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Since guidelines for choosing ‘most probable’ parameters in ground engineering design codes are vague, concerns
are raised regarding their definition, as well as the associated uncertainties. This paper introduces Bayesian inference
for a new rigorous approach to obtaining the estimates of the most probable parameters based on observations
collected during construction. Following the review of optimisation-based methods that can be used in back-analysis,
such as gradient descent and neural networks, a probabilistic model is developed using Clough and O’Rourke’s
method for retaining wall design. Sequential Bayesian inference is applied to a staged excavation project to examine
the applicability of the proposed approach and illustrate the process of back-analysis.
Notation
B width of the excavation
D observations
D observation point
E Young’s modulus of retaining wall
Es elastic modulus of the clay for undrained deformation
H height of the retaining wall
He excavation depth
havg average spacing of the struts
I moment of inertia of the wall section
LR load resistance ratio
k number of stages
Nc bearing capacity
rSu ratio of shear strength with depth
S system stiffness
Su undrained shear strength
Su0 shear strength at the top of soil layer
Suavg average undrained shear strength of the clay
Sub undrained shear strength below the excavation level
Suu undrained shear strength above the excavation level
W distance between excavation base and firm stratum
x variables
y response
gw unit weight of water
dmax maximum lateral ground movement
e random variable with standard normal distribution
Q unknown parameters
p unknown soil parameters
s standard deviation
e vector of known soil parameters

Introduction
Deep excavations for underground spaces or other infrastructure
have become common practice in many cities around the world in
the past few decades. However, excavation-induced movement is
still a major concern in most underground construction projects,
since it may cause significant displacements and rotations in
adjacent structures and hence lead to damage or even collapses.
Therefore, accurate predictions of lateral wall deflections and
surface settlements are critical in the design of excavation support
systems. Excessive conservatism due to uncertainties in
underground conditions and the assessment of soil properties
often results in over-predictions. The observational method (OM)
(Peck, 1969) can be applied in staged excavations to reduce
redundant construction phases to save materials, time and costs.

The selection of parameters to be used in design within the OM
has long been an issue of discussion, in particular when linked
with different interpretations of the process for practical
applications. Four approaches based on the timing of the decision
to adopt the OM and the level of conservatism are described by
Hardy et al. (2017). Most of them require the definition of ‘most
probable’ conditions for design. During construction, the best
estimate of future ground movements is also required to support
decisions on altering the construction sequence.

In the Construction Industry Research and Information
Association ground engineering design codes (Gaba et al., 2003;
Nicholson et al., 1999), the ground condition most likely to occur
in practice is represented by the most probable soil parameters.
The most probable set of parameters is defined in C185
(Observational Method in Ground Engineering) as the
probabilistic mean of all possible conditions (Nicholson et al.,
1999). Hardy et al. (2017: pp. 1996–1997) define the ‘most
probable value’ as the ‘arithmetical mean of the available data’.
However, C580 (Embedded Retaining Walls: Guidance for
Economic Design) also mentions that the most probable values
have a 50% probability of exceedance, which implies that the
most probable value is the median value of the distribution of the
parameters (Gaba et al., 2003). The two methods of choosing
most probable parameters presented in C185 and C580,
respectively, achieve the same result if the parameters follow the
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Gaussian distribution. However, this set of most probable
parameters does not necessarily predict the ground response
which is ‘most likely’ to occur in practice because the ground and
the system responses are usually non-linear (Houlsby and
Houlsby, 2013; Murphy, 2012).

In the current literature and practice, most probable parameters are
generally obtained through back-analysis as a calibration process
to produce the best match between predictions and available
observations of ground movements. These parameters are also
expected to produce the most accurate prediction of the ground
movement in future excavation stages. However, no standardised
guidance is available on what constitutes the best match or how to
choose the most probable parameters.

In this paper, the authors apply the Bayesian method to explore
the definition of most probable parameters and demonstrate the
process of obtaining those parameters through a rigorous process.
The authors start by introducing and discussing some techniques
used in back-analysis.

Back-analysis in the OM
Previous studies (Yeow and Feltham, 2008; Yeow et al., 2014)
demonstrated that back-analysis can be applied successfully in the
OM. However, the set of parameters that produces the best match
with the observations is still processed manually relying solely on
engineering experience and the operator’s individual judgement,
which might lead to biased results (Houlsby and Houlsby, 2013).

In a more quantitative way, back-analysis is often formalised as
an optimisation problem, defined as a minimisation process of a
given loss function, such as residual sum of squares. There are
two categories of optimisation methods: the classical methods,
such as gradient descent, and those derived from evolutionary
computation, such as genetic algorithms (GAs) and neural
network (NNs). Since numerical methods, such as finite elements,
have become powerful tools for engineering design, they are also
widely integrated into the optimisation approaches in back-
analysis to study the relationship between input soil parameters
and the soil movement.

Classical optimisation methods
Classical optimisation theories, such as the gradient descent
method, have been successfully applied to excavation projects. Ou
and Tang (1994) used it to determine two unknown parameters
in the pseudo-elastic hyperbolic Duncan–Chang model, by
minimising the sum of the square of differences between observed
and predicted values of the horizontal wall movement. The
convergence properties and the stability of the algorithm were
verified through a synthetic case and a case history. Calvello and
Finno (2004) used a modified gradient descent method to update
four soil parameters based on the stress–strain curves obtained
from laboratory tests and inclinometer readings. Finno and Calvello
(2005) applied a gradient-based inverse analysis procedure to
update predictions of lateral deformations observed during an
 [ UNIVERSITY OF CAMBRIDGE] on [20/09/18]. Published with permission 
excavation in Chicago glacial clays. The optimisation was based on
the readings obtained from inclinometers at every stage. The
soil–structure interaction was described by the hardening-soil
model (Schanz et al., 1999), and one of its six parameters, the
reference value for the primary loading stiffness, was optimised.
The predictions for later stages based on the optimised parameter
using all observations were largely improved with an accuracy of
3 mm (12·5% of the maximum displacement) for the final stage.

Genetic algorithms
The GA, inspired by the biological processes of natural selection
and survival of the fittest, is one of the most popular choices in
back-analysis. It is able to solve complex optimisation problems
with large, discrete and non-linear models. GA incorporates
implicit parallelism, which considers many points at the same
time during the search process; hence, it is robust and highly
efficient (Solomatine et al., 2009). For geotechnical practice, GA
was found particularly suitable for identifying soil parameters
when the underlying norm of the error function is complex
(Levasseur et al., 2009). Furthermore, Pichler et al. (2003) noted
that the evolution of the population process could provide
information about both parameter sensitivity and the existence of
mathematical correlations between parameters.

Levasseur et al. (2008) used a GA to estimate three parameters
(shear modulus, friction angle and initial lateral earth pressure at
rest) controlling the horizontal displacements of a sheet pile wall.
The optimisation procedure converged to a set of reasonable
solutions, but not necessarily a unique one. Further
considerations, such as an assessment by geotechnical experts,
would be necessary to make a reasonable choice of parameter
values from the set of solutions.

Rechea et al. (2008) optimised the reference value for the
stiffness of two soil layers by using both gradient descent and GA
on synthetic data and horizontal deflection measurements from
a published case history (Finno and Calvello 2005). They
concluded that the parameters obtained by GA were close to the
global optimum only when the search space was set as one-fourth
to four times the actual value of the parameters. The significance
of this conclusion is limited to the particulars of this case history
and cannot be generalised to other cases. In addition, the authors
pointed out that GA is more time consuming than the gradient
descent method.

Neural networks
As an alternative approach, artificial neural networks (ANNs)
consist of simple elements called neurons that are able to receive
input, change their internal state and produce an output, according
to the input and a predefined activation function. The network,
constructed by connecting the output of certain neurons to the
input of other neurons, forms a directed and weighted graph,
where the neurons are the nodes and the connections between the
neurons are directed edges with weights. The weights and the
activation functions are updated by a process called learning,
131
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which is governed by rules (Harrington, 2012). The ANN method
has been adopted in back-analysis to model the complex relations
between soil parameters and ground response. The conventional
predefined constitutive model can be replaced by the ANN
material model. The parameters in the ANN model are optimised
to predict future field measurements.

A self-learning approach called SelfSim was developed by Hashash
et al. (2003, 2011, 2010, 2006). They introduced the concept of
‘training’, in which the NN material model is trained with available
stress–strain data and the unknown parameters in the model are
updated. Moreover, this model can be trained continuously when
there are new input–output data available. The soil model obtained
from the training progress can be used in the forward prediction of
future excavations or later excavation stages. This approach was
also applied to synthetic cases modelled by finite-element analysis
(Hashash et al., 2003), and many successful applications were
produced in both two-dimensional and three-dimensional case
histories (Finno and Calvello, 2005; Finno and Roboski, 2005;
Hashash et al., 2006, 2010). The accuracy of prediction for lateral
ground movement is about 20%. However, the ANN material
model can only be narrowly applied to the same case and
circumstances in which it was derived and cannot be used for
different soil layers with variable properties.

Limitations of optimisation-based back-analysis
When the optimisation techniques described in previous sections
are applied to the back-analysis using field measurements, many
concerns are raised in regard to efficiency, as well as accuracy.
For example, the GA method usually requires long computation
times. Moreover, these optimisation-based methods are able to
analyse only a relatively small number of parameters (Miranda
et al., 2011, 2015).

The ANN approach, in particular, is a black-box model in which
the functional form of the relationships between model variables
is unknown and needs to be estimated using data. The parameters
in the ANN model represent only the connection between the
network nodes as captured by weights. Therefore, the ANN
model is able only to describe the end-to-end relationship and
provide the output directly, but does not unfold any physical
deduction processes. Hence, ANNs are not interpretable and may
not be assessable by engineers.

Because the ANN model is effectively shaped by data, a large
amount of data is required for training the model, but can be
difficult to gather.

