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Abstract 

 

The immune synapse provides an important structure for communication between 

immune cells.  Studies on immune synapses formed by cytotoxic T lymphocytes (CTL) 

highlight the dynamic changes and specialised mechanisms required to facilitate focal 

signalling and polarised secretion in immune cells. In this Cell Science at a glance and 

the accompanying poster, we illustrate the different steps that reveal the specialised 

mechanisms used to focus secretion at the CTL immune synapse and allow CTL to be 

such efficient and precise serial killers. 

 

 

Introduction 

 

In its endeavour to fend off infection and cancerous growth, the mammalian immune 

system relies on both efficient communications between its cellular players as well as the 

ability to eliminate harmful agents in a precisely focused manner. 

 

Immune cells can communicate directly with each other by forming close cell-cell contacts 

that have become known as immune synapses. In addition to this internal communication, 

the immune system makes use of the synapse during direct attack on infected and 

cancerous cells: the formation of immune synapses allows killer cells to address the 

challenge of specifically eliminating ‘dangerous’ cells whilst leaving healthy cells 

unaffected. Thus it is only after the establishment of the focused synapse interface that 

cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells deliver a cocktail of cytotoxic 

substances from specialised secretory lysosomes (cytolytic granules) to destroy the 

target.   In this review we will provide an “at a glance” view of the CTL synapse highlighting 

features of its structure and roles in signalling, secretion and immunodeficiencies.  
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Structural features of the synapse 

The formation of immune synapses involves the reorganisation of receptors involved in 

recognition and adhesion to form specialised functional domains at the interface between 

two cells. The first clear demonstration of distinct structural molecular patterning in 

response to target engagement came from work by Kupfer in CD4+ T cells (Monks et al., 

1998), with the rapid dynamics revealed using artificial bilayers (Grakoui et al., 1999).  

This showed T-cell receptor (TCR) clustering to the centre of the immune synapse or 

central supramolecular activation cluster (cSMAC) with protein kinase C (PKC)-θ and Lck 

surrounded by a ring of adhesion molecules, lymphocyte function-associated antigen 1 

(LFA-1) and its adaptor talin, together referred to as the peripheral-SMAC (pSMAC). 

Subsequent immunofluorescence imaging has revealed an accumulation of actin 

surrounding the pSMAC, sometimes referred to as the distal-SMAC (dSMAC), creating a 

now well-known ‘bulls-eye’ configuration (see poster).   

A similar structure was subsequently identified in CD8 CTLs with a discrete secretory 

domain next to the cSMAC and within the pSMAC (Potter et al., 2001; Stinchcombe et 

al., 2001b).  These organised synapses between cells are widely adopted throughout the 

immune system, with similar layouts being used for both B and T-cell activation and even 

phagocytosis of particulates by macrophages (Freeman et al., 2016; Goodridge et al., 

2011; Niedergang et al., 2016). 

Another important feature of the synapse structure is the reorganisation of the 

cytoskeleton.  The microtubule organising centre (MTOC) has long been known to 

polarise towards the synapse in CD4+, CD8+ and NK cells (Geiger et al., 1982; Kupfer 

and Dennert, 1984; Kupfer et al., 1983; Kupfer et al., 1985), and more recently it has been 

shown that one of the centrioles at the centre of the MTOC contacts the cell membrane 

next to the cSMAC (see Box 1), focusing secretion next to the point of TCR signalling 

(Stinchcombe et al., 2001b). This ensures precise secretion of the cytotoxic components 

perforin and granzymes and may also focus the delivery of the alternative cell death 

mediator FasL (Bossi and Griffiths, 1999; Kagi et al., 1994; Stinchcombe et al., 2006; 

Tschopp and Nabholz, 1990). 

 

TCR signalling 
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CTLs identify their target cells through TCRs, whose signalling drives the dramatic 

reorganisation of the CTL cytoskeleton that goes with the establishment of a synapse.  

 

Over the last 20 years, the biochemical outline of TCR signalling (see Box1) has been 

extended with improving microscopy techniques and the importance of the spatio-

temporal dynamics of the process is now widely appreciated. Active TCR signalling is 

associated with the movement of small groups of TCR and LAT molecules (microclusters) 

from the synapse periphery toward the c-SMAC, where TCRs are endocytosed to a 

recycling endosome. Once internalised, TCRs may be redelivered to the synapse or 

selectively trafficked for degradation, and so either enhance or diminish signalling (see 

poster). Along with direct players in the TCR cascade, inhibitory molecules and cytokines 

may also be delivered through vesicles to the synapse, both modulating signalling and 

communicating with the antigen-presenting cell (APC) independently of cytolytic granules 

(Purbhoo, 2013; Soares et al., 2013). 

