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Abstract 

Lipodystrophies are the result of a range of inherited and acquired causes, but all are characterized 

by perturbations in white adipose tissue function and, in many instances, its mass or distribution. 

Though patients are often non-obese, they typically manifest a severe form of the metabolic 

syndrome, highlighting the importance of white fat in the ‘safe’ storage of surplus energy. 

Understanding the molecular pathophysiology of congenital lipodystrophies has yielded useful 

insights into the biology of adipocytes and informed therapeutic strategies. More recently, genome-

wide association studies focused on insulin resistance have linked common variants to genes 

implicated in adipose biology and suggested that subtle forms of lipodystrophy contribute to cardio-

metabolic disease risk at a population level. These observations underpin the use of aligned 

treatment strategies in insulin-resistant obese and lipodystrophic patients, the major goal being to 

alleviate the energetic burden on adipose tissue. 
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Introduction 

Lipodystrophies are a heterogeneous group of conditions characterized by a lack of and/or 

dysfunctional white adipose tissue. They may be genetic (inherited) or acquired in origin and 

localized, partial, or generalized in distribution; however, despite the aetiological heterogeneity, 

other than localized forms and most cases of Barraquer-Simons acquired partial lipodystrophy, they 

almost all cause insulin resistance, non-alcoholic fatty liver disease (NAFLD), and dyslipidemia 

(characterized by high triglyceride and low HDL cholesterol concentrations) (1). Therefore, despite 

patients often (though not always) being non-obese or lean, they clinically and biochemically mirror 

the metabolic syndrome associated with obesity. 

 

Although lipodystrophies are relatively rare, studying these patients has advanced understanding of 

adipose biology and the pathophysiology of the metabolic syndrome. They act as very informative 

models of inadequate adipose storage capacity in the face of excess energy intake, resulting in 

ectopic fat accumulation and insulin resistance. Accumulating evidence suggests that similar 

mechanisms of adipose overload are responsible for insulin resistance in patients with obesity (2, 3), 

and therefore treatment of lipodystrophies and obesity are conceptually similar; for example, 

limited data in patients with familial partial lipodystrophy suggests that bariatric surgery is highly 

effective in alleviating the metabolic consequences of lipodystrophy (4–6), as has been widely 

reported in obesity (7). 

 

White adipose tissue is the primary site for physiological energy storage in humans (8) (Figure 1). 

Surplus energy can only really be stored as glycogen (carbohydrate) or triglyceride (neutral lipid), 

and the latter represents a more concentrated/energy dense (9 versus 4 kcal/g) and ‘lighter’ reserve, 

so it is not surprising that a lean adult human stores approximately 100-fold more energy as 

triglyceride compared to glycogen (9). In healthy adult humans almost all triglyceride is stored within 

white adipose tissue, which regulates the uptake of substrates (e.g. glucose and non-esterified fatty 
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acids), the synthesis of neutral lipid for storage, and release of stored triglycerides through lipolysis. 

These processes are under nervous, hormonal, and nutritional regulation to facilitate homeostatic 

energy balance but can be perturbed by chronic overnutrition (resulting in obesity) or inherited 

disorders of white adipose tissue (lipodystrophies). Adipocytes signal the status of their energy 

reserves by secreting leptin, which in turn acts centrally to influence energy balance and 

reproductive capacity. They also secrete a host of other proteins (collectively known as adipokines) 

with a range of purported functions (10, 11). Clearly, in addition to perturbing energy storage, 

lipodystrophies may well alter adipokine secretion and/or interactions with stromovascular cells 

present in adipose tissue. These changes could also contribute to the physiological changes 

associated with lipodystrophy but have, for the most part, not been extensively studied and so are 

not considered in detail here. 

 

White fat is distributed in several characteristic sites (or ‘depots’, Figure 1), which differ substantially 

between humans and mice. For example, humans do not have a large gonadal fat pad, which is a 

commonly isolated and studied fat depot in mice. Importantly, the physiological regulation of 

adipogenesis, lipogenesis, and lipolysis vary in these depots (12–14). For example, human studies 

have suggested that lipolysis is higher in visceral (intra-abdominal) than in subcutaneous white 

adipose tissue (15). In this review, we highlight examples of inherited lipodystrophies where 

selective loss of gluteofemoral fat can recapitulate features of the metabolic syndrome, even if 

upper body fat depots are unaffected. In other cases, where fat loss is restricted to the face, upper 

truck and arms, patients do not typically manifest metabolic disease. 
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Insights from inherited lipodystrophy syndromes with well-defined mechanisms 

