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Abstract

Integration of social media characteristics into an econometric framework
requires modeling a high dimensional dynamic network with dimensions
of parameter Θ typically much larger than the number of observations.
To cope with this problem we introduce a new structural model which
supposes that the network is driven by influencers. We additionally
assume the community structure of the network, such that the users from
the same community depend on the same influencers. An estimation
procedure is proposed based on a greedy algorithm and LASSO. Through
theoretical study and simulations, we show that the matrix parameter
can be estimated even when the observed time interval is smaller than
the size of the network.
Using a novel dataset of 1069K messages from 30K users posted on
the microblogging platform StockTwits during a 4-year period (01.2014-
12.2018) and quantifying their opinions via natural language processing,
we model their dynamic opinions network and further separate the net-
work into communities. With a sparsity regularization, we are able to
identify important nodes in the network.

Keywords: social media, network, community, opinion mining, natural language process-
ing

1 Introduction
Financial and social networks are often analyzed through vector autoregression model, for
instance, in Zhu et al. (2017). Consider a network that produces a time series Yt ∈ RN ,

*The order of the authors is alphabetical.
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t = 1, . . . , T and dependencies between its elements are modeled through the equation

Yt = ΘYt−1 +Wt, (1.1)

whereWt are innovations that satisfy E[Wt| Ft−1] = 0, Ft = σ{Yt−1, Yt−2, . . . }, so that the
interactions between the nodes are described by an autoregression operator Θ ∈ RN×N .
In terms of the network connections we say that a node i is connected tothe node j if

Θij 6= 0,

so that the adjacency matrix of such network is represented by nonzero coefficients and the
sparsity of Θ represents the number of edges. For large-scale time series one encounters
the curse of dimension, as estimating the matrix-parameter Θ with N2 elements requires
significantly large number of observations T .

Several attempts to reduce the dimensionality have been made in the past literature.
Assuming that the elements of a time series form a connected network, Zhu et al. (2017)
introduces a Network Autoregression model (NAR) with Θij = βAij/

∑N
k=1Aik, provided

that the adjacency matrix A ∈ RN×N is known. Here, the regression operator, defined
up to a single parameter β, which is called the network effect, can be estimated through
simple least squares. Zhu et al. (2019) also extend this model for conditional quantiles.
Furthermore, Zhu and Pan (2018) argue that a single network parameter may not be
satisfactory as it treats all nodes of the network homogeneously. In particular, the NAR
model implies that each node is affected by its neighbours in the same extent, while in
reality we may have financial institutions that are affected less or more than the others
(see Mihoci et al. (2019)). Then they propose to detect communities in the network
based on the given adjacency matrix and suggest that the nodes in each community
share a separate network effect parameter. A somewhat opposite direction is taken
by Gudmundsson and Brownlees (2018): their BlockBuster algorithm determines the
communities through the estimated autoregressive model, which, however, does not solve
the dimensionality problem. Apart from this line of work, sparse regularisations have
been extensively used, see Fan et al. (2009); Han et al. (2015); Melnyk and Banerjee
(2016).

To sum up we want to address the following problems, which one encounters dealing
with vector autoregression:

• the VAR parameter dimension is particularly large, one requires even larger time
intervals for consistent estimation. Even if one can afford such a dataset, in the
long run autoregressive parametric models tend to be violated, see e.g. Čížek et al.
(2009). Naturally, we want to impose some structural assumptions on the operator
Θ, so that it can be estimated by means of moderate sample sizes.

• The NAR model assumes that the adjacency matrix is known. In particular, this
is justified for social networks with a natural friendship/follower-followee relation-
ship, provided that it is stable. For a network of financial institutions, there is no
explicitly defined adjacency matrix and one has to heuristically evaluate it using
additional information (identical shareholders, trading volumes, etc.) or through
analyzing correlations and lagged cross-correlations between returns or risk pro-
files, see Diebold and Yılmaz (2014) and Chen et al. (2019b). However, there is
no rigorous reason to believe that the operator in (1.1) depends explicitly on such
adjacency matrix, see also Cha et al. (2010).
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Motivated by two important facts that one can observe in social networks we propose
SONIC — SOcial Network analysis with Influencers and Communities. Based on well-
known user experience on platforms like facebook, twitter, etc., one can assume that
there are some alpha users that are followed significantly more than others. Take, for
example, celebrities, sportsmen, politicians, or instagram divas. In a network view these
users are nodes that have much more influence than the rest of the nodes: these nodes
are influencers. In the framework of autoregression, a node j is an influencer if there is
a significant amount of other nodes i such that Θij 6= 0. Assuming that the number of
influencers is limited, we fix only a few columns of matrix Θ to be important. This allows
us to take into account only the connections to the influencers, significantly reducing the
number of parameters to be estimated. A similar idea is used in Chen et al. (2018),
with a group-LASSO regularisation imposed, so that they find a solution with few active
columns. Notice, however, that relying on the sparsity alone still requires T > N , see
e.g. Fan et al. (2009); Chernozhukov et al. (2018).

It is also well-known that social networks have smaller communities, with the nodes
exhibiting higher connection density or similar behaviour inside communities. Zhu and
Pan (2018) makes one step to extend the NAR model from Zhu et al. (2017) into a more
realistic set-up by allowing separate parameters for each community, instead of a single
network effect parameter. In our notation the conditional mean of the response of the
node i satisfies

E[Yit| Ft−1] = Θi1Yit−1 + · · ·+ΘiNYNt−1.

Therefore, the behaviour of the node i is characterized by the coefficients Θi1, . . . ,ΘiN ,
i.e. the nodes it depends on and to what extent. We assume that the nodes are separated
into few clusters such that the nodes from the same cluster have the same dependencies.
This brings a bigger picture into the view: instead of saying that two nodes from the
same cluster are more likely to be connected, we say that they are connected to the same
influencers.

Our main focus is application to the sentiment extracted from a microblogging plat-
form dedicated to stock trading, StockTwits (available at https://stocktwits.com.)
For each user one can extract average sentiment score over the messages he posts during
the day. Analyzing the resulting high-dimensional time series, on one hand, we are able
to identify influencers — the users whose opinion is overwhelmingly important, and on
the other hand, we determine the community structure. One serious problem arises here:
the presence of missing observations because on some days some users do not leave any
messages. We treat this as follows: assume there is an underlying opinion process that
follows autoregressive equation (1.1). During each day the user may express his opinion
by posting one or a few messages. In such case we can observe his opinion, otherwise
the default value 0 is assigned to the observation. This results in a popular model for
missing observations that involves masked Bernoulli random variables. We return to it
in detail in Section 3.3.

The rest of the paper is organized as follows. Section 2 introduces the reader to
StockTwits 3.2 platform, describes in detail the available dataset and the process of
sentiment weights extraction. In Section 3 we first introduce our SONIC model, then
describe the estimation procedure and provide a consistency result. In Section 4 we
provide simulation results that partially the theoretical properties of our estimator. Next,
in Section 5 we present and discuss the results of application of our model to some datasets
extracted from the StockTwits. Section 6 is dedicated to the proofs, as well as Sections A,

https://stocktwits.com
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B in the appendix.

2 StockTwits
Social media are an ideal platform where users can easily communicate with each other,
exchange information and share opinions. The increasing popularity of social media is a
clear evidence of such demand for exchanging opinions and information among granular
users in a cyber world. Among social media platforms, we are particularly interested
in StockTwits for a number of reasons. Firstly, it becomes predominantly popular and
stands for a leading social network for investors and traders. Secondly, it is similar to
Twitter but dedicated to financial discussion. One of the features that lead to its popular-
ity is a well-designed reference between the message content and the referring stock sym-
bols. Conversations are organized around ‘cashtags’ (e.g. ‘$AAPL’ for APPLE; ‘$BTC.X’
for BITCOIN) that allow to narrow down streams on specific assets. Thirdly and most
importantly, users can also express their sentiment/opinions by labeling their messages
as ‘Bearish’ (negative) or ‘Bullish’ (positive) via a toggle button. These are so-called
self-report sentiment. Indeed, the user-generated messages and self reported sentiment
attract the researchers for sentiment analysis. The available labeled data constitutes an
advance on textual analysis that typically relies on the available training dataset. We use
this convention and StockTwits Application Programming Interface (API) to download
all messages containing the preferred cashtags. StockTwits API also provides for each
message its unique user identifier, the time it was posted within one-second precision,
and the sentiment associated by the user (‘Bullish’, ‘Bearish’ or unclassified).

Among over thousand tickers/symbols, we particularly pick up two selective symbols,
$AAPL for APPLE; $BTC.X for BITCOIN, which represents the most popular security
and cryptocurrency, respectively. Due to the fact that they attract investors/users with
very distinct risk preference, we conjecture that the resulting opinion network and its
dynamics may exhibit diverse structures. In Table 1 we summarize the messages’ statis-
tics with respect to AAPL and BTC. Even though we exclusively consider these two
symbols, the message volume and number of users associated with these two symbols are
tremendous. A glimpse on Table 1 shows different profiles between two symbols. Firstly,
the users interested in BTC tend to disclose their sentiment, evident by 44% of labeled
messages, while in AAPL only 28% of messages are labeled. It may lead to a better
training accuracy in the case of BTC messages relative to the training model based on
AAPL. Secondly, there is a clear imbalance between the numbers of positive and negative
messages, showing that online investors are optimistic on average, as previously found
by Kim and Kim (2014) and Avery et al. (2016). It seems that the imbalance is more
evident in the case of AAPL. Judging by the reported average message volume per day,
there is no doubt that AAPL is able to attract more attention of potential investors than
BTC.

2.1 Quantifying message content

Conversion of text data into a quantitative sentiment variable can be done by two
techniques, namely dictionary-based and machine learning-based analysis. Although a
machine learning technique has many advantages compared to a dictionary-based ap-
proach, the latter offers better transparency, explication and less computational burden.
Loughran and McDonald (2016) recommend that alternative complex methods should be
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Symbols AAPL BTC
message volume 449,761 644,597
number of distinct users 26,521 25,492
number of bullish messages 133,316 196,555
number of bearish messages 48,186 90,677
percentage of bullish messages 20.6% 30.4%
percentage of bearish messages 7.4% 14.0%
percentage of labeled messages 28.0% 44.4%
size of positive training dataset 99,985 147,759
size of negative training dataset 36,100 67,752
message volume per day 730 305
number of positive terms in lexicon 4,000 3,775
number of negative terms in lexicon 4,000 3,759
sample period 2017-05-22 2013-03-21

2019-01-27 2018-12-27

Table 1: Summary statistics of social media messages

considered only when they add substantive value beyond simpler and more transparent
approaches such as bag-of word. We therefore opt for the lexicon approach in the task
of sentiment quantification.

A dictionary, or lexicon, is a list of words labeled as positive, negative, or neutral.
Given such a list, the classic bag-of-words approach consists of counting the number of
positive and negative words in a document in order to assign it a sentiment value or a
tone. For example, a simple dictionary containing only the words ‘good’ and ‘bad’ with
positive and negative labels, respectively, would classify the sentence ‘Bitcoin is a good
investment’ as positive with a tone +1. As the literature suggests (examples, please),
the simplicity of the dictionary-based approach guarantees transparency and replicability
provided, on the cons side, it comes with limitations associated with natural language
analysis. First, referring in Deng et al. (2017) to the ‘context of a discourse’, one needs
to be aware of the content domain, to which language interpretation is sensitive. For
example, Loughran and McDonald (2011) point out that words like ‘tax’ or ‘cost’ are
classified as negative by Harvard General Inquirer lexicon, whereas they should be con-
sidered neutral in financial context. Another example is about quantifying sentiment
toward cryptocurrency, playing the role of non-standard assets and embracing new tech-
nologies as part of their characteristics. Chen et al. (2019a) point out that in many
domain-specific terms, such as ‘blockchain’, ‘ICO’, ‘hackers’, ‘wallet’, ‘shitcoin’ and ‘bi-
nance’, ‘hodl’, are not covered in the existing financial and psychological dictionaries.
They construct a novel cryptocurrency lexicon in response to the need of adopting a
specific approach to measure sentiment about cryptocurrencies. The second limitation is
the one of the language domain, which Deng et al. (2017) define as the ‘lexical and syn-
tactical choices of language’. One example would be the difference between newspapers
where a formal and standardized tone is mostly used, and social media, where slang and
emojis prevail (Loughran and McDonald, 2016). As shown by Chen et al. (2019a), on-
line investors also use new ‘emojis’ such as🚀 (positive) and💩 (negative) when talking
about cryptocurrencies. Obviously, these are not in the traditional dictionary.
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To balance the complexity and transparency and also take into account the domain-
specific terms in social media while applying lexicon approach, in the sentiment quan-
tification for the messages of AAPL we employ the social media lexicon developed by
Renault (2017) while in the quantification of BTC messages we advocate the lexicon tai-
lored for cryptocurrency asset by Chen et al. (2019a). Renault (2017) demonstrates that
his constructed lexicon significantly outperforms the benchmark dictionaries (Loughran
and McDonald, 2016) used in the literature while remaining competitive with more com-
plex machine learning algorithms. On the basis of 125,000 bullish and another 125,000
bearish messages published on StockTwits, using the lexicon for social media achieves
90% of classified messages, and 75.24% of correct classifications. With a collection of
1,533,975 messages from 38,812 distinct users, posted between March 2013 and Decem-
ber 2018, and related to 465 cryptocurrencies listed in StockTwits1, Chen et al. (2019a)
documents that implementing the crypto lexicon is able to classify 83% of messages, with
86% of them being correctly classified.2

The natural language processing (NLP) is a prerequisite for implementing textual
analysis. Following Sprenger et al. (2014) and Renault (2017) we convert unstructured
text into clean and manageable textual content as the grounding base throughout the
textual analysis. First, all messages are lowercased. To account for lengthening of words,
which has been shown to be a critical feature of sentiment expression on microblogs
(Brody and Diakopoulos, 2011), but avoid noise in the lexicon, sequences of repeated
letters are shrink to a maximum length of 3. Tickers (‘$BTC.X’, ‘$LTC.X’...), dollar or
euro values, hyperlinks, numbers and mentions of users are respectively replaced by the
words ‘cashtag’, ‘moneytag’, ‘linktag’, ‘numbertag’ and ‘usertag’. The prefix “negtag_”
is added to any word consecutive to ‘not’, ‘no’, ‘none’, ‘neither’, ‘never’ or ‘nobody’.
Finally, the three stopwords ‘the’, ‘a’, ‘an’ and all punctuation except the characters
‘?’ and ‘!’ are removed. Exclamation and interrogation marks are kept as it has been
previously shown that they are often part of significant bigrams that improve lexicon
accuracy (Renault, 2017).