One of the pathways that most recently has been implicated in TCR signalling is the 

Hedgehog (Hh) pathway (see poster). Hh signalling is the trademark of signalling in the 

primary cilium, a structure absent only from haematopoetic cells, and with surprising 

structural similarities to the synapse (Wheatley, 1995). In CD8+ T cells, Hh signalling is 

initiated by TCR signalling and causes the intracellular activation of Patched 1 or 2 

(Ptch1/2) by Indian hedgehog (Ihh) on vesicles within the T cell. This inhibits repression 

of Smoothened (Smo) by Ptch1/2, thereby activating Gli1 and driving expression of Hh 

target genes. In CD8+ T cells, a key Hh target gene encodes the protein Rac1, which 

plays a critical role both in actin reorganisation and centrosome polarisation to the 

synapse.  Inhibition of Smo, either genetically or by use of chemical inhibitors, disrupts 

CTL-mediated killing (de la Roche et al., 2013). 

Recently, the importance of mechanical force in formation of the synapse has become a 

subject of increasing investigation. To attach and kill a target cell, the CTL must latch on 

tightly to its target and this requires the activation of the integrin LFA-1 (Hogg et al., 2011). 

Work from the Burkhardt lab in CD4+ T cells has shown that achieving fully activated LFA-

1 requires F-actin flow, with intercellular adhesion molecule 1 (ICAM-1) on the APC side 

of the synapse providing physical resistance to promote this effect during synapse 

formation (Comrie et al., 2015a; Comrie et al., 2015b). Interestingly, progress in 

measuring 2D binding kinetics has revealed similar roles for force in promoting adhesion 

with catch-bonds being formed by P-selectin, an adhesive molecule involved in CTL 

recruitment to sites of inflammation (Hirata et al., 2002; Marshall et al., 2003). Such catch 
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bonds have recently been implicated in the ability of TCRs to distinguish between agonist 

and altered peptide ligands, which whilst they remain stimulatory, result in greatly reduced 

killing efficiency; however, the underlying biology has yet to be fully explored (Liu et al., 

2014).  

 

CTL immune synapse formation: sequence of events 

The development and refinement of high-speed live-cell imaging techniques has fuelled 

the investigation of the dynamics of synapse formation and CTL-mediated killing. Over 

the course of the past 10 years, the order and timing of some key steps in the attack have 

been unravelled, although some of the details vary somewhat depending on the technique 

and cell system used. 

 

In vitro, when placed on a glass surface, CTLs migrate with a lamellipodium at the front 

and a uropod at the rear (see poster). As soon as a target cell is recognized, CTLs stop 

migrating and accumulate F-actin at the contact site. This is followed by a reduction in F-

actin at the centre of the contact site within one minute after initial contact (Ritter et al., 

2015). As a consequence, an F-actin ring appears at the edge of the interface which in 

the dSMAC. At the same time, TCR microclusters gather at the centre of the interface to 

form the cSMAC. 

 

During CTL migration the centrosome (MTOC) is located away from the leading edge, 

behind the nucleus, in the uropod. When a target encounter triggers TCR signalling, the 

centrosome starts moving towards the immune synapse (Kuhn and Poenie, 2002). It is 

thought that ‘pioneer’ microtubules link the centrosome to the synapse interface and their 

shortening and the motor protein dynein act together to reel the centrosome to the 

synapse (Combs et al., 2006; Yi et al., 2013).  The centrosome finally docks at the plasma 

membrane by the cSMAC, in a region where F-actin is depleted. It takes about six minutes 

from the cell-cell contact to centrosome docking at the synapse (Ritter et al., 2015) (see 

poster). 

 

As cytolytic granules cluster around the centrosome, they move together with the 

centrosome towards the synapse where they release perforin and granzymes into the 

space between the CTL and the target (Ritter et al., 2015). Following the release of 

granule contents, perforin facilitates transport of granzymes into the target, which trigger 

rapid target cell death. Finally, the CTL detaches from the dying target cell and moves on 

to find the next target. A new lamellipodium is formed distant from the immune synapse.  
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The centrosome detaches from the synapse membrane and a new uropod is formed as 

the CTL moves away (Ritter et al., 2015).  Intriguingly, the signal to detach appears to be 

dependent upon the target cell’s demise through caspase activity (Jenkins et al., 2015). 

