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Abstract 

Background:  Nearly half of the world’s population (3.2 billion people) were at risk of malaria in 2015, and resistance 
to current therapies is a major concern. While the standard of care includes drug combinations, there is a pressing 
need to identify new combinations that can bypass current resistance mechanisms. In the work presented here, a 
combined transcriptional drug repositioning/discovery and machine learning approach is proposed.

Methods:  The integrated approach utilizes gene expression data from patient-derived samples, in combination 
with large-scale anti-malarial combination screening data, to predict synergistic compound combinations for three 
Plasmodium falciparum strains (3D7, DD2 and HB3). Both single compounds and combinations predicted to be active 
were prospectively tested in experiment.

Results:  One of the predicted single agents, apicidin, was active with the AC50 values of 74.9, 84.1 and 74.9 nM in 
3D7, DD2 and HB3 P. falciparum strains while its maximal safe plasma concentration in human is 547.6 ± 136.6 nM. 
Apicidin at the safe dose of 500 nM kills on average 97% of the parasite. The synergy prediction algorithm exhibited 
overall precision and recall of 83.5 and 65.1% for mild-to-strong, 48.8 and 75.5% for moderate-to-strong and 12.0 and 
62.7% for strong synergies. Some of the prospectively predicted combinations, such as tacrolimus-hydroxyzine and 
raloxifene-thioridazine, exhibited significant synergy across the three P. falciparum strains included in the study.

Conclusions:  Systematic approaches can play an important role in accelerating discovering novel combinational 
therapies for malaria as it enables selecting novel synergistic compound pairs in a more informed and cost-effective 
manner.

Keywords:  Synergy prediction, Malaria, Machine learning, Compound combination modelling, Transcriptional drug 
repositioning, Synergistic anti-malaria compound combinations
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Background
While recently progress has been made towards the 
reduction of malaria related morbidity and mortality, an 
increasing at-risk population and insecticide resistant 
vectors hamper eradication efforts. In 2015, nearly half 
of the world’s population (3.2 billion people) were at risk 
of contracting malaria, and 97 countries and territories 

had ongoing malaria transmission [1]. Most malaria cases 
and deaths occur in sub-Saharan Africa [1]; however, 
Asia, Latin America, and, to a lesser extent, the Middle 
East and parts of Europe are also at risk. In particular, the 
emergence and spread of drug-resistant parasites contin-
ues to limit the effective lifespan of current anti-malarial 
drugs [2].

Drug resistance has reduced the effectiveness of previ-
ous standard therapies for malaria, such as chloroquine 
and sulfadoxine–pyrimethamine [3, 4]. Today, arte-
misinin-based combination therapy (ACT) is frequently 
utilized, nearly universally in endemic regions, to reduce 
the selection of drug-resistant parasites [2]. Currently, 
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five artemisinin-based combinations (ACT) are available 
for the treatment of uncomplicated Plasmodium falci-
parum malaria, namely artemether and lumefantrine, 
artesunate and amodiaquine, artesunate and mefloquine, 
dihydroartemisinin and piperaquine, as well as artesu-
nate and sulfadoxine–pyrimethamine [5]. New combi-
nations (such as artesunate and pyronaridine) have also 
recently been registered for use in particular countries 
[5]. In order to avoid drug resistance, combination thera-
pies comprised of single agents with different modes of 
actions are usually indicated. However, this is not always 
true since among the ACT medicines, some combina-
tions such as mefloquine and lumefantrine act on simi-
lar pathways to those of artemisinin-derived drugs [6]. 
Recently, reduced response to ACT has been observed 
which indicates an urgent need for new combination 
therapies [7].

In this regard, a high-throughput combination 
screening study has recently been performed for 
malaria to provide experimental evidence for the effi-
cacy of combinations [6]. However, due to the com-
binatorial explosion of the number of combinations 

possible, using a computational rationale for optimal 
selection of compound combinations can save cost and 
effort by providing a way to prioritize subsets of com-
binations from many possible compound pairs. Such 
compound combination modelling approaches have 
recently emerged for other diseases, particularly cancer 
[8, 9]; however there have been relatively few studies 
focusing on malaria. The studies which have been pub-
lished include in silico screening of targets and molecu-
lar docking to find novel anti-malarial agents [10–12], 
and a drug synergy visualisation tool for malaria [13]. 
The machine learning approaches applied in the malaria 
field are usually for diagnostic purposes [14], or have 
other aims such as improving docking scores [15] and 
identifying a malaria transmission model [16]. How-
ever, this excludes learning from large scale in  vitro 
malaria screening data to predict novel anti-malarial 
combination therapies, which is the aim of this study. 
In this work, a novel systematic approach is proposed 
for identifying compounds that boost human response 
to severe malaria and combination of compounds that 
show synergy in the malaria in vitro system (Fig. 1). The 

Fig. 1  Data analysis work flow for predicting active compounds against malaria. The computational approach benefits from both transcriptional 
drug repositioning and machine learning. a The transcriptional drug repositioning approach imports gene expression data from GEO dataset 
(GDS4259) and compares patients with severe malaria vs patients with mild malaria to get gene expression profile of malaria. Transcriptional drug 
repositioning approach developed in this work is then used to predict potentially active single agents. b The machine learning part is trained 
on a dataset of activity of 1540 compound combinations applied on three different malaria P. falciparum strains. Target prediction and pathway 
annotation is used to define the features. c All combinations of potentially active single agents were annotated with targets and pathways and used 
as a test set input to the machine learning model built. d Activity of all possible combinations were predicted and computationally validated. All 
possible combinations were also experimentally validated and full accuracy of the algorithm in practice was evaluated
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former was achieved via a transcriptional drug reposi-
tioning approach for shortlisting single agents and the 
later was achieved with a machine learning approach 
trained on in-vitro malaria screening data.