The next step is to undertake the lexicon approach in order to extract the semantic
expression, sentiment or opinions. For any individual message in Table 1 we filter the
terms being collected in the designated lexicon, and equally weight the filtered terms as
the message sentiment score, which also means that the sentiment score of a sentence
is estimated as the average over the weights of the lexicon terms it contains. Recall,
that weights of the terms lexicon are in the range of −1 and +1. The sentiment score is
automatically in the same range.

To visualize the quantified sentiment from individuals over time, we select the most ac-
tive users and display their daily sentiment from 2018-11-01 to 2018-12-27. The heatmap
shown in Figure 2.1 is a 2-dimensional matrix with y-axis for user’s ID and x-axis for
message posting date, the cell of heatmap is the quantified sentiment whose magnitude
is represented as the color coded in the adjunct color bar. The evolution and dynam-
ics of sentiment among users can be read in such heatmap presentation. From either
Figure 2.1a (AAPL) or Figure 2.1b (BTC), one observes the similar color codes among
a subset of users at particular date or period, indicating a contemporaneous common
opinion/sentiment and an intertemporal opinion flow among users. Worth noting that

1This list can be found at https://api.stocktwits.com/symbol-sync/symbols.csv
2The percentage of of correct classification is defined as the proportion of correct classifications among

all classified messages, while the percentage of classified messages is denoted as the proportion of classified
messages among all messages. See more detain in Renault (2017) and Chen et al. (2019a)

https://api.stocktwits.com/symbol-sync/symbols.csv
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(a) AAPL users

(b) BTC users

Figure 2.1: Social media users’ sentiment over time
y-axis is the user’s id, while x-axis is time stamp from 2018-11-01 — 2018-12-27.

some heterogeneity may exist as some users possess optimistic opinions and others are
persistently pessimistic.
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3 The SONIC approach

3.1 Notation

Let us first introduce some basic notation. Denote by [N ] the set of integers from 1 to
N , i.e. [N ] = {1, . . . , N}. For a vector a ∈ Rd denote a square matrix diag(a) ∈ Rd×d
that has the values a1, . . . , an on the diagonal and zeros elsewhere. For a square matrix
A ∈ Rd×d we denote Diag(A) ∈ Rd×d as a diagonal matrix of the same size that coincides
with A on the diagonal, i.e. Diag(A) = diag(A11, . . . , Add). For the off-diagonal part we
use the notation Off(A) = A−Diag(A).

For a real vector x ∈ Rd and q ≥ 1 or q =∞ denote the `q-norm ‖x‖q = (|x1|q+ · · ·+
|xd|q)1/q; for q = 2 we ignore the index, i.e. ‖x‖ = ‖x‖2; we also denote a pseudo-norm
‖x‖0 =

∑
i 1(xi 6= 0). For A ∈ Rd1×d2 , σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin(d1,d2)(A) denote

the non-trivial singular values of A. We will also refer to σmin(A) as the least nontrivial
eigenvalue, i.e. σmin(A) = σmin(d1,d2)(A). Furthermore, we write |||A|||op = maxj σj(A) for

the spectral norm and |||A|||F = Tr1/2(A>A) =
(∑min(p,q)

j=1 σj(A)
2
)1/2

for the Frobenius
norm. Additionally, we introduce element-wise norms ‖A‖p,q for p, q ≥ 1 (including
∞) denotes `q norm of a vector composed of `p norms of rows of A, i.e. ‖A‖p,q =(∑

i

(∑
j |Aij |p

)q/p)1/q

. Notice that ‖A‖2,2 = |||A|||F.

3.2 Clusters of nodes and influencers

In our set-up the behaviour of each node i ∈ [N ] is characterized by the coefficients
Θi1, . . . ,ΘiN , and when we group the nodes using their characteristics the notion of
community is merged with the notion of cluster. We assume that the nodes are separated
into clusters, such that these coefficients remain the same for the nodes within each
cluster. Let us first give a precise definition of a clustering.

Definition 3.1. A K-clustering of the set of the nodes [N ] is called a sequence C =
(C1, . . . , CK) of K subsets of [N ], such that

• any two subsets are disjoint Ci ∩ Cj = ∅ for i 6= j;

• the union of subsets Cj gives all nodes,

C1 ∪ · · · ∪ CK = {1, . . . , N}.

Two clusterings C and C′ are equivalent if the corresponding clusters are equal up to a
relabelling, i.e. there is a permutation π on {1, . . . ,K}, such that i.e. Cj = C ′

π(j) for
every j = 1, . . . ,K.

Furthermore, define a distance between two clusterings as

d(C, C′) = min
π

K∑
j=1

|Cj \ C ′
π(j)|.

Remark 3.1. The distance between clusterings is in fact the minimal amount of node
transfers from one cluster to another, that is required to make the clusterings equivalent.
To see this, notice that each clustering can be defined as a sequence (l1, . . . , lN ) of N
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labels taking values in {1, . . . ,K}, so that each cluster defines as Cj = {i : li = j}.
Then, if the clustering C′ corresponds to the labels l′1, . . . , l′N , it is not hard to see, that
the distance between them equals to

d(C, C′) = min
π

N∑
i=1

1(li 6= π(l′i)).

We specify our model by putting structural assumptions which are motivated by both
the communities and presence of the influencers.

Definition 3.2. We say that Θ ∈ SONIC(s,K) (Social Network with Influencers and
Communities) if

• each user is influenced by at most s influencers, i.e.

max
i

N∑
j=1

1(Θij 6= 0) ≤ s;

• there is a K-clustering C = (C1, . . . , CK) such that

Θij = Θi′j , j = 1, . . . , N

whenever i, i′ are from the same cluster Cl, l = 1, . . . ,K.

We will also say that Θ has clustering C.

Once Θ ∈ SONIC(s,K) has clustering C = (C1, . . . , CK), the following factor repre-
sentation takes place

Θ = ZCV
>, (3.1)

where ZC , V are N ×K matrices such that

• ZC = [zC1 , . . . , zCK
] is a normalized index matrix of clustering C, where for any

C ⊂ [N ] we denote

zC =
1√
|C|

(1(1 ∈ C), . . . ,1(N ∈ C)) ∈ RN

— a normalized index vector for the cluster C;

• V = [v1, . . . ,vK ] has sparse columns,

‖vj‖0 ≤ s.

A schematic picture of what we expect is shown in Figure 3.1. Here, the nodes from
the same clusters depend on the same influencers (the grey nodes may be in any of the
clusters), which also coincides with the idea of Rohe et al. (2016), who look for the right-
hand side singular vectors of the Lagrangian in a directed network, grouping the nodes
who tend to be affected by the same group of nodes.

The equation (3.1) is akin to bilinear factor models, which appear in Econometric
models with factor loadings, see e.g. Moon and Weidner (2018) and the references therein.
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Figure 3.1: Example of a network with influencers.

It is also a popular machine learning technique for low rank approximation, see a thorough
review in Udell et al. (2016). Chen and Schienle (2019) use sparse factors for a closely
related model.

3.3 Model with missing observations

A network of size N represents a multivariate time series Yt = (Y1t, . . . , YNt)
> ∈ RN ,

where Yit is the response of a node i = 1, . . . , N at a time t = 1, . . . , T , that follows the
autoregressive equation

Yt = Θ∗Yt−1 +Wt, (3.2)

with E[Wt| Ft−1] = 0 for Ft−1 = σ(Wt−1,Wt−2, . . . ). Once |||Θ∗|||op < 1 the process exists
as a converging series

Yt =
∑
k≥0

(Θ∗)kWt−k, (3.3)

and if the covariance of the innovations is S = Var(Wt), then the covariance of the process
reads as

Σ = Var(Yt) =
∑
k≥0

(Θ∗)kS{(Θ∗)k}>.

For simplicity we consider subgaussian vectors Wt, as it allows to have deviation bounds
for covariance estimation with exponential probabilities. Recall the following definition,
that appears, e.g., in Vershynin (2018).

Definition 3.3. A random vector W ∈ Rd is called L-subgaussian if for every u ∈ Rd it
holds

‖u>W‖ψ2 ≤ L‖u>X‖L2 ,

where for a random variable X ∈ R we denote

‖X‖ψ2 = inf

{
C > 0 : E exp

{(
|X|
C

)2
}
≤ 2

}
,

‖X‖L2 = E1/2|X|2.

Additionally, we adopt the framework of Lounici (2014) for vectors with missing
observations, assuming that each variable Yit is either observed or not independently and
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with some probability. Formally speaking, instead of having a realisation of the whole
vector Yt we only have the access to the vectors of form

Zt = (δ1tY1t, . . . , δNtYNt)
>, t = 1, . . . , T, (3.4)

where δit ∼ Be(pi) are independent Bernoulli random variables for every i = 1, . . . , N
and t = 1, . . . , T and some pi ∈ (0, 1]. This means that each variable Yit is only observed
with probability pi independently from the other variables, with δit = 1 corresponding
to observed Yit and δit = 0 to missing Yit, so instead we simply receive zero. Obviously,
the case pi = 1 for every i = 1, . . . , N corresponds to the process without missing
observations, therefore the new problem serves as a generalisation and the results for
the missing observations model can be applied in the regular case as well.

Remark 3.2. In terms of the StockTwits sentiment we interpret the process Yt as an
unobserved underlying opinion process. During each day the users decide whether to
express their opinion or not by posting a message on their page, which results in a
masked process Zt. Since some users are more active than the others, we need to account
for different probabilities pi.

Suppose that the probabilities pi are given (otherwise they can easily be estimated)
and set p = (p1, . . . , pN )

>. Due to Lounici (2014), set the observed empirical covariance
Σ∗ = 1

T

∑T
t=1 ZtZ

>
t and consider the following covariance estimator,

Σ̂ = diag{p}−1Diag(Σ∗) + diag{p}−1Off(Σ∗)diag{p}−1.

It is straightforward to calculate that this is an unbiased estimator, i.e.

EΣ̂ = Σ.

The state-of-the art bound for the error of such covariance estimator is due to Klochkov
and Zhivotovskiy (2018), Theorem 4.2. In the case of independent vectors Yt and equal
probabilities of observations p1 = · · · = pN = p they show that for any u ≥ 1 with
probability at least 1− e−u it holds

|||Σ̂− Σ|||op ≤ C|||Σ|||op

(√
r̃(Σ) log r̃(Σ)

Tp2

∨√
u

Tp2

∨ r̃(Σ)(log r̃(Σ) + u) logT
Tp2

)
,

where r̃(Σ) = Tr(Σ)
|||Σ|||op

denotes the effective rank of the covariance Σ. In a similar way the
effective rank appears as well in the classic covariance estimation problem (i.e., p = 1),
see, e.g., Koltchinskii and Lounici (2017) who even provide a matching lower bound.
Notice that the effective rank takes values between 1 and the rank of Σ, however, if no
specific restriction on the spectrum of Σ is given, the effective rank can grow as large as
the full dimension N . This means that the bound above can only guarantee the error
of order

√
N
Tp2

, not taking into account the logarithms. On the other hand, one often
only needs to bound the error within specific low-dimensional subspaces. The following
theorem provides such deviation bound for the autoregressive process (3.2), and in its
turn accounts for possibly distinct probabilities pi.
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Theorem 3.4. Assume the vectors Wt are independent L-subgaussian and also

|||Θ∗|||op ≤ γ < 1, pi ≥ pmin > 0.

Let P,Q ∈ RN×N be two arbitrary orthogonal projectors of rank M1,M2, respectively.
Then, for any u ≥ 1it holds with probability at least 1− e−u,

|||P (Σ̂− Σ)Q|||op ≤ C|||S|||op

(√
M1 ∨M2(logN + u)

Tp2min

∨ √M1M2(logN + u) logT
Tp2min

)
,

where C = C(γ, L) only depends on L and γ.

See proof of this result in Section A.
Additionally, we are interested in estimating lag-1 cross-covariance under the same

scenario. Namely, based on the sample Z1, . . . , ZT and given the probabilities p1, . . . , pN
we wish to estimate the matrix A = EYtY >

t+1 . Since E[Yt+1| Ft] = Θ∗Yt for the linear
process (A.1), the corresponding cross-covariance reads as

A = Σ(Θ∗)>.

Consider the following estimator

Â = diag{p}−1A∗diag{p}−1,

where A∗ is the observed empirical cross-covariance

A∗ =
1

T − 1

T−1∑
t=1

ZtZ
>
t+1.

For this estimator we provide an upper-bound, again with a restriction to some low-
dimensional subspaces.

Theorem 3.5. Let P,Q be two projectors of rank M1 and M2, respectively. Assume the
independent vectors Wt are L-subgaussian and also

|||Θ∗|||op ≤ γ < 1, pi ≥ pmin > 0.

Then, for any u ≥ 1 it holds with probability at least 1− e−u

|||P (Â−A)Q|||op ≤ C|||S|||op

(√
(M1 ∨M2)(logN + u)

Tp2min

∨ √M1M2(logN + u) logT
Tp2min

)
,

where C = C(γ, L) only depends on γ and L.

The proof is postponed to Section A.

