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Abstract The availability of Very High Resolution (VHR) optical sensors and a growing image 14 

archive that is frequently updated, allows the use of change detection in post-disaster recovery and 15 

monitoring for robust and rapid results. The proposed semi-automated GIS object-based method uses 16 

readily available pre-disaster GIS data and adds existing knowledge into the processing to enhance 17 

change detection. It also allows targeting specific types of changes pertaining to similar man-made 18 

objects such as buildings and critical facilities. The change detection method is based on pre/post 19 

normalized index, gradient of intensity, texture and edge similarity filters within the object and a set 20 

of training data. More emphasis is put on the building edges to capture the structural damage in 21 

quantifying change after disaster. Once the change is quantified, based on training data, the method 22 

can be used automatically to detect change in order to observe recovery over time in potentially large 23 

areas. Analysis over time can also contribute to obtaining a full picture of the recovery and 24 
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development after disaster, thereby giving managers a better understanding of productive 25 

management and recovery practices.  The recovery and monitoring can be analyzed using the index in 26 

zones extending from to epicentre of disaster or administrative boundaries over time.     27 

 28 
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 31 

1. Introduction 32 

A quicker search and rescue response following a disaster leads to a higher survival rate.  That is 33 

particularly true in developing countries, because of fragile housing construction materials and 34 

technologies.  Most damage assessments focus on the destruction of man-made objects, particularly 35 

buildings, to assess the survival rate. Rapid and robust damage assessment on a per-building level is 36 

essential for estimating the threat to human life (Bird and Bommer, 2004; Edrissi et al., 2013) and 37 

initiating effective emergency response and recovery actions, especially in highly populated urban 38 

areas (Vu and Ban 2010).  Critical infrastructure such as hospitals and police and fire stations plays a 39 

vital role in rescue efforts, thereby increasing the survival rate.   40 

Rescue efforts are even less effective when high priority areas pertaining to disproportionately many 41 

casualties are not clearly identified.  An accurate  assessment (include remote sensing) of damaged 42 

and intact roofs at building level can provide valuable information for preliminary planning of  high-43 

priority areas (focus area mapping) that is essential for rapid recovery measures (Vetrivel et al., 2016).  44 

As for other critical infrastructure, it is important to have a preliminary indication of which facilities 45 

are operational. Provided that the analyst knows where such critical facilities are, temporal analysis 46 

and change detection can be valuable tools to see the condition of the facilities soon after disaster. 47 

With a map of building and critical facilities in hand, the analyst can proceed quickly with the 48 

identification and information on damage from suitable very high-resolution (VHR) satellite imagery 49 

(Walter, 2004) by comparing data from a chosen reference before the event (pre-event) to imagery 50 

acquired shortly after the event (post-event). The availability of pre- and post-event data opens the 51 

possibility for gathering impact assessment data using change detection in complex environments 52 

such as urban areas (de Alwis Pitts and So, 2017). Change detection from high spatial-resolution 53 

images such as IKONOS and QuickBird is even more challenging, especially in complex 54 

environments characterised by small objects such as houses, individual trees and roads, and due to 55 

shadows (Pagotetal, 2008).  56 

Nadir views generally are not accurate enough to assess building damage and collapse; however 57 

assessment results have been highly valuable (Kerle, 2010) in data-poor countries.  The main problem 58 
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is that conventional nadir view remote sensing does not permit assessment of damage along the 59 

façades (Gerke and Kerle, 2011a). 60 

In general, change detection techniques can be grouped into two types: pixel-based and object-based 61 

