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Summary 

Regulatory T (Treg) cells are central to the maintenance of immune homeostasis and their 

dysfunction underlies the pathology of numerous diseases. Treg cell populations are 

phenotypically heterogeneous, comprising functionally quiescent resting Treg (rTreg) cells, 

which upon antigen stimulation, differentiate into functionally activated Treg (aTreg) cells.  

The purpose of rTreg cell populations and how their naïve-like phenotype is maintained 

despite chronic exposure to cognate self- and foreign antigens remains to be understood. The 

transcription factor BACH2 is critical for early Treg cell lineage specification, however, its 

function following Treg lineage-commitment is unresolved. The studies detailed herein 

demonstrate that Bach2 is highly expressed during Treg cell development in the thymus. 

High levels of Bach2 are maintained in post-thymic, lineage-committed rTreg cells but is 

downregulated in aTreg cells, and upon inflammation. Functionally, BACH2 acts to restrain 

T cell receptor (TCR)-driven activation in rTreg cells and constrain their differentiation into 

aTreg cells. Cell-autonomous expression of BACH2 is required following Treg cell lineage-

commitment for functional quiescence and long-term maintenance of Treg cell populations. 

This is necessary for the restraint of excessive memory differentiation and IFN-γ production 

by CD8+ T cells. Therefore, in lineage-committed Treg cells, BACH2-mediated restraint of 

aTreg cell differentiation is required for the maintenance of immune homeostasis. These 

findings deepen our understanding of Treg cell biology and extend our knowledge of the 

function of the transcription factor BACH2 in lymphocytes. 
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1 Introduction 

 
1.1 Adaptive immune responses and T cell immunity 

The mammalian immune system comprises a repertoire of molecules, cells, barriers and 

organs that defend the host against diverse threats. All cellular organisms have innate 

mechanisms of self-defence. However, the evolution of adaptive immune mechanisms in 

jawed fish (the gnathostomes), around 500 million years ago, marked the beginning of 

acquired protection with specificity for a given threat (reviewed in Cooper & Alder, 2006, 

and Flajnik & Kasahara, 2010). Antigen specificity is a hallmark of adaptive immunity, 

which results from the construction of cellular receptors by rearranging parts of the genome. 

The two major lineages of adaptive immune cells are named according to the tissue where 

these genetic rearrangements occur: B lymphocytes or B cells develop in the bone marrow 

(or avian bursa of Fabricius), whereas T lymphocytes or T cells develop in the thymus 

(Cooper, Peterson, & Good, 1965). In order to construct a functional T cell receptor (TCR), T 

cells must undergo a selection process in the thymus. Indeed, of all haematopoietic progenitor 

cells that migrate to the thymus for development, 95–97% will cease to undergo further 

maturation and instead undergo death by neglect (Surh and Sprent 1994). The remaining 3–

5% of mature thymocytes that join the peripheral T cell pool are those tasked with defence of 

the host.  

 

The enormity of threats in nature is matched by an equally enormous diversity in TCR 

specificities. This is achieved by the combinatorial diversity of the V and J gene segments at 

the TCR α locus; the V, D and J gene segments at the TCR β locus; the variable nucleotide 

sequence changes at gene segment junctions that accompany the rearrangement process; and 

the combinatorial diversity introduced by pairing different α and β TCR chains. Theoretical 

models calculate that the human genome is capable of generating over a quadrillion (1015) 
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different TCRs (reviewed in Nikolich-Žugich, Slifka, & Messaoudi, 2004). The actual 

observed diversity however, is estimated at approximately 100 million (108) (Arstila 1999). 

Even between genetically redundant inbred mouse strains, over 75% of TCR-β sequences can 

be unique (Bousso et al. 1998). This astounding capacity for receptor heterogeneity enables T 

cells to recognize an astoundingly large number of peptide sequences not encoded within the 

host genome. Furthermore, the aforementioned estimates do not consider other T cell 

subgroups, such as those that construct their TCR from the γ and δ loci. The eradication of 

exogenous threats however, relies not just upon recognition. T cells also must have a means 

to overcome the multitudinous defence mechanisms presented by the pathogen itself.  

 

After construction of the α:β TCR within the thymus, T cells begin their development toward 

functionally divergent lineages. Here, expression of either the CD4 or CD8 co-receptors are a 

phenotypic marker of these divergent lineages. CD4+ T ‘helper’ cells generally orchestrate 

adaptive immunity via juxtacrine and cytokine signalling. CD8+ ‘cytotoxic’ T cells are 

classically described by their capacity destroy targeted cells through direct cellular 

cytotoxicity, however, much of their function can also be attributed to cytokine release 

(Kelso et al. 1991). During thymic development, selection to either lineage begins with 

expression of both CD4 and CD8 co-receptors simultaneously. These double-positive (DP) 

thymocytes eventually downregulate one of the two co-receptors permanently. DP 

thymocytes with TCRs that recognize peptide complexed with major histocompatibility 

complex (MHC) class I on the surface of antigen-presenting cells (APC) develop toward CD8 

single-positive (SP) thymocytes, whereas those recognizing peptide complexed with MHC 

class II develop toward CD4 SP thymocytes. CD4+ thymocytes then undergo further 

development, either toward functionally pro- or anti-inflammatory subgroups. Here, a small 

population of CD4 SP thymocytes bearing TCRs specific for host-encoded molecules 
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upregulate the transcription factor Foxp3. These so-called regulatory T (Treg) cells fulfil 

immunosuppressive functions and balance immune responses in peripheral tissues 

(Sakaguchi et al. 1995; reviewed in Hsieh, Lee and Lio 2012; Josefowicz, Lu and Rudensky 

2012). Mature CD4+ or CD8+ T cells thus emerge from the thymus to join the peripheral 

lymphocyte pools.  However, selection to either the CD4+ T helper cell, CD4+ Treg cell or 

CD8+ cytotoxic T cell lineage is not enough functional diversity for T cells to adequately 

combat pathogens confronted by the host. Yet more functional divergence arises post-

thymically, in relation to the threat encountered. 

 

1.2 T cell differentiation and effector function is controlled by transcription factors 

T cell differentiation requires distinct gene modules to either be expressed or suppressed, thus 

much attention has been drawn toward the actions of transcription factors (TFs) in recent 

decades. TFs bind DNA and regulate gene expression, thus are fundamental in determining 

cellular fate and identity. During thymic development, the transition of DP thymocytes to 

CD8+ SP thymocytes is primarily dependent upon the functions of the Runx family of TFs 

(Taniuchi et al. 2002), whereas transition toward CD4+ SP thymocytes relies on the actions of 

Th-POK and GATA-3 (He et al. 2005; Pai et al. 2003). Post-thymic CD4+ helper T cells 

undergo further differentiation into functionally distinct subsets. Defence against threats that 

mediate their pathogenicity intracellularly within the host, such as viruses, stimulate cells of 

the innate immune system to release the cytokines IFN-γ and IL-12. This in turn, leads to the 

expression of the TF T-bet within helper T cells and their differentiation into type 1 T helper 

(Th1) cells (Mosmann et al. 1986; Wenner et al. 1996; Szabo et al. 2000). Commitment 

toward Th1 cells endows CD4+ T cells with the capacity to counter intracellular pathogens by 

releasing the cytokines IFN-γ, TNF-α and IL-2. In response, host cells increase antigen 

processing and production of MHC, B cells become activated and begin secreting IgG2a and 
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IgG3, and phagocytes become primed to endocytose pathogenic host cells (reviewed in Zhu, 

Yamane, & Paul, 2010). Similar paradigms exist during differentiation of other helper T cell 

subsets. Immune responses against extracellular parasites involves differentiation of type 2 T 

helper (Th2) cells, which requires expression of the TF GATA-3. Defence against 

extracellular bacteria and fungi at mucosal tissue sites requires type 17 T helper (Th17) cells, 

which express RORγt (Conti et al. 2009). Therefore, TFs such as T-bet, GATA-3 and RORγt, 

which are critical for differentiation and function of specific T cell subsets, are often termed 

‘lineage-specific’ or ‘lineage-defining’ transcription factors (Vaquerizas et al. 2009; 

Rengarajan, Szabo, and Glimcher 2000).  

 

1.3 Immune homeostasis is dependent upon Foxp3-expressing Treg cells 

The lineage-defining TF for Treg cells is Foxp3. In contrast to inflammatory helper T cells, T 

cell populations bearing immunosuppressive function in mouse express high levels of Foxp3. 

Failure to express functional Foxp3—as seen in the Scurfy mouse strain and the human 

disease, IPEX (immunodysregulation polyendocrinopathy enteropathy X-linked) syndrome—

manifests in severe multi-organ autoimmune pathology (Brunkow et al. 2001; Ochs et al. 

2001). Naïve CD4+ CD25- T cells retrovirally transduced with the Foxp3 gene exhibit 

suppressor activity (Hori, Nomura, and Sakaguchi 2003; Fontenot, Gavin, and Rudensky 

2003). Ectopic expression of Foxp3 in cytotoxic CD8 T cells similarly induces suppressor 

function (Khattri et al. 2003). Attenuation of Foxp3 expression in Treg cells results in a 

reduced ability to constrain autoimmunity (Wan and Flavell 2007). Furthermore, conditional 

deletion of the Foxp3 gene in Treg cells using the Cre-lox system results in their acquisition 

of a Th1-like phenotype, with the capacity to produce IL-2 (Williams and Rudensky 2007). 

These studies define the absolute requirement of Foxp3 for lineage commitment and 

immunosuppressive function of Treg cells. 
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1.3.1 Thymic and peripheral Foxp3 expression 

As immunosuppressive Foxp3+ Treg cells can originate either at the CD4 SP stage during 

thymic development, or in the periphery from naïve CD4+ T cells, the terms thymic Treg 

(tTreg) cell and peripheral Treg (pTreg) cell are used for clarity (Figure 1.1). The term 

‘induced’ Treg (iTreg) cell is used to describe Treg cells generated in vitro by the culture of 

naïve CD4+ T cells with TGF-β (reviewed in Shevach and Thornton 2014).  

 

 

Figure 1.1: Transcription factors guide T cell differentiation toward functionally distinct 
subsets.  

Figure is adapted from Sakaguchi et al. 2008. 
 

Although the mechanisms that govern lineage-commitment and differentiation of tTreg cells 

are still not fully understood, a number of significant factors involved in this process are 

known. CD4 SP thymocytes with TCR bearing intermediate- to high-strength affinity for 

self-antigen, appear to be predisposed for tTreg cell differentiation. The first suggestion that 

TCR specificity played a role in instructing Treg cell fate came from the observation that 
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tTreg cells are absent from mice bearing the transgenic DO11.10 TCR, which recognizes 

chicken ovalbumin (OVA) (Itoh et al. 1999). A seminal publication from Jordon et al., then 

showed that TCR bearing high affinity self-reactivity was a critical determinant for tTreg cell 

fate specification (Jordan et al. 2001). One model proposes that the combined strength of 

interaction between the antigen receptors and multiple peptide-MHC complexes on the 

antigen-presenting cell (APC) drives CD25 expression. Thymocytes bearing upregulated 

CD25 thus become more sensitive to IL-2 signalling, which in turn facilitates induction of 

Foxp3 and instructs Treg cell fate commitment (Figure 1.2) (Burchill et al. 2008; Lio and 

Hsieh 2008). In addition, IL-7 and IL-15 signalling is known to be involved (Vang et al. 

2008).  

 

 

Figure 1.2: The differentiation of CD4 SP thymocytes toward Treg cell fate is guided by TCR 
signal strength. 

Figure adapted from Josefowicz, Lu and Rudensky 2012. 

 

Outside of the thymus, mature CD4+ Foxp3- conventional T (Tconv) cells have the capacity 

to upregulate Foxp3 expression and differentiate into Treg cells in the presence of TGF-b 

(Chen et al. 2003; Apostolou and von Boehmer 2004). To distinguish their origin from Treg 
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cells produced in the thymus (tTreg), those that differentiate peripherally from CD4+ Foxp3- 

Tconv cells are thus referred to as pTreg cells. By virtue of their self-antigen specific TCR, 

tTreg cells are essential for maintaining systemic tolerance for host antigen. However, to 

prevent unwarranted immune responses directed toward foreign antigens encountered, 

tolerance is also required for antigens that the host is exposed to in the environment. To this 

end, upon their discovery, pTreg were hypothesized to have evolved to fulfil this function as 

a regulator of immune responses toward non-self antigen. Indeed, results from numerous 

studies have since been found to support this theory. In an experimental model using hyper-

IgE asthmatic mice lacking thymically-derived Treg cells, the feeding of oral OVA antigen 

was found to induce mucosal pTreg populations (Mucida et al. 2005). Subsequently, a 

reduction in the severity of asthmatic responses was observed in these mice. Verginis et al. 

were able to induce the differentiation of pTreg cells in female mice, specific for antigen 

from male mice, by exposure of these female mice to Y chromosome-encoded transplantation 

antigens (HY) (Verginis et al. 2008). Consequently, the female mice developed long-term 

tolerance to HY antigen and were consequently better able to sustain male-derived skin 

grafts. In the BALB/c Foxp3K276X mouse strain, which are devoid of any Treg cells, systemic 

multi-organ inflammatory pathology was only prevented upon adoptive cell transfer of tTreg 

cells and Tconv cells (Haribhai et al. 2011). The donor Tconv cells were found to give rise to 

a population of pTreg cells upon transfer, and alternatively, when donor Foxp3DEGFP Tconv 

cells—which express non-functional Foxp3—were transferred, the rescue of complete 

immune homeostasis was abrogated. In addition, upon comparison of the TCR sequences 

from tTreg and pTreg cells in the host mice, distinct TCR specificities were observed. These 

findings strongly suggest an important function for pTreg in immune homeostasis —non-

redundant with that of tTreg—and particularly relevant in mucosal tissue, which is most 

frequently exposed to environmental antigen. Indeed, pTreg fulfil critical immunoregulatory 
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roles in the gut and other mucosal sites, which are discussed at greater depth later (section 

1.5.4). 

 

Given that Treg cells can arise from two distinct sources, studies were conducted to try and 

identify distinct molecular markers that could discriminate between tTreg and pTreg cells in 

vivo. The first attempts at this by Shevach and colleagues suggested that expression of the 

transcription factor, Helios, might be restricted to Treg cells of thymic origin (Thornton et al. 

2010). They observed that all Foxp3+ CD4SP thymocytes were positive for Helios, and upon 

their development and emigration to the periphery, approximately 70% of tTreg cells retain 

Helios expression. In addition, Foxp3- Tconv cells stimulated in vitro to differentiate into 

iTreg cells—using anti-CD3 and anti-CD28 antibodies, in the presence of TGF-b—

maintained low expression of Helios. However, subsequent studies found that use of antigen-

loaded APCs in iTreg differentiation assays, as opposed to anti-CD3 and anti-CD28 

antibodies, results in the induction of Helios in cultured cells (Gottschalk, Corse, and Allison 

2012). Furthermore, in vivo pTreg cell induction via intraperitoneal administration of antigen 

similarly resulted in Helios expression. Therefore, expression of Helios by Treg cells appears 

to be context-dependant and not indicative of their developmental origin (reviewed in 

(Shevach and Thornton 2014). Another marker suggested to demarcate tTreg cells, is the 

non-tyrosine kinase receptor, Neuropilin-1 (Nrp1). Foxp3+ CD4SP thymocytes were found to 

express Nrp1 at high levels, whereas the induction of pTreg in vivo under certain conditions 

did not result in Nrp1 expression (Weiss et al. 2012; Yadav et al. 2012). In models of in vivo 

pTreg induction, including proliferation in lymphopenic mice, microbiota-induced 

differentiation and antigen administration, Nrp1 expression remained low. However, models 

that induce inflammation, such as experimental autoimmune encephalomyelitis (EAE) and 

chronic asthma, did cause Nrp1 upregulation in peripherally-induced Treg cells. As paracrine 
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TGF-b signalling is involved in pTreg cell generation, and the expression of Nrp1 itself is 

regulated by TGF-b, many are reluctant to use Nrp1 as a tTreg marker. The authors of these 

studies thus concluded that under non-inflammatory conditions, Nrp1 can be used to identify 

tTreg cells.  

 

1.3.2 Foxp3 expression in humans 

Though Foxp3 expression is considered to be the definitive marker of Treg cells in mice, this 

does not appear to be true for humans. Although Foxp3 expression is required for the Treg 

cell phenotype and their appropriate restraint of inflammation—as evidenced in the disease, 

IPEX—the expression of Foxp3 alone is not sufficient to categorize a T cell as being 

suppressive. TCR stimulation of human CD4+ Foxp3- Tconv cells was found to produce 

populations of T cells expressing Foxp3 (Walker et al. 2003), suggesting that Foxp3 can be 

induced following activation. Importantly, this Foxp3 upregulation did not confer suppressive 

functions (Wang et al. 2007; Allan et al. 2007). These studies identified that, in contrast to 

mice, human T cells have the propensity to upregulate Foxp3 transiently upon activation. 

Furthermore, the relative expression of Foxp3 also cannot account for the Treg cell 

phenotype, as human Foxp3+ T cells with high levels of Foxp3 expression still have the 

capacity to secrete inflammatory cytokines (Tran, Ramsey, and Shevach 2007). Therefore, 

Foxp3 cannot be considered an exclusive marker of Treg cells in human. Further studies will 

shed light on the additional molecular mechanisms that determine human Treg cell identity. 

Some of these likely factors are discussed below. 

 

1.3.3 The role of Foxp3 in thymic Treg cell development 

Though Foxp3 expression is absolutely required for Treg cell function, its role in tTreg cell 

lineage commitment is reliant upon other factors. Studies utilizing a transgenic mouse strain 
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with non-functional Foxp3DEGFP allele, found that the characteristic Treg cell transcriptional 

signature and cell surface phenotype is mostly preserved in the absence of Foxp3 (Lin et al. 

2007). Here, gene expression microarrays from male Foxp3DEGFP (non-functional Foxp3) and 

Foxp3EGFP (functional Foxp3) revealed that EGFP+ cells from both genotypes were able to 

express signature Treg genes, such as: Il2ra, Ctla4, Itgae, Cd83, Gpr83, Gzmb, Ikzf2, Icos, 

Klrg1, S100a4, S100a6 and Tnfrsf9. This work was expanded upon by Samstein, et al., who 

showed that chromatin at signature Treg cell loci was largely accessible prior to Foxp3 

expression. Instead of  directly shaping the chromatin landscape, Foxp3 was found to bind 

pre-established enhancers, which were created by TCR signalling events (Samstein, Arvey, et 

al. 2012). This led to the hypothesis that co-ordinated expression or repression of a network 

of TFs is required for Treg cell lineage-commitment. A number of important factors, which 

act in a combinatorial manner, have since been identified. These include: Foxo1, Helios, 

Xbp1, Eos, IRF4, Satb1, Lef1 and GATA-1 (Ouyang et al. 2012; Samstein, Arvey, et al. 

2012; Fu et al. 2012). These results suggest that several factors act collectively as pioneer 

factors to determine Treg cell fate in developing thymocytes, then late-acting TFs like Foxp3 

define identity and fully establish functionality by interacting with pre-formed enhancers. 

 

1.4 Mechanisms of regulatory T cell-mediated suppression of inflammatory responses 

The specific mechanisms of Treg cell immunosuppression have been a matter of intense 

exploration over the last two decades. The perplexing array of immunosuppressive 

mechanisms exerted by Treg cells in vitro and in vivo has resulted in considerable discussion 

as to how, exactly, their immunodominance is achieved. Such findings do, however, 

collectively suggest that Treg cells have a plethora of immunoregulatory mechanisms, which 

are employed depending on the particular tissue and inflammatory setting (reviewed in 

Vignali, Collison and Workman 2008). Treg cells were initially distinguished phenotypically 
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by their high expression of the IL-2 receptor alpha chain (IL-Rα), or CD25 (Sakaguchi et al. 

1995). IL-2 represents a prominent lymphocyte growth factor, which when competitively 

depleted from the extracellular environment by Treg cells expressing high affinity IL-2 

receptors, acts non-specifically to prevent paracrine signalling and counter effector 

lymphocyte expansion (Fontenot et al. 2005; Pandiyan et al. 2007). Constitutive high 

expression of cell surface cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, or CD152) 

is also a notable feature of Treg cells (Read, Malmström, and Powrie 2000). CTLA-4 binds to 

CD80 and CD86 on antigen presenting cells (APCs) with higher affinity than CD28. This 

competitive sequestering of an important T cell co-stimulatory ligand acts to reduce the 

capacity of APCs to activate T cells (Wing et al. 2008). Furthermore, binding of CTLA-4 to 

CD80 or CD86 is also known to initiate their trans-endocytosis to the cytosol of Treg cells, 

where they are subsequently degraded (Qureshi et al. 2011). Pro-inflammatory effector T 

(Teff) cell function can be suppressed via the adenosine receptor 2A (A2AR). Treg cells 

directly contribute to production of pericellular adenosine by expressing the ectoenzymes 

CD39 and CD73, which catabolize ATP to ADP and AMP (Kobie et al. 2006). In addition, 

A2AR signalling inhibits IL-6 secretion by T cells, whilst promoting TGF-β production, thus 

establishing an environment supportive of pTreg cell differentiation and antagonistic to Th17 

cell development (Zarek et al. 2008). Treg cells are prominent producers of the anti-

inflammatory cytokine IL-10, which not only acts to suppress proliferation of Th1 and Th2 T 

cell subsets, but also acts in an autocrine manner to support Treg cell proliferation and 

function (Del Prete et al. 1993; Rubtsov et al. 2008). Treg cells also secrete TGF-β, which in 

the context of immunosuppression, directly restrains proliferation of B and T cells (Kehrl, 

Roberts, et al. 1986; Kehrl, Wakefield, et al. 1986). Though classically considered to be a 

property of NK and CD8+ T cells alone, cytotoxic mechanisms are also employed by Treg 

cells, where expression of molecules such as perforin and granzyme B are utilized to directly 
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induce cell death in Teff cells (Cao et al. 2007). Thus conceptually, the immunosuppressive 

mechanisms exhibited by Treg cells can be broadly categorised as those that attenuate 

inflammation via targeting of other T cell subsets (e.g, environmental IL-2 depletion, 

cytotoxicity, and the suppressor cytokines IL-10 and TGF-β) or those that target antigen-

presenting cells (CTLA-4, CD39 and CD73). The described mechanisms here only represent 

a brief summary of the Treg immunosuppressive repertoire of functions, which are further 

explored with relevance to health and disease (section 1.5) and in the context of Treg cell 

phenotypic heterogeneity (section 1.6).  

