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Abstract

Strand hybridization is not only a fundamental molecular mechanism underlying

the biological functions of nucleic acids, but is also a key step in the design of efficient

nanodevices. Despite recent efforts, the microscopic rules governing the hybridization

mechanisms remain largely unknown. In this study, we exploit the energy landscape

framework, to assess how sequence-specificity modulates the hybridization mechanisms

in DNA. We find that GG-tracts hybridize much more rapidly compared to GC-tracts,

via either zippering or slithering pathways. For the hybridization of GG-tracts, both

zippering and slithering mechanisms appear to be kinetically relevant. In contrast, for

the GC-tracts, the zippering mechanism is dominant. Our work reveals that even for the

relatively small systems considered, the energy landscapes feature multiple metastable

states and kinetic traps, which is at odds with the conventional ‘all-or-none’ model of

DNA hybridization formulated on the basis of thermodynamic arguments alone. Inter-

estingly, entropic effects are found to play an important role in determining the thermal

stability of competing conformational ensembles, and in determining the preferred hy-

bridization pathways.

Slithering

Zippering

Hybridization is a fundamental molecular mechanism that underlies both the nat-

ural biological functions of DNA1,2 and the role of DNA in nanotechnology.3,4 Precise

control of the kinetics of DNA hybridization at the molecular level is critical to the

processing of genetic information, since this is a key step in gene replication and regu-

lation,5,6 and in the design of DNA-based molecular machines for varied applications,

such as DNA bioassays,7,8 DNA computation,9,10 and the programmable self-assembly

of DNA nanostructures.3,11 Although the well-established nearest-neighbour model of

base stacking gives some insights into the thermodynamics of DNA hybridization,12–15
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the fundamental mechanism and detailed conformational changes driving the process

remain poorly understood.16

The hybridization of DNA oligonucleotides has often been described as an ‘all-or-

nothing’ mechanism,17–19 i.e. a first order-like transition. This assumption of two-

state dissociated/fully-hybridized behaviour simplifies the analysis of experimental

data.20–22 However, the two-state model has limitations concerning the hybridization

kinetics, and evident deviations from this idealized behaviour have been observed in re-

cent experiments and simulation studies. Molecular dynamics (MD) simulations based

on all-atom and coarse-grained potentials provide insight into the pathways of DNA

hybridization, and suggest a sequential mechanism, initiated by critical nucleation of

a few base pairs, followed by a rapid zippering or internal displacement of the remain-

ing bases.23–25 Direct measurements of the folding of DNA hairpins have verified the

existence of intermediate collapsed structures,26–28 and indicate that the locations and

heights of energy barriers correlate strongly with the number and location of G:C base

pairs.29 These and other observations imply that the pathways and energy barriers

for DNA hybridization are strongly sequence-dependent.30–35 Even for single base-pair

formation, diverse folding pathways and multiple kinetic intermediates/traps have been

recognized.36,37 While previous computational efforts,23–25,38,39 in conjunction with ex-

periments, have greatly advanced our understanding of DNA hybridization, we stress

that the multitude of conformational transitions, and the corresponding time scales

must be naturally understood in the language of energy landscapes,,40–45 which ne-

cessitates proper characterization of competing minima, and barrier heights. In the

present work, we aim to provide these fundamental links.

Using a properly symmetrized AMBER99bsc0 force field46 with χOL4 corrections

for DNA,47 and generalized Born treatment of the surrounding solvent and counterion

atmosphere,48,49 we map out the underlying hybridization landscapes for two DNA

hexamer sequences, d(GGGGGG) and d(GCGCGC). Further details regarding the

sampling strategy, and the theoretical framework are included in the supporting in-

formation. We show that even for these short duplexes, the landscapes can be quite
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complex, with many metastable states, presenting a challenge for both theory and

experiment. The different hybridization mechanisms identified in previous work are

encoded in the sequence-dependent landscape topographies. The GG and GC tracts

exhibit different propensities to hybridize via zippering or slithering, the two dominant

mechanisms of DNA strand association. For GG-tracts, both zippering and slithering

mechanisms are kinetically relevant, with comparable rate constants. In contrast, for

GC-tracts, slithering mechanisms make a negligible contribution, since slipped struc-

tures (misaligned conformations with non-native GC contacts) are deep kinetic traps

on the free energy landscape. The occurrence of well-defined metastable states along

the hybridization pathways, and non-Arrhenius kinetics strongly hint at deviations

from the conventional ‘all-or-none’ hypothesis.