Optimisation methods may provide only a local optimum, which is
not necessarily the optimum solution of the given problem. For
example, the genetic mechanism is able to produce a set of
parameters to localise the optimum in a given search space;
however, there is no way to determine whether the set of obtained
parameters represents the global minimum (Levasseur et al., 2009).
In this case, a possible strategy to validate the result is to carry out
132
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several runs of the optimisation process with different initial
guesses, potentially converging on different solutions, and compare
outputs (Finno and Calvello, 2005). Therefore, the obtained optimal
solution may depend heavily on the initialisation of the parameters.

Over-fitting is another potential issue with these methods. Since
they assess each excavation stage independently and require a
large number of measurements, the result of each computation
may become overly constrained, particularly in the first
excavation stages when the movement is very small.

While some of these drawbacks can be overcome by careful
application, the optimisation methods mentioned previously are
all deterministic, simply neglecting all uncertainties and lacking
the ability to provide any measures of confidence in the accuracy
of the outputs they produce (Phoon et al., 2003). Therefore, a
significant limitation on the use of these methods is imposed
by the nature of the problems that the methods are employed
to address in geotechnical engineering – that is, soil is a
heterogeneous material with inherently random characteristics.
The uncertainty associated with soil parameters is further
increased by the limited scope of ground investigation
programmes and the variable ability of constitutive models to
capture actual response, as well as any simplifications introduced
in the numerical analyses. In addition, measurement error is
another source of uncertainty that needs to be accounted for. In
this context, adopting a probabilistic framework allows
quantifying uncertainties in a rigorous manner.

Bayesian inference for back-analysis with field
observations

Bayesian definition of the most probable’ parameters
As described in previous sections, optimisation methods can
effectively estimate model parameters by comparing computed
and measured ground movements. These methods are
deterministic and completely disregard the uncertainties inherent
in natural processes. Therefore, they are not able to capture the
distribution of the parameters and their ‘most likely’ values in a
probabilistic setting. To represent how likely the parameters Q are
to have generated the existing data set, the probability of event
Q happening given the observation D is described with the
expression p(Q |D). Therefore, back-analysis aims to find the set
of parameters Q most likely to generate the existing data set D,
which is equivalent to maximising the probability p(Q |D). This
approach is called maximum a posteriori (MAP) estimation. The
MAP estimate is also equivalent to the mode of the probability
distribution p(Q |D), and this set of values is indeed the most
probable set of parameters.

The probability p(Q |D) can be regarded as the posterior estimate
in Bayes’ theorem and can be expressed as

p Q jDð Þ ¼ p DjQð Þp Qð Þ
p Dð Þ1.
sion by the ICE under the CC-BY license 
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In the Bayesian (or epistemological) perspective, probability can
be interpreted as a measure of the degree of belief. Thus, the
whole process can be viewed as the evolution of the degree of
belief in the parameters Q, which is p(Q ) before seeing the
evidence, and p(Q |D) after accounting for the evidence,
observations D.

The likelihood function p(D|Q ) expresses how probable the
observed data are, given different parameters Q. p(Q ) is called
prior distribution and represents the knowledge of which
parameters are likely to generate the data before observations are
obtained. The prior distribution p(Q ) is defined over the space of
possible parameters and can be any type of distribution.

The denominator p(D) is called the model evidence and ensures
that the posterior distribution is a valid probability density
function

p Dð Þ¼E p DjQð Þp Qð ÞdQ2.

In general, integrating over all possible parameters to compute
this integral can be hard, particularly when the model is non-
linear (Murphy, 2012). Numerical techniques, therefore, need to
be employed in all practical cases. A sampling method, such as
Markov chain Monte Carlo (MCMC), can efficiently estimate
such an integral (Murphy, 2012).

MAP estimation
If one is interested only in the most probable values of the
parameters rather than the probability distribution of the
parameters, the posterior may be maximised as a function of Q

bQ MAP ¼ argmax p Q jDð Þ: Qf g
¼ argmax p DjQð Þp Qð Þ: Qf g3.

If the posterior distribution of the parameters is known, then the
MAP estimate is the mode of the posterior distribution, by
definition. When computing the whole distribution is too costly,
the MAP estimator, defined in Equation 4, can be used to
compute a point estimate.

Taking the logarithm of the estimator, it is observed that

bQ MAP ¼ argmax log p Q jDð Þ: Qf g
¼ argmax log p DjQð Þp Qð Þ½ �: Qf g4.

There is a trade-off between likelihood and prior in shaping the
posterior. In the process, the likelihood becomes more dominant
as more data are obtained. When the number of observations
 [ UNIVERSITY OF CAMBRIDGE] on [20/09/18]. Published with permission 
becomes sufficiently large, the likelihood will overwhelm the
prior, which will then have a diminished impact on the posterior.
In this case, the MAP estimate will approach the maximum
likelihood estimate. On the other hand, the MAP estimate is very
desirable when the amount of data is small and particularly when
it is of the same magnitude as the number of parameters.

Bayesian back-analysis in current applications
There are many successful applications of Bayesian inference in
geotechnical engineering – for example, pile capacity analysis
(Najjar and Gilbert, 2009), predictions for the depth of scour hole
and its uncertainty assessment (Bolduc et al., 2008; Briaud et al.,
2014), slope stability studies (Zhang and Goh, 2013) and
parameter characterisation based on laboratory tests (Houlsby and
Houlsby, 2013; Jung et al., 2009). In this paper, only the
application of Bayesian inference to the back-analysis of staged
excavations is addressed.

Back-analysis of supported excavations case histories using the
Bayesian method was implemented with a regression model,
known as the Kung–Juang–Hsiao–Hashash (KJHH) model,
consisting of three multivariate polynomial equations for predicting
the surface settlement profile, the maximum ground settlement and
the maximum wall deflection (Hsiao et al., 2008; Kung et al.,
2007). The power and coefficients of the functions were derived
from synthetic finite-element analyses of braced excavations on a
flat ground surface in soft to medium stiff clays. The KJHH model
used the only properties of the softest soil and the supporting
structures to predict wall and ground settlements. The predictions
were improved stage by stage through updating of the bias factor
embedded in the prediction model. The Bayesian method provided
an approach for back-analysis, yielding useful results even with
limited observations and simplified models.

Wang et al. (2012) also adopted the KJHH model and updated
two parameters, Su=s 0

v and Ei=s 0
v (the ratio of shear strength over

vertical effective stress and the ratio of initial Young’s modulus
over vertical effective stress, respectively) based on the maximum
horizontal wall deflections. The authors validated this approach
with centrifuge simulations and showed that the accuracy of the
maximum settlement prediction can be improved and the model
uncertainty reduced with Bayesian updating. They applied the
same procedure to a case history, the Taipei National Enterprise
Centre (TNEC), which is a seven-stage excavation in soft to
medium clay (Wang et al., 2013). The soil parameters were
updated with the observations of the maximum wall deflection
measured at a stage in the excavation and then used to refine the
predicted wall response in subsequent excavation stages. The
potential for building damage in the final excavation stage was
assessed by calculating the damage potential index based on the
angular distortion and lateral strain using empirical equations.

Hsein Juang et al. (2013) extended the work of Wang et al. (2012)
on the TNEC case history by adding the Metropolis–Hastings
algorithm-based MCMC method to the implementation. Different
133
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prior distributions of the unknown parameters were tested to assess
their impact on the predictions. The results showed that the prior
had a significant impact on the posterior distribution, particularly
when there was only one measurement point.

Qi and Zhou (2017) recognised that the KJHH model is applicable
only to cases involving soft to medium clays. They developed a
regression model to describe this subset of problems by using a
response surface method (Box and Draper, 1987) based on finite-
element modelling of ground movement at 49 locations of different
wall sections in 11 case histories. The model describes the relations
between 17 parameters (cohesion, friction angle and elastic
modulus for six soil types from soft to stiff) and the maximum wall
deflections. Since only one measurement of wall deflection is
available at each stage, Bayesian inference was used with the
regression model to update three parameters at a time. The other 14
parameters remained constant as the values taken from laboratory
tests. They applied this approach to a four-stage excavation case in
Hangzhou, China. The results showed the prediction of the final
stage improved after each excavation stage.

Comparing with the optimisation methods in the section headed
‘Back-analysis in the OM’, the Bayesian approach is shown to be
superior to other methods for back-analysis in many aspects.
(a) The uncertainty in the soil parameters can be adequately
considered. The updated parameters and the predictions are
reported as distributions. This can be used for obtaining further
quantities of interest, for example, to evaluate the reliability of the
system by constructing a limit state function related to the
updated parameters. (b) The Bayesian method can logically
incorporate other sources of information, such as prior knowledge
and expert judgement. Multiple parameters can be updated with
only one observation. (c) Sampling methods, such as MCMC, are
able to find the global optimum of the solution. (d) The physical
model is distinct from the algorithm used to update the
parameters, and the explicit meaning behind those parameters
allows assessment of their validity. In addition, the choice of
MCMC algorithm makes no difference to the results of the
process, although the rate of convergence and the computational
time required might be affected. Information related to the
deterministic predictive function, such as values for soil
properties, can be secured at each stage and transferred to the next
relevant case history as prior knowledge irrespective of the
MCMC algorithm used for the modelling.

Illustration case using Bayesian inference
This section focuses on how to apply the probabilistic model and
Bayesian inference in a case history to estimate soil properties
based on the observation of wall deformations. For illustrating
purposes, an empirical geotechnical design method (Clough and
O’Rourke, 1990) is applied as the prediction model. The main
advantages of using a simple empirical method as the
deterministic function are that (a) the relation between data and
parameters of interest is direct and the likelihood and posterior
can be formulated explicitly; (b) the computational cost is low;
134
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and (c) the number of unknown parameters that needs to be
estimated is low.

Clough and O’Rourke method
Clough and O’Rourke (1990) estimated the movement caused by
excavations in clay on the basis of plasticity principles and the factor
of safety against base failure. As shown in Figure 1, the quantity of
interest – that is, the maximum lateral movement (dmax), normalised
by the excavation depth (He) – is plotted against the system stiffness
(S) for the various values of load resistance ratio (LR) against basal
heave. The system stiffness is defined as S ¼ EI=gwh4avg, where E
denotes the Young’s modulus of the wall, I is the moment of inertia
of the wall section, gw is the unit weight of water and havg is the
average vertical spacing of the struts.

The load resistance ratio is defined according to Terzaghi (1943), as

LR ¼ 1

H

NcSub
g − Suu=D5a.

for a wide excavation with width larger than (2)1/2w, where w is
distance between the excavation base and the firm stratum.
Otherwise, it is calculated as

LR ¼ 1

H

NcSub
g − 2=

ffiffiffi
2

p� �
Suu=Bð Þ5b.

Sub and Suu are used as the undrained shear strength below and
above the excavation level, respectively, and B denotes the width
Sheet pile walls
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Figure 1. Chart for predicting wall movements. Republished with
permission of American Society of Civil Engineers, from Clough
and O’Rourke (1990) in Design and Performance of Earth
Retaining Structures: Proceedings of a Conference; permission
conveyed through Copyright Clearance Center, Inc.
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of the excavation, g is the unit weight of the soil and He is the
excavation depth. Bearing capacity, Nc, is defined as

Nc ¼
4

3
log

Es

Suavg

 !
þ 1

" #
þ 1

6.

where Es is the elastic modulus of the clay for undrained
deformation and Suavg is the average undrained shear strength of
the clay.

Parameterising of Clough and O’Rourke design chart
The chart in Figure 1, often used in conventional design, was
empirically derived. The curves in the chart can be thought of as
the contours of a surface, which represents the interdependency of
the normalised deflection, the system stiffness and the factor of
safety against heave. In order to produce an estimate of deflection
for any combination and value of the variables, a continuous
description of such dependency is needed to be constructed and to
be integrated into the Bayesian inference approach.

Following the argument developed by Gardoni et al. (2009),
Bayesian regression and Bayesian variable selection are used to
develop an analytical formulation which describes the relation
between dmax/He, S and LR. The logarithmic variance stabilising
transformation, introduced by Box and Cox (1964), is adopted to
 [ UNIVERSITY OF CAMBRIDGE] on [20/09/18]. Published with permission 
change the problem variables into y = ln (dmax/He), x1 = ln (S) and
x2 = ln (LR), respectively. Data used in the regression analysis
were generated by discretising the curves in the Clough and
O’Rourke design chart (30 data points from each curve).

In view of the log transformation, the regression model with all
candidate explanatory variables can be expressed as follows

y ¼ q1 þ q2x1 þ q3x2 þ q4x
2
1 þ q5x1x2 þ q6x

2
2

þ q7x
3
1 þ q8x

2
1x2 þ q9x1x

2
2 þ q10x

3
2 þ ds7.

In which p = (q1,q2,…,q10) is the vector of the unknown coefficients
of the variables, s is the model standard deviation and ɛ is a vector
of Gaussian random variables with zero mean and unit variance. A
regression analysis was conducted first by using all variables. Table 1
shows the posterior statistics of the estimated coefficients and their
corresponding coefficient of variation (COV).

A stepwise deletion process, Bayesian variable selection, was
applied to remove the least informative variables and simplify the
model (Gardoni et al., 2002; O’Hara et al., 2009). During this
process, the variables with the largest variance were iteratively
eliminated one by one until the model error significantly increased
beyond the required model accuracy. Following this strategy, the
variable term ln (S)2 was deleted first since it has the largest COV
(= 1·682) as shown in Table 2. After each elimination, the authors
assessed the reduced model with Bayesian regression recursively
and found that the model error grew significantly higher after the
fifth term was deleted. Therefore, only the first four terms were
removed, and the remaining ones were kept as needed
explanatory variables. Figure 2 summarises this stepwise deletion
process, showing the COV of the candidate variables (solid blue
dots corresponding to the left axis) and the posterior mean of
the model error (open black squares corresponding to the right
axis) at each step. Table 2 lists the posterior statistics of the
selected parameters.

Based on Table 2, the formulation used to calculate the maximum
deflection from the design chart in Clough and O’Rourke (1990) is
Table 1. Posterior statistics of the coefficients in the first phase
p

q1
 q2
 q3
 q4
 q5
 q6
Mean
 3·509
 −0·817
 −5·150
 0·021
 0·668
 2·101

Variance
 0·346
 0·191
 0·434
 0·035
 0·122
 0·372

COV
 0·099
 0·233
 0·084
 1·682
 0·182
 0·177
q7
 q8
 q9
 q10
 r
Mean
 0·003
 −0·043
 −0·032
 −0·702
 0·084

Variance
 0·002
 0·009
 0·038
 0·187
 0·006

COV
 0·740
 0·216
 1·202
 0·266
 0·066
Table 2. Posterior statistics of parameters of selected model
p1
 p2
 p3
b

p5
y the ICE under t
p6
he CC-BY licens
p7
e 
p8
 r
Mean
 3·206
 −0·673
 −4·393
 0·545
 0·860
 0·004
 −0·035
 0·084

Standard deviation
 0·120
 0·033
 0·263
 0·092
 0·062
 0·000
 0·008
 0·006
Correlation coefficient: × 10−2
q2
 −0·335

q3
 −2·191
 0·602

q5
 0·730
 −0·207
 −2·044

q6
 0·203
 −0·051
 −0·576
 0·070

q7
 0·003
 −0·001
 −0·006
 0·002
 0·000

q8
 −0·063
 0·018
 0·180
 −0·070
 −0·005
 0·000

s
 0·007
 −0·002
 −0·021
 0·008
 0·000
 0·000
 −0·001
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ln
dmax

He

� �
¼ 3�326 − 0�673  ln S − 4�393  ln LR

þ 0�545  ln S  ln LR þ 0�860 ln LRð Þ2

þ 0�004 ln Sð Þ3 − 0�035 ln Sð Þ2  ln LR8.