(Blaschke, 2010; Li et al., 2011). Pixel-based change detection analysis refers to using a change 62 

detection algorithm to compare the multi-temporal images pixel-by-pixel, whereas object-based 63 

change detection analysis refers to using a change detection algorithm to compare multi-temporal 64 

images object-by-object. However, the definition of pixel-based and object-based change detection is 65 

not absolute. The most basic feature of object-based approaches is to segment the image and regard 66 

the objects as the basic unit of operation, whereas the pixel-based approach regards a single pixel as 67 

the basic unit (Daiet al., 1998). 68 

Object-based methods have the potential to provide more accurate results than traditional pixel-based 69 

methods (Al-Khudhairy et al., 2005), but the initial step of detecting the object feature is not 70 

straightforward because the high information content of VHR images requires an accurate definition 71 

of the object. Most object-based algorithms concentrate on detecting objects such as rectangular 72 

buildings (Lin et al. 1998) or parallel lines to detect manmade objects. Cheng and Han (2016) have 73 

published a survey of more generic object detection methods for the detection of different types of 74 

objects in satellite and aerial images, such as buildings. In the literature, building detection has been 75 

achieved in single or multiple operations using methods such as morphological hit-or-miss transform 76 

(HMT)( Lefèvre et al., 2007; Stankov and He, 2013, 2014), improved snake model (Peng et al., 77 

2005a), Discrimination by Ratio of Variance (DRV) (Lhomme et al., 2009), knowledge-based object 78 

detection methods (Akçay and Aksoy, 2010; Haala and Brenner, 1999; Hofmann et al., 2002; Huertas 79 

and Nevatia, 1988; McGlone and Shufelt, 1994; Peng and Liu, 2005; Shufelt, 1996; Stilla et al., 1997; 80 

Weidner and Förstner, 1995), context knowledge such as shadow evidence (Irvin and McKeown, 81 

1989; Lin and Nevatia, 1998; Liow and Pavlidis, 1990; Ok, 2013; Ok et al., 2013), texture pattern 82 

features (Senaras et al., 2013), conditional random field (CRF) (Lafferty et al., 2001, Kumar and 83 

Hebert, 2003),etc. Building detection in highly complex VHR images of dense urban areas often 84 

suffers from challenges due to large variations in the visual appearance of the building caused by 85 

viewpoint variation, occlusion, background clutter, illumination, shadow, etc. (Cheng and Han, 2016). 86 

Thus the object detection step is the most complex and causes most of the error (Michaelsen et al., 87 

2006).  88 

Many current change-detection mechanisms do not make effective use of available pre-disaster data 89 

and existing knowledge (Guo et al., 2015). Hence using pre-disaster GIS objects such buildings as 90 

indicators allows targeting the search for specific changes to these areas within the objects of interest. 91 

The GIS object-based method discussed here is a modified version of the published work of de Alwis 92 

Pitts and So (2017) for roads and open spaces. The proposed indicator-specific method uses readily 93 
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available pre-disaster GIS data and existing knowledge to enhance the detection of change while 94 

offering the possibility to target specific types of changes pertaining to similar man-made objects. 95 

In this research a pre/post normalized index for buildings is developed, based on gradient, texture, and 96 

edge similarity filters within the buildings and an existing set of training data. The method used for 97 

buildings, although similar to the method used in de Alwis Pitts and So 2017, differs significantly in 98 

terms of the dominant attribute of change. Since edges play a large role in detecting buildings and 99 

their structural damage (Sirmacek and Unsalan, 2009).  To detect buildings and damage thereto, more 100 

emphasis has been put on detecting the changes of the edges surrounding the buildings.  101 

The proposed semi-automated method is evaluated using QuickBird datasets for abrupt changes soon 102 

after a disaster.  The method could also be automated to monitor progressive changes months after a 103 

disaster. The work shown in this publication also emphasises the importance of having a good pre-104 

disaster GIS for developing countries that are prone to disaster. 105 

2. Method 106 

2.1. Case Study Site 107 

2.1.1. Muzzaffarabad, Pakistan   108 

The Kashmir earthquakewasa destructive 7.6 Mw earthquake that struck the northwest region of 109 

Pakistan, near the city of Muzaffarabad, on 8 October 2005 at 08:52 local time (Earthquake.usgs.gov 110 