 

1.5 Immune homeostasis in health and disease 

As Treg cells fulfil a dominant role in balancing immune responses across the entire body, it 

is perhaps unsurprising that they are essential for maintaining homeostasis within numerous 

tissue types. Indeed, their dysfunction associates with a diversity of diseases. Here, their 

influence lies upon a dichotomous pathological spectrum. At one end, excessive restraint of 

effector immune cells results in a failure of the immune system to launch a robust defence. 

Conversely, defective restraint of effector immune cells results in exacerbated responses of 

the immune system toward antigen.  

 

1.5.1 Autoimmune and inflammatory disease 

The observation that mutations rendering Foxp3 non-functional lead to severe multi-organ 

autoimmune disease in humans and mice (described in section 1.3) led to an intense 

exploration into the association between Treg cell dysfunction and common autoimmune and 

inflammatory diseases. Such studies have been confounded in part by the complexities of 

Treg cells and by autoimmune disease. With regard to Treg cells: standard markers for 

lineage-committed Treg cells are less reliable in humans (described in section 1.3); the 
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proportion or absolute number of Treg cells—a parameter measured in many studies—is not 

strictly proportional to the capacity of Treg cells to restrain inflammation; Treg cells possess 

numerous mechanisms of immunosuppression (described in section 1.4), which can be 

difficult to ascertain from ex vivo studies; different subsets exist within the Treg cell lineage 

and these each contribute functionally in different contexts (described in section 1.6). With 

regard to autoimmune disease: various environmental triggers and genetic factors contribute 

to disease susceptibility; tissue biopsies of pathological sites used for analysis can be 

invasive, or practically challenging, which has led mostly to patient blood (a non-

pathological tissue site) being used for analysis; and mechanisms underlying the pathology of 

certain diseases may vary among patients. Despite these complexities, functional defects in 

Treg cells have been observed in autoimmune diseases, these include: multiple sclerosis 

(Viglietta et al. 2004), polyglandular syndrome type II (Kriegel et al. 2004), rheumatoid 

arthritis (Ehrenstein et al. 2004), type I diabetes (Lindley et al. 2005), psoriasis (Sugiyama et 

al. 2005) and myasthenia gravis (Balandina et al. 2005). In addition to the aforementioned 

autoimmune diseases, defective Treg function has been observed in atopic humans. Indeed, 

circulating Treg cells from atopic individuals were found defective in their ability to suppress 

Th2-type immune responses against pollen allergens (Ling et al. 2004; Grindebacke et al. 

2004). 

 

1.5.2 Cancer 

Perhaps the most predominant association between Treg cells and disease—particularly 

within the non-specialist and non-scientific communities—involves neoplastic disease. This 

is especially true given the recent Nobel Prize in physiology or medicine award to 

immunologists Jim Allison and Tasuku Honjo, who jointly pioneered the cancer 

immunotherapy field by elucidating the mechanisms of negative immune regulation (or 
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immune checkpoint inhibition). The association between Treg cells and tumour immunity 

was first identified from the observation that mice treated with an anti-CD25 antibody, which 

causes systemic Treg cell depletion, are more resistant to tumour growth in the B16 

melanoma model (Shimizu, Yamazaki, and Sakaguchi 1999). This antibody-mediated 

resistance was further shown in models of leukaemia, myeloma and sarcoma (Onizuka et al. 

1999). Accompanying these studies were the seminal contributions from the laboratories of 

Jim Allison, who published on the successful rejection of B16 melanoma in mice via 

antagonism of CTLA-4 juxtacrine signalling (van Elsas, Hurwitz, and Allison 1999), and 

Tasuku Honjo, who published on the involvement of the PD-1 immuno-inhibitory receptor in 

the negative regulation of lymphocyte activation (Freeman et al. 2000). These studies began a 

radical leap in cancer therapeutics, by acknowledging that tumour growth is supported by 

mechanisms—in part mediated by Treg cells—that negatively regulate effector T cells and 

impair their capacity to exert robust anti-tumour responses. 

 

Whether or not Treg cells contribute to cancer pathology relates to the cancer and tissue type. 

Heavy infiltration and/or expansion of Treg cells is observed in melanoma, non-small cell 

lung, colorectal and ovarian cancers (reviewed in Sakaguchi et al. 2010; Nishikawa and 

Sakaguchi 2014). A low ratio of Treg to Teff cells associates with higher survival rates in the 

aforementioned tumour types, along with breast cancer (Bates et al. 2006), hepatocellular 

carcinoma (Gao et al. 2007), renal cell carcinoma (Griffiths et al. 2007), pancreatic ductal 

adenocarcinoma (Hiraoka et al. 2006) and cervical cancer (Jordanova et al. 2008). The 

current repertoire of clinically approved cancer immunotherapies, designed to obstruct the 

negative signalling mechanisms elucidated by Allison and Honjo, show greater clinical 

efficacy in tumour types that present high Treg cell infiltration and/or high Treg:Teff  cell 

ratios. Ipilimumab (Yervoy)—a fully human IgG1 monoclonal antibody, which binds to 
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CTLA-4—is currently approved for the treatment of malignant melanoma and renal cell 

carcinoma. Nivolumab (Opdivo)—a fully human IgG4 monoclonal antibody, which binds to 

PD-1—is approved for the same cancer types as ipilimumab and generally used as a 

combination therapy alongside ipilimumab. In addition, nivolumab has approval for 

treatment of non-small cell lung cancer, small cell lung cancer, renal cell carcinoma, Hodgkin 

lymphoma, squamous cell carcinoma of the head and neck, urothelial carcinoma, colorectal 

cancer and hepatocellular carcinoma. Prior to the advent of these immunotherapeutic agents, 

for patients with metastatic melanoma: there was no accepted standard of care; no therapy 

had been shown in a phase 3 clinical trial to improve overall survival in patients; and the 

median survival of patients presenting distant metastases was less than one year. In a seminal 

study published in the New England Journal of Medicine, a phase 3 clinical trial was 

conducted on patients with metastatic melanoma, where ipilimumab administered with or 

without the cancer vaccine glycoprotein 100 (gp100) was compared with gp100 alone. The 

median overall survival in the gp100-alone group was 6.4 months, compared to 10.1 months 

in the ipilimumab-alone group and 10.0 months in the ipilimumab-plus-gp100 group (Hodi et 

al. 2010). This initial positive result led to a rush of clinical trials to understand the full 

clinical potential of newly emerging immune checkpoint inhibitors. The observation that 

combinatorial blockade of CTLA-4 and PD-1 signalling was synergistic in treatment of 

advanced melanoma lead to a further leap in patient treatment (Curran et al. 2010; Wolchok 

et al. 2013). The most recent clinical data demonstrated that the median overall survival for 

patients with advanced melanoma was: 19.9 months for those treated with ipilimumab; 37.6 

months for those treated with nivolumab; and beyond 36 months (the median overall survival 

had not yet been reached at time of publication of the study) for those treated with 

nivolumab-plus-ipilimumab (Wolchok et al. 2017). Thus in our current age, where 

therapeutic agents exist with the capacity to relieve immune checkpoint inhibition, a greater 
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proportion of patients afflicted with cancer can experience a partially durable tumour 

regression.  

 

1.5.3 Infection 

Though academic and pharmaceutical research has chiefly been directed toward the 

implications of Treg cell function in autoimmune and oncogenic disease, much has also been 

uncovered regarding their function in infectious disease. One of the earliest suggestions that 

Treg cells played a role during chronic infection, came from the observation that persistent 

Leishmania major infection was dependent upon continual IL-10 release (Y Belkaid et al. 

2001). Subsequent studies found that Treg cells, specific for L. major, accumulate in the 

dermis during chronic infection, where they impair effector T cell responses via both IL-10-

dependant and IL-10-independent mechanisms  (Yasmine Belkaid et al. 2002; Suffia et al. 

2006). Indeed, studies have since shown that Treg cell populations proliferate and accumulate 

at sites of infection in several human diseases. For example, this phenomenon was observed 

in: viral infections, such as hepatitis B (D. Xu et al. 2006);  fungal infections, such as 

Paracoccidioides brasiliensis (Cavassani et al. 2006); and bacterial infection, such as 

Helicobacter pylori (Kandulski et al. 2008). Compellingly, Treg cell-mediated 

immunosuppression was shown to be implicated in the progression of malaria. Mice infected 

with a lethal strain of Plasmodium yoelii are protected from death upon systemic depletion of 

Treg cells, using an anti-CD25 antibody (Hisaeda et al. 2004). Furthermore, a longitudinal 

study of malaria sporozoite infection in humans observed the expansion of Treg cells 

following blood-stage infections, which associated with upregulation of TGF-β, decreased 

proinflammatory cytokine secretion and a reduction in antigen-specific immune responses 

(Walther et al. 2005). In contrast to chronic infection, studies involving acute infection are far 
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less frequent and data from these studies have often shown contradictory functions of Treg 

cells during the pathology (reviewed in Sanchez and Yang 2011; Stephen-Victor et al. 2017). 

 

1.5.4 Gastrointestinal inflammation 

The mammalian digestive tract performs the task of food digestion and absorption, whilst 

acting as the interface between organism and environment. The immunology of the gut is 

thus dynamic and unique, responsible for protecting the host against approximately 4 x 1013 

bacteria in the human colon, as well as facilitating the entry of nutrients to sustain the host 

(Sender, Fuchs, and Milo 2016). The intestinal lamina in the colon harbours 25–35% Treg 

cells, with the small intestine resident to 10–15% Treg cells of total CD4+ T cells (Sefik et al. 

2015; K. S. Kim et al. 2016). In mice raised in completely sterile environments, or germ-free 

conditions, where mice are devoid of any microbiota, the proportions of colonic Treg cells 

are severely reduced (Geuking et al. 2011). These observations suggest a complex interplay 

between tissues of the host gastrointestinal tract, environment and cells of the immune 

system. Cell transfer studies by Powrie et al. highlighted how distinct T cell subsets could 

impart profound gastrointestinal phenotypes in donor mice (F Powrie et al. 1993). This 

seminal work resulted in researchers adopting a mouse model of colitis, where adoptive 

transfer of purified CD4+ CD45RBhigh T cells into donor mice of the SCID mouse strain 

resulted in severe colonic inflammation. Subsequent studies revealed that this inflammatory 

phenotype could be ameliorated by co-transfer of purified CD4+ CD25+ CD45RBlow Treg 

cells, which was dependant on IL-10 and TGF-b (F Powrie et al. 1994, 1996). These data 

directly implicate T cell dynamics in the pathogenesis of colitis and suggest that Treg cells 

may perform a central role in its prevention. Importantly, as transfer of CD4+ CD45RBhigh 

Teff cells alone into donor mice housed in germ-free conditions failed to induce colitis (Fiona 
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Powrie et al. 2003), we again gained additional insight into the complex interactions between 

host immunity, microbiota and pathology.  

 

The direct involvement of Treg cells in the maintenance of immune homeostasis at mucosal 

tissue sites was further elaborated by Rubtsov et al., who used the Foxp3YFP-Cre Il10flox 

transgenic mouse strain to abrogate IL-10 secretion specifically within Treg cells (Rubtsov et 

al. 2008). Mice bearing Treg cells incapable of IL-10 release suffered spontaneous colitis, 

increased lung inflammation during OVA sensitisation, and increased skin hypersensitivity 

during dinitrofluorobenzene sensitisation. Interestingly, colonic Treg cell function requires 

the expression of RORgt, the archetypal Th17 lineage-defining transcription factor (Sefik et 

al. 2015). A topic of which, is discussed further in section 1.6. Therefore, maintenance of 

excessive inflammation in the gut and other mucosal sites is dependent on the action of Treg 

cells, where IL-10 release is the principal mechanism of immunosuppression. 

 

1.5.5 Non-immune physiology 

Treg cells have increasingly become associated with processes outside of classical 

immunological roles. Burzyn, et al. demonstrated that Treg cells bearing a unique repertoire 

of TCR sequences accumulate and actively expand at injured skeletal muscle tissue in mice 

(Burzyn et al. 2013). Furthermore, this muscle Treg cell population was required for effective 

repair of damaged tissue. Indeed, in the Foxp3DTR mouse strain—where the gene encoding 

the Diphtheria toxin (DTx) receptor is knocked into the Foxp3 locus, such that expression of 

Foxp3 is not disrupted, but all Foxp3+ cells are sensitive to DTx—transient ablation of Treg 

cells resulted in: altered histological features of the regenerated muscle tissue, such as greater 

collagen deposition and a reduction in regenerative centrally nucleated fibres; a reduction in 

the myogenic capacity of muscle progenitor satellite cells; and a prolonged gene expression 
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pattern in muscle tissue, consistent with an ineffective and drawn-out repair process. Muscle 

repair processes are impaired with age and Treg cell accumulation was found to be 

diminished at injured skeletal muscle tissue in aged mice (Kuswanto et al. 2016). The 

observed defects in Treg cell recruitment, proliferation and retention associated with the 

impaired release of IL-33 by fibro/adipogenic progenitor (FAP) cells upon muscle wounding. 

Furthermore, exogenous supplementation of IL-33 in aged mice could restore Treg cell 

populations in injured muscle and promote tissue regeneration. 

 

Evidence also shows an intriguing association between Treg cells and metabolic function. 

Adipose tissue forms a natural caloric reserve in mammals. Whereas visceral white adipose 

tissue (WAT) is responsible for the storage of nutrients during over-nutrition and its release 

under conditions of energy deficit, brown adipose tissue (BAT) generates body heat by 

UCP1-mediated non-shivering thermogenesis. An integrated unit is formed by the 

associations between adipose tissue, the nervous system and the immune system. Mediated in 

part by adipose tissue cytokines, or adipokines, this interconnected system functions as an 

endocrine organ and exerts profound effects on metabolic homeostasis (reviewed in Kershaw 

and Flier 2004). Pro-inflammatory cytokines originating from adipose tissue, such as type 1 

IFNs, TNF-α and IL-6, have been increasingly been shown to be causative of metabolic 

syndrome—a medical term for a combination of diabetes, high blood pressure and obesity—

and insulin resistance (Hotamisligil, Shargill, and Spiegelman 1993; H. Xu et al. 2003; 

Ganguly 2018). Therefore, functionally immunosuppressive Treg cells could understandably 

be involved in the regulation of metabolism, exerted by adipose tissue. Indeed, a substantially 

higher percentage of CD4+ T cells expressing Foxp3 can be found in murine adipose tissue 

(50% of CD4+ T cells, versus 10–15% in peripheral lymphoid compartments) (Feuerer et al. 

2009). In a seminal study by Feuerer et al., Treg cell populations were found to be reduced in 
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abdominal fat, but not in the spleens, of mice from three different models of obesity (the 

leptin-deficiency model, heterozygous yellow spontaneous mutation model and chronic high-

fat diet model). Using non-obese diabetic (NOD) mice possessing the aforementioned 

Foxp3DTR transgene, depletion of Treg cells resulted in a significant increase in expression of 

inflammatory genes (e.g., genes encoding TNF-a, IL-6, RANTES) in adipose tissue, but not 

in the spleen and lung, as well as an increase in insulin, which indicated insulin resistance. 

Furthermore, the restoration of abdominal fat Treg cell populations in mice fed a high-fat diet 

via administration of the IL-2 / anti-IL-2 antibody complex—which is known to selectively 

expand Treg cells (Boyman et al. 2006)—led to a reduction of blood glucose. Subsequent 

studies from the same research group identified a selectively expressed master transcriptional 

regulator of adipose tissue Treg cells, PPAR-g (Cipolletta et al. 2012). Whereas the synthetic 

ligand of PPAR-γ, pioglitazone—which modulates lipid metabolism—was able to restore 

insulin sensitivity in wild-type mice, it failed to have the same affect in mice bearing PPAR-

γ-deficient Treg cells. In humans, obese patients have similarly been found to be deficient in 

Treg cell populations, and this has been statistically correlated with increased body weight 

and body mass index measures (Wagner et al. 2013). Therefore, these studies highlight how 

Treg cells are essential in adipose tissue for regulating local inflammation, and so impact 

non-immune physiology, such as during metabolic dysfunction and insulin resistance. 

 

During mammalian gestation, immune responses directed toward non-self, paternal-derived 

antigen developing in the fetus must be sequestered in the maternal immune system. CD4+ 

CD25+ T cell populations expand in the circulation and lymphatics progressively during 

murine pregnancy, and their presence is required for successful breeding of different mouse 

strains (Aluvihare, Kallikourdis, and Betz 2004). Early human pregnancy decidua—a 

modified mucosal lining, which forms the maternal part of the placenta—similarly comprises 
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an abundant population of CD4+ CD25+ T cells, expressing high levels of CTLA-4. However, 

their abundance was significantly lower in samples taken from females who experienced 

spontaneous abortion, than from those who underwent induced abortion (Sasaki et al. 2004). 

In addition, women experiencing recurrent spontaneous abortions show low numbers of 

Foxp3+ Treg cells at both the follicular and luteal phases of the menstruation cycle  (Arruvito 

et al. 2007). By using transgenic mice in which the CNS1 region of the Foxp3 locus was 

knocked out, Samstein et al. demonstrated that pTreg cells are essential for maintaining 

maternal tolerance toward fetal development. Indeed, increased fetal resorption was observed 

in CNS1-deficient females, with concomitant increased immune cell infiltration (Samstein, 

Josefowicz, et al. 2012). Interestingly, studies on pregnancy have provided striking evidence 

for the importance of ‘memory’ Treg cell populations. Rowe et al. found that antigen-specific 

Treg cells—with antigen specificity toward a transgenic, paternally-derived antigen—not 

only rapidly expand during gestation, but also remain elevated postnatally, then undergo 

repeated expansion during subsequent pregnancy (Rowe et al. 2012). This Treg cell 

population, which accumulated during secondary pregnancy, was derived from those 

originating from prior pregnancy, and their function was required to prevent fetal resorption. 

These studies collectively demonstrate that Treg cells enforce maternal-fetal tolerance and are 

thus essential for healthy development of the fetus. 

 

1.5.6 Contribution of other suppressive lymphocytes to immune homeostasis 

Though the literature regarding immune homeostasis is predominately focused upon the 

regulatory capacity of the T cell lineage, studies suggest that the B cell lineage also presents 

the capacity to form regulatory cell types. These so-called regulatory B (Breg) cells have 

been shown to produce IL-10 and suppress inflammatory responses in EAE, collagen-

induced arthritis, and colitis models (Mizoguchi et al. 2002; Fillatreau et al. 2002; Mauri et 
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al. 2003). Interestingly, Bregs have been shown, in part, to function by promoting regulatory 

phenotypes in T cells in mouse models and human studies (Carter et al. 2011; Flores-Borja et 

al. 2013). This is thought to be mediated by both direct juxtacrine signalling (Yoshizaki et al. 

2012; Mann et al. 2007) and by indirect effects upon dendritic cells (Matsumoto et al. 2014; 

Sun et al. 2005). In addition, Breg cells have the capacity to produce TGF-b, which was 

shown to exert anergic effects on CD8+ T cells (Parekh et al. 2003). Unlike Treg cells, no 

defining transcription factor has been identified, which confers the Breg cell phenotype. This 

has led some to question whether Breg cells indeed represent a distinct B cell subtype, or 

instead, arise reactively in response to environmental cues. Furthermore, future studies 

should clarify whether Breg cells are important in normal human immune homeostasis and 

whether Breg cell dysfunction has any involvement in disease pathology. 

 

1.6 Regulatory T cells are a phenotypically heterogeneous cell population 

Treg cells comprise a cell population with varied tissue specificities and functions. Not only 

do they exert immunosuppressive roles across different tissue types, using a variety of 

different mechanisms, but also engage in non-immune functions during unexpected 

physiological conditions. We have already discussed how Foxp3 expression, and thus Treg 

cell lineage commitment, can occur either within developing T cells in the thymus or within 

peripherally circulating Foxp3- Tconv cells (section 1.3.1). Their heterogeneous origin is, 

therefore, one factor that contributes to a diversity of Treg cell phenotypes within the body. 

After genesis, their subsequent residency within different tissue sites appears to be driven by 

intrinsic heterogeneity. Although Treg cells found at different tissues show a certain degree 

of phenotypic overlap, distinct Treg cell phenotypes can be observed in relation to which 

tissue they reside in. For example, Burzyn et al. found that the muscle resident Treg cells 

transcriptome differed more from their spleen and lymph node (LN) counter parts to a greater 
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degree than the latter did from each other (Burzyn et al. 2013). The greatest phenotypic 

overlap observed from the tissues chosen for study was between muscle Treg cells and 

adipose tissue resident Treg cells. Whereas genes encoding IL-10, CCR1, PDGF and AREG 

were notably upregulated in muscle Treg cells—with additional upregulation of genes 

encoding KLRG-1, CCR2 and ST2 upon muscle injury—those notably downregulated in 

muscle Treg cells were genes encoding CXCR5, CCR7, TCF7, LEF1 and SATB1. In 

addition, the muscle Treg cell populations that expanded upon injury were clonally derived 

and displayed unique TCR repertoires. In comparison to spleen and LN Treg cells, adipose 

tissue resident Treg cells are enriched for hallmark Treg genes, such as those encoding CD25, 

GITR, CTLA-4, OX40, KLRG-1 and Foxp3 itself (Feuerer et al. 2009). Many genes involved 

in migration and extravasation were similarly found enriched, these included the genes for 

CCR1, CCR2, CCR9, CCL6, CXCL2 and CXCL10. Conversely, other migratory genes were 

downregulated, such as those encoding CCL5 and CXCR3. Cipolletta et al. demonstrated that 

the adipose tissue resident Treg cell phenotype is driven by PPAR-γ, which is now 

considered to be a signature transcription factor for this Treg cell population (Cipolletta et al. 

2012). Indeed, in the absence of functional PPAR-γ adipose tissue resident Treg cell 

populations were diminished by approximately four-fold. Therefore, we see that Treg cells 

present distinct arrays of transcription factors, functional molecules and migratory receptors 

in relation to where they reside within the body. 

 

The canonical lineage specifying transcription factors that guide differentiation of CD4+ 

Foxp3- Tconv toward helper subsets are also expressed by Treg cells for appropriate restraint 

of the corresponding type of inflammatory response. For example, whereas T-bet expression 

is required in Tconv cells for their differentiation toward the Th1 cell subset, its expression is 

similarly upregulated by Treg cells that counter the Th1 cell inflammatory response. T-bet 
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expression in Treg cells was found to promote expression of CXCR3, which facilitated their 

migration to sites of Th1-type inflammation. Critically, loss of T-bet function in Treg cells 

resulted in their inability to restrain the expansion of Th1 cells releasing IFN-g (Koch et al. 

2009). Similarly, the expression of the transcription factor IRF4—which is involved in Th2 

cell differentiation and the control of IL-4 production—was necessary for Treg cell-mediated 

constraint of Th2-type inflammation. Accordingly, a lymphoproliferative disease—

characterized by the selective expansion of CD4+ T cells secreting IL-4 and IL-5—was 

observed in mice bearing a conditional knockout (CKO) of Irf4 within Treg cells (Zheng et 

al. 2009). As previously mentioned, a distinct population of RORgt+ Treg cells maintain 

homeostasis in the gut (section 1.5.4). The transcription factor STAT3 acts in conjunction 

with RORgt to establish Th17 cell identity, and its deletion in Treg cells resulted in the 

spontaneous fatal intestinal inflammation (Chaudhry et al. 2009). Importantly, this pathology 

was characterized by excessive production of IL-17, with no differences in secretion of Th1- 

or Th2-type inflammatory cytokines, which indicated the specific dysregulation of gut 

resident Th17 cell responses. Thus Treg cells demonstrate a striking degree of functional 

heterogeneity, where distinct Treg cell populations differentiate into specific subsets 

alongside inflammatory helper T cells, to counter specific types of inflammation that occur 

during the immune response (Figure 1.3). 
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Figure 1.3: Hallmark T helper subset transcription factors are reciprocally expressed by Treg 
cells for appropriate restraint of the corresponding type of inflammatory response  

Figure adapted from Cretney, Kallies and Nutt 2013. 

 

Although the molecular mechanisms that underlie the reliance of Treg cells on these hallmark 

T helper cell transcription factors for their functional heterogeneity remain to be elucidated, a 

number of important observations have been made. These transcription factors may regulate 

the localisation of Treg cell subsets to the appropriate tissue. Indeed, Treg cells lacking 

functional T-bet, IRF4 or STAT3 demonstrated impaired expression of the chemokine 

receptors CXCR3, CCR8 and CCR6, respectively, which are required for guiding their tissue 

localisation during inflammatory responses. The mechanisms by which Treg cells exert 

immunosuppression may also be influenced. For example, deficiency in these transcription 

factors all led to a reduction in IL-10 expression. In addition, reduced expression of Icos, 

Fgl2, Ebi3, Prf1 and Gzmb were observed in IRF4-deficient or STAT3-deficient Treg cells. 
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A hallmark of T cell biology is their responsiveness to antigen, clonal expansion, 

differentiation toward short-lived effector subsets, the acquisition of greater functional 

capacity, and eventual death. As previously discussed, tTreg cells and pTreg cells respond to 

diverse self- and foreign antigens, respectively, and clonally expanded Treg cells are 

observed in tissues, such as the muscle. Different populations of Treg cells also express 

functional molecules to varying degrees. Therefore, this has led researchers to question 

whether Treg cells follow a similar resting to activated phenotypic trajectory, that is so well 

characterised in their effector counterparts. Evidence does indeed support the existence of a 

subset of resting Treg (rTreg) cells—exhibiting a quiescent or naïve phenotype and are 

functionally less mature—and activated Treg (aTreg) cells, exhibiting an effector phenotype, 

which have encountered cognate antigen and present a greater capacity for 

immunosuppression. In a similar paradigm to CD4+ Foxp3- Tconv and CD8+ Teff cells, 

resting Treg cell populations principally reside within secondary lymphoid structures, express 

high levels of CCR7 and CD62L, but low levels of CD44. However, upon antigenic 

stimulation, activated Treg cells undergo a phenotypic switch to downregulate CCR7 and 

CD62L, but upregulate CD44, and migrate away from secondary lymphoid sites to the tissue 

(Huehn et al. 2004; Lee, Kang, and Kim 2007). Cheng, et al. observed that KLRG1 (Killer 

cell lectin-like receptor subfamily G member 1)—a marker canonically associated with 

terminally differentiated Teff cells—is likewise, highly expressed on a subset of Treg cells, 

located in non-lymphoid tissue, which present high expression of other activation molecules, 

such as CD69, CD103, CD25 and Blimp-1 (Cheng et al. 2012). These KLRG1+ Treg cells 

expressed higher levels of functional molecules, such as CTLA-4, CD39, CD73, and 

demonstrated a greater capacity for restraint of Teff cell proliferation in a Treg cell 

suppression assay. By using adoptive transfer of KLRG1- and KLRG1+ Treg cells into 



 42 

lymphopenic mouse models, the authors observed that KLRG1+ Treg cells could originate 

only from KLRG1- Treg cells (not vice versa), and that KLRG1+ had a reduced capacity for 

survival. These findings strongly suggest that Treg cells share an equivocal paradigm to Teff 

cells, consisting of a progressive differentiation toward functionally more capable, short-lived 

effector subsets following antigen stimulation. Other markers have been suggested to 

delineate memory-like or activated Treg cells from resting populations, such as CCR6 and 

TIGIT (Kleinewietfeld 2005; Joller et al. 2014). Such phenotypically and functionally distinct 

Treg cell populations have similarly been identified in humans, where rTreg cells are positive 

for CD45RA and express low levels of Foxp3, whereas aTreg cells are concomitantly 

CD45RA- and high in Foxp3 expression (Miyara et al. 2009). Although the mechanisms that 

govern the transition of rTreg to aTreg cells still remain to be elucidated, TCR signalling 

appears to play a central role. In a mouse model where the TCRa chain was ablated in 

Foxp3-expressing cells upon administration of tamoxifen, which prevented a complete TCR 

being maintained on the cell surface of lineage-committed Treg cells, Levine et al. observed 

a failure of CD62Lhigh CD44low rTreg cells to progress toward CD62Llow CD44high aTreg cells 

during the steady-state (Levine et al. 2014). Despite normal percentages of Treg cells existing 

in spleen and lymph nodes, elevated numbers of CD4+ Tconv and CD8+ Teff cells, 

expressing increased amounts of inflammatory cytokines, were found in these tissues. Gene 

expression profiling revealed defective upregulation of key transcription factors and 

functional molecules within the TCR-deficient Treg cells, including the genes encoding 

NFATc1, c-Rel, Bcl6 and IRF4, CTLA-4 and IL-10. These results highlight the absolute 

dependence of Treg cells on TCR signalling to transition from a naïve phenotype, toward a 

functionally competent, activated state. 
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Recent advancements in technology have provided further evidence for the presence of 

distinct Treg cell populations and the necessity of TCR signalling in shaping Treg phenotypic 

heterogeneity. Single-cell RNA-Sequencing (scRNA-Seq) studies show how murine Treg 

cells residing in different tissue types harbour distinct transcriptional profiles (Miragaia et al. 

2019). In addition, dimensionality reduction analysis of scRNA-Seq data from murine splenic 

Treg cells revealed that clusters expressing hallmark resting genes separated from those 

expressing hallmark activated genes (Zemmour et al. 2018). Clustering between the 

populations expressing hallmark rTreg and aTreg cell genes, were cell clusters enriched for 

gene set signatures associated with TCR-delivered signals. Analysis of Treg cells from 

Nr4a1GFP reporter mice—where NR4A1 expression is proportional to TCR signalling 

intensity—revealed that, surprisingly, high TCR signals were not predictive of the Treg cell 

activation status. In contrast, across the entire spectrum of Nr4a1GFP expression in Treg cells, 

all displayed equivalent levels of CD62L expression. Although no relationship between TCR 

signalling and aTreg status was found, the phenotypic divergence within the activated Treg 

clusters did indeed, associate with differences in the TCR signalling strength. The authors 

concluded that although the level of TCR signalling does not dictate the proportion of aTreg 

cells, it does dictate phenotypic heterogeneity amongst aTreg cell populations. Such results 

suggest unidentified factors, aside from TCR signalling strength, which fulfil critical roles in 

mediating the transition of lineage-committed rTreg cells toward aTreg cells. 

 

 

1.7 The role of BACH2 in lymphoid cell lineage commitment, differentiation and 

function 

Given the significance of the actions of transcription factors (TFs) in shaping lymphocyte 

cellular identity and thus, their importance in orchestrating effective immune responses, 
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much attention has been drawn toward understanding TF biology. Historically, focus was 

principally directed toward TFs that upregulate gene expression following TCR engagement, 

such as the NFAT, NF-kB  and AP-1 families. Despite the necessity for these activating 

complexes—and those discussed in section 1.2—to drive the expression of keys genes 

involved in a particular phenotype for a given cell lineage, equally important are the actions 

of transcriptional repressors, which inhibit the expression of genes involved in the 

differentiation toward alternate lineages. Therefore, if cell differentiation is likened to a 

trajectory along a given path, transcriptional repressors prevent that path from diverging in 

alternate directions. BACH2 (BTB and CNC homolog 2) is a member of the basic region 

leucine zipper (bZIP) transcription factor family (Oyake et al. 1996) (Figure 1.4). The 

BACH2 bZIP domain enables formation of dimeric complexes with numerous other bZIP 

domain-containing TFs at DNA sequences containing TPA response elements (TREs) or 

cAMP response elements (CREs) (Reinke et al. 2013). Here, the palindromic TGA(G/C)TCA 

sequence serves as a template for the conserved bZip region of BACH2 to bind, where the 

leucine zipper then forms coiled-coil interactions with other bZIP TF monomers (Turner and 

Tjian 1989). In addition to the bZIP domain, BACH2 contains a BTB (bric-à-brac–

tramtrack–broad complex) domain, which is also known as the POZ (pox virus and zinc 

finger) domain (Chaharbakhshi and Jemc 2016). The BACH2 BTB domain enables 

interaction with molecules in addition to bZIP TFs, and thus extends its functional capability 

(Tanaka et al. 2016).  

 

Figure 1.4: Schematic representation of the mouse BACH2 protein. 
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Cysteine–proline residues are highlighted by green lines, where the numbers indicate the 
position of the cysteine, and selected phospho-residues are highlighted by red lines. Figure 

adapted from Igarashi, Kurosaki and Roychoudhuri 2017. 

 

1.7.1 BACH2 coordinates B cell maturation and directs memory B cell differentiation 

BACH2 was originally described as a transcriptional repressor of gene regulatory networks 

required for plasma B cell differentiation (A. Muto 1998; Akihiko Muto et al. 2004). 

Following encounter with cognate antigen, activated B cells migrate to the germinal centre. 

Here, B cell clones, which produce mutated immunoglobulins through the process of somatic 

hypermutation (SHM), are positively selected by follicular T cells for survival according to 

their affinity for antigen. During this selection, class-switch recombination (CSR) occurs, 

generating B cell clones that express high-affinity and functionally diverse immunoglobulin. 

The entry of B cells into the germinal centre either results in short-lived, antibody-secreting 

plasma B cells being generated, or the production of long-lived, memory B cell populations. 

The TF BLIMP-1 (encoded by Prdm1) is essential for driving the terminal differentiation of 

B cells to plasma cells (Shaffer et al. 2002). Here, BACH2 acts in conjunction with BCL-6, 

to restrain Prdm1 expression, and is thus plays a key role in SHR and CSR (Akihiko Muto et 

al. 2004; Huang et al. 2014). In addition, BACH2 expression in germinal centre B cells 

correlates with their propensity to form memory B cells, where higher BACH2 expression 

denotes B cells with lower affinity BCR and a high proclivity for memory cell differentiation. 

Indeed, memory B cell differentiation was diminished in Bach2 haploinsufficient mice 

(Shinnakasu et al. 2016; Kometani et al. 2013). Because of its importance in B cell 

maturation and differentiation, BACH2 has attracted attention with regard to prognostic and 

mechanistic relationships to B cell pathologies (Sakane-Ishikawa et al. 2005; Ichikawa et al. 

2014). 
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1.7.2 BACH2 regulates T cell differentiation 

Though BACH2 was known to perform critical roles in B cells, Bach2KO mice were found to 

display a striking phenotype, which could not be accounted for solely due to B cell 

dysfunction. Roychoudhuri et al. observed that Bach2KO mice displayed a severe multi-organ 

autoimmune pathology, which led to lethality after approximately 4.5 months of age 

(Roychoudhuri et al. 2013). Interestingly, the loss of BACH2 resulted in a complete cell-

autonomous failure to establish lineage-committed Foxp3+ Treg cells. Crucially, the lethal 

inflammatory phenotype, which was recapitulated in Rag1KO mice reconstituted with 

Bach2KO bone marrow, was ameliorated in Rag1KO mice receiving both Bach2KO bone 

marrow and wild-type Treg cells. Tconv cells isolated from Bach2KO mice and cultured in 

vitro with either Th1, Th2 or Th17 polarizing cytokines showed a greater propensity to 

differentiate into the respective helper subsets and secrete pro-inflammatory cytokines. These 

data highlight the critical role that BACH2 plays in establishing functional Treg cells and 

restraining differentiation toward inflammatory T cell subtypes. The mechanistic details of 

BACH2 function in T cells were further elaborated, when BACH2 was found to restrain 

terminal differentiation in CD8+ T cells by limiting access of genomic enhancer regions to 

AP-1 factors (Roychoudhuri et al. 2016). By virtue of their shared sequence binding motifs, 

BACH2 limited binding of the AP-1 factor, JUND, to genes upregulated following TCR 

stimulation. In support of these observations, Kuwahara et al. observed the capacity of 

BACH2 to restrict binding of a JUND–BATF–IRF4 heterotrimeric complex to the Th2 

cytokine locus control region. Whereas BACH2–BATF heterodimers restrained 

differentiation of Tconv to Th2 cells, JUND–BATF–IRF4 complexes potentiated the 

expression of genes required for Th2 cell formation. We thus observe BACH2 functioning in 

concert with other bZIP domain TFs to moderate inflammatory Teff differentiation and 

enable the establishment of suppressive Treg cell populations. 
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BACH2 function appears to be regulated by phosphorylation via the PI3K-AKT-mTOR 

signalling pathway. Murine CD8+ T cells stimulated in vitro show enrichment for BACH2 

phosphorylated at the S520 residue, which prevented passage to the nucleus and resulted in 

increased BACH2 accumulation in the cytoplasm (Roychoudhuri et al. 2016). The 

corresponding S521 residue in humans fulfils a similar role in chronic myeloid leukaemia 

cells (Yoshida et al. 2007). In murine pre-B cell lines, nuclear exclusion following BCR 

stimulation was predominantly related to phosphorylation of the S535 residue, and partially 

dependant on S509 phosphorylation (Ando et al. 2015). Conversely, hyperactive AKT-

mTOR signalling caused by Pten ablation results in downregulation of Bach2 mRNA. In 

addition, BACH2 phosphorylation can be prevented with the use of pharmacological AKT 

inhibitors, but not with mTORC1 inhibitors. Thus following antigen receptor engagement, 

BACH2 function can be controlled by AKT-mTOR signalling, both by post-translational 

modification and by transcriptional regulation.  

 

 

Figure 1.5: BACH2 function is controlled by antigen receptor signalling engagement. 

Figure adapted from Sidwell and Kallies 2016. 
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1.7.3 The role of BACH2 in human pathology 

Given that BACH2 plays such a fundamental role in the cell types that govern the immune 

response, one may expect that any circumstance where BACH2 function, expression or 

regulation is altered would lead to a substantial impact on human health. Indeed, along with 

the advent of next-generation sequencing, came the finding that single-nucleotide 

polymorphisms (SNPs) within the BACH2 locus associate with susceptibility to a plethora of 

autoimmune and allergic diseases. There are regions of the mammalian genome—referred to 

linkage disequilibrium blocks—that undergo much less frequent meiotic recombination than 

is expected from their genomic distances (Reich et al. 2001). A region in high linkage 

disequilibrium exists in a region that extends from upstream of the transcriptional start site of 

the BACH2 locus to intron 4 of the gene (Igarashi, Kurosaki, and Roychoudhuri 2017), where 

the presence of risk SNPs correlate with susceptibility to asthma (Ferreira et al. 2011), type I 

diabetes (J. D. Cooper et al. 2008), multiple sclerosis (International Multiple Sclerosis 

Genetics Consortium et al. 2011), coeliac disease (Dubois et al. 2010), Crohn’s disease 

(Franke et al. 2010), generalised vitiligo (Jin et al. 2012), Hashimoto’s thyroiditis and 

Grave’s disease (Medici et al. 2014). Though the direct impact of these risk haplotypes on 

BACH2 expression remain to be elucidated, these associations with a striking array of 

diseases suggest a common requirement of BACH2 for appropriate regulation of 

inflammation.  

 

More directly, BACH2 dysfunction has been implicated in human clinical disease. Whole 

genome sequencing identified a heterozygous T71C BACH2 mutation (leading to an L24P 

amino acid substitution) in an adolescent female patient, who presented with numerous 

conditions relating to aberrant immunity, such as infancy-onset colitis, non-infectious fever, 
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splenomegaly, immunoglobulin deficiency, recurrent upper respiratory tract infections and 

pancytopenia (Afzali et al. 2017). Afzali et al. also identified another BACH2 mutation in a 

different family, consisting of a father and daughter, who shared a G2362A point mutation 

(leading to an E788K amino acid substitution). Whereas the daughter had unmeasurably low 

levels of IgA, the father presented with complete immunoglobulin deficiency, and both 

presented small and large bowel inflammation, recurrent sino-pulmonary infections, 

bronchiectasis and fibrosis. Both the T71C (causing L24P) and G2362A (causing E788K) 

mutations were predicted to lead to instability of the BACH2 protein, abrogating its function.  

Interestingly, some aspects of the cellular phenotypic alterations observed in the BACH2KO 

mouse model were recapitulated in these patients. Here, T cell immune-phenotyping revealed 

reduced Foxp3 expression in CD4+ CD25high CD127low cells and increased expression of T-

bet in CD4+ Tconv cells isolated from the blood. In addition, the patients presented reduced 

levels of CD19+ CD27+ memory B cells. Being hitherto unrecognized in the clinic, this 

syndrome of BACH2 haploinsufficiency was termed BACH2-related immunodeficiency and 

autoimmunity, or BRIDA. Collectively, these genetic and clinical observations contributed to 

the growing appreciation that BACH2 performs an obligatory role in lymphocyte function, 

and thus, there is an absolute requirement for BACH2 function in human health. 

 

1.8 Summary 

The cells, tissues and organs of the immune system evolved to protect the host from diverse 

threats. The mammalian immune system evolved to co-exist with micro-organisms—such as 

the case with microbiota at mucosal surfaces—or to counter pathogenic threats. Mechanisms 

of defence result in inflammation, which must regulated in order to prevent excessive damage 

to the host. Immune cells exist in an equilibrium, where those that cause protective 

inflammation are antagonised in order to prevent excessive cytotoxicity. Treg cells are central 
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to immune homeostasis, and as all tissues of the body require immunity, Treg cells have 

evolved diverse immunomodulatory functions throughout the body. The multiplicity of 

pathogens in nature and diversification of host tissue functions are paralleled by the 

heterogeneity of Treg cells, and indeed, Treg cells display considerable inter- and intratissue 

heterogeneity. Transcription factors are central determinants of cellular identity, thus much 

attention is directed toward those that regulate gene expression necessary to acquire 

particular phenotypes. BACH2 restrains antigen receptor driven gene expression programs in 

multiple mature lymphocyte lineages. In constraining lymphocyte differentiation toward 

terminal effector subsets, and additionally, being required for establishing lineage-committed 

populations of Treg cells, BACH2 fulfils a central role in shaping the immune response and 

maintaining immune homeostasis. This absolute requirement is most clearly demonstrated in 

the human clinical syndrome, BRIDA, and the phenotype of BACH2-deficient mice. Despite 

BACH2 being required for development of Foxp3+ Treg cells, it remains to be understood 

whether BACH2 fulfils a function in Treg cells once lineage-commitment has taken place. 

