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A VANISHING THEOREM FOR TAUTOLOGICAL CLASSES OF

ASPHERICAL MANIFOLDS

FABIAN HEBESTREIT, MARKUS LAND, WOLFGANG LÜCK, AND OSCAR RANDAL-WILLIAMS

Abstract. Tautological classes, or generalised Miller–Morita–Mumford classes, are basic char-
acteristic classes of smooth fibre bundles, and have recently been used to describe the rational
cohomology of classifying spaces of diffeomorphism groups for several types of manifolds. We
show that rationally tautological classes depend only on the underlying topological block bun-
dle, and use this to prove the vanishing of tautological classes for many bundles with fibre an
aspherical manifold.
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1. Introduction

Spaces of automorphisms of manifolds have long been an active topic of research in topology,
and various techniques have emerged for their study. In the case of high-dimensional manifolds,
there are two competing approaches: On the one hand, one tries to understand the difference
between the space of diffeomorphisms and the space of homotopy self-equivalences by introducing
yet another space, the space of block diffeomorphisms, whose difference to homotopy equivalences
is measured by surgery theory and whose difference to diffeomorphisms is measured, at least in
a range depending only on the dimension of the manifold, in terms of Waldhausen’s A-theory;
see [WW89] for a modern approach. An example of this approach being successfully employed
is [FH78], where Farrell and Hsiang investigate the rational homotopy type of various spaces
of automorphisms, and in particular determine the rational homotopy groups of the space of
homeomorphisms of aspherical manifolds in a range. This has a recent integral refinement in
[ELP+18].

On the other hand, with the work of Madsen, Tillmann, and Weiss on Mumford’s conjecture,
a new line of investigation emerged. This approach is based on cobordism theory and tries to
describe the cohomology of the classifying space of diffeomorphisms in terms of a certain Thom
spectrum – an object accessible to the computational methods of algebraic topology. This method
is particularly well suited to studying specific cohomology classes, the generalised Miller–Morita–
Mumford classes. Since they are central to the present article let us briefly recall their definition.
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Given a smooth, oriented fibre bundle p : E → B with typical fibre a compact, closed, oriented
manifold M of dimension d, a coefficient ring R, and a characteristic class c ∈ Hk(BSO(d);R),
the associated Miller–Morita–Mumford class, or tautological class, is the cohomology class

κc(p) = p!(c(Tv(p))) ∈ Hk−d(B;R)

obtained by applying the Gysin homomorphism p! associated to p to the class c(Tv(p)) ∈ Hk(E;R)
given by evaluating the characteristic class c on the vertical tangent bundle Tv(p) of the map p. In
particular, the tautological classes are defined on the universal smooth oriented fibre bundle with
fibre M , whose base is the classifying space BDiff+(M) for the topological group of orientation-
preserving diffeomorphisms of M , yielding universal classes

κc(M) ∈ Hk−d(BDiff+(M);R).

These classes were first considered in the case that M is an oriented surface, where they have
been studied in detail by both algebraic geometers and topologists [Mum83, Mor84, Mil86, Loo95,
Fab99]. They were the subject of Mumford’s conjecture describing the rational cohomology of the
stable moduli space of Riemann surfaces, which was resolved in the work of Madsen, Tillmann,
and Weiss [MW07, MT01]. In higher dimensions, tautological classes have been of recent interest
due to the work of Galatius and Randal-Williams, culminating in [GRW17], which describes the
rational cohomology of BDiff+(M) in terms of tautological classes for certain simply connected
manifolds M of dimension 2n ≥ 6, in a range bounded by roughly half the genus of M ; the genus
of M refers to the number of Sn × Sn connect-summands of M . In fact, already their work in
[GRW18] and [GRW14] implies that any oriented 2n-manifold of genus at least 11 has non-trivial
tautological classes!

The goal of the present paper is to discuss tautological classes for aspherical manifolds. Aspher-
ical manifolds of dimension 2n > 2 have vanishing genus in the sense just described (a Sn × Sn

connect-summand gives elements of nth homotopy whose nontriviality may be detected using the
intersection form) so the results mentioned above reveal nothing in this case.

Our main theorem will be stated in terms of the following two conjectures.

Block Borel conjecture. For a closed aspherical manifold M the canonical map T̃op(M) →
G(M) is a weak homotopy equivalence.

Here T̃op(M) denotes the realisation of the semi-simplicial set of block homeomorphisms of M ,
and G(M) denotes the space of self homotopy equivalences of M . The block Borel conjecture
is a strong form of the uniqueness part of the classical Borel conjecture: that conjecture says
that a homotopy equivalence between aspherical manifolds is homotopic to a homeomorphism;
the block Borel conjecture says that the space of homotopy equivalences between homeomorphic
aspherical manifolds is equivalent to the space of block homeomorphisms. For the purposes of
this introduction the most important feature of this conjecture is that for manifolds of dimension
at least 5 it is implied by the Farrell–Jones conjectures, and thus is known for large swathes
of aspherical manifolds by the work of Bartels, Reich, Lück, and many others [BLR08a, BL10,
KLR16].

Another input into our work is Burghelea’s conjecture [Bur85], the part of which relevant for
us reads as follows.

Central part of Burghelea’s conjecture. For a closed aspherical manifold M and a central
element g ∈ π1(M) the rational cohomological dimension with trivial coefficients of π1(M)/〈g〉 is
finite.

This conjecture is not as well studied as the Farrell–Jones conjecture, but is still known to
hold for a large class of groups. Finally, let Diffh(M) ≤ Diff(M) denote the subgroup of those
diffeomorphisms homotopic to the identity; recall that a smooth fibre bundle with fibre M has
structure group Diffh(M) if and only if its fibre transport along any loop is homotopic to the
identity. With these preliminaries out of the way we can state our main result.
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Main theorem. If an oriented, smooth, closed, aspherical manifoldM of dimension d satisfies the
central part of Burghelea’s conjecture and the block Borel conjecture, then for all smooth M -fibre
bundles p : E → B with structure group Diffh(M), we have

0 = κc(p) ∈ H
k−d(B;Q)

for all c ∈ Hk(BSO(d);Q) with k 6= d.

In particular, as any smooth M -fibre bundle over a simply connected base space admits a
reduction of its structure group to the identity component of Diff(M) the tautological classes of
such bundles vanish.

The hypothesis on the structure group cannot be completely relaxed. When M is an orientable
surface of large genus it is well known (see e.g. [Mil86]) that many tautological classes are non-zero,
so by taking products we obtain examples of aspherical manifolds of any even dimension having
non-zero tautological classes.

This theorem in particular recovers several recent vanishing theorems of Bustamante, Farrell,
and Jiang [BFJ16], but applies to a much wider class of manifolds. At the end of the paper we
shall describe conditions on the fundamental group of an aspherical manifold which are known to
imply that M satisfies both relevant conjectures.

This theorem is not the strongest or most general result that we prove, but is the most easily
stated and has the least technical hypotheses. We shall prove similar vanishing results under con-
ditions weaker than the block Borel conjecture, these will also hold for topological block bundles,
in certain situations will extend to cover the case k = d or diffeomorphisms not homotopic to
the identity, and we also have results for more general coefficients. To give some idea of these
statements it will be helpful to first go through the main ingredients of the proof, but the strongest
formulations will only be given in the body of the text.

1.1. Characteristic classes for topological block bundles. The first step in our proof is to
show that tautological classes can be defined not just for smooth fibre bundles but for topological
block bundles. This extends earlier work of Ebert and Randal-Williams [ERW14, RW16], where
among other things they show that rational tautological classes can be defined both for topological
fibre bundles and for smooth block bundles.

To this end we will consider the universal oriented M -block bundle π : Ẽ+(M) → BT̃op
+

(M)

and construct an oriented stable vertical tangent bundle T sv (π) : Ẽ+(M) → BSTop. We also

construct a fibrewise Euler class efw(π) ∈ Hd(Ẽ+(M);Z). In fact, we construct this class for
any oriented fibration whose fibre is a Poincaré duality space of formal dimension d. By pulling
cohomology classes back along the map

(T sv (π), efw(π)) : Ẽ+(M) −→ BSTop×K(Z, d)

and applying the Gysin homomorphism, we can associate

κc(M) = π!((T
s
v (π), efw(π))∗(c)) ∈ Hk−d(BT̃op+(M);R)

to a cohomology class c ∈ Hk(BSTop×K(Z, d);R).
These define characteristic classes of oriented block bundles, and together with the stable verti-

cal tangent bundle and fibrewise Euler class can be pulled back from the universal orientedM -block
bundle to any other. On a block bundle which arises from a smooth fibre bundle p : E → B, T sv (p)
is the stabilisation of the vertical tangent bundle, efw(p) is the Euler class of the vertical tangent
bundle, and the Gysin homomorphism is the usual one, so these tautological classes reduce to those
of the same name defined earlier. We will show that they also agree with the constructions of
[ERW14] and [RW16]. This comparison, in particular, shows that the classes defined in [ERW14]
lie in the image of the Gysin homomorphism, a point not addressed in [ERW14] but essential for
our work.

Recall now that H∗(BSO(d);Q) is generated by Pontryagin and Euler classes, and by work
of Novikov, Kirby and Siebenmann the rational Pontryagin classes are pulled back from BSTop.
Therefore, to establish a vanishing result for rational tautological classes it suffices to consider
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topological block bundles. That is, writing T̃oph(M) ≤ T̃op(M) for those components represented
by homeomorphisms homotopic to the identity, it is enough to show that

0 = κc(M) ∈ Hk−d(BT̃oph(M);Q)

for all c ∈ Hk(BSTop×K(Z, d);Q) such that k 6= d. Assuming the two conjectures stated earlier,
we will show the vanishing of these classes, as we now explain.

1.2. Vanishing results. To this end let us fix a closed, connected, oriented, aspherical topological
manifold M which satisfies the block Borel conjecture, i.e. such that the map

T̃op(M) −→ G(M)

is a weak equivalence. This means that topological M -block bundles which are fibre homotopy

equivalent are in fact equivalent as block bundles, and in particular means that T̃oph(M) agrees

with the component of the identity T̃op0(M). As discussed in the last section the stable vertical
tangent bundle of a manifold bundle only depends on the underlying topological block bundle,
so it is fibre homotopy invariant among M -bundles. This conclusion was obtained in [BFJ16]
by a different route. Together with our construction of the fibrewise Euler class, it implies that
rational tautological classes for M -fibre bundles are invariant under fibre homotopy equivalences
and therefore vanish on fibre homotopically trivial bundles.

To obtain a criterion for fibre homotopy triviality note that for any connected, aspherical
complex X a straightforward computation shows

πk(G(X)) =





Out(π1(X)) k = 0
C(π1(X)) k = 1

0 k ≥ 2

where Out denotes the outer automorphism group and C the centre of a given group. As our

results only concern the homotopy type (resp. the homology) of the classifying space of T̃oph(M)
it is in fact enough that a weaker property than the block Borel conjecture should hold: that the
map

BT̃oph(M) −→ BG0(M)

be a weak equivalence (resp. induce an isomorphism on R-homology, for some ring of coefficients
R). We dub this the identity block Borel conjecture (resp. with R-coefficients). In distinction with
the block Borel conjecture, it is implied by the Farrell–Jones conjectures also when the aspherical
manifold in question is of dimension 4. Now if C(π1(M)) = 0, then BG0(M) is contractible; we
refer to such manifolds as centreless and a block bundle with centreless, aspherical fibre is thus
fibre homotopically trivial. We therefore find:

Theorem. If M is a closed, oriented, aspherical, centreless manifold which satisfies the identity
block Borel conjecture with R-coefficients, then

0 = κc(M) ∈ Hk−d(BT̃oph(M);R)

for all c ∈ Hk(BSTop×K(Z, d);R) such that k 6= d.

The consequences of this theorem for smooth manifold bundles, while not explicitly stated
there, were essentially already obtained in [BFJ16]. And while the methods are similar as well, our
approach offers a novel perspective: The tautological classes of bundles with centreless, aspherical
fibre and fibre transport homotopic to the identity vanish because the universal space in which
they are defined is contractible by the block Borel conjecture. As explained above, the result in
particular implies the vanishing of all rational tautological classes (in positive degree) for a smooth
fibre bundle satisfying the assumptions. The implications for the integral tautological classes of
smooth fibre bundles are somewhat delicate, as H∗(BSTop×K(Z, d);Z)→ H∗(BSO(d);Z) is not
surjective. Instead of their vanishing, one only obtains (somewhat inexplicit) universal bounds on
their order.

The condition that c not have degree d cannot be removed, as already observed in [BFJ16]:
Because every bordism class can be represented by a negatively curved manifold, see [Ont14],
for c ∈ Hd(BSO(d);Q) the classes κc(M) = 〈c(TM), [M ]〉 do not generally vanish on aspherical
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manifolds. However, any negatively curved manifold is centreless: We will now see that stronger
results may be obtained for an aspherical manifold that satisfies the identity block Borel conjecture
with Q-coefficients, whose fundamental group has non-trivial centre, and in addition satisfies the
central part of Burghelea’s conjecture.

We begin by observing that by the identity block Borel conjecture with R-coefficients the
underlying fibration of the universalM -block bundle with fibre transport homotopic to the identity
is R-homology equivalent to

π : B(Γ/C(Γ)) −→ B2C(Γ)

where we have abbreviated Γ := π1(M) and the map π classifies the central extension

1 −→ C(Γ) −→ Γ −→ Γ/C(Γ) −→ 1.

This observation relates the Gysin map for the universal block bundle over BT̃oph(M) with the
central part of Burghelea’s conjecture, which we shall use to show the following.

Theorem. If Γ is a rational Poincaré duality group of dimension d with non-trivial centre, which
satisfies the central part of Burghelea’s conjecture, then the Gysin map

π! : H
∗(B(Γ/C(Γ));Q) −→ H∗−d(B2C(Γ);Q)

vanishes. If C(Γ) is finitely generated, then the same statement holds integrally.

It seems to be an open problem whether the centre of the fundamental group of an aspherical
manifold is finitely generated, though this is known for several classes of groups.

Corollary. LetM be a closed, connected, oriented, aspherical manifold with non-trivial centre that
satisfies the identity block Borel conjecture with Q-coefficients and the central part of Burghelea’s
conjecture. Then

0 = κc(M) ∈ Hk−d(BT̃oph(M);Q)

for all c ∈ Hk(BSTop ×K(Z, d);Q). If C(π1(M)) is finitely generated then the same statement
holds integrally.

This result immediately implies the vanishing of all tautological classes of all smooth fibre
bundles with fibres satisfying the hypotheses. Even if one is only interested in smooth fibre
bundles, it seems essential to consider block bundles in order to prove it. This result concerns all
tautological classes, not just those of non-zero degree, which means that it has content even for
the bundle M → ∗.

Corollary. LetM be as in the previous corollary. Then the Euler characteristic and all Pontryagin
numbers of M vanish.

The vanishing of the Euler characteristic in the situation of the corollary was obtained by
Gottlieb in [Got65] by more elementary means, without assuming either conjecture. We believe
that the vanishing of Pontryagin numbers is new; it means that M represents a torsion element
in the topological oriented cobordism ring and an element of order at most 2 in the smooth one
when smooth itself. This should be contrasted with Ontaneda’s result mentioned above. Let us
also mention that the result is trivial if an element of the centre of π1(M) can be realised by a
principal S1-action (e.g. M a nilmanifold), but that this need not happen in general [CWY13].

The principal examples for which we verify the hypotheses of the two corollaries are manifolds
built as iterated bundles with fibres either non-positively curved manifolds or biquotients of Lie
groups (that is manifolds of the form Γ\G/K, where Γ is a cocompact lattice and K is a maxi-
mal compact subgroup). During the proof of the above theorem we will unearth slightly weaker
finiteness conditions than Burghelea’s that still allow the proof of vanishing of the Gysin map to
go through. Chief among the examples we can cover this way is S1 ×M , whenever π1(M) is a
Farrell–Jones group.