2005).  111 

The Muzaffarabad area was selected as a study site of the ReBuilDD (Remote sensing for Built 112 

environment Disaster and Development) (Brown et al. 2012) project because it was a major 113 

earthquake with severe damage The post disaster image was the first image we could find that was 114 

100% cloud free. We chose the 100% cloud-free image in order to be able to visualize a large extent 115 

for proof of  concept. Partially cloud covered images are available hours after a disaster and are 116 

recommended for disaster situations. There are also several satellite sensors that have compatible data 117 

that can be used together.   De Alwis Pitts and So 2017 has shown the possibility of using multiple 118 

sensors (Geoeye-1, WorldView 2 etc.) for a similar change detection method for reads and open 119 

spaces. 120 

The timing, the extent of the disaster and the fact that very little ground based data existed, made it a 121 

well suited as a case study of remotely sensed data. Though the pre disaster and post disaster image 122 

were taken  14 months apart, we didn’t see any new buildings built during that period. This is 123 

common in remote places. In the post disaster image that was taken 2 weeks after disaster it was 124 

evident that the damage to the building were still visible and the recovery process had not started.   125 

Table1Imagery and Data Acquisition dates for Muzzaffarabad, Pakistan  126 
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Imagery  Acquisition Date  

Pre-

disaster(QuickBird)* 

13th August 2004 – 14 months before 

earthquake 

Post disaster 

1(QuickBird) * 

22nd October 2005 – 2 weeks after 

earthquake 

Post disaster 2 

(QuickBird) * 

13th June 2006 – 8 months after 

earthquake 

*QuickBird-2 imagery contained five bands namely Blue(450 - 520 nm), Green (520 - 600 nm), 127 

Red(630 - 690 nm), NIR(760 - 900 nm), and PAN (760 - 850 nm). The spectral bands have a 128 

resolution of 2.44 mand the PAN band has a pixel resolution of 0.61mnominal at nadir.     129 

 130 
    [73.463, 34.369] 131 
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Figure 1 Study site, Muzzaffarabad, Pakistan . Shown in read are the screen digitised buildings. 133 

 134 

2.2. Data Acquisition and Data Preparation  135 

The process of initial data preparation for the proposed change detection method is shown in Figure 2. 136 

The following paragraphs explain the data preparation in detail. 137 

Open Street Map data: The data pertaining to the road layer was downloaded directly from the Open 138 

Street Map (OSM) archive (GEOFABRIK (Download.geofabrik.de)). In the case of Muzzaffarabad, 139 

the street layers for the primary and secondary roads were manually digitised from the QuickBird 140 

VHR images using QGIS since the OSM data were incomplete.  141 

Satellite Images: For the case study of Muzzaffarabad, three satellite images were acquired from 142 

2004 to 2006 (Table1). 143 

Geo-rectifying the pre-disaster image: All the satellite data were co-registered to the road layers 144 

obtained from OSM to ensure the best alignment (accuracy<1.47m). The pre-disaster IR R,G bands 145 

were first PAN-sharpened (using QGISOTB (OrfeoToolBox) Processing toolbox)and then co-146 

registered to the road layer. 147 

Geo-rectifying the post-disaster image: The PAN-sharpened post-disaster image was geo-rectified 148 

using buildings, roads, and junctions identified in both the pre and post images and used as ground 149 

control points. 150 

 151 

 152 

 153 

 154 

 155 

 156 
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 158 

Geo-rectify  

pre-disaster images based 

on the GIS data 

Geo-rectify  

post-disaster images 

based on the GIS data 
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 159 

 160 

 161 

Figure 2 Data preparation workflow:  Pre-disaster images are PAN-sharpened and geo-rectified to the Open Street 162 
Map and then the PAN-sharpened post-disaster images are geo-rectified to the pre-disaster images. 163 

 164 

 165 

 166 

 167 

Screen Digitizing the Building 168 

The buildings were digitized off the screen using QGIS from the pre disaster images. Only the area 169 

with damaged buildings and some of the surrounding buildings were digitized for this study. This is 170 

the only time consuming step in the analysis, having a pre disaster building GIS data for areas that are 171 

disaster prone would enable the analysis to proceed faster in case of a disaster. 172 