 

 

The role of CTL centrosome polarisation in killing and similarities with cilia 

Precise targeting of cytolytic granules towards exocytic sites opposite the target is 

mediated by an unusual mechanism that involves centrosome polarisation to the immune 

synapse membrane.  On CTL activation, the centrosome moves from the back of the cell 

around the nucleus and docks with the plasma membrane within the immune synapse, at 

the boundary between the cSMAC and secretory domain (Ritter et al., 2015; Stinchcombe 

et al., 2006; Yi et al., 2013).   

 

Centrosome polarisation is unusual, but also occurs in cells with cilia and flagella; here, 

the centrosome docks with the plasma membrane through the distal appendages of the 

mother centriole before extending to form a cilium or flagellum (Azimzadeh and Bornens, 

2007). Intriguingly, centrosome docking at the CTL synapse appears to be remarkably 

similar to ciliogenesis, although a cilium does not form (Stinchcombe et al., 2015) (see 

Box 1).   

 

Centrosomes are comprised of an older, more mature, ‘mother’ centriole characterised by 

two rings of appendages at the distal end of the centriole, and a younger ‘daughter’ 

centriole, which is derived from the mother during centriole replication and lacks 

appendages. The distal-most appendages are involved in membrane association, 

whereas the sub-distal are involved in microtubule organisation. CTL centrosomes dock 

at the immune synapse during target killing with the mother attaching to the membrane 

via the distal appendages of the mother centriole (Stinchcombe et al., 2015) (see poster). 

This organisation aligns the sub-distal appendages and associated microtubules under 

the plasma membrane at the secretory domain where granule contents are released. The 

mechanisms of centrosome docking at the CTL synapse and during cilia formation are 

also similar, with both processes requiring Cep83 (Stinchcombe et al., 2015; Tanos et al., 

2013).  However, once the centrosome has docked, the pathways diverge.  In ciliated 

cells, the centrosome-end-regulating proteins CP110 and Cep97 are lost and cilia 

formation proceeds, whereas CTL mother centrioles retain the CP110-Cep97 complex on 

docking during killing and show no signs of cilia formation (Stinchcombe et al., 2015). 

Since it was recently shown that lymphocytes have the capacity to form cilia if CP110 is 
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depleted (Prosser and Morrison, 2015), it is likely that mechanisms involved in CP110 

retention act to prevent cilia formation at the CTL synapse during killing (see poster). 

Preventing cilia formation, prevents stabilisation of CTL centrosomes and ensures 

centrosome docking is only transient, thereby allowing the multiple polarisation events 

that are required for sequential killing of several targets. 

 

Other similarities between cilia and the immune synapse have also been found in CD4+ 

T-cells, including a role for intraflagellar transport (IFT) proteins, which are required for 

cilia formation, in TCR recycling (Finetti et al., 2009; Finetti et al., 2014; Vivar et al., 2016). 

EM tomography reveals a very similar organisation of the centrosome and secretory 

compartments in CD4+ T cells (Ueda et al., 2011), although centrosome docking is yet to 

be studied in CD4+ T cells. 

 

 

Targeted granule secretion at the immune synapse 

The release of granule contents at the synapse is tightly controlled by a sophisticated 

protein machinery that coordinates the delivery, docking and fusion of granules at the 

plasma membrane (see poster). Malfunctioning of this machinery due to genetic defects 

in its components leads to the devastating immune deficiency condition familial 

haemophagocytic lymphohistiocytosis (FHL) with five subtypes (FHL1 to -5), and the 

related conditions Griscelli Syndrome type 2 (GS2), Hermansky-Pudlak Syndrome type 2 

(HPS2) and Chediak-Higashi Syndrome (CHS) (Chediak, 1952; Farquhar and Claireaux, 

1952; Griscelli et al., 1978; Hermansky and Pudlak, 1959; Higashi, 1954). Mouse models 

of these conditions show that upon pathogen challenge, the genetic mutation impairs the 

secretion of pro-apoptotic factors from CTL (and NK) granules, while the production of 

cytokines and their release via a different secretory pathway appears to be enhanced 