This sequence-specific molecular mechanisms described here should be helpful in

understanding the colocalization of short complementary regions of DNA, which is an

elementary step in gene replication.5,6 Furthermore, they will provide the necessary

foundations for understanding various aspects of DNA based computation nanotech-

nology,3,9,10,50 such as the functioning of toehold mediated strand displacement based

circuits.50

The free energy landscape associated with the hybridization of d(GGGGGG) is

depicted in the form of a disconnectivity graph51,52 in Figure 1. The correspond-

ing potential energy disconnectivity graph is included in the Supporting Information

(Figure S1). The kinetic transition network contains a fully connected component of

146,167 potential energy minima and 184,849 transition states.

Unlike fast folding biomolecules, which exhibit a structure-seeking landscape with

low downhill barriers, the free energy landscape for the DNA duplex is somewhat

frustrated, with many competing low energy structures, separated by moderately high

energy barriers. Nonetheless, there is a weak overall funnelling towards the native state,

and there are no large free energy barriers that segregate the landscape, corresponding

overall to a downhill free energy gradient and relatively low barriers. Surprisingly, the

global free energy minimum is not the canonical WC duplex, but instead a compact
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Figure 1: Free energy disconnectivity graph for the hybridization of d(GGGGGG), obtained
at a temperature of 298 K and a regrouping threshold53,54 of −10 kcal mol−1. The branches
are coloured according to the total number of hydrogen-bonds between the two DNA strands.
Some representative minima from the different conformational ensembles are also shown.

structure (G1). The complementary strands of G1 are misaligned by one base com-

pared to the canonical hybridized duplex, and the cytosine and guanine bases of the

5′ terminals of the two strands are folded back into the major groove. The base stack-

ing interaction thus formed probably makes a significant contribution to the observed

thermal stability of this compact structure. A similar bonding mode has been reported

by Ng and Dickerson,55 where the terminal base pair is packed in the minor groove

through hydrogen-bonding. Analysis of the structural parameters for the central frag-

ment of five base pairs using 3DNA56 demonstrates that the G1 conformation is similar

to the B-DNA form of the native state, but is characterised by significantly different

values of certain helical parameters, such as roll, twist, tilt and slide (Table S1).

The G1 structure is only marginally stable with respect to the native WC du-

plex, with a free energy difference close to 1 kcal mol−1. In contrast, G1 is around

15 kcal mol−1 lower in potential energy than the canonical duplex (Figure S1). The

geometric mean of the vibrational normal mode frequencies for the canonical duplex,
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calculated within the harmonic superposition approximation (HSA),57,58 is much lower

than for G1 (Figure S4), which suggests that the WC structure is stabilized by entropy

as compared to misaligned and distorted structures. Previous work has shown that

the WC duplex tends to exhibit greater conformational plasticity compared to other

polymorphs,41,59 and suggests a possible role for intrinsic flexibility in modulating

DNA-protein binding during gene replication. As shown in Figure 1, there is a diverse

range of thermally accessible conformations in the low-energy region of the free energy

landscape, including flexible structures with frayed terminal bases (G2), which are rela-

tively unstable in terms potential energy alone (see supplementary information). These

observations demonstrate that entropic effects play an important role in modulating

the equilibrium behaviour of DNA duplexes at physiological temperatures. Although

the high stabilities of some of the compact structures could be an artefact of the force

field, this prevalence could be a genuine manifestation in terms of the tendency for

guanine bases to form strong stacking interactions, owing to their high aromaticity.

The native WC duplex is kinetically accessible from many of the low-free energy con-

formational ensembles, suggesting that compact, misaligned, and frayed structures can

all play a role in the dynamics of hybridization.

The stationary point database for the hybridization of d(GCGCGC) consists of a

single connected component of 137,847 potential energy minima and 170,245 transition

states. The free energy disconnectivity graph is shown in Figure 2, and the potential

energy disconnectivity graph is shown in Figure S2 of the Supporting Information.