Clearly defined monogenic diseases can provide unique insights into the biological function of 

specific genes and the proteins they encode, somewhat akin to observations made in knockout or 

hypomorphic mouse models. In several cases (for example, PPARG, encoding peroxisome 

proliferator-activated receptor gamma [PPARg]), the link between specific genes implicated in 

causing lipodystrophy and adipose dysfunction is clear, whereas in others (such as LMNA, encoding 

lamin A/C) the mechanism is yet to be fully understood. Below, we briefly review selected situations 

where the link between particular genes and adipose dysfunction is relatively clear; these include 

examples involving genes implicated in the transcriptional regulation of adipogenesis, triglyceride 

synthesis, lipid droplet morphology, and lipolysis (Figure 2). 

 

PPARG: 

PPARs (peroxisome-proliferator activated receptors a,d,g) were identified nearly 30 years ago (16). 

They all have a DNA-binding domain (DBD) as well as a ligand-binding domain (LBD) that is believed 

to bind, somewhat promiscuously, a range of putative fatty acid ligands (17–20). Seminal in vitro 

studies undertaken in the 1990s established that PPARg is essential for adipocyte differentiation, 

(21–24) and it is now generally considered to be the ‘master regulator’ of both adipogenesis, the 

process through which fibroblast-like precursors are converted into mature adipocytes, and of 

mature adipocyte function (21, 23). It is, therefore not surprising that PPARG mutations cause 

lipodystrophy, but why these mutations are usually associated with a stereotypical pattern of partial 

lipodystrophy remains an unresolved puzzle. 

 

Heterozygous, dominant-negative mutations in PPARG are associated with autosomal dominant 

familial partial lipodystrophy type 3 (FPLD3). Several case studies have reported patients with severe 

insulin resistance, dyslipidaemia in which hypertriglyceridemia appears to be exquisitely sensitive to 

high fat intake (25), type 2 diabetes mellitus, reduced subcutaneous femorogluteal and leg fat, and 
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hypertension (26–35). Affected women frequently manifest features of polycystic ovary syndrome 

(PCOS) (26, 36, 37) and premature onset cardiovascular disease (26), and cirrhosis has been reported 

(28, 38). The majority of patients with FPLD3 are diagnosed with lipodystrophy in early adulthood, 

though affected children have been identified through family screening studies (35) and men 

typically present later than women. 

 

Heterozygous autosomal dominant mutations in either the DBD or LBD of PPARg have been 

associated with lipodystrophy (27, 39), though debate continues about whether or not these 

mutations truly do manifest dominant negative properties (40). LBD variants can bind to DNA 

response elements but manifest impaired transcriptional responses to agonists or co-activators (35). 

DBD mutants impair DNA binding, but they can also inhibit wild-type function, possibly via 

sequestration of co-activators (36). Heterozygous PPARg missense variants are present in as many as 

1:500 people, though prospective functional classification of all possible missense variants in PPARg 

suggests that many of these are benign and that gene-environment interactions are important (17, 

41). 

 

Some human evidence supports the notion that the degree of loss of PPARg function correlates with 

the severity of lipodystrophy. A child harbouring biallelic PPARG mutants, a frameshift mutation and 

a DBD mutation that were predicted to result in near-complete loss of PPARg function, presented 

with a congenital generalized lipodystrophy phenotype (42). In contrast, the most common PPARg 

variant, p.Pro12Ala (rs1801282, minor allele frequency 0.11), which is thought to only mildly modify 

PPARg function, reduces the risk of developing type 2 diabetes without obviously causing a 

lipodystrophic phenotype (43).  

 

In addition to the in vitro data referred to above, mouse studies strongly support observations that 

varying levels of PPARg function produce a spectrum of phenotypes. Complete Pparg knockout is 
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lethal for mice due to its requirement in placental and cardiac development (44). However, 

embryonal-only Pparg knockout(45), heterozygous Pparg knockout, Pparg hypomorphs (46), and 

adipose-specific Pparg knockout mice all have a lipodystrophic phenotype (including insulin 

resistance and elevated triglycerides) (47). Several of these models also manifested abnormalities in 

blood pressure: hypotension in embryonal-only knockout, and hypertension in P465L knock-in mice 

(consistent with the human condition), though this model did not demonstrate insulin resistance or 

hypertriglyceridemia (48). 

 

Therefore, impairment in the transcriptional control of adipogenesis results in a reproducible white 

adipