c3 SW756 cells 

with high levels of constitutive OSM overexpression had a significantly increased growth rate 
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in vivo compared to SW756 cells which did not express OSM or those with lower levels of 

OSM overexpression. However, an initial lag phase in pOSM_C3 tumour growth indicated 

that some of the effects observed in both xenograft experiments could possibly be mediated 

by OSM-LIFR signalling in addition to OSM-OSMR signalling. Moreover, whether OSM 

overexpressing cells had increased metastatic potential remains to be elucidated following 

histological analysis. Together, these experiments indicate that effects of OSM on cervical 

SCC tumour growth may be dependent on the route, dose and duration of OSM delivery. 

However, despite these caveats, we believe that this represents a promising model for 

investigation of the effects of OSM-OSMR signalling on cervical SCC growth in vivo, and 

could be used for investigation of therapeutic blockade of OSM-OSMR signalling using 

humanised antibodies or fusion proteins. 

 

7.3 Future Work  

7.3.1 In vitro experiments 

To follow on from the work presented in this thesis, initial experiments should primarily aim 

to demonstrate whether EVs released from cervical SCC cells are taken up by other cancer 

cells and various cells of the TME. This could be achieved by incubation of EVs with a 

fluorescent lipophilic dye such as PKH67 prior to treatment of recipient cells, allowing for 

visualisation of uptake by fluorescent microscopy320. OSM-OSMR signalling was found to 

have a greater impact on cellular and EV mRNA expression than miRNA expression. 

Therefore, initial experiments should focus on changes in EV mRNA cargo in response to 

OSM-OSMR signalling. Once EV uptake has been demonstrated, subsequent experiments 

should focus on whether mRNA and protein expression of recipient cells is altered in 

response to EV treatment. CHI3L1 and CEMIP were found to be highly upregulated in EP 

cells and EVs in response to OSM and were downregulated in KD cells and EVs. They 

would, therefore, be promising candidate genes for investigation. Initial experiments could 

be performed in which KD cells (which underexpress these mRNAs) are treated with EP-

PBS-EVs and EP-OSM-EVs. Levels of CHI3L1 and CEMIP in recipient KD cells would 

subsequently be investigated by qPCR and western blot.  This system could also be used in 

order to determine the concentration of EVs required to bring about detectable changes in 

mRNA expression in recipient cells, thereby informing the design of future experiments.  

 

Subsequent experiments should focus on the functional effects of these EVs. Key pathways 

upregulated in EVs in response to OSM-OSMR signalling included cytokine mediated 

signalling, myeloid leucocyte activation and hypoxia response. This indicates that ideal 

recipient cells may include other cancer cells, endothelial cells and leucocytes such as 
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macrophages. Initial experiments could include treatment of these cell types with EP-PBS-

EVs, EP-OSM-EVs, KD-PBS-EVs and KD-OSM-EVs followed by qPCR investigation of 

genes known to be targeted by OSM-OSMR signalling in recipient cells such as OSMR itself, 

VEGFA, TGM2 and SNAI1. Moreover, functional effects of EV transfer to these cells should 

be investigated. For example investigation of expression of EMT markers and use of 

invasion assays should be performed for investigation of the effects of EV treatment on 

recipient cancer cells. Migration and angiogenesis assays for endothelial cells following EV 

treatment, and investigation of leucocyte activation and HIF-1α induced polarisation of 

macrophages, would also be recommended. This could be achieved by qPCR to investigate 

M2 marker expression, such as Arg-1 and COX-2382, in recipient cells.  

 

7.3.2 Ex vivo experiments 

In the subcutaneous xenograft experiments previously described, plasma was collected by 

cardiac puncture at experimental endpoint. Moreover, tumour fragments were grown for 24 

hours ex vivo and tumour-derived EVs subsequently isolated by ultracentrifugation. 

Following optimisation of a protocol for quantification of low input quantities of RNA by 

qPCR, it would be interesting to investigate whether EV samples collected from in vivo 

experiments displayed differential expression of the key targets identified by NGS, such as 

CHI3L1 and CEMIP. 

 

7.3.3 In vivo experiments 

Following on from the subcutaneous xenograft experiments performed in this thesis, 

histological examination of lung, liver and femur sections should be performed in order to 

determine whether OSM-OSMR signalling affected metastasis in these models. Moreover, 

subsequent work should focus on elucidating whether the observed effects on tumour 

growth were completely attributable to OSM-OSMR signalling. This could be achieved by 

using CRISPR to KD LIFR or OSMR in the OSM overexpressing pOSM_c3 cells and 

pOSM2 cells or by treatment of these two cell lines with either LIFR or OSMR inhibitors or 

antibodies. Subsequent growth of these cells in vivo with KD or therapeutic blockade of 

OSMR or LIFR would demonstrate whether effects from current experiments are truly a 

result of OSM signalling via OSMR rather than LIFR. These experiments should include 

tracking of bioluminescent cells by IVIS in order to detect effects on metastasis.  

 

The OSM overexpressing subcutaneous xenograft model (pOSM_c3) described in this 

thesis has promising potential as a model to facilitate investigation of therapeutic blockade of 

OSM-OSMR signalling in vivo. This could be achieved either by targeting OSM using 

monoclonal antibodies or soluble receptor fusion proteins, or by antibodies directed against 
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OSMR itself. Moreover, this model could be used to investigate the functional effects of EVs 

on OSM-OSMR signalling in vivo. This could be investigated by in vivo administration of 

siRNAs against nSMAse2 or RAB27A in order to prevent release of EVs from tumour 

cells208–210. Effects on tumour growth and metastasis would subsequently be investigated. 

Alternatively, EVs from various cell lines (i.e. EP-OSM-EV, KD-OSM-EV or pOSM_c3 EVs) 

could be injected and the effects on tumour growth investigated. This could also be 

performed using the tail vein model (and fluorescently labelled or bioluminescent EVs) in 

order to determine whether EVs assist in OSM induced lung colonisation, in line with what 

has been demonstrated previously in other cancer models197,198. Similarly, the 

immunocompetent PDSC5.2 model could also be utilised for these experiments. 

 

7.4 Concluding Remarks 

The work presented in this PhD thesis demonstrates for the first time that OSM-OSMR 

signalling is capable of modulating mRNA and miRNA expression by EVs released from 

cervical SCC cells in vitro. NGS identified over and under represented pathways in these 

EVs in response to OSM-OSMR signalling. These will be the focus of subsequent 

investigation in order to determine the functional effects of EV mediated transfer of OSM-

OSMR signals to other cancer cells and cells of the TME.  A subcutaneous xenograft model 

was established in which OSM overexpression was found to drive growth of SW756 cells in 

vivo. Subsequent experiments will need to be performed to elucidate whether effects are 

mediated entirely by OSM-OSMR signalling and not through additional contributions from 

OSM-LIFR signalling. Moreover, this model will be used for future investigation of 

therapeutic blockade of OSM-OSMR signalling and investigation of the role of OSM-OSMR 

mediated EV signalling on tumour growth and metastasis in vivo.  
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8.  LIST OF ABBREVIATIONS 
 

AC = Adenocarcinoma 

AGO = argonaute 

ANOVA = one way analysis of variance 

AP = alkaline phosphatase  

ARF6 = ADP-ribosylation factor 6 

ARRDC1 = arrestin domain-containing protein 1 

ATCC = American Type Culture Collection 

BCA = Bicinchoninic Acid 

BCIP/NBT = 5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium 

BLAST = basic local alignment search tool   

BMPs = bone morphogenic proteins 

BSA = Bovine Serum Albumin 

CAFs = cancer-associated fibroblasts 

cDNA = complementary DNA 

CEMIP = Cell migration-inducing and hyaluronan-binding protein (KIAA1199) 

CGH = comparative genomic hybridisation  

CHI3L1 = Chitinase-3-like protein 1 (YKL-40) 

CIN = Cervical intra-epithelial neoplasia 

circRNA = circular RNA 

CLCF1 = cardiotrophin-like cytokine factor 1 

CNTF = ciliary neurotrophic factor 

CPA4 = Carboxypeptidase A4  

CRISPR = clustered, regularly interspaced, short palindromic repeats 

Ct = cycle threshold 

CT-1 = cardiotrophin-1 

CTLA4 = cytotoxic T-lymphocyte-associated antigen 4 

DE = differentially expressed 

DMEM medium = Dulbecco’s Modified Eagle medium 

DMSO = dimethyl sulfoxide 

DNA = deoxyribonucleic acid 

DPX mountant = Dibutylphthalate Polystyrene Xylene 

DSBs = double strand breaks 

EBRT = external beam radiation therapy 

ECL = enhanced standard chemiluminescence 
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ECM = extracellular matrix 

EDTA = Ethylenediaminetetraacetic Acid  

EGFP = enhanced green-fluorescent protein 

EGFR = epidermal growth factor receptor 

ELISA = enzyme-linked immunosorbent assay 

EMT = epithelial-mesenchymal transition  

ERK½ = extracellular signal-regulated kinases ½ 

ERKs = extracellular signal-regulated kinases 

ESCRTs = endosomal sorting complexes required for transport 

EtOH = ethanol 

EVs = extracellular vesicles 

FACS =    Fluorescence-activated cell sorting 

FBS = Fetal Bovine Serum 

FDR = false discovery rate 

FGF = fibroblast growth factor 

FIGO = The International Federation of Gynecology and Obstetrics  

FMOD = Fibromodulin 

FN1 = fibronectin 

GAVI = Global Alliance for Vaccines and Immunisations 

GFP = green fluorescent protein 

GBM = glioblastoma   

GMEM = Glasgow Minimum Essential Medium  

gRNA = guide RNA 

HDR = homology directed repair 

HGF = hepatocyte growth factor 

HIV = human immunodeficiency virus 

HK = housekeeper 

hLIFR = human leukemia inhibitory factor receptor 

hnRNPA2B1 = heterogeneous nuclear ribonuncleoprotein A2/B1 

hOSM = human Oncostatin M 

hOSMR = human Oncostatin M receptor 

HPV = human papillomavirus 

HR = high risk  

HRP = streptavidin-horse radish peroxidase 

HSILs = high grade squamous intra-epithelial lesions 

HSP70 = heat shock protein 70 

HUVECs = human umbilical vein endothelial cells 
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hypoxia-inducible factor = (HIF) 

hypoxia-inducible factor 1 alpha = (HIF1α) 

hypoxia-inducible factor 2 alpha = (HIF2α) 

ICAM1 = intercellular adhesion molecule 1 

ID-1 = inhibitor of DNA binding protein 1 

IFNGR1 = interferon gamma receptors 

IFNy = interferon gamma 

IgG = Immunoglobulin G  

IL-31RA = IL-31 receptor alpha 

IL-6 = interleukin-6 

ILVs = intraluminal vesicles 

ILVs = intraluminal vesicles 

IncRNAs = long non-coding RNAs 

IP = intraperitoneally 

IRF1 = interferon regulatory factor 1 

IVIS = in vivo imaging system 

JAK = Janus kinase 

KD = knock down 

KO = Knock Out 

LB broth = Lysogeny broth 

LCR = long control region 

LEEP = loop electrosurgical excision procedure 

LFC = log fold change 

LIF = leukaemia inhibitory factor 

LIFR = leukemia inhibitory factor receptor 

LINEs = long interspersed elements 

LR = low risk 

LSILs = low grade squamous intra-epithelial lesions  

LTRs = long terminal repeats 

LTRs = long terminal repeats 

MAPK = mitogen-activated protein kinase 

MDSCs = myeloid-derived suppressor cells 

MGB = minor groove binder 

MHC Class I = major histocompatibility complex class I protein 

miRNAs = microRNAs 

MLCK = myosin light chain kinase 

mLIF = murine leukaemia inhibitory factor 
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mLIFR = mouse leukaemia inhibitory factor receptor  

MMLV = Moloney murine leukaemia virus 

MMP = Matrix metalloproteinase 

mOSM = murine Oncostatin M 

mOSMR = murine Oncostatin M receptor 

MRE = miRNA response elements 

mRNA = messenger RNA  

MT1-MMP = MMP membrane type 1 

MVBs = multivesicular bodies  

NFQ = non-fluorescent quencher 

NGS = next generation sequencing 

NHEJ = non-homologous end joining 

NOD-SCID = Non-obese diabetic/severe combined immunodeficiency 

NPC = nasopharyngeal carcinoma  

NPM1 = RNA-binding protein nucleophosmin 1 

NSCLC = non-small cell lung cancer 

nSMases = neutral sphingomyelinase enzymes 

NTA = Nanoparticle Tracking Analysis 

ORF = open reading frames 

OSM = Oncostatin M 

OSMR = Oncostatin M Receptor 

PAHO = Pan American Health Organisation 

PAI = plasminogen activator inhibitor 

PAM = Protospacer adjacent motifs 

PANX1 = plasma membrane channel pannexin 1 

PARP = poly ADP-ribose polymerase 

PBS – phosphate buffered saline 

PCR = polymerase chain reaction 

PCSK1N = Proprotein convertase subtilisin/kexin type 1 inhibitor  

PD-1 = programmed cell death protein 1 

PDZK3 = PDZ domain containing protein 3 

PFA = Paraformaldehyde 

PI3K = phosphoinositide 3-kinase 

piRNA = piwi-interacting RNA 

PLAUR = plasminogen activator, urokinase receptor 

PLCB4 = Phospholipase C beta 4 

pre-miRNA = precursor miRNA 
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pri-miRNA = primary miRNA 

