
Appendix S4. Number and stability of equilibria 
We performed a randomisation scan to understand how frequently multiple biologically relevant 
equilibria could be obtained. We selected sets of parameters by sampling uniformly at random from 
the following ranges, chosen so that the full range of biologically plausible behaviours were examined.  

Parameter Minimum value Maximum value 

𝑁 1 2,000 

𝜌 0.001 0.05 

𝜇 0.001 0.2 

𝛼 0 0.6 

𝜎 0.001 0.4 

Γ 0.001 4 

𝛿 0 1 

𝛽 0 3 

𝜏 0 8 (NPT); 1 (PT) 

𝜁 1,000 (NPT); 1 (PT) 2,400 (NPT); 300 (PT) 

𝜈− 0.001 4 

𝜈+ 0.001 4 

𝜔− 0.001 1 

𝜔+ 0.001 1 

𝜖− 0.001 2 

𝜖+ 0.001 2 

 

In all cases, we calculated the values of the derived parameters 𝛾 and 𝜂 according to the transmission 
type (i.e. NPT vs PT). We constrained the parameters for NPT such that 𝜈− = 𝜈+, 𝜔− = 𝜔+ and 𝜖− =
𝜖+, and – for both transmission types – immediately discarded any samples for which 𝜔±𝜖± > 1.  

For each of 12,500,000 samples for each type of transmission, we then used the quartic equation in 
S3 Appendix to calculate the (up to) four equilibrium values for which 𝐼 ≠ 0. Solving the equations as 
a polynomial was computationally convenient, since we then knew in advance how many solutions to 
expect (i.e. four solutions, if those involving complex numbers are counted). 

For certain random sets of parameters, the quartic had coefficients of vastly differing sizes (indeed, 
there was at least one case in which the biggest coefficient was 17 orders of magnitude larger than 
the smallest coefficient). This led to potential inaccuracies in the numerical solution of the quartic 
polynomial (for which we used the NumPy solver “roots”). To check the accuracy of the calculated 
roots, potential equilibria were back substituted into right hand side of the system of differential 
equations. Any candidate equilibria that did not lead to values sufficiently close to zero for all four 
equations were used as initial estimates for a direct numerical solution of the nonlinear system. In 
almost all cases, this two-step process found relevant solutions to sufficient accuracy. In a small 
number of cases the second step of the procedure either failed to identify an equilibrium or converged 
on a different root. These parameter sets were discarded, before replacement with valid parameter 
sets, thus ensuring there were 12,500,000 samples for each type of transmission. This happened 
relatively infrequently: 51,472 times for NPT and 43,133 times for PT (i.e. in <0.5% of cases).  

For each of the 12,500,000 valid independent set of parameters the remained, we characterised: 

• whether the vector carrying capacity (𝜅) was positive or negative; 

• whether the basic reproduction number (𝑅0) was larger or smaller than one; 

• the number of biologically meaningful equilibria generated by the quartic equation; 

• the number of these equilibria that were also locally stable. 



We defined a biologically meaningful equilibrium to be any for which the values of all state variables 
were non-negative at equilibrium. Stability of equilibria was determined using standard techniques 
based on analytic calculation of the Jacobian of Equation (26), using numerically calculated equilibrium 
values in the calculation of the eigenvalues of this matrix. Stability was then tested by considering the 
sign of the real parts. 

Counts and proportions of each type of result, for each type of transmission, are tabulated below. 
Note that when 𝜅 < 0, it is necessarily the case that 𝑅0 < 1. Also note that when rows which are in 
principle possible do not appear in the table, we have not proved such cases do not exist, this is simply 
because no such cases were found in our – very extensive – scan (an example for NPT would be when 
𝜅 < 0 and 𝑅0 < 1 but with two biologically meaningful equilibria which were both locally stable; we 
did not find a case like this in our numerical work). Finally, note that the first % column shows 
percentages falling into each category as a proportion of all parameter sets, whereas the second % 
column shows as a proportion of parameter sets for which at least one biologically meaningful 
equilibrium was found (i.e. after cases in which there were no biologically meaningful equilibria were 
filtered out).  

Results are tabulated in the tables overleaf.  

We identify several cases in which there are multiple stable biologically relevant equilibria: 

• Case One (shown in blue): bistability between a locally stable disease-free equilibrium (i.e. 
𝑅0 < 1) at which the vector is present (i.e. 𝜅 > 0)  and a single locally stable disease-present 
equilibrium; 

• Case Two (shown in green): bistability between a locally stable disease-free equilibrium (i.e. 
𝑅0 < 1) at which the vector is absent (i.e. 𝜅 < 0)  and a single locally stable disease-present 
equilibrium; 

• Case Three (shown in pink): bistability between a pair of locally stable disease-present 
equilibria, with the disease-free equilibrium being unstable (i.e. 𝑅0 > 1)  

• Case Four (shown in grey): tristability between a locally stable disease-free equilibrium (i.e. 
𝑅0 < 1) at which the vector is absent (i.e. 𝜅 < 0)  and a pair of locally stable disease-present 
equilibria 

• Case Five (shown in gold): tristability between a locally stable disease-free equilibrium (i.e. 
𝑅0 < 1) at which the vector is present (i.e. 𝜅 > 0)  and a pair of locally stable disease-present 
equilibria 

 
Exemplars of model behaviour in Cases One and Two are already shown in the main text (e.g. Figures 
5 and 9, respectively). Examples of Cases Three to Five are detailed on the following page. 