Transcriptomic data has been used previously for drug 
repositioning [17, 18], as well as for the selection of com-
bination therapies in other areas [19]. There have been 
some transcriptional drug repositioning studies pub-
lished for infectious diseases; [20, 21] however it has not 
been previously employed for malaria to the best knowl-
edge of the authors. The usage of transcriptional data for 
compound selection is generally based on the hypothesis 
that compounds that affect differentially expressed genes 
of a disease in the opposite way to the disease itself (‘anti-
correlated gene signatures’) have therapeutic potential 
for treating that particular disease. Experimental evi-
dence supporting this approach has been presented in 
several studies, such as the repositioning of the antiulcer 
drug cimetidine for lung cancer [22], and of the antiepi-
leptic topiramate for inflammatory bowel disease (IBS) 
[22]. In the present work, the human response to severe 
malaria has been derived in a different way compared to 
previous studies, namely gene expression data of blood 
samples of children with severe malaria was compared 
to gene expression signatures of the same children pre-
sented 1 month later, with mild malaria symptoms. Next, 
201,776 compound gene signatures extracted from the 
recently published LINCS database [23] were compared 
to the malaria severity signature. This leads to a rank 
ordered list of compounds with anti-correlated gene sig-
natures with malaria severity signature.

In this work, apart from the novelty of the application 
of transcriptional drug repositioning to malaria, previ-
ous approaches are also extended by utilising pathway 
annotations and in silico target predictions [24, 25] to 
the compound selection step. In this way, both biologi-
cal readouts and on target bioactivity information are 
used to increase the signal and to have a more accessi-
ble understanding of compound action at hand. While 
understanding gene expression signatures can be rather 
complex, involving the up- and downregulation of path-
ways as well as the activity on individual proteins can 
often be more readily understood.

To this end, the in  vitro combination screening data 
from 1540 compound pairs against three P. falciparum 
laboratory strains (3D7, DD, HB3) were utilized as a 
training set for the machine learning approach. To inte-
grate the transcriptional drug repositioning, the machine 
learning and pathway annotation approach, synergistic 
combination pairs were selected from the single agents 
that were discovered in the preceding transcriptional 
drug repositioning approach. The activity predictions 
of individual compounds, and subsequently compound 

pairs, have been followed by prospective experimental 
validation, which resulted in the identification of novel 
single agent and synergistic compound combinations 
against P. falciparum. Hence, the results suggest that this 
method may be useful for prioritising new drug combina-
tions for treating malaria.

Methods
Data
Training data previously generated at NCATS [6] 
included 1540 combinations of 56 individual compounds 
measured on three different P. falciparum strains, namely 
3D7, DD2 and HB3 (https​://tripo​d.nih.gov/matri​x-clien​
t/?p=183, with assay IDs: 1463, 1464, 1465). For each 
of the combinations, the γ measure was calculated to 
characterize synergy between the pairs as described pre-
viously [26]. Values for γ  <  1 represent synergy, γ =  1 
represents additivity and γ  >  1 represents antagonism. 
Combination screening quality is characterized by a per-
combination QC metric, whose value ranges from 1 to 
18, where 1 represents the highest quality data and 18 
represents lowest data quality. Only data points with QC 
values less than 3 were used for subsequent analyses.

Transcriptional drug repositioning approach
In order to select new compounds for screening, first a 
combined bioinformatics and cheminformatics approach 
developed earlier [27] was used to predict single com-
pounds with activity against malaria. For this purpose 
GEO dataset [28] GDS4259 was downloaded using the 
GEOImporter [29] tool of GenePattern [30]. This data-
set contains data derived from peripheral blood samples 
from five Malawian children with severe P. falciparum 
malaria, compared to the same children who presented 
with a mild case of malaria 1 month later [31]. This com-
parison gives rise to the gene signature of severe malaria, 
and it was used in this work as a disease signature. The 
controls were chosen as human host cells that have 
responded in a curative manner to the disease, and hence 
decreased disease severity. This choice was made to make 
sure that the host response is present in the malaria 
severity signature. In the next steps, it was searched for 
drugs to reverse this severity signature which is expected 
to change a state of severe malaria to convalescent and 
help boost the host response.

In order to find compounds that have strong nega-
tive connectivity (anti-correlation) with the gene sig-
nature of malaria severity, compound-gene expression 
profiles from the LINCS database (Phase I, GEO dataset 
GSE92742) [23] were utilized. This calculation was per-
formed based on a modified Gene Set Enrichment Analy-
sis (GSEA) [32]. Considering the top 50 and bottom 50 
up- and down-regulated genes of every compound, the 

https://tripod.nih.gov/matrix-client/%3fp%3d183
https://tripod.nih.gov/matrix-client/%3fp%3d183
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calculation derives a score describing the strength of 
connection of compound signatures with a given disease 
profile. The scoring system leads to a rank ordered list of 
compounds that are assumed to be able to reverse the 
gene expression signature present in the malaria sever-
ity signature. Fifty highly scored compounds were short-
listed as single agent candidates.

Machine learning approach
The machine learning part of the algorithm involved 
in-silico target prediction, pathway annotation, syn-
ergy model generation and computational validation as 
follows.

Target prediction
Firstly, protein targets of all the 56 compounds in the 
training dataset were predicted based on an updated ver-
sion of target prediction algorithm developed previously 
[24]. The algorithm was retrained on compound/target 
pairs from ChEMBL [33] v17 and compound targets were 
predicted using a Laplacian Modified Naïve Bayes scoring 
system [25, 32]. Next, protein targets were predicted for 
the 50 shortlisted compounds from the transcriptional 
drug repositioning approach. The predicted protein tar-
gets with a score over 14 were selected as potential pro-
tein targets of each compound. The score cut-off gave rise 
on average to six targets for a compound, which is a rea-
sonable number of targets for a ligand, based on previous 
analyses [34].

Pathway annotation
Next, pathways enriched by the targets of each com-
pound were identified. For this purpose, 2010 human 
pathways and their associated genes from the Biosystems 
[35] database were extracted. The equivalent Entrez gene 
IDs of each protein target of compounds were retrieved 
using Biomart [36]. For each compound a list of, on aver-
age, six gene IDs that the compound is predicted to inter-
act with (the ‘compound gene signature’) was obtained. 
Then, the number of shared genes between each com-
pound gene signature and gene members of each of 2010 
pathways were found and stored as a raw integer score 
in a sparse vector, resulting in a vector with 2010 values 
for each compound, termed the ‘pathway signature of a 
compound’.

Next, for each combination of compound ‘a’ and com-
pound ‘b’ in the combination dataset, a descriptor vector 
was created by merging their compound pathway signa-
tures using the following equation:

where Pi,a and Pi,b are the ith value in compound ‘a’ or ‘b’ 
pathway signature which is the number of shared genes 

(1)pi,a,b =
(

Pi,a + 1
)

∗
(

Pi,b + 1
)

between ith pathway and compound ‘a’ or ‘b’ gene signa-
ture. pi,a,b is the ith value in the pathway signature of com-
bination of compound ‘a’ and compound ‘b’. Each term 
was added with one to avoid pi,a,b = 0 in cases where one 
of Pi,a or Pi,b equals zero. In this way, it is avoided to filter 
out the effect of one compound on the pathway when the 
other one has no effect on that pathway. In other words, 
the above formula gives a high score to pathways that are 
shared between both compounds which is the product of 
the score of both compounds, while also not neglecting 
the pathways that are only hit by one compound.

Synergy model generation
Using the above formula, a training file was created for 
each pair of compound pathway signatures labelled 
with synergy or no synergy, depending on gamma and 
QC. Pairs of compounds with gamma value < 0.975 and 
QC ≤ 3 were marked as synergistic and gamma > 1.025 
and QC ≤ 3 were marked as antagonistic. The 0.975 and 
1.025 cut-offs for gamma were chosen to avoid the addi-
tivity window. All the data with QC > 3 was discarded. 
Next, the training file was used as input for a Random 
Forest [37] algorithm consisting of 200 trees as imple-
mented in Matlab (2015B) using the TreeBagger [38] 
function. This algorithm was hence able to predict the 
synergy of a compound combination, based on the path-
ways that are hit by this given pair of compounds.

Computational validation for drug combination
As a computational step to validate the approach prior 
experiments, cross validation was used to evaluate per-
formance of the methods. The number of true positives 
(TP), false positives (FP) and false negatives (FN) were 
used to calculate precision (  TP

TP+FP
 ) and recall (  TP

TP+FN
 ). 

The tenfold cross validation was applied on the original 
data which was yielding 66% precision, 61% recall and 
61% for the F-measure over the two classes of synergy 
and antagonism, averaged over all three strains.

Prospective utilisation of the synergy model
Next, combinations of compounds in the shortlist pro-
duced using the above transcriptional drug reposition-
ing approach were annotated with pathways using Eq. 1 
and fed to the random forest model as a prospective test 
set (in order to predict likely synergistic compound com-
binations for this new set of compounds). The random 
forest model hence predicted synergies and antagonism 
for compound combinations, and predicted pairs were 
ranked by their probability of being synergistic. The top 
17 compound combinations, representing 14 unique sin-
gle agents, were selected for experimental validation as 
summarized in Additional file 1: Table S2.
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Experimental validation of compounds for malaria
The P. falciparum parasite lines were maintained in 
in  vitro culture conditions as described previously [39]. 
Methods for the SYBR qHTS and calculation of IC50 and 
definition of curve classes have been used as in previous 
work [39–41], as was the plating of compounds for com-
bination screening using acoustic dispense methods [42]. 
As shown in the Additional file  2: Figure S1, classes of 
activity were assigned based on growth inhibition curves 
where − 1.1 shows a complete curve as well as high effi-
cacy, − 1.2 represents a complete curve but only partial 
efficacy, − 2.1 symbolizes a partial curve which however 
exhibits high efficacy, − 2.2 represents a partial curve 
with only partial efficacy and − 2.3 represents a par-
tial curve with high efficacy, but only poor curve fit. All 
HTS assays were read at 72 h. Percent response values 
shown in matrix heat maps represent relative growth as 
obtained from SYBR Green fluorescence intensity values 
normalized to controls. Synergy metrics for combina-
tions were computed as described [42]. Data generated as 
part of the prospective validation can be accessed at https​
://tripo​d.nih.gov/matri​x-clien​t/?p=1261.