That is, once Foxp3+ expression has determined Treg lineage identity, does BACH2 serve a 

continued role in determining Treg cell phenotypes? In this work, we set out to elucidate the 

role of BACH2 following lineage-commitment of  Treg cells. Prior to my doctoral research, 

experimental models had not been generated to answer such a question. In particular, 

germline deficiency of BACH2 results in a complete cell-autonomous absence of  lineage-

committed Treg cells rendering it impossible to study the cell-intrinsic function of BACH2 

following Treg lineage commitment. Therefore, we needed to establish a novel model to 

abrogate BACH2 function strictly after lineage-commitment of Treg cells, which would not 

interfere with early development of Treg cell populations, and additionally, would avoid loss 

of BACH2 function in other cell types.  
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2 Materials and Methods 

 

2.1 Transgenic mice and reagents 

The Bach2tdRFP and Bach2flox mice were provided by Professor Tomohiro Kurosaki at Osaka 

University (Itoh-Nakadai et al. 2014; Kometani et al. 2013). The Rosa26flSTOP-tdRFP and 

Foxp3EGFP-Cre-ERT2 mice were provided by Dr Michelle Linterman at the Babraham Institute 

(Luche et al. 2007; Rubtsov et al. 2010). The Ptprca (CD45.1), RAG2-deficient, and 

C57BL/6J mice were provided by the Biological Support Unit (BSU) at the Babraham 

Institute. The Foxp3DTR mouse strain was purchased from the Jackson Laboratory. Littermate 

controls or age- and sex-matched animals on a C57BL/6 background were used in 

experiments as indicated. All mice were housed at the Babraham Institute in accordance with 

UK Home Office guidelines, under project licence PE0D498BB, and all studies were 

approved by the Babraham Institute Animal Welfare and Ethics Review Board. For mice 

bearing the Foxp3EGFP-Cre-ERT2 mice transgene, induction of Cre-ERT2-mediated 

recombination was initiated via feeding with tamoxifen-containing chow or corresponding 

control non-tamoxifen-containing chow (Cat TD130858). All mice were given control non-

tamoxifen containing chow for two weeks prior to initiation of treatment due to mitigate 

neophobic effects. 

 

2.2 Preparing single-cell suspensions from mouse tissues  

After mice had been euthanized according to Home Office requirements, whole organs were 

dissected and stored in phosphate buffered saline (PBS) on ice. Single-cell suspensions were 

prepared from specific tissues as detailed below. 
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2.2.1 Dissociation of spleens and thymi 

The spleens and thymus were dissociated on 40 µM Falcon™ cell strainers (Thermo Fisher 

Scientific) using a plunger from a 5 ml syringe (Terumo). Red blood cells were removed 

from the suspension using 1 ml ACK Lysing Buffer (Gibco) for 45 seconds. After filtering 

through 40 µM Falcon™ strainers for a second time, single-cell suspensions of splenocytes 

or thymocytes were stored in PBS at 4 °C until further use. 

2.2.2 Dissociation of lymph nodes 

The lymph nodes were dissociated on 40 µM Falcon™ cell strainers (Thermo Fisher 

Scientific) using a plunger from a 5 ml syringe (Terumo) and stored in PBS at 4 °C until 

further use. 

2.2.3 Dissociation of lungs 

The lungs were placed in a cold solution of 20 µg/ml DNase solution I (Roche) and 1 mg/ml 

collagenase (Sigma-Aldrich) and dissociated using scissors. The suspensions were incubated 

with agitation at 37 °C for 30 minutes, then dissociated again on 40 µM Falcon™ cell 

strainers (Thermo Fisher Scientific) using a plunger from a 5 ml syringe (Terumo). Red blood 

cells were removed from the suspension using 1 ml ACK Lysing Buffer (Gibco) for 45 

seconds. After filtering through 40 µM cell strainers a second time, single-cell suspensions 

were stored in PBS at 4 °C until further use. 

2.2.4 Isolation of blood lymphocytes 

Blood samples were extracted either using tail vain venepuncture on live mice or cardiac 

bleeds on euthanized mice, by technicians trained according to Home Office requirements, at 

the Babraham Institute Biological Services Unit. Approximately 50–200 µl of blood was 

removed and stored in EDTA Microvette tubes (Thermo Fisher Scientific) at room 

temperature until processing. Red blood cells were removed using 1 ml ACK Lysing Buffer 
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(Gibco) for 90 seconds and single-cell suspensions were stored in PBS at 4 °C until further 

use. 

 

2.3 Total or naïve CD4 T cell enrichment  

Single-cell suspensions were prepared from particular tissues as detailed in section 2.2. 

Enrichment of CD4+ T cells was performed using the MagniSort™ Mouse CD4 T cell 

Enrichment Kit (Invitrogen, Thermo Fisher Scientific). Enrichment of total CD4+ T cells 

from single-cell suspensions were performed according to the manufacturer’s protocol. A 

more refined enrichment of only naïve CD4+ T cells was achieved by including biotin-

conjugated CD44 antibody (0.02 µg per sample) and biotin-conjugated CD25 antibody (2 µg 

per sample, both Invitrogen, Thermo Fisher Scientific) during labelling with the MagniSort™ 

Enrichment Antibody Cocktail. Any markers required for cell sorting were stained using flow 

cytometry cell surface antibodies (detailed in appendix Table 8.1: Flow cytometry 

antibodies), diluted 1/200, whilst cell suspensions were being labelled with the Enrichment 

Antibody Cocktail. The cell suspensions were stored in FACS buffer (section 8.3.1 for 

details) at 4 °C until further use. 

 

2.4 Fluorescence activated cell sorting (FACS) 

Enriched single-cell suspensions were prepared as detailed in sections 2.2 and 2.3, filtered 

through a 30 µM CellTrics™ cell strainer (Sysmex) and re-suspended in RPMI 1640 medium 

(Invitrogen, Thermo Fisher Scientific) to an approximate concentration of 20 million cells per 

ml and stored at 4 °C. The suspensions were briefly vortexed and sorted using the BD 

Influxä (Becton Dickinson Biosciences), where gates were positioned in accordance with 

negative controls. Compensation for FACS were generated on software provided for the BD 

Influx™ using either single-stained UltraComp eBeads™ (Invitrogen, Thermo Fisher 
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Scientific) or splenocytes. The cells were sorted into solutions of RPMI 1640 medium 

supplemented with 20% Fetal Bovine Serum (Sigma-Aldrich). After sorting, the data were 

interpreted using FlowJoâ software (LLC). 

 

2.5 DNA isolation for PCR 

The single-cell suspensions were prepared as detailed in section 2.2 and treated using the 

DNeasy® Blood & Tissue Kit (Qiagen) according to the manufacture’s protocol. 

 

2.6 Genotyping of mouse lines 

2.6.1 Automated genotyping by Transnetyx, Inc 

Genotyping of mouse lines was primarily done by outsourcing to Transnetyx, Inc. Tissue 

samples from transgenic mice and corresponding sequence data were sent to Transnetyx to 

aid their design of proprietary primer sequences. All future genotyping then involved mouse 

tissue being biopsied from the ear, placed in Transnetyx 96-well plates and posted to 

Transnetyx. Genotyping data from Transnetyx were provided within two to three days of 

receiving the biopsies. 

 

2.6.2 PCR genotyping of genomic DNA for floxed and excised Bach2 

Single-cell suspensions were prepared as detailed in section 2.2 for whole-tissue analysis or 

section 2.4 for analysis of specific cell populations. DNA was isolated as detailed in section 

2.5 and quantified using a NanoDrop™ (Thermo Fisher Scientific). DNA and primers were 

prepared for PCR in Quick-Loadâ Taq Master Mix (New England Biolabs) according to 

manufacturer’s protocol. The PCR program and primers used are shown in Table 2.1 and 

Table 2.2, respectively. All PCR reactions were run on the T100™ Thermal Cycler (Bio-Rad 

Laboratories). 
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94°C 2 minutes 

94°C 20 seconds 

60°C 20 seconds 

72°C 60 seconds 

72°C 3 minutes 

4°C Indefinitely 

Table 2.1: PCR program for genotyping. 

 
Gene Primer sequence 

Bach2flox forward 5’- CCTTACTGGATTCGGATGAGAAGCC-3’ 

Bach2flox reverse 5’- CTCTGTACACAGTGGGATCCACGGG-3’ 

Band size: 450 bp 

Bach2excised forward 5’- CTCACTATAGGGTTCGAGGAAGT-3’ 

Bach2excised reverse 5’- GTACAAGAAAGCTGGGTCGG-3’ 

Band size: 145 bp 

TLR9 forward 5’-AGGAAGGTTCTGGGCTCAAT-3’ 

TLR9 reverse 5’-TCTGTACCCCGTTTCTCTGC- 3’ 

Band size: 250 bp 

Table 2.2: Nucleotide sequences of PCR primers and their product sizes. 

 

2.7 Phenotypic analysis of cells using flow cytometry 

2.7.1 Cell surface staining 

The single-cell suspensions were prepared as detailed in section 2.2, and cell surface 

antibodies are detailed in Appendix Table 8.1. Approximately 1 x 106 cells were taken from 

35 x 
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each suspension for flow cytometry analysis. The cells requiring intracellular staining with 

antibodies for cytokines were stimulated using phorbol 12-myristate 13-acetate (PMA), 

ionomycin and brefeldin A (BFA), as detailed in section 2.9. When using Zombie UV™ 

live/dead dye, cells were first stained with the viability dye alone, at room temperature for 20 

minutes, followed by staining with cell surface antibodies (diluted 1/200) in FACS buffer, at 

4 °C for 30 minutes. With the eBioscience™ eFluor™ 780 live/dead dye, cells were stained 

with the viability dye along with cell surface antibodies (diluted 1/200) in PBS, at 4 °C for 30 

minutes. Cell surface phosphatidylserine was labelled using the eBioscience™ Annexin V 

Apoptosis Detection Set PE-Cyanine7 (Invitrogen, Thermo Fisher Scientific), with the dye 

diluted 1/100, according to the manufacturer’s protocol. The samples were either stored in 

200 µl of FACS buffer at 4 °C in the dark until flow cytometry analysis, or were then stained 

intracellularly (section 2.7.2). 

 

2.7.2 Intracellular staining 

The cells were stained intracellularly using the eBioscience™ Foxp3 / Transcription Factor 

Staining Buffer Set (Invitrogen, Thermo Fisher Scientific). Reagents from this kit were 

prepared as detailed in the manufacturer’s protocol. The cells were fixed for either one hour 

or overnight in the eBioscience™ fixation buffer. The cells were stained with intracellular 

antibodies (diluted 1/200, detailed in Appendix Table 8.1) for one hour in eBioscience™ 

permeabilisation buffer. The samples were stored in 200 µl of permeabilisation buffer at 4 °C 

in the dark. The suspensions were briefly vortexed and analysed using the BD Fortessa™ 

(Becton Dickinson Biosciences) and the data were interpreted using FlowJo® software 

(LLC). 
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2.8 Cell stimulation with CD3 antibody and CD28 antibody 

96-well plates were coated with 100 µl of CD3e antibody and CD28 antibody (both 

Invitrogen, Thermo Fisher Scientific), both at 1 µg/ml, in PBS for either four hours at 37 °C 

or overnight at 4 °C. The plates were washed twice with PBS before adding the single-cell 

suspensions. 

 

2.9 Cell stimulation with phorbol 12-myristate 13-acetate, ionomycin and brefeldin A 

The single-cell suspensions were stimulated in 100 µl of RPMI complete media (detailed in 

the Appendix) with 50 ng/ml phorbol 12-myristate 13-acetate (PMA), 1 µg/ml ionomycin 

and 10 µg/ml brefeldin A (BFA, all Sigma-Aldrich) for four hours at 37 °C. The samples 

were then washed twice with cold PBS and stored at 4 °C until further use. 

 

2.10 In vitro rTreg cell activation assays and iTreg cell differentiation 

Resting Treg cells (CD4+ EGFP+ CD62L+) were purified from Foxp3eGFP-Cre-ERT mice as 

detailed in section 2.4. The rTreg cells were then cultured at 20,000 cells per well, in a 96-

well plate in RPMI 1640 complete media (detailed in the Appendix) with 5 ng/ml TGF-b 

(R&D Systems, Bio-Techne), 5 ng/ml IL-2 (Peprotech) and 200 nM 4-Hydroxytamoxifen 

(Sigma-Aldrich) for three days at 37 °C, 5% CO2. The cells were then transferred to a 96-

well plate coated with CD3e and CD28 antibodies (as detailed in section 2.8) and cultured in 

RPMI complete media with fresh TGF-b, IL-2 and 4-Hydroxytamoxifen (concentrations as 

before) for a further four days at 37 °C, 5% CO2. 

 

For in vitro differentiation of iTreg cells, naïve CD44– CD62L+ CD25– CD4+ T cells were 

purified by FACS from pre-enriched total CD4+ T cells from spleens and lymph nodes of 8–

12 week-old wild type mice, as detailed in section 2.4. The naïve CD4+ T cells were activated 
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by plate-bound anti-CD3 and soluble anti-CD28 (5 μg/ml each, as detailed in section 2.8) in 

media for four days in the presence of IL-2 (5 ng/ml, R&D Systems) and TGF-β (5 ng/ml, 

R&D Systems).  

 

2.11 Preparation of RNA for bulk-sequencing 

Purified single-cell suspensions were prepared as detailed in section 2.4 and stored in 40 µl 

RNAlater™ Stabilization Solution at -80 °C. The samples were processed using the 

QIAshredder Kit (Qiagen) according to the manufacturer’s protocol. RNA was extracted 

from the samples using the RNeasy® Plus Mini Kit (Qiagen) according to the manufacturer’s 

protocol. RNA Libraries were prepared using the SMARTer® PCR cDNA Synthesis Kit 

(Clontech, Takara Bio) according to the manufacturer’s protocol and sequenced using the 

HiSeq® 2500 System (Illumina). 

 

2.12 Analysis of bulk RNA sequencing data 

The FastQ files were generated as described in section 2.11. The files underwent analytical 

quality control with FastQC version 0.11.8, adaptor trimming with Cutadapt version 1.18 and 

alignment to the NCBIM37 Mus musculus genome annotation with hisat2 version 2.1. 

Cluster Flow was used to pipeline FastQ files through the aforementioned programs (Ewels et 

al. 2016). Differential gene expression analysis was done using either Cufflinks version 2.2.1 

(Trapnell et al. 2012), or DESeq2 version 1.22.1 in R version 3.5.0 (Love, Huber, and Anders 

2014). The output from differential gene expression analyses was processed in R. 

 

2.13 Preparation of RNA for single-cell sequencing 

Single-cell suspensions of 4000 purified Treg cells in 34 µl RPMI 1640 complete media were 

prepared as detailed in section 2.4. RNA libraries were prepared for single-cell RNA-
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Sequencing (scRNA-seq) using the Chromium Single Cell 3′ Library & Gel Bead Kit v2 (10x 

Genomics), processed with the Chromium (10x Genomics) and sequenced using the HiSeq® 

4000 System (Illumina). 

 

2.14 Analysis of single-cell RNA sequencing data 

The raw 10X sequencing data was processed as previously described, except the data were 

mapped to mm10. We confirmed that the cells were sequenced to saturation. Each library was 

down-sampled to equivalent sequencing depth and were merged with cell ranger aggr 

(version 2.0.2). The merged data were transferred to the R statistical environment for analysis 

using the package Seurat (Patil et al. 2018; Macosko et al. 2015) version 2.3.4, in R version 

3.5.0. Only cells expressing between 200 to 2500 genes, less than 5% mitochondrial-

associated transcripts and genes expressed in at least three cells were included in the analysis. 

The data were then log-normalized and scaled per cell, and the variable genes were detected 

using the Findvariablegenes function in Seurat, as per the default settings. The transcriptomic 

data from each cell were then further normalized by the number of genes quantified, unique 

molecular identifier (UMI)-detected and mitochondrial genes to account for technical 

variation. A principal component analysis was run on the variable genes, and the first five 

principal components (PCs) were selected for further analyses, based on the standard 

deviation of the PCs, as determined by an elbow plot in Seurat. The cells were clustered 

using the FindClusters function in Seurat with the default settings, resolution = 0.6 and five 

PCs. Upon initial analysis, it was identified that the majority of variance was reflective of 

minor B cell and myeloid contamination. These two clusters were removed (SubsetData 

function), the most variable genes were then re-calculated, the data were re-scaled and the 

number of principle components for further analysis were re-calculated, as above. The 

filtered dataset was re-clustered using the Findclusters function, using the first seven 
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principle components, resolution 0.6 (default). A t-distributed stochastic neighbour 

embedding (tSNE) matrix was calculated using the default perplexity and seven principle 

components (RunTSNE function). For broadly defining the transcriptional features of each 

cluster, the function FindAllMarkers (only.pos = FALSE, min.pct = 0.0, thresh.use = 0) was 

used and the associated heatmap was generated using the function DoHeatmap, using up to 

the top ten transcripts identified per cluster, as defined by FindAllMarkers. The differential 

expression between cluster Cluster 4 and Cluster 0 was determined using MAST (q < 0.05, 

min.pct = 0, rest as per default, v1.8.0) (Finak et al. 2015). Further visualizations of exported 

normalized data were generated using the Seurat package and custom R scripts. Down-

sampling was achieved using the SubsetData function in Seurat to maintain equivalent 

numbers of cells between KO and WT mice libraries (5046 cells). 

 

2.15 Systemic depletion of Treg cells in the Foxp3GFP-DTR mouse model  

The systemic ablation of Treg cells was achieved in the Foxp3GFP-DTR mouse model by dosing 

Diphtheria toxin (Sigma-Aldrich) at 50 µg/kg intraperitoneally.  

 

2.16 Statistical analysis 

Prism (GraphPad) version 7.05 was used to apply the Student’s unpaired two-tailed t-test for 

normally distributed data, or the Mann–Whitney U test for data not normally distributed. 

Where necessary, the Shapiro–Wilk test was used to test for normality of the underlying 

sample distribution. Statistical analysis for RNA-Sequencing data is built into the software 

used for processing the data (see sections 2.12 and 2.14). The q value output, which 

incorporates correction for multiple testing, was the value used to determine statistical 

significance. No blinding was necessary, since objective quantitative assays, such as flow 

cytometry were used. The experimental sample sizes were chosen using power calculations, 
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using preliminary experiments, or were based on previous experience of variability in similar 

experiments. The samples which had undergone technical failure during processing were 

excluded from the analyses.  
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3 Assessment of BACH2 expression in lineage-committed Treg cells 

 

3.1 Background 

Across all different mammalian tissue types, BACH2 expression appears to be highest in B 

cells, where its peak expression is at the pro-B cell stage and in mature circulating B cells, 

which have not yet been activated by their cognate antigen (A. Muto 1998). Conversely, its 

expression in B cells is lower, and undetectable in plasma B cells, which have undergone 

terminal differentiation following antigen stimulation. Though still substantial, expression of 

BACH2 is comparatively lower in CD4+ and CD8+ T cells. Bach2 mRNA is highly expressed 

in naïve CD8+ T cells and minimally expressed in stimulated effector subsets, whereas 

intermediate levels of expression are observed in central memory CD8+ T cells 

(Roychoudhuri et al. 2013, 2016). These observations suggest a model where BACH2 

expression is highest in quiescent naive and memory lymphocyte populations, but 

progressively downregulated by repeated antigen receptor stimulation. In T cells, as BACH2 

binds to and obstructs expression of TCR-inducible genes, this gradual stage-specific and 

signal responsive decline may represent a principal mechanism enabling T cell terminal 

differentiation.  

 

Although BACH2 expression has been reported in CD4+ T cells, prior to the start of the 

research reported in this thesis (2015), no published literature had focused specifically on the 

expression of BACH2 in CD4+ Foxp3+ Treg cell subsets. Similar to B cell populations and 

Foxp3- effector T cell populations, Treg cells exist in resting and activated states (section 

1.6). Therefore, factors must likewise exist to instruct phenotypic differences. In scRNA-Seq 

studies published by Zemmour, et al. in 2018, the authors noted that Bach2 expression was 

enriched in clusters that expressed Ccr7, Sell and Satb1. Although this gave some indication 
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of the mRNA expression of Bach2 in Treg cells, it remained to be understood how BACH2 

was expressed in Treg cells at the protein level. 

 

In 2013, Kometani, et al. published the use of a novel transgenic mouse strain bearing a red 

tandem fluorescent protein (tdRFP) inserted in frame into the coding region of the Bach2 

gene (Kometani et al. 2013). This strain thus produced a detectable tdRFP signal, where the 

expression was driven by the endogenous regulatory elements of the Bach2 gene. As the 

tdRFP insertion is disruptive and prevents expression of wild type BACH2, only 

heterozygous mice were used in their studies. In order to validate that tdRFP expression 

reflected BACH2 expression in the Bach2tdRFP mouse strain, Itoh-Nakadai, et al. purified 

lymphoid progenitor cells expressing either low or high levels of tdRFP by FACS, and 

quantified the relative levels of Bach2 expression in each population by RT-PCR (Itoh-

nakadai et al. 2014). I crossed Bach2tdRFP mice with the Foxp3EGFP-DTR mouse strain, which 

would enable fluorescent tracing of Foxp3+ Treg cells—according to GFP expression—and 

their ablation using DTx (Figure 3.1). I thus generated a novel dual reporter mouse strain, 

Bach2tdRFP Foxp3EGFP-DTR, where the levels of tdRFP—serving as a marker indicative of the 

levels of expression of the Bach2 gene—could be quantified in Foxp3+ Treg cells. The aim of 

this chapter was to ascertain whether Bach2 is expressed in lineage-committed Treg cell 

populations. 