PS = phosphatidylserine 

PTPRR = Protein tyrosine phosphatase receptor type R 

pUNO = empty control plasmid 

PVDF = microporous polyvinylidene fluoride 

qPCR = quantitative polymerase chain reaction 

RAB = ras-related gtp-binding protein 

RAB38 = ras-related gtp-binding protein 

Rb = retinoblastoma 

RCF = Relative Centrifugal Force 

Rh-OSM = Recombinant Human Oncostatin M Protein 

RIPA = Radioimmunoprecipitation assay buffer 

RISC = RNA-induced silencing complex 

rLIF = rat leukemia inhibitory factor  

rLIFR = rat leukemia inhibitory factor receptor 

RNA = ribonucleic acid 

ROCK I = Rho-associated protein kinase  

rOSM = rat Oncostatin M  

rOSMR = rat Oncostatin M Receptor 

rRNA = ribosomal RNA 

SC = subcutaneously 

SCC = squamous cell carcinoma 

scRNA = small conditional RNA 

SDS = sodium dodecyl sulfate 

SEM = standard error of the mean 

sEVs = small EVs 

sgRNAs = single guide RNAs 

siRNA = small interfering RNA 

SMase = Sphingomyelin phosphodiesterase 

SNAI1 = Snail Family Transcriptional Repressor 1)  

SNAREs = N-ethylmaleimide-sensitive factor attachment protein receptors 

snoRNA = small nucleolar RNA 

snRNA = small nuclear RNA   

snRNA = small nuclear RNA 

SOC = super optimal broth 

SOCS5 = suppressor of cytokine signalling 5 

SRP-RNA = signal recognition particle RNA 

https://en.wikipedia.org/wiki/Sphingomyelin_phosphodiesterase
https://en.wikipedia.org/wiki/Sphingomyelin_phosphodiesterase
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SSBs = single strand breaks 

STAT = signal transducers and activators of transcription  

TCGA = The Cancer Genome Atlas 

TEM = transmission electron microscopy  

TF = transcription factors 

TGCA = The Cancer Genome Atlas 

TGFꞵ = tumour growth factor ꞵ 

TGM2 = tissue transglutaminase 

TIAM1 = T-cell lymphoma invasion and metastasis-inducing protein 1  

TME = tumour microenvironment 

TMM – trimmed means of M values 

TRBP = transactivation response element RNA-binding protein 

TRIO – triple functional domain 

tRNA = transfer RNA 

tSNE = t-Stochastic neighbour embedding 

UPAR = Urokinase receptor 

UTR = untranslated region 

VAMP3 = vesicle associated membrane protein 3  

VCAM1 = vascular cell adhesion molecule  

VEGFA = vascular endothelial growth factor A 

VEGFR = vascular endothelial growth factor receptor 

VLP = virus like particles 

vRNA = vault RNA   

VST – variance stabilising transformation 

WHO – World Health Organisation 

WT = Wild Type 

Y RNA = long Ro-associated Y RNA 

YBX1 = RNA-binding protein Y-box protein 1 

5P = short arm of chromosome 5 
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10. SUPPLEMENTARY METHODS 
 

10.1 Plasma collection by cardiac puncture  

Mice were anesthetised with isoflurane; they were initially placed in an isoflurane induction 

chamber and then, once suitably anaesthetised, removed from the chamber and placed in a 

dorsal recumbency position on top of a heated pad, with continued delivery of anaesthesia 

via a nose cone. A sterile 25 gauge 1 inch needle was attached to a 1ml syringe (both BD 

microlance, Franklin Lakes, NJ, USA) and coated with filtered 10% 0.5M EDTA 

anticoagulant. 100µl EDTA was also added to a 1.5ml collection tube. The needle was 

inserted through the mouse’s chest and blood drawn from the heart; blood was quickly 

transferred to the EDTA containing collection tube. Mice were culled by cervical dislocation. 

The blood was left at room temperature for 30mins; it was subsequently centrifuged at 

1,500xg for 10mins at 4°C. The supernatant (plasma) was removed to a new eppendorf tube 

and frozen at -80°C. Total RNA was subsequently extracted as described in section 3.6.3  

 

10.2 Ex vivo tumour culture and EV isolation 

Tumour pieces were collected into DMEM and placed on ice. They were subsequently 

transferred to a 6 well tissue culture plate containing 3ml DMEM + 1% Penicillin-

Streptomycin. After 24hours in culture, conditioned media was collected and split between 

two 1.5ml Eppendorf tubes and EVs isolated using a modified ultracentrifugation protocol to 

account for lower sample volume. Conditioned media was centrifuged at 1000xg for 15mins 

at 4°C. Supernatant was then transferred into new 1.5ml Eppendorf tubes and centrifuged at 

2000xg for a further 15mins. Supernatant was transferred to new 1.5ml Eppendorf tubes and 

centrifuged at 16,000xg for 25mins at 4°C; all steps up until this point were performed in an 

Eppendorf 5415R benchtop centrifuge. Supernatant from the two Eppendorf tubes was 

subsequently pooled and transferred to Ultra-Clear ½ x 2 inch centrifuge tubes (‘5ml 

centrifuge tubes’); samples were centrifuged at 100,000xg for 80mins at 4°C using an 

Optima L-100XP centrifuge with SW-55Ti rotor. The supernatant was discarded and the EV 

containing pellet re-suspended in 3ml PBS. Samples were centrifuged for a further 40mins at 

100,000xg, 4°C using a SW-55Ti rotor. This step was performed to remove contaminating 

protein. Supernatant was discarded and EV pellets frozen at -80°C; total RNA was extracted 

as described in section 3.6.3. 
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10.3 Histology 

 

Tumour tissues were fixed in formalin for 24 hours then transferred into 70% ethanol. 