The landscapes differ in topography from those of d(GGGGGG). In particular, the

free energy landscape is more strongly funnelled towards the global minimum, which

in this case is the canonical WC duplex. As for d(GGGGGG), there are many thermally

accessible conformational ensembles on the free energy landscape. However, in the case

of the GC-tract sequence, both the free energy differences between the various low-lying

conformations, and the free energy barriers separating them, are generally larger than

those for the GG-tract sequence. Strikingly, structures with initial misaligned two-

(W5) and four-base pairings (W6) are relatively deep kinetic traps on the landscape,

6



Figure 2: Free energy disconnectivity graph for the hybrdization of d(GCGCGC), obtained
at a temperature of 298 K and a regrouping threshold53,54 of −10 kcal mol−1. The branches
are coloured according to the total number of hydrogen-bonds between the two DNA strands.
Some representative local minima from the different conformational ensembles are shown.

separated from the native funnel by free energy barriers of around 10 kcal mol−1. In

contrast, for d(GCGCGC), misaligned structures are relatively unstable. This crucial

difference between the two sequences arises because, for the alternating GC-tracts, the

complementary strands of misaligned structures must slip by two bases, and not one,

to retain G:C WC pairings. For both sequences, dissociated states, with no hydrogen-

bonds between base pairs, are associated with relatively low equilibrium probabilities.

In the potential energy disconnectivity graph for the hybridization of GC-tracts

(Figure S2), two stable compact structures (W1 and W2) can be distinguished. Both

of these structures are associated with small funnels on the potential energy landscape,

and are lower in potential energy than the canonical duplex. In W1 the guanine base

at the 5′ terminal is folded back into the major groove, and forms a G*GC triplet with

the G5:C8 base pair, resulting in disrupted base stacking. The enhanced twist and

roll angles at the triplet site, compared with the ideal B-DNA structure, indicate an

interruption of base-pair steps (Table S1 of the Supporting Information). In the W2
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structure, the guanine base at the 5′ terminus of one strand is directed into the major

groove, and forms a stable contact via hydrophobic interactions. Similar to the compact

G1 structure observed for d(GGGGGG), the W1 and W2 structures have relatively

high vibrational frequencies compared to the WC duplex (Figure S4). Hence, again,

entropic effects appear to play an important role in stabilizing the canonical WC duplex,

as opposed to defective or higher-order structures, at physiological temperatures.60,61

Figure 3: Top: The fastest free energy zippering pathway between the conformational en-
sembles corresponding to dissociated (A) and fully-hybridized (B) states for d(GGGGGG).
The points correspond to groups of minima and transition states, obtained by the recur-
sive regrouping scheme53,54 using a barrier threshold of 5.5 kcal mol−1. Bottom: The fastest
free energy slithering pathway between the ensemble of structures slipped by four bases
(A) and the fully-hybridized state (B) for d(GGGGGG), using a regrouping threshold of
3.5 kcal mol−1. These results are for a temperature of 298 K.

To draw mechanistic insights into the renaturation of DNA duplexes from melted
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and misaligned states, we apply shortest path algorithms62–64 with appropriate edge

weights,65,66 to determine the pathways that make the largest contributions to the

steady-state rate constants. We distinguish between two principal mechanisms of

DNA hybridization, namely zippering and slithering. The zippering pathway starts

from disordered states with no hydrogen-bonds, and forms the duplex through helix

propagation after the initial native base-base contacts. The slithering path starts from

a misaligned structure with two initial non-native base pairings. The chains then slide

along one another along a Watson-Crick interface until the formation of a full helix

with all native base-base contacts. The single fastest pathways corresponding to the

zippering and slithering mechanisms are shown in Figure 3 and Figure 4 for the GG-

and GC-tracts, respectively. The complete sets of fastest pathways corresponding to

zippering and slithering mechanisms for the two systems comprise many similar al-

ternatives in the path ensembles, and some representative trajectories are shown in

Figure S5 and Figure S6 of the Supporting Information. The profiles of the fastest

pathways for all mechanisms and sequences considered show that the hybridization

process is essentially downhill in energy. We also find that the steps in each particular

hybridization pathways are largely dictated by the nature of the initial contact between

the complementary strands.

For GG-tracts, the fastest zippering pathway (Figure 3) proceeds via initial fast

association of the three guanine bases at the 3′ terminal of one strand to the central

three cytosine bases of the complementary strand. The free energy barrier for this step

is small (less than 5 kcal mol−1) and the resulting misaligned structure is significantly

thermodynamically and kinetically stable with respect to the dissociated structure.