This discussion leads us to formulate the following
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Conjecture. Let M be a closed, connected, oriented, aspherical manifold. If C(π1(M)) 6= 0 then,
for any ring R,

0 = κc(M) ∈ H∗(BT̃oph(M);R)

for all c ∈ H∗(BSTop×K(Z, d);R).

Since H∗(BSTop;Z/2)→ H∗(BSO;Z/2) is surjective, this conjecture in particular implies that
all Stiefel–Whitney numbers vanish, and thus that a smooth aspherical manifold with non-trivial
centre is nullbordant.

Organisation of the paper. We begin Section 2 by recalling basics about block bundles and then
construct the universal stable vertical tangent bundle in the latter half, the fibrewise Euler class for
a fibration with Poincaré fibre in Section 3, and tautological classes for block bundles in Section 4.
We also compare our definitions to previous ones. In Section 5 we review the homotopy type of the
space of block homeomorphisms and its relation to the Farrell–Jones conjectures. Along the way
we obtain the main theorem in the centreless and the abelian case. To discuss general aspherical
manifolds whose centre is non-trivial, we introduce a plethora of finiteness conditions in Section 6,
among them Burghelea’s conjecture, and untangle their relations, in particular proving our main
vanishing results. Finally, in Section 7 we discuss several classes of manifolds which satisfy both
conjectures and indeed prove the vanishing of tautological classes for a few cases not covered by the
existing literature on the Burghelea conjecture via intermediate finiteness assumptions introduced
in Section 6. We end some open questions which we encountered on the way.

Acknowledgements. We are happy to thank Diarmuid Crowley, Søren Galatius, and Wolfgang
Steimle for several helpful discussions along the way. Furthermore, we want to heartily thank
Alexander Engel and Micha l Marcinkowski for making us aware of Burghelea’s conjecture in the
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EPSRC grant EP/M027783/1 ‘Stable and unstable cohomology of moduli spaces’. ML and FH
enjoyed support of the CRC 1085 ‘Higher invariants’ at the University of Regensburg. FH and
WL are members of the Hausdorff Centre for Mathematics at the University of Bonn.

2. A stable vertical tangent bundle for block bundles

In this section we shall remind the reader of the definition of a block bundle with fibre a
manifold M , describe the classifying space for such block bundles and the universal block bundle,
and construct the stable vertical normal bundle on its total space. For our applications we require
this theory for topological manifolds and topological block bundles, but it can be developed in
any category Cat ∈ {Diff,PL,Top} and we shall do so in this generality.

Many of the necessary ideas already appeared in work of Ebert and Randal-Williams [ERW14],
where models for the universal smooth block bundle were described, and it was shown that any
smooth block bundle over a finite simplicial complex had a stable vertical tangent bundle. The
argument given there was particular to vector bundles (gluing together explicit maps to Grass-
mannians defined on different blocks). Here we shall improve the result to hold for Cat block
bundles and give a stable vertical Cat tangent bundle for the universal block bundle (whose base
is not a finite simplicial complex).

The credulous reader not interested in the rather technical construction of the universal vertical
tangent bundle may skip the entire section, except maybe the reminder on block bundles in
Section 2.3 if warranted, since the techniques employed are entirely different from those of the
remainder of the article. In particular, they will not miss out on anything else relevant.
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2.1. Notation and conventions. For convenience we use the following notion. A p-block space
is a space X with a reference map π : X → ∆p to the p-simplex. A morphism between p-block
spaces (X, π) and (X ′, π′) is a continuous map f : X → X ′ which weakly commutes with the
reference map in the following sense: for each face τ ⊂ ∆p, the map f sends π−1(τ) into π′−1(τ).
If X and X ′ are Cat manifolds and f is a Cat isomorphism, we say it is a p-block Cat isomorphism.

If (X, π) is a p-block space then for each i = 0, 1, 2, . . . , p we obtain a (p−1)-block space di(X, π)

by restriction to the ith face of ∆p. More precisely, if ∆p−1
i ⊂ ∆p denotes the face spanned by all

vertices but the ith, then di(X, π) = (π−1(∆p−1
i ), π|π−1(∆p−1

i
)). We call this the restriction of X

to the ith face of ∆p.
We shall always implicitly consider spaces of the form ∆p×T to be p-block spaces with reference

map given by projection to the first factor.

2.2. Block diffeomorphisms. For i = 0, 1, . . . , p and 0 < ǫ ≤ 1 let us write

∆p
i (ǫ) := {(t0, t1, . . . , tp) ∈ ∆p | 0 ≤ ti < ǫ}.

For any 0 < ǫ ≤ 1 define a homeomorphism

hi(ǫ) : ∆p
i (ǫ) −→ ∆p−1

i × [0, ǫ)

(t0, t1, . . . , tp) 7−→ ( t0
1−ti

, t1
1−ti

, . . . , ti−1

1−ti
, ti+1

1−ti
, . . . ,

tp
1−ti

; ti).

and a retraction πi(ǫ) = π1 ◦ hi(ǫ) : ∆p
i (ǫ)→ ∆p−1

i .

2.2.1. Definition. A collared p-block Cat isomorphism of ∆p ×M is a Cat isomorphism

f : ∆p ×M −→ ∆p ×M

which is also a p-block map, such that for each i = 0, 1, . . . , p there is an ǫ > 0 such that f
preserves the set ∆p

i (ǫ)×M and hi(ǫ) ◦ f |∆p
i
(ǫ)×M ◦ hi(ǫ)

−1 = di(f)× Id[0,ǫ).

It is an elementary but tedious exercise to see that if f is a collared p-block Cat isomorphism
of ∆p ×M then di(f) is a collared (p − 1)-block Cat isomorphism of ∆p−1 ×M . Thus there is

a semi-simplicial group C̃at(M)• with p-simplices the set of collared p-block Cat isomorphisms
of ∆p ×M , and face maps given by restriction. Because of the collaring condition it is easy to

see that C̃at(M)• is Kan (see for example [BLR75, Appendix A, Section 3]). The classifying

space BC̃at(M) is defined to be the geometric realisation of the bi-semi-simplicial set N•C̃at(M)•
obtained by taking the levelwise nerve of the semi-simplicial group C̃at(M)•. The definition in
[ERW14] omitted the collaring condition, and it is unclear to us whether their version really is

Kan as claimed at the end of [ERW14, Proposition 2.8]. Clearly the homotopy type of BC̃at(M)
is not affected by this change.

2.3. Block bundles and their moduli spaces. Let K be a simplicial complex, and π : E → |K|
be a continuous map. We recall the notion of a Cat block bundle structure on this map, with fibre
a Cat manifold M . A block chart for E over a simplex σ ⊂ |K| is a homeomorphism

hσ : π−1(σ) −→ σ ×M

such that for each face τ ≤ σ the map hσ|π−1(τ) sends π−1(τ) homeomorphically to τ ×M . A
block atlas A for E is a set of block charts for E, at least one for each simplex of |K|, so that if
hσi

: π−1(σi)→ σi ×M , i = 0, 1, are two block charts then the composition

hσ1 ◦ h
−1
σ0

: (σ0 ∩ σ1)×M −→ (σ0 ∩ σ1)×M

is a p-block Cat isomorphism in the sense of Definition 2.2.1. A block bundle structure on π : E →
|K| is a maximal block atlas.

It can be shown directly that concordance classes of block bundles over |K| are classified

by homotopy classes of maps f : |K| → BC̃at(M), but for both the proof and geometric con-
structions, the following model for the classifying space is more convenient. It depends on
Cat ∈ {Diff,Top,PL}, but we omit this from the notation.
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2.3.1. Definition. Let M(M)ǫ,np denote the set of locally flat Cat submanifolds W ⊂ ∆p × Rn

(considered as p-block spaces via projection to the ∆p factor) such that for each i = 0, 1, . . . , p we
have

(i) W is Cat transverse to ∆p−1
i × Rn ⊂ ∆p × Rn,

(ii) W ∩ (∆p
i (ǫ)× Rn) = (πi(ǫ)× IdRn)−1(W ∩ (∆p−1

i × Rn)), and
(iii) there is a p-block Cat isomorphism f : ∆p ×M → W ⊂ ∆p × Rn which is collared in the

sense that for each i = 0, 1, . . . , p the map f agrees with the map

(∆p−1
i ∗ {ei})×M −→ (∆p−1

i ∗ {ei})× Rn

((1 − ti) · w + ti · ei, x) 7−→ ((1 − ti) · w
′ + ti · ei, x

′)

on ∆p
i (ǫ)×M , where (w′, x′) = f |∆p−1

i
×M (w, x) and ei ∈ Rn denotes the i-th unit vector.

Define face maps di : M(M)ǫ,np →M(M)ǫ,np−1 by restricting W to the ith face of ∆p, to give a semi-

simplicial set M(M)n• . Put M(M)n• =
⋃
ǫ>0M(M)ǫ,n• and finally let M(M)• = colim

n→∞
M(M)n• ,

under the evident comparison maps, and M(M) = |M(M)•|.

The semi-simplicial set M(M)• is Kan: given a E ⊂ Λpi × Rn defining a block bundle over a
horn Λpi to be extended to ∆p, condition (ii) above gives an extension to an open neighbourhood
of Λpi , and a full extension may be obtained from this by choosing an isotopy from the identity
map of ∆p to a suitable embedding into this open neighbourhood.

To compare M(M) with BC̃at(M), we follow [ERW14, Proposition 2.3] and consider the bi-
semi-simplicial set X•,• with (p, q)-simplices given by a W ∈M(M)q and a sequence

W
f0
←− ∆q ×M

f1
←− ∆q ×M

f2
←− · · ·

fp
←− ∆q ×M

of q-block Cat isomorphisms, where f1, . . . , fp are collared as in Definition 2.2.1, and f0 is collared
as in Definition 2.3.1. The face maps in the q direction are by restriction to faces, and those on
the p direction are by composing the fi or forgetting fp. The augmentation map X•,q →M(M)q,
which just records W , has fibre over W isomorphic to E•G, where G is the group of the collared

q-block Cat isomorphisms of ∆q×M ; thus |X•,q|
≃
→M(M)q. There is a map Xp,• → NpC̃at(M)•,

which just records (f1, . . . , fp). This is a Kan fibration of semi-simplicial sets, and as in the proof
of [ERW14, Proposition 2.3] its fibre after geometric realisation can be described as the space of
block embeddings of M into R∞, which is contractible. In total this yields a preferred homotopy

equivalence M(M) ≃ BC̃at(M).
Let us now describe the universal M -block bundle π : E(M) →M(M). Strictly speaking this

will not be a block bundle as described in the beginning of this section, sinceM(M) is not a finite
simplicial complex. We will, however, blur this distinction in the notation, as the pull back of π
along a simplicial map from a finite simplicial complex is indeed a block bundle as in the proof of
[ERW14, Proposition 2.7].

Let E(M)p ⊂ M(M)p ×∆p × R∞ be the subspace of those triples (W ; t0, . . . , tp;x) for which
(t0, . . . , tp;x) ∈W , and let πp : E(M)p →M(M)p×∆p denote the projection map. These assemble
to a continuous map

π : E(M) −→M(M)

where

E(M) =


⊔

p≥0

E(M)p


 / ∼

with ∼ the equivalence related generated by

(W ; t0, . . . , ti−1, 0, ti+1, . . . tp;x) ∼ (di(W ); t0, . . . , ti−1, ti+1, . . . tp;x)

and

M(M) =


⊔

p≥0

∆p ×M(M)p


 / ∼
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the usual geometric realisation. The preimage of the simplex {W} ×∆p ⊂ M(M) is {W} ×W ,
which is p-block Cat isomorphic to ∆p ×M .

We will now show that the map π : E(M) → M(M) is a weak quasi-fibration, in the sense
that the comparison map π−1(v) → hofibv(π) is a weak homotopy equivalence for any vertex
v ∈ M(M)0, thereby directly identifying the underlying fibration of the universal block bundle.
For future use, we formulate this in a slightly more general manner.

2.3.2. Proposition. If X• is a semi-simplicial set and f : X• →M(M)• a semi-simplicial map,
then the map f∗π : f∗E(M)→ |X•| is a weak quasi-fibration.

Proof. Let us first suppose that X• is a finite semi-simplicial set. We proceed by double induc-
tion on the dimension of X• and the number of top-dimensional simplices. Firstly, if |X•| is
0-dimensional then the claim clearly holds. Otherwise, let σ ∈ Xp be a top-dimensional sim-
plex and X ′

• be the semi-simplicial set obtained by removing σ, and write f ′ = f |X′
•
. Then

f(σ) ∈M(M)p is a submanifold of ∆p×R∞ which is p-block isomorphic to ∆p×M . Let us write
∂f(σ) = f(σ) ∩ (∂∆p × R∞). There is a cube

∂f(σ)

b

��

ww♦♦♦♦
♦

// f(σ)

xxrrr
r

c

��

(f ′)∗E(M) //

a

��

f∗E(M)

��
∂∆p

vv♥♥♥
♥
♥
♥

// ∆p

xxqqq
q
q

|X ′
•| // |X•|

in which the top and bottom faces are homotopy push-outs. As f(σ) is p-block isomorphic to
M ×∆p, the map c is a weak quasi-fibration; as X ′

• has fewer top-dimensional simplices than X•

we may suppose by induction that a is a weak quasi-fibration; as ∂∆p is of lower dimension than
X• we may suppose by induction that b is a weak quasi-fibration. The left and back faces are
cartesian, so as a, b, and c are weak quasi-fibrations it follows that they are homotopy cartesian.
By Mather’s First Cube Theorem [Mat76, Theorem 18] it follows that the front and right faces
are also homotopy cartesian: as c (or a) is a weak quasi-fibration, it follows that f∗π is too.

Now, if X• is an arbitrary semi-simplicial set, let v ∈ X0 and let F denote the directed set of
finite sub-semi-simplicial sets F• ⊂ X• which contain v. If we let f∗π||F•| : f

∗E(M)||F•| → |F•|
denote the pullback of f∗π along the inclusion |F•| → |X•|, then as each compact subset of |X•|
lies in the geometric realisation of a finite sub-semi-simplicial set, the map

hocolim
F•∈F

hofibv(f∗π||F•|) −→ hofibv(f
∗π)

is a weak homotopy equivalence. As each f∗π||F•| is a weak quasi-fibration the left-hand side may

be replaced with the homotopy colimit of the constant diagram (f∗π)−1(v), which shows that
(f∗π)−1(v)→ hofibv(f

∗π) is a weak homotopy equivalence. �

2.4. The stable vertical normal bundle. Our goal is to construct a stable Cat bundle on
the total space E(M) of the universal block bundle π : E(M) → M(M). We shall focus on the
unoriented case for simplicity, but there are no significant changes necessary to treat the oriented
case. Our construction will be quite natural once we pull back the universal block bundle to a
slightly different, but homotopy equivalent, base. In comparison to the previous section, we shall
construct a model for M(M) which also encodes choices of Cat normal bundles. This will allow
us to essentially follow the argument [ERW14, Proposition 3.2] using this model of the universal
block bundle.

2.4.1. Definition. If W ∈ M(M)n,ǫp , an ǫ-prepared normal Cat bundle for W consists of an open

neighbourhood W ⊂ U ⊂ ∆p × Rn, a retraction r : U → W , and a Cat Rn−d-bundle atlas A for
r. In addition we require that r is a morphism of p-block spaces, and that for each i = 0, 1, . . . , p

(i) U ∩ (∆p
i (ǫ)× Rn) = (πi(ǫ)× IdRn)−1(U ∩ (∆p−1

i × Rn)),
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(ii) the map r restricted to U ∩ (∆p
i (ǫ) × Rn) commutes with the ith barycentric coordinate ti

(which makes the left hand vertical map in the following diagram well defined), and

U ∩ (∆p
i (ǫ)× Rn)

r|
U∩(∆

p
i
(ǫ)×Rn)

��

πi(ǫ)×IdRn // U ∩ (∆p−1
i × Rn)

r|
U∩(∆

p−1
i

×Rn)

��
W ∩ (∆p

i (ǫ)× Rn)
πi(ǫ)×IdRn // W ∩ (∆p−1

i × Rn)

is a pullback of Cat Rn−d-bundles (with the Cat bundle structure on both sides given by
restriction of A).