Building the  doughnut ring buffers around the buildings 173 

In order to detect change in the edges of the buildings to determine structural changes that are 174 

indicative of damage buffers of a positive 1m and negative 1m were created around each building in 175 

the building layer. Then the negative buffers are deleted (erased) from the positive buffer to create a 176 

doughnut ring buffer around all the buildings. 177 

Clipping the Building and the  doughnut ring buffers 178 

The  geo-referenced, geo-rectified  pre-post complete time series of images, are clipped by the 179 

building polygon and doughnut ring buffer layers. These layers are then used in the flowchart shown 180 

in Figure 3. 181 

 182 
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Figure 3 The workflow showing how the buildings (screen digitised GIS layers) and  doughnut ring buffers of the 183 
building are used to clip the pre- and post-images. Then the clipped images are used to calculate the Enhanced 184 
Change Detection Index as per Figure 5 185 

2.2.1. Pre-Post Normalized Difference of the Satellite data 186 

As per workflow in Figure 5 the pre-post normalized difference between the PAN-sharpened, geo-187 

referenced bands (R, G, IR) and PAN bands is calculated using Equation 1 for each building 188 

Clip each ring buffer  

segment for each of the co-

registered images 

 

Calculate index for each of the 

segments (workflow in Figure 5) 

 

OUTPUT: Compare and graph change 

of the index over time for each 

building’s calculated change index 

 

Clip building segments for 

each of the co-registered 

images 

 



 

9 

 

unit/segment. The pre-post normalized difference removes changes in reflectance due to acquisition 189 

times within the day. The normalized ratio in the denominator of Equation 1 helps to compensate for 190 

differences both in illumination within an image, and differences between images due to time of day 191 

or season when the images were acquired (Du et al., 2002). Taking the square root is intended to 192 

correct values approximate a Poisson distribution and introduce a normal distribution, producing a 193 

linear measurement scale (de Alwis Pitts and So 2007). Adding a constant of 0.5 to all pre-post 194 

normalized values does not always eliminate all negative values, but it leaves fewer of them. 195 

(
𝑷𝑶𝑺𝑻−𝑷𝑹𝑬

𝑷𝑶𝑺𝑻+𝑷𝑹𝑬
+𝟎.𝟓)

|(
𝑷𝑶𝑺𝑻−𝑷𝑹𝑬

𝑷𝑶𝑺𝑻+𝑷𝑹𝑬
+𝟎.𝟓)|

 . √|(
𝑷𝑶𝑺𝑻−𝑷𝑹𝑬

𝑷𝑶𝑺𝑻+𝑷𝑹𝑬
+ 𝟎. 𝟓)| Equation 1 196 

2.2.2. Enhanced Change Detection Index for Building Unit/Segment 197 

As shown in Figure 4 each normalized difference of PAN and PAN-sharpened (IR, R, G) bands for 198 

each building segment was subjected to Vigra edge detection in QGIS (QGIS Development Team, 199 

2015) and texture using GDAL’s (QGIS) roughness parameter. Edge filters of the pre-post 200 

normalized images were used to capture object specific changes in edges. Method derived for the 201 

roads and open spaces by de Alwis Pitts and So 2017 failed to be significantly correlated to the 202 

normalized gradient, texture and edges within the building as an object. The edges derived within the 203 

object as per de Alwis Pitts and So 2017 for roads failed for buildings because the edge patterns on 204 

some of the building roofs matched the rubble of the damaged buildings.  Therefore, for buildings we 205 

modified  the method used by de Alwis Pitts and So 2017 by making a doughnut shaped ring around 206 

the buildings to put more emphasis on capturing the change in the edges of the building which is 207 

indicative of structural damage.  Changes in edges correlated well with the condition of the building 208 

and dominated the if the buildings were still standing.  209 

Next the gradient is calculated for each object in pre- and post-images PAN sharpened bands (R, G, 210 