3.4 Alternating minimization algorithm

In order to estimate the matrix Θ = ZCV
> we need to estimate both C and V simul-

taneously. Suppose, we have some clustering C at hand and we want to estimate the
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corresponding V . The mean squared loss from the fully observed sample would look like

R∗
C(V ) =

1

2(T − 1)

T−1∑
t=1

‖Yt+1 − ZCV
>Yt‖2

=
1

2
Tr(V >Σ̃V )− Tr(V >ÃZC) +

1

2(T − 1)

T−1∑
t=1

‖Yt+1‖2,

where we used the fact that Z>
C ZC = IK and the trace of a matrix product is invariant

with respect to transition Tr(AB) = Tr(BA). Here, we also denote

Σ̃ =
1

T − 1

T−1∑
t=1

YtY
>
t , Ã =

1

T − 1

T−1∑
t=1

YtY
>
t+1,

to be empirical covariance and empirical lag-1 covariance built on a sample Y1, . . . , YT ,
which we do not fully observe. Instead, since we only have access to the missing observa-
tion estimators Σ̂ and Â, consider the loss function (notice that the star has disappeared)

RC(V ) =
1

2
Tr(V >Σ̂V )− Tr(V >ÂZC).

As we are searching for a sparse matrix V , we additionally put a LASSO regularization,
so we end up with the following program,

V̂C,λ = arg minRC,λ(V ), RC,λ(V ) =RC(V ) + λ‖V ‖1,1

=
1

2
Tr(V >Σ̂V )− Tr(V >ÂZC) + λ‖V ‖1,1,

where ‖V ‖1,1 =
∑

ij |Vij |, and λ > 0 depends on the dimension N and number of obser-
vations T . Concerning this minimization problem we have the following observations:

• the problem reduces to a simple quadratic programming and therefore can be effi-
ciently solved;

• since ‖V ‖1,1 =
∑K

j=1 ‖vj‖1 we can rewrite

Rλ,C(V ) =
1

2
Tr
(
V >Σ̂V

)
− Tr

(
V >ÂZ

)
+ λ‖V ‖1,1

=

K∑
j=1

1

2
v>
j Σ̂vj − v>

j Âzj + λ‖vj‖1,

therefore we need to solve K independent problems of size N , which reduces com-
putational complexity and may also be implemented in parallel.

Ideally, we want to solve the following problem (note that the number of clusters K and
the tuning parameter λ are fixed here)

Fλ(C)→ min
C
, Fλ(C) = min

V
Rλ,C(V ).

We can employ a simple greedy procedure. In the beginning we initialize C(0) = (l1, . . . , lN )
randomly, each label takes values 1, . . . ,K. Then, at a step t we try to change one label
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of a node that reduces the risk the most. This means that we try all the clusterings in
the nearest vicinity of a current solution C(t), i.e.

C(t+1) = arg min
d(C,C(t))≤1

Fλ(C).

At each such step we would need to calculate Fλ(C) for O{N(K−1)} different candidates.

Remark 3.3. In general, it is impossible to optimize arbitrary function f(C) with respect
to a clustering. For instance, there it is known that K-means is general NP-hard, however
different solutions are widely used in practice, see Shindler et al. (2011) and Likas et al.
(2003).

To speed up the trials of the greedy procedure we utilize an alternating minimization
strategy. Suppose, at the beginning we initialize the clustering by C(0) and compute the
LASSO solution V (0) = VC(0),t. When we want to update the clustering, we fix the matrix
V = V (t) and solve the problem

RC,λ(V ) =
1

2
Tr(V >Σ̂V )− Tr(V >ÂZC) + λ‖V ‖1,1 → min

C
,

where only the term −Tr(V >ÂZC) depends on C. Minimizing by conducting a few steps
of the greedy procedure we obtain the next clustering update C(t+1). Then, we again
update the V -factor by setting V (t+1) = VC(t+1),λ. We continue so until the clustering
does not change or the number of iterations exceeds a certain limit. The pseudo code in
Algorithm 1 summarizes this procedure.

Result: a pair (Ĉ, V̂ )

initialize C(0) = (l
(0)
1 , . . . , l

(0)
N ) randomly;

t← 0;
while t < max_iter do

update V̂ (t) ← arg minRC(t),λ(V );
for i = 1, . . . , N do

for l = 1, . . . , N do
consider candidate C′ = (l

(t)
1 , . . . , l

(t)
i−1, l, l

(t)
i+1, . . . , l

(t)
N );

ril ← −Tr(V (t)ÂZC′);
end

end
(i∗, l∗) = arg min ril;
update C(t+1) ← (l

(t)
1 , . . . , l

(t)
i∗−1, l

∗, l
(t)
i∗+1, . . . , l

(t)
N );

if C(t+1) = C(t) then
return (C(t), V (t));

else
t← t+ 1;

end
end

Algorithm 1: Alternating greedy clustering procedure.
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3.5 Local consistency result

In this section we show the existence of a locally optimal solution in the neighbourhood of
the true parameter with high probability. We call a clustering solution Ĉ locally optimal,
if the functional Fλ(·) has the minimum value at the point Ĉ among its nearest neighbours
d(C, Ĉ) ≤ 1. In particular, Algorithm 1 obviously stops at such a solution.

Conditions

Here we describe the conditions that we need for the consistency result. The first condi-
tion concludes the requirements of Theorems 3.4 and 3.5.

Assumption 1. There is some Θ∗ ∈ RN×N such that |||Θ∗|||op ≤ γ for some γ < 1 and
the time series Yt follows (3.3). The innovations Wt are independent with EWt = 0 and
Var(Wt) = S. Moreover, each Wt is L-subgaussian.

Furthermore, we impose structural assumptions on the true parameter Θ∗ described
in Section 3.2.

Assumption 2. The true VAR operator admits decomposition with K-clustering C∗

Θ∗ = ZC∗V ∗,

and meets the following conditions:

1. |||Θ∗|||op = |||V ∗|||op ≤ γ < 1;

2. cluster separation
σmin([V

∗]>ΣV ∗) ≥ a0; (3.5)

3. sparsity: for every j = 1, . . . ,K the active set Λj = supp(v∗
j ) satisfies

|Λj | ≤ s;

4. significant active coefficients:

|v∗ij | ≥ τ0s−1/2, i ∈ Λj , j = 1, . . . ,K . (3.6)

Here each ‖v∗
j‖ ≤ 1 has (at most) s nonzero values, hence the normalization;

5. significant cluster sizes:

minj |C∗
j |

maxj |C∗
j |
≥ α, 0 < α ≤ 1.

Notice that the condition (3.5) requires that the clusters appropriately separated,
i.e. each v∗

j is far enough from a linear combination of the rest. Another assumption is
concerned with the population covariance Σ.

Assumption 3. The covariance of Yt reads as

Σ =

∞∑
k=0

(Θ∗)kS[(Θ∗)k]>,
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where S = Var(Wt). We impose the following assumptions on this matrix.

1. bounded operator norm
|||Σ|||op ≤ σmax;

2. restricted least eigenvalue

σmin(ΣΛj ,Λj ) ≥ σmin, j = 1, . . . ,K .

3. bounded (1, 1)-norm

‖Σ−1
Λj ,Λj

‖1,1 ≤M, j = 1, . . . ,K. (3.7)

Remark 3.4. Note, that we do not assume that the smallest eigenvalue of Σ is bounded
away from zero, but only those corresponding to the small subsets of indices are. For
sake of simplicity we additionally assume that the ratio

σmax
σmin

≤ κ,

is bounded by some constant κ ≥ 1.
Note also, that the bias term of the LASSO estimator usually reads as Σ̂−1

Λj ,Λj
g with

some ‖g‖∞ ≤ 1, see Lemma B.3. We need (3.7) to control the sup-norm of this bias.

Finally, we present the assumption that allows to control exact recovery of sparsity
patterns for the LASSO estimator.

Assumption 4. For every j = 1, . . . ,K it holds

‖ΣΛc
j ,ΛjΣ

−1
Λj ,Λj

‖1,∞ ≤
1

4
,

Remark 3.5. The inequality ‖ΣΛc
j ,ΛjΣ

−1
Λj ,Λj

‖1,∞ < 1 allows to derive exact recovery of
the sparsity pattern at the LASSO procedure-step described above. In Section B we show
a straightforward extension of results from Tropp (2006) to the case with the presence of
missing observations.

Theorem 3.6. Suppose, Assumptions 1-4 hold. There are constants c, C > 0 that depend
on L, γ such that the following holds. Suppose,√

sn∗ logN
Tp2min

∨√
s logN log2 T

Tp2min
≤ c, (3.8)

where n∗ = maxj≤K |C∗
j | and, additionally, N ≥ (Cα2 ∨ κ)K. Then, with probability at

least 1− 1/N for any λ satisfying

Cσmax

√
logN
Tp2min

≤ λ ≤ c
{
κ−4(a20/σmax)K

−2s−1
∧
σminτ0s

−1
}
,
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and, additionally, λ ≥ Cα2K/N , there is a locally optimal solution Ĉ satisfying

|||ZĈV̂
>
Ĉ,λ −Θ∗|||F ≤

{
3σ−1

min
√
Ks+

Cγ

a0

(
σmax
σmin

)2

K
√
s

}
λ .

Remark 3.6. It also follows from the proof that under the assumptions of the theorem,
the sparsity pattern of each vector is recovered precisely, i.e. we correctly identify the
influencers for every cluster.

Let us take a closer look at the condition (3.8). Under the cluster size restriction
from Assumption 2 we have that all clusters have the size of order N/K, since

α
N

K
≤ |C∗

j | ≤ α−1N

K
, j = 1, . . . ,K.

This means that, say if we ignore the missing observations, we only need

(sN/K) logN
T

≤ c(α)

to hold, to be able to estimate the parameter. This means that once K is large enough
the estimator works with the corresponding error. Notice that the `1-regularisation alone
requires the number of the observations must be at least the number of edges times
logN , see Fan et al. (2009). In our setting the number of connections is up to Ns, so the
condition reads as √

sN logN
T

≤ 1,

therefore our SONIC model is an improvement in this regards.
According to the model, say if N/K ≥

√
T , the best available choice of tuning

parameter is

λ∗ = Cσmax

√
logN
Tp2min

,

in which case the error of the estimator reads as

|||Θ̂λ∗ −Θ∗|||F . K

√
s logN
Tp2min

,

which suggests some kind of tradeoff between small and large K.

4 Simulation study
Take N = T = 100 and s = 1, while K will be changing in a range 2..30. We are
particularly interesting in capturing this effect that larger amount of clusters allows
better estimation. For every K = 2, . . . , 30 we contruct the following matrix Θ∗,

• pick clusters C∗
j having approximately the same size N

K ± 1;

• for every j = 1, . . . ,K set

v∗
j = 0.5ej = (0, . . . , 0.5, . . . , 0)>,
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with a single nonzero value at the place j, so that s = 1.

• by construction we have,

|||Θ∗|||op = |||V ∗|||op = 0.5, |||Θ∗|||F = |||V ∗|||F = 0.5
√
K.

Furthermore we generate i.i.d. W−19,W−18, . . . ,WT ∼ N(0, I) and set

Yt =
20∑
k=0

(Θ∗)kWt−k, t = 1, . . . T,

where due to 0.5−20 ≈ 10−6 the terms for k > 20 can be neglected. On Figure 4.1a
we show the relative error E|||Θ̂ − Θ∗|||F/|||Θ∗|||F along regularization paths for different
choices of K. Picking the best λ we show the relative error against the number of clusters
on Figure 4.1b. We also show the clustering error Ed(Ĉ, C∗) on Figure 4.1c depending on
K. All expectations are estimated based on 20 simulations.

We conclude that the simulations confirm the following theoretical property of our
estimator: the smaller the size of largest cluster, the better, while the total size of the
network can be even as large as the number of observations.

5 Application to StockTwits sentiment
Here we present the results of experiment with two datasets described in Section 2.
The first one contains daily average sentiment weights constructed from the messages
containing the cashtag ‘$AAPL’ (Apple) and the second one from those containing the
cashtag ‘$BTC.X’ (Bitcoin.)

The missing observation model presented in Section 3.3 relies on persistent obser-
vation frequency with the same probability pi over a time period under consideration.
Moreover, since in Theorems 3.4 and 3.5 the amount of observations scales with the fac-
tor p2min, we need to avoid the users whose pi is too little. Based on these remarks we
suggest the following preprocessing steps:

1. pick users with estimated probability p̂i ≥ 0.5;

2. for every user left after step 1, pick the longest historical interval over which the user
exhibits persistent probability of observation. One can look at a moving average
estimation and ensure that for any window it remains within appropriate confidence
interval;

3. take only users for whom the historical interval from step 2 is at least 50 days.

For AAPL dataset we are left with 46 users and 72 days, while for BTC we have 68 users
and 52 days. The two datasets are visualized using heatmap in Figure 2.1.

We apply our SONIC model to AAPL dataset with λ = 0.05 and K = 6. A heatmap
visualisation for estimated matrix Θ̂ is presented in Figure 5.1a. From here we can
identify that the most important users have identification number 47688, 619769, 850976
and 14382873. For the BTC dataset we use λ = 0.05 and K = 5, the results presented
in Figure 5.1b. The influencers are 1171931 and 1254166.

3To access a page via identification number type, for example, https://stocktwits.com/123456 in a
browser address line.

http://stocktwits.com/47688
http://stocktwits.com/619769
http://stocktwits.com/850976
http://stocktwits.com/1438287
http://stocktwits.com/1171931
http://stocktwits.com/1254166
https://stocktwits.com/123456
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(a) Expected relative loss E |||Θ̂−Θ∗|||F
|||Θ∗|||F for different λ and K = 4, 8, 12, 16, 20, 24.

(b) Expected relative loss E |||Θ̂−Θ∗|||F
|||Θ∗|||F for the best λ and K = 2, . . . , 30.

(c) Expected clustering error Ed(Ĉ, C∗) for the best λ and K = 2, . . . , 30.

Figure 4.1: Simulation results for N = T = 100 and s = 1.
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(a) AAPL dataset with N = 46, T = 72 and K = 2.

(b) BTC dataset with N = 68, T = 52 and K = 2.

Figure 5.1: Estimated Θ̂ for AAPL and BTC datasets. The axes correspond to user id’s
and are rearranged with respect to the estimated clusterings.
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Remark 5.1. Choosing the tuning parameter λ and the number of clusters K remains
beyond the scope of this paper. For this experiment we picked both numbers graphically:
for λ based on the number of active columns with relatively small values, while for K
we picked the smallest one for which there is no clusters that are much smaller than
the others, as well as no clusters that are split into two or more. Development of a
statistically-backed selection is left for further research.

Let us point out some observations based on the results of this experiment. The first
one is that for the APPLE dataset we end up with users who have lots of followers, while
from the BITCOIN dataset we have found two accounts that have a moderate amount of
followers and as it seems to belong to companies that provide analytical tools for traders.
We suggest that it highlights the difference between two assets of different nature — a
classical one and a cryptocurrency. Secondly, in both cases, we have two communities,
one with the coefficients Θij = 0, which simply corresponds to noise. For instance, this
may represent users who only react to price changes. On the contrary, the second cluster
may represent the users that follow the news.