2.4.2. Definition. Let M′(M)ǫ,n• denote the semi-simplicial set with p-simplices given by tuples
(W,U, r,A) of a W ∈ M(M)ǫ,np and an ǫ-prepared normal bundle (U, r,A). The ith face map is

given by restricting all three pieces of data to ∆p−1
i ×Rn. Again, letM′(M)n• =

⋃
ǫ>0M

′(M)ǫ,n• .

There are maps M′(M)n• → M
′(M)n+1

• given by sending (W,U, r) to (W,U × R, r ◦ projU ) and
we let M′(M)• = colim

n→∞
M′(M)n• , and M′(M) = |M′(M)•|.

2.4.3. Lemma. The semi-simplicial mapM′(M)• →M(M)•, given by forgetting the bundle data,
is a weak homotopy equivalence on geometric realisation.

Proof. We shall show that the map has vanishing relative homotopy groups. Our main tool is
the relative stable existence and uniqueness theorem for normal Cat microbundles, and the Cat
microbundle representation theorem. We have explained that M(M)• is Kan, and the same
argument shows that M′(M)• is too, so a relative homotopy class may be described by a sub-
manifold W ⊂ ∆p × Rn such that W |∂∆p comes with a prepared normal Cat bundle given by
W |∂∆p ⊂ U∂ ⊂ ∂∆p × Rn, r∂ : U∂ → W |∂∆p , and A∂ . In order to show that this relative homo-
topy class is trivial, it will be sufficient to show that (after perhaps increasing n) the prepared
normal bundle (U∂ , r∂ ,A∂) for W |∂∆p is the restriction of a prepared normal bundle for W .

For a δ > 0 let us write ∆p(δ) = ∪pi=0∆p
i (δ) ⊂ ∆p. Choose ǫ > 0 so that the given data lie in

M′(M)ǫ,n orM(M)ǫ,n. The product structures given by Definition 2.3.1 (ii) and Definition 2.4.1
(ii) give an extension of (U∂ , r∂ ,A∂) to a normal Cat bundle of W |∂W (ǫ/2), where ∂W (ǫ/2) =
W ∩ (∆p(ǫ/2)×Rn). Furthermore, the submanifold W |∆p\∆p(ǫ) ⊂ (∆p \∆p(ǫ))×Rn has a normal
Cat microbundle (after perhaps increasing n) [KS77, p. 204], and this may be represented by a Cat
Rn−d-bundle (by Kister–Mazur [Kis64] for Top, Kuiper–Lashof [KL66] for PL, and the tubular
neighbourhood theorem for Diff). These yield Cat normal Rn−d-bundles over the boundary of

W |∆p(ǫ)\∆p(ǫ/2)
∼= W |∂∆p × [ǫ/2, ǫ] ⊂ ∂∆p × Rn × [ǫ/2, ǫ].

By stable uniqueness of Cat normal microbundles, and of representing Cat Rn−d-bundles, there is
an extension of the Cat normal Rn−d-bundles over the boundary to the whole of W |∆p(ǫ)\∆p(ǫ/2).

Gluing these three Cat normal Rn−d-bundles together shows that (U∂ , r∂ ,A∂) is the restriction of
a prepared normal bundle for W . �

Let us write E ′(M)np ⊂ M
′(M)np ×∆p × Rn for the subspace of those (W,U, r,A; t0, . . . , tp;x)

such that (t0, . . . , tp;x) ∈ W , and Unp ⊂ M
′(M)np × ∆p × Rn be the subspace of those tuples

(W,U, r,A; t0, . . . , tp;x) such that (t0, . . . , tp;x) ∈ U . We define

E ′(M)n := |E(M)n• | :=


⊔

p≥0

E(M)np


 / ∼ |Un• | :=


⊔

p≥0

Unp


 / ∼

where in both cases ∼ is generated by

(W,U, r,A; t0, . . . , ti−1, 0, ti+1, . . . tp;x) ∼ (di(W,U, r,A); t0, . . . , ti−1, ti+1, . . . tp;x).

There are maps rnp : Unp → E
′(M)np given by

rnp (W,U, r,A; t0, . . . , tp;x) = (W,U, r,A; r(t0, . . . , tp;x))

which assemble to a map rn : |Un• | → |E
′(M)n• |.
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2.4.4. Lemma. The map rn : |Un• | → |E
′(M)n• | has the structure of a Cat Rn−d-bundle νn−d, and

the restriction of νn−d to |E ′(M)n−1
• | ⊂ |E ′(M)n• | is canonically isomorphic to νn−1−d × R.

Proof. A p-simplex

σ = (Wσ, Uσ, rσ,Aσ) ∈M′(M)np

determines a map σ : ∆p → |M′(M)n• |, so that σ∗|E ′(M)n• | = Wσ. The map rn : |Un• | → |E
′(M)n• |

pulled back to this is precisely rσ : Uσ → Wσ, which is a locally trivial Cat Rn−d-bundle via the
atlas Aσ. Now let

|E ′(M)n• |
(k) =

(
k⊔

p=0

E ′(M)np

)
/ ∼

denote the k-skeleton, similarly |Un• |
(k), and suppose given a Cat atlas A(k) for r(k) : |Un• |

(k) →
|E ′(M)n• |

(k) which over each simplex (W,U, r,A) restricts to the atlas A for r : U → W . For each
(k + 1)-simplex

σ = (Wσ, Uσ, rσ,Aσ) ∈M′(M)nk+1

there is an ǫ > 0 such that for each i = 0, 1, . . . , p we have

Wσ ∩ (∆p
i (ǫ)× Rn) = πi(ǫ)

−1(Wσ ∩ (∆p−1
i × Rn))

and

Uσ ∩ (∆p
i (ǫ)× Rn) = πi(ǫ)

−1(Uσ ∩ (∆p−1
i × Rn))

and on this set r commutes with the ith barycentric coordinate ti and satisfies πi(ǫ)◦rσ = rσ◦πi(ǫ).
In particular, the inclusion ∂Wσ → ∂ǫWσ, where

∂Wσ =

p⋃

i=0

Wσ ∩ (∆p−1
i × Rn) and ∂ǫWσ =

p⋃

i=0

Wσ ∩ (∆p
i (ǫ)× Rn),

has a retraction ρσ such that Uσ|∂ǫWσ
∼= ρ∗σUσ|∂Wσ

as Cat Rn−d-bundles. Thus ρ∗σ(A(k)) gives a
Cat atlas over ∂ǫWσ which is compatible with Aσ. This shows that there is an atlas A(k+1) for
r(k+1) : |Un• |

(k+1) → |E ′(M)n• |
(k+1) extending the atlas A(k) for r(k).

Gluing together the sets ∂ǫWσ for all (k + 1)-simplices σ gives an open subset

V (k) ⊆ |E ′(M)n• |
(k+1)

containing |E(M)n• |
(k). The retractions ρσ glue together to a retraction

ρ(k) : V (k) −→ |E ′(M)n• |
(k)

such that

|UN• |
(k+1)|V (k)

∼= (ρ(k))∗|UN• |
(k)

as Cat Rn−d-bundles. A point x ∈ |E ′(M)n• |
(k) has an open neighbourhood

Vx = V (k) ∪ (ρ(k+1))−1(V (k)) ∪ (ρ(k+1) ◦ ρ(k+2))−1(V (k)) ∪ · · · ⊂ |E ′(M)n• |

which retracts to |E ′(M)n• |
(k) via

ρx = ρ(k) ∪ (ρ(k) ◦ ρ(k+1)) ∪ (ρ(k) ◦ ρ(k+1) ◦ ρ(k+2)) ∪ · · · ,

and |Un• ||Vx
∼= ρ∗x|U

n
• |

(k) as Cat Rn−d-bundles. This proves the first part of the lemma; the second
part is immediate from the formula for the map E ′(M)n−1

• → E ′(M)n• . �

Note that E ′(M)n = |E ′(M)n• | is paracompact by a similar argument to that which shows that
a cell complex is paracompact, and hence the Cat Rn−d-bundle νn−d is numerable, so is classified
by a map νn−d : E ′(M)n → BCat(n− d). We thus obtain a diagram

// E ′(M)n

νn−d

��

// E ′(M)n+1

νn+1−d

��

// E ′(M)n+2

νn+2−d

��

//

// BCat(n− d) // BCat(n+ 1− d) // BCat(n+ 2− d) //
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in which each square homotopy commutes up to a preferred homotopy class of homotopies, and
so taking (homotopy) colimits we obtain a map νv(π

′) : E ′(M)→ BCat. Now, the square

E ′(M) //

π′

��

E(M)

π

��
M′(M) //M(M)

is homotopy cartesian by Proposition 2.3.2 so the top map is a weak equivalence. Thus we may
transfer the map νv(π′) to a map

νv(π) : E(M) −→ BCat

classifying what we shall call the Cat stable vertical normal bundle. We call its stable inverse the
Cat stable vertical tangent bundle, and denote it T sv (π).

2.5. Comparisons. Let us finally compare this definition with both the usual vertical tangent
bundle of a fibre bundle, and the stable bundle constructed in [ERW14].

2.5.1. The vertical tangent bundles of fibre bundles. If a Cat M -fibre bundle is considered as a
Cat M block bundle, then the stabilisation of its Cat vertical tangent bundle agrees with the Cat
stable vertical tangent bundle we have constructed.

The simplest way to prove this is to work universally, and produce a model B(M) for BCat(M)
akin toM(M) by realising the semi simplicial set with p-simplices the locally flat Cat submanifolds
W ⊂ ∆p × R∞ so that the map to the first factor is a Cat M -bundle. Just as in the case of
block bundles there is a version B′(M) of this construction where manifolds are equipped with
choices of tubular neighbourhoods (U, r,A) as before, where one additionally insists that the map
r : U → W is fibrewise over ∆p. This space B′(M) has a forgetful map to M′(M), and the
pullback of π′ : E ′(M)→M′(M) to B′(M) gives a universal M -fibre bundle F ′(M)→ B′(M), to
which the stable vertical normal bundle νv(π

′) can be pulled back. The vertical tangent bundle of
F ′(M)→ B′(M) is a stable inverse to this, by construction.

2.5.1. Remark. This comparison proves that the stable vertical tangent bundle of a topological
manifold bundle only depends on its underlying block bundle and thus our constructions recover
[BFJ16, Theorem G]: Their strong Borel conjecture is well-known to imply our block Borel con-
jecture (we will explain this in the proof of Proposition 5.1.1) and therefore that fibre homotopy
equivalent M -(block-)bundles are equivalent as block bundles, so must have isomorphic stable
vertical tangent bundles.

2.5.2. The stable vertical tangent bundle of [ERW14]. The authors of that paper considered a
smooth block bundle (p : E → |K|,A) with base the geometric realisation of a finite simplicial
complex K. In [ERW14, Proposition 3.2] they constructed a stable vertical tangent bundle by
choosing embeddings e : E → |K| × Rn and a : |K| → Rk satisfying certain properties, and hence
constructing a continuous map E → Grd+k(Rn+k): the (d+k)-dimensional vector bundle classified
by this map is called tE,e,a, and is the stable vertical tangent bundle; the (n−d)-dimensional vector
bundle classified by this map is called nE,e,a, and is the stable vertical normal bundle.

If the classifying map for a smooth block bundle (p : E → |K|,A) is factored up to homotopy as
|K| → |M(M)n• | → |M(M)•|, then the block bundle is concordant to a (p′ : E′ → |K|,A′) which
comes equipped with an embedding e′ : E′ → |K| × Rn a neighbourhood E′ ⊂ U ′ ⊂ |K| × Rn,
and a retraction r′ : U ′ → E′ which has the structure of a smooth Rn−d-bundle. This yields
a (n − d)-dimensional vector bundle on E′, and this is isomorphic to nE′,e′,a′ for any choice of
a′ : |K| → Rk. In particular, the associated tE,e,a is stably isomorphic to the stable vertical tangent
bundle constructed here.

2.5.3. Stable vertical tangent bundles of block bundles over manifolds. Given a block bundle over a
triangulated manifold, one may describe its stable vertical tangent bundle in terms of the tangent
bundles of the base and total space, as follows.



A VANISHING THEOREM FOR TAUTOLOGICAL CLASSES OF ASPHERICAL MANIFOLDS 13

2.5.2. Lemma. Let |K|
∼=
−→ B be a PL triangulation of a Cat manifold (compatible in the smooth

or piecewise linear cases), and (p : E → |K|,A) be a Cat block bundle. Then E has the structure
of a Cat manifold, and the stable vertical Cat tangent bundle is equivalent to TE − p∗TB.

Proof. Let us first show that E inherits a Cat manifold structure. The stars St(v) ⊂ |K| of vertices
v ∈ K have interiors which form an open cover of |K|, so their preimages p−1(St(v)) have interiors
which form an open cover of E and hence it is enough to give (compatible) Cat manifold structures
to these. We have

p−1(St(v)) =
⋃

σ∋v

Wσ

where Wσ is the block over σ. There are Cat isomorphisms Wσ
∼= σ×M . As mentioned earlier, the

semi-simplicial group C̃at(M)• is Kan so that we may choose such Cat isomorphisms in increasing
order of dim(σ), extending those which have already been chosen on faces of σ (we use here that all
simplices of St(v) have a free face). This gives a block Cat isomorphism p−1(St(v)) ∼= St(v)×M ,
and hence induces a Cat manifold structure on p−1(St(v)).

By Lemma 2.4.3 we may suppose that (p : E → |K|,A) is classified by a map to some |M(M)n• |,
so we have a neighbourhood E ⊂ U ⊂ |K| × Rn and a retraction r : U → E equipped with
the structure of a Cat Rn−d-bundle. By the same argument as above, U has a Cat manifold
structure making it an open submanifold of |K|×Rn. By the uniqueness theorem for stable normal
(micro)bundles [KS77, p. 204], this must be isomorphic to the normal bundle of E ⊂ |K| × Rn,
which is stably TE − p∗TB. �

2.5.3. Remark. Let us comment on a relation to [BM17, Theorem 1.1]. Phrased in the language
of classifying spaces we construct for any of Cat ∈ {Diff,PL,Top} a dashed arrow in the following
commutative diagram:

BCat(M)

��

// BGCat(T sM)

��
BC̃at(M) //

77
♣

♣

♣

♣

♣

BG(M)

Here GCat(T sM) denotes the space of homotopy self equivalences of M covered by a Cat-bundle
map of the stable tangent bundle of M and all solid arrows are the evident forgetful maps. This
should be compared to [BM17, Section 4], where Berglund and Madsen construct a similar map.
Since the space BGCat(T sM) classifies fibrations with fibre M equipped with a stable Cat-bundle
on the total space which restricts to the stable tangent bundle on each fibre, by construction, the
tautological classes indeed give rise to classes in H∗(BGCat(T sM);R). We will not make use of
this fact.

3. An Euler class for fibrations with Poincaré fibre

In [RW16, Section 2] Randal-Williams constructs a fibrewise Euler class for a fibration p : E → B
in which B is a finite complex, the fibre F is an oriented Poincaré duality space of formal dimension
d, and the fibration is oriented in the sense that the monodromy action of π1(B) on Hd(F ;Z) is
trivial. However, the line of argument used essentially that B is a finite cell complex, so cannot
be used to obtain an Euler class for the fibration

F −→ BG+∗ (F ) −→ BG+(F ),

which is easily checked to be the universal one. To define an Euler class also when the base B is

not necessarily a finite complex – e.g. BG+(F ) and BT̃op
+

(M) – we shall give a different argument
using parametrised stable homotopy theory.