Results
Prospective validation of single agents
With the aid of the transcriptional drug repositioning 
approach, 14 single agents (structures are displayed in 
Fig.  2) were prioritized and subsequently tested experi-
mentally for their activity against the 3D7, DD2 and 
HB3 strains of P. falciparum. The results of the screen 
are summarised in Table  1, where chromomycin-a3 
(CHR), fulvestrant (FUL), apicidin (API), ingenol (ING) 
and tacrolimus (TAC) exhibited full inhibition in the 
dose response curves in low concentrations. Of those, 
chromomycin-a3, fulvestrant and apicidin were active 
in nanomolar doses in all the three strains tested, with 
the average AC50 values of 11, 67 and 78  nM. JX-401 
(JX4), raloxifene (RAL), hydroxyzine (HYD), thioridazine 
(THI), KIN001-244 (KIN), PI 828 (PI8), megestrol (MEG) 
exhibited complete or partial activity in different indi-
vidual strains. Monorden (MON) and chelidonine (CHE) 
exhibited partial or single dose activity across all strains 
and were not progressed further. All experimental results 
data can be accessed at https​://tripo​d.nih.gov/matri​
x-clien​t/?p=1261.

Prospective validation of drug combinations
Thirty five compound pairs were selected based on syn-
ergy prediction model as well as single agent screening 
data and were experimentally tested against P. falcipa-
rum strains of 3D7, DD2 and Hb3. Table  2 represents 
predicted probability for synergy of each of combinations 

in each strain (calculated before experiments) as well as 
synergy metric, γ [26] values, (calculated after experi-
ments). Among 35 combination pairs that have been 
tested in this study, 28 were predicted to be synergistic 
at least in one strain. Among those 28 predicted pairs, 
27 were showing mild-strong synergy, 17 were showing 
moderate-strong synergy and 8 were showing strong syn-
ergy at least in one strain. As one can see in the Table 3, 
only one of five currently used ACT medicines (meflo-
quine–artesunate) shows strong synergy on all the three 
strains and one (amodiaquine–artesunate) has strong 
synergy only on the HB3 strain. Precisions and recall 
measures were utilized to measure the accuracy of syn-
ergy predictions compared to experiments, the results 
of which are shown in Table  4. For this purpose vari-
ous gamma cut-offs were used to signify mild-to-strong 
(gamma ≤ 0.995), moderate-to-strong (gamma ≤ 0.975) 
and strong (gamma ≤ 0.95) synergies. The overall aver-
age precision and recall of experiments over the three 
strains were 83.5 and 65.1% for mild-to-strong, 48.8 and 
75.5% for moderate-strong and 12.0 and 62.7% for strong 
synergies.

A network representation of compound pairs were pro-
vided in Fig. 3 to represent synergy strength of different 
compound pairs and identify compounds that have high-
est number of synergies with other compounds. It can be 
seen that tacrolimus-hydroxyzine and raloxifene-thior-
idazine, represent the most synergistic compound pairs 
followed by ingenol-tacrolimus, tacrolimus-fulvestrant, 
tacrolimus-apicidin and raloxifene-megestrol pairs. Tac-
rolimus is synergistic with highest number of compounds 
(three).

The experimental validation of the most synergistic 
compound combinations in the P. falciparum strains 
were depicted in Fig. 4 using the HSA synergy model [43] 
to identify the optimal synergy doses. In the DD2 assay, 
the most synergistic combination was tacrolimus with 
hydroxyzine, where 1.250 µM hydroxyzine and 0.156 µM 
tacrolimus demonstrated highest synergy of − 0.45 in 
the HSA system (Fig.  4b). In the 3D7 and HB3 strains 
on the other hand, raloxifene together with thioridazine 
was the most synergistic compound pair (Fig. 4d). Here 
for the 3D7 strain 1.250 µM raloxifene and 2.5 µM thiori-
dazine achieved maximum synergy of − 0.85, while in the 
HB3 assay this is the case for concentrations of 2.5  µM 
of raloxifene and 10 µM of thioridazine with synergy of 
− 0.94. However, high synergy values were also observed 
at other compound concentrations, such as 2.5  µM of 
raloxifene with 5 µM of thioridazine, as well as 1.25 µM 
of raloxifene and 10 µM thioridazine with synergy values 
of − 0.78 and − 0.72, respectively.

https://tripod.nih.gov/matrix-client/%3fp%3d1261
https://tripod.nih.gov/matrix-client/%3fp%3d1261
https://tripod.nih.gov/matrix-client/%3fp%3d1261
https://tripod.nih.gov/matrix-client/%3fp%3d1261
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Discussion
Mechanistic justification of the compounds
In this section, differentially expressed genes and path-
ways that are involved in the malaria severity signature as 
well as potential modes of action on the target and path-
way level are discussed. It is important to consider that 
human targets and human pathways are used as the gene 
expression data utilized is also from human sources. This 

will enable studying the effect of the compounds on the 
host.

In the malaria severity signature, several immune 
response related genes were down-regulated. In other 
words, these genes were up-regulated in patients that 
responded to the disease in a curative way and hence 
recovered from the disease. The computational tran-
scriptional drug repositioning approach is looking for 

Fig. 2  Chemical structures of predicted single agents against malaria. All the structures were experimentally tested in the P. falciparum screen (see 
Table 1 for results)
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compounds that reverse the malaria severity signature 
and up-regulate the immune response genes to help 
boost the immune response. The immunity related genes 
that are down-regulated in the malaria severity signature 
are: PRF1, GNLY, OAS2, MX1, OAS3 and CCL5. PRF1 
encodes a protein with structural similarities to comple-
ment component C9 that is important in immunity [44]. 
GNLY protein is present in cytotoxic granules of cyto-
toxic T lymphocytes and natural killer cells, and it has 
antimicrobial activity against M. tuberculosis and other 
organisms [44]. OAS2 and OAS3 encode a members of 
the 2–5A synthetase family, essential proteins involved 
in the innate immune response to viral infection. These 
molecules activate latent RNase L, which results in viral 
RNA degradation and the inhibition of viral replica-
tion. They play significant role in the inhibition of cellu-
lar protein synthesis and viral infection resistance [46]. 
MX1 participates in the cellular antiviral response. CCL5 
is one of several chemokine genes. Chemokines form 
a superfamily of secreted proteins involved in immu-
noregulatory and inflammatory processes. SLPI is also 
up-regulated in the malaria severity signature. Its inhibi-
tory effect contributes to the immune response [44]. 
Pathways associated with mild malaria include the type 
I interferon-mediated signalling pathway, T cell acti-
vation and other pathways representing many aspects 
of immune activation [31]. The malaria severity signa-
ture contains six genes that were associated with severe 
malaria, including carbonic anhydrase 1 (CA1), G-pro-
tein-coupled receptor 89B (GPR89B), lipocalin 2 (LCN2), 

thymidine kinase 1 (TK1), small nucleolar RNA, C/D 
box  30 (SNORD30), and TBC1 domain family member 
3 (TBC1D3) (P ≤ 0.05; fold change of ≥ 1.5) [31]. Thy-
midine kinase 1 was recently found to be a biomarker of 
cerebral malaria susceptibility in the murine model [45], 
and carbonic anhydrase, reflects the blood’s abnormal 
acid base environment during severe disease. Further dis-
cussion of genes and pathways in the malaria severity sig-
nature has been published before [31].

Among the most potent single agents, tacrolimus has 
targets with established links to malaria. Tacrolimus has 
been previously studied for its potential anti-malarial 
activity by binding to PfFKBP35 and PvFKBP35 proteins 
of the parasite [46, 47]; however, the synergistic combi-
nation with hydroxyzine has not been reported before. 
Tacrolimus as well as apicidin were predicted to target 
“TGF-beta receptor signalling” pathway of human host. 
It is known that tacrolimus enhances TGF-Beta expres-
sion [48] while production of this protein is inversely 
correlated with severity of murine malaria infection [49]. 
Activation of another member of this pathway namely 
latent TGF-beta is suggested as a novel mechanism for 
direct modulation of the host response by malaria para-
sites [50]. Hence, modulation of TGF-Beta signalling may 
be a novel mechanism of tacrolimus that directly affects 
the host. Moreover, in vivo validation of apicidin against 
Plasmodium berghei in mice is evident from the literature 
[51].

On the other hand, pathways enriched by the pre-
dicted targets of the selected single agents according to 

Table 1  Experimental validation of predicted anti-malarial single agent compounds

The fitted AC50 values (µM) for the single drugs as well as classes of activity are listed. AC50 indicates 50% maximal response (for inhibition or agonism) and is 
calculated by fitting a 4-parameter logistic model to the concentration, response data. Curve classes are defined in Additional file 2: Figure S1

Classes that are identified as −1.1 are highlighted in italics as it signifies complete curve as well as high efficacy

Compound Class
3D7

Class
DD2

Class
HB3

AC50
3D7

AC50
DD2

AC50
HB3

Average AC50

CHR − 1.1 − 1.1 − 1.1 0.0119 0.0106 0.0106 0.011

FUL − 1.1 − 1.1 − 1.1 0.0335 0.0335 0.1332 0.0667

API − 1.1 − 1.1 − 1.1 0.0749 0.0841 0.0749 0.078

ING − 1.1 − 1.1 − 1.1 1.3324 1.495 1.495 1.4408

MON − 2.1 − 2.1 − 2.3 1.4956 1.0588 1.8828 1.4791

RAL − 1.1 − 1.1 − 2.1 0.7493 0.3347 4.7277 1.9372

TAC​ − 1.1 − 1.1 − 1.1 1.8821 3.7553 1.6774 2.4383

CHE 1.3 − 2.3 1.3 0.0266 10.5839 0.0011 3.5372

JX4 − 1.1 − 1.1 − 2.1 0.7493 0.0595 10.5839 3.7976

HYD − 1.1 − 1.1 − 2.1 2.6586 1.6774 11.8754 5.4038

THI − 2.1 − 2.1 − 2.1 10.5839 14.9502 14.9502 13.4948

MEG − 2.1 − 1.1 − 2.1 14.9502 1.8821 23.6945 13.5089

PI8 − 2.3 − 2.1 − 2.1 13.3244 11.8754 16.7744 13.9914

KIN − 2.1 − 2.1 − 2.1 13.3244 21.1177 16.7744 17.0722
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Biosystems pathways are depicted in Fig.  5 (also repre-
sented in Additional file 3: Figure S2 and listed in more 
detail in Additional file  4: Table  S1). Figure  5 suggests 
that highest synergistic combinations such as tacroli-
mus with hydroxyzine (average (γ) = 0.928), as well as 
raloxifene and thioridazine (average (γ) = 0.932), target 
independent pathways rather than shared pathways. On 
the other hand, pairs of compounds that have the most 

similar pathway signature did not have strong synergy. 
As an example, tacrolimus-chromomycin, hydroxyzine-
KIN001244 and fulvestrant-megestrol are pairs that are 
clustered together (Fig.  5) but all of them are showing 
week synergies with average γ values of 0.991, 0.965, and 
0.966. The data suggests that targeting independent path-
ways by compound pairs is privileged to targeting the 
same pathway multiple times for synergy to emerge.

Table 2  Synergy prediction and synergy scores based on experiments

This table represents gamma (γ) values as a metric for calculation of synergy as well as predicted probability of synergy for three different P. falciparum strains. Values 
of γ ≤ 0.95 represent strong synergy and were marked with ** and italic. Values of 0.95 < http < 0.975 were identified as moderate synergy and marked with * and 
italic, 0.975 < γ < 0.995 were identified as mild synergy and marked with italic font. Prediction scores above 0.5 were true predictions and were marked with italic font

Compund 1 Compound 2 3D7
Pred

3D7
Gamma

DD2
Pred

DD2
Gamma

HB3
Pred

HB3
Gamma

TAC​ HYD 0.309 0.948** 0.189 0.885** 0.501 0.951*

FUL TAC​ 0.627 0.961* 0.612 0.908** 0.659 0.989

ING TAC​ 0.820 0.954* 0.674 0.917** 0.854 0.954*

FUL MEG 0.722 1.007 0.583 0.918** 0.745 0.970*

MEG HYD 0.784 0.985 0.629 0.920** 0.738 0.988

KIN HYD 0.475 0.984 0.371 0.938** 0.477 0.977

API TAC​ 0.416 0.975* 0.685 0.942** 0.523 0.946**

FUL RAL 0.792 0.980 0.739 0.952* 0.825 0.966*

API HYD 0.806 0.987 0.717 0.952* 0.501 0.968*

FUL THI 0.651 0.982 0.714 0.954* 0.540 0.960*

THI RAL 0.549 0.931** 0.698 0.956* 0.375 0.911**

PI8 HYD 0.278 0.977 0.293 0.961* 0.171 0.993

FUL HYD 0.788 0.965* 0.747 0.962* 0.734 0.951*

TAC​ RAL 0.483 0.995 0.342 0.964* 0.612 0.962*

ING JX4 0.859 0.980 0.740 0.968* 0.826 0.975*

MEG RAL 0.795 0.937** 0.648 0.969* 0.791 0.966*

ING RAL 0.836 0.964* 0.658 0.975* 0.793 0.966*

API RAL 0.814 0.997 0.697 0.976 0.472 0.992

CHR HYD 0.633 1.001 0.238 0.979 0.644 0.991

KIN JX4 0.510 0.987 0.530 0.982 0.479 0.989

API JX4 0.761 1.020 0.723 0.984 0.495 0.970*

CHR TAC​ 0.418 0.99 0.163 0.987 0.445 0.996

JX4 HYD 0.498 0.984 0.503 0.987 0.498 0.986

PI8 ING 0.551 0.975* 0.443 0.991 0.499 0.989

PI8 JX4 0.238 0.990 0.621 0.994 0.214 0.981

PI8 RAL 0.369 1.014 0.293 0.997 0.126 0.995

CHR JX4 0.709 0.990 0.355 0.999 0.608 0.991

API MEG 0.776 0.981 0.632 1.004 0.582 0.979

CHR MEG 0.817 0.995 0.568 1.010 0.791 0.985

PI8 TAC​ 0.283 0.986 0.205 1.014 0.118 0.983

API CHR 0.785 0.999 0.722 1.014 0.525 0.998

CHR RAL 0.785 0.990 0.442 1.019 0.695 1.004

PI8 MEG 0.491 0.972* 0.366 1.021 0.272 0.966*

ING HYD 0.869 0.985 0.699 1.021 0.810 0.992

PI8 KIN 0.246 0.989 0.348 1.046 0.197 0.997
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Limitations of the study
The limitation of transcriptional drug repositioning 
approaches that are gaining popularity is that they cannot 
be applied for predicting compounds that act on parasite 
directly. Some recent other applications of transcrip-
tional drug repositioning approaches for finding antivi-
rals took into account the effect of compounds on host 
cells [20, 21]. This limitation is due to CMap and LINCS 
databases that are the gateways for transcriptional drug 
repositioning approaches. The LINCS database used in 
this work contains 201,776 compound treatment gene 
signatures that are applied on “human” cell lines and 
hence provides genes up/down-regulated in human tis-
sue. Hence, it is not applicable to the parasites directly. 
Another limitation of the transcriptional drug reposition-
ing approaches is that they are limited to the compounds 
that are included in LINCS or CMap database.

The use of transcriptional drug repositioning in the 
context of this project can facilitate identifying single 
agent compounds that help boost immunity of host to the 
parasite. Given that the combination of those compounds 
are expected to show synergy in the in  vitro system as 

well, a two round selection process was performed. In the 
first round, single compounds were predicted to be active 
in blood cells of patients infected with severe malaria. 
In the second round, combinations of those single com-
pounds were selected that were predicted to be syner-
gistic on the parasite infected in vitro system containing 
host red blood cells. The final compound combinations 
were as a result of using both filtering methods. It needs 
to be considered that the in vitro system includes human 
red-blood cells and this means human pathways are pre-
sent in the in  vitro system. Moreover, the training data 
for synergies was generated based on the same in  vitro 
platform of the final experimental tests which has human 
red blood cells infected with malaria parasite. Hence, 
the final combination sets are correctly predicted for the 
right platform.

One of the limitations of the study is the number of 
patient samples used in this work. Even though the 
gene expression samples of only five patients were 
used in the study, they were hand-picked among 119 
patients participating in Blantyre malaria research. 
These patients were selected as they manifested clini-
cal features of severe malaria but were dramatically 
recovered, having no clinical evidence of severe disease. 
They were also reported to be clear of peripheral blood 
parasites and bacterial meningitis at admission and 
after 48 h [31]. The authors that published the database 
claimed that “five severe/mild paired samples had suf-
ficiently high-quality RNA for microarray and further 
analysis”. However, the sample size was mentioned as a 
limitation of the study.