6 Proof of main result
This section is devoted to the proof of Theorem 3.6. We start with some preliminary
lemmas and then proceed with the proof that consists of several steps. Following the
ideas in Gribonval et al. (2015), the proof is based on explicit representation of the loss
function.

We exploit the following simplified notation. Denote, z∗j = zC∗
j

to be the columns of
Z∗ = ZC∗ and we also denote n∗j = |C∗

j | for every j = 1, . . . ,K. When the clustering
C = (C1, . . . , CK) is clear from the context we will also write Z for ZC , zj for zCj , and
nj = |Cj | for every j = 1, . . . ,K.

6.1 Preliminary lemmas

Lemma 6.1. Suppose that Cj is such that ‖zCj − z∗j‖ ≤ 0.3. Then,

1

1.1
|C∗
j | ≤ |Cj | ≤ 1.1|C∗

j |.

Proof. Suppose, nj = |Cj | > n∗j = |C∗
j |, then

r2 = ‖zj − z∗j‖2 = 2− 2√
njn∗j

|Cj ∩ C∗
j | ≥ 2− 2

√
n∗j
nj
,

since |Cj ∩ C∗
j | ≤ n∗j . Thus, √nj −

√
n∗j ≤ (r2/2)

√
nj , which due to r ≤ 0.3 implies by

rearranging and taking square nj ≤ 1.1n∗j .
If nj < n∗j we have,

r2 ≥ ‖zj − z∗j‖2 = 2−
2|Cj ∩ C ′

j |√
njn∗j

≥ 2− 2

√
nj
n∗j
,

and the fact that r ≤ 0.3 implies n∗j ≤ 1.1nj .



C. Y.-H. Chen, W.K. Härdle, and Y. Klochkov 22

Lemma 6.2. Let ‖zC1 − zC2‖ ≤ 0.3. Then,

‖zC1 − zC2‖1 ≤ 1.55
√
N1‖zC1 − zC2‖2 .

Proof. Let Nj = |Cj | and a = |C1 ∩C2|, b = |C1 \C2|, c = |C2 \C1|, so that N1 = a+ b,
N2 = a+ c, and |C14C2| = b+ c. We have,

‖zC1 − zC2‖2 =
(

1√
N1
− 1√

N2

)2

a+
b

N1
+

c

N2
≥ b

N1
+

c

N2
.

On the other hand,

‖zC1 − zC2‖1 =
∣∣∣∣ 1√
N1
− 1√

N2

∣∣∣∣ a+ b√
N1

+
c√
N2

≤
∣∣∣∣ 1√
N1
− 1√

N2

∣∣∣∣ a+√N1 ∨N2‖zC1 − zC2‖2 .

Since |N1 −N2| ≤ b+ c we obviously have,∣∣∣∣ 1√
N1
− 1√

N2

∣∣∣∣ a =
|N1 −N2|a√

(a+ b)(a+ c)(
√
a+ b+

√
a+ c)

≤ (b+ c)a√
N1 ∨N2

√
a(2
√
a)

≤
√
N1 ∧N2‖zC1 − zC2‖2/2,

and it is left to apply Lemma 6.1.

Lemma 6.3. Suppose, minj n∗
j

maxj n∗
j
≥ α for some α ∈ (0, 1] and let ‖zj − z∗j‖ ≤ r. Suppose,

r ≤ 0.3. Then,
‖[Z∗]>(zj − z∗j )‖1 ≤ 3.05α−1/2r2.

Proof. 1) We first consider the case |Cj | = n∗j . It holds then

[z∗j ]>(z∗j − zj) =
1

n∗j
(n∗j − |Cj ∩ C∗

j |) =
1

n∗j
|C∗
j \ Cj |.

Moreover, for every k 6= j it holds

|[z∗k]>(z∗j − zj)| = |[z∗k]>zj | =
1√
n∗kn

∗
j

|C∗
k ∩ Cj | ≤

α−1/2

n∗j
|C∗
k ∩ Cj |.
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Summing up, we get

‖[Z∗]>(zj − z∗j )‖1 ≤
α−1/2

n∗j

|C∗
j \ Cj |+

∑
k 6=j
|C∗
k ∩ Cj |


≤ α−1/2

n∗j

(
|C∗
j \ Cj |+ |Cj \ C∗

j |
)

=
α−1/2

n∗j
|Cj4C∗

j |.

It is left to notice that in the case |Cj | = |C∗
j | = n∗j we have exactly ‖zj − z∗j‖2 =

1
n∗
j
|Cj4C∗

j |.
2) Suppose, nj = |Cj | > n∗j . Obviously, we can decompose Cj = C ′

j ∪ B such that
|C ′
j | = n∗j and B ∩ C∗

j = ∅. Setting z′j = zC′
j

we get by the above derivations that
‖[Z∗]>(z′j − z∗j )‖1 ≤ α−1/2‖z′j − z∗j‖2. Since C ′

j ∩ C∗
j = Cj ∩ C∗

j we can compare the
distances

‖zj − z∗j‖2 = 2− 2√
njn∗j

|Cj ∩ C∗
j | > 2− 2

n∗j
|Cj ∩ C∗

j | = ‖z′j − z∗j‖2.

Taking the remainder b = zj − z′j we have,

bi =


nj

−1/2 − (n∗j )
−1/2, i ∈ C ′

j ,

nj
−1/2, i ∈ B,

0 otherwise.

Setting d = nj −n∗j = |B| it is easy to obtain |nj−1/2− (n∗j )
−1/2| ≤ d

nj

1√
n∗
j

. Thus, we get

K∑
k=1

|[z∗k]>b| ≤
k∑
i=1

1√
n∗k

 d

nj

1√
n∗j

|C ′
j ∩ C∗

k |+ |B ∩ C∗
k |

1
√
nj


≤ α−1/2d

n∗jnj
|C ′
j |+

α−1/2√
n∗jnj

d

<
2α−1/2d√
njn∗j

.

We show that the latter is at most 2.05α−1/2r2. Indeed, it is not hard to show that from
nj ≤ 1.1n∗j (see Lemma 6.1) it follows

nj − n∗j√
njn∗j

≤ 2.05

1−
n∗j√
njn∗j

 ≤ 2.05× r2

2
,

thus ‖[Z∗]>(zj − z∗j )‖1 ≤ 3.05α−1/2r2 and the result follows.
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3) The case nj < n∗j can be resolved similarly to the previous one. Since |C∗
j \ Cj | ≥

n∗j − nj we can pick a subset B ⊂ C∗
j \ Cj of size d = n∗j − nj and set C ′

j = B ∪ Cj with
|C ′
j | = n∗j ; set also z′j = zC′

j
. Then, we have

‖z′j − z∗j‖2 = 2− 2
|C ′
j ∩ C∗

j |
n∗j

≤ 2−
2|Cj ∩ C ′

j |√
njn∗j

= ‖zj − z∗j‖2,

and it is not hard to derive that ‖z′j − z∗j‖2 ≤ ‖zj − z∗j‖2. Thus, by the first part of this
proof it holds ‖[Z∗]>(z′j − z∗j )‖1 ≤ α−1/2r2 . Setting b = z′j − zj we have,

bi =


(n∗j )

−1/2 − nj−1/2, i ∈ Cj ,

n∗j
−1/2, i ∈ B,

0 otherwise.

Since |nj−1/2 − (n∗j )
−1/2| ≤ d

n∗
j

1√
nj

we obtain,

K∑
k=1

|[z∗k]>b| ≤
k∑
i=1

1√
n∗k

 d

n∗j

1
√
nj
|Cj ∩ C∗

k |+ |B ∩ C∗
k |

1√
n∗j


≤ α−1/2d

(n∗j )
3/2n

1/2
j

|Cj |+
α−1/2

n∗j
d

<
2α−1/2d

n∗j
.

It is left to notice that

r2 ≥ 2− 2nj√
njn∗j

=
2(
√
n∗j −

√
nj)

√
nj

=
2(n∗j − nj)

n∗j +
√
njn∗j

≥ 2d

2n∗j
,

therefore ‖[Z∗]>b‖1 ≤ 2α−1/2r2, thus ‖[Z∗]>(zj − z∗j )‖1 ≤ 3α−1/2r2.

Lemma 6.4. Let r = |||ZC − Z∗|||F and suppose that r ≤ 0.3. Then |||PC − PC∗ |||2F ≥
2r2(1− 10α−1r2).

Proof. Denote zj = zCj and rj = ‖zj − z∗j‖. It holds,

|||PC − PC∗ |||2F = 2K − 2Tr(PCPC∗) = 2K −
∑
j,k

(z>j z∗k)2.

Notice, that 2z>j z∗j = 2− ‖zj‖2 − ‖z∗j‖2 + 2z>j z∗j = 2− ‖zj − z∗j‖2, i.e. z>j z∗j = 1− r2j/2.
In particular, 1 − (z>j z∗j )2 = r2j − r4j/4, whereas ([z∗j ]>(zj − z∗j ))2 = r4j/4. Since we
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additionally have [z∗k]>(zj − z∗j ) = [z∗k]>zj for k 6= j, it holds

2K − 2
∑
j,k

(z>j z∗k)2 = 2
∑
j

r2j − r4j/4− 2
∑
j

∑
k 6=j

(
[z∗k]>(zj − z∗j )

)2
= 2r2 − 2

∑
j,k

(
[z∗k]>(zj − z∗j )

)2
= 2r2 − 2

∑
j

‖[Z∗]>(zj − z∗j )‖2

By Lemma 6.3 we have for every j = 1, . . . ,K

‖[Z∗]>(zj − z∗j )‖ ≤ ‖[Z∗]>(zj − z∗j )‖1 ≤ 3.05α−1/2r2j ,

therefore ∑
j

‖[Z∗]>(zj − z∗j )‖2 ≤ 10α−1
∑
j

r4j ≤ 10α−1r4,

thus inequality follows.

Lemma 6.5. Let C,C ′ be such that |C4C ′| = 1. Then ‖zC − zC′‖2 ≤ 2
|C|∨|C′| .

Proof. Suppose, |C ′| > |C| then C ′ = C ∪ {a} and denoting n = |C| we have

‖zC − zC′‖2 =n

(√
1

n+ 1
−
√

1

n

)2

+
1

n+ 1
=

(
√
n+ 1−

√
n)2 + 1

n+ 1
≤ 2

n+ 1
.

6.2 Proof of Theorem 3.6

The proof consists of several steps, each represented by a separate lemma.

Lemma 6.6. Suppose, Assumption 1 holds and let N ≥ 2. There is a constant C =
C(γ, L), so that if

s logN log2 T
Tp2min

≤ 1

3
,

then with probability at least 1 − 1/N and for with ∆1 = Cσmax
√

logN
Tp2min

the following
inequalities take place for every j = 1, . . . ,K

•
‖Â−A‖∞,∞ ≤ ∆1, ‖Σ−1

Λj ,Λj
(ÂΛj ,· −AΛj ,·)‖∞,∞ ≤ σ−1

min∆1; (6.1)

•
‖(Â−A)z∗j‖∞ ≤ ∆1, ‖Σ−1

Λj ,Λj
(ÂΛj ,· −AΛj ,·)z∗j‖∞ ≤ σ

−1
min∆1; (6.2)

•
‖Σ̂− Σ‖∞,∞ ≤ ∆1, ‖(Σ̂Λj ,· − ΣΛj ,·)v∗

j‖∞ ≤ ∆1; (6.3)

•
‖Σ−1

Λj ,Λj
(Σ̂Λj ,· − ΣΛj ,·)v∗

j‖∞ ≤ σ−1
min∆1; (6.4)
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•
|||Σ̂Λj ,Λj − ΣΛj ,Λj |||op ≤

√
s∆1. (6.5)

Proof. By Theorem 3.5 for any pair a,b ∈ RN with ‖a‖ ≤ 1, ‖b‖ ≤ 1 it holds probability
≥ 1−N−m,

|a>(Â−A)b| ≤ Cσmax

(√
(m+ 1) logN

Tp2min

∨ (m+ 1) logN logT
Tp2min

)
.

Suppose for a moment that m is such that√
(m+ 1)s logN

Tp2min
logT ≤ 1, (6.6)

so that we can neglect the second term. Set,

A0 = {(ei, ei′) : i, i′ ≤ N}, B0 = {(ei, z∗l ) : i ≤ N, l ≤ K},

as well as for every j = 1, . . . ,K

Aj = {(σminΣ
−1
Λj ,Λj

ei, ei′) : i ∈ Λj , i
′ ≤ N},

Bj = {(σminΣ
−1
Λj ,Λj

ei, z∗l ) : i ∈ Λj , l ≤ K}.

Obviously we have |A0| ≤ N2, |B0| ≤ NK and |Aj | ≤ sN, |Bj | ≤ sK for j = 1, . . . , N ,
so since s,K ≤ N together they have not more than 4N3 pairs of vectors (a,b), each
having norm bounded by one. Taking a union bound, we have that the inequalities (6.1)
and (6.2) hold with probability at least 1− 4N3−m. By analogy, we can show that (6.3)
and (6.4) hold with probability at least 1− 4N3−m.

As for the last inequality, for every j = 1, . . . ,K pick Pj =
∑

i∈Λj
eie>

i , i.e. projectors
onto the subspace of vectors supported on Λj . Then by Theorem 3.4 it holds with
probability at least 1−KN−m for every j = 1, . . . ,K (taking into account (6.6))

|||Σ̂Λj ,Λj − ΣΛj ,Λj |||op = |||Pj(Σ̂− Σ)Pj |||op ≤ Cσmax

√
s(m+ 1) logN

Tp2min
.

The total probability will be at least 1 − 8N3−m − KN−m, which is at least 1 − 1/N
whenever m ≥ 7 and N ≥ 2.

In the following we apply the technique from Gribonval et al. (2015). Suppose, that
the LASSO solution v̂j for a given clustering C is not only supported exactly on Λj , but
the signs are matching those of the true v∗

j . Then, ‖v̂j‖1 = s̄>j (v̂j)Λj . Therefore, we can
write

(v̂j)Λj = arg min
v∈RΛj

1

2
v>Σ̂Λj ,Λjv− v>ÂΛj ,·zj + λs̄>j v

= Σ̂−1
Λj ,Λj

(ÂΛj ,·zj − λs̄j),

and plugging this solution into the risk function we get that Fλ(C) = Φλ(C), where the
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latter is defined explicitly

Φλ(C) = −
1

2

K∑
j=1

(ÂΛj ,·zj − λs̄j)>Σ̂−1
Λj ,Λj

(ÂΛj ,·zj − λs̄j).