The contours derived from Equation 8 are plotted against the
original design chart by Clough and O’Rourke (1990) in Figure 3.

Probabilistic model for Bayesian inference
As discussed in the section headed ‘Bayesian inference for back-
analysis with field observations’, the definition of ‘most probable’
is proposed here in a probabilistic perspective, in which the soil
parameters are treated as random variables. Before the Bayes
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theorem (Equation 1) is used to obtain the posterior distribution of
parameters and MAP estimates, the likelihood (a probability
function of p) needs to be constructed. A probabilistic and
unbiased predictive model is developed following Gardoni et al.
(2002) to describe the relations between lateral ground movement
and the soil parameters and to consider uncertainties in both
parameters and measurements. The probabilistic model is
defined as

D Q , e k� � ¼ bf p , e k� � þ sek9.

bf ðp , e kÞ is the deterministic function predicting the response of
the system, which in this application is taken as the Clough and
O’Rourke method, expressed in Equation 2. p denotes the vector
of unknown soil parameters, e k is the vector of known soil
parameters, e k is a random variable with standard normal
distribution and s 2 is the variance for the given deterministic
function.

Based on the probabilistic model, when the measurement of the
maximum deflection at stage k, for k = 1,…,m, Dk, is available,
the likelihood function can be constructed following a
transformation of the probability space from ɛk to D (Tang and
COV of θ

C
O

V
 o

f 
θ

2·0

1·8

1·6

1·4

1·2

1·0

0·8

0·6

0·4

0·2

0
1 2 3

Deletion step

0·20

0·18

0·16

0·14

0·12

0·10

0·08

0·06

0·04

0·02

0
4 5

Deleted θ
Retained θ

Posterior mean of σ

Po
st

er
io

r 
m

ea
n 

of
 σ

Figure 2. Bayesian variable selection process
1 m thick slurry walls
h = 3·5 m

h

Load resistance ratio
against basal heave

10

3·0 Sheet pile walls
h = 3·5 m

N
or

m
al

is
ed

 m
ax

im
um

 la
te

ra
l w

al
l m

ov
em

en
t

System stiffness

2·5

2·0

1·5

1·0

0·5

0
30 50 70 100 300 500 7001000 3000

0·9
1·0

1·1

1·4

2·0
3·0

In
cr

ea
sin

g 
sy

ste
m

 st
ab

ilit
y

Figure 3. Analytical representation of Clough and O’Rourke
(1990) design chart
Pop-out

Inclinomer
Optical survey point
Remote access tiltmeter
Strain gauge location

el. +5·5 m ECD

el. +3·7 m ECD 

P-8

I-33

12

45
6

7

I-2I-1

Sh
er

id
an

 R
oa

d

el. +5·5 m

el. +5·0 m ECD

I-5

ECD

N

Scale

0 m 10 m

Alley

External bearing wall tiltmeter

First interior column tiltmeter
Spread
footings

P-7
Existing
steam vault

P-6

P-4

P-5

P-3

Figure 4. Excavation plan and instrument locations. Republished
with permission of American Society of Civil Engineers, from
Blackburn and Finno (2007) Journal of Geotechnical and
Geoenvironmental Engineering 133(11); permission conveyed
through Copyright Clearance Center, Inc. ECD, Evanston City
Datum
sion by the ICE under the CC-BY license 



Geotechnical Research
Volume 5 Issue GR3

A Bayesian definition of ‘most probable’
parameters
Jin, Biscontin and Gardoni

Downloaded by
Ang, 2007). The resulting likelihood function is in the form of a
multivariate normal distribution as shown in the equation

p Dk jQ� �
∝ 2ps 2� �−1=2

  exp −
1

2s2
Dk − f p , e k� �� �2	 


10.

Then, the Bayes theorem expressed in Equation 1 can be applied
to obtain the posterior distribution of the unknown soil parameters
p. For example, the posterior at stage 1 is

p Q jD1� �
∝ p D1jQ� �

p Qð Þ k ¼ 111.
 [ UNIVERSITY OF CAMBRIDGE] on [20/09/18]. Published with permission 
This process can be repeated at each stage when a new
observation becomes available, in a sequential use of Bayesian
inference. The posterior obtained in the latest stage contains all
the knowledge learnt throughout the process and brings all the
information, subjective and objective, as a prior into the next
stage. The posterior of the unknown parameters at stage k is

p Q jD1,…,Dk� �
∝ p Dk jQ� �

p Q jD1,…,Dk−1� �
 

k ¼ 2,…,m
12.

The collection of all samples drawn from p(Q |D1,…,Dk) is used
to approximate the posterior density and to compute the quantiles,
the moments and the other statistics of interest. The mode of the
posterior distribution which represents the most probable set of
the unknown parameters can also be obtained.

The predictive estimate of maximum deflection eD for a later
stage, stage k + i, can be computed by

eD e kþi� � ¼ ED Q , e kþi� �
p Q jD1,…,Dk� �

dQ13.

Ford Engineering Design Center project description and
site conditions
The Ford Engineering Design Center (FEDC) excavation project
is used to illustrate the Bayesian inference process described in
the previous sections. The project is located on the Northwestern
University campus in Evanston, Illinois, and consists of a 44 m ×
Table 3. Engineering properties of soil stratigraphy (Blackburn and
Finno, 2007)
Layer

Elevation: m

ECD

Engineering properties

(from CPT testing)
Sandy fill
 5·2–4·2
 f0 = 44–48°

Medium silty sand
 4·2–2
 f0 = 42–44°

Silty fine to
medium sand
2–0
 f0 = 30–38°
Blodgett stratum,
soft clay
−0·9 to −4·9
 Su = 30–120 kPa
Deerfield stratum,
medium clay
−4·9 to −13·1
 Su = 6–127 kPa
Park Ridge stratum,
stiff silty clay
−13·1 to −16·8
 Su = 60–251 kPa
Hardpan
 −16·8 to −20·7
 Su > 100 kPa
ECD, Evanston City Datum; CPT, cone penetration test
Undrained strength: kPa
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Clay crust

Blodgett stratum
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37 m internally braced excavation with uneven initial elevations
on adjacent sides. Figure 4 shows a plan view of the site,
including initial site elevations, dimensions of the excavation,
support system geometry and layout of the instrumentation. For a
more detailed description of this project, see the paper by
Blackburn and Finno (2007).

Soil properties determined through field testing are presented in
Table 3 and Figure 5, showing large variations due to the scatter
in the data.

The construction sequence is summarised in Table 4. The
excavation reached a final elevation of −3·8 m from Evanston
City Datum (ECD), which is in the Blodgett stratum.

Inclinometer-2 (I-2) was chosen to be the observation data in this
analysis because it had the maximum deflection and was located
in the middle of the plane surface of the north wall, where the
influence of the corners was minimal. The deflection measured by
I-2 (reset after wall installation) is shown in Figure 6. The
maximum cumulative deflection values from stage 1 to stage 3 are
2·5, 5 and 14 mm.

Bayesian inference with Clough and O’Rourke method
In this section, the authors plan to infer the shear strength Su
based on the observations obtained in the field during
construction. The observations are the maximum deflections at
stage 2 and stage 3, which are 5 and 14 mm. The model is
updated sequentially after stage 1, because the Clough and
O’Rourke method is not applicable to the cantilever stage. Based
on the posterior of Su obtained at stage 2, the model will predict
the maximum deflection at stage 3. To evaluate the posterior
distribution of the unknown parameters, the delayed rejection
adaptive Metropolis–Hasting algorithm (Haario et al., 2006), a
variant of the MCMC method, was employed.

The function (Equation 8) developed for the Clough and
O’Rourke method will be applied as the deterministic function to
compute the estimate bf ðp , e kÞ in Equation 9. Two parameters are
used to describe Su: the shear strength at the top of soil layer
Su0, and the gradient rSu of Su with depth. The undrained
shear strength below the excavation level is Sub ¼ Su0 þ
ð1=2ÞðHe þ HÞrSu ; the undrained shear strength above the
excavation level is Suu ¼ Su0 þ ð1=2ÞHerSu ; and the average shear
strength is Suavg ¼ Su0 þ ð1=2ÞHrSu , where H is the height of the
retaining wall.
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In this application, the unknown soil parameters are p ¼ ðSu0, rSuÞ
and the known parameters are e = (E, I, gw, havg, B, g, He, Eu),
summarised in Table 5 with values taken from Bryson and Zapata-
Medina (2012) and Finno et al. (2007).

Prior and posterior distributions of parameters
The mean of the prior distribution was selected according to the
approximate value by Blackburn and Finno (2007), and the range
of the parameters was set as the widest variation from laboratory
Table 4. Major construction stages for the FEDC case history
Excavation stage
 Activity
0
 Potholing and sheet pile installation

1
 Excavate to +0·9 m ECD and install/prestress

first level of support at +1·5 m ECD

2
 Excavate to −1·5 m ECD and install/prestress

first level of support at −1·0 m ECD

3
 Excavate to −3·8 m ECD
Displacement: mm

200

0

5
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Tech building

Fill/sand/silt

Clay crust
Blodgett – soft

clay
Su ≈ 30–35 kPa

Su ≈ 38–57 kPa

Depth

Hardpan – stiff
clay, sand,

gravel, glacial
till

Park Ridge –
stiff, silty clay
with gravel
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medium clay
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Figure 6. Lateral soil movements observed at I-2, reset after wall
installation. Republished with permission of American Society of
Civil Engineers, from Blackburn and Finno (2007) Journal of
Geotechnical and Geoenvironmental Engineering 133(11);
permission conveyed through Copyright Clearance Center, Inc.
Table 5. Summary of parameters (Blackburn and Finno, 2007)
si
Soil properties
on by the ICE under t
Unit weight of soil gs = 19 kN/m3