3.1. The fibrewise Euler class. To motivate our construction, let us recall one definition of the
Euler class of a Poincaré duality space F . If DF : H∗(F )→ Hd−∗(F ) is the Poincaré duality map
for F , and ∆: F → F × F is the diagonal map, then the Euler class of F may be described as
e(F ) = ∆∗DF×F∆∗DF (1). We will mimic this definition for a fibration p : E → B with Poincaré
fibre F using parametrised (co)homology.
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Consider the category SpB of spectra parametrised over B. Our results are essentially model
independent but for definiteness’ sake we shall take [MS06] as our primary reference. Suppressing
usual subscripts to declutter the notation, as no other base will be considered in this section, let HZ

and S denote the trivially parametrised Eilenberg–Mac Lane and sphere spectrum, respectively.
Similarly, we have dropped the notation for a disjoint base point or section. We have the diagonal
map ∆: E → E ×B E and we claim that Poincaré duality for F , and the orientability hypothesis,
yield a fibrewise Poincaré duality equivalence

Dfw
E : ΣdFB(E,HZ)

≃
−→ E ∧B HZ

of HZ-modules, and similarly for E ×B E. Here − ∧B − denotes the derived fibrewise smash
product and FB(−,−) denotes the derived fibrewise mapping spectrum. The point-set versions of
these constructions are explained in [MS06, Section 11] and their derived versions are established
in [MS06, Sections 12.6 & 13.1]. Granted this claim, the diagram

Sd
Σd1 // ΣdFB(E,HZ)

Dfw

E

≃
// E ∧B HZ

∆∧BHZ // (E ×B E) ∧B HZ

Σ2dFB(E ×B E,HZ)
Dfw

E×BE

≃
oo FB(∆,HZ) // Σ2dFB(E,HZ)

represents a well-defined element

efw(p) := ∆∗(Dfw
E×BE

)−1∆∗D
fw
E (1) ∈ [S−d, FB(E,HZ)]B ∼= [S−d ∧B E,HZ]B ∼= Hd(E;Z).

See [GGRW17, Theorem 5.6] for a related discussion.

3.1.1. Definition. The class efw(p) ∈ Hd(E;Z) so constructed is the fibrewise Euler class of the
oriented fibration p : E → B.

It remains to establish the equivalence Dfw
E . As in ordinary Poincaré duality, it will be given

by cap product with a fundamental class. Consider the parametrised Atiyah–Hirzebruch spectral
sequence

Hi(B; (E ∧B HZ)j) =⇒ (E ∧B HZ)i+j(B)

based on the parametrised spectrum E∧B HZ, compare e.g. [MS06, Theorem 20.4.1] (with X = B
and J = E ∧B HZ and L ∗(B,E ∧B HZ) abbreviated to (E ∧B HZ)∗). The fundamental classes

[Eb] ∈ Hd(Eb;Z) ∼= H0(b; (Eb ∧ HZ)−d)

of the fibres Eb assemble to a class [E]B ∈ H0(B; (E ∧B HZ)−d) on the second page by the
orientation hypothesis. The spectral sequence is concentrated in rows −d, . . . , 0 and positive
columns, so the remaining groups on the diagonal i + j = −d are zero, and [E]B is a permanent
cycle for degree reasons as well, so abusing notation we obtain a unique class

[E]B ∈ (E ∧B HZ)−d(B) = [Sd, E ∧B HZ]B .

We may thus form the cap product with [E]B, that is the map

Sd ∧B FB(E,HZ)
[E]B∧Id// (E ∧B HZ) ∧B FB(E,HZ)

∆ // E ∧B E ∧B HZ ∧B FB(E,HZ)
ev // E ∧B HZ ∧B HZ // E ∧B HZ,

which is the sought after map Dfw
E ; that it is an equivalence may be checked on fibres, where it

reduces to ordinary Poincaré duality.

3.1.2. Remark. The above construction of a fibrewise Euler class clearly works for a general ring
spectrumR, whenever the fibration admits a fibrewise fundamental class [E]B ∈ [Sd, E∧BR]. How-
ever, even if there is a class [E]B ∈ H0(B; (E ∧B R)−d) restricting to an R-homology fundamental
class of each fibre Eb, it need not come from a class in [Sd, E ∧B R], unless R is co-connective.

For an explicit counterexample (in the spirit of this paper), consider the ring spectrum R = S[ 12 ]

and an oriented surface bundle Σ→ E
π
→ B. The Hurewicz map

S[ 12 ]2(Σ) −→ H2(Σ;Z[ 12 ])
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is an isomorphism, so the Z[ 12 ]-homology fundamental classes of the fibres of π yield a class

[E]B ∈ H0
(
B; (E ∧B S[ 12 ])−2

)
restricting to a S[ 12 ]-homology fundamental class of each fibre. If

this lifted to [E]B ∈
[
S2, E ∧B S[ 12 ]

]
then one could follow the construction above to form an Euler

class

efw(π) ∈ S[ 12 ]2(E)

which under the Hurewicz map gives the ordinary Euler class e(Tv(π)) ∈ H2
(
E;Z[ 12 ]

)
of the

vertical tangent bundle. But for any odd prime p, using that ep = P1(e) and that P1 is trivial on
H∗
(
S[ 12 ];Fp

)
, this would mean that ep = 0 ∈ H2p(E;Fp) and hence that κep = 0 ∈ H2p−2(B;Fp).

By taking the genus of Σ to be large enough, and p = 3, this contradicts [GMT06, Theorem 1.2].

3.2. Comparisons. Again we compare our construction to both the classical case and the defi-
nition of [RW16].

3.2.1. The Euler class of the vertical tangent bundle. Suppose that p : E → B is an oriented
topological fibre bundle with fibre a d-dimensional manifold M , with B a CW-complex. The data
(π1 : E×BE → E,∆: E → E×BE) defines the vertical tangent topological microbundle Tv(p) over
E. As B is a CW-complex it follows that E is paracompact, so by [Hol67] it contains a Euclidean

Rd-bundle, i.e. there is an open neighbourhood E
s
→֒ U ⊂ E ×B E with a projection r : U → E

over B which is a Euclidean Rd-bundle. Writing U+
B for the fibrewise 1-point compactification,

there is a fibrewise collapse map

c : E ×B E −→ U+
B .

The composition

E
∆
−→ E ×B E

c
−→ U+

B

q
−→ U+

B /B = Th(U)

pulls back the Thom class u ∈ Hd(Th(U);Z) to the Euler class e(Tv(p)) of Tv(p).
To compare this with the definition above, consider the map

d : U+
B −→ E ∧B U

+
B

induced by the diagonal map of U , which fits into a commutative diagram

(E ×B E) ∧B HZ
∆E×BE∧HZ

//

c∧HZ

��

(E ×B E ×B E ×B E) ∧B HZ

E×E×c∧HZ

��

U+
B ∧B HZ

d∧HZ

��
E ∧B U

+
B ∧B HZ

∆E∧U+
B
∧HZ

//

E∧q∗u

��

(E ×B E) ∧B U
+
B ∧B HZ

E∧q∗u

��
E ∧B HZ

∆E∧HZ // (E ×B E) ∧B HZ.

Precomposing this with the map

S2d
[E×BE]B // (E ×B E) ∧B HZ

by definition gives [E ×B E]B ⌢ c∗q∗u along the top. Under the equivalence E → U we have

c∗[E ×B E]B ⌢ q∗u = [E]B ∈ [Sd, E ∧B HZ]B ;

by definition of [E]B this can be checked by restriction to a single fibre, where it reduces to
Thom’s description of Poincaré duals of submanifolds. Composition along the bottom is therefore

∆∗([E]B). Hence c∗q∗u = (Dfw
E×BE

)−1∆∗([E]B) ∈ Hd(E;Z), and so

e(Tv(p)) = s∗q∗(u) = ∆∗c∗q∗(u) = ∆∗(Dfw
E×BE

)−1∆∗D
fw
E (1) = efw(p).
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3.2.2. The Euler class of [RW16]. The construction in [RW16, Section 2] follows the proof of the
‘Fibre Inclusion Theorem’ of Casson–Gottlieb [CG77]: by embedding B into some Rn, taking a
regular neighbourhood, and doubling it, we may find an embedding i : B → B′ into an oriented
smooth n-manifold and a retraction r : B′ → B. Then E′ := r∗E → B′ is a fibration with oriented
Poincaré base and fibre, so E′ is also oriented Poincaré, by [Got79]. Let us write DE′ : H∗(E′)→
Hn+d−∗(E′) for the Poincaré duality isomorphism. Similarly, E′ ×B′ E′ is Poincaré with duality
isomorphism DE′×BE′ , and using the diagonal map ∆: E′ → E′ ×B′ E′ we can form

e(E′) := ∆∗D−1
E′×BE′∆∗DE′(1) ∈ Hd(E′;Z)

The Euler class e(E) ∈ Hd(E;Z) is then defined by restriction along E → E′.
The key step in comparing this definition lies in the comparison between the usual Poincaré

duality of E and its fibrewise Poincaré duality. For this we need to make use of the notion
of Costenoble–Waner duality, the parametrised (as opposed to fibrewise) version of Spanier-
Whitehead duality, see [CW16, Section 2.9] and [MS06, Chapter 18]. Suppose then p : E → B
is a fibration with n-dimensional oriented manifold base, and write r : B → ∗ for the constant
map. The associated pull back functor r∗ : HoSp→ HoSpB admits both a left and a right adjoint
denoted

r! : HoSpB −→ HoSp and r∗ : HoSpB −→ HoSp,

respectively, see [MS06, Proposition 12.6.7 & Theorem 13.1.18]. They come with canonical iden-
tifications

r!(E ∧B HZ) ≃ E ∧HZ and r∗(FB(E,HZ)) ≃ F (E,HZ).

Let us write νB ∈ SpB for the Spivak normal fibration of B, regarded as a parametrised spectrum
over B with fibre S−n. By parametrised Atiyah duality ([MS06, Theorem 18.6.1]) νB is the
Costenoble–Waner dual of the sphere spectrum over B, so by [MS06, Proposition 18.1.5] (with
J = E ∧B HZ) we have an equivalence of spectra

µ : r!(E ∧B HZ ∧B νB) −→ r∗(E ∧B HZ).

We have a second equivalence th: HZ ∧B νB → HZ ∧B S−n coming from the orientation of B
(which becomes the Thom isomorphism upon applying r!). Under the assumption that the fi-
bres of p are coherently oriented Poincaré complexes of dimension d we have a third equivalence

Dfw
E : ΣdFB(E,HZ)→ E ∧B HZ from Section 3.1, and it is a tedious but straightforward exercise

to check that the diagram of equivalences

Σd+nr∗(FB(E,HZ))

Σnr∗(D
fw

E
)

��

DE // r!(E ∧B HZ)

Σnr∗(E ∧B HZ) Σnr!(E ∧B HZ ∧B νB)
Σnµoo

ΣnidE∧th

OO

commutes, where DE : Σd+nF (E,HZ)→ E∧HZ is ordinary Poincaré duality for E. The compar-
ison of Euler classes now follows by splicing this diagram with the analogous one for E×BE → B.

4. Tautological characteristic classes of block bundles

In the rest of the paper we shall be interested in oriented block bundles. That is, we will assume
that M is oriented, and consider block bundles (p : E → |K|,A) for which the transition maps are
orientation preserving. These are classified by analogous spaces

BC̃at
+

(M) ≃M+(M),

where the p-simplices of M+(M)• are oriented submanifolds W ⊂ ∆p × Rn which are p-block
Cat+ isomorphic to ∆p ×M . Forgetting the orientation defines a map f : M+(M) → M(M),
which defines the universal oriented block bundle E+(M) = f∗E(M) with projection

π : E+(M) −→M+(M)
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for which we will now define tautological classes. Again the case of interest for us is that of
topological block bundles, but our methods work just as well in the smooth and piecewise linear
categories, so we work in that generality.

4.1. The tautological classes. By Proposition 2.3.2, the map π is a weak quasi-fibration, i.e.
π−1(v)→ hofibv(π) is a weak homotopy equivalence for any vertex v ∈ M+(M)0. As π−1(v) ∼= M ,
the Serre spectral sequence for the map π (replaced by a fibration) takes the form

Ep,q2 = Hp(M+(M);Hq(M ;R)) =⇒ Hp+q(E+(M);R).

Since the block bundle is oriented, the local system Hd(M ;R) is trivialised for any ring R and so
this spectral sequence defines (see [BH58, Section 8]) a Gysin homomorphism

π! : H
k(E+(M);R) −→ Hk−d(M+(M);R).

The stable vertical tangent bundle constructed in Section 2.4, together with the fibrewise Euler
class constructed in Section 3, give a map

(T sv (π), efw(π)) : E+(M) −→ BSCat×K(Z, d)

for any d-dimensional Cat manifoldM . Using the equivalenceH∗(M+(M);R) ∼= H∗(BC̃at
+

(M);R)
discussed in Section 2.3 we obtain:

4.1.1. Definition. The universal tautological characteristic classes

κc(M) := π!((T
s
v (π), efw(π))∗(c))

define a homomorphism

κ−(M) : Hk(BSCat×K(Z, d);R) −→ Hk−d(BC̃at+(M);R).

4.2. Comparisons. These classes agree with the classes defined in [ERW14] and also restrict to
the classical tautological classes for the universal smooth fibre bundle. We record this explicitly
in the following propositions.

4.2.1. Proposition. The square

H∗(BSTop×K(Z, d);R)
κ−(M)//

��

H∗−d(BT̃op+(M);R)

��
H∗(BSO(d);R)

κ−(M) // H∗−d(BDiff+(M);R)

commutes.

The implications of this statement depend on the coefficient ring R, mostly due to the fact
that relevant properties of the left vertical map depend on the choice of coefficients: The work of
Kirby–Siebenmann (specifically [KS77, p. 200]) implies that the map BSO→ BSTop is a rational
equivalence and thus the left vertical map in the diagram is a surjection when R is Q. Therefore, all
rational tautological classes in H∗(BDiff+(M);Q) are in the image of the upper composition. The
latter also holds for R = Z/2 by Thom’s description of the Stiefel-Whitney classes. As mentioned
in the introduction this is not true for R = Z, but see Section 6.2.

If M satisfies the block Borel conjecture then fibre homotopy equivalent smooth fibre bundles
with fibre M are in fact concordant as topological block bundles, and so the above diagram
then shows that they have the same rational tautological classes; this recovers [BFJ16, Corollary
G.1]. If M is a nonpositively curved manifold then it does satisfy the block Borel conjecture (by
Proposition 5.1.1 as its fundamental group satisfies the Farrell–Jones conjecture by [FJ90]), so the
above applies; this generalises [BFJ16, Corollary C.1].

4.2.2. Proposition. Under the maps

BTop+(M) −→ BT̃op
+

(M) and BD̃iff
+

(M) −→ BT̃op
+

(M)

the tautological classes just defined restrict to those of Ebert and Randal-Williams.
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Proof of Propositions 4.2.1 & 4.2.2. Proposition 4.2.1 follows immediately from Sections 2.5.1 and
3.2.1, which together say that the stable vertical tangent microbundle and Euler class of a smooth
fibre bundle agree with the objects of the same names we have associated to the corresponding
Top block bundle.