The next lemma shows that such representation takes place in the local vicinity of the
true clustering C∗.

Lemma 6.7. Suppose, the inequalities (6.1)–(6.5) take place. Assume,

s∆1 ≤ 1/16, 12∆1 ≤ λ ≤
σmin
4

τ0s
−1. (6.7)

Then, for any C = (C1, . . . , CK) satisfying

max
j
‖zCj − zC∗

j
‖ ≤ 0.3 ∧ 0.22

√(
2σmaxα−1/2 +

√
n∗∆1

)−1
λ (6.8)

it holds
|||V̂λ,C − V ∗|||F ≤ 3σ−1

min
√
Ksλ,

and the equality Fλ(C) = Φλ(C) takes place.

Proof. Taking into account Z>Z = IK , it holds

Rλ,C(V ) =
1

2
Tr
(
V >Σ̂V

)
− Tr

(
V >ÂZ

)
+ λ‖V ‖1,1

=

K∑
j=1

1

2
v>
j Σ̂vj − v>

j Âzj + λ‖vj‖1,

so that the optimization problem separates into K independent subproblems. Solving
each of the problems

1

2
v>
j Σ̂vj − v>

j Âzj + λ‖vj‖1 → min
vj

corresponds to Corollary B.3 with D̂ = Σ̂ and ĉ = Âzj , whereas the “true” version of
the problem corresponds to D̄ = Σ and c̄ = Az∗j = Σ(Θ∗)>z∗j = Σv∗

j . We need to control
the differences between ĉ and c̄, and between D̂ and D̄. It holds,

‖Âzj −Az∗j‖∞ ≤‖A(zj − z∗j )‖∞ + ‖(Â−A)z∗j‖∞ + ‖(Â−A)(zj − z∗j )‖∞ .

Since A = ΣV ∗[Z∗]>, we bound the first term using Lemma 6.3

‖A(zj − z∗j )‖∞ ≤ ‖ΣV ∗‖∞,∞‖[Z∗]>(zj − z∗j )‖1 ≤ 3.05α−1/2‖ΣV ∗‖∞,∞r
2
j .

The second term is bounded by ∆1, whereas the fourth term satisfies

‖(Â−A)(zj − z∗j )‖∞ ≤ ‖Â−A‖∞,∞‖zj − z∗j‖1 ≤ 1.55∆1

√
n∗r2j ,

where we also used Lemma 6.2. Summing up we get,

‖ĉ− c‖∞ ≤ 1.55(2σmaxα
−1/2 +

√
n∗j∆1)r

2
j +∆1 .
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Similarly, we bound ‖ΣΛj ,Λj (ĉΛj − c̄Λj )‖∞ as follows

‖Σ−1
Λj ,Λj

(ÂΛj ,·zj −AΛj ,·z∗j )‖∞ ≤‖Σ
−1
Λj ,Λj

A(zj − z∗j )‖∞ + ‖Σ−1
Λj ,Λj

(ÂΛj ,· −AΛj ,·)z∗j‖∞
+ ‖Σ−1

Λj ,Λj
(ÂΛj ,· −AΛj ,·)(zj − z∗j )‖∞

≤‖Σ−1
Λj ,Λj

A(zj − z∗j )‖∞ + 1.55σ−1
min∆1

√
n∗r2j + σ−1

min∆1

≤1.55σ−1
min(2σmaxα

−1/2 +
√
n∗j∆1)r

2
j + σ−1

min∆1

To sum up, Corollary B.3 is applied with

δc =1.55(2σmaxα
−1/2 +

√
n∗∆1)r

2
j +∆1,

δ′c =1.55σ−1
min(2σmaxα

−1/2 +
√
n∗∆1)r

2
j + σ−1

min∆1

δD =∆1, δ′D = ∆1, δ′′D = σ−1
min∆1.

It requires the conditions,

3{1.55(2σmaxα
−1/2 +

√
n∗∆1)r

2
j + 2∆1} ≤ λ, s∆1 ≤

1

16
,

and due to the fact that ‖D−1
Λj ,Λj

‖1,∞ ≤
√
s|||D−1

Λj ,Λj
|||op and Assumption 3.6,

2σ−1
min(1.55(2σmaxα

−1/2 +
√
n∗∆1)r

2
j + 2∆1 +

√
sλ) < τ0s

−1/2,

which are not hard to derive from the given inequalities. All this that v̂j is supported
on Λj and the solution satisfies

(v̂j)Λj = Σ̂−1
Λj ,Λj

(
ÂΛj ,·zj − λs∗j

)
,

and the corresponding minimum is equal to

1

2
v̂>
j Σ̂v̂>

j − v̂>
j Âzj + λ(v̂j)>Λj

s∗j = −
1

2

(
ÂΛj ,·zj − λs∗j

)>
Σ̂−1
Λj ,Λj

(
ÂΛj ,·zj − λs∗j

)
.

Summing up we get the corresponding expression for Fλ(C). Moreover, we have

‖v̂j − v∗
j‖ ≤2

√
s
{
2∆1 + 1.55(2σmaxα

−1 +
√
n∗∆1)r

2
j + λ

}
≤2σ−1

min
√
s

(
λ

6
+

1.55λ

20
+ λ

)
≤3σ−1

min
√
sλ,

and together it provides a bound on |||V̂λ,C − V ∗|||F.

Consider the function,

Φ̄λ(C) = −
1

2

k∑
j=1

(
AΛj ,·zj − λs∗j

)>
Σ−1
Λj ,Λj

(
AΛj ,·zj − λs∗j

)
.

The following lemma shows how this function grows with C receding from the true clus-
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tering C∗.

Lemma 6.8. Suppose, C is some clustering such that r = |||ZC − Z∗|||F ≤ 0.3. Then,

Φ̄λ(C)− Φ̄λ(C∗) ≥
a0
2
r2(1− 10α−1r2)− λ

√
Ks|||V ∗|||Fr.

Proof. Denoting Φ̄0(C) = −1
2

∑k
j=1 z>j Â>

Λj ,·Σ̂
−1
Λj ,Λj

ÂΛj ,·zj (which indeed corresponds to
λ = 0), we have the decomposition

Φ̄λ(C)− Φ̄λ(C∗) = Φ̄0(C)− Φ̄0(C∗)− λ
K∑
j=1

[s∗j ]>Σ−1
Λj ,Λj

AΛj ,·(zj − z∗j ).

Let us first deal with the term Φ̄0(C) − Φ̄0(C∗). Note that since [v∗
j ]Λj = Σ−1

Λj ,Λj
AΛj ,·z∗j ,

we have

Φ̄0(C∗) = −
1

2

K∑
j=1

[v∗
j ]
>Σv∗

j = −
1

2
Tr([V ∗]>ΣV ∗) = −1

2
Tr(Θ∗Σ[Θ∗]>).

whereas
Φ̄0(C) = min

V=[v1,...,vk]

1

2
Tr(V >ΣV )− Tr(V >AZC)

where the minimum is taken s.t. the restrictions supp(vj) ⊂ Λj . Dropping the restrictions
we get,

Φ̄0(C)− Φ̄0(C∗) ≥ min
V

1

2
Tr(V >ΣV )− Tr(V >AZC) +

1

2
Tr(Θ∗Σ[Θ∗]>)

= min
V

1

2
|||ZCV

>Σ1/2|||2F − Tr(ZCV
>Σ[Θ∗]>) + |||Θ∗Σ1/2|||2F

= min
V

1

2
|||(ZCV

> −Θ∗)Σ1/2|||2F.

It is not hard to calculate that the minimum is attained for V = [Θ∗]>ZC and therefore

Φ̄0(C)− Φ̄0(C∗) ≥
1

2
|||(ZCZ

>
C − I)Θ∗Σ1/2|||2F ≥

a0
2
|||(ZCZ

>
C − I)Z∗|||2F,

where the latter follows using Θ∗ = Z∗[V ∗]> and from the fact that λmin([V
∗]>ΣV ∗) ≥ σ0.

Moreover,

|||(ZCZ
>
C − I)Z∗|||2F = Tr((PC − I)PC∗(PC − I)) = Tr(PC∗)− Tr(PCPC∗)

=
1

2
|||PC − PC∗ |||2F,

where we used the fact that Tr(PC) = Tr(PC∗) = K. It is left to recall the result of
Lemma 6.4, so that we get

Φ̄0(C)− Φ̄0(C∗) ≥
a0r

2

2
(1− 10α−1r2).
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As for the linear term, it holds K∑
j=1

[s∗j ]>Σ−1
Λj ,Λj

AΛj ,·(zj − z∗j )

2

≤

 K∑
j=1

‖[s∗j ]>Σ−1
Λj ,Λj

AΛj ,·‖2
 r2

Since A = Σ[Θ∗]>, we have A>
Λj ,·Σ

−1
Λj ,Λj

s∗j = Θ∗Σ·,ΛjΣ
−1
Λj ,Λj

s∗j . Denote, x = Σ·,ΛjΣ
−1
Λj ,Λj

s∗j ,
then we have xΛj = sj and ‖xΛj‖∞ = 1. Moreover, by the ERC property

‖xΛc
j
‖∞ = ‖ΣΛc

j ,ΛjΣ
−1
Λj ,Λj

sj‖∞ ≤ ‖ΣΛc
j ,ΛjΣ

−1
Λj ,Λj

‖1,∞ ≤ 1/2.

We have

‖A>
Λj ,·Σ

−1
Λj ,Λj

s∗j‖2 = ‖
∑

z∗j [v∗
j ]
>x‖2 =

K∑
k=1

|[v∗
k]

>x|2,

where, since v∗
k is supported on Λk of size at most s,

|[v∗
k]

>x| ≤ ‖v∗
k‖1‖x‖∞ ≤

√
s‖v∗

k‖.

Summing up we get ‖A>
Λj ,·Σ

−1
Λj ,Λj

s∗j‖2 ≤ s|||V ∗|||2F, so that∣∣∣∣∣∣
K∑
j=1

[s∗j ]>Σ−1
Λj ,Λj

AΛj ,·(zj − z∗j )

∣∣∣∣∣∣ ≤ √Ks|||V ∗|||Fr.

The lemma now follows from the two terms put together.

The next step is to bound the difference Φλ(C)−Φ̄λ(C) uniformly in the neighbourhood
of C∗.

Lemma 6.9. Suppose that the inequalities (6.1)–(6.5) hold and let

∆1 ≤ σmin/(2
√
s) ∨ λ

12
, σmax/σmin ≤ n∗, λ ≤ σmins

−1

Let some r ≤ 0.3 satisfies
√
sn∗∆1r

2 ≤ σmax. Then,

sup
|||Z−Z∗|||F≤r

|Φλ(C)− Φ̄λ(C)− Φλ(C∗) + Φ̄λ(C∗)|

≤4

((
σmax
σmin

)2√
s|||V ∗|||F +

σmax
σmin

√
K

)
∆1r + 15

σmax
σmin

√
sn∗∆1r

2.

Proof. Denote,

Φ̃λ(C) = −
1

2

K∑
j=1

(
AΛj ,·zj − λs∗j

)>
Σ̂−1
Λj ,Λj

(
AΛj ,·zj − λs∗j

)
,
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so that we have

|Φ̃λ(C)− Φ̄λ(C)− Φ̃λ(C∗) + Φ̄λ(C∗)|

≤ 1

2

K∑
j=1

∣∣∣(AΛj ,·(zj + z∗j )− 2λs∗j
)>

(Σ̂−1
Λj ,Λj

− Σ−1
Λj ,Λj

)AΛj ,·(zj − z∗j )
∣∣∣

First of all, due to (6.5) it holds,

|||Σ̂−1
Λj ,Λj

− Σ−1
Λj ,Λj

|||op ≤
σ−2
min
√
s∆1

1− σ−1
min
√
s∆1

≤ 2σ−2
min
√
s∆1.

Since A = Σ[Θ∗]>, we have

‖AΛj ,·(zj − z∗j )‖ ≤ σmaxrj

‖AΛj ,·(zj + z∗j )− 2λs∗j‖ ≤ σmax(2‖v∗
j‖+ rj) + 2λ

√
s.

Then by Cauchy-Schwartz,

|Φ̃λ(C)− Φ̄λ(C)− Φ̃λ(C∗) + Φ̄λ(C∗)| ≤σ−2
min
√
s∆1

 K∑
j=1

σmaxrj
{
σmax(2‖vj‖+ rj) + 2λ

√
s
}

≤2
(
σmax
σmin

)2√
s|||V ∗|||F∆1r + 2

σmax
σ2min

λs
√
K∆1r

+

(
σmax
σmin

)2√
s∆1r

2.

Going further,

Φλ(C)− Φ̃λ(C) = −
1

2

K∑
j=1

(
(AΛj ,· + ÂΛj ,·)zj − 2λs∗j

)>
Σ̂−1
Λj ,Λj

(ÂΛj ,· −AΛj ,·)zj ,

which implies that

|Φλ(C)− Φ̃λ(C)− Φλ(C∗) + Φ̃λ(C∗)|

≤ 1

2

K∑
j=1

∣∣∣∣((AΛj ,· + ÂΛj ,·)(zj − z∗j )
)>

Σ̂−1
Λj ,Λj

(ÂΛj ,· −AΛj ,·)zj
∣∣∣∣

≤1

2

K∑
j=1

∣∣∣∣((AΛj ,· + ÂΛj ,·)z∗j − 2λs∗j
)>

Σ̂−1
Λj ,Λj

(ÂΛj ,· −AΛj ,·)(zj − z∗j )
∣∣∣∣

(6.9)

First notice, that due to Lemma 6.2 and (6.1) it holds,

‖(ÂΛj ,· −AΛj ,·)(zj − z∗j )‖ ≤
√
s‖ÂΛj ,· −AΛj ,·‖∞,∞‖zj − z∗j‖1

≤ 1.55
√
sn∗∆1r

2
j .
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Therefore, it follows

‖(ÂΛj ,· +AΛj ,·)(zj − z∗j )‖ ≤ 2σmaxrj + 1.55
√
sn∗∆1r

2
j .