 
 

Figure 3.1: Schematic of transgenic loci in Foxp3EGFP-DTR Bach2tdRFP mouse strain.  
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3.2 Results 

3.2.1 Bach2 expression in thymic Treg cell precursors 

I sought to assess the expression of Bach2tdRFP reporter activity in Foxp3+ Treg cell 

precursors developing in the thymus. Thymocytes were extracted from Foxp3EGFP-DTR 

Bach2tdRFP/+ mice and analysed using flow cytometry. Gating on CD4SP thymocytes revealed 

that developing Treg cells in the thymus expressed high levels of Bach2 (Figure 3.1A).  

 

Discerning between different thymocyte populations showed varying Bach2 reporter 

expression in relation to developmental stage, with the double-positive (DP) population being 

negative—comparable to Foxp3EGFP-DTR Bach2+/+ control mice—the Foxp3- CD4SP 

population exhibiting intermediate Bach2 reporter expression and the Foxp3+ CD4SP 

population expressing the highest levels (Figure 3.1B). As the frequency of Foxp3+ CD4SP 

cells are comparatively lower in relation to that of other thymocyte types, plotting of the 

mean fluorescence intensity (MFI) of tdRFP expression further provided useful insight into 

the relative Bach2 expression between different thymocyte populations. Thus, developing 

thymic Treg cells express high levels of Bach2, consistent with its role in their development. 
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Figure 3.2: Bach2 is highly expressed during Treg ontogeny.  

(A) Representative flow cytometry of thymocytes from Foxp3EGFP-DTR Bach2tdRFP/+ mice, 
with CD4 single-positive (CD4SP) cells gated (left) and the expression of Bach2tdRFP and 
Foxp3EGFP-DTR in these gated cells (right). Gated on live single cells. (B) Histograms of 
representative Bach2tdRFP expression (left) and replicate mean fluorescence intensity 
measurements (MFI, right) of distinct thymocyte populations from Foxp3EGFP-DTR 
Bach2tdRFP/+ or Foxp3EGFP-DTR Bach2+/+ control mice. Data are representative of two 
independently repeated experiments with four to five mice per group. **p <0.01, ****P 
<0.0001; unpaired Student’s t-test. Numbers in gates show percentages. Bars and error show 
mean and s.e.m. 
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3.2.2 Bach2 expression in peripheral Treg cells under steady-state conditions 

As high levels of Bach2 were observed in thymic Treg cell-precursors, I asked whether high 

Bach2 reporter expression was maintained, or differed, upon their emigration from the 

thymus. Therefore, I isolated blood from Foxp3EGFP-DTR  Bach2tdRFP/+ mice and quantified 

levels of Bach2tdRFP expression in circulating Treg cells using flow cytometry. In contrast to 

the unequivocal high Bach2tdRFP expression in thymic Treg cell-precursors, peripheral 

lineage-committed Treg cells displayed heterogeneous levels of Bach2tdRFP expression 

(Figure 3.3A). Treg cells expressing high and low levels of Bach2tdRFP—hereafter referred to 

as Bach2high and Bach2low Treg cells, respectively—were clearly discernible. As these Treg 

cells were isolated from the blood, they could have been of thymic origin or peripherally 

induced. Nrp1 is considered to represent a marker of tTreg cells under non-inflammatory 

conditions (discussed in section 1.3.1). I therefore, gated blood Treg cells into Nrp1+ or Nrp1- 

populations and quantified levels of Bach2 reporter expression. A substantial proportion of 

Nrp1+ Treg cells (~48%), indicative of tTreg cells, were Bach2low (Figure 3.3B). This was 

especially interesting, given that CD4SP Foxp3+ thymocytes predominantly express high 

levels of the Bach2 reporter, and thus, one can infer that Bach2 is downregulated in a subset 

of thymic Treg cells in the periphery. In comparison, Nrp1- Treg cells—indicative of pTreg 

cells—were predominantly Bach2high (23% were Bach2low). Therefore, these data indicate 

that a subset of peripheral tTreg cells downregulate Bach2, following their emigration from 

the thymus. 
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Figure 3.3 Extra-thymic Treg cells express heterogeneous levels of Bach2. 

(A) Representative gating of Treg cells isolated from the blood of Foxp3EGFP-DTR Bach2tdRFP/+ 
mice (left) and expression of Bach2tdRFP and CD44 by the gated cells (right). (B) 
Representative histograms (left) and frequency of cells (right) expressing low Bach2tdRFP 
(Bach2low) within Nrp1+ and Nrp1– subsets of EGFP+ Treg cells from Foxp3EGFP-DTR 
Bach2tdRFP/+ mice. Data are representative of two independently repeated experiments with 
four to five mice per group. ****P <0.0001; unpaired Student’s t-test. Numbers in gates 
show percentages. Bars and error show mean and s.e.m. 
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3.2.3 The downregulation of Bach2 expression in peripheral Treg cells in response to 

inflammation  

The experiments thus far considered Bach2 expression during steady-state conditions. That 

is, the levels of Bach2tdRFP expression in a non-inflammatory environment. Being that 

BACH2 is regulated by antigen receptor and inflammatory signals in B cells and Foxp3- T 

cells (section 1.7.1), I questioned how levels of Bach2 would change in Treg cells in response 

to inflammation. One established approach to induce systemic inflammation and Treg cell 

activation is the transient incomplete ablation of Treg cells in the Foxp3EGFP-DTR transgenic 

system (first introduced in section 1.5.5). Here, a single DTx dose causes incomplete 

transient depletion of Treg cells, which then gradually recover over a period of 10–15 days (J. 

M. Kim, Rasmussen, and Rudensky 2007). This acute loss results in temporary Teff cell 

activation and expansion. As I had crossed the Bach2tdRFP transgene with Foxp3EGFP-DTR  in 

our dual reporter model, I used the DTx-mediated ablation model to provoke acute 

inflammation (Figure 3.4). 

 

Eleven days following the administration of DTx to Foxp3EGFP-DTR  Bach2tdRFP/+ mice, I 

isolated splenocytes and assessed the expression of the Bach2 reporter using flow cytometry. 

A striking reduction in the expression of Bach2tdRFP was observed in splenic Treg cells from 

DTx-treated mice (Figure 3.5A). Whereas ~63% of splenic Treg cells from the PBS-treated 

control mice were Bach2high, only ~13% were observed in those treated with DTx (Figure 

3.5B). Thus, Treg cells downregulate Bach2 expression in response to inflammation. 
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Figure 3.4: Experimental schema of the DTx-mediated acute Treg cell depletion model in the 

Foxp3EGFP-DTR  Bach2tdRFP/+ transgenic mouse strain. 

 

 

Figure 3.5: Treg cells downregulate Bach2 expression in response to inflammation. 

(A) Representative flow cytometry of splenic Treg cells isolated from Foxp3EGFP-DTR 

Bach2tdRFP/+ mice 11 days following treatment with PBS control or 50 µg/kg DTx, and their 
expression of Bach2tdRFP and CD44. (B) Representative histograms of Bach2tdRFP expression 
(top) and replicate measurements (bottom) of Bach2tdRFP expression among EGFP+ Treg cells 
following PBS or DTx treatment. Data are representative of two independently repeated 
experiments with four to five mice per group. ****P <0.0001; unpaired Student’s t-test. 
Numbers in gates show percentages. Bars and error show mean and s.e.m.  
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3.2.4 The expression of distinct gene sets correlate with expression levels of Bach2  

I asked whether differences in gene expression could be distinguished between Bach2low and 

Bach2high Treg cells. I used FACS to purify EGFP+ Treg cells from the spleens of Foxp3EGFP-

DTR Bach2tdRFP/+ mice into Bach2low and Bach2high populations and quantified differential 

gene expression using RNA-Seq. Unsupervised hierarchical clustering analysis clearly 

discriminated Bach2low and Bach2high Treg cells (Figure 3.6A). Within the Bach2high 

population, the expression of genes classically associated with naïve and memory lymphoid-

resident T cells, such as Ccr7 and Sell, were enriched. Likewise, genes required for migration 

to non-lymphoid tissue, such as Ccr8, Ccr2 and Ccr4 were downregulated. In addition, 

Satb1, which encodes a transcription factor involved in early Treg cell lineage-commitment, 

was upregulated in Bach2high Treg cells. In contrast, within the Bach2low population, genes 

that encode proteins required for Treg cell function, such as Ebi3 (encodes a subunit for IL-

35), Gzmb and Fgl2, were enriched. Co-stimulatory and co-inhibitory genes, such as Icos and 

Tigit, were also found upregulated in Bach2low Treg cells. Notably, as a positive control, we 

observed higher levels of Bach2 mRNA in Bach2high versus Bach2low cells, in contrast to 

Foxp3 mRNA, which was uniformly expressed. 

 

Previous studies have identified gene expression changes in aTreg versus rTreg cells (Luo et 

al. 2016). Comparing these known changes in these particular genes with those between 

Bach2low and Bach2high Treg cells using gene set enrichment analysis (GSEA) revealed that 

the aTreg gene signature was significantly enriched in Bach2low Treg cells (normalised 

enrichment score; NES = 1.17, p < 0.05), as shown in Figure 3.6B. In addition, GSEA 

analysis identified the enrichment of genes involved in IL-2/STAT5 signalling—a gene set 

canonically upregulated in TCR-stimulated T cells—in Bach2low Treg cells (NES = 1.35, p < 

0.05). These expression data strongly suggest that rTreg cells are enriched among Treg cells 
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expressing high Bach2, and conversely, aTreg cells are enriched among Treg cells expressing 

low Bach2. 
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Figure 3.6: Heterogeneous Bach2 expression in Treg cells identifies distinct populations 
bearing divergent gene transcription.  

(A) Unsupervised hierarchical clustering analyses showing differentially expressed genes 
between Bach2high and Bach2low Treg cells purified by FACS from spleens of Foxp3EGFP-DTR 

Bach2tdRFP/+ mice (FC > 2, FDR < 0.05). Replicates and genes are hierarchically clustered on 
the x and y axes, respectively. The fragments per kilobase of transcript per million mapped 
reads (FPKM) values are normalized to row maxima. (B) Gene set enrichment analysis 
(GSEA) of known differentially upregulated genes in aTreg cells versus rTreg cells within 
the transcriptional differences between Bach2low and Bach2high Treg cells from Foxp3EGFP-DTR 

Bach2tdRFP/+ mice (top). GSEA of genes involved in IL-2/STAT5 signalling within the 
transcriptional differences between Bach2low and Bach2high Treg cells (bottom). Data are 
representative of four biological replicates per group. 
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3.2.5 Bach2 expression distinguishes different Treg cell phenotypes 

I sought to validate the transcriptional data obtained from RNA-Seq experiments at the 

protein level, and thus used antibody staining to identify several key cell surface phenotypic 

markers in Bach2low and Bach2high Treg cells. Flow cytometric analysis of splenic Treg cells 

from Foxp3EGFP-DTR  Bach2tdRFP/+ mice showed that Bach2low Treg cells expressed high levels 

of CD62L and CD25, whereas Bach2high Treg cells expressed high levels of KLRG1 and 

CD44. Although some activation markers, such as CD69, showed no differences in 

expression, these data were consistent with that obtained from RNA-Seq experiments. 

Therefore, expression data at the transcriptional and protein level support the idea that high 

Bach2 expression demarcates Treg cells with a resting phenotype. 
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Figure 3.7: Bach2low and Bach2high Treg cells are phenotypically divergent at the protein 
level. 

(A) Representative histograms (top) and replicate measurements (bottom) of the expression 
of the indicated proteins on the surface of Treg cells expressing high versus low Bach2tdRFP, 
isolated from the spleens of  Foxp3EGFP-DTR Bach2tdRFP/+ mice. 

  



 75 

3.3 Discussion 

3.3.1 Summary 

In this chapter, I utilised a novel dual reporter system, the Foxp3EGFP-DTR Bach2tdRFP mouse 

strain, to model Bach2 expression in Treg cells. Flow cytometric measurement of the 

Bach2tdRFP reporter expression within EGFP+ Treg yielded novel insights into how Bach2 

expression varies depending on the Treg developmental stage, physiological location and 

environment. Thymic Foxp3+ Treg precursors highly expressed the Bach2 reporter (Figure 

3.2). However, upon their maturation and migration to secondary lymphoid organs, 

peripheral Treg cells then displayed heterogenous Bach2tdRFP expression (Figure 3.3). By 

leveraging the use of the Diphtheria toxin receptor transgene knock-in at the Foxp3 locus 

(Figure 3.4), acute DTx-mediated systemic Treg ablation in the Foxp3EGFP-DTR Bach2tdRFP 

revealed that the Bach2 reporter is downregulated in response to inflammation (Figure 3.5). 

By comparing global transcriptional differences between Treg cells expressing high versus 

low levels of the Bach2 reporter (Bach2high versus Bach2low Treg cells, respectively) using 

RNA-Seq, I observed enrichment of genes associated with lymphoid residency and 

quiescence in Bach2high Treg cells (Figure 3.6). Conversely, Bach2low Treg cells were 

enriched for the aTreg cell gene set and upregulated genes involved in Treg cell function and 

migration toward non-lymphoid tissue. Indeed, by staining EGFP+ Treg cells from Foxp3EGFP-

DTR Bach2tdRFP mice with a panel of hallmark cell surface phenotypic markers, Bach2high Treg 

cells were CD62L+ CD25+ CD44- KLRG1-. In contrast, Bach2low Treg cells were CD62L- 

CD25- CD44+ KLRG1+ (Figure 3.7). These data represent a comprehensive and novel insight 

into Bach2 expression in Treg cells. Collectively, my studies show that heterogeneous Bach2 

expression identifies Treg cells in distinct states of activation. Furthermore, I demonstrated 

that Treg cells expressing high levels of Bach2 discriminate rTreg cells, whereas those 

expressing low levels of Bach2 distinguish aTreg cells.  
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3.3.2 Expression of BACH2 in human lineage-committed Treg cells 

These data are in agreement with that generated by Zemmour, et al., who used scRNA-Seq 

experiments to show that Bach2 is downregulated in Treg cells from activated clusters. 

Interestingly, their analysis of human cells—in accordance with my findings—revealed that 

high Bach2 expression coincided with the expression of CCR7, SATB1, and SELL. These 

findings point toward shared patterns of Bach2 expression between mouse and human Treg.  

 
3.3.3 The role of BACH2 during thymic Treg cell development 

As Bach2tdRFP was expressed highly during Treg ontogeny, it is interesting to speculate on the 

role that Bach2 fulfils during thymic Treg cell development. Whereas Bach2tdRFP expression 

in DP thymocytes was absent, it was upregulated at the next developmental stage (CD4SP) 

and peaked in Foxp3+ CD4SP cells (Figure 3.2B). Here, it would be interesting to look into 

what factors propagate Bach2 expression and are required for its upregulation. In addition, it 

would be interesting to use highly sensitive techniques to observe where in the genome 

BACH2 is binding in Foxp3+ CD4SP cells, and compare this with the distribution of 

chromatin accessibility. As absence of BACH2 results in the failure of Foxp3 expression, 

perhaps these two TFs function in a co-ordinated manner to establish Treg cell populations. 

However, the role of BACH2 during pre-lineage-commitment of Treg cells is outside the 

scope of the present work.  

 
3.3.4 Heterogeneous Bach2 expression in peripheral Treg cells 

Whereas developing Treg cells in the thymus were explicitly Bach2high, circulating tTreg 

cells—as identified using Nrp1—expressed Bach2 at varying levels (Figure 3.3). 

Interestingly, Treg cells negative for Nrp1—indicating pTreg cells— were predominantly 

Bach2high, which suggested that pTreg cells are less susceptible to Bach2 downregulation 
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than tTreg cells under steady-state conditions. It remains to be understood why this may be 

the case, and further experiments could address if, and why mechanistically, Bach2 

expression is less heterogeneous in Treg cells that are peripherally induced. Further 

experiments could also consider the relationship between Bach2 heterogeneity and activation 

of the PI3K-AKT-mTOR signalling pathway. As BACH2 is phosphorylated downstream of 

PI3K activation, the levels of activation could be ascertained in Bach2high versus Bach2low 

Treg cells from Foxp3EGFP-DTR Bach2tdRFP mice. In addition, to further the understanding of 

my previously mentioned observation, relating to the heterogeneity of Bach2 expression in 

circulating tTreg versus pTreg cells, PI3K activation could be measured in circulating Nrp1+ 

versus Nrp1- Treg cells. 
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4 Validation and phenotyping of the Foxp3EGFP-Cre-ERT2 Bach2flox mouse 

strain  

 

4.1 Background 

Following on from my observation that levels of Bach2 expression discriminates Treg cells 

of distinct phenotypes, I sought to understand the function of BACH2 in lineage-committed 

Treg cells. As Bach2 expression is required in Treg cell precursors for upregulation of 

Foxp3—that is, it is required in the developmental stage prior to Treg cell lineage-

commitment—use of models, such as BachKO mice, cannot provide a system to study 

lineage-committed Treg cells (section 1.7.2). Instead, I needed to establish a novel system, 

where BACH2 function is ablated only after induction of Foxp3 expression and Treg lineage-

commitment has occurred. To achieve this, I crossed mice bearing the Bach2flox allele with 

those bearing a Foxp3-driven Cre recombinase transgene. Here, I used two different Foxp3 

transgenes—the Foxp3YFP-Cre and Foxp3EGFP-Cre-ERT2 transgenes—in separate crosses. In 

contrast to the BachKO mouse model—where BACH2 function is abrogated in all cell types 

from gestation, the use of Foxp3-driven Cre recombinase transgenes should restrict excision 

at the Bach2flox locus in cell types only after their expression of Foxp3 (i.e., after Treg cell 

lineage-commitment has taken place). Furthermore, as the estrogen receptor is knocked into 

the Foxp3 locus in the Foxp3EGFP-Cre-ERT2 transgene, the protein product will only be driven to 

the nucleus upon treatment of mice with the estrogen analog tamoxifen. Therefore, use of this 

particular transgene enables additional temporal control of Cre-mediated excision at the 

Bach2flox transgenic locus. In summary, I generated two novel mouse strains—the Foxp3YFP-

Cre Bach2flox strain and the Foxp3EGFP-Cre-ERT2 Bach2flox strain, to understand the function of 

BACH2 in lineage-committed Treg cells. This chapter concerns the validation and 

phenotyping of these novel mouse strains.  
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4.2 Results 

4.2.1 Bach2 excision at the Bach2flox locus is not specific to Foxp3+ cells in the 

Foxp3YFP-Cre Bach2fl/fl strain 

The Foxp3YFP-Cre transgene has been reported in previous studies to result in excision of loxP-

flanked exons within Foxp3+ cells (Rubtsov et al. 2008). I sought to validate that indeed, 

Bach2 excision only occurs in Foxp3+ Treg cells in the Foxp3YFP-Cre Bach2fl/fl mouse strain.  

 

Foxp3- Tconv cells and Foxp3+ Treg cells were purified from the spleens of eight-week old 

Foxp3YFP-Cre Bach2fl/fl mice using FACS. Genomic DNA (gDNA) was extracted from these 

cells and used in PCR with primers that amplify either the TLR9 gene (control), Bach2fl/fl 

(loxP-flanked exon 4), or Bach2ex/ex (excised exon 4). 

 

Although unexcised Bach2fl/fl was detected in Foxp3- Tconv cells, Bach2ex/ex was also 

detected at similar levels to that from Foxp3+ Treg cells, using this semi-quantitative method 

(Figure 4.2). I concluded that excision of exon 4 is not specific to Foxp3+ Treg cells in the 

Foxp3YFP-Cre Bach2fl/fl mouse strain and, therefore, this system was not suitable for 

understanding the lineage-restricted function of BACH2 in Foxp3+ Treg cells. 
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Figure 4.1: Schematic of the transgenic loci in the Foxp3YFP-Cre Bach2fl/fl mouse strain. 

 

 

Figure 4.2: Genotyping of splenic Foxp3- Tconv cells and Foxp3+ Treg cells from the 
Foxp3YFP-Cre Bach2fl/fl mouse strain.  

Primers detect either the TLR9 gene control locus (band size 450; left panel), Bach2fl/fl (loxP-
flanked exon 4, band size 250; middle panel), or Bach2ex/ex (excised exon 4, band size 145; 
right panel). Primer-amplified products are indicated with black arrows. 
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4.2.2 Cre-mediated excision in the Foxp3EGFP-Cre-ERT2 Bach2flox strain is restricted to 

Foxp3+ Treg cells after tamoxifen treatment 

The Foxp3EGFP-Cre-ERT2 transgene is an alternative to the Foxp3YFP-Cre, which has been 

suggested to allow a greater level of control—including temporal control—of excision at 

loxP-flanked sites. I crossed mice bearing the Foxp3EGFP-Cre-ERT2 Bach2fl/fl transgenes with 

those bearing Rosa26flSTOP-tdRFP—which drives tdRFP expression from the Rosa26 locus only 

after Cre-mediated excision of an upstream loxP-flanked STOP codon (Figure 4.3A)—to 

enable indelible marking of any cell that had at any time had been exposed to Foxp3-driven 

Cre expression, using treatment with tamoxifen. 

 

As shown in Figure 4.3B, tdRFP induction from the from Rosa26flSTOP-tdRFP locus was indeed, 

only seen in cells from mice that had received tamoxifen in the diet for eight weeks. After 

validating that expression of tdRFP from the Rosa26 locus was tamoxifen dependant, 

analysis of individual T cell types isolated from the blood of Foxp3EGFP-Cre-ERT2 Bach2fl/fl 

Rosa26flSTOP-tdRFP mice using flow cytometry showed that tdRFP induction was specific to 

CD4+ T cells (Figure 4.3C). Furthermore, the percentage of Rosa26tdRFP-positive CD4+ T 

cells was comparable to the percentage of Foxp3+ Treg cells normally found in the blood 

(14.1%). To confirm that excision of exon 4 in the Bach2flox transgene is specific to Foxp3+ 

Treg cells, and no Cre-mediated excision occurs at this locus in Foxp3- cell types, FACS was 

used to purify CD4+ Foxp3EGFP-negative Tconv cells and CD4+ Foxp3EGFP-positive Treg cells 

from the spleens of tamoxifen treated mice, and the abundance of excised alleles was 

quantified. Quantitation of the abundance of relative amounts of the Bach2excised transgene 

showed absent Cre-mediated excision of exon 4 in CD4+ Foxp3EGFP-negative Tconv cells 

from both experimental Foxp3EGFP-Cre-ERT2 Bach2fl/fl Rosa26flSTOP-tdRFP mice and control 

Foxp3EGFP-Cre-ERT2 Bach2+/+ Rosa26flSTOP-tdRFP mice (Figure 4.3D). A positive Bach2excised 
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transgene signal was only detected in the CD4+ Foxp3EGFP-positive Treg cell population. This 

was in contrast to cells isolated from the Foxp3YFP-Cre Bach2flox mouse strain, which 

demonstrated a Bach2excised transgene signal in non-Treg cell populations. Therefore, I 

concluded that Cre-mediated excision events at the Bach2 and Rosa26 transgenic loci in the 

Foxp3EGFP-Cre-ERT2 Bach2fl/fl Rosa26flSTOP-tdRFP mouse strain are restricted to Foxp3+ Treg cells, 

after exposure of mice to tamoxifen. As a result of these findings, the Foxp3EGFP-Cre-ERT2 

Bach2fl/fl conditional knockout (CKO) mouse model was the system chosen for future 

experiments.  

 

 

Figure 4.3: Excision of exon 4 in Foxp3EGFP-Cre-ERT2 Bach2fl/fl Rosa26flSTOP-tdRFP mice is 
specific to Foxp3+ Treg cells. 

(A) Schematic of the transgenic loci in the Foxp3EGFP-Cre-ERT2 Bach2fl/fl Rosa26flSTOP-tdRFP 
mouse strain. (B) Representative flow cytometry plots showing Rosa26flSTOP-tdRFP induction 
among circulating CD4+ T cells from Foxp3EGFP-Cre-ERT2 Bach2fl/fl Rosa26flSTOP-tdRFP mice 
treated without (-TAM) or with (+TAM) tamoxifen feed for eight weeks. (C) Representative 
flow cytometry plots showing Rosa26flSTOP-tdRFP induction in CD4- CD8- lymphocytes, and 
CD8+ or CD4+ T cells from Foxp3EGFP-Cre-ERT2 Bach2fl/fl Rosa26flSTOP-tdRFP mice treated with 
tamoxifen feed for eight weeks. (D) Relative quantitation of the abundance of the Bach2excised 
transgene in FACS-purified CD4+ Foxp3- Tconv and CD4+ Foxp3+ Treg cells isolated from 
the spleens of animals of indicated genotypes treated with tamoxifen for eight weeks. Data 
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are representative of two individual experiments with six to seven mice per group. ns, not 
significant; unpaired Student’s t-test. Numbers in gates show percentages. Bars and error 
show mean and s.e.m.  
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4.2.3 The function of BACH2 in lineage-committed Treg cells is different to its role 

prior to lineage-commitment 

As Foxp3 induction is dependent upon BACH2 expression during Treg cell development, I 

asked whether BACH2 is likewise required for the maintenance of Foxp3 after Treg cell 

lineage-commitment. Cells expressing Foxp3 in the Foxp3EGFP-Cre-ERT2 Bach2flox Rosa26flSTOP-

tdRFP mouse strain are indelibly marked upon tamoxifen administration, and subsequently, any 

cells that have lost Foxp3 reporter expression can be identified. I examined the ratio of 

EGFP-negative “ex-Treg cells” within the fraction of tdRFP+ CD4+ T cells in experimental 

Foxp3EGFP-Cre-ERT2 Bach2fl/fl Rosa26flSTOP-tdRFP mice and control Foxp3EGFP-Cre-ERT2 Bach2+/+ 

Rosa26flSTOP-tdRFP mice, treated with tamoxifen for eight weeks (Figure 4.4A).  

 

I observed a comparable ratio of ex-Treg cells from experimental and control mice, in both 

the thymus and spleen (Figure 4.4B). Consistent with the lack of excess lineage-instability 

caused by the loss of BACH2, splenic Treg cells from tamoxifen-treated Foxp3EGFP-Cre-ERT2 

Bach2fl/fl mice did not secrete greater amounts of IFN-g upon ex vivo stimulation (Figure 

4.4C). In addition, similar percentages and absolute numbers of Foxp3+ Treg cells were 

observed the spleen, mesenteric lymph nodes (mLN) and inguinal lymph nodes (iLN) 

between tamoxifen-treated Foxp3EGFP-Cre-ERT2 Bach2fl/fl and control Foxp3EGFP-Cre-ERT2 

Bach2+/+ mice. 

 

Collectively, these date indicate that—in contrast to its function prior to Treg lineage-

commitment—BACH2 function following Treg cell lineage-commitment is not required to 

maintain Foxp3 expression or restrain inflammatory helper cytokine release.  
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Figure 4.4: The loss of BACH2 function following Treg cell lineage-commitment does not 
result in Treg lineage instability. 

(A) Representative flow cytometry and (B) replicate measurements of the frequency of 
EGFP– “ex-Treg” cells within the fraction of  Rosa26tdRFP-positive CD4SP thymocytes (left) 
or CD4+ splenocytes (right) of mice of indicated genotypes, fed tamoxifen for eight weeks. 
(C) Percentages of splenic IFN-γ+ Treg cells isolated Bach2+/+ Foxp3EGFP-Cre-ERT2 mice 
(Bach2+/+) and Bach2fl/fl Foxp3EGFP-Cre-ERT2 mice (Bach2fl/fl) treated with tamoxifen for eight 
weeks. Data are representative of two individual experiments with seven mice per group (A 
and B), or of nine mice per group (C). ns, not significant; unpaired Student’s t-test. Numbers 
in gates show percentages. Bars and error show mean and s.e.m.  
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Figure 4.5: Loss of BACH2 function following Treg cell lineage-commitment does not affect 
the frequency or absolute number of Foxp3+ Treg cells. 

Representative flow cytometry (left) and replicate measurements (right) of Foxp3 expression 
among CD4+ T cells in indicated organs from tamoxifen-treated animals of the indicated 
genotypes. Data are representative of two repeated experiments with nine (spleen and iLN) or 
five to nine (mLN) mice per group. ns, not significant; unpaired Student’s t-test. Numbers in 
gates show percentages. Bars and error show mean and s.e.m. 
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4.2.4 BACH2 restrains the expression of aTreg genes in lineage-committed Treg cells 

As loss of Bach2 in lineage-committed Treg did not lead to a loss of Treg cell identity, I 

asked whether Bach2 is involved in shaping the phenotypic heterogeneity of lineage-

committed Treg cells. Global transcriptional profiling of individual cells—and thus, 

intercellular heterogeneity at a single-cell level—can be ascertained using scRNA-Seq 

(described in section 1.6). I purified splenic EGFP+ Treg cells from tamoxifen-treated 

conditional knockout Foxp3EGFP-Cre-ERT2 Bach2fl/fl mice and control Foxp3EGFP-Cre-ERT2 

Bach2+/+ mice (three biological replicates per genotype)—hereafter referred to as CKO and 

WT mice, respectively—subjected these cells to scRNA-Seq. The resulting data were 

analysed principally by Dr James Clarke, with myself, Simon Andrews and Rahul 

Roychoudhuri guiding the process and providing feedback. Data analysis with Seurat and 

visualisation using t-distributed stochastic neighbour embedding (tSNE) revealed that Treg 

cells isolated from CKO and WT mice formed seven transcriptionally distinct clusters 

(Figure 4.6A–B). 

 

Seurat principal component analysis was used to identify genes whose expression represented 

the primary sources of heterogeneity across all seven tSNE clusters (Figure 4.6B), 

highlighting genes such as Sell, Ccr7 and Cxcr3. Calculation of relative frequency of WT and 

CKO Treg cells in each individual cluster—normalised in relation to the total number of cells 

per cluster and per genotype—revealed a reduction in the frequency of CKO Treg cells in 

Cluster 0 and Cluster 1. Conversely, a relative increase in the frequency of CKO Treg cells 

was observed in Cluster 4 (Figure 4.6C). In order to understand these tSNE clusters in greater 

detail, I examined the differentially expressed genes between Cluster 4 and Cluster 0 (Figure 

4.6D). The expression of genes associated with Treg cell activation and known to be 

downregulated in Bach2high versus Bach2low Treg cells (Figure 3.6A) —such as Icos, Cxcr3, 
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Fgl2, Id2, Pdcd1, and Casp1—were significantly elevated in Cluster 4. In contrast, genes 

associated with lymphocyte quiescence and lymphoid tissue residency, and upregulated in 

Bach2high vs Bach2low Treg cells —such as Sell, Ccr7 and Satb1—were downregulated in 

Cluster 4.  

 

To confirm that BACH2 expression underlies the observed differences between WT and 

CKO Treg cells, I used a GSEA with bulk RNA-Seq data to test whether genes 

downregulated in Bach2high versus Bach2low Treg cells were significantly enriched among 

Bach2-deficient CKO Treg cells (Figure 4.7). Unlike scRNA-Seq data, bulk RNA-seq data 

are not amenable to the exclusion of contaminating cell populations (section 2.14). Therefore, 

these data cannot be used to draw any solid conclusions.  

 

In summary, these results suggest that BACH2 is a principal regulator of Treg cell 

transcriptional heterogeneity and is responsible for a component of the gene expression 

profile associated with rTreg cells. 
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Figure 4.6: Bach2-deficient Treg cells are found in clusters that are transcriptionally distinct 
from Bach2-sufficient Treg cells in single-cell RNA sequencing (scRNA-Seq) analyses. 

(A) T-distributed stochastic neighbour embedding (tSNE) visualisation of single EGFP+ Treg 
cells isolated from the spleens of tamoxifen-treated Foxp3EGFP-Cre-ERT2 Bach2+/+ (WT) mice 
and Foxp3EGFP-Cre-ERT2 Bach2fl/fl (CKO) mice, clustered by gene expression profiles. Three 
biological replicate cell populations per genotype were subjected to scRNA-Seq. (B) 
Heatmap showing the expression of the genes in the dataset that represent the primary 
sources of dataset heterogeneity, within each of the seven clusters identified in A. (C) The 
relative frequency of Treg cells from CKO and WT mice within each cluster, normalized to 
their average ratio among WT replicates. (D) The fold change in expression of indicated 
differentially expressed genes (padj < 0.005 and a log2 fold change > 1) in Treg cells from 
Cluster 4 versus Cluster 0. Data are from three biological replicates per group. 
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Figure 4.7: Genes that are upregulated in Bach2low versus Bach2high Treg cells (activated 
Treg) are significantly enriched among Bach2-deficient Treg cells. 

Gene set enrichment analysis (GSEA) from bulk RNA-Seq data showing enrichment of genes 
known to be downregulated in Bach2high vs Bach2low Treg cells within the transcriptional 
differences between splenic Treg cells isolated from tamoxifen-treated Foxp3EGFP-Cre-ERT2 

Bach2+/+ (WT) mice and Foxp3EGFP-Cre-ERT2 Bach2fl/fl (CKO) mice. Data are from three 
biological replicates per group. 
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4.2.5 BACH2 restrains the expression of aTreg markers at the protein level in lineage-

committed Treg cells 

As results from analysis of scRNA-Seq and bulk RNA-Seq data indicated that BACH2 

restrains the frequency of aTreg cells in Treg cell populations found in peripheral tissues, I 

used flow cytometry to examine the expression of key aTreg markers—CD62L, CD44 and 

ICOS—at the protein level, in Treg cells isolated from several different tissues from 

tamoxifen-treated conditional knockout Foxp3EGFP-Cre-ERT2 Bach2fl/fl  (CKO) mice and control 

Foxp3EGFP-Cre-ERT2 Bach2+/+ (WT) mice. Bach2-deficient Treg cells from all tissues 

examined—the spleen, iLN and mLN—exhibited significantly elevated frequencies of 

activated Treg cells. Here, loss of Bach2 in lineage-committed Treg cells resulted in their 

downregulation of cell surface CD62L and, conversely, their upregulation CD44 (Figure 

4.8A, B). In addition, whereas approximately 44% of Bach2-sufficient splenic Treg cells 

expressed cell surface ICOS, a greater proportion of ICOS+ splenic Treg cells (approximately 

66%) were observed from CKO mice (Figure 4.8C). Therefore, loss of Bach2 in lineage-

committed Treg cells results in greater aTreg differentiation at both the transcriptional and 

protein level. Collectively, these results suggest that—post lineage-commitment—BACH2 

fulfils a central function in maintaining the resting phenotype of Treg cells. 

  



 92 

 

Figure 4.8: Bach2-deficient Treg cells from different tissues demonstrate an activated Treg 
cell phenotype. 

(A) Representative flow cytometry plots showing cell surface CD62L and CD44 expression 
by Treg cells isolated from the spleen, mesenteric lymph node (mLN) and inguinal lymph 
node (iLN) of control Foxp3EGFP-Cre-ERT2 Bach2+/+ mice and Foxp3EGFP-Cre-ERT2 Bach2fl/fl and 
(CKO) mice, treated with tamoxifen for eight weeks. (B) Frequencies of CD62L+ CD44- 

resting Treg (rTreg) cells from mice described in A within indicated tissues. (C) 
Representative histogram showing the expression (left) and replicate measurements (right) of 
ICOS on splenic Treg cells from control (black) and CKO (red) mice treated with tamoxifen. 
Data are representative of two experiments with nine mice per group (spleen and iLN) or four 
to five mice per group (mLN). *P <0.05, ***P <0.001, ****P <0.0001; unpaired Student’s t-
test. Numbers in gates show percentages. Bars and error show mean and s.e.m.  
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4.3 Discussion 

4.3.1 Summary 

In this chapter, I validated a novel animal model to interrogate the function of BACH2 in 

lineage-committed Treg cells. In the Foxp3YFP-Cre Bach2flox mouse strain, Cre-mediated 

excision of loxP-flanked exon 4 in the Bach2 locus was observed in Foxp3-negative cell 

types (Figure 4.2). In contrast, Cre-mediated excision events were induced specifically in 

Foxp3-positive Treg cells in the Foxp3EGFP-Cre-ERT2 Bach2fl/fl mouse strain—following 

tamoxifen administration—as demonstrated using genotyping and constitutive reporter 

labelling with the Rosa26flSTOP-tdRFP transgene (Figure 4.3). Upon confirmation of the 

Foxp3EGFP-Cre-ERT2 Bach2fl/fl model as a robust system, the addition of the Rosa26flSTOP-tdRFP 

transgene in the system for lineage tracking revealed that no Treg lineage instability resulted 

from the loss of BACH2 function in lineage-committed Treg cells (Figure 4.4). 

Concordantly, no decrease in the percentage of EGFP+ Treg cells was observed in different 

tissues examined in conditional knockout Foxp3EGFP-Cre-ERT2 Bach2fl/fl versus control 

Foxp3EGFP-Cre-ERT2 Bach2+/+ mice (Figure 4.5). However, dimensionality reduction analyses of 

scRNA-Seq data showed that CKO Treg cells expressed transcriptional profiles distinct from 

WT Treg cells. Whereas Bach2-sufficient splenic Treg cells isolated from control mice 

grouped in a cluster representing canonical rTreg cell genes, Bach2-deficient splenic Treg 

cells isolated from CKO mice grouped in clusters whose genes associate with the aTreg cell 

phenotype (Figure 4.6). In addition, analysis of bulk RNA-Seq data of CKO versus WT Treg 

cells using GSEA with genes associated aTreg cells—as identified in section 0 and shown in 

Figure 3.6—with that aTreg cell genes were enriched in Bach2-deficient splenic Treg cells 

(Figure 4.7). Consistently, flow cytometry analysis of key cell surface activation markers 

confirmed that at the protein level, CKO Treg cells likewise display an aTreg cell phenotype 

(Figure 4.8). These data suggest that loss of Bach2 in lineage-committed Treg cells results in 
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their greater predisposition to acquire an activated phenotype and that BACH2 functions to 

maintain resting Treg cells.  

 

4.3.2 Promiscuous Cre-deletion caused by non-Foxp3-specific expression of the  

Foxp3YFP-Cre transgene 

The finding that non-specific deletion of loxP-flanked genes occurs in the Foxp3YFP-Cre 

system—as shown in Figure 4.2—is surprising, given the widespread use of this transgene in 

the community and the substantial number of publications on its use. Informal discussions 

within the Laboratory of Lymphocyte Signalling and Development at the Babraham Institute 

support this finding, where the same observation has been made independently, by different 

scientists with different alleles. This promiscuous Cre-mediated deletion caused by non-

specific expression—or ‘leaky’ expression—of the Foxp3YFP-Cre transgene, was also reported 

by Franckaert et al., who utilized these leaky excision events to understand the biology of 

CD28 signalling in Foxp3+ versus Foxp3- T cells (Franckaert et al. 2015).  Informal 

discussions with other scientists indicate that the level to which leaky excision events impact 

the system also depend on the region flanked by loxP sites. Under such a scenario, some opt 

to conduct genotyping for all individual mice and then exclude those demonstrating leaky 

excision. Given the extent to which leaky excision events are known in the Foxp3YFP-Cre 

system it is important that a broader awareness is generated in the field about the potential 

artefacts that could result from use of this strain in experiments without testing of the 

specificity of Cre-mediated excision for all alleles used. 

 

4.3.3 BACH2 is repurposed following Treg cell lineage-commitment 

Given that BACH2 acts in Treg cell precursors to establish a population of Foxp3+ lineage-

committed Treg cells (as discussed in section 1.7.2), it was unexpected to find that following 
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Treg cell lineage-commitment, BACH2 no longer functions in the maintenance of Foxp3+ T 

cell populations. Prior to conducting the lineage tracking studies—utilizing the Foxp3EGFP-Cre-

ERT2 Bach2flox conditional knockout system with the Rosa26flSTOP-tdRFP transgene —I expected 

to observe a loss of Treg cell identity in Treg cells that had lost BACH2 function following 

lineage-commitment. In contrast, no increase in ex-Treg cell frequencies  were observed from 

CKO Foxp3EGFP-Cre-ERT2 Bach2fl/fl Rosa26flSTOP-tdRFP mice on comparison with controls. These 

findings indicate that BACH2 fulfils different functions depending on the developmental 

stage of the T cell; whereas BACH2 acts in Treg cell precursors to establish Foxp3+ Treg 

cells, BACH2 functions to direct phenotypic heterogeneity in lineage-committed Treg cells. 

This repurposing of the function of BACH2 is not uncommon to transcription factors and has 

been reported in other instances, such as for Th-POK (Carpenter et al. 2017). 

 

4.3.4 scRNA-Seq studies discern considerable transcriptional heterogeneity from 

splenic Treg cells 

The dimensionality reduction analyses of splenic Bach2-sufficient and -deficient Treg cells—

as illustrated in Figure 4.6—were in agreement with other studies that have similarly found 

considerable transcriptional heterogeneity within Foxp3+ Treg cells isolated from the spleen 

(Zemmour et al. 2018). These data (Figure 4.6) support the notion that Foxp3+ Treg cells are 

not a uniform population, which employ the same suppressive mechanisms. Indeed, seven 

transcriptionally distinct clusters were observed. In addition, as the commonly used marker 

genes of the two defined Treg cell states—rTreg and aTreg—did not definitively associate 

with just two separate clusters, these data suggest transcriptomic disparity even within resting 

or activated Treg cells. This is especially pertinent, given that only splenic Treg cells (i.e., 

from one tissue type) were analysed. Further advances in technology would enable greater 

insight into Treg cell heterogeneity between different tissues.  
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The expression of genes such as Sell, Satb1 and Ccr7, represented the principal sources of 

heterogeneity within this dataset (Figure 4.6B). This finding was reassuring, given these 

genes and their corresponding proteins are known to delineate Treg cell populations into 

subtypes (see section 1.6). Indeed, I in part, utilized measurement of cell surface CD62L (the 

product of Sell) to confirm that Treg cells isolated from CKO mice were predisposed toward 

the aTreg cell phenotype (Figure 4.8). Further incorporated into this analysis, was the 

measurement of cell surface CD44 and ICOS expression (Figure 4.8C), which have also been 

proposed as markers to discriminate activated Treg cells (Firan 2006; Bollyky et al. 2007; 

Zhang et al. 2017). The data generated from this principal component analysis (Figure 4.6B) 

provide additional marker genes that could be incorporated in analyses to define Treg cell 

subtypes from heterogeneous Treg cell populations.  