For Proposition 4.2.2 let us first consider the easier case of block diffeomorphisms. As discussed
in Section 2.5, the Diff stable vertical tangent bundle constructed in Section 2.4 coincides with
the one of [ERW14]. Likewise, the discussion after Definition 3.1.1 shows that the fibrewise Euler
class constructed in Section 3.1 restricts to that of [RW16]. By [RW16, Lemma 2.2 (iv)] the claim
follows. Now consider the case of topological bundles. By construction (see [ERW14, Proposition
4.2]) it suffices to treat the case of a manifold base, in which case Lemma 2.5.2 implies that the Top
vertical tangent bundle of [ERW14] stabilises to the Top stable vertical tangent bundle constructed
in Section 2.4, and [RW16, Lemma 2.2 (ii) & (iv)] shows that the Euler class of the Top vertical
tangent bundle agrees with the fibrewise Euler class constructed in Section 3.1. (These results are
stated for Cat = Diff in [RW16], but their proofs apply for Cat = Top too.) �

Finally, let us warn the reader that they should resist the temptation to think that the tau-

tological classes in H∗(BT̃op+(M);R) behave like their counterparts in H∗(BTop+(M);R) or
H∗(BDiff+(M);R) as there is no reason for the homomorphism

κ−(M) : H∗(BSTop×K(Z, d);R) −→ H∗−d(BT̃op+(M);R)

to factor through H∗(BSTop(d);R). Indeed, in the smooth case [RW16, Proposition 3.1] implies
that

κe2(Wg) 6= κpn(Wg) ∈ H
2n(BD̃iff

+
(Wg);Q)

for Wg = (Sn × Sn)#g and large g ∈ N and in [ERW14, Theorem 3] the authors construct an
8-manifold M with

0 6= κp5(M) ∈ H12(BD̃iff
+

(M);Q).

While these results exclude a factorisation

κ : H∗(BSO;Q) −→ H∗(BSO(d);Q) −→ H∗(BD̃iff
+

(M);Q)

in the case of smooth block bundles, they do not suffice to exclude the analogue for topological
block bundles. Indeed, by work of Weiss [Wei15], neither e2 = pn ∈ H4n(BSTop(2n);Q) nor
0 = pm ∈ H4n(BSTop(2n);Q) for m > n hold in general. In fact, it seems to be our lack of
knowledge of H∗(BSTop(n);Q) that prevents us from disproving this factorisation.

In a similar direction, our methods do not lift all rational tautological classes of topological
fibre bundles to topological block bundles, as the ring H∗(BSTop(n);Q) is not generated by Euler

and Pontryagin classes. This may be seen as follows. The space STop
SO is rationally contractible (by

[KS77, p. 200]) and the map STop(n)
SO(n) →

STop
SO is (n+ 2)-connected (by [KS77, p. 246]), so STop(n)

SO(n)

is rationally (n+ 1)-connected. Combined with Morlet’s identification

BDiff∂(Dn) ≃ Ωn0

(
STop(n)

SO(n)

)

(see [KS77, p. 241]) and Farrell–Hsiang’s calculation [FH78] of the rational homotopy groups of
BDiff∂(Dn), we find that for n odd and large enough

πi

(
STop(n)

SO(n)

)
⊗Q =

{
0 0 < i < n+ 4

Q i = n+ 4.

This implies that Hn+4
(

STop(n)
SO(n) ;Q

)
∼= Q is the lowest degree non-vanishing cohomology group.

As BSO(n) has no rational cohomology in odd degrees, in the Serre spectral sequence for the
fibration

STop(n)

SO(n)
−→ BSO(n)→ BSTop(n)
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it follows that the transgression

Q ∼= Hn+4

(
STop(n)

SO(n)
;Q

)
−→ Hn+5(BSTop(n);Q)

is injective. By definition its image vanishes in Hn+5(BSO(n);Q), so it cannot be a polynomial
in the Euler and Pontryagin classes.

5. Block homeomorphisms of aspherical manifolds

In the previous sections we have established that the tautological classes of smooth manifold
bundles extend to topological block bundles. As this paper aims to understand the tautological

classes for aspherical manifolds, we will now discuss the homotopy type of the space BT̃op(M)
provided M is aspherical. This depends on what are called the full Farrell–Jones conjectures, see
Section 5.2. We will call a group satisfying them a Farrell–Jones group.

5.1. The block Borel conjecture. Let M be an aspherical manifold and recall from the intro-
duction that M is said to satisfy the block Borel conjecture if the canonical map

ι : BT̃op(M) −→ BG(M)

is a weak equivalence, and the identity block Borel conjecture (resp. with R-coefficients) if the
restriction

ιh : BT̃oph(M) −→ BG0(M)

is a weak equivalence (resp. an R-homology equivalence). The block Borel conjecture implies the
identity block Borel conjecture, by pulling back the universal cover of the target, which in turn
implies the identity block Borel conjecture with R-coefficients for any ring R.

The next proposition partly concerns surgery on 4-dimensional topological manifolds, so we
recall some terminology from that theory: a group is said to be good if it satisfies the π1-Null
Disk Lemma, see e.g. [FT95, Introduction]. Groups that are known to be good include elementary
amenable groups and groups of subexponential growth, see [Fre84] and [FT95].

5.1.1. Proposition. Let M be an aspherical manifold whose fundamental group is a Farrell–Jones
group.

(i) If either the dimension of M is at least 5, or the dimension of M is 4 and its fundamental
group is good, then the block Borel conjecture holds for M .

(ii) If the dimension of M is 4, then the identity block Borel conjecture holds for M .

This proposition implies that the block Borel conjecture holds for a very large class of aspherical
manifolds, see Theorem 5.2.1.

Proof. Let us first sketch the argument, following [BL12, Proposition 0.3], for part (i) in the
case dim(M) ≥ 5. Denote by Gs(M) ⊆ G(M) the space of simple homotopy self equivalences of
M , which is a collection of path components of G(M) containing both G0(M) and the image of

T̃op(M). We denote by G(M)/T̃op(M) the fibre of ι, and by Gs(M)/T̃op(M) ⊂ G(M)/T̃op(M)
the evident collection of path components. From surgery theory for k ≥ 1 one has isomorphisms

πk(Gs(M)/T̃op(M)) ∼= S
Top
∂ (M ×∆k)

to the higher structure sets of M appearing in the surgery exact sequence

· · · −→ Lqd+k+1(Z[π1(M)]) −→ STop∂ (M ×∆k) −→ NTop
∂ (M ×∆k)

σ
−→ Lqd+k(Z[π1(M)]) −→ · · ·

and one has an inclusion π0(Gs(M)/T̃op(M)) ⊆ STop(M). By the work of Ranicki, σ can be
identified with the assembly map

LqZ〈1〉d+k(M) −→ Lqd+k(Zπ1(M))

in (based) quadratic L-theory, see [Ran92, Theorem 18.5] where L. denotes our LqZ〈1〉. As ex-
plained in [BL12] the Farrell–Jones conjecture in K- and L-theory imply that for an aspherical
manifold

LqZ∗(M) −→ Lq∗(Zπ1(M))
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is an isomorphism (the K-theoretic Farrell–Jones conjecture for π1(M) is used to change from
universally decorated to based L-theory as explained in the proof of [BL12, Proposition 0.3 (i)]).
Since the map

LqZ〈1〉∗(M) −→ LqZ∗(M)

is injective in degree d and an isomorphism in higher degrees, STop∂ (M ×∆k) is trivial for all k.
The Farrell–Jones conjecture also implies that Gs(M) = G(M), as their difference is measured by
the Whitehead torsion which takes values in the cokernel of the assembly map in K-theory. It

follows that G(M)/T̃op(M) is contractible and hence that ι is a homotopy equivalence.
The only point where we used the dimension assumption onM was to make sure that the surgery

sequence is exact. By Freedman’s results, this also holds for 4-manifolds whose fundamental
group is good, see [FQ90, Theorem 11.3A]. Thus by the same reasoning we obtain part (i) of the
proposition also for 4-manifolds with good fundamental group, see also [FQ90, Section 11.5].

To prove (ii), we apply the arguments above to M×∆1, to see that πk(G(M)/T̃op(M)) vanishes
for k ≥ 1. Therefore πi(ι) is injective for i = 1 and bijective for i ≥ 2. As it is injective on π1 it

follows that T̃oph(M) is path-connected, so that passing to universal covers then proves that ιh
is a weak equivalence, and hence that M satisfies the identity block Borel conjecture. �

5.1.2. Remark. For our purposes it will often suffice to know that ιh : BT̃oph(M) → BG0(M) is
an equivalence after inverting 2, or even rationally. To obtain this weaker statement one need not
assume the full Farrell–Jones conjectures, a variant of the L-theoretic conjecture is enough, as we
will explain in Proposition 5.2.4.

5.1.3. Remark. We do not know the validity of the block Borel conjecture for aspherical manifolds
of dimension less than 4. The vanishing results for tautological classes, however, are known in
dimensions at most 3 anyway (at least rationally in case of dimension 3). Indeed, in dimension
1 this is a straightforward calculation since S1-bundles can always be given linear structures, in
dimension 2, the orientable aspherical manifolds are exactly the surfaces Σg with g ≥ 1. For g ≥ 2
the space Diffh(Σg) is contractible by a result of [EE69], so there is nothing to prove. For the
torus T 2 one uses that the maps

Diff(T 2) −→ Top(T 2) −→ G(T 2)

are homotopy equivalences and that the left translation map T 2 → G(T 2) factors over Diff(T 2) and
is an equivalence onto Diffh(T 2). Then one uses the same calculation as in the case of principal
S1-bundles. For 3-dimensional manifolds there is a general vanishing result due to Ebert, see
[Ebe13, Corollary 1.3]: He proves that rational, tautological classes vanish in the cohomology of
BDiff+(M) even for non-aspherical M . For more details, see the discussion in [BFJ16, p. 10].

5.2. The Farrell–Jones conjectures. Let us report now on the status of the Farrell–Jones
conjectures to convince the reader that their assumption is not too restrictive. We state the
following result for the class FJ of Farrell–Jones groups, that is those groups which satisfy the
full Farrell-Jones conjectures; this terminology refers to the following version, the details of which
are explained in [Lüc15, Section 11]: A group G is contained in FJ if for every finite group F and
every additive G ≀ F -category A (with involution in the L-theoretic case) both maps

KAG≀F
n (EvcG ≀ F ) −→ Kn(A;G ≀ F ) and LAG≀F

n (EvcG ≀ F ) −→ Ln(A;G ≀ F )

are isomorphisms for all n ∈ Z. Here, K denotes non-connective K-theory and L universally
decorated, that is 〈−∞〉, L-theory and Evc denotes the classifying space for the family of virtually
cyclic subgroups.

This version of the Farrell–Jones conjecture contains the more classical form saying that for
any ring R and a discrete group G, the assembly maps

KRG∗ (EvcG) −→ K∗(RG) and LRG∗ (EvcG) −→ L∗(RG)

are isomorphisms. For a torsion-free group these two conjectures imply that

KZ∗(BG) −→ K∗(ZG) and LZ∗(BG) −→ L∗(ZG)
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are equivalences (even for decoration 〈2〉, i.e. based, L-theory as needed in the proof of Proposi-
tion 5.1.1): Any torsion-free virtually cyclic group is in fact infinite cyclic (this follows easily from
[FJ95, Lemma 2.5]) so EvcG = EcycG. But the relative assembly maps (with universal decorations
in L-theory)

KZ∗(BG) −→ KZG∗ (EcycG) and LZ∗(BG) −→ LZG∗ (EcycG)

are isomorphisms for every group, see [LR05, Proposition 2.10 (ii)]. Finally, the K-theoretic
conjecture allows one change to the desired decorations.

5.2.1. Theorem. The class FJ has the following properties

(i) It contains hyperbolic groups and finite dimensional Cat(0)-groups;
(ii) it contains virtually solvable groups;
(iii) it contains (not necessarily cocompact) lattices in almost connected Lie groups;
(iv) it contains S-arithmetic groups;
(v) it is closed under passing to subgroups;
(vi) it is closed under taking finite products, free products, and directed colimits;
(vii) it is almost closed under extensions, more precisely, let 1 → K → G → Q → 1 be

an extension of groups. Suppose that for any cyclic subgroup C ⊆ Q the group p−1(C)
belongs to FJ and that the group Q belongs to FJ . Then G belongs to FJ ;

(viii) if H is a finite index subgroup of G, and H is in FJ , then also G is in FJ .

For a more complete and detailed status of the Farrell–Jones conjectures we refer the reader to
[RV18, BL12, BFL14, KLR16, Rüp16] and the references therein.

If one is willing to neglect 2-torsion, then the L-theoretic Farrell–Jones conjecture has further
useful properties. For this we need to recall the following version known as the fibered Farrell–
Jones conjecture, see [BLR08b, Section 2.1]. For a fixed group G its L-theoretic version after
inverting 2 states that for any group homomorphism φ : H → G the assembly map

LRH∗ (Eφ∗(vc)H)[ 12 ] −→ L∗(RH)[ 12 ]

is an isomorphism; here, for any family F of subgroups of G and a homomorphism φ : H → G,
we denote by φ∗(F) the family of subgroups K ⊆ H , such that φ(K) ∈ F . After inverting 2,
L-theory spectra with different decorations become equivalent, see [LR05, Remark 1.22], therefore
we do not need to consider the K-theoretic analogue for this. We will denote by LFJ fib

vc [ 12 ] the
class of groups that satisfy this conjecture. Since one can choose the homomorphism id : G→ G,
it contains the classical version of the assembly maps with 2 inverted. The class LFJ fib

vc [ 12 ] has
better closure properties than FJ , as described in the following proposition.

5.2.2. Proposition.

(i) Farrell–Jones groups lie in LFJ fib
vc [ 12 ],

(ii) elementary amenable groups are contained in LFJ fib
vc [ 12 ],

(iii) it is closed under passage to subgroups, directed colimits, and amalgamated products, and
(iv) it is almost closed under extensions, more precisely, let 1 → K → G → Q → 1 be an

extension of groups. Suppose that for any finite subgroup C ⊆ Q the group p−1(C) belongs
to LFJ fib

vc [ 12 ] and that the group Q belongs to LFJ fib
vc [ 12 ]. Then G belongs to LFJ fib

vc [ 12 ].

Note that, in particular, LFJ fib
vc [ 12 ] is closed under extensions of torsion-free groups, which will

be the salient feature of (iv) later.
To show Proposition 5.2.2 we need another characterisation of LFJ fib

vc [ 12 ]. To state it let us

denote by LFJ fib
fin [ 12 ] the class of groups satisfying the variant of the fibered conjecture which takes

into account the family of finite subgroups rather than the family of virtually cyclic subgroups.

5.2.3. Lemma. We have that LFJ fib
vc [ 12 ] = LFJ fib

fin [ 12 ].

Proof. By [BLR08b, Theorem 2.4] this follows if we can show that every virtually cyclic group
V is contained in LFJ fib

fin [ 12 ]. From [FJ95, Lemma 2.5] it follows that V sits inside a short exact
sequence

1 −→ F −→ V −→ S −→ 1
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in which F is a finite group and S is either infinite cyclic or infinite dihedral, i.e. isomorphic to
D∞
∼= Z/2 ∗ Z/2. By [BLR08b, Lemma 2.9] and the fact that finite groups are clearly contained

in LFJ fib
fin [ 12 ], it hence suffices to prove that Z and D∞ are contained in LFJ fib

fin [ 12 ].
To do so let φ : K → S be a homomorphism with S either Z or D∞. We need to show that

K satisfies the L-theoretic Farrell–Jones conjecture after inverting 2 with respect to the family
φ∗(fin). Factor φ as

K
ψ
−→ Im(φ)

i
−→ S

and observe that φ∗(fin) = ψ∗(fin). For the image of φ – as for every subgroup of D∞ – there are
three possibilities: It is either finite, infinite cyclic or infinite dihedral. If the image of φ is finite,
φ∗(fin) is the family of all subgroups and thus K clearly satisfies this isomorphism conjecture and
otherwise we are reduced to considering a surjection φ : K → S. Notice that the space EfinS
acquires a K-action through the homomorphism φ and that EfinS is a model for Eφ∗(fin)K when
φ is surjective. Let K0 denote the kernel of φ.