Moreover, using (6.2) we get

‖(ÂΛj ,· −AΛj ,·)zj‖ ≤ ∆1 + 1.55
√
sn∗∆1r

2
j

‖(ÂΛj ,· +AΛj ,·)z∗j − 2λs∗j‖ ≤ 2σmax‖vj‖+∆1 + 2λ
√
s.

and we also have |||Σ̂−1
Λj ,Λj

|||op ≤ 2σ−1
min due to the condition σ−1

min
√
s∆1 ≤ 1/2. Thus we

get that the first sum of (6.9) is bounded by

σ−1
min

K∑
j=1

(
2σmaxrj + 1.55

√
sn∗∆1r

2
j

)(
∆1 + 1.55

√
sn∗∆1r

2
j

)
≤ 2

σmax
σmin

∆1

√
Kr + 1.55σ−1

min
√
sn∗∆2

1r
2 + 3.1

σmax
σmin

√
sn∗∆1r

3 + 2.5σ−1
minsn

∗∆2
1r

4,

while the second sum is bounded by

σ−1
min

K∑
j=1

(
2σmax‖v∗

j‖+∆1 + 2λ
√
s
) (

1.55
√
sn∗∆1r

2
j

)
≤ 1.55

σmin

(
σmax

√
sn∗ +

√
sn∗∆1 + 2λs

√
n∗
)
∆1r

2

≤ 5

σmin

(
σmax

√
sn∗ + λs

√
n∗
)
∆1r

2

where we used the fact that maxj ‖v∗
j‖ ≤ |||V ∗|||op = |||Θ∗|||op < 1 together with the

condition ∆1 ≤ σmax. Combining all the bounds we get

|Φλ(C)− Φ̄λ(C)− Φλ(C∗) + Φ̄λ(C∗)|

≤2

((
σmax
σmin

)2√
s|||V ∗|||F + 2

σmax
σ2min

λs
√
K + 2

σmax
σmin

√
K

)
∆1r

+

(
5
σmax
σmin

√
sn∗ + 5σ−1

minλs
√
n∗ + 1.55σ−1

min
√
sn∗∆1 +

(
σmax
σmin

)2√
s

)
∆1r

2

+ 3.1
σmax
σmin

√
sn∗∆1r

3

+ 2.5σ−1
minsn

∗∆2
1r

4,

where by r ≤ 0.3 and
√
sn∗∆1 ≤ σmax we can neglect the third and the fourth power,

respectively, and thus the required bound follows.

Lemma 6.10. There are numerical constant c, C > 0 such that the following holds.
Suppose, the inequalities take place:√

sn∗ logN
Tp2min

≤ ca0σmin
σ2max

, n∗ ≥ σmax/σmin. (6.10)
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Let Cσmax
√

logN
Tp2min

≤ λ ≤ cσminτ0s
−1, and set

r̄ = 0.3 ∧ 0.18
√
α ∧ 0.22

√(
2σmaxα−1/2 +

√
n∗∆1

)−1
λ.

Then under the inequalities (6.1)–(6.5) the clustering

Ĉ = arg min
|||ZC−Z∗|||F≤rmax

Fλ(C)

satisfies

|||ZĈ − Z
∗|||F ≤

C

a0

(
σmax
σmin

)2

λK
√
s .

Proof. It is not hard to see that for ∆1 =
√

logN
Tp2min

the inequalities required by Lem-
mas 6.7–6.9 are satisfied for r ≤ r̄ due to (6.10) and conditions on λ and r̄. Since
obviously Ĉ satisfies Fλ(Ĉ) ≤ Fλ(C∗), we have for r = |||ZĈ − ZC∗ |||F ≤ rmax

Fλ(Ĉ)− Fλ(C∗) ≥Φ̄λ(C)− Φ̄λ(C)− |Fλ(C)− Φ̄λ(C)− Fλ(C∗) + Φ̄λ(C∗)|

≥a0r
2

2

(
1− 10α−1r2

)
− λ
√
Ks|||V ∗|||Fr

− 4

((
σmax
σmin

)2√
s|||V ∗|||F +

σmax
σmin

√
K

)
∆1r − 15

σmax
σmin

√
sn∗∆1r

2

=
a0r

2

2

(
1− 10α−1r2 − 30

a0

σmax
σmin

√
sn∗∆1

)
− λ
√
Ks|||V ∗|||Fr − 4

((
σmax
σmin

)2√
s|||V ∗|||F +

σmax
σmin

√
K

)
∆1r .

Since r̄ ≤ 0.2
√
α implies 10α−1r2 ≤ 1

3 , it holds by (6.10)

1− 10α−1r2 − 30

a0

σmax
σmin

√
sn∗∆1 ≥

1

2
.

Therefore, after dividing by r, we get that such optimal clustering must satisfy

a0
4
r ≤ λ

√
Ks|||V ∗|||F + 4

((
σmax
σmin

)2√
s|||V ∗|||F +

σmax
σmin

√
K

)
∆1.

Recalling that |||V ∗|||F ≤
√
K, ∆1 = Cσmax

√
logN
Tp2min

and ∆2 = C
√

s logN
Tp2min

yields the result.

Now we are ready to finalize the proof of Theorem 3.6. Firstly, we need to show
that the clustering Ĉ from the lemma above is locally optimal. By Lemma 6.5, any
neighbouring to it clustering C′ satisfies |||ZC′ − ZĈ |||F ≤

2√
αN/K

. Therefore,

|||ZC′ − ZC∗ |||F ≤
C

a0

(
σmax
σmin

)2

λK
√
s+ 2α−1/2

√
K

N
,
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and it is enough to check that this value is at most r̄. We check that each of the terms
is at most r̄/2. For the first one it is enough to have,

C

a0

(
σmax
σmin

)2

α−1/2λK
√
s ≤ 0.09,

C2

a20

(
σmax
σmin

)4

λ
(
2σmaxα

−1/2 +
√
n∗∆1

)
K2s ≤ 0.012,

and both are satisfied due to the upper bound λ ≤ cκ−4(a20/σmax)K
−2s−1 and the re-

quirement
√

sn∗ logN
Tp2min

≤ c. For the second term we need

α−1K

N
≤ 0.008α, α−1

(
2σmaxα

−1/2 +
√
n∗∆1

) K
N
≤ λ,

both are satisfied once N ≥ Cα2K and λ ≥ Cσmaxα
−3/2K

N .
Moreover, by Lemma 6.7 we have for Θ̂ = ZĈV̂Ĉ,λ

|||Θ̂−Θ∗|||F ≤ |||ZĈ(V̂Ĉ,λ − V
∗)>|||F + |||(ZĈ − Z

∗)V ∗|||F

≤ 3σ−1
min
√
Ksλ+

C

a0

(
σmax
σmin

)2

γK
√
sλ,

which finishes the proof.
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A Proof of Theorems 3.4 and 3.5
Recall that we have a time series,

Yt =
∑
k≥0

ΘkWt−k, t ∈ Z, (A.1)
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where Wt ∈ RN , t ∈ Z are independent vectors with EWt = 0 and Var(Wt) = S. We also
have that |||Θ|||op ≤ γ for some γ < 1 and the covariance Σ = Var(Yt) reads as

Σ =
∑
k≥0

ΘkS[Θk]>.

We have the observations

Zt = (δ1tY1t, . . . , δNtYNt)
>, t = 1, . . . , T, (A.2)

where δit ∼ Be(pi) are independent Bernoulli random variables for every i = 1, . . . , N
and t = 1, . . . , T and some pi ∈ (0, 1].

The proofs of both statements are based on the following version of Bernstein matrix
inequality, which does not require bounded summands. Recall, that for a random variable
X ∈ R the value

‖X‖ψj
= inf{C > 0 : E exp

(∣∣∣∣XC
∣∣∣∣j
)
≤ 2}

denotes a ψj-norm. For j = 1 the norm is referred to as subexponential and for j = 2 as
subgaussian.

Theorem A.1 (Klochkov and Zhivotovskiy (2018), Proposition 4.1). Suppose, the ma-
trices At for t = 1, . . . , T are independent and let M = maxt

∥∥|||At|||op
∥∥
ψ1

is finite. Then,
ST =

∑T
t=1At satisfies for any u ≥ 1

P
(
|||ST − EST |||op > C

(√
σ2(logN + u) +M logT (logN + u)

))
≤ e−u,

where σ2 = |||
∑T

t=1 EA>
t At|||op ∨ |||

∑T
t=1 EAtA>

t |||op and C is an absolute constant.

Let δt = (δt1, . . . , δtN )
> denotes the vector with Bernoilli variables from above corre-

sponding to the time point t. In what follows we consider the following matrices,

Ak,jt,t′ = diag{δt}ΘkWt−kW
>
t′−j [Θ

j ]>diag{δt′},

so that since Zt =
∑

k≥0 diag{δt}ΘkWt−k, we have

ZtZ
>
t =

∑
k,j≥0

diag{δt}ΘkWt−kW
>
t−j [Θ

j ]>diag{δt} =
∑
k,j≥0

Ak,jt,t .

Therefore, the decomposition takes place

Σ∗ =
∑
k,j≥0

Sk,j , Sk,j =
1

T

T∑
t=1

Ak,jt,t , (A.3)

and we shall analyze the sum for every pair of k, j ≥ 0 separately. We first introduce two
technical lemmas. In what follows we assume w.l.o.g. that |||S|||op = 1, since if we scale
it, all the covariances and estimators scale correspondingly.
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Lemma A.2. Under the assumptions of Theorem 3.4 it holds,

‖|||Pdiag{p}−1Diag(Ak,jt,t′)Q|||op‖ψ1 ≤ Cp
−1
min
√
M1M2γ

k+j ,

‖|||Pdiag{p}−1Off(Ak,jt,t′)diag{p}−1Q|||op‖ψ1 ≤ Cp
−2
min
√
M1M2γ

k+j ,

with some C = C(L) > 0.

Proof. Denote for simplicity x = ΘkWt−k, y = ΘjWt′−j , as well as xδ = diag{δt}x, yδ =
diag{δt}y, such that Ak,jt,t′ = xδ[yδ]>. Since Wt are subgaussian and |||ΘkSΘk|||op ≤ γ2k,
we have for any u ∈ RN

log E exp(u>x) ≤ C ′γ2k‖u‖2, (A.4)

and since δt takes values in [0, 1]N , same takes place for xδ. By Theorem 2.1 in Hsu et al.
(2012) it holds for any matrix A and vector u ∈ RN ,

‖‖Axδ‖‖ψ2 ≤ C ′′γk|||A|||F, ‖u>xδ‖ψ2 ≤ C ′′γk‖u‖, (A.5)

and, similarly,

‖‖Ayδ‖‖ψ2 ≤ C ′′γj |||A|||F, ‖u>yδ‖ψ2 ≤ C ′′γj‖u‖.

We first deal with the diagonal term. Let P =
∑M1

i=1 uju>
j be its eigen-decomposition

with ‖uj‖ = 1, then

‖|||Pdiag(xδ)|||op‖2ψ2
=‖|||diag(xδ)Pdiag(xδ)|||op‖ψ1 ≤

M1∑
j=1

‖|||diag(xδ)uju>
j diag(xδ)|||op‖ψ1

=

M1∑
j=1

‖‖diag(uj)xδ‖‖2ψ2
,

where each term in the latter is bounded by γ2k due the fact that |||diag(uj)|||F = 1.
Summing up and taking square root we arrive at

∥∥|||Pdiag(xδ)|||op
∥∥
ψ2
≤
√
C ′′M1γ

k.
Taking into account similar bound for Qdiag(yδ), we have by Hölder inequality

‖|||Pdiag{δ}−1diag(xδ)diag(yδ)Q|||op‖ψ1 ≤p
−1
min‖|||Pdiag(xδ)|||op

∥∥
ψ2
‖|||Qdiag(yδ)|||op‖ψ2

≤C ′′
√
M1M2γ

k+j ,

which yields the bound for the diagonal. As for the off-diagonal, consider first the whole
matrix,

‖|||Pxδ[yδ]>Q|||op‖ψ1 ≤ ‖‖Pxδ‖‖ψ2‖‖Qyδ‖‖ψ2 ≤ (C ′′)2
√
M1M2γ

j+k,

and since Off(Aj,kt,t′) = Aj,kt,t′−Diag(Aj,kt,t′), the bound follows from the triangular inequality.

The following technical lemma will help us to upper-bound σ2 in Theorem A.1.

Lemma A.3. Let δ1, . . . , δN consists of independent Bernoilli components with proba-
bilities of success p1, . . . , pN and set pmin = mini≤N pi. Let a,b ∈ RN be two arbitrary
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vectors. It holds,

E
(∑

i

δi
pi
aibi

)2

≤p−1
min‖a‖

2‖b‖2,

E

∑
i 6=j

δiδj
pipj

aibj

2

≤32p−2
min‖a‖

2‖b‖2 + 4

(∑
i

ai

)2(∑
i

bi

)2

.

Additionally, if δ′1, . . . , δ′N are independent copies of δ1, . . . , δN , it holds

E

∑
i,j

δiδ
′
j

pipj
aibj

2

≤ 4p−2
min‖a‖

2‖b‖2 + 4

(∑
i

ai

)2(∑
i

bi

)2

.

Proof. It holds,

E
(∑

i

δi
pi
aibi

)2

=
∑
i,j

E δiδj
pipj

aibiajbj =
∑
i,j

{1 + 1(i = j)(p−1
i − 1)}aibiajbj

≤

(∑
i

aibi

)2

+ (p−1
min − 1)

∑
i

a2i b
2
i

≤‖a‖2‖b‖2 + (p−1
min − 1)‖a‖2‖b‖2.

To show the second inequality we use decoupling (Theorem 6.1.1 in ?) and the trivial
inequality (x+ y)2 ≤ 2x2 + 2y2,

E

∑
i 6=j

δiδj
pipj

aibj

2

≤2

∑
i 6=j

aibj

2

+ 2E

∑
i 6=j

(δi − pi)(δj − pj)
pipj

aibj

2

≤2

∑
i 6=j

aibj

2

+ 32E

∑
i 6=j

(δi − pi)(δ′j − pj)
pipj

aibj

2

.