Average soil stiffness Eu = 3789 kPa
Unit weight of water gw = 9·78 kN/ m3
Structural
properties
Width of the excavation B = 36·8 m
Length of the wall H = 14·8m
Stiffness of retaining wall EI = 58 000 kN m2/m
Vertical strut spacing for stage 2 havg-stage2 =
1·5 m

Vertical strut spacing for stage 3 havg-stage3 =
2·65m
Prior knowledge
 Shear strength at the top of soil layer
Su0 ≈ N (40,16), with the range [10,120]
Gradient of shear strength along depth
rSu ≈ Nð1, 0�4Þ, with the range [0,10]
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testing. A COV of 0·4 was assigned to the prior, which means
there is moderate confidence in the mean value.

The posterior distribution after each stage is plotted in Figure 7,
and its mean, variance and COV are shown in Table 6. The
variance of the posterior decreases at each stage, implying that
engaging observations reduces the uncertainties in the parameters.
The designer’s confidence in the posterior parameters should also
increase after each stage as the values of COV decrease. The
reduction in the variance is more significant for Su0 than for rSu ,
indicating that the former is a more sensitive parameter in this
model than the latter. The modes of the posterior distributions of
Su0 and rSu after the final stage are 47·904 kPa and 1·453 kPa/m,
which then become the most probable values of the unknown
parameters. Given the these results, the most probable value of
average shear strength for the Blodgett stratum is 52·1 kPa and
62·3 kPa for the Deerfield stratum, which are higher than the
average value of shear strength derived from field testing (as
shown in Figure 5). This result shows that the most probable
values produced by Bayesian inference are less conservative than
those estimated from in situ tests. These most probable values
could then be used as a starting point for design of another project
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Table 6. Posterior statistics
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in similar soil conditions and construction sequence. Furthermore,
the posterior distribution can also be used to calculate the
probability of failure of the design.

A credible interval is a range in which an unknown parameter
value falls with a certain probability, such as 85%. The purple-
shaded area plotted in Figure 8 is the 85% credible interval of the
posterior shear strength at stage 3, and the blue-shaded area is the
95% interval. The green- and yellow-shaded areas are the 85 and
95% intervals of the initial prior. It can be seen that the range of
the shear strength has significantly narrowed after taking into
consideration the observations obtained during construction.

Prediction of deformation
The estimate of deformation for later stages, obtained based on the
initial prior and the posterior after stage 2, is shown in Figure 9.
The prediction for stage 3 improves after the observations from
stage 2 are incorporated through Bayesian updating: the error in
the prediction based on the initial prior and the posterior after
stage 2 is reduced from 4·30 to 2·00 mm (Table 7). Since the prior
has a significant impact on the posterior distribution when the
number of observation is very limited, the fit at stage 2 is still
mostly controlled by the prior. The impact of a poorly chosen prior
gradually fades away when more observations are obtained so the
goodness of fit at stage 3 is improved compared to that at stage 2.
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Conclusions
Since the most probable condition is defined vaguely in design
codes and guidelines, it is inevitable to resort to statistical
approaches to quantify these parameters, but some confusion still
persists on how to handle uncertainties in practice. The process of
obtaining most probable parameters can be standardised using the
Bayesian inference method. Obtaining most probable parameters in
a probabilistic approach has the following advantages: (a) this set
of parameters is designed to produce an unbiased estimate of
ground movement, which is truly and rigorously most likely to
occur in practice; (b) the randomness in the parameters is explicitly
accounted for and confidence intervals can be drawn around mean
values; (c) the posterior distribution of the parameters properly
accounts for all sources of information, objective and subjective,
through the likelihood functions and prior distributions.

The parameterised Clough and O’Rourke method proposed in this
work can be used either during excavation construction for a rapid
estimation of the maximum deflection for later stages or before
construction based on the case histories collected in similar
ground conditions. Although it is a simple empirical method, its
prediction based on the updated parameters is sufficiently accurate
for a rough assessment with a very limited amount of data. If
there are more excavation stages and more observations in a
staged excavation, the prediction is expected to be more accurate.

Lastly, it is worth emphasising that the framework of Bayesian
inference for sequential back-analysis can be applied to all staged
excavation projects. The Clough and O’Rourke method, as the
deterministic function in the probabilistic model, can be replaced
by any other method for retaining wall design. The procedure
illustrated here can be applied to more complex numerical,
constitutive and geometrical models at more closely spaced time
intervals to update the quantities of interest while construction is
actively progressing and assess the design iteratively within the
context of the OM. However, sufficient computational capability
and number of observations are required for Bayesian inference
with a more complex deterministic function such as the finite-
element method.
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