IR) and PAN bands and then normalized  (for each band) using Equation 1. The change of edges, 211 

texture and gradient parameters are calculated within each of the objects as per the flowchart in Figure 212 

6(building). This creates 12 change-related parameters (4 pertaining to edges, 4 to texture, and 4 to the 213 

gradient) for each object in regard to building segments. 214 

 215 

 216 

 217 

 218 

 219 

 220 
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 225 

Figure 4 shows the zoomed in version of buildings in the pre (a, c, e)- and post-images (b, d, f). By looking at a) and b) 226 
images, a visual index of 2 was assigned because the aerial views of the buildings have not changed much between the 227 
two images. Images c) (pre) and d)(post) show a considerable change, hence a value of 5 is used as the visual index.  228 
As for the building shown in e) (pre) and f)(post) a visual index of 8 was assigned because more change is visible than 229 
the c) and d) images display.39 buildings were visually analysed and an appropriate visual index determined. 230 

2.2.3. Visual Index (Training Data) for Building Unit/Segments 231 

A visual index (VI) is developed by the user by comparing the pre and post images visually in a way 232 

that is analogous to a linear visual scale for change. The visual index is developed for 1/10th the 233 

buildings by looking at the zoomed in image of the same building in the pre and post disaster image 234 

back and forth. This can be done in a GIS software overlaying the pre and post images one on top of 235 

the building layer other. By looking at the zoomed in view of the building a value ranging from 1-10 236 

is assigned to represent the change of the building. When a single user develops the VI it has been 237 

seen to be consistent (de Alwis Pitts and So. 2017) throughout the task. As shown in Figure 4, the 238 

building segments that had mild changes were assigned a small VI (close to 0, Figure 7 a) and b)) and 239 

the segments that showed large changes were assigned large VI values (close to 10, Figure 4c) and d) 240 

). 241 

Then as seen in Figure 5, this visual index was used as a training set and regressed against the derived 242 

values of pre-post normalized gradient, edges, and roughness of each building segment.  243 
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 264 

 265 

 266 

 267 

 268 

Figure 5 Workflow showing the enhanced change detection index(ECDI)for the buildings in Muzzaffarabad. The pre- 269 
and post-disaster images (outputs from the workflow shown in Figure 2) are normalized and a value pertaining to the 270 
roughness, gradient is calculated for each building segment and edges from its  doughnut ring buffer. The change-271 
related parameters (texture, gradient and edges) for each building segment is then regressed with the visual index to 272 
find the coefficients to create the ECDI. 273 

 274 

2.2.4. Regression  275 

We use regression analysis for estimating the relationship among the roughness, gradient and edge 276 

parameters to quantify change. The regression model predictors are the roughness, gradient and edges 277 

of the buildings and the independent variable is the change index (ECDI). We use a visual index (VI) 278 

for 10% of the buildings to train the algorithm. Then using the coefficients obtained from the training 279 

 

   

Regression of indices with 

some visual indices of the 

buildings (Figure 6Figure 

7) 
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selected buildings 

 

 

OUTPUT: ECDI for each 

building segment Figure 8 

 



 

15 

 

data a change index (ECDI) is obtained for the data. The derived coefficients are again used to create 280 

the change index for the 10 percent of the data used to train the data. The derived change index 281 

obtained for the data used for the training is analysed against the visual index to see they are roughly 282 

proportional.  283 

 284 

The visual index derived by observing the visual changes in pre- and post-disaster images for 39 285 

building units were regressed with the values obtained from change in texture, gradient, and edges.  286 

 287 

 

 

 

 288 

Figure 6 The calculated normalized texture, gradient and edge values derived for each building object for(R, G, IR) 289 
and PAN bands are regressed with the visual index obtained by observing the visual changes in pre- and post-disaster 290 
images for 1/10th of the building segments.  The obtained regression coefficients are then used to calculate the ECDI 291 
(enhanced change detection index) for all the roads.  292 