(Brisse et al., 2015; de Saint Basile et al., 2015; Jenkins et al., 2015; Reefman et al., 

2010). The inability of CTLs and NK cells to clear the infection whilst continuously 

secreting cytokines promotes the activity of effector immune cells leading to a life-

threatening hyper-inflammatory state (haemophagocytic lymphohistiocytosis, HLH) that 

requires immunosuppressive therapy and ultimately bone-marrow transplantation (Sieni 

et al., 2014). To date, four FHL-proteins have been identified and a fifth disease-linked 

genetic locus awaits further investigation (Cote et al., 2009; Feldmann et al., 2003; Ohadi 

et al., 1999; Stepp et al., 1999; zur Stadt et al., 2009; zur Stadt et al., 2005). The known 

secretion factors at the CTL immune synapse are the putative vesicle-tether Munc13-4 

(FHL3), the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor 
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(SNARE) protein Syntaxin 11 (FHL4), the syntaxin-binding protein Munc18-2 (FHL5), the 

Munc13-4 binding partner Rab27a (GS2), the adaptor protein subunit AP3-beta3A 

(HPS2) and the lysosomal-trafficking regulator (LYST) protein (CHS) (Barbosa et al., 

1996; Barrat et al., 1996; Cote et al., 2009; Dell'Angelica et al., 1999; Feldmann et al., 

2003; Fukai et al., 1996; Menasche et al., 2000; Nagle et al., 1996; Perou et al., 1996; 

zur Stadt et al., 2009; zur Stadt et al., 2005). These proteins are thought to act in 

successive steps during the maturation, transport and secretion of cytolytic granules (see 

poster). 

 

HPS2 CTLs that lack AP3 cannot transport their granules to the immune synapse, 

suggesting that AP3 may coordinate the delivery of a motor protein or a motor-adaptor to 

the granule membrane (Clark et al., 2003). In GS2, the loss of functional Rab27a means 

that granules polarise but fail to detach from microtubules and therefore cannot reach the 

plasma membrane (Haddad et al., 2001; Stinchcombe et al., 2001a). In CTLs, Rab27a 

functions in granule docking through its interaction with the vesicle tether Munc13-4, 

whereas in melanoctyes, it has been shown to link to the actin-bound motor MyosinVa to 

‘capture’ melanosomes at their target membrane in the cell periphery (Elstak et al., 2011; 

Hume et al., 2001; Neeft et al., 2005; Shirakawa et al., 2004; Wu et al., 2001). 

 

Munc13-4 associates with the cytolytic granules in attacking CTLs. In Munc13-4-deficient 

FHL3 CTLs, granules reach the plasma membrane but cannot be ‘primed’ for secretion 

(Elstak et al., 2011; Feldmann et al., 2003). It has been suggested that in addition to the 

vesicle tethering interaction with Rab27a, Munc13 proteins also interact with SNARE-

complexes, the helical protein bundles that drive membrane fusions, through a MUN-

domain (Basu et al., 2005; Guan et al., 2008). 

 

Syntaxin11 and Munc18-2 are binding partners that localise to the plasma membrane of 

CTL and neutrophils; this strongly suggests that they cooperate to drive the final steps of 

granule fusion (Brochetta et al., 2008; Cote et al., 2009; Dieckmann et al., 2015; 

Hackmann et al., 2013; Halimani et al., 2014; Hellewell et al., 2014; zur Stadt et al., 2009). 

The loss of Syntaxin11 from the plasma membrane of Munc18-2 deficient CTLs supports 

the notion that Munc18-2 acts as a Syntaxin11 chaperone, similar to Munc18-1 

chaperoning Syntaxin1A; however, Munc18-2 was also found to associate with granules 

in CTLs, mast cells and neutrophils where it may perform a yet unknown function, 

potentially in association with granule SNAREs (Brochetta et al., 2014; Brochetta et al., 
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2008; Dieckmann et al., 2015; Han et al., 2011; Martin-Verdeaux et al., 2003; Rowe et 

al., 2001). 

 

In CHS, mutation of the LYST protein has been suggested to cause a fission defect which 

entails the formation of enlarged lysosomes whose excessive size appears to prevent 

fusion at the immune synapse (Baetz et al., 1995; Durchfort et al., 2012). A recent report 

showed that overexpression of either Rab27a alone or Rab27a together with Slp3 partially 

restored granule secretion (measured by surface appearance of the lysosomal membrane 

protein CD107a), and that co-expression of Rab27a, Munc13-4 and Slp3 rescued the 

secretion defect of CHS CTLs. This gave rise to the suggestion that LYST might be 

involved in trafficking of effectors that drive the maturation of perforin-containing vesicles 

into fully secretion-competent granules (Sepulveda et al., 2015). 