We will now proceed by studying the two cases separately. Let us first assume that S = Z. As
Z has no finite subgroups a model for the space Eφ∗(fin)K is given by EZ and as a K-CW complex
is given by the pushout

K/K0 × S0 //

��

K/K0

��
K/K0 ×D1 // Eφ∗(fin)K

Consider then the diagram

. . . // LRK∗ (K/K0) //

��

LRK∗ (K/K0) //

��

LRK∗ (Eφ∗(fin)K) //

��

LRK∗−1(K/K0) //

��

. . .

. . . // L∗(RK0)[ 12 ] // L∗(RK0)[ 12 ] // L∗(RK)[ 12 ] // L∗−1(RK0)[ 12 ] // . . .

where the upper horizontal sequence is the exact sequence induced by applying LRK∗ (−) to the
above pushout, the lower horizontal sequence is the exact sequence of [Ran73, page 413] and the
vertical arrows are given by the assembly map. By definition of the equivariant homology theory
LRK∗ (−), the assembly maps involving only K/K0 become isomorphisms after inverting 2 in the
domain. We deduce that the map

LRK∗ (Eφ∗(fin)K)[ 12 ] −→ L∗(RK)[ 12 ]

is an isomorphism from the 5-lemma.
To address the case S = D∞ note that a model for Efin(D∞) is given by the pushout of D∞-CW

complexes

D∞ × S0 //

��

D∞/C1 ∐D∞/C2

��
D∞ ×D1 // Efin(D∞)

where C1 = Z/2 ∗ {e} and C2 = {e} ∗ Z/2 are the canonical subgroups. As explained above, it
follows that a model for Eφ∗(fin)K is given by the pushout of K-CW complexes

K/K0 × S0 //

��

K/K1 ∐K/K2

��
K/K0 ×D1 // Eφ∗(fin)K
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where K0 = ker(φ) and Ki = φ−1(Ci) for i = 1, 2. We consider the diagram

· · ·LRK∗ (K/K0) //

��

LRK(K/K1)⊕ LRK∗ (K/K2) //

��

LRK∗ (Eφ∗(fin)K) //

��

LRK∗−1(K/K0) · · ·

��
· · ·L∗(RK0)[ 12 ] // L∗(RK1)[ 12 ]⊕ L∗(RK2)[

1
2 ] // L∗(RK)[ 12 ] // L∗−1(RK0)[ 12 ] · · ·

where again the upper horizontal sequence is the exact sequence induced by applying LRK∗ (−)
to the above pushout, whereas the lower horizontal sequence is the exact sequence of [Cap74,
Corollary 6]. The vertical maps are again the assembly maps and thus isomorphisms at the terms
involving only homogeneous spaces in the source. The 5-lemma again finishes the proof. �

Proof of Proposition 5.2.2. Statement (i) is proven in [BR07, Corollary 4.3]. In [BLR08b, Lemma
2.12] it is shown that elementary amenable groups are contained in LFJ fib

fin [ 12 ], even without
inverting 2. By Lemma 5.2.3 we deduce (ii). Part (iii) is [BLR08b, Lemma 2.5 & Theorem 2.7]
for subgroups and directed colimits. The closure property under amalgamated product follows
from [Cap74, Corollary 6] using the fact that for a surjective group homomorphism φ : K → G a
decomposition G = G1 ∗G0 G2 induces a decomposition K = φ−1(G1) ∗φ−1(G0) φ

−1(G2), similar
to the argument in Lemma 5.2.3. It hence remains to prove part (iv). This follows immediately
from [BLR08b, Lemma 2.9] using Lemma 5.2.3. �

5.2.4. Proposition. Let M be an aspherical manifold of dimension at least 4. If π1(M) is con-
tained in LFJ fib

vc [ 12 ], then the identity block Borel conjecture with Z[ 12 ]-coefficients holds for M .

Proof. As explained previously, the difference between the decorations in L-theory disappears
after inverting 2 (by [LR05, Remark 1.22]). From the identification of the surgery obstruction
with the assembly map, as expounded in the proof of Proposition 5.1.1, one therefore obtains

that the groups STop∂ (M ×∆k)[ 12 ] vanish. For k > 0 this implies that πk(Gs(M)/T̃op(M))[ 12 ] = 0
(the fundamental group is abelian by [Ran92, Theorem 18.5]); note that no statement about the
components can be deduced even if M is of dimension greater that 4. We conclude that the

map BT̃op(M) → BGs(M) induces an isomorphism on πi(−)[ 12 ] for i > 1, and the kernel of
the map on π1 is abelian and annihilated by inverting 2. It follows that the homotopy fibre of

ιh : BT̃oph(M) → BG0(M) has abelian fundamental group and all homotopy groups annihilated
by inverting 2. By considering its Postnikov tower we then see that it has the Z[ 12 ]-homology of a

point, and hence that ιh is a Z[ 12 ]-homology equivalence. �

5.3. Block homeomorphisms of aspherical manifolds. The block Borel conjecture implies
a strong computational result, namely a full understanding of the homotopy type of the space

BT̃op(M), as we will see in Proposition 5.3.1. This result, together with the fact that the tau-

tological classes are defined in H∗(BT̃op+(M)), as discussed in Definition 4.1.1, is key to our
approach to understanding the tautological classes for aspherical manifolds.

It is straightforward to show (see e.g. [Got65, section III]) that if Γ is a group then there is a
canonical fibre sequence

B2C(Γ) −→ BG(BΓ) −→ BOut(Γ)

where C(Γ) denotes the centre of Γ and Out(Γ) denotes the group of outer automorphisms of Γ.
From this point onwards, we will let Γ be the fundamental group of an aspherical manifold M .
We can draw the following corollary.

5.3.1. Proposition. Let M be an aspherical manifold satisfying the block Borel conjecture. Then
there is a fibre sequence

B2C(Γ) −→ BT̃op(M) −→ BOut(Γ).

Recall that we call an aspherical manifold M centreless if C(Γ) = 0. We immediately obtain:
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5.3.2. Corollary. Let M be a closed, connected, oriented, centreless, aspherical, manifold of di-
mension d, that satisfies the identity block Borel conjecture with R-coefficients. Then

0 = κc(M) ∈ Hk−d(BT̃oph(M);R)

for all c ∈ Hk(BSTop×K(Z, d);R) with k 6= d.

One large class of examples of centreless aspherical manifolds is given by those admitting a
metric of negative sectional curvature. Just as in [BFJ16] one can strengthen our results for such
manifolds. To this end recall, that the fundamental group of a negatively curved manifold is
hyperbolic.

5.3.3. Corollary. Let M be a closed, oriented, aspherical manifold of dimension d ≥ 4 with
hyperbolic fundamental group. Then

H∗
(
BT̃op

+
(M);Q

)
= Q.

In particular,

0 = κc(M) ∈ Hk−d(BT̃op
+

(M);Q)

for all c ∈ Hk(BSTop×K(Z, d);Q) with k 6= d.

Proof. Let us collect two relevant features of hyperbolic groups.
Firstly, a torsion-free hyperbolic group different from Z has trivial centre. This is well-known,

but as we had difficulties finding it in the literature we give the short proof. Suppose that the centre
of such a group Γ is non-trivial, and let x ∈ C(Γ) be a non-trivial element. By [BH99, Corollary
3.10] we have that 〈x〉 has finite index in its centraliser, but since x is central its centraliser is
the whole of Γ, and so Γ is virtually infinite cyclic. As mentioned earlier, it follows directly from
[FJ95, Lemma 2.5] that a torsion-free virtually cyclic group is in fact infinite cyclic.

Secondly, Gromov has shown [Gro87, Theorem 5.4.A] that a hyperbolic group which is the
fundamental group of an aspherical manifold of dimension at least 3 has finite outer automorphism
group.

We now begin the proof of this corollary. As π1(M) has trivial centre, the map G(M) →
Out(π1(M)) is a homotopy equivalence, and by Gromov’s theorem the latter is a finite group. By
Theorem 5.2.1 (i) hyperbolic groups satisfy the Farrell–Jones conjecture, and hence by Proposi-
tion 5.1.1 the manifold M satisfies the block Borel conjecture if d ≥ 5, and the identity block
Borel conjecture if d = 4. But in the latter case the proof of Proposition 5.1.1 also shows that

ι : BT̃op(M) → BG(M) is injective on π1. In either case it follows that T̃op(M) is homotopy
equivalent to a finite group, so its classifying space has trivial rational cohomology. �

5.3.4. Remark. The assumption on the fundamental group of M can of course be relaxed: the
conclusion of the corollary holds whenever M is a centreless manifold whose fundamental group is a
Farrell–Jones group that has rationally acyclic, e.g. finite, outer automorphism group. In a similar
vein, one can ask for Out(π1(M)) to have finite rational cohomological dimension. In this case one

still obtains that the tautological classes of non-zero degree are nilpotent in H∗
(
BT̃op

+
(M);Q

)
,

a claim we will make again later.

5.3.5. Remark. The stronger statement explained in Remark 5.3.4 recovers [BFJ16, Theorem F]
where such a vanishing is proven for smooth bundles with fibre a non-positively curved centreless
manifold whose fundamental group has finite outer automorphism group: fundamental groups
of non-positively curved manifolds are Cat(0) and thus Farrell–Jones groups. Notice that the
contents of Remark 5.3.4 for smooth bundles are also implied by [BFJ16, Corollary G.1].

The opposite extreme to centreless aspherical manifolds are those with abelian fundamental
groups, that is, tori T d. In this case there are also special features which allow us to prove

vanishing of tautological classes on BT̃op
+

(T d) and not just BT̃op0(T d). The following specialises
to [BFJ16, Corollary D.1] in the case of Q-coefficients.

5.3.6. Corollary. For d ≥ 4 we have

0 = κc(T
d) ∈ Hk−d(BT̃op

+
(T d);R)



A VANISHING THEOREM FOR TAUTOLOGICAL CLASSES OF ASPHERICAL MANIFOLDS 25

for all c ∈ Hk(BSTop×K(Z, d);R).

Proof. First we note that finitely generated free abelian groups are good in the sense of Freedman,
see [Fre84, after Disk Theorem 1] and are Farrell–Jones groups by Theorem 5.2.1. Thus by
Proposition 5.1.1 the block Borel conjecture is valid for T d. Hence by Proposition 5.3.1 we have
a fibre sequence

B2Zd −→ BT̃op+(T d) −→ BSLd(Z).

A simple calculation in the long exact sequence of homotopy groups associated to a fibration shows

that the total space of the universal, oriented T d-block bundle π : Ẽ+(T d)→ BT̃op
+

(T d) is given
by BSLd(Z). Moreover, the composite

BSLd(Z)
π
−→ BT̃op

+
(BΓ) −→ BSLd(Z)

is a homotopy equivalence. It follows that the induced map

π∗ : H∗(BT̃op
+

(T d);R) −→ H∗(Ẽ+(T d);R)

is (split) surjective for all coefficients. But for all x ∈ H∗(BT̃op
+

(T d);R) we have

π!(π
∗(x)) = x ⌣ π!(1) = 0.

Since all tautological classes lie in the image of π! the claim follows. �

5.3.7. Remark. For smooth fibre bundles and rational coefficients, the same vanishing result is
also true in dimensions less than 4: When d = 1, 2 the universal smooth T d-bundle is given by
BSLd(Z) → B(T d ⋊ SLd(Z)) and the same proof applies. For T 3 the rational result follows from
Ebert’s work [Ebe13], as mentioned earlier in Remark 5.1.3.

6. Vanishing criteria for tautological classes of aspherical manifolds

In this section we shall introduce Burghelea’s conjecture and mostly restrict to rational coeffi-
cients throughout. We will prove our main theorem from the introduction and discuss its integral
refinement at the end of the section. For a group Γ, we denote by C(Γ) its centre, and for an
element g ∈ Γ, we denote by CΓ(g) its centraliser in Γ. Furthermore, cdQ denotes the rational
cohomological dimension and cdtr

Q denotes the rational cohomological dimension with trivial co-
efficients. We will say that a group Γ of type F is called an oriented rational Poincaré duality
group [Bro82, VIII, Section 10] of formal dimension d, if H∗(Γ;QΓ) is concentrated in degree d,
and there is isomorphic to Q with trivial Γ action. In this case, cap product with a generator of
this group yields an isomorphism

Hk(Γ;M) −→ Hd−k(Γ;M)

for any QΓ-module M .

6.1. Relating tautological classes to Burghelea’s conjecture. The basic ingredient into our
study of tautological classes for not necessarily centreless aspherical manifolds is the following
lemma.

6.1.1. Lemma. For an aspherical manifoldM with fundamental group Γ, the universalM -fibration
over BG0(M) is given by

BΓ −→ B(Γ/C(Γ))
π
−→ B2C(Γ),

where π classifies the central extension

1 −→ C(Γ) −→ Γ −→ Γ/C(Γ) −→ 1.

Proof. The map B2C(Γ) → BG(BΓ) from the beginning of Section 5.3 classifies a BΓ-fibration
BΓ → E → B2C(Γ). The connecting map ∂ : C(Γ) = π2(B2C(Γ)) → Γ = π1(BΓ) in the long
exact sequence on homotopy groups for this fibration is the inclusion map, and so E ≃ B(Γ/C(Γ))
as required. �
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If M satisfies the identity block Borel conjecture with R-coefficients then there is a homotopy
cartesian square

Ẽh(M)

��

// B(Γ/C(Γ))

π

��
BT̃oph(M)

ιh // B2C(Γ)

where the left-hand map is the universal M -block bundle over BT̃oph(M) and the lower map is
an R-homology equivalence. As B2C(Γ) is simply connected it follows that the top map is also an
R-homology equivalence, so in order to show the vanishing of tautological classes it will therefore
suffice to show that

π! : H
k(B(Γ/C(Γ));R) −→ Hk−d(B2C(Γ);R)

is the zero map, which is precisely what we will do in this section for R = Q.
To this end we will introduce various finiteness conditions and already want to offer following

diagram to sum up the various implications among them:

CBP ks FQ +3 IKP ks Poincaré +3 IVP

C 6=0

��

κ-classes vanish

BP

3;
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥

♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥

CP
C 6=0

+3

2:
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠

♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠

KP
Poincaré

+3 VP

block Borel

3;
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

Here the fundamental group of an aspherical manifold lies in CBP if and only if it satisfies the
central part of Burghelea’s conjecture as stated in the introduction, thereby establishing our main
theorem. The other terms are introduced throughout the section. To get started, let us axiomatise
the conclusion we want to obtain.

6.1.2. Definition. Let VP (vanishing property) denote the class of oriented rational Poincaré
duality groups of some dimension d for which the Gysin map

π! : H
∗(B(Γ/C(Γ));Q) −→ H∗−d(B2C(Γ);Q)

vanishes. Similarly, let IVP (individual vanishing property) consist of those oriented rational
Poincaré duality groups for which

ρ! : H
∗(B(Γ/〈g〉);Q) −→ H∗−d(B2Z;Q)

vanishes for each central g ∈ Γ of infinite order individually; here ρ : B(Γ/〈g〉) → B2Z classifies
the extension given by g.

Assuming the identity block Borel conjecture with Q-coefficients, π1(M) lying in VP implies

the vanishing of all tautological classes in H∗(BT̃oph(M);Q) for any oriented, aspherical manifold
as we have explained above. We mainly introduce the class IVP to connect our conjecture from
the introduction to Burghelea’s, see below. To start this off we have the following.

6.1.3. Proposition. A group Γ in IVP lies in VP if and only if C(Γ)⊗Q 6= 0.

Proof. If C(Γ) ⊗ Q = 0, the rational Gysin map is isomorphic to the Gysin map for the trivial
fibration BΓ→ ∗ which by Poincaré duality for Γ is non-zero in degree d and thus Γ does not lie
in VP.