Samples were processed and embedded into paraffin wax by the Histopathology Laboratory 

in the Department of Pathology.  Paraffin embedded tissue blocks were chilled to 4°C and 

5µm sections cut using a Shandon AS325 rotary microtome. Sections were floated in a 

sectioning waterbath and mounted onto superfrost plus slides. Slides were then baked at 

56°C overnight. Haematoxylin and eosin staining were then performed as described below. 

Sections were deparaffinised in xylene (2 x 10mins) then transferred through decreasing 

concentrations of ethanol (100% - 2 x 5mins, 90% - 2mins, 70% - 2mins). Slides were 

washed for 5mins in distilled water and then stained with haematoxylin for 3mins. Slides 

were then washed in running water for 5mins, and excess stain removed by placing in acid 

alcohol (70% Ethanol + 1% hydrochloric acid) for 1min. Sections were then rinsed under 

running water for 10mins, stained with Eosin Y (20% Eosin Y + 80% ethanol) for 1min, then 

washed in distilled water for 40secs. Sections were then rehydrated by passing through 

increasing concentrations of ethanol (70% - 2mins, 90% - 2mins, 100% - 2mins) then 

transferred to xylene for 2 x 2mins. Excess xylene was removed by blotting the edges of the 

slide with tissue, and coverslips applied using DPX mountant. 

 

 

 

 

 

 

 

 

Table S3. 1: Reagents for Histology 

Reagent Company 

 Formalin (10%, buffered) 

  Ethanol 

 DPX mountant 

Sigma-Aldrich, St. Louis, MO, 
United States 

 Harris haematoxylin 

 Xylene 

 Superfrost Plus Slides 

Thermo Fisher Scientific, 
Waltham, MA, USA 

 Eosin Y 
Atom Science, Manchester, 

UK 
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11. SUPPLEMENTARY INFORMATION FOR CHAPTER 4 
RESULTS: Effect of OSM signalling on EV cargo in cervical SCC cells 

Figure S4. 1: miRNA selected for qPCR: correlation with OSMR in TCGA datasets 

Analysis of TCGA dataset of mRNA expression in clinical samples obtained from patients 

with cervical SCC. Correlation of OSMR expression compared to expression of the following 

miRNAs selected for qPCR investigation is shown: A) miR-9-1 B) miR-31 C) miR-10b D) 

miR-23b E) miR-29b-1 F) miR-101-1 G) miR-126 H) miR-34c and I) miR-194-2. P≤0.01 

were considered as statistically significant to account for multiple testing. miRNA with 

significant correlation with OSMR expression are highlighted in red. n = 251. Correlation 

plots were generated by Dr Stephen Smith.  
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Figure S4. 2: miRNA selected for qPCR: correlation with STAT3 in TCGA datasets 
Analysis of TCGA dataset of mRNA expression in clinical samples obtained from patients 

with cervical SCC. Correlation of STAT3 expression compared to expression of the following 

miRNAs selected for qPCR investigation is shown: A) miR-9-1 B) miR-31 C) miR-10b D) 

miR-23b E) miR-29b-1 F) miR-101-1 G) miR-126 H) miR-34c and I) miR-194-2. P≤0.01 

were considered as statistically significant to account for multiple testing. miRNA with 

significant correlation with STAT3 expression are highlighted in red. n = 251. Correlation 

plots were generated by Dr Stephen Smith.  
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Figure S4. 3: Baseline miRNA levels in SW756 and ME180 cells and EVs 
Quantitative RT-PCR for SW756 and ME180 cells and EVs collected 12, 24, 48 or 72 hours with 
PBS control. miRNA abundance at each timepoint is shown relative to RNU24 housekeeper miRNA 

levels for A) ME180 cells B) SW756 Cells D) ME180 EVs and E) SW756 EVs.  Values are displayed 

on a log10 scale. C) Fold change in miRNA expression at the 48hour timepoint in PBS treated SW756 

cells compared to PBS treated ME180 cells and F) PBS treated SW756 EVs compared to PBS treated 
ME180 EVs. Error bars represent SEM, n=3 independent experiments for each condition. Values 

were analysed for statistical significance using a one way ANOVA with Tukey’s multiple 

comparison post-hoc tests (A,B,D,E) or unpaired T-test with Welch’s correction (C and F). * 

=.P≤0.05, ** = P≤0.01. 
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Figure S4. 4: Confirmation of gRNA1 insertion into PX466 Cas9-D10A-GFP vector 

Sequencing of gRNA1 colonies i) A ii) B iii) C. gRNA1 is highlighted in yellow 
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Figure S4. 5: Confirmation of gRNA2 insertion into PX466 Cas9-D10A-GFP vector  
Sequencing of gRNA1 + gRNA 2 colonies i) A ii) B iii) C iv) D 

gRNA1 is highlighted in yellow, gRNA2 is highlighted in blue  
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Figure S4. 6: Example of Synthego ICE analysis of sequencing results 

A) Example of sequence alignment to wild-type control. Alignment is shown for OSMR i) 

OSMR KD clone 2 which has no detectable mutations in the OSMR sequence and ii) 

OSMR KD clone 5 which has mutations to the OSMR sequence.  

B) Examples of Synthego ICE discordance and indel plots generated for i) OSMR KD clone 

2 and ii) OSMR KD clone 5 
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Figure S4. 7: CRISPR 2 - Repeat transfection of SW756 cells  

EGFP expression in SW756 cells transfected with A) untransfected control B) mock 

transfection C) empty plasmid and D) plasmid containing sgRNAs  
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Figure S4. 8: CRISPR 2 – PCR to detect for genomic alterations in OSMR 

A) PCR of genomic DNA using sequencing primers designed to amplify a 240bp region 

within gRNA sites. B)  PCR of genomic DNA using sequencing primers designed to amplify 

a region of 1006bp spanning the gRNA sites targeting OSMR. Stars represent sequences 

confirmed by sequencing to have altered sequences.   
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12. SUPPLEMENTARY INFORMATION FOR CHAPTER 5 
RESULTS: NGS of cells and EVs following OSM Treatment 

Figure S5. 1: Selection of RNA carrier for sequencing experiments 

A) RNA concentrations determined by nanodrop following RNA extraction with addition of 

MS2, glycogen or carrier free. B) Ct levels of RNU24 and miR30b in samples extracted with 

MS2, glycogen or carrier free. C) Levels of miR-31 and miR-126 expression in samples 

extracted with MS2, glycogen or carrier free. Ct values were normalised to i) RNU24 or ii) 

miR-30b. Fold change in expression relative to MS2 samples is shown. N=2 for each 

condition. Values were analysed for statistical significance using a one way ANOVA with 

Tukey’s multiple comparison post-hoc tests. No comparisons were found to be statistically 

significant 
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Figure S5. 2: Comparison of library prep kits – contamination and count normalisation  

A) Percentage of reads for each sample mapping to miRNAs, rRNA, snoRNAs and tRNAs 

B) Prenormalised counts:  generated by Chimira for each sample reflecting the number of 

reads mapped to miRNA  

C) Normalised counts: DESeq2 normalisation procedure was applied to pre-normalised 

counts. Somagenics and Nextflex samples were normalised separately. 
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Figure S5. 3: Comparison of library prep kits - sample clustering 

A). Heatmap showing sample-to-sample Pearson correlations of VST transformed data  

B) t-SNE plots for visualisation of sample clustering  
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Figure S5. 4: Cell counts as a read out of response to OSM for NGS sample pooling 
A) Average number of SW756 empty plasmid and OSMR KD cells present in 175cm

2
 flasks 

following 48 hours treatment with PBS or OSM (average of 25 EV extractions). B) Percentage 

number of cells relative to SW756 empty plasmid + PBS following 48 hours treatment with PBS or 

OSM (average of 25 EV extractions). For A) and B) Values were analysed for statistical significance 
using a one way ANOVA with Tukey’s multiple comparison post-hoc tests * =.P≤0.05, ** = P≤0.01, 

*** = P≤0.001, **** = P≤0.0001. C) Table summarising fold change in cell number for each 

individual experiment. Samples highlighted were selected for qPCR investigation. Green samples 

represent ‘expected response to OSM’; i.e. these samples showed the greatest reduction in cell 
number (replicates 14 and 16) or average reduction in cell number (replicates 1, 25). Samples 

highlighted in red are the 6 samples which appeared least responsive to OSM in terms of reduction of 

SW756 empty plasmid cell number following treatment.  
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Figure S5. 5: Changes in cell number compared to changes in gene expression  

A) OSMR and VEGFA mRNA expression by qRT-PCR. Fold change in gene expression in 

SW756 empty plasmid cells treated with OSM is shown normalised to expression levels in 

SW756 empty plasmid cells treated with PBS control. Fold change in cell number for each 

sequencing experiment is also shown. Linear Regression: fold change in cell number versus 

fold change in B) OSMR or C) VEGFA levels. Fold change refers to SW756 empty plasmid 

cells treated with OSM normalised to empty plasmid cells treated with PBS control. Control 

= samples with expected changes in cell number in response to OSM treatment (n=4, 

highlighted in green in Table S5.4C), test = samples with little change in cell number in 

response to OSM treatment (n=6, highlighted in red in Table S5.4C). Linear regressions with 

p ≤0.05 were considered significant.  
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Figure S5. 6: Effect of passage number and cell thaw on baseline gene expression  
A+B) Quantitative RT-PCR analysis. Correlation between passage number and i) OSMR or ii) 

VEGFA mRNA expression in untreated A) SW756 empty plasmid or B) OSMR KD cells is shown. 
Linear regressions with p ≤0.05 were considered significant. C+D) Quantitative RT-PCR analysis. 

mRNA expression of i) OSMR or ii) VEGFA in untreated A) SW756 empty plasmid or B) OSMR 

KD cells from three different cell thaws are shown. As there is no obvious comparator sample, 

abundance relative to HK genes (rather than fold change) is shown.  Values were analysed for 
statistical significant differences in gene expression between cell thaws using a one way ANOVA 

with Tukey’s multiple comparison post-hoc tests * = P≤0.05.  
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Figure S5. 7: Effect of OSM batch used for NGS on activation of downstream targets.  
Quantitative RT-PCR analysis of A) OSMR B) VEGFA C) TGM2 and D) SNAI1 expression in WT, 
empty plasmid and OSMR KD SW756 cells treated with PBS or two different batches of OSM used 

for sequencing experiments. Fold change in mRNA expression is shown compared to PBS treated WT 

cells. Values were analysed for statistical significant significance using a one way ANOVA with 

Tukey’s multiple comparison post-hoc tests. * =.P≤0.05, ** = P≤0.01, *** = P≤0.001, **** = 
P≤0.0001. 
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Figure S5. 8: mRNA sequencing – count normalisation  

A) Pre-normalised counts 

B) Counts following normalisation with DESeq2 

C) Counts following normalisation with EdgeR 
 

 

 

 

 



 

315 
 

Figure S5. 9: mRNA NGS VST correlations and tSNEs 

Heatmap of showing sample-to-sample Pearson correlations of VST transformed data for A) 

DESeq2 or B) EdgeR normalised data. t-SNE plots for visualisation of sample clustering for 

C) DESeq2 or D) EdgeR normalised data 
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Figure S5. 10: Cells mRNA Correlation Plots – DESeq2 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in blue. 
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Figure S5. 11: Cells mRNA Correlation Plots – EdgeR 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B)  OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 
D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in blue. 
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Figure S5. 12: Cells mRNA Correlation Plots – EdgeR Voom 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in blue. 
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Figure S5. 13: EVs mRNA Correlation Plots – DESeq2 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in blue. 
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Figure S5. 14: EVs mRNA Correlation Plots - EdgeR 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in blue. 
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Figure S5. 15: EVs mRNA Correlation Plots – EdgeR Voom 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in blue. 
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Figure S5. 16: Cells mRNA Volcano Plots – DESeq2 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in black. Top 50 most significantly changed mRNA are labelled 
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Figure S5. 17: Cells mRNA Volcano Plots – EdgeR 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in black. Top 50 most significantly changed mRNA are labelled 
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Figure S5. 18: Cells mRNA Volcano Plots – EdgeR Voom 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in black. Top 50 most significantly changed mRNA are labelled 
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Figure S5. 19: EVs mRNA Volcano Plots – DESeq2 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in black. Top 50 most significantly changed mRNA are labelled 
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Figure S5. 20: EVs mRNA Volcano Plots – EdgeR 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in black. Top 50 most significantly changed mRNA are labelled. 
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Figure S5. 21: EVs mRNA Volcano Plots – EdgeR Voom 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 

Genes with significant differential expression (≥+/-0.5 LFC; FDR ≤0.05) are shown in red. 