(A.6)

Denote for simplicity δi = δi − pi and δ′i = δ′i − pi. Since the latter are centered we have,

E

∑
i 6=j

δiδ
′
j

pipj
aibj

2

=
∑
i 6=j
k 6=l

Eδiδk
pipk

Eδ′jδ
′
l

pjpj
aiakbjbl (A.7)

note that the expectation Eδiδk is only non-vanishing when i = k, in which case it holds
Eδ2i = pi− p2i . Taking into account similar property of Eδ′jδ

′
l we have that the sum above

is equal to

∑
i 6=j

(pi − p2i )(pj − p2j )
p2i p

2
j

a2i b
2
j ≤ (p−1

min − 1)2
∑
i,j

a2i b
2
j ≤ (p−1

min − 1)2‖a‖2‖b‖2.
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It is left to notice that∑
i 6=j

aibj

2

≤ 2

∑
i,j

aibj

2

+ 2

(∑
i

aibj

)2

≤ 2

(∑
i

ai

)2(∑
i

bi

)2

+ 2‖a‖2‖b‖2,

which recalling (A.6) and noting that 32(p−1
min−1)2+4 ≤ 32p−2

min for pmin ∈ [0, 1], completes
the proof.

Similarly to (A.7) we can show the third inequality.

Now we apply Bernstein matrix inequality to the sum Skj defined in (A.3), dealing
separately with diagonal and off-diagonal parts. After that we present the proof of
Theorem 3.4.

Lemma A.4. Under the assumptions of Theorem 3.4 for any u ≥ 1 it holds with
probability at least 1− e−u

|||Pdiag{p}−1(Diag(Sk,j)− EDiag(Sk,j))Q|||op

≤ Cγk+j
(√

M1 ∨M2(logN + u)

Tpmin

∨ √M1M2(logN + u)

Tpmin

)

where C = C(K) only depends on K.

Proof. Note that,

Pdiag{p}−1Diag(Skj)Q = T−1
T∑
t=1

At, At = Pdiag{p}−1Diag(Ak,jt,t )Q.

By Lemma A.2 we have ‖|||At|||op‖ψ1 ≤ Cp−1
min
√
M1M2γ

k+j . Moreover, using decomposi-
tion Q =

∑M2
j=1 ujuj , we have

|||EAtA>
t |||op ≤|||Ediag{p}−1Diag(Ak,jt,t )QDiag(Ak,jt,t )diag{p}−1|||op

≤
M2∑
j=1

|||Ediag{p}−1Diag(Ak,jt,t )uju>
j Diag(Ak,jt,t )diag{p}−1|||op

≤
M2∑
j=1

sup
‖γ‖=1

E(γ>diag{p}−1Diag(Ak,jt,t )uj)2

By definition, Diag(Ak,jt,t ) = diag{δtixiyi}Ni=1 for x = ΘkWt−k, y = ΘjWt−j . Let Eδ de-
notes the expectation w.r.t. the Bernoulli variables and conditioned on everything else.
Setting a = (x1γ1, . . . , xNγN )

>) and b = (y1u1, . . . , yNuN )
>, we have by the first in-

equality of Lemma A.3,

E(γ>diag{p}−1Diag(Ak,jt,t )uj)2 = EEδ

(∑
i

γixi
δti
pi
yiui

)2

≤ p−1
minE‖a‖2‖b‖2

≤ p−1
minE1/2‖a‖4E1/4‖b‖4.
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Observe that,
‖a‖2 =

∑
i

γ2i x
2
i = x>diag{γ}2x,

so since Tr(diag{γ}2) = 1 and due to (A.4) and by Theorem 2.1 Hsu et al. (2012)
it holds E1/2‖a‖4 ≤ ‖‖a‖2‖ψ1 ≤ C ′γ2k. Similarly, it holds E1/2‖a‖4 ≤ C ′γ2j , which
together implies

|||EAtA>
t |||op ∨ |||EA>

t A
>
t |||op ≤ C ′′M2 ∨M1γ

2k+2j .

Now notice that At is not necessary an independent sequence, as At depends directly
on (Wt−k,Wt−j , δt), which might intersect with e.g. t′ = t + |j − k|. However, if we
take a set I ⊂ [1, T ] such that any two t, t′ ∈ I satisfy |t′ − t| 6= |j − k| then obviously
the sequence (At)t∈I is independent. We separate the whole interval [1, T ] into two such
independent sets,

I1 ={t ∈ [1, T ] : dt/|j − k|e is odd },
I2 ={t ∈ [1, T ] : dt/|j − k|e is even }

=[1, T ] \ I1.
(A.8)

Indeed, if for t, t′ ∈ I1 then dt/|j−k|e and dt′/|j−k|e are either equal or differ in at least
two, so that in the first case we have |t− t′| < |j − k| and in the second |t− t′| > |j − k|.
Since both intervals have, very roughly, at most T elements, it holds by Theorem A.1
with probability at least 1− e−u for both j,

|||
∑
t∈Ij

At − EAt|||op

≤ Cγj+k
(√

p−1
min(M1 ∨M2)T (logN + u) ∨ p−1

min
√
M1M2(logN + u) logT

)
,

so summing up the two and dividing by T we get the result.

Lemma A.5. Under the assumptions of Theorem 3.4 for any u ≥ 1 it holds with
probability at least 1− e−u

|||Pdiag{p}−1(Off(Sk,j)− EOff(Sk,j))diag{p}−1Q|||op

≤ Cγk+j
(√

M1 ∨M2(logN + u)

Tp2min

∨ √M1M2(logN + u) logT
Tp2min

)

where C = C(K) only depends on K.

Proof. It holds,

Pdiag{p}−1Off(Skj)diag{p}−1Q = T−1
T∑
t=1

Bt, Bt = Pdiag{p}−1Off(Ak,jt,t )diag{p}−1Q.

By Lemma A.2 we have ‖|||Bt|||op‖ψ1 ≤ Cp−2
min
√
M1M2γ

k+j . Using decomposition Q =
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∑M2
j=1 ujuj with ‖uj‖ = 1 we get that

|||EBtB>
t |||op ≤|||Ediag{p}−1Off(Ak,jt,t )diag{p}−1Qdiag{p}−1Off(Ak,jt,t )diag{p}−1|||op

≤
M2∑
j=1

|||Ediag{p}−1Off(Ak,jt,t )diag{p}−1uju>
j diag{p}−1Off(Ak,jt,t )diag{p}−1|||op

≤
M2∑
j=1

sup
‖γ‖=1

E(γ>diag{p}−1Off(Ak,jt,t )diag{p}−1uj)2

Again, using the notation x = ΘkWt−k, y = ΘjWt−j and a = diag{γ}x, b = diag{u}y,
we have Off(Aj,kt,t ) = Off(xy>), therefore by Lemma A.3

E(γ>diag{p}−1Off(Ak,jt,t )diag{p}−1uj)2 =EEδ

∑
i 6=j

γi
δit
pi
xiyj

δjt
δj
uj

2

=EEδ

∑
i 6=j

δit
pi

δjt
δj
aibj

2

≤32p−2
minE‖a‖2‖b‖2 + 4E

(∑
i

ai

)2(∑
i

bi

)2

.

From the proof of Lemma A.5 we know that E‖a‖2‖b‖2 ≤ C ′γ2k+2j . Moreover, we have∑
i ai = γ>x and

∑
i bi = u>y. Thus, by (A.5) it holds E1/4‖γ>x‖4 ≤ ‖γ>x‖ψ2 ≤ C ′γj

and, similarly, E1/4‖u>y‖4 ≤ C ′γk. Putting those bounds together and applying Cauchy-
Schwarz inequality, we have

|||EBtB>
t |||op ≤ C ′′p−2

minM2γ
2k+2j .

By analogy, we have

|||EBtB>
t |||op ∨ |||EB>

t Bt|||op ≤ C ′′p−2
minM1 ∨M2γ

2k+2j .

Applying the same sample splitting (A.8) we obtain the bound

|||
∑
t

At−EAt|||op ≤ Cγj+k
(√

p−2
min(M1 ∨M2)T (logN + u) ∨ p−2

min
√
M1M2(logN + u)

)
,

which divided by T provides the result.

Proof of Theorem 3.4. Set,

Sδ
k,j = diag{p}−1Diag(Sk,j)− diag{δ}−1Off(Sk,j)diag{δ}−1,

so that by the union of bounds in Lemmas A.5, A.4 for any u ≥ 1

|||P (Sδ
k,j − ESδ

k,j)Q|||op > Cγk+j

(√
M1 ∨M2(logN + u)

Tp2min

∨ √M1M2(logN + u)

Tp2min

)
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holds with probability at least 1− e−u. Take a union of those bounds for every k, j with
u = uk,j = k + j + 1 + u′. The total probability of complementary event is at most

∑
k,j≥0

e−k−j−1−u = e−1−u

∑
k≥0

e−k

2

= e−u/(e− 1) < e−u.

On such event it holds

|||P (Σ̂− EΣ)Q|||op ≤
∑
k,j≥0

|||P (Sδ
k,j − ESδ

k,j)Q|||op

≤C
∑
k,j≥0

γk+j

(√
M1 ∨M2(logN + uk,j)

Tp2min

∨ √M1M2(logN + uk,j)

Tp2min

)

≤C ′

∑
k,j≥0

γk+j

(√(M1 ∨M2) logN
Tp2min

∨ √M1M2 logN
Tp2min

)

+ C

∑
k,j

(k + j)γk+j

(√(M1 ∨M2)u

Tp2min

∨ √M1M2u

Tp2min

)
,

which completes the proof due to the equalities

∑
k,j≥0

γk+j =

∑
k≥0

γk

2

=
1

(1− γ)2∑
k,j≥0

(k + j)γk+j =2
∑
k,j≥0

kγk+j =
2

(1− γ)
∑
k≥0

kγk =
2

(1− γ)3
.

Proof of Theorem 3.5. Recall the definition,

Ak,jt,t′ = diag{δt}ΘkWt−kW
>
t′−j [Θ

j ]>diag{δt′}.

Then, it holds

ZtZ
>
t+1 =

∑
k,j≥0

diag{δt}ΘkWt−kW
>
t+1−j [Θ

j ]>diag{δt+1} =
∑
k,j≥0

Ak,jt,t+1,

and the decomposition takes place,

A∗ =
∑
k,j≥0

Sk,j , Sk,j =
1

T − 1

T−1∑
t=1

Ak,jt,t+1.

We first apply Bernstein matrix for each Sk,j separately. Observe that

Pdiag{p}−1Sk,jdiag{p}−1Q =
1

T − 1

T−1∑
t=1

Bt, Bt = Pdiag{p}−1Ak,jt,t+1diag{p}−1Q.
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By Lemma A.2 each term satisfies,

max
t
‖|||Bt|||op‖ψ1 ≤ C

√
M1M2γ

k+j .

Furthermore, let Q =
∑M2

j=1 uju>
j with unit vectors uj . Also, denoting x = ΘkWt−k and

y = ΘkWt+1−k it holds Ak,jt,t+1 = diag{δt}xy>diag{δt+1}. Then, we have for any unit
γ ∈ RN and using Lemma A.3,

E(γ>diag{p}−1Ak,jt,t+1diag{p}−1uj)2

=EEδ

∑
i,j

γixi
δti
pi

δt+1,j

pj
yjuj

2

≤p−2
minE‖diag{γ}x‖2‖diag{u}y‖2 + E(γ>x)(u>y)2,

which due to the subgaussianity of x and y yields,

E‖diag{γ}x‖2‖diag{u}y‖2 ≤E1/2‖diag{γ}x‖4E1/2‖diag{u}y‖4

≤C ′γ2k+2j

E(γ>x)(u>y)2 ≤E1/2(γ>x)4E1/2(u>y)4

≤C ′γ2k+2j .

Therefore, we get that

|||EBtB>
t |||op = sup

‖γ‖=1

M2∑
j=1

E
(
γ>diag{p}−1Ak,jt,t+1diag{p}−1uj

)2
≤ C ′′p−2

minM2γ
2k+2j .

Taking similar derivations we can arrive at

σ2 = |||EBtB>
t |||op ∨ |||EB>

t Bt|||op ≤ C ′′p−2
min(M1 ∨M2)γ

2k+2j .

Now we separate the indices t = 1, . . . , T into four subsets, such that each corresponds
to a set of independent matrices Bt. Since each Bt is generated by Wt−k,Wt+1−j , δt, and
δt+1, we simply need to ensure that none of the pair of indices t, t′ from the same subset
satisfies |t − t′| = |k − j + 1| nor |t − t′| = 1. This can be satisfied by the following
separation. First, we separate the indices into two subsets with odd and even indices,
respectively, so that none of the subsets contains two indices with |t− t′| = 1. Then, both
of the subsets need to be separated into two others according to the scheme (A.8), so
that the assertion |t− t′| = |k− j+1| is avoided within each subset. Therefore, applying
Bernstein inequality, Theorem A.1, to each sum separately and then summing up, we get
that for any u ≥ 1 with probability at least 1− e−u,

|||Pdiag{δ}−1(Sk,j − ESk,j)diag{δ}−1Q|||op

≤ C
(√

p−2
min(M1 ∨M2)T (logN + u)

∨√
M1M2(logN + u) logT

)
.

Similarly to the proof of Theorem 3.4 we take the union of those bounds for every i, j
with u = j + k + u′ and then the result follows.
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B LASSO and missing observations
Suppose, we observe a signal y ∈ Rn of the form

y = Φb∗ + ε,

where Φ = [φ1, . . . ,φp] ∈ Rn×p is a dictionary of words φj ∈ Rn and b∗ is some sparse
parameter with support Λ ⊂ {1, . . . , p}. We want to recover exact sparse representation
by solving quadratic program

1

2
‖y− Φb‖2 + γ‖b‖1 → min

b∈Rp
. (B.1)

Denote by RΛ the set of vectors with elements indexed by Λ, for b ∈ Rn let xΛ ∈ RΛ

be the result of taking only elements indexed by Λ. With some abuse of notation we will
also associate each vector xΛ ∈ RΛ with a vector x from Rn that has same coefficients on
Λ and zeros elsewhere. Let us also ΦΛ = [φj ]j∈Λ be a subdictionary composed of words
indexed by Λ and PΛ is the projector onto the corresponding subspace.