  



Non-persistent transmission  

𝜿 > 𝟎 𝑹𝟎 > 𝟏 Number of 
biologically relevant 

equilibria (𝐼 ≠ 0) 

Of which 
how many 
are stable? 

Number of times 
found in the scan 

% %  
(valid) 

  0 0 9,506,452 76.05% - 
  1 0 5 <0.01% <0.01% 
  1 1 17 <0.01% <0.01% 
  2 0 1 <0.01% <0.01% 
  2 1 486,423 3.89% 21.06% 
✓  0 0 684,243 5.47% - 
✓  1 0 7 <0.01% <0.01% 
✓  2 0 19,775 0.16% 0.86% 
✓  2 1 234,040 1.87% 10.13% 
✓  3 2 1 <0.01% <0.01% 
✓ ✓ 0 0 2 <0.01% - 
✓ ✓ 1 0 59,203 0.47% 2.56% 
✓ ✓ 1 1 1,509,831 12.08% 65.38% 

 

Persistent transmission 

𝜿 > 𝟎 𝑹𝟎 > 𝟏 Number of 
biologically relevant 

equilibria (𝐼 ≠ 0) 

Of which 
how many 
are stable? 

Number of times 
found in the scan 

% %  
(valid) 

  0 0 9,797,225 78.38% - 
  1 0 1 <0.01% <0.01% 
  1 1 5 <0.01% <0.01% 
  2 0 33 <0.01% <0.01% 
  2 1 196,498 1.57% 16.57% 
  4 2 1 <0.01% <0.01% 
✓  0 0 1,516,919 12.14% - 
✓  1 0 1 <0.01% <0.01% 
✓  1 1 1 <0.01% <0.01% 
✓  2 0 1,598 0.01% 0.13% 
✓  2 1 127,778 1.02% 10.78% 
✓  4 1 11 <0.01% <0.01% 
✓  4 2 11 <0.01% <0.01% 
✓ ✓ 1 0 3,806 0.03% 0.32% 
✓ ✓ 1 1 852,607 6.82% 71.90% 
✓ ✓ 3 1 96 <0.01% 0.01% 
✓ ✓ 3 2 3,409 0.03% 0.29% 

 

  



Examples of Cases Three, Four and Five 

All examples are for PT and were selected at random. The parameter sets considered are below 
(shown to the very large number of significant figures as generated by the randomisation procedure).  

Parameter Case Three Case Four Case Five 

𝑁 1357.78471380456 1319.4498303372 758.422673812394 

𝜌 0.0203851207824684 0.0405860211146373 0.00196785718199866 

𝜇 0.070862116192852 0.0523757168662303 0.0423162927283986 

𝛼 0.364490774736621 0.172566453141838 0.0835683097305965 

𝜎 0.390441941465403 0.172671738699192 0.351101323665888 

Γ 0.0817319970600838 0.431801010900859 1.58321791034575 

𝛿 0.154354048987494 0.266497509538162 0.498826196145645 

𝛽 2.90534775065342 2.57881567083572 1.553702775786 

𝜏 0.898696022660075 0.0612631271055258 0.0554984526167504 

𝜁 132.645389890262 145.151797209077 244.713013585564 

𝜈− 3.37903844254511 2.73611880606566 2.67039673107236 

𝜈+ 1.96477227364072 0.0248878129250102 0.107380027200243 

𝜔− 0.892493274544967 0.966105712055771 0.151813191157394 

𝜔+ 0.200137868270559 0.964307280496935 0.887821927785777 

𝜖− 0.352802530096919 0.474819355540881 0.144803724097339 

𝜖+ 0.500524147329523 0.975518138714481 1.3507622398246 

 

The initial conditions in the exemplar model runs shown on the next page were as follows. 

Case Initial Conditions 𝑺𝟎 𝑰𝟎 𝑿𝟎 𝒁𝟎 

Three 1 1000 1 100 1 

 2 8.8 0.4 0.34 0.17 

Four 1 5 550 8 50 

 2 600 300 3 7 

 3 1300 1 0.001 0.001 

Five 1 5 100 8 50 

 2 20 150 4 1 

 3 760 0.5 20 0.5 

 

  



Graphs showing examples of Cases Three, Four and Five 

 

 

 

 

 

 