To prove the converse observe that H∗(B2C(Γ);Q) is the symmetric algebra on the finite
dimensional graded vector space Hom(C(Γ),Q)[2]: Its dimension equals the rational cohomological
dimension of C(Γ), which is bounded by that of its ambient group Γ. Now suppose that x ∈
Hk(B(Γ/C(Γ));Q) has π!(x) 6= 0 ∈ Hk−d(B2C(Γ);Q). Then we claim that there is an embedding
i : Z → C(Γ) such that (B2i)∗π!(x) 6= 0 ∈ Hk−d(B2Z;Q). Assuming this claim for the moment,
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we consider the diagram

B(Γ/Z)
ρ //

B(Γ/i)

��

B2Z

B2i
��

B(Γ/C(Γ))
π // B2C(Γ)

which exhibits B(Γ/Z) as a homotopy pullback. Therefore the diagram

H∗(B(Γ/C(Γ));Q)
π! //

B(Γ/i)∗

��

H∗−d(B2C(Γ);Q)

(B2i)∗

��
H∗(B(Γ/Z);Q)

ρ! // H∗−d(B2Z;Q)

commutes, which implies ρ!(B(Γ/i)∗(x)) = (B2i)∗π!(x) 6= 0, a contradiction as ρ! is zero by
assumption.

To prove the claim we consider a general non-zero element y 6= 0 ∈ H2n(B2C(Γ);Q) =
Symn(Hom(C(Γ),Q)). Such a y is a non-zero polynomial function on C(Γ)⊗Q so since C(Γ)⊗Q

is non-zero, there must be some non-zero element v ∈ C(Γ) ⊗ Q on which y does not vanish: as
y is homogeneous it does not vanish on the entire line spanned by v except at the origin. Such a
line contains the non-trivial image of an element w ∈ C(Γ), and the homomorphism i : Z→ C(Γ)
defined by w has the desired properties, since i∗ precisely corresponds to restriction of functions
to the line spanned by v. �

Let us now recall Burghelea’s conjecture in full, see [Bur85]. We first state its conclusion in an
axiomatic way, since the known cases go beyond Burghelea’s original conjecture.

6.1.4. Definition. Let BP (Burghelea property) denote the class of groups Γ that satisfy the
following: For any element g ∈ Γ of infinite order we have that the limit of

. . . // H∗+4(CΓ(g)/〈g〉;Q)
−⌢e // H∗+2(CΓ(g)/〈g〉;Q)

−⌢e // H∗(CΓ(g)/〈g〉;Q)

vanishes, where e ∈ H2(CΓ(g)/〈g〉;Q) is the Euler class of the central extension

1 −→ Z
g
−→ CΓ(g) −→ CΓ(g)/〈g〉 −→ 1.

Let furthermore CBP (central Burghelea property) denote the class of groups where the same
conclusion need only hold for central elements.

6.1.5. Conjecture (Burghelea). Any group of type F is in BP.

Recall that a group is said to be of type F if there exists a model of its classifying space which
is a finite complex, in particular the fundamental group of any aspherical manifold is of type F .
Combining Remark 6.1.7 and Proposition 6.1.8 below shows that for group of type F being in CBP
is indeed equivalent to the central part of Burghelea’s conjecture as stated in the introduction,
justifying the name.

We will review known results about Burghelea’s conjecture in the final chapter. For now let it
suffice to say that it is known to be true for several classes of groups and that while some groups
are known to lie outside of BP none of them are of type F . In order to connect Burghelea’s
conjecture to ours we need yet another definition.

6.1.6. Definition. Let KP (kernel property) denote the class of groups Γ, such that cdQ(Γ) <∞
and the map

π∗ : H∗(B2C(Γ);Q) −→ H∗(B(Γ/C(Γ));Q)

is not injective.
Similarly, let IKP (individual kernel property) denote those Γ with cdQ(Γ) <∞, such that for

each central g ∈ Γ of infinite order the induced map

ρ∗ : H∗(B2Z;Q) −→ H∗(B(Γ/〈g〉);Q)

is not injective.
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Equivalently, one can describe groups in IKP by requiring the rational Euler class e ∈ H2(B(Γ/〈g〉);Q)

of the central extensions 1→ Z
g
→ Γ→ Γ/〈g〉 → 1 to be nilpotent.

6.1.7. Remark. It follows from the Gysin sequence that multiplication with the Euler class

e ⌣ − : H∗(Γ/〈g〉;Q) −→ H∗+2(Γ/〈g〉;Q)

is an isomorphism in degrees greater than the cohomological dimension of Γ, so if cdQ(Γ) < ∞
and the Euler class is nilpotent then we must have cdtr

Q (Γ/〈g〉) <∞. This means that Γ ∈ IKP if

and only if cdQ(Γ) and cdtr
Q (Γ/〈g〉) are finite for each central g ∈ Γ of infinite order. In particular,

it shows that if Γ ∈ IKP then Γ ∈ CBP.

6.1.8. Proposition. Let Γ ∈ CBP be a group with cdQ(Γ) < ∞, whose rational homology is of
finite type. Then Γ ∈ IKP.

Proof. Let g ∈ Γ be central of infinite order. As the rational homology of Γ is of finite type, so is
that of Γ/〈g〉 by the Serre spectral sequence for BΓ → BΓ/〈g〉 → B2Z. Since Γ ∈ CBP we have
that lim

−⌢e
H∗(Γ/〈g〉;Q) = 0, so we compute

(
colim
−⌣e

H∗(Γ/〈g〉;Q)
)∗ ∼= lim

−⌣e

(
H∗(Γ/〈g〉;Q)

)∗

∼= lim
−⌢e

H∗(Γ/〈g〉;Q)

= 0

where the second isomorphism uses that H∗(Γ/〈g〉;Q) has finite type. Restricting to even degrees
we find that

0 = colim
−⌣e

H2∗(Γ/〈g〉;Q) ∼= H2∗(Γ/〈g〉;Q)
[
1
e

]

which implies that e ∈ H2(Γ/〈g〉;Q) is nilpotent, and so ρ∗ : H∗(B2Z;Q) → H∗(B(Γ/〈g〉);Q) is
not injective, as required. �

6.1.9. Proposition. If an oriented rational Poincaré duality group lies in IKP then it lies in
IVP. The same statement holds for KP and VP.

Proof. Suppose that Γ ∈ (I)KP . Let C denote either 〈g〉 for g a central element of infinite order
(in the case of IKP) or the entire centre of Γ (in the case of KP ; the centre must be non-trivial
if Γ ∈ KP).

Let 0 6= x ∈ H∗(B2C;Q) be such that π∗(x) = 0, and y ∈ H∗(B(Γ/C);Q) be arbitrary. Then
by the projection formula we have

0 = π!(π
∗(x) ⌣ y) = x ⌣ π!(y) ∈ H∗(B2C;Q).

Since this ring is a domain it follows that π!(y) = 0 and since y is arbitrary we have π! = 0, so
that Γ ∈ (I)VP . �

The following proposition is a converse to the first case in the above proposition. We have not
been able to prove the converse to the second case. However, we do not use either result, and
include it only for the sake of interest.

6.1.10. Proposition. If a group lies in IVP then it lies in IKP.

Proof. We will show the contrapositive, so suppose Γ does not lie in IKP . Then it has a central
element g of infinite order such that in the corresponding fibration

BΓ −→ B(Γ/〈g〉)
ρ
−→ B2Z

the map ρ∗ is injective. Choose an n such that 2n≫ d, and consider restricting the fibration ρ to
the skeleton CP

n ⊂ CP
∞ = B2Z, to give a fibration

BΓ −→ E
ν
−→ CP

n.

By considering the induced map of Serre spectral sequences, we see that ν∗ is also injective.
In the homological Serre spectral sequence for ν, the product of fundamental classes [CPn] ⊗

[BΓ] ∈ H2n(CPn;Q)⊗Hd(BΓ;Q) = E2
2n,d is a permanent cycle, as there is no space for differentials.
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By Poincaré duality on CP
n and BΓ, capping with this class gives an isomorphism of spectral

sequences

−⌢ [CPn]⊗ [BΓ] : Ep,qr −→ Er2n−p,d−q

between the cohomological and homological Serre spectral sequences.
Now as ν∗ is injective, ν∗ is surjective: in other words, there are no differentials exiting the

bottom row of the homological Serre spectral sequence, in particular exiting the group Er2n,0.

But then by the duality isomorphism there are no differentials exiting the group E0,d
r , and hence

ν! : Hd(E;Q)→ H0(CPn;Q) is onto. Choose u ∈ Hd(E;Q) such that ν!(u) = 1.
As E → B(Γ/〈g〉) is 2n-connected, and 2n≫ d, the class u extends to a class of the same name

in Hd(B(Γ/〈g〉);Q), which then satisfies ρ!(u) = 1. Thus Γ is not in IVP . �

Putting together Proposition 6.1.8 and Proposition 6.1.9 we find:

6.1.11. Corollary. Let M be an oriented aspherical manifold with fundamental group Γ. If Γ has
non-trivial centre and satisfies the Burghelea conjecture and the identity block Borel conjecture
with Q-coefficients then

0 = κc(M) ∈ H∗(BT̃oph(M);Q)

for all c ∈ H∗(BSTop×K(Z, d);Q).

The final condition we will discuss is as follows.

6.1.12. Definition. Let CP denote the class of groups Γ with cdQ(Γ) <∞ and cdtr
Q (Γ/C(Γ)) <∞.

6.1.13. Proposition. If Γ ∈ CP then Γ ∈ IKP, and if in addition C(Γ) ⊗Q 6= 0 then Γ ∈ KP.

Proof. Suppose that Γ ∈ CP and g ∈ Γ is a central element of infinite order, with corresponding
fibration

BΓ −→ B(Γ/〈g〉)
ρ
−→ B2Z.

Writing H∗(B2Z;Q) = Q[ι2], the class ρ∗(ι2) is by definition the Euler class of the central extension

1 −→ Z
g
−→ Γ −→ Γ/〈g〉 −→ 1,

so the non-injectivity of ρ∗ is equivalent to the nilpotence of this Euler class.
As Γ has finite Q-cohomological dimension so does any subgroup, in particular C(Γ). Now

cdtr
Q (A) = rk(A) for any abelian group A and therefore cdtr

Q (C(Γ)/〈g〉) ≤ cdtr
Q (C(Γ)). We also

have cdtr
Q (Γ/C(Γ)) <∞, so the Serre spectral sequence for the central extension

1 −→ C(Γ)/〈g〉 −→ Γ/〈g〉 −→ Γ/C(Γ) −→ 1

has finitely many non-zero rows and columns, and hence cdtr
Q (Γ/〈g〉) < ∞. But then the Euler

class e ∈ H2(Γ/〈g〉;Q) must be nilpotent.
For the final statement, if C(Γ)⊗Q 6= 0 then H2∗(B2C(Γ);Q) = Sym∗

Q(Hom(C(Γ),Q)) contains

non-nilpotent elements of strictly positive degree, so as cdtr
Q (Γ/C(Γ)) <∞ it follows that the map

π∗ : H∗(B2C(Γ);Q)→ H∗(B(Γ/C(Γ));Q) cannot be injective. �

We do not know of an aspherical manifold whose fundamental group is not contained in CP (we
pose as a question in Section 7.2 whether this is generally the case). One might in fact guess that
B(Γ/C(Γ)) is a Poincaré complex whenever Γ is the fundamental group of an aspherical manifold.
This is true if both C(Γ) and Γ/C(Γ) are of type F , by the 2-out-of-3 property for Poincaré
spaces for fibrations of finite complexes [Got79]. But the group Γ/C(Γ) is not even torsion-free in
general: For example for M one of the manifolds constructed in [CWY13] as counterexamples to a
conjecture about free S1-actions on aspherical manifolds with non-trivial centre, Γ/C(Γ) contains
a non-trivial element of order 2, and thus cannot even admit a finite dimensional model of its
classifying space.

Finally, we have the following convenient criterion for being in KP :



30 F. HEBESTREIT, M. LAND, W. LÜCK, AND O. RANDAL-WILLIAMS

6.1.14. Lemma. Let Γ be a group with cdQ(Γ) < ∞. If the map C(Γ) → Γab ⊗ Q is non-trivial,
then

π∗ : H2(B2C(Γ);Q) −→ H2(B(Γ/C(Γ));Q)

is not injective, in particular Γ ∈ KP.

Proof. Suppose that π∗ is injective and consider the Serre spectral sequence for the fibration

BC(Γ) −→ BΓ
q
−→ B(Γ/C(Γ)).

Let r be the rank of C(Γ), which is bounded by cdQ(Γ). Clearly the image of π∗ is contained in
ker(q∗), which therefore by assumption contains an r-dimensional subspace. On the other hand
ker(q∗) is the image of the differential

d2 : H1(BC(Γ);Q) −→ H2(B(Γ/C(Γ));Q).

Since dimQ(H1(BC(Γ);Q)) = r it follows that this differential is an isomorphism. Therefore
H1(BΓ;Q)→ H1(B(C(Γ));Q) is the zero map and the lemma follows by dualising. �

6.2. Integral results. Many of the above results are true integrally under an additional assump-
tion, namely that C(Γ) is finitely generated. It does not seem to be known whether this holds when
Γ is the fundamental group of an aspherical manifold (we pose this as a question in Section 7.2).

6.2.1. Theorem. If M is an oriented aspherical manifold, which satisfies the Burghelea conjecture
and the identity block Borel conjecture with Z-coefficients and whose centre is non-trivial and
finitely generated, then

0 = κc(M) ∈ H∗(BT̃oph(M);Z)

for all c ∈ H∗(BSTop×K(Z, d);Z).

Proof. The group Γ = π1(M) has type F and lies in CBP and so by Proposition 6.1.8 it lies in
IKP . Thus the homomorphism

ρ(g)∗ : H∗(B2Z;Z) −→ H∗(B(Γ/〈g〉);Z)

on integral cohomology has non-trivial kernel: For both sides the rational cohomology is the
rationalisation of the integral cohomology, since all the homology groups are finitely generated
(for the left hand side this is immediate and for the right hand side it follows from the Serre
spectral sequence and the fact that Γ has type F , so F∞). As Γ lies in IKP there is an element
0 6= x ∈ H∗(B2Z;Z) such that π∗(x) is torsion in H∗(B(Γ/〈g〉);Z), whence an appropriate multiple
of x gives a non-zero element in the kernel of π∗ since H∗(B2Z;Z) is torsion-free.

Proposition 6.1.9 remains valid integrally. More specifically, a Poincaré duality group Γ that lies
in IKP also lies in the obvious integral version of IVP. The argument only used that H∗(B2Z)
is a domain, which holds for both Z and Q coefficients.

On the other hand the argument of Proposition 6.1.3 uses that an element in H∗(B2C(Γ)) which
vanishes under the restriction to H∗(B2Z) for all embeddings Z→ C(Γ) has to be trivial. While
this is true with rational coefficients for an arbitrary abelian group of finite rank (which the centre
of a rational Poincaré duality group always is), if C(Γ) is not finitely generated then we cannot, for
example, exclude the possibility C(Γ) = Q, in which case H3(B2C(Γ);Z) = Ext(Q,Z) 6= 0, and
such classes vanish under any embedding Z→ C(Γ). However (because C(Γ) is torsion-free) under
the assumption that C(Γ) is finitely-generated we have H2n(B2C(Γ);Z) = Symn(Hom(C(Γ),Z))
and the argument of Proposition 6.1.3 goes through. �

The integral vanishing of all tautological classes for smooth bundles is not implied by this result,
as not every Pontryagin class lies in the image of the forgetful map H∗(BSTop;Z)→ H∗(BSO;Z).
However the work of Kirby–Siebenmann [KS77, p. 200] describes the fibre of the map BSO →
BSTop in terms of groups of homotopy spheres. Since these are finite, some multiple of every class
in H∗(BSO(d);Z) is pulled back from BSTop and in principle these multiples can be determined
in terms of the orders of the groups of homotopy spheres; we shall refrain from spelling this out. In
particular, Theorem 6.2.1 implies that there is a bound on the order of κc(M) ∈ H∗(BDiffh(M);Z)
independent of M .
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7. Examples and questions

In this section we will discuss explicit examples of manifolds whose tautological classes vanish
and in particular satisfy our conjecture. We also provide counterexamples to a few possible
extensions. For the reader’s convenience let us first recall our conjecture.