All other genes are shown in black. Top 50 most significantly changed mRNA are labelled 
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Figure S5. 22: Pathway analysis - Empty Plasmid + PBS vs Empty Plasmid + OSM 
Metascape hierarchical clustering of 20 most significantly enriched terms in gene lists for empty 
plasmid + PBS versus empty plasmid + OSM comparison. A) Upregulated pathways in i) cells and ii) 

EVS. B) Downregulated pathways in i) cells and ii) EVs. Nodes are coloured by the term cluster, as 

shown in the legend. 
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Figure S5. 23: Pathway analysis - Empty Plasmid + OSM vs OSMR KD + OSM  
Metascape hierarchical clustering of 20 most significantly enriched terms in gene lists for empty 

plasmid + OSM versus OSMR KD + OSM comparison. A) Upregulated pathways in i) cells and ii) 
EVS. B) Downregulated pathways in i) cells and ii) EVs. Nodes are coloured by the term cluster, as 

shown in the legend. 
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Table S5. 1: mRNA Expression of other genes of interest 
Expression of other genes of interest selected for qPCR validation that were not ranked within the top 10 most up 

or downregulated genes in cells or EVs from the following comparisons: empty plasmid + PBS versus empty 

plasmid + OSM and empty plasmid + OSM versus OSMR KD + OSM. Ranks only refer to genes that were found 

to be significantly up or down regulated in all three analyses (DeSeq2, EdgeR and EdgeR voom) 

 DESeq2 EdgeR EdgeR Voom 

RANK log FC FDR RANK log FC FDR RANK log FC FDR 

U
P

R
E

G
U

L
A

T
E

D
 

Empty 
Plasmid 

Cells + PBS 
vs Empty 
Plasmid 

Cells + OSM 

OSMR 92 1.53 3.2 x10
-11

 93 1.55 2.7 x10
-11

 92 1.53 2.1 x10
-13

 

VEGF

A 
93 1.52 5.7 x10

-50
 94 1.54 1.8 x10

-11
 93 1.51 7.3 x10

-17
 

TGM2 51 1.98 1.7 x10
-35

 51 2.00 3.0 x10
-19

 51 1.98 2.6 x10
-16

 

SNAI1 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

PLAU
R  

60 1.87 1.8 x10
-29

 59 1.89 2.1 x10
-16

 58 1.87 5.1 x10
-16

 

Empty 
Plasmid EVs 

+ PBS vs 
Empty 

Plasmid EVs 

+ OSM 

OSMR 62 1.09 2.7 x10
-7

 67 0.98 2.1 x10
-5

 66 1.05 1.6 x10
-4

 

VEGF
A 

57 1.15 3.0 x10
-25

 57 1.05 3.0 x10
-7

 59 1.14 4.4 x10
-8

 

TGM2 16 1.79 1. x10
-41

 16 1.71 4.8 x10
-22

 19 1.77 1.8 x10
-12

 

SNAI1 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

PLAU
R  

31 1.49 8.5 x10
-21

 31 1.41 6.5 x10
-12

 32 1.49 3.4 x10
-8

 

D
O

W
N

R
E

G
U

L
A

T
E

D
 

Empty 

Plasmid 
Cells + OSM 
vs OSMR KD 

Cells + OSM 

OSMR 108 -2.58 1.1 x10
-31

 105 -2.63 1.7 x10
-31

 107 -2.60 6.0 x10
-20

 

VEGF
A 

217 -1.64 2. x10
-58

 216 -1.69 3.1 x10
-14

 218 -1.65 4.4 x10
-18

 

TGM2 225 -1.59 6.1 x10
-23

 224 -1.64 2.2 x10
-13

 224 -1.60 9.3 x10
-14

 

SNAI1 148 -2.11 2.8 x10
-8

 146 -2.17 2.4 x10
-12

 138 -2.19 2.1 x10
-9

 

PLAU
R 

180 -1.90 3.1 x10
-30

 180 -1.95 1.0 x10
-17

 179 -1.91 3.0 x10
-16

 

Empty 
Plasmid EVs 

+ OSM vs 

OSMR KD 
EVs + OSM 

OSMR 81 -1.57 6.7 x10
-15

 79 -1.31 2.3 x10
-10

 70 -1.57 4.8 x10
-8

 

VEGF
A 

126 -1.34 1.6 x10
-35

 124 -1.09 2.1 x10
-8

 129 -1.30 3.0 x10
-10

 

TGM2 211 -0.83 1.2 x10
-9

 211 -0.59 5.5 x10
-3

 211 -0.79 8.0 x10
-6

 

SNAI1 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

PLAU

R 
86 -1.55 8.7 x10

-24
 77 -1.31 4.0 x10

-11
 85 -1.49 2.7 x10

-9
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Figure S5. 24: miRNA sequencing – Counts and Clustering  

A) Pre-normalised counts. * = samples excluded prior to normalisation 

B) Counts following DESeq2 normalisation 

C) Heatmap of showing sample-to-sample Pearson correlations of VST transformed data for  

D) t-SNE plot for visualisation of sample clustering 
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Figure S5. 25: Cells miRNA Correlation Plots 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 
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Figure S5. 26: EVs miRNA Correlation Plots 

A) Empty Plasmid EVs + PBS versus Empty Plasmid EVs + OSM 

B) OSMR KD EVs + PBS versus OSMR KD EVs + OSM 

C) Empty Plasmid EVs + PBS versus OSMR KD EVs+ PBS 

D) Empty Plasmid EVs + PBS versus OSMR KD EVs+ OSM 

E) Empty Plasmid EVs + OSM versus OSMR KD EVs + PBS 

F) Empty Plasmid EVs + OSM versus OSMR KD EVs + OSM 
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Figure S5. 27: Cells miRNA Volcano Plots 

A) Empty Plasmid Cells + PBS versus Empty Plasmid Cells + OSM 

B) OSMR KD Cells + PBS versus OSMR KD Cells + OSM 

C) Empty Plasmid Cells + PBS versus OSMR KD Cells + PBS 

D) Empty Plasmid Cells + PBS versus OSMR KD Cells + OSM 

E) Empty Plasmid Cells + OSM versus OSMR KD Cells + PBS 

F) Empty Plasmid Cells + OSM versus OSMR KD Cells + OSM 
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Figure S5. 28: EVs miRNA Volcano Plots 

A) Empty Plasmid EVs + PBS versus Empty Plasmid EVs + OSM 

B) OSMR KD EVs + PBS versus OSMR KD EVs + OSM 

C) Empty Plasmid EVs + PBS versus OSMR KD EVs+ PBS 

D) Empty Plasmid EVs + PBS versus OSMR KD EVs+ OSM 

E) Empty Plasmid EVs + OSM versus OSMR KD EVs + PBS 

F) Empty Plasmid EVs + OSM versus OSMR KD EVs + OSM 
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Table S5. 2: Significantly altered miRNA – CELL-CELL comparisons 

 

UPREGULATED DOWNREGULATED 

miRNA log2FC 
adjusted P 

value 
miRNA log2FC 

adjusted P 
value 

Empty Plasmid + PBS 

v Empty Plasmid + 
OSM 

hsa-mir-146b-5p 2.09 4.41E-29 hsa-mir-30a-5p -1.20 8.14E-08 

   
hsa-mir-30a-3p -1.14 1.44E-08 

Empty Plasmid + PBS 
v OSMR KD  + PBS 

hsa-mir-143-3p 5.79 0.020 hsa-mir-199b-3p -4.43 0.031 

hsa-mir-92a-1-3p 0.73 2.01E-03 hsa-mir-148a-3p -3.57 2.94E-10 

   
hsa-mir-363-3p -2.51 3.31E-08 

   
hsa-mir-99a-5p -1.54 2.73E-06 

   
hsa-mir-205-5p -1.39 0.024 

   
hsa-mir-195-5p -1.35 0.020 

   
hsa-let-7c-5p -1.32 0.015 

   
hsa-mir-146b-5p -1.18 5.00E-09 

   
hsa-mir-224-5p -0.82 0.013 

Empty Plasmid + PBS 
v OSMR KD  + OSM 

hsa-mir-369-3p 5.29 0.014 hsa-mir-148a-3p -5.35 1.31E-14 

hsa-mir-122-5p 4.43 1.77E-03 hsa-mir-660-5p -2.82 3.92E-04 

hsa-mir-450b-5p 1.25 0.021 hsa-mir-363-3p -2.74 9.04E-08 

hsa-mir-92a-1-3p 0.83 8.29E-04 hsa-mir-99a-5p -1.78 9.47E-07 

   
hsa-mir-205-5p -1.73 6.25E-03 

   
hsa-mir-126-3p -1.69 0.026 

   
hsa-mir-195-5p -1.44 0.022 

   
hsa-mir-146b-5p -0.98 3.01E-05 

Empty Plasmid + OSM 
v OSMR KD  + PBS 

hsa-mir-30c-2-3p 1.70 2.61E-03 hsa-mir-199b-3p -5.25 2.61E-03 

hsa-mir-30a-5p 1.36 1.21E-13 hsa-mir-148a-3p -3.91 1.49E-15 

hsa-mir-30a-3p 1.19 8.65E-13 hsa-mir-146b-5p -3.27 9.32E-91 

hsa-mir-424-3p 1.07 0.042 hsa-mir-146b-3p -2.87 0.042 

hsa-mir-30c-1-5p 1.00 1.90E-03 hsa-mir-363-3p -2.58 6.50E-11 

hsa-mir-503-5p 0.90 0.042 hsa-mir-195-5p -1.40 2.68E-03 

hsa-mir-486-1-5p 0.83 0.011 hsa-mir-342-3p -1.19 3.42E-05 

hsa-mir-92a-1-3p 0.56 0.011 hsa-mir-378a-3p -1.18 6.41E-03 

   
hsa-mir-224-5p -1.17 6.99E-07 

   
hsa-mir-132-3p -0.83 0.033 

   
hsa-mir-101-2-3p -0.81 0.033 

   
hsa-mir-92b-3p -0.77 0.018 

Empty Plasmid + OSM 
v OSMR KD  + OSM 

hsa-mir-369-3p 4.40 0.012 hsa-mir-148a-3p -5.68 6.73E-19 

hsa-mir-940-3p 3.69 6.04E-03 hsa-mir-20b-5p -4.12 0.032 

hsa-mir-122-5p 2.41 7.52E-04 hsa-mir-146b-5p -3.07 7.21E-64 

hsa-mir-941-1-3p 1.56 7.19E-03 hsa-mir-363-3p -2.81 6.78E-10 

hsa-mir-92a-2-3p 1.54 0.019 hsa-mir-660-5p -2.05 0.012 

hsa-mir-30c-2-3p 1.49 0.032 hsa-mir-452-5p -1.85 2.50E-03 

hsa-mir-30a-5p 1.30 7.35E-10 hsa-mir-195-5p -1.50 6.04E-03 

hsa-mir-30a-3p 1.28 1.27E-11 hsa-mir-378a-3p -1.27 0.011 

hsa-mir-19b-1-3p 1.23 0.037 hsa-mir-342-3p -1.17 7.52E-04 

hsa-mir-503-5p 1.07 0.024 hsa-mir-224-5p -0.99 7.96E-04 

hsa-mir-30c-1-5p 1.02 6.04E-03 hsa-mir-132-3p -0.95 0.024 

hsa-mir-335-3p 1.01 0.011 hsa-mir-29a-3p -0.56 0.022 

hsa-mir-92a-1-3p 0.66 6.04E-03 hsa-mir-27b-3p -0.52 6.04E-03 

OSMR KD + PBS v     
OSMR KD + OSM 

hsa-mir-369-3p 5.42 0.019 
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Table S5. 3: Significantly altered miRNA – EV-EV comparisons 

 

UPREGULATED DOWNREGULATED 

miRNA log2FC 
adjusted 
P value 

miRNA log2FC 
adjusted P 

value 

Empty Plasmid + PBS 
v Empty Plasmid + 

OSM 

hsa-mir-146b-3p 3.10 3.01E-03 hsa-mir-33b-3p -6.13 3.18E-04 
hsa-mir-146b-5p 1.71 1.80E-41 hsa-mir-33b-5p -5.40 0.014 
hsa-mir-130a-3p 0.54 0.025 hsa-mir-181b-2-5p -2.01 3.95E-03 

   
hsa-mir-30b-5p -0.71 0.023 

   
hsa-mir-30c-1-5p -0.65 0.023 

   
hsa-mir-30a-5p -0.64 1.75E-04 

Empty Plasmid + PBS 
v OSMR KD  + PBS 

hsa-mir-424-3p 1.10 1.87E-03 hsa-mir-363-3p -2.11 6.40E-12 
hsa-mir-503-5p 0.73 0.035 hsa-mir-148a-3p -1.30 1.76E-03 