These observations are attributable to the fact that, in this associated state, the ends

of both strands are dangling, and hence the entropy remains relatively high. Thus,

although statistically, collision occurs most frequently at the termini of both strands,

there is a lower free energy barrier to nucleation if the initial contact involves the centre

of one strand. This effect was also noted in a previous study by Louis and coworkers.23

After the rapid nucleation step, both DNA strands undergo a succession of ordered
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Figure 4: Top: The fastest free energy zippering pathway between the conformational en-
sembles corresponding to dissociated (A) and fully-hybridized (B) states for d(GCGCGC).
The points correspond to free energy groups of minima and transition states, obtained by
the recursive regrouping scheme53,54 using a barrier threshold of 4.5 kcal mol−1. Bottom:
The fastest free energy slithering pathway between the ensemble of structures slipped by four
bases (A) and the fully-hybridized state (B) for d(GCGCGC), using a regrouping threshold
was 6.0 kcal mol−1. These results are for a temperature of 298 K.
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slithering rearrangements, associated with moderate energy barriers, to achieve the

native base pairings. The last step in the formation of the WC duplex is the zippering

of the termini. Alternative zippering pathways, where the formation of base pairs

proceeds in a strict order from one terminus to the other (Figure S8), make a much

smaller contribution to the steady-state rate constant. This result is in agreement with

recent infrared spectroscopy experiments on the reverse process, which show that the

dissociation of the duplex begins with the fraying of the terminal base pairs.31

For GC-tracts, the fastest zippering pathway (Figure 4) follows a broadly similar

mechanism, with fast initial nucleation of a few key contacts, followed by slow zipper-

ing of the remaining base pairs. Whereas for the homo-duplex, the formation of initial

base pairings along the fastest path results in a misaligned structure, for the heterodu-

plex, it is strongly favourable for the initial contacts to be native base pairings. This is

because, for GC-tracts, the slipping of misaligned structures by a single base leads to

mismatched G:G and C:C pairings, which are highly unstable. Hence strand slippage

by two bases is required to reach a metastable intermediate state, and consequently

there are high energy barriers associated with slithering (Figure S6). Indeed, we see

that misaligned structures constitute prominent kinetic traps on the free energy land-

scape for d(GCGCGC) (Figure 2). Thus, the alternating sequence of the GC-tracts

behaves similarly to a random sequence, for which productive hybridization pathways

are restricted to those where the nucleation event involves key native base pairings.30

In the fastest zippering pathway, the complementary strands of the GC-tracts first form

native base pairs at one terminus, followed by the propagation of hydrogen-bonding

to the opposite terminus of the duplex, in strict order (Figure S6). To remove the lo-

cal kinetic traps in stationary databases along the hybridization pathway, we grouped

the stationary and transition points using the recursive regrouping scheme53,54 with

a barrier threshold of 4.5 kcal mol−1 (Figure 4). The fastest zippering pathway for

the grouped d(GCGCGC) database is slightly different from that without grouping,

involving initial formation of native base pairs at the strand centre, and the remaining

base pairs are formed by simultaneous propagation of hydrogen-bonding outwards to
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both termini. We find that the normal mode frequencies are typically higher, producing

lower entropy for structures with a three native base pair contact involving the centres

of the two strands, than for structures with three native base pairs involving the 5′

ends of both strands. Although initial contacts form preferentially at the end of the

strands,23 owing to their higher flexibility and entropy, intermediate states with frayed

terminal bases are entropically disfavoured to avoid local kinetic traps, and can readily

rearrange to the native WC duplex, thereby facilitating hybridization. The differences

between the fastest pathways with and without regrouping indicate the important role

of entropic effects in determining the mechanism of DNA hybridization.

We also consider slithering pathways for the two systems, starting from conforma-

tions with two non-native G:C pairings, involving the 5′ ends of both strands. In the

first step to renaturation, the end base pairings are broken, and new hydrogen-bonds

form with the nearest free complementary base, resulting in a bulge loop of one (for

GG-tracts) or two (for GC-tracts) bases. This strand slippage transition is repeated

until the canonical WC duplex is formed. The slithering mechanism we have charac-

terised is different from the ‘defect diffusion’ proposed in previous work24,67 and from

the ‘internal displacement’ and ‘inchworm’ mechanisms23 observed in coarse-grained

simulations with longer sequences of more than ten base pairs. The introduction of

defects in short oligonucleotides is probably less favourable.39 Additionally, the coarse-

grained model has a single, relatively strong hydrogen-bonding interaction between

base pairs, which may suppress slithering. Hydrogen-bonds in the atomistic model

are individually weaker and probably have a lower orientational preference, which

facilitates sliding strands past each other in a process ‘devoid of significant energy

barriers’.23 Interestingly, using a high resolution CG model that incorporates multiple

sites to describe base-pairing, Scheraga and coworkers25 did not see any evidence of

‘internal displacement’ or ‘inchworm’ mechanisms in the hybridization pathways of a

12mer DNA duplex, and reported that strand association primarily occurs via zipper-

ing or slithering. Therefore, it seems likely that the interplay of various factors, such

as duplex length, resolution of the model, and sequence-specificity could dictate the
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occurrence of alternate hybridization mechanisms than those reported here.