 

4.3.5 Molecular mechanisms of BACH2-mediated constraint of aTreg cell 

differentiation 

Pertinent questions remain regarding how, at the molecular level, BACH2 fulfils its role as a 

regulator of Treg cell heterogeneity. Being a transcription factor, where does BACH2 bind in 

the genome in Treg cells and what are these sites (e.g., promoters, enhancers) that BACH2 

binds to? Does the binding of BACH2 to different genomic loci affect the expression of 

modules of genes associated with specific T cell activation processes, such as responses to 

cytokines or TCR signalling? Does BACH2 co-localise with any other transcription factors, 

or perhaps associate with any epigenetic regulators, to regulate gene expression? Such 

questions are beyond the scope of this thesis, and indeed, form the basis of a thesis by another 

student in the Roychoudhuri laboratory at the Babraham Institute, Firas Sadiyah. 
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5 Assessing the cell-intrinsic function of BACH2 in Treg cells 

 

5.1 Background 

Although previous findings in this thesis identify BACH2 as a factor required by lineage-

committed Treg cells for the maintenance of the resting phenotype, uncertainty regarding (1) 

how this is achieved, and (2) whether this function is cell-intrinsic, remain to be addressed.  

 

Regarding the first point, studies of the BACH2 in other lymphoid cell lineages clearly 

implicate its action in response to antigen receptor activation. This topic is discussed in detail 

in section 1.7 and illustrated in Figure 1.5, of the thesis introduction. As demonstrated by 

Levine et al., the transition of rTreg cells to the aTreg phenotype—a process where BACH2 

function was identified as a central factor—is dependent upon continued TCR signalling 

(Levine et al. 2014). Hypothetically then, it is plausible that—similar to other lymphoid 

lineages—BACH2 acts in response to antigen receptor activation in lineage-committed Treg 

cells. The initial results section of this chapter aims to address whether this indeed, is the 

case.  

 

Regarding the second point, the conditional knockout model utilized in the results section 

from the previous chapter does not address the cell-intrinsic function of BACH2. As all—or 

at least, the majority—of Treg cells in tamoxifen-treated Foxp3EGFP-Cre-ERT2 Bach2fl/fl mice are 

Bach2-deficient, it is impossible to discriminate the cell-intrinsic and cell-extrinsic 

consequences of lineage-restricted BACH2 loss in Treg cells. To state this with a 

hypothetical example, say that a particular TF exists, whose function in a given cell type to 

regulate the expression of genes involved in the release of a cytokine required for their 

proliferation. In a system where this TF is globally ablated in all cells of this particular cell 
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type, one would observe the failure of this cell type to proliferate. However, one would not be 

able to ascertain whether the function of this TF is cell-intrinsic (i.e., it regulates the 

expression of genes involved in cellular proliferation, such as those required for cell cycle), 

or the function of this TF is cell-extrinsic (i.e., it regulates the expression of genes involved in 

the synthesis and secretion of a lymphoproliferative cytokine). The separation of cell-intrinsic 

versus cell-extrinsic function of BACH2 can, therefore, only be ascertained in systems 

containing both Bach2-deficient and Bach2-sufficient Treg cells simultaneously. In such a 

system, any phenotype observed in the Bach2-deficient Treg cell compartment—but not in 

the Bach2-sufficient Treg cell compartment—could be attributed to the cell-intrinsic function 

of BACH2. The results section of this chapter aims uses a natural chimeric mouse system to 

address this. 
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5.2 Results 

5.2.1 BACH2 restrains TCR-driven stimulation in lineage-committed Treg cells 

I sought to determine whether BACH2 acted to control antigen-receptor driven aTreg 

differentiation in lineage-committed Treg cells. rTreg cells were FACS purified from 

experimental Foxp3EGFP-Cre-ERT2 Bach2fl/fl and control Foxp3EGFP-Cre-ERT2 Bach2+/+ mice 

(hereafter referred to as CKO and WT mice, respectively)—on the basis of high CD62L 

expression—cultured for three days in 4-hydroxytamoxifen (4-OHT), then transferred to anti-

CD3 plus anti-CD28 antibody-coated plates and cultured for a further four days (where a 

plate with no antibodies served as a control), as depicted in Figure 5.1. Whereas both WT and 

CKO Treg cells maintained a rTreg cell phenotype after seven days of culture without TCR 

stimulation (Figure 5.1B, top panels), increased aTreg differentiation was observed among 

CKO Treg cells following anti-CD3/28 stimulation (Figure 5.1B, bottom panels). TCR 

stimulation resulted in an average of 18.8% of CD62L- CD44+ aTreg from control Bach2-

sufficient mice versus 38.8% from CKO Bach2-deficient mice (Figure 5.1C, top right plot). 

Consistent with increased in vitro activation, a greater percentage of CTLA-4high Treg cells 

were also observed among the CKO cells (76%, versus 65% from the WT group; Figure 

5.1C, top left plot). In support of previous findings of a lack of excessive lineage instability 

following the loss of BACH2 function after Treg lineage commitment (Figure 4.4), I 

observed no differences in the frequency of Foxp3+ T cells of live CD4+ T cells from WT and 

CKO groups at the end of the assay (Figure 5.1C, bottom right plot). These data suggest that 

BACH2 acts restraining TCR-driven stimulation in lineage-committed Treg cells to regulate 

differentiation of rTreg into aTreg cells. 
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Figure 5.1: BACH2 restrains the differentiation of rTreg to aTreg by restraining TCR-driven 
stimulation in lineage-committed Treg cells. 

(A) Experimental schema of the rTreg activation assay. Resting CD62L+ EGFP+ Treg cells 
were purified by FACS from spleens of experimental Foxp3EGFP-Cre-ERT2 Bach2fl/fl and control 
Foxp3EGFP-Cre-ERT2 Bach2+/+ mice and cultured in the indicated conditions. (B) Representative 
flow cytometry plots showing the cell surface expression of CD62L and CD44 by Treg cells 
of indicated genotypes, with or without stimulation using plate-bound anti-CD3 plus anti-
CD28 monoclonal antibodies. (C) Replicate measurements of the phenotypic Treg cell 
markers at the end of the culture assay. Data are representative of two individual experiments 
with eight mice per group, pooled in culture to constitute two biological replicates per group, 
with each replicate tested in duplicate or triplicate (B and C). Data shown in (C) are all four 
biological replicates per group from two individual experiments, where the average of the 
technical replicates (duplicate or triplicate) was used. ns, not significant; *P < 0.05; unpaired 
Student’s t-test. Numbers in gates show percentages. Bars and error show mean and s.e.m.  
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5.2.2 BACH2 is required for cell-intrinsic maintenance of Treg cell populations 

Previous studies indicate that rTreg cells are long-lived (Cheng et al. 2012). As BACH2 was 

required for the maintenance of rTreg cells, I questioned whether the loss of rTreg cell 

maintenance—in the absence of BACH2 function—is associated with the cell-intrinsic loss 

survival of Treg cell populations over time. By virtue of the Foxp3 locus on the X 

chromosome, female mice heterozygous for the Foxp3EGFP-Cre-ERT2 transgene are natural 

chimeras, as random X-inactivation during development results in the production of both 

EGFP-Cre-ERT2-expressing and non-expressing cells (Figure 5.2A). Therefore, the 

Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl mouse strain is a system, whereby both Bach2-sufficient and 

Bach2-deficient lineage-committed Treg cells are generated, which permits the analysis of 

the cell-intrinsic effects resulting from ablation of BACH2 function to be assessed. 

 

Flow cytometric analysis of chimeric Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl and control Foxp3EGFP-Cre-

ERT2/+ Bach2+/+ mice treated for two weeks with oral tamoxifen revealed a decrease in the 

proportion of CD62Lhigh CD44low rTreg cells and concomitant increase in ICOS expression in 

the EGFP+ Treg cell compartment (Figure 5.2B and C). By eight weeks of oral tamoxifen 

treatment, although no differences in the proportion and frequency of developing EGFP+ 

Treg cells were observed in chimeric mice in the thymus (Figure 5.3A, top panel), I observed 

a significant reduction in the proportion and frequency of EGFP+ Treg cells in chimeric mice 

in the spleen and blood (Figure 5.3A, bottom panel). Subsequently, time-course studies using 

repeated flow cytometry analysis revealed a gradual attrition in EGFP+ Treg cell percentages 

in chimeric  Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl, compared to controls, over a period of eight weeks 

post-administration of oral tamoxifen (Figure 5.3B and C). Importantly, this phenotype is 

distinct from that observed in chimeric mice where Bach2 is ablated in a proportion of cells 
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prior to Treg cell lineage-commitment, where a complete cell-autonomous defect in the 

generation of Treg cells, including in the thymus, is observed among Bach2-deficient cells. 
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Figure 5.2: The in vivo cell-intrinsic function of BACH2 is to restrain aTreg cell 
differentiation. 

(A) Illustration of the genetic chimerism that results from X-inactivation in Treg cells 
isolated from tamoxifen-treated female Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl mice. (B) 
Representative flow cytometry plots and (C) replicate measurements of cell surface CD62L, 
CD44 and ICOS expression on EGFP+ Treg cells isolated from the spleen and iLN of 
chimeric female Foxp3eGFP-Cre-ERT/+ Bach2fl/fl or control Foxp3eGFP-Cre-ERT/+ Bach2+/+ mice  
treated with tamoxifen for two weeks. Data are representative of two experiments with four 
to five mice per group. *P <0.05, **P <0.01; unpaired Student’s t-test. Numbers in gates 
show percentages. Bars and error show mean and s.e.m. 
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Figure 5.3: BACH2 is required for long-term maintenance of Treg cell populations. 

(A) Representative flow cytometry (left) and the percentages (right) of EGFP+ Treg cells 
from the CD4SP thymocyte or splenic CD4+ T cell population from animals of the indicated 
genotypes fed tamoxifen for eight weeks. (B) Representative flow cytometry showing the 
frequency of EGFP+ Treg cells of total CD4+ T cells in the blood of animals at indicated time 
points following the initiation of tamoxifen treatment. (C) Replicate measurements of the 
EGFP+ Treg cell percentages shown in B, normalized to the mean values measured in 
Foxp3eGFP-Cre- ERT/+ Bach2+/+ mice. Data are representative of three experiments with five to 
seven mice per group. ns, not significant; *P <0.05, **P <0.01; unpaired Student’s t-test. 
Numbers in gates show percentages. Bars and error show mean and s.e.m. 
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A cell-autonomous defect in the maintenance of EGFP+ Treg cells in the periphery was 

observed in female Foxp3eGFP-Cre- ERT/+ Bach2fl/fl chimeric mice, whereas the thymic frequency 

of Treg cells was unchanged. This is distinct from the complete cell-autonomous loss of Treg 

cells observed upon germline disruption of BACH2 in Bach2-knockout animals. I sought to 

confirm that this phenotype resulted from the differences in the timing of Bach2 ablation 

relative to Foxp3 expression and not to inherent differences between the Bach2KO and 

Bach2flox alleles used. Therefore, I sought to test whether the cell-intrinsic phenotype driven 

by germline excision of the Bach2-flox allele is similar to that of the Bach2-knockout allele, 

where there is a complete loss of thymic Treg differentiation. To examine whether this was 

the case, mice bearing germline excision of the Bach2flox transgene were generated by 

transiently administering tamoxifen to male Bach2fl/+ Rosa26Cre-ERT2 mice, which after three 

months were bred with WT C57BL/6 female mice. The subsequent F1 progeny, bearing 

germline excision of the Bach2flox transgene, were then intercrossed to generate Bach2ex/ex 

(homozygous for the Bach2excised transgene) female mice. As a means to test cell-intrinsic 

function, as illustrated in Figure 5.4, lethally irradiated mice (Ptprca/a, or CD45.1+) were 

reconstituted with bone marrow (BM) cell mixtures comprising wild type BM (Ptprca/b, or 

CD45.1/2+) in a ~1:1 ratio with BM derived from either: (1)  Bach2+/+, (2) Bach2-/-, or (3) 

Bach2ex/ex mice (all Ptprcb/b, or CD45.2+). Here, Bach2+/+ refers to mice homozygous for the 

wild type Bach2 allele, whereas Bach2-/- refers to mice homozygous for the Bach2KO 

transgene. Three months after reconstitution, tissues were extracted and analyzed using flow 

cytometry. 

 

Analysis of CD45.2+ CD4+ T cells within the thymus (Figure 5.5A, top panel) and spleen 

(Figure 5.5A, bottom panel) of recipient mice revealed a complete cell-intrinsic defect in the 

generation of Foxp3+ cells by either cells bearing the Bach2 knockout transgene (Bach2–/–) or 
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the germline-excised Bach2flox transgene (Bach2ex/ex). In contrast, Foxp3+ T cells were 

produced by wild type (Bach2+/+) cells. Therefore, the germline-excised Bach2flox transgene 

phenocopies the Bach2 knockout transgene and recapitulates the complete cell-autonomous 

defect in Treg cell generation observed upon germline Bach2 ablation. These data indicate 

that the cell-autonomous phenotype observed in the Foxp3eGFP-Cre- ERT Bach2flox system are a 

consequence of the timing of Bach2 ablation relative to Foxp3 induction, rather than allele-

specific differences. 
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Figure 5.4: Experimental schema of cell transfer experiment.  

Mice were lethally irradiated (Ptprca/a, or CD45.1+) and reconstituted with bone marrow 
(BM) cell mixtures consisting of wild type BM (Ptprca/b, or CD45.1/2+) in a ~1:1 ratio with 
BM derived from either: (1) Bach2+/+, (2) Bach2-/-, or (3) Bach2ex/ex mice (all Ptprcb/b, or 
CD45.2+). 

 

 

 

Figure 5.5: Germline excision of the Bach2flox transgene results in a complete cell-intrinsic 
defect in the generation of Foxp3+ Treg cells. 
 
Representative flow cytometry (left) and replicate measurements (right) showing the 
frequency of Foxp3+ Treg cells in the thymus (A) and spleen (B) within the CD45.2+ 
compartment of reconstituted B6.SJL mice (as detailed in Figure 5.4). Data are representative 
of six mice per group. ns, not significant; unpaired Student’s t-test. Numbers in gates show 
percentages. Bars and error show mean and s.e.m.  
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5.2.3 The expression of BACH2 is required in lineage-committed Treg cells for 

maintenance of immune homeostasis 

I asked whether loss of rTreg cell populations has an impact on immune homeostasis during 

the steady-state. Eight weeks following initiation of tamoxifen treatment, flow cytometry was 

used to examine the cell surface markers expressed by conventional CD8+ and CD4+ Foxp3- 

T cells in Foxp3EGFP-Cre-ERT2 Bach2fl/fl (CKO) mice. Within the CD8+ T cell population, the 

analysis revealed a decrease in the percentage of CD62+ CD44- naïve cells and increase in 

CD62+ CD44+ central memory cells in both the spleen (Figure 5.6A–B, top panel) and 

inguinal lymph nodes (Figure 5.6D–E, top panel) of CKO mice. Whereas an increase in 

CD62- CD44+ effector CD8+ T cells was observed in the iLN of CKO mice, no increase was 

seen in the spleen. In contrast to the CD8+ T cell population, within the CD4+ Foxp3- T cell 

compartment, the analysis did not reveal any difference in the proportions of naïve and 

central memory cells in either the spleen (Figure 5.6A–B, bottom panel) or iLN (Figure 

5.6D–E, bottom panel) of CKO mice. However, a mild increase in cell surface ICOS 

expression was observed in CKO versus control mice (a mean value of 43% versus 37%, 

respectively) by splenic CD4+ Foxp3- T cells (Figure 5.6C). 

 

Consistent with altered proportions of naïve and central memory CD8+ T cells, flow 

cytometry analysis following intracellular cytokine staining revealed an upregulation of IFN-

γ by splenic CD8+ T cells, but not by Foxp3– CD4+ Tconv cells, from tamoxifen-treated CKO 

mice (Figure 5.7). Collectively, these studies demonstrate that the expression of BACH2 

following Treg lineage-commitment is necessary for the maintenance of immune homeostasis 

under steady-state conditions. 
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Figure 5.6: Loss of Bach2 in lineage-committed Treg cells results in an alteration in the 
phenotype of conventional T cells. 

Representative flow cytometry showing cell surface CD44 and CD62L expression on gated 
CD8+ T cells and Foxp3– CD4+ Tconv cells in the spleen (A) and iLN (D) from tamoxifen-
treated experimental Foxp3EGFP-Cre-ERT2 Bach2fl/fl and control Foxp3EGFP-Cre-ERT2 Bach2fl/fl 
mice. Replicate measurements of the percentages of naïve, central memory and effector cells 
within gated CD8+ T cells and Foxp3– CD4+ Tconv cells in the spleen (B) and iLN (E) from 
A and D, respectively, and percentages of ICOS+ Foxp3– CD4+ Tconv cells (C), from mice of 
indicated genotypes. Data are representative of two repeated experiments with six to nine 
mice per group. ns, not significant. *P <0.05, **P <0.01; unpaired Student’s t-test. Numbers 
in gates show percentages. Bars and error show mean and s.e.m.  
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Figure 5.7: Loss of Bach2 in lineage-committed Treg cells results in increased expression of 
cytosolic IFN-g in splenic CD8+ T cells. 

(A) Representative flow cytometry (B) and replicate measurements of IFN-γ and Foxp3 
expression by splenic CD8+ and Foxp3– CD4+ T cells from spleens of experimental 
Foxp3EGFP-Cre-ERT2 Bach2fl/fl (CKO) and control Foxp3EGFP-Cre-ERT2 Bach2fl/fl mice treated with 
tamoxifen for eight weeks. Data are representative of two repeated experiments with six to 
nine mice per group. ns, not significant, **P <0.01; unpaired Student’s t-test. Numbers in 
gates show percentages. Bars and error show mean and s.e.m. 
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5.3 Discussion 

5.3.1 Summary 

In this chapter, I show that BACH2 restrains antigen receptor stimulation in lineage-

committed rTreg cells to regulate their differentiation into aTreg cells (Figure 5.1). By using 

a novel chimeric in vivo system—the female heterozygous Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl 

mouse strain—I found that the restraint of rTreg cell differentiation to aTreg by BACH2 is 

cell-intrinsic (Figure 5.2). Furthermore, the gradual attrition of Treg cell populations in this 

chimeric model demonstrated that BACH2-mediated restraint of aTreg cell differentiation is 

required in a cell-autonomous fashion to maintain Treg cell populations in the periphery over 

time (Figure 5.3). I then sought to examine the functional significance of BACH2 in lineage-

committed Treg cells under steady-state conditions. As shown in Figure 5.6, alterations in the 

proportions of naïve and central memory cells were observed in the CD8+ T cell population 

from the Bach2 conditional knockout mouse model. In addition to effect on CD8+ T cell 

activation status, the loss of BACH2 function in lineage-committed Treg cells lead to a 

greater production of the pro-inflammatory cytokine IFN-g, by the CD8+ T cell population 

(Figure 5.7). 

 

5.3.2 The TCR-mediated modulation of BACH2 function in rTreg cells   

The studies described in section 5.2.1 highlight how BACH2 mechanistically operates 

following TCR engagement in lineage-committed Treg cells to restrain the differentiation of 

resting Treg cells toward an activated Treg cell phenotype. The in vitro culture method used 

in these studies resulted from substantial optimization of Treg cell culture conditions, and 

consequently represented a useful system, whereby the role of antigenic stimulation, 

specifically, could be delineated. As discussed in the chapter introduction, BACH2 acts 

restrains antigen receptor stimulation in other lymphocyte lineages. From this finding, I can 
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conclude that this is conserved in Treg cells. Much attention has been drawn toward the role 

of TCR stimulation in guiding Treg cell fate and function, and therefore, BACH2 function 

should now be considered an important factor in guiding the outcome of antigen receptor 

stimulation in Treg cells. Similar to other lymphocyte lineages, it is highly likely that—

within lineage-committed Treg cells—TCR stimulation leads to phosphorylation of BACH2 

via the PI3K-AKT-mTOR signalling pathway (as described in section 1.7.2). Future studies 

could specifically address the role of PI3K-AKT-mTOR signalling in modulating BACH2 

function, specifically within the Foxp3+ Treg cell lineage. 

 

5.3.3 BACH2-mediated restraint of aTreg cell differentiation is required for cell-

intrinsic maintenance of Treg cell populations 

The studies in section 5.2.2 identified that, in the absence of BACH2 function in lineage-

committed Treg cells, there was a cell-intrinsic failure of the ability to maintain the rTreg cell 

phenotype, which resulted in a loss of Treg cell populations. Data are shown from analyses 

conducted on T cells from the thymus, spleen, iLN and blood (Figure 5.2 and Figure 5.3), 

extracted from the female heterozygous Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl mouse strain. It would 

be insightful to determine whether this phenotype is also true of tissue-resident Treg cells 

(such as those described in section 1.6), as opposed to just lymphoid-resident and circulating 

T cell populations. However, methods of Treg cell extraction from non-lymphoid tissue tend 

to be aggressive, in terms of the tissue dissociation protocols, which often result in high cell 

death and few Treg cells extracted. In addition, in the system I used, it was necessary to use 

EGFP—from the heterozygous Foxp3EGFP-Cre-ERT2 transgene—as a marker to identify Treg 

cells where random X-inactivation had resulted in Cre expression, and therefore, Bach2 

ablation. The signal resulting from EGFP expression in this system was low and it was at 

times, challenging to discern the Foxp3EGFP-positive Treg cell population. These two factors 
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would made it difficult to examine the phenotypes of tissue-resident Treg cells in the 

chimeric system. In order to reliably determine the Foxp3EGFP-positive Treg cell population 

in the tissues that I analysed (thymus, spleen, iLN and blood), I always included a negative 

control to set flow cytometry gates (a sample derived from a female Foxp3+/+ mouse), and 

included as many experimental samples as possible. However, generating mice of 

experimental and control genotypes was a lengthy process, often taking up to 2–3 months 

between each experiment. In order to confidently identify the Treg cell attrition phenotype in 

experimental chimeric mice, I repeated the analysis three separate times (Figure 5.3). Given 

enough time, future studies could optimize a tissue Treg cell extraction protocol to elucidate 

whether the identified phenotype in the chimeric system is similarly demonstrated by tissue-

resident lineage-committed Treg cells. 