Generally, the application of computational biology 
approach introduced in this study is limited to early 
stage drug discovery/repurposing of single agents as 
well as combination therapies. Any of the findings of 
such early stage studies should be followed up with 

Table 3  Gamma synergy values for  ACT as  current 
synergistic therapies

This table shows synergy metric gamma for current anti-malarial combination 
therapies for comparison reason to the results provided in Table 2 (similar 
markings)

Compound 1 Compound 2 3D7
Gamma

DD2
Gamma

HB3
Gamma

Mefloquine Artesunate 0.911** 0.786** 0.797**

Amodiaquine Artesunate 0.993 1.064 0.955*

Sulfadoxine Artesunate 0.986 1.016 0.936**

Lumefantrine Artemether 2.221 1.058 0.997

Piperaquine Dihydroartemisinin 
(DHA)

0.999 1.007 0.999

Table 4  Precision and recall calculated for synergistic compounds

Precision and recall was calculated for each of the three P. falciparum strains with respect to three different cut-offs for gamma to distinguish the performance of 
the algorithm for mild-to-strong, moderate-to-strong and strong synergy. As you can see in all of the predictions recall has been kept high between 50 and 80% 
depending the expected synergy level and the strain. The highest precision is for Mild-to-strong synergies ranging from 61.3 to 72%. However, as the synergy level 
expectation is increased to Moderate-to-strong or only Strong synergies the Precision drops to 30–59% and 4.8–22.7%

Strain Mild-to-strong synergy 
(gamma ≤ 0.995)

Moderate-to-strong synergy 
(gamma ≤ 0.975)

Strong synergy (gamma ≤ 0.95)

3D7 DD2 HB3 AVG 3D7 DD2 HB3 AVG 3D7 DD2 HB3 AVG

True positives 18 18 19 18.3 7 13 12 10.7 2 5 1 2.7

False negatives 11 7 12 10.0 3 4 3 3.3 1 2 1 1.3

False positives 5 4 2 3.7 16 9 9 11.3 21 17 20 19.3

Precision (%) 78.3 81.8 90.5 83.3 30.4 59.1 57.1 48.5 8.7 22.7 4.8 12.1

Recall (%) 62.1 72.0 61.3 64.7 70.0 76.5 80.0 76.2 66.7 71.4 50.0 66.7

F measure (%) 69.2 76.6 73.1 72.8 42.4 66.7 66.7 59.3 15.4 34.5 8.7 20.5

Training set synergies (%) 42.8 41.2 40.0 41.3 25.7 25.3 23.0 24.7 15.8 15.6 13.4 14.9
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further lab and possibly animal studies to be able to be 
translated into clinical trials. However, the approach 
can be used on other diseases as well given availability 
of appropriate data.

Performance evaluation and effect of gamma choice
The choice of gamma affects sample size of the synergy 
class and hence it is a trade-off between the sample size 
and quality of samples (degree of synergy). Gamma cut-
off of 0.975 marked in average between the three strains 
379.3 out of 1540 combinations in the training set as 

synergistic while gamma cut-off of 0.95 reduced aver-
age number of synergistic instances to 229.7. Given the 
dimensionality of the data with 2010 features, higher 
gamma cut-off of 0.975 was chosen to keep the sample 
size in the synergy class as high as possible while avoiding 
the additivity window. To show that the gamma cut-off 
is relevant in this study, Table 3 shows gamma values of 
current combinational therapies. Only one of five cur-
rently used ACT medicines (mefloquine–artesunate) on 
all the three strains and one (amodiaquine–artesunate) 
on the HB3 strain have gamma values bellow 0.95. Hence, 

Fig. 3  Network representation of compound combination synergies. Red thick edges represent high synergy and blue thin edges represent 
additivity. The level of thickness or redness is inversely related to gamma (calculated based on experiments) in average for the tree P. 
falciparum strains used in this study. Tacrolimus-hydroxyzine, raloxifene-thioridazine, represent highest synergistic compound pairs followed by 
ingenol-tacrolimus, tacrolimus-fulvestrant, tacrolimus-apicidin and raloxifene-megestrol pairs. Tacrolimus is synergistic with highest number of 
compounds (three)

Fig. 4  Synergistic compound combinations identified against P. falciparum. Representation of dose–response matrix and HSA synergy model 
for tacrolimus-hydroxyzine (a, b) and raloxifene-thioridazine (c, d) in the three parasite lines (3D7, DD2, HB3). The effect of increasing drug 
concentration from right to left and bottom to top was assessed in a 10 × 10 block size matrix (a, c). HSA synergy model represents in which 
concentrations maximum synergy occurs (b, d)

(See figure on next page.)
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the cut-off chosen is appropriate, given the observed syn-
ergy even for established combination therapies.

To address the effect of gamma choice on the valida-
tion step, various gamma cut-offs were used and the 
accuracy of the algorithm based on each of the cut-offs 
were validated. Table  4 shows the precision and recall 
based on each of the cut-offs. When gamma cut-offs of 
0.975 and 0.995 are used, the precision of the algorithm 
is 1.98 and 2.02 times better than the training set while 
recall has been kept as high as 75.5 and 65.1%. It is nota-
ble that the training data is selected in a biased way 
rather than randomly, as it includes current combina-
tion therapies and investigational drugs. In case of 0.95 
cut-off, the average recall is kept still as high as 62.7% in 
average. The precision on the DD2 strain is 1.45 times 
better than the biased training set. However, in average 
over the three strains the precision is similar to the train-
ing set which was selected with biological insights. Hence 

the algorithm is almost twice better than biased selec-
tion for predicting mild-to-strong or moderate-to-strong 
synergies. In case of only strong synergy detection the 
approach is 1.4 times better than biased in the DD2 strain 
but similar to biased in average for the three strains. To 
the best of authors’ knowledge there is no similar study 
published elsewhere that has a better precision and recall 
for predicting synergistic pairs for malaria.