The free energy barrier for a single slippage step in GG-tracts is relatively small,

around 5 kcal mol−1, and hence the overall slithering mechanism is competitive with

the zippering mechanism. In contrast, the free energy barrier for a single strand slip-

page step in GC-tracts is much larger, around 20 kcal mol−1. This barrier significantly

exceeds the thermal energy available at physiological temperature. The highest barrier

in the slithering pathway of GC-tracts is the rearrangement of the slipped strand to the

canonical base pairing, in which the complementary strands of misaligned structures

slip by two bases to retain G:C WC pairings. Hence, for heteroduplexes, the overall

slithering mechanism is not kinetically relevant, and the zippering mechanism is pre-

dicted to dominate. The prediction of a single dominant mechanism for heteroduplexes

agrees with recent MD simulations.68

A path deviation algorithm69,70 was used to identify the complete set of kinetically

distinct pathways without regrouping the database (Figure S7-S12). We find that there

are distinguishable pathway ensembles for hybridization by zippering and slithering in

the kinetic transition networks. In general, slower pathways are characterized by the

formation of collapsed structures, stabilized by stacking interactions, which must un-

dergo slow intrachain diffusion to achieve the native base pairings.26 Thus our results

demonstrate that, even for short sequences, DNA hybridization is a complex process

exhibiting rich dynamics, with multiple transition pathways involving many metastable

basins on the free energy landscape. These observations, consistent with recent exper-

imental and simulation studies,23,24,26,31 suggest significant deviations from the ideal

‘all or nothing’ model of DNA hybridization,17–19 which assumes a simple two-state

dissociated/fully-hybridized behaviour based on thermodynamic arguments. We note

that the free energy barriers for escaping some of the intermediate states along the most

kinetically relevant pathways are relatively small, less than or around 5 kcal mol−1.

This result explains why partially hybridized structures have rarely been detected in

previous experiments.31,32

The graph transformation method71 was used to compute phenomenological rate
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constants for DNA hybridization at a temperature of 298 K, after using a self-consistent

regrouping scheme53 to lump minima separated by barriers less than a threshold

of 5 kcal mol−1. The rate constants for the zippering pathways are estimated to be

7.5 × 104 s−1 and 2.3 × 102 s−1 for the GG-tracts and GC-tracts, respectively. The

rate constants for the slithering pathways are estimated as 105 s−1 for GG-tracts, and

9.5×10−8 s−1 for GC-tracts. Thus the timescales for the hybridization of GG-tracts, via

either zippering or slithering mechanisms, are many orders of magnitude faster than for

GC-tracts. This contrasting trend for the hybridization of homo and hetero-duplexes

agrees with the experiments of Wyer et al.,33 who demonstrated that the timescale for

the hybridization of AT-tracts is significantly longer than for AA-tracts. The faster

hybridization kinetics of GG-tracts compared to GC-tracts also agrees with predictions

based on sequence information using a six-feature weighted neighbour voting (WNV)

model.72 Furthermore, for GG-tracts, both zippering and slithering mechanisms are

kinetically relevant, with comparable rate constants. In contrast, for GC-tracts, slith-

ering mechanisms make a negligible contribution, since slipped structures are deep

kinetic traps on the free energy landscape (Figure 2).

The variation of rate constants with temperature is depicted in the form of Ar-

rhenius plots for both zippering and slithering mechanisms of each system (Figure

S13-S14). For both GG-tracts and GC-tracts, the apparent activation energy (Ea) of

the forward reaction from dissociated or slipped structures to duplex is much lower than

for the backward reaction. The zippering and slithering mechanisms of GG-tracts have

comparable values of Ea around 10 kcal mol−1, which are significantly smaller than

for GC-tracts (around 20 kcal mol−1), verifying the faster hybridization kinetics of

the homo-duplex. Although the kinetics of DNA hybridization can be quantified by

fitting the phenomenological rate constant to an Arrhenius form, the temperature de-

pendence exhibits significant deviations from Arrhenius behaviour for zippering and

slithering in GG-tracts and for zippering in GC-tracts. These deviations suggest that

DNA hybridization is associated with intermediates and kinetic traps, rather than a

single well-defined transition state. The off-pathway traps of compact structures (such
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as, G1, W1 and W2), and on-path intermediate states (such as misaligned and frayed

structures) represent competing free energy minima in addition to the native WC

duplex. Moreover, the distinct competing pathway ensembles of DNA hybridization

increase the deviation from Arrhenius kinetics. Although a two-state interpretation

of the thermodynamics of DNA hybridization has proved useful, a multistate kinetic

model seems more appropriate, especially in view of the organisation of the free energy

landscapes, and the non-Arrhenius behaviour.