The R square value was 0.72 with low P values (varied from 0.0000443 to 0.014) for PAN and PAN-293 

sharpened IR bands derived gradient, texture, and edge parameter. This low P value with a high R 294 

square combination indicates that changes in the predictors (gradient, texture, and edge) are related to 295 

changes in the response variable (visual index), thereby indicating that the model explains a great 296 

dealof the response variability. Red and green band derived parameters did not contribute 297 

significantly. The graph of the visual index vs. ECDI is shown in Figure 7. 298 
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 299 

Figure 7: The visual index (using Figure 4vs. the calculated ECDI (enhanced change detection index) (Figure 6) for 300 
the selected building segments. The figure shows a good correlation between the visual index and the pre- and post-301 
disaster normalized parameters (texture, edges, and gradient) for the building segments and the  doughnut ring 302 
buffers to create ECDI. 303 

3. Results 304 

The pre/post normalized relative change (ECDI) for the building segments in Muzaffarabad is shown 305 

in Figure 8: The higher ECDI indicates a significant change, implying that the buildings have changed 306 

since the disaster when compared to the pre-disaster image. Knowing which buildings have changed 307 

relative to the other buildings can allow emergency responses to determine critical areas and mange 308 

response teams and resources.  Here it is necessary to mention that the change is based on nadir view, 309 

and so is only indicative of change in roof and walls visible to a nadir view. This is not really a limit 310 

of the methodology because it is common to all passive remotely sensed data available soon after a 311 

disaster in data poor countries.   312 

Obtaining information with regards to the operational status of critical facilities and lifelines networks 313 

is certainly a crucial requirement for end-users. Remote sensing technologies can offer means to 314 

gauge detailed information about such infrastructure, and most often the operational status of such 315 
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facilities can only be directly verified with in-situ surveys316 

 317 

Figure 8: Enhanced change detection index (ECDI) for buildings obtained from pre-disaster and post-disaster. 318 
Higher indices (represented by darker colors) indicate greater changes after disaster. 319 

 320 

 321 
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 322 

As shown in Error! Reference source not found., each image can be compared to the pre-disaster 323 

image as well as an image immediately following a post-disaster image to get a better picture of the 324 

recovery situation. 325 

 326 

Case Study Scenarios  327 

Error! Reference source not found. outlines scenarios that can be seen when ECDIs are observed 328 

over time. They are obtained by comparing post-disaster images to pre-disaster image. 329 

ECDI of Pre 

disaster & Post 

T1* 

ECDI of Pre 

disaster & 

Post T2* 

ECDI of Post 

T1*& Post 

T2* 

Scenario 

>5 <5 >5 Building affected by post T1 date and 

recovered by Post T2 date 

>5 >5 <5 Building affected by post T1 date and 

NOT recovered by Post T2 date 

<5 <5 <5 Building not affected 

<5 >5 >5 Buildingnot affected by post T1 data and 

not modified by Post T2 date 

*Post T1 and Post T2 are dates after the disaster. 330 

As seen in Error! Reference source not found., by obtaining the ECDI for the two post-disaster 331 

images and  then comparing them to the pre-disaster image, we were able to identify buildings that 332 

were rebuilt after disaster. With more post-disaster images, a progressive recovery can be observed. 333 

 334 

4. Discussion and conclusions 335 

The proposed method uses GIS objects and integrates existing knowledge into processing to optimize 336 

change detection. This change detection method uses the calculation of the texture, edges, and 337 

gradient of each object to better estimate the change between the pre- and post-disaster data. To 338 

determine what proportions of each of the above properties contribute to real change, a visual index is 339 

used to train the data. Like any user-derived parameter, the visual index can be very specific to the 340 

user. However, provided that the visual index is completed by a single user, it should contain relative 341 

differences representative of the changes within the image (de Alwis Pitts and So 2017). It is easy to 342 