Conclusions
Recently drug resistance has emerged, and continues 
to develop, to the existing drug combination therapies 
for malaria, and hence discovering novel therapies is of 
much importance [7]. However, testing combinations 
is costly and time consuming. Systematic approaches 
towards novel compound combination discoveries 
can reduce financial cost as it helps to identify com-
pounds in a more informed manner. In this work, 

Fig. 5  Pathway annotation of selected agents in the P. falciparum screen. Y axis pathway IDs are explained in Additional file 4: Table S1. Compounds 
are clustered based on their similarity in pathway bioactivity space, with yellow indicating high enrichment Z-score of a particular pathway, and red 
indicating lower enrichments
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an integrated transcriptional drug repositioning and 
machine learning approach was developed to predict 
synergistic compound combinations for malaria. The 
transcriptional drug repositioning approach led to the 
identification of active single agents against malaria. 
Chromomycin-a3 (AC50 = 0.011  µM), fulvestrant 
(0.0667  µM), apicidin (0.078  µM), ingenol (1.4408  µM) 
and tacrolimus (2.4383  µM) exhibited full inhibition 
in low concentrations. The machine learning approach 
utilized here was trained on a dataset of experimentally 
assayed compound combinations (including synergistic, 
antagonistic and additive responses), across three strains 
of malaria to suggest new compound combinations.

The predicted synergistic compound combinations 
were experimentally validated, and synergistic compound 
combinations were identified with overall precision and 
recall of 83.5 and 65.1% for mild-to-strong, 48.8 and 
75.5% for moderate-strong and 12.0 and 62.7% for strong 
synergies. In all of the predictions recall has been kept 
high between 50 and 80% depending the expected syn-
ergy level and the strain. Highest precision is achieved 
for mild-to-strong synergies ranging from 61.3 to 72%. 
However, as the synergy level expectation is increased to 
moderate-to-strong or only strong synergies the preci-
sion drops to 30–59% and 4.8–22.7%. Strong novel syner-
gistic compound combinations including combination of 
tacrolimus with hydroxyzine (average (γ) = 0.928) as well 
as raloxifene and thioridazine (average (γ) = 0.932) were 
identified. Moreover, according to the data, targeting 
independent pathways was more privileged that target-
ing the same pathway with both compounds in a com-
bination. For retrospective validation, it is notable that 
tacrolimus and apicidin that were predicted for P. falci-
parum strains have previously been studied for malaria. 
In vivo validation of apicidin against P. berghei malaria in 
mice is evident from the literature [51]. This retrospec-
tive validation provides further assurance of the compu-
tational approach presented in this study.

For a single agent to be translated to actual cure, there 
are several requirements. One of these is that the dosage 
that activity is occurring, should be lower than maximal 
safe plasma concentrations of the drugs. The maximal 
plasma concentration of the single agents are provided 
in Table 5. In this study, the highest active single agents 
were apicidin, fulvestrant and chromomycin-a3. The only 
single agent that is active in lower doses than the maxi-
mal safe plasma concentration is apicidin. The AC50 
value of apicidin is 74.9, 84.1 and 74.9 nM in 3D7, DD2 
and HB3 P. falciparum strains while its maximal safe 
plasma concentration in human is 547.6 ± 136.6 nM. Api-
cidin at the dose of 500  nM kills in average 97% of the 
parasite while it is a safe dose for human. However, api-
cidin is not approved drug and is not in clinical trials. 
Hence, entering clinic requires further safety and efficacy 
studies of apicidin.

The most synergistic compound combinations were 
tacrolimus-hydroxyzine, tacrolimus-fulvestrant, ingenol-
tacrolimus, fulvestrant-megestrol and raloxifene-thiori-
dazine. All of the synergies were occurring at doses above 
the maximal safe plasma concentrations, which renders 
the current study more of a proof-of-principle than a 
method to select therapeutically relevant compound 
combinations directly. A clear definition of required 
pharmacokinetics and pharmacodynamics properties 
will also help with the design of drug regimens for dos-
ing anti-malarial drug combinations [52]. Hence, the syn-
ergistic pairs will require further investigations in in vivo 
models to fully evaluate the possibility of transferring 
them into clinic. Moreover, the generated dataset can be 
used as a training set for further compound combination 
predictions. Moreover, the approach is interesting to be 
followed up with larger synergy prediction candidates 
(with a different test set).

Accuracy of the predictions and identification of 
novel single agents and combinations suggests that the 
integration of machine learning methods with gene 

Table 5  Maximum plasma concentration of experimentally validated single agents with activity against malaria

Compound Maximum plasma concentration, 
CMax (ng/mL)

Molar mass (g/mol) Maximal dose (nM) Refs

FUL 12.6 606.772 20.8 [53]

RAL 1 473.584 2.1 [54]

THI 205.5 370.577 554 [55]

MEG 412 384.516 1071 [56]

TAC​ 15.8 804.018 19.6 [57]

HYD 32 374.904 85.3 [58]

API 341.6 ± 85.2 623.79 547.6 ± 136.6 [59]

CHR 1.85 1183.25 1.5 [60]
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expression data analysis can lead to a robust platform 
for predicting novel synergistic compound combina-
tions, in this case applied to malaria.
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