 

Given the decline in the proportion of Foxp3+ Treg cells in female Foxp3EGFP-Cre-ERT2/+ 

Bach2fl/fl mice treated with tamoxifen for eight weeks, efforts were directed toward 

understanding the fate of these absent Treg cells. Going on the premise that, perhaps, these 

Treg cells were undergoing apoptosis, initial studies involved taking serial blood samples 

each week following initiation of tamoxifen treatment and using flow cytometry to quantify 

the proportion of phosphatidylserine expression with annexin V staining. After one full study, 

no differences in Treg cell apoptosis was observed. Following on from conversations with 

David Tough, at GlaxoSmithKline, who suggested that apoptotic T cells would be cleared 

from the circulation from the spleen, and thus, the blood was not the appropriate tissue to be 

sampled for testing, analysis of splenic Treg cells were conducted. Another full study was 

conducted, where at biweekly intervals following the initiation of tamoxifen treatment, a 

group of mice were sacrificed from the cohort to provide splenocytes for analysis. Data from 

this one study, with few biological replicates per group at each timepoint, revealed a very 
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mild increase in phosphatidylserine expression of Foxp3+ Treg cells from experimental 

Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl mice versus controls (data not shown). Repeating this 

observation proved to be very challenging, due to the aforementioned difficulties presented 

by this particular system (described in previous paragraph). Attempts at repeating this 

observation were either unsuccessful at a technical level (too few Foxp3+ Treg cells could be 

identified by flow cytometry) or yielded contradictory results (no differences in the 

proportion of annexin V positive Foxp3+ Treg cells were observed between experimental and 

control groups). For these reasons, the data generated from these studies were not included in 

this chapter. Future studies could be directed toward understanding whether Treg cell attrition 

in the chimeric system is a result of increased apoptosis of Bach2-deficient Treg cells, and 

address the exact fate of the Treg cells that are absent at eight weeks post-initiation of 

tamoxifen treatment. 

 

In the Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl chimeric system, a constant supply of Treg cells develop 

in the thymus. It would be insightful to re-examine cell-intrinsic function of BACH2 in 

lineage-committed Treg cells in the chimeric system, in the absence of any new thymic input. 

Here, thymectomy could be used to prevent a constant supply of developing Treg cells. 

Another approach could be to utilize the Rosa26tdRFP-tracking system detailed in section 4.2.2 

(Figure 4.3A). Here, female Foxp3EGFP-Cre-ERT2 Bach2fl/fl Rosa26flSTOP-tdRFP mice could be 

generated heterozygous at the Foxp3EGFP-Cre-ERT2 transgene and transiently treated with 

tamoxifen to pulse label lineage-committed Treg cells. Rosa26RFP-positive Treg cells could 

then be examined by flow cytometry after a given time period to understand how these cells 

were maintained, irrelevant of new thymic contribution to the Treg cell pool. 
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5.3.4 The loss of immune homeostasis caused by cell-specific ablation of BACH2 

function 

The studies in section 5.2.3 identified that the ablation of Bach2 in lineage-committed Treg 

cells resulted in a reduced proportion of naïve CD8+ T cells, increased proportion of central 

memory CD8+ T cells, and increased proportion of CD8+ IFN-g+ T cells, during steady-state 

immune regulation. It is interesting to note that this loss of immune homeostasis was 

predominantly restricted to the CD8+ T cell lineage, as this phenotype was not observed in 

the CD4+ Foxp3- Tconv cell lineage. Functionally, CD8+ T cells are geared toward production 

of IFN-g+. Perhaps excessive activation had been initiated in CD4+ Foxp3- T cells (the 

activation threshold had been surpassed) and were simply not identified with the particular 

set of experiments that I had conducted, consistent with increased ICOS expression. Future 

experiments could comprise of intracellular staining for the hallmark lineage-specifying 

transcription factors T-bet, GATA-3 and RORgt to examine whether other mechanisms of 

CD4+ Foxp3- T cell activation exist in the CKO mouse model. 

 

It is interesting to note that loss of rTreg cell populations not only resulted in the loss of 

immune homeostasis in CD8+ T cells, but more specifically, it primarily manifested with an 

increase of the central memory population (Figure 5.6). It is unclear why loss of rTreg cell 

populations would result in the failure to restrain memory CD8+ T cells, as opposed to 

effector CD8+ T cell differentiation. Perhaps the aTreg cells present in the CKO system, are 

functionally capable of restraining terminal CD8+ T cell differentiation by preventing the 

threshold of activation—required for effector CD8+ T cell differentiation—from being 

surpassed. Another possible explanation may relate to co-migration of rTreg and CD8+ 

memory cells, due to the expression of shared migratory molecules. Collectively taking all 

these points into consideration—that rTreg cells are required to restrain naïve to memory 
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CD8+ T cell differentiation, whereas aTreg cells restrain the terminal differentiation of naïve 

or memory CD8+ T cells to effector cells—suggest that rTreg and aTreg cells regulate 

distinct stages of effector cell differentiation. This observation has not been discussed in the 

literature to date and requires further clarification in future studies. Disease models, such as 

influenza recall responses, could perhaps be utilized to study memory CD8+ T cell responses 

in the CKO model. In addition, being that greater IFN-g is produced by CD8+ T cells in the 

CKO model, understanding if tumour growth is impacted would be important. At the time of 

submission of this thesis, studies are underway using the MC38 colon carcinoma tumour 

model in the CKO mouse model. It would also be interesting to explore what specifically—in 

terms of the functional mechanisms exerted by lineage-committed Treg cells—is responsible 

for the restraint of CD8+ T cell differentiation from naïve to central memory cells, versus 

naïve or central memory to terminally differentiated cells. Perhaps a specific suppressive 

molecule, or set of suppressive functions, are employed by Treg cells at each stage of CD8+ T 

cell differentiation. This, however, would be difficult to interrogate in the CKO system, as 

numerous functional differences are evident between rTreg cells and aTreg cells (Figure 3.6).  

 

5.3.5 Differences in phenotype between the conditional knockout system and 

heterozygous chimeric system 

Collectively, consideration of the phenotypes of the conditional knockout (Foxp3EGFP-Cre-ERT2 

Bach2fl/fl) strain and chimeric CKO (Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl) strain yields important 

insights into cell-intrinsic function of BACH2 in lineage-committed Treg cells during steady-

state immunoregulation. In the chimeric CKO Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl system, where 

both Bach2-sufficient and Bach2-deficient lineage-committed Treg cells are generated 

following tamoxifen administration, a competitive defect in survival became evident in the 

Treg population that lacked BACH2 function. Here, the competitive advantage of BACH2 
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function in Bach2-sufficient Treg cells resulted in their predominance in the Treg cell pool. 

In contrast, in the Foxp3EGFP-Cre-ERT2/EGFP-Cre-ERT2 Bach2fl/fl mouse strain, the majority of Treg 

cells undergo Cre-mediated Bach2 ablation and thus, all Treg cells have the same competitive 

disadvantage. Here, compensatory expansion of the Treg cell pool in response to the 

increased Tconv cell activation may preclude observation of the Treg attrition phenotype. 

Therefore, competitive systems—such as that generated in the chimeric female heterozygous 

mice—are necessary to elucidate the cell-intrinsic function of BACH2 in lineage-committed 

Treg cells. 
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6 Thesis Discussion 

 

6.1 Summary of key findings 

Chapter 3 describes a novel dual reporter system—the Foxp3EGFP-DTR Bach2tdRFP mouse 

strain—to measure Bach2 and Foxp3 expression at a single cell level using flow cytometry in 

T cells. This model was used to determine that thymic Treg cell precursors express high 

levels of Bach2 during development. However, Bach2 is heterogeneously expressed by 

mature extra-thymic Treg cells, where levels of Bach2 are downregulated by inflammation. 

Treg cells that express low levels of Bach2 present gene transcriptional profiles and cell 

surface markers consistent with activated Treg cells.  

 

These findings were further elaborated in Chapter 4, where I generated a novel conditional 

knockout system—the Foxp3EGFP-Cre-ERT2 Bach2fl/fl mouse strain—to explore the function of 

BACH2 in lineage-committed Treg cells. Following the validation of this model as a robust 

system, fate tracking studies revealed that expression of Bach2 is not required to maintain the 

Treg cell identity in lineage-committed Treg cells. However, analysis of gene transcription at 

a single-cell level and hallmark cell surface markers revealed that BACH2 function is 

necessary for lineage-committed Treg cells to maintain a resting Treg cell expression 

phenotype.  

 

In Chapter 5, I determined that BACH2 acts following TCR engagement to restrain the 

differentiation of rTreg cells to aTreg cells. By utilizing CKO mice that are heterozygous at 

the Foxp3 locus—Foxp3EGFP-Cre-ERT2/+ Bach2fl/fl mice—I generated a chimeric system, which 

revealed that BACH2 restraint of the rTreg to aTreg cell transition is cell-intrinsic, and is 

necessary to maintain Treg cell populations during steady-state immunoregulation. Finally, I 
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demonstrated that BACH2-mediated constraint of aTreg cell differentiation is required to 

prevent excessive differentiation of naïve CD8+ T cells to memory cells, and their production 

of the pro-inflammatory cytokine IFN-g, under steady-state immune homeostasis.  

 

These data represent a hitherto unknown body of findings; they have not yet been published 

in any peer-reviewed journals or formally reported by any other research groups. These 

findings form the basis for a manuscript, which at the time of submission of this thesis, is 

under review at the Journal of Experimental Medicine. These findings provide a broader  

significance of the transcription factor BACH2 in Treg cell biology and the molecular basis 

for Treg cell heterogeneity and maintenance. 

 

6.2 Future directions 

6.2.1 The function of BACH2 in human lineage-committed Treg cells 

The findings presented in this thesis have highlighted many more questions relating to Treg 

cell biology and the function of BACH2, which require addressing in future studies. These 

studies detailed in this thesis centred upon use of mouse models, thus one pertinent question 

is, do human Treg cells demonstrate similar patterns of BACH2 expression at the protein 

level? Examining human lineage-committed Treg cells is partially confounded by lack of 

reliable markers (discussed in section 1.3.2). In addition, BACH2 antibodies do not yet exist 

for flow cytometric analysis. However, future studies could utilize the BACH2 antibody 

appropriate for Western blotting, to interrogate BACH2 expression in CD4+ CD25+ IL-7R- 

human T cells (Liu et al. 2006). Likewise, does BACH2 restrain aTreg cell differentiation in 

humans? The relationship between Bach2 expression and Treg cell activation in human 

single-cell Treg transcriptomes bear striking similarities to murine Treg cell transcriptomes, 

which is suggestive that BACH2 may share functional homology in Treg cells across species 
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(Zemmour et al. 2018). Future studies could perhaps answer this by extraction of Treg cells 

from human blood, ablation of Bach2 using siRNA knockdown, and phenotypic analysis with 

flow cytometry. 

 

6.2.2 The role of BACH2 in determining tissue-resident Treg cell phenotypes 

The data described in this thesis were primarily generated from murine Treg cells extracted 

from primary or secondary lymphoid tissues. Previous studies highlight the critical 

immunoregulatory and non-immune functions of tissue resident Treg cells, however, this 

Treg cell population remains poorly characterized. These populations are typically examined 

based on their expression of hallmark lineage-defining molecules, such as PPAR-g for 

adipose tissue Treg cells and AREG for muscle Treg cells. Do these tissue resident Treg cells 

display heterogeneous BACH2 expression and can BACH2 expression be used to determine 

their activation status? As discussed previously, analysis of tissue resident Treg cells from 

murine models can be challenging (section 5.3.3), and thus, answering these questions would 

certainly require focused efforts in future studies. 

 

6.2.3 The modulation of BACH2 function in response to TCR signalling in Treg cells 

The observation that BACH2 functions following TCR engagement was an interesting 

finding that could be further elaborated. Use of the Nur77 expression as a proxy for antigen 

receptor stimulation demonstrated that rTreg cells do continually encounter cognate antigen, 

and as BACH2 is required to constrain the transition of rTreg to aTreg cells, it would be 

interesting to examine if any relationship between the expression of Nur77 and BACH2 exist 

with relevance to Treg cell phenotypes. The dynamics of BACH2 phosphorylation that result 

from TCR engagement— with regard to the PI3K-AKT-mTOR signalling pathway—could 

also be explored. Despite this pathway performing a well-known role in the modulation of 
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BACH2 function via its attenuation in the cytosol in other lymphocyte lineages, this remains 

to be confirmed in lineage-committed Treg cells.  

 

6.2.4 The molecular mechanisms of BACH2-mediated constraint of aTreg cell 

differentiation 

Much is left unanswered with regard to the molecular mechanisms that underpin BACH2-

mediated restraint of aTreg cell differentiation, which was discussed in section 4.3.5. Future 

studies should utilize ChIP-Seq experiments to determine where BACH2 binds in the genome 

of Treg cells. As BACH2 is predominantly found at enhancer regions in other lymphocyte 

lineages, ChIP-Seq measurements could determine if this is likewise true in the Treg cell 

genome. Use of ATAC-Seq (assay for transposase-accessible chromatin using sequencing) on 

Bach2-deficient Treg cells extracted from the BACH2 CKO model versus Bach2-sufficient 

WT Treg cells could highlight loci where BACH2 is involved in modulating genome-wide 

chromatin accessibility. As BACH2 is known to prohibit other members of the bZIP 

transcription factor family—notably IRF4 and JUND—from binding certain loci, the 

functional relationships between BACH2 and other bZIP TFs should be addressed. 

 

6.2.5 The fate of Bach2-deficient Foxp3+ Treg cell populations in the chimeric CKO 

mouse model 

As described in section 5.2.2, loss of BACH2 in lineage-committed Treg cells in a 

competitive system results in a cell-intrinsic failure of the maintenance of Treg cell 

populations. As detailed in section 5.3.3, preliminary studies were performed in an attempt to 

understand the fate of these Bach2-deficient Treg cells. As it is unlikely that these Treg cells 

lose their suppressive identity (section 4.2.3), it remains plausible that these Bach2-deficient 

Treg cells are lost from the Treg cell population in a slow, gradual decline via apoptosis, 



 122 

which is difficult to detect experimentally (described in section 5.3.3). Future studies should 

address whether this is, indeed, the case in the chimeric mouse model. Detection of markers 

for apoptosis, other than annexin V, may represent an alternative. However, owing to the 

need to preserve EGFP signal in Bach2-deficient Treg cells, the commonly used alternative 

intracellular markers— such as caspase-3/7, caspase-9, or Bcl-2—are not feasible. Future 

studies should focus on examining Treg cells extracted from secondary lymphoid tissue (not 

the blood) and should utilize a large number of biological replicates. 

 

6.2.6 The relationship between Treg cell activation state and pathology 

The consequence of BACH2 ablation in lineage-committed Treg cells is the failure to 

maintain immune homeostasis during the steady-state (discussed in 5.3.4). Here, loss of 

BACH2 function in Treg cells leads to increased memory CD8+ T cell differentiation and 

increased IFN-g production by CD8+ T cells upon TCR stimulation. As Bach2-deficient Treg 

cells are predominantly of an aTreg cell phenotype, and these aTreg were able to prevent 

excessive CD8+ T cell terminal differentiation in the spleen, these findings suggest that rTreg 

cell populations fulfil an essential role of constraining memory CD8+ T cell differentiation. 

How this is achieved remains to be explored. Perhaps it is merely a reflection of similar cell 

surface homing molecules–such as CD62L and CCR7—that are jointly expressed by both 

rTreg cells and naïve CD8+ T cells. Or perhaps, distinct functional mechanisms, or a 

repertoire of suppressive actions, are employed by rTreg cells to restrain memory CD8+ T 

cell differentiation. Further work could explore this concept further, and in addition, its 

bearing on disease should be examined. As CD8+ T cell differentiation plays a central role in 

many disease pathologies, factors that influence it may present an important role in human 

disease. For example, memory CD8+ T cells perform important functions during re-exposure 

to infectious pathogens, and terminally differentiated CD8+ T cells perform important 
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functions during anti-tumour immune responses. At the time of submission of this thesis, one 

study had been conducted using the BACH2 CKO strain in the MC38 colon carcinoma 

model. Additional studies are currently ongoing.  
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8.2 List of minor revisions made to thesis for November 2019 submission 

8.2.1 Changes to formatting 

• Figures in results sections placed on separate page to text. 

• Text in discussion placed on continuous pages. 

• Bibliography reformatted to include all authors. 

 

8.2.2 Changes to text and responses to examination comments 

Page and line references refer to that of the revised thesis submitted November 2019. 

• Removal of text “which was later realised to comprise the Treg cell 

immunosuppressive repertoire” (page 26, line 2). 

• Revision of text to “CTLA-4 juxtacrine signalling” (page 29, line 8). 

• Section of introduction added: Contribution of other suppressive lymphocytes to 

immune homeostasis (page 36). 

• Revision of text in figure legend to “Gated on live single cells” (page 65, line 3). 

• Regarding Figure 3.5 (page 69), the examiners questioned whether absolute numbers 

were recorded during flow cytometry analysis. The original data show that no 

absolute numbers were recorded during analysis. 

• Removal of text “and visualized using the Southern blotting technique” (page 79, line 

8). 

• Revision of text so that genotypes are referred to, as opposed to alleles (page 79 and 

80). 

• Revision of text to “I examined the percentage of” (page 84, line 5). 

• Revision of text to mention contamination of B cells in bulk RNA-Seq data (page 88, 

line 8).  



 159 

• Regarding Figure 4.8 (page 92), the examiners questioned whether any markers of 

maturation or other molecules detected in the RNA-Seq data were included in the 

analysis. The original data did not include any additional markers than those already 

shown. 

• Regarding Figure 5.3 (page 104), the examiners questioned whether the absolute 

number of Treg cells was quantified during the flow cytometry analysis. The original 

data did include flow cytometry count beads and although the mean absolute number 

of Bach2-deficient Treg cells was numerically lower than that of the Bach2-sufficient 

Treg cell population, the individual data points were quite variable and the differences 

between groups were not statistically significant. 
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8.3 Buffers 

8.3.1 FACS buffer 

PBS (provided by the Babraham Institute technicians) 

3% Fetal Bovine Serum (Sigma-Aldrich) 

20 mM EDTA (Sigma-Aldrich) 

 

8.3.2 Complete media 

One 500 ml bottle of RPMI or DMEM is supplemented with the following: 

50 ml heat inactivated FBS (Sigma-Aldrich) 

5 ml Pen/Strep (Gibco, Thermo Fisher Scientific) 

5 ml Minimum essential medium non-essential amino acids (Gibco, Thermo Fisher 

Scientific) 

5 ml Sodium Pyruvate (Gibco, Thermo Fisher Scientific) 

500 µl 2-Mercaptoethanol (Gibco, Thermo Fisher Scientific) 

500 µl Fungizone (Gibco, Thermo Fisher Scientific) 

500 µl Gentamycin (Sigma-Aldrich) 
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8.4 Flow cytometry antibody details 

Marker Fluorochrome Cat. Number Clone 

B220 (CD45R) BV510 103247 RA3-6B2 

B220 (CD45R) FITC 11-0452-85 RA3-6B2 

CD11b PE 12-0112-83 M1/70 

CD11c FITC 11-0114-85 N418 

CD152 (CTLA-4) APC 17-1522-80 UC10-4B9 

CD223 (LAG-3) APC-eFluor 780 15-0691-81 C9B7W 

CD25 BV786 564023 PC61 

CD278 (ICOS) PE 12-9949-81 C398.4A 

CD4 APC 553051 RM4-5 

CD4 APC-eFluor 780 47-0042-82 RM4-6 

CD4 PE-Cyanine7 25-0042-82 RM4-7 

CD44 BV786 563736 IM7 

CD44 PerCP-Cyanine5.5 45-0441-82 IM7 

CD45.1 PE 12-0453-82 A20 

CD45.2 eFluor 506 69-0454-82 104 

CD45.2 PerCP-Cyanine5.5 45-0454-82 104 

CD62L eFluor 450 48-0621-82 MEL-14 

CD62L (L-Selectin) PE 12-0621-82 MEL-14 

CD62L (L-Selectin) PerCP-Cyanine5.5 45-0621-82 MEL-14 

CD8a APC 17-0081-81 53-6.7 

CD8a APC-eFluor 780 47-0081-82 53-6.7 

CD8a BV510 100751 53-6.7 
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CD8a eFluor 450 48-0081-82 53-6.7 

CD8a PE 12-0081-81 53-6.7 

F4/80 APC 17-4801-80 BM8 

Foxp3 APC 17-5773-82 FJK-16s 

Foxp3 eFluor 450 48-5773-82 FJK-16s 

Foxp3 PE 12-5773-80 FJK-16s 

Foxp3 FITC 53-5773-82 FJK-16s 

GITR PE 12-5874-82 DTA-1 

IFN-gamma PerCP-Cyanine5.5 45-7311-82 XMG1.2 

IL-2 PE 12-7021-82 JES6-5H4 

Ki67 PE 12-5698-82 SolA15 

KLRG1 APC 17-5893-81 2F1 

KLRG1 PE-Cyanine7 25-5893-82 2F1 

Ly-6C PE-Cyanine7 25-5932-82 HK1.4 

Ly-6G (Gr-1) eFluor 450 2-9668-80 1A8-Ly6g 

Table 8.1: Flow cytometry antibodies 

 