Our results also feature populated configurations with fraying of the helical ter-

mini, which have been suggested by recent experiments using nonlinear infrared (IR)

spectroscopy.31,32 For DNA helix, the dimer ensemble has competing configurations

separated by barriers smaller than the enthalpy penalty required for dissociation of the

central base pairings. The stable fraying of the helical termini, in addition to the path-

ways for dimer separation, corresponds to a multi-step process, and hence deviations

from Arrhenius behavior in duplex dissociation.32

To clarify the mechanistic changes at different temperatures, we calculated the

fastest pathways corresponding to the zippering and slithering mechanisms at 270 K

and 350 K for GG- (figures S15 and S16) and GC-tracts (figures S17 and S18). In both

cases slithering follows essentially the same pathway. For zippering, the free energy is

essentially downhill at low temperature, but we see barriers at the higher temperature

for both sequences. The highest free energy barrier along the path from dissociated

strands to duplex at 350 K corresponds to the initial association and the nucleation

of a few base pairs between the strands. It is also interesting that, for GC-tracts,

the zippering starts with the initial contact between the central three base pairs at low

temperature, whereas the strand termini first forms base pairs, followed by propagation

from one end to the other at the higher temperature. In the experiments of Chen

et al., the apparent hybridization energy changes from negative at high temperature

to positive at low temperature.73 Meanwhile, Pröschke and co-workers74,75 reported

positive hybridization energies of around 10 kcal/mol for duplexes containing GC base

pairs at temperatures around Tm. Our results are in overall agreement with these
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experimental observations.

In summary, we have employed the computational energy landscape framework40,42–45

to study the dynamics and thermodynamics of DNA hybridization in hexamer duplexes

at an atomistic level of detail. DNA renaturation begins with rapid initial nucleation

of a few contacts, followed by complex structural rearrangements via zippering or

slithering pathways to reach the native Watson-Crick duplex. Multiple metastable in-

termediates exist along the pathways, separated by relatively high barriers, indicating

significant deviations from the ideal ‘all-or-nothing’ two-state model. The preferred

hybridization mechanism is strongly sequence-dependent, with significantly different

behaviour for homo- and hetero-duplexes. For the homogeneous GG-tracts, the most

kinetically relevant pathway begins with the formation of base pairs involving the cen-

tre of one strand and the terminus of the complementary strand. This misaligned

structure then rearranges to the WC duplex by coupled zippering and slithering mo-

tions. In contrast, the hybridization of GC-tracts occurs predominantly by a zippering

pathway, in which the formation of native base pairs is propagated from one terminus

to the other in strict order, and pathways involving slithering make a negligible con-

tribution to the steady-state rate constant. The hybridization of GG-tracts is much

faster than for GC-tracts, since misaligned states are deep kinetic traps on the free

energy landscape of the heteroduplex. The sequence-dependent kinetics of DNA hy-

bridization are critical in modulating the rates of DNA strand exchange reactions in

DNA computation.3,9,10,50

The free energy landscapes for hybridization are relatively frustrated, with many

distinct conformational ensembles populated at equilibrium. Besides the canonical

Watson-Crick duplex, off-pathway compact, on-pathway distorted structures, and flex-

ible structures with frayed terminal base pairs exist in the low-lying region of the

landscape. Frayed structures are kinetically accessible from the native state, and vice

versa, and appear to play an important role in facilitating the renaturation and denat-

uration processes. Analysis of the landscapes and pathways demonstrates that entropic

effects are important in determining both the equilibrium and dynamic features of the
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hybridization process.

The hexamer duplex sequences considered in this study are an ideal length for

efficient exploration of the conformational space using the energy landscape frame-

work,40,42,43 revealing various facets of strand hybridization in atomistic level. Longer

sequences may support additional pathways and structures, such as the ‘pseudoknot’,23,24

and we will investigate these possibilities in future work. Starting from shorter se-

quences will enable us to characterise the feasibility of different mechanisms as a func-

tion of system size. This insight will help to inform the rational design of DNA nan-

odevices and probes, and also lead to a better understanding of the genetic machinery

that is sustained by strand hybridization.
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