The following sufficient conditions for the global minimizer of (B.1) to be supported
on Λ are due to Tropp (2006), who uses the notion of exact recovery coefficient,

ERCΦ(Λ) = 1−max
j /∈Λ
‖Φ+

Λφj‖1,

The results are summarized in the next theorem.

Theorem B.1 (Tropp (2006)). Let b̃ be a solution to (B.1). Suppose, that ‖Φ>ε‖∞ ≤
γERC(Λ). Then,

• the support of b̃ is contained in Λ;

• the distance between b̃ and optimal (non-penalized) parameter satisfies,

‖b̃− b∗‖∞ ≤ ‖Φ+
Λε‖∞ + γ‖(ΦΛΦ

>
Λ)

−1‖1,∞,
‖ΦΛ(b̃− b∗)− PΛε‖2 ≤ γ‖(Φ+

Λ)
>‖2,∞;

In what follows we want to extend this result for the possibility of using missing
observations model. Observe that the program (B.1) is equivalent to

1

2
b>[Φ>Φ]b− b>[Φ>y] + γ‖b‖1 → min

b∈Rp
,

so that for the minimization procedure only knowing D = Φ>Φ and c = Φ>y is required.
Suppose, that instead we have only access to some estimators D̂ ≥ 0 and ĉ that are close
enough to the original matrix and vector, which may come e.g. from missing observations
model. Then, we can solve instead the following problem,

1

2
b>D̂b− b>ĉ + γ‖b‖1 → min

b∈Rp
. (B.2)

In what follows we provide a slight extension of Tropp’s result towards missing observa-
tions, the proof mainly follows the same steps.
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Further, for a matrix D and two sets of indices A,B we denote the submatrix on
those indices as DA,B and for a vector c, the corresponding subvector is cA.

Lemma B.2. Suppose, that

‖D̂Λc,ΛD̂
−1
Λ,ΛĉΛ − ĉΛc‖∞ ≤ γ(1− ‖D̂Λc,ΛD̂

−1
Λ,Λ‖1,∞).

Then, the solution b̃ to (B.2) is supported on Λ.

Proof. Let b̃ be the solution to (B.2) with the restriction supp(b) ⊂ Λ. Since D̂ ≥ 0 this
is a convex problem and therefore the solution is unique and satisfy,

D̂Λ,Λb̃− ĉΛ + γg = 0, g ∈ ∂‖b̃‖1,

where ∂f(b) denotes subdifferential of a convex function f at a point b, in the case of
`1 norm we have ‖g‖∞ ≤ 1. Thus,

b̃ = D̂−1
Λ,ΛĉΛ − γD̂−1

Λ,Λg. (B.3)

Next, we want to check that b̃ is a global minimizer. To do so, let us compare the
objective function at a point b = b̃ + δej for arbitrary index j /∈ Λ. Since ‖b‖1 =
‖b̃‖1 + |δ|, we have

L(b̃)− L(b) = 1

2
b̃>D̂b̃− 1

2
b>
D̂b− ĉ>(b̃− b)− γ|δ|

=
δ2

2
e>
j D̂ej + |δ|γ − δe>

j D̂b̃ + δĉj

> |δ|γ − δe>
j D̂b̃ + δĉj ,

where the latter comes from the fact that D̂ is positively definite. Applying the equality
(B.3) yields,

e>
j D̂b̃ = D̂j,ΛD̂

−1
Λ,ΛĉΛ − γD̂j,ΛD̂

−1
Λ,Λg,

therefore, taking into account ‖g‖∞ ≤ 1 we have,

L(b̃)− L(b) > |δ|
[
γ(1− ‖D̂Λc,ΛD̂

−1
Λ,Λ‖1,∞)−

∣∣D̂j,ΛD̂
−1
Λ,ΛĉΛ − ĉj

∣∣] ,
where the right-hand side is nonnegative by the condition of the lemma. Since j /∈ Λ is
arbitrary, b̃ is a global solution as well.

Remark B.1. It is not hard to see that in the exact case D̂ = Φ>Φ and ĉ = Φ>y
the condition of the lemma above turns into the condition ‖Φ>

ΛcPΛε‖∞ ≤ γERC(Λ) of
Theorem B.1.

Since we are particularly interested in an application to time series, the features
matrix Φ should in fact be random, thus stating a ERC-like condition onto it might
result in additional unnecessary technical difficulties. Instead, let us assume that there
is some other matrix D̄, potentially the expectation of Φ>Φ, such that it is close enough
to D̂ (with some probability, but we are stating all the results deterministically in this
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section), and the value that controls the exact recovery looks like

ERC(Λ; D̄) = 1− ‖D̄Λc,ΛD̄
−1
Λ,Λ‖1,∞.

Additionally, we set c̄ = D̄b∗ = D̄·,Λb∗
Λ — the vector that ĉ is intended to approximate.

Note that in this case we have D̄Λc,ΛD̄
−1
Λ,Λc̄Λ − c̄Λc = D̄Λc,Λb∗

Λ − c̄Λc = 0, thus the
conditions of Lemma B.2 hold for D̄, c̄ once ERC(Λ; D̄) and γ are nonnegative. In what
follows we control the values appearing in the lemma for D̂ and ĉ through the differences
between c̄, D̄ and ĉ, D̂, respectively, thus allowing the exact recovery of the sparsity
pattern. Lemma 6.7
Corollary B.3. Let D̄ and c̄ be such that c̄ = D̄b∗. Assume that

‖ĉ− c̄‖∞ ≤ δc, ‖D̄−1
Λ,Λ(ĉΛ − c̄Λ)‖∞ ≤ δ′c, ‖D̄−1

Λ,Λ(D̂Λ,· − D̄Λ,·)‖∞,∞ ≤ δD,

‖(D̂·,Λ − D̄·,Λ)b∗
Λ‖∞ ≤ δ′D, ‖D̄−1

Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)b∗
Λ‖∞ ≤ δ′′D.

Suppose, ERC(Λ) ≥ 3/4 and

3δc + 3δ′D ≤ γ, sδD ≤
1

16
,

where |Λ| = s. Then, the solution to (B.2) is supported on Λ and satisfies

b̃Λ = D̂−1
Λ,ΛĉΛ − γD̂−1

Λ,Λg, (B.4)

with some g ∈ Rs satisfying ‖gΛ‖∞ ≤ 1 and the max-norm error satisfies

‖b̃− b∗‖∞ ≤ 2(δ′′D + δ′c + γ‖D̄−1
Λ,Λ‖1,∞),

while the `2-norm error satisfies

‖b̃− b∗‖ ≤ 2
√
s(δ′′D + δ′c + γσ−1

min).

If additionally 2(δ′′D+δ
′
c+γ‖D̄−1

Λ,Λ‖1,∞) ≤ minj∈Λ |b∗
j |, then we have the exact recovery,

so that the following equality takes place

b̃Λ = D̂−1
Λ,Λĉλ − γD̂−1

Λ,ΛsΛ,

where s = sign(b∗).
Proof. First observe that DΛc,ΛD

−1
Λ,ΛcΛ − cΛc = Φ>

Λc(Φ
+
Λy − y) = Φ>

Λc(PΛ − I)ε. By
Lemma B.4 we have,

‖D̂Λc,ΛD̂
−1
Λ,Λ‖1,∞ ≤ ‖D̄Λc,ΛD̄

−1
Λ,Λ‖1,∞ + 4sδD ≤ 1/2,

while since c̄Λc = D̄Λc,Λb∗
Λ = D̄Λc,ΛD̄

−1
Λ,Λc̄Λ,

‖D̂Λc,ΛD̂
−1
Λ,ΛĉΛ − ĉΛc‖∞ ≤ ‖D̂Λc,ΛD̂

−1
Λ,ΛĉΛ − D̄Λc,ΛD̄

−1
Λ,Λc̄Λ‖∞ + ‖ĉΛc − c̄Λc‖∞

≤ ‖D̂Λc,ΛD̂
−1
Λ,Λ(ĉΛ − c̄Λ)‖∞ + ‖D̂Λc,Λ(D̂

−1
Λ,Λ − D̄

−1
Λ,Λ)c̄Λ‖∞

+ ‖(D̂Λc,Λ − D̄Λc,Λ)D̄
−1
Λ,Λc̄Λ‖∞ + δc

≤ ‖D̂Λc,ΛD̂
−1
Λ,Λ(ĉΛ − c̄Λ)‖∞ + ‖D̂Λc,Λ(D̂

−1
Λ,Λ − D̄

−1
Λ,Λ)c̄Λ‖∞ + δ′D + δc.
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Here, ‖D̂Λc,ΛD̂
−1
Λ,Λ(ĉΛ− c̄Λ)‖∞ ≤ δc/2 due to ‖D̂Λc,ΛD̂

−1
Λ,Λ‖1,∞ ≤ 1/2. Moreover, we have

‖D̂Λc,Λ(D̂
−1
Λ,Λ − D̄

−1
Λ,Λ)c̄Λ‖∞ = ‖D̂Λc,ΛD̂

−1
Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)D̄

−1
Λ,Λc̄Λ‖∞

≤ ‖D̂Λc,ΛD̂
−1
Λ,Λ‖1,∞‖(D̄Λ,Λ − D̂Λ,Λ)D̄

−1
Λ,Λc̄Λ‖∞

≤ δ′D/2.

Using the condition on γ, we get that

‖D̂Λc,ΛD̂
−1
Λ,ΛĉΛ − ĉΛc‖∞ ≤

3

2
(δ′D + δc) ≤

γ

2
≤ γ(1− ‖D̂Λc,ΛD̂

−1
Λ,Λ‖1,∞),

so that the conditions of Lemma B.2 are satisfied and (B.4) takes place. This allows us
to write

b̃Λ − b∗
Λ = D̂−1

Λ,ΛĉΛ − D̄−1
Λ,Λc̄Λ − γD̂−1

Λ,Λg,

= D̂−1
Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)D̄

−1
Λ,Λc̄Λ + D̂−1

Λ,Λ(ĉΛ − c̄Λ)− γD̂−1
Λ,Λg

= D̂−1
Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)b∗

Λ + D̂−1
Λ,Λ(ĉΛ − c̄Λ)− γD̂−1

Λ,Λg

= D̂−1
Λ,ΛD̄Λ,Λ

(
D̄−1

Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)b∗
Λ + D̄−1

Λ,Λ(ĉΛ − c̄Λ)− γD̄−1
Λ,Λg

)
By Lemma B.4 we have ‖D̂−1

Λ,ΛD̄Λ,Λ‖∞7→∞ ≤ 2 so that

‖b̃Λ − b∗
Λ‖∞ ≤ 2‖D̄−1

Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)b∗
Λ‖∞ + 2‖D̄−1

Λ,Λ(ĉΛ − c̄Λ)‖∞ + 2γ‖D̄−1
Λ,Λ‖1,∞ .

and since we also have |||D̂−1
Λ,ΛD̄Λ,Λ|||op ≤ 2 and ‖g‖ ≤

√
s, it holds

‖b̃Λ − b∗
Λ‖ ≤ 2

√
s
(
‖D̄−1

Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)b∗
Λ‖∞ + ‖D̄−1

Λ,Λ(ĉΛ − c̄Λ)‖∞ + γ|||D̄−1
Λ,Λ|||op

)
.

Before we proceed with the proof of this corollary, we present a technical lemma that
collects some trivial inequalities.

Lemma B.4. Set δc = ‖ĉ−c̄‖∞, δD = ‖(D̂Λc,Λ−D̄Λc,Λ)D̄
−1
Λ,Λ‖∞,∞. Suppose, ‖D̄ΛcΛD̄

−1
ΛΛ‖1,∞ ≤

1 and sδD ≤ 1/2. It holds,

• for any q ≥ 1

‖DΛ,ΛD̂
−1
Λ,Λ‖q→q ≤ 2, ‖D̂−1

Λ,ΛDΛ,Λ‖q→q ≤ 2 ;

•
‖D̂Λc,ΛD̂

−1
Λ,Λ −DΛc,ΛD

−1
Λ,Λ‖1,∞ ≤ 4sδD.

Proof. First, we have

‖DΛ,ΛD̂
−1
Λ,Λ‖q→q = ‖I + (DΛ,Λ − D̂Λ,Λ)D̂

−1
Λ,Λ‖q→q

≤ 1 + ‖(DΛ,Λ − D̂Λ,Λ)D
−1
Λ,Λ‖q→q‖DΛ,ΛD̂

−1
Λ,Λ‖q→q

≤ 1 + sδD‖DΛ,ΛD̂
−1
Λ,Λ‖q→q,



C. Y.-H. Chen, W.K. Härdle, and Y. Klochkov 49

which solving the inequality and since sδD ≤ 1/2 turns into

‖DΛ,ΛD̂
−1
Λ,Λ‖q→q ≤

1

1− sδD
≤ 2.

Similarly, ‖D̂−1
Λ,ΛDΛ,Λ‖q→q ≤ 2.

Furthermore,

‖(D̂Λc,Λ −DΛc,Λ)D̂
−1
Λ,Λ‖1,∞ ≤ ‖(D̂Λc,Λ −DΛc,Λ)D

−1
Λ,Λ‖1,∞‖DΛ,ΛD̂

−1
Λ,Λ‖1→1

≤ 2sδD.

and

‖DΛc,Λ(D
−1
Λ,Λ − D̂

−1
Λ,Λ)‖1,∞ ≤‖DΛ,ΛcD−1

Λ,Λ‖1,∞‖D̂
−1
Λ,Λ(D̂Λ,Λ −DΛ,Λ)‖1→1

≤‖DΛ,ΛcD−1
Λ,Λ‖1,∞‖D̂

−1
Λ,ΛDΛ,Λ‖1→1‖D−1

Λ,Λ(D̂ −D)‖1→1

≤2‖DΛ,ΛcD−1
Λ,Λ‖1,∞sδD,

which together give us the second inequality.


	cwpe-cover1998
	job-market-paper
	Introduction
	StockTwits
	Quantifying message content

	The SONIC approach
	Notation
	Clusters of nodes and influencers
	Model with missing observations
	Alternating minimization algorithm
	Local consistency result

	Simulation study
	Application to StockTwits sentiment
	Proof of main result
	Preliminary lemmas
	Proof of Theorem 3.6

	Proof of Theorems 3.4 and 3.5
	LASSO and missing observations