hsa-mir-92a-1-3p 0.63 1.81E-05 hsa-mir-205-5p -1.21 1.32E-03 

   
hsa-let-7c-5p -1.21 2.15E-04 

   
hsa-mir-452-5p -1.09 0.013 

   
hsa-mir-378a-3p -1.08 5.99E-04 

   
hsa-mir-99a-5p -1.06 2.07E-06 

   
hsa-mir-146b-5p -0.84 1.24E-09 

   
hsa-mir-224-5p -0.70 4.82E-04 

   
hsa-mir-122-5p -0.68 0.031 

   
hsa-mir-486-1-5p -0.60 0.013 

Empty Plasmid + PBS 

v OSMR KD  + OSM 

hsa-mir-424-3p 1.07 9.06E-03 hsa-mir-363-3p -2.30 2.30E-12 
hsa-mir-503-5p 0.83 0.022 hsa-mir-205-5p -1.18 9.06E-03 
hsa-mir-20a-5p 0.73 9.06E-03 hsa-mir-148a-3p -1.15 0.022 

hsa-mir-92a-1-3p 0.69 1.05E-05 hsa-mir-452-5p -1.11 0.023 
hsa-mir-152-3p 0.54 0.038 hsa-mir-99a-5p -1.03 2.46E-05 

   
hsa-let-7c-5p -0.92 0.022 

   
hsa-mir-340-3p -0.91 0.043 

   
hsa-mir-146b-5p -0.84 1.79E-08 

   
hsa-mir-224-5p -0.55 0.022 

Empty Plasmid + OSM 
v OSMR KD  + PBS 

hsa-mir-182-3p 5.47 0.017 hsa-mir-1972-2-3p -4.87 0.045 
hsa-mir-33b-3p 5.30 2.08E-03 hsa-mir-146b-3p -3.22 8.23E-04 
hsa-mir-33b-5p 5.28 8.82E-03 hsa-mir-146b-5p -2.55 1.88E-92 
hsa-mir-18a-5p 1.64 0.015 hsa-mir-363-3p -2.29 2.69E-14 

hsa-mir-181b-2-5p 1.63 0.021 hsa-let-7c-5p -1.65 6.00E-08 
hsa-mir-503-5p 1.24 1.73E-05 hsa-mir-148a-3p -1.30 2.23E-03 
hsa-mir-424-5p 0.95 0.025 hsa-mir-494-3p -1.10 0.031 
hsa-mir-20a-5p 0.77 1.68E-03 hsa-mir-452-5p -1.07 0.017 
hsa-mir-30a-5p 0.76 9.76E-07 hsa-mir-205-5p -0.99 0.017 

hsa-mir-30c-1-5p 0.72 4.23E-03 hsa-mir-378a-3p -0.95 4.08E-03 
hsa-mir-92a-1-3p 0.70 1.07E-06 hsa-mir-126-3p -0.94 0.043 

   
hsa-mir-224-5p -0.82 1.72E-05 

   
hsa-mir-122-5p -0.81 5.62E-03 

   
hsa-mir-486-1-5p -0.74 8.92E-04 

   
hsa-mir-342-3p -0.71 4.02E-03 

   
hsa-mir-99a-5p -0.65 0.015 

   
hsa-mir-92b-3p -0.53 0.044 

Empty Plasmid + OSM 
v OSMR KD  + OSM 

hsa-mir-33b-3p 7.16 9.06E-06 hsa-mir-663b-3p -5.06 0.017 
hsa-mir-182-3p 5.05 0.041 hsa-mir-410-3p -3.49 0.041 

hsa-mir-181b-2-5p 1.88 0.011 hsa-mir-146b-3p -2.59 0.017 
hsa-mir-503-5p 1.34 9.26E-06 hsa-mir-146b-5p -2.55 6.84E-82 
hsa-mir-20a-5p 0.99 4.13E-05 hsa-mir-363-3p -2.48 1.21E-14 
hsa-mir-424-5p 0.97 0.033 hsa-mir-494-3p -1.39 9.51E-03 
hsa-mir-221-5p 0.81 0.046 hsa-let-7c-5p -1.36 5.75E-05 

hsa-mir-30c-1-5p 0.77 4.30E-03 hsa-mir-148a-3p -1.15 0.017 
hsa-mir-92a-1-3p 0.76 8.05E-07 hsa-mir-452-5p -1.09 0.023 
hsa-mir-30a-5p 0.76 5.21E-06 hsa-mir-340-3p -1.00 0.017 
hsa-mir-505-3p 0.62 0.015 hsa-mir-126-3p -0.98 0.045 

   
hsa-mir-205-5p -0.95 0.036 

   
hsa-mir-342-3p -0.90 2.00E-04 

   
hsa-mir-122-5p -0.80 0.013 

   
hsa-mir-224-5p -0.68 2.09E-03 

   
hsa-mir-486-1-5p -0.65 0.012 

   
hsa-mir-99a-5p -0.61 0.034 

OSMR KD + PBS v     
OSMR KD + OSM 

N/A 
  

N/A 
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Figure S5. 29: OSMR Correlation with miRNAs upregulated by OSM-OSMR signalling 

TCGA analysis of 251 cervical SCC samples. Correlation of OSMR with A) miR-146b B) 

miR-148aC) miR-224 D) miR-342 and E) miR-363 and F) miR-452 expression is shown. All 

of these miRNA were shown by NGS to be upregulated in response to OSM-OSMR 

signalling in both cell and EV samples. p ≤0.01 is considered significant. Significant 

correlations are shown in red. 
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Figure S5. 30: OSMR correlation with miRNAs downregulated by OSM-OSMR 

signalling  

TCGA analysis of 251 cervical SCC samples. Correlation of OSMR with A) miR-30a B) 

miR-30c C) miR-92a and D) miR-503 expression is shown. All of these miRNA were shown 

by NGS to be downregulated in response to OSM-OSMR signalling in both cell and EV 

samples. p ≤0.01 is considered significant. Significant correlations are shown in red. 
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Figure S5. 31: STAT3 correlation with miRNAs upregulated by OSM-OSMR signalling 

TCGA analysis of 251 cervical SCC samples. Correlation of OSMR with A) miR-146b B) 

miR-148aC) miR-224 D) miR-342 and E) miR-363 and F) miR-452 expression is shown. All 

of these miRNA were shown by NGS to be upregulated in response to OSM-OSMR 

signalling in both cell and EV samples. p ≤0.01 is considered significant. Significant 

correlations are shown in red. 
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Figure S5. 32: STAT3 correlation with miRNAs downregulated by OSM-OSMR 

signalling 

TCGA analysis of 251 cervical SCC samples. Correlation of OSMR with A) miR-30a B) 

miR-30c C) miR-92a and D) miR-503 expression is shown. All of these miRNA were shown 

by NGS to be downregulated in response to OSM-OSMR signalling in both cell and EV 

samples. p ≤0.01 is considered significant. Significant correlations are shown in red. 
 
 
 
 
 
 
 

 