visually see objects that underwent a large change and those that experienced no change, so more 343 

objects at extremes were used for the visual index. It is best to use more objects at the ends of the 344 
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change spectrum because the computer is then better able to estimate objects that are at different 345 

gradients of change. 346 

The normalization between the pre- and post-disaster data reduces the differences caused due to the 347 

acquisition times and atmospheric anomalies of the pre/post images. The VHR sensors used in this 348 

study collect data around the same time, so the shadow effect due to acquisition time will be minimal; 349 

the main issues are the incidence angle and changes in solar zenith, because these will impact the 350 

imagery more directly than the difference between acquisition times. The considered relative change 351 

by normalizing between the pre- and post-images would give more weight to the changes and less to 352 

the increase and decrease in shadows.  353 

Once the change is quantified based on training data, the pre/post normalized method outlined in this 354 

paper can be used automatically to detect change and to observe recovery over time. Comparing the 355 

most recent image and consecutive past images can give a complete history of changes pertaining to 356 

the buildings. As demonstrated for roads by de Alwis Pitts and So 2017,  another benefit is that this 357 

method can be potentially applied over large areas to get the big picture and to determine changes 358 

over time. 359 

After obtaining the imagery, provided there is a GIS layer of the buildings, it takes 1-2 hours to create 360 

training data, then it takes 2-3 more hours to co-register the images and run the algorithm. Overall the 361 

processing in this method, from training to the final deliverables, takes 3-5 hours. The most time- 362 

consuming step is obtaining the pre-disaster building layer through screen digitising when pre-disaster 363 

GIS data are not available. We highly recommend that the GIS data be collected, updated and be 364 

ready to use in disaster prone areas in order to benefit from this method. Provided the GIS data and 365 

the images are available the  proposed method can be executed in a semi-automated way within hours 366 

to identify focus areas. 367 

If further information is known about the buildings, then the information could be used to categorize 368 

the building into classes based on the building construction material (Carrasco et al. 2017). Buildings 369 

with similar construction material would have similar texture, reflectance gradient, and edges, and so 370 

would disintegrate similarly under similar stresses. Categorising buildings based on the roof types and 371 

building material would increase the accuracy of the method.  The grouping should also consider the 372 

age of the buildings, which is indicative of destruction thresholds.  Subcategorizing buildings would 373 

increase the ability to detect changes more accurately because of the similarity in texture, reflectance 374 

gradient, and edges. If further ground information is not available, assuming that the colour of the roof 375 

is indicative of the building material could be an initial step in categorising the building.  It should be 376 

noted that the nadir view  of the building observed using passive VHR sensors only lets us see the 377 

condition of the roof, but the roof seen in a nadir view is not always indicative of the  damage 378 

occurred to the building. However, given that VHR images could be obtained immediately after a 379 



 

20 

 

disaster in data poor countries, VHR images are a good resource to be used by emergency responders 380 

for mapping out the damage. 381 

Roofs obscured by tree cover showed false change situations when only the tree got destroyed after 382 

the disaster. Further improvements could be achieved by using the NDVI (Normalised Difference 383 

Vegetation Index) since this would allow to subtract the vegetation cover over building segments. In 384 

our case study there were very few trees over the roofs, so tree cover was not a major issue. We were 385 

able to avoid the trees by digitising around them.       386 

The coefficients pertaining to the texture, edges, and gradient obtained from the visual index are 387 

transferable to other buildings with similar construction material and thus similar reflective properties. 388 

This transferability works better for buildings that are categorized into finer classes and are analysed 389 

separately. The ECDI can be used during the recovery to observe change and recovery after disaster. 390 

This change is a good indicator of recovery over time after disaster. The houses can be separated to 391 

zones for zonal statistics to observe the change from the epicentre of disaster or differences of urban 392 

and sub-urban recovery differences over time. The method used in this paper uses QGIS, free 393 

software which  is thus appropriate for the use in developing countries with limited resources. 394 

 395 
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