Conjecture. Let M be a closed, connected, oriented, aspherical manifold. If C(π1(M)) 6= 0 then

0 = κc ∈ H
∗(BT̃oph(M);R)

for all c ∈ H∗(BSTop×K(Z, d);R).

7.1. Examples. We want to start out with some rather abstract examples that satisfy our con-
jecture with R = Q.

7.1.1. Theorem. The following classes of groups satisfy Burghelea’s conjecture and are therefore
contained in IKP:

(i) Cocompact lattices in almost connected Lie groups,
(ii) Cat(0)-groups,
(iii) solvable groups, linear groups over Q,
(iv) groups of polynomial growth, hyperbolic groups, arithmetic groups, and
(v) elementary amenable groups.

In particular, if M is an oriented aspherical manifold with fundamental group in one of the above
classes then M satisfies our conjecture with Q-coefficients.

Proof. If the dimension of M is smaller than 4, then as explained Remark 5.1.3 the vanishing of
rational tautological classes is known anyhow. We first claim that all groups in the above list are
contained in the class LFJ fib

vc [ 12 ], so by Proposition 5.2.4 any such M satisfies the identity block

Borel conjecture with Z[ 12 ]-coefficients provided the dimension of M is at least 4. (In fact, with
the exception of elementary amenable groups, these groups are contained in the class FJ and so
by Proposition 5.1.1 any such M satisfy the identity block Borel conjecture with any coefficients.)
The groups not covered by Theorem 5.2.1 are groups of polynomial growth which are virtually
solvable (in fact virtually nilpotent) by a celebrated theorem of Gromov [Gro81] and hence lie in
FJ , and linear groups over Q which lie in FJ by [Rüp16].

Hence it suffices to verify that all above groups satisfy Burghelea’s conjecture. This has been
done in the following references: (i) is dealt with in [EM16, Theorem 4.27]. For (ii) see [EM16,
Corollary 4.8], (iii) is [Eck86, Theorems 2.3 & 2.4], (iv) is [Ji95, Theorem 4.3] and (v) is [EM16,
Theorem 4.20] as finite Hirsch length is equivalent to finite homological dimension by [BK15,
Theorem I.2]. �

Actually, in the case of Cat(0)-groups we do have an integral result.

7.1.2. Proposition. If M is an orientable aspherical manifold of dimension at least 4 whose
fundamental group is Cat(0), then M satisfies our conjecture with Z-coefficients.

Proof. Cat(0)-groups are semihyperbolic, see [BH99, Corollary 4.8] and hence have finitely gener-
ated centre, see [BH99, Proposition 4.15; (3)]. Thus Theorem 6.2.1 applies. �

7.1.3. Remark. Even though we consider Burghelea’s conjecture the bottleneck of our work, rather
than the Farrell–Jones conjectures, there do exist groups for which Burghelea’s conjecture is known
and the Farrell–Jones conjectures are not, e.g. linear groups over arbitrary fields of characteristic
0 [Eck86, Theorem 2.4].

Concretely, we obtain the following consequences.

7.1.4. Corollary. Our conjecture holds

(i) rationally for oriented aspherical manifolds of the form Γ\G/K, where G is a connected
Lie group, K is a maximal compact subgroup and Γ is a cocompact lattice in G, and

(ii) integrally for oriented aspherical manifolds admitting a metric of non-positive sectional
curvature.
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Let us remind the reader that we already obtained stronger results for tori in Corollary 5.3.6.

Proof. (i) is a direct consequence of Theorem 7.1.1. (ii) is a special case of Proposition 7.1.2 and
thus holds even integrally, because the fundamental group of such manifolds are Cat(0). We are
not aware of results about the finite generation of the centre of cocompact lattices in Lie groups,
hence (i) is only a rational result. �

As indicated all the groups appearing in Theorem 7.1.1 are contained in IKP . In addition to
these examples we have the following result.

7.1.5. Proposition. The class IKP has the following properties:

(i) It is closed under extensions, and
(ii) if a group Γ has a finite index subgroup K which lies in IKP , then Γ lies in IKP as well.

This purely group theoretic statement has the following geometric interpretation: Together
with Proposition 5.2.2 and Proposition 5.2.4 item (i) verifies our conjecture rationally for total
spaces of fibre bundles provided the fundamental groups of both base and fibre are in both IKP
and LFJ fib

vc [ 12 ]. So, for instance, by our previously established results, our conjecture holds for an
arbitrary torus bundle over a non-positively curved manifold, or vice versa, and iterates of those.
Similarly, part (ii) enables passage from the total space of a finite cover to the base.

Proof of Proposition 7.1.5. For (i), we consider a short exact sequence of groups

1 −→ K −→ Γ
q
−→ Q −→ 1

and assume that K and Q are contained in the class IKP . Let g ∈ Γ be a central element of

infinite order. We need to show that the map B(Γ/〈g〉)
ρ(g)
−−→ B2Z classifying the central extension

1 −→ Z
g
−→ Γ −→ Γ/〈g〉 −→ 1

has a non-trivial kernel in rational cohomology. We distinguish two cases, namely whether or not
the central element q(g) ∈ Q has infinite order. We begin with the case where q(g) is of infinite
order in Q. If this is the case we have a commutative diagram

B(Γ/〈g〉) //

��

B2Z

B(Q/〈q(g)〉) // B2Z.

Since Q lies in the class IKP it follows that the lower horizontal map has a non-trivial kernel
in rational cohomology. By the commutativity of the diagram the same follows for the upper
horizontal map.

Now let us assume that q(g) is of finite order, say n, and observe that this makes gn a central
element of K. Consider the short exact sequence of groups

1 −→ K/〈gn〉 −→ Γ/〈gn〉 −→ Γ/K −→ 1.

The central extension 1 → 〈gn〉 → K → K/〈gn〉 → 1 is pulled back from 1 → 〈gn〉 → Γ →
Γ/〈gn〉 → 1 along K/〈gn〉 → Γ/〈gn〉, so it is classified by the composition

τ : B(K/〈gn〉)
i
−→ B(Γ/〈gn〉)

ρ(gn)
−→ B2Z.

Since K ∈ IKP there is an element

0 6= x ∈ ker(τ∗ : H∗(B2Z;Q) −→ H∗(B(K/〈gn〉);Q)),

using which we define y := ρ(gn)∗(x) so that i∗(y) = 0. Thus, in the Serre spectral sequence for
this short exact sequence of groups, the class y has Serre filtration ≥ 1. Now Γ/K ∼= Q has finite
rational cohomological dimension, say d, but then yd+1 has Serre filtration ≥ d+ 1 and so is zero.
Thus we deduce that

0 6= xd+1 ∈ ker(ρ(gn)∗ : H∗(B2Z;Q) −→ H∗(B(Γ/〈gn〉);Q)).

To finish the proof of (ii) it hence suffices to verify the following
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Claim. If the map ρ(gn) has a non-trivial kernel on rational cohomology for some non-zero integer
n, then so does the map ρ(g).

Proof of Claim. We consider the sequence of subgroups 〈gn〉 ⊆ 〈g〉 ⊆ Γ and conclude that the
map

B(Γ/〈gn〉) −→ B(Γ/〈g〉)

is a rational equivalence as its fibre B(Z/n) is rationally contractible. From the commutative
diagram

B(Γ/〈gn〉) //

��

B2Z

·n

��
B(Γ/〈g〉) // B2Z

and the fact that the right vertical map induces an isomorphism in rational cohomology we con-
clude the claim. �

To obtain (ii), let K ⊆ Γ be a finite index subgroup with K ∈ IKP and g ∈ Γ a central element
of infinite order. Since K has finite index in Γ it follows that there exists an n such that gn lies in
K, and thus is a central element of infinite order in K. Therefore by assumption the composite

ρ(gn)∗ : H∗(B2Z;Q) −→ H∗(B(Γ/〈gn〉);Q) −→ H∗(B(K/〈gn〉);Q)

has non-trivial kernel. Now, the map BK → BΓ has finite, discrete homotopy fibres, so the second
map in the composite is injective. It thus follows that ρ(gn) has non-trivial kernel on rational
cohomology, so by the above (verified) claim, so does ρ(g). Hence Γ lies in IKP . �

7.1.6. Remark. Let M be an aspherical manifold of dimension at least 5 satisfying the block Borel
conjecture and Γ be its fundamental group. Suppose the conjecture is true rationally for M and
that Out(Γ) has finite rational cohomological dimension. Then it follows easily from the Serre
spectral sequence for the fibration

BT̃oph(M) −→ BT̃op(M) −→ BOut(Γ)

that the tautological classes in the rational cohomology of BT̃op(M) are nilpotent.
This is for instance the case if the fundamental group of M is nilpotent: Since nilpotent groups

are solvable, we know that our conjecture is satisfied. Moreover, a finitely generated nilpotent
group is polycyclic, hence by [BG06, Theorem 1.1] its outer automorphism group is arithmetic
and thus has finite rational cohomological dimension, see [Bor75].

We provide two more examples of manifolds satisfying our conjecture using Lemma 6.1.14.

7.1.7. Proposition. Let N be an oriented aspherical manifold and assume that π1(N) is a Farrell–
Jones group. Let e ∈ H2(N ;Z) be a torsion class, and let M be the total space of the principal
S1-bundle classified by e. Then our conjecture holds rationally for M .

Proof. We first prove that M satisfies the block Borel conjecture. For this we observe that M
is finitely covered by the trivial S1-bundle over N , as e is a torsion class. Thus π1(M) contains
π1(N)×Z as a finite index subgroup and hence is a Farrell–Jones group. To prove the proposition
we consider the Serre spectral sequence for the fibration

S1 −→M −→ N.

By inspection, the map H1(S1;Q)→ H1(M ;Q) is non-zero, since e is rationally zero. We deduce
the proposition from Lemma 6.1.14 using the centrality of the inclusion π1(S1)→ π1(M). �

7.1.8. Corollary. Let N be an closed, oriented, aspherical manifold such that π1(N) is a Farrell–
Jones group. Then our conjecture holds rationally for M = N × S1.
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Let us close this section by considering mapping tori. Let ϕ : M → M be a orientation pre-
serving homeomorphism of an oriented aspherical manifold M . Then ϕ determines an outer
automorphism ϕ∗ of π1(M). Picking a representing automorphism ϕ̂ : π1(M) → π1(M), there is
an isomorphism between the fundamental group of the mapping torus Mϕ, which is again oriented
and aspherical, and π1(M)⋊ϕ̂ Z. The centre of such a semi-direct product is readily computed to
be

{(g, n) | ϕ̂n = cg−1 , ϕ̂(g) = g}

and so using Lemma 6.1.14 we obtain:

7.1.9. Proposition. Let ϕ : M → M be an automorphism of an oriented, aspherical manifold
M , such that π1(M) is a Farrell–Jones group. Assume that the induced automorphism on π1(M)
admits a representative ϕ̂ such that ϕ̂n is conjugation by an element of π1(M) fixed by ϕ̂ for some
n > 0. Then our conjecture holds rationally for Mϕ.

To complete the proof note that the identity block Borel conjecture with Q-coefficients holds
for π1(Mϕ) ∼= π1(M) ⋊ϕ̂ Z by Proposition 5.2.2 and Proposition 5.2.4. The assumption is in
particular satisfied for a finite order automorphism with a fixed point, e.g. the identity, thereby
giving another proof that S1×M satisfies our conjecture rationally, whenever π1(M) is a Farrell–
Jones group. We leave it as an exercise to the reader to check that the condition given on ϕ is
actually independent of the representative ϕ̂ chosen.

Finally, let us again consider the manifolds constructed in [CWY13], that provide counterex-
amples to B(Γ/C(Γ)) being a Poincaré complex. While we do not know whether the fundamental
groups of these manifolds are Farrell–Jones groups, we still have:

7.1.10. Proposition. The aspherical manifolds constructed by Cappell–Weinberger–Yan just men-
tioned have fundamental groups in IKP .

Proof. There exist 2-fold covers of these manifolds which are of the form S1 × V , where V is an
aspherical manifold with centreless fundamental group, see [CWY13], essentially by construction.
The group π1(S1×V ) lies in the class IKP , because its centre is a direct factor. Proposition 7.1.5
part (ii) then yields the claim. �

Finally, we record another consequence of our vanishing results.

7.1.11. Proposition. Let B be a stably parallelisable manifold of dimension n > 0 and let M be an
oriented aspherical manifold whose fundamental group is a Farrell–Jones group and satisfies the
central part of Burghelea’s conjecture. Suppose π : E → B is an M -manifold bundle with trivial
fibre transport. Then all Pontryagin numbers of E vanish.

Proof. Since B is stably parallelisable, we find that the stable vertical tangent bundle T sv (π) is
isomorphic to the stable tangent bundle T s(E) of E. By our main theorem, we obtain that
0 = κc(π) ∈ Hn(B;Q), for any c ∈ Hn+d(BSTop;Q). Since π! : H

n+d(E;Q) → Hn(B;Q) is an
isomorphism (where d is the dimension of M), we deduce the proposition from

0 = κc(π) = π!(c(T
s
v (π))) = π!(c(T

s(E))).

�

7.2. Several open questions. We want to finish with some open problems that would be inter-
esting to address. The first question seems to be a known open problem:

1. Question. Let M be a closed, connected, aspherical manifold. Is the centre of its fundamental
group finitely generated?

Naturally, this is obvious for centreless, e.g. hyperbolic, groups, but it is also true for torsion-
free nilpotent groups, which (unless trivial themselves) always have non-trivial centre, see [Neo18,
Proposition 6.19]. Furthermore, as mentioned earlier, Cat(0)-groups have finitely generated centre.

2. Question. Are fundamental groups of aspherical manifolds always contained in CP?
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This is true for several classes of manifolds (e.g. those with nilpotent fundamental group, since
Γ/C(Γ) is then finitely generated, nilpotent and torsion-free (by [Rob96, 5.2.19]) and therefore
poly-Z by [Rob96, 5.2.20]), and would yield a general proof of the rational part of our conjecture.
The statement does not seem logically comparable to Burghelea’s conjecture, but could be easier
to prove.

A positive answer to the next question would provide a geometric reason for Γ ∈ IKP .

3. Question. Let M be an oriented, aspherical manifold with fundamental group Γ and let g ∈ Γ
be a central element. Is there a finite cover N → M such that g ∈ π1(N) and such that g is
realised by a principal S1-action on N?

Note that the passage to a finite cover really is necessary. The examples from [CWY13] are
aspherical manifolds M such that the quotient Γ/C(Γ) contains an element of order 2. This
question has a positive answer in the case of 3-manifolds, by the proof of the Seifert fiber space
conjecture [Gab92, CJ94].

4. Question. Do the tautological classes of a smooth, oriented aspherical manifold M vanish in
the cohomology of BDiffh(M) with arbitrary coefficients?

5. Question. Do the tautological classes vanish in the cohomology of BT̃op
+

(M) if M is oriented,
aspherical, and either odd dimensional or its fundamental group has non-trivial centre?

We expect the answer to both parts of the question to be no, but did not find a counterexample.

6. Question. Suppose M is an oriented aspherical manifold whose fundamental group has a non-
trivial centre. Is M nullbordant?

If M satisfies our conjecture rationally, then it follows that M is a torsion element in the
bordism ring. Notice that even if M is smooth and satisfies the integral version of our conjecture
we cannot yet deduce that M is nullbordant. Really, we are asking about Stiefel–Whitney numbers
of an aspherical manifold and how their triviality relies on the non-triviality of the centre of its
fundamental group.
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