 

Two additional genetic defects have been linked to the immune synapse and can trigger 

HLH but do not directly affect secretory factors. For instance, FHL2 arises due to loss of 

the pro-apoptotic factor perforin from the cytolytic granules (Stepp et al., 1999). 

Interestingly, immune synapses formed by perforin-deficient CTLs and NK cells persist 

much longer than normal synapses; here the FHL2 CTLs appear to become stuck on the 

targets they fail to kill (Jenkins et al., 2015). Finally, in X-linked lymphoproliferative 

disease type 1 (XLP-1), the mutation of the signalling lymphocyte activation molecule 

(SLAM)-associated protein (SAP) disturbs key intracellular signalling processes that are 

exerted by SLAM in NK cells and CTLs, thereby resulting in a defective killer response 

against Epstein-Barr Virus-infected cells (Coffey et al., 1998; Dupre et al., 2005), 

reviewed by (Tangye, 2014). 

 

Concluding remarks 

 

In this review we have focused on the formation of the CTL immune synapse, which is a 

highly dynamic process that relies on the close interplay of signalling factors, cytoskeletal 

elements and membrane fusion machinery to deliver a rapid cytotoxic hit, which allow 

CTLs to be effective serial killers. There are many more aspects that are being currently 

explored, including the roles of motor proteins, positive and negative receptor signalling, 

mechano-sensing and CD4+ cells that acquire cytolytic potential.  In addition, the 

understudied role of the target cell in forming the synapse and the signals that tell the 

CTL when to depart remain to be uncovered along with a full understanding of how the 

CTL manages not to kill itself as it releases its deadly cytolytic load. 
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Summary 

This brief review and the poster illustrate the different steps that reveal the specialised 

mechanisms used to focus secretion at the CTL immune synapse and allow CTL to be 

such efficient and precise serial killers. 

 

 

 

Box 1:  TCR signalling in a nutshell 

 

TCR signalling begins with the activating phosphorylation of the kinases Lck and Zeta-

chain (TCR)-associated protein of 70kDa (ZAP-70) as Lck associates and phosphorylates 

the TCR, which promotes the recruitment of ZAP-70 (Chan et al., 1992; Iwashima et al., 

1994). In brief, active ZAP-70 phosphorylates tyrosines on linker of activated T cells (LAT) 

and Src homology 2 domain-containing leukocyte protein of 76kDa (SLP76)  to generate 

the LAT signalosome, a hub for secondary messenger generation (see poster) (Bubeck 

Wardenburg et al., 1996; Chakraborty and Weiss, 2014; Paz et al., 2001). Associated 

active phospholipase Cg1 generates two of these messengers, inositol triphosphate (IP3) 

and diacylglycerol (DAG) (Yablonski et al., 1998). IP3 binds to its ER-associated receptor 

to induce a global calcium flux, which is crucial for nuclear factor of activated T cells 

(NFAT) activation, whilst DAG recruits other signaling molecules to the membrane. These 

include protein kinase C family members (PKCs) that activate integrin activity by 

phosphorylation of Rap guanine nucleotide exchange factor 2 (RapGEF2), thus activating 

Rap1; in addition, PKCs control myosin regulatory light chain for efficient MTOC 

polarisation to the immune synapse (Navarro and Cantrell, 2014; Quann et al., 2011). 

The signalling of PKCs is thought to be further amplified by their ability to phosphorylate 

the stabilising loop of protein kinase D2 (PKD2). PKD2 activity enhances transcription of 

the key cytokines interferon-γ and interleukin-2, as well as promotes Ras activity (Navarro 

et al., 2014a; Navarro et al., 2014b). Ras is further activated by the action of RAS guanyl 

nucleotide-releasing proteins (RasGRPs), which themselves are recruited by DAG into 

close proximity of PKCs, and functions by initiating the mitogen activated protein kinase 

(MAPK) cascade. This cascade has dramatic effects on CTL metabolism proliferation, 

transcription, translation and even the microtubule network through the ERK1/2 complex 

(Navarro and Cantrell, 2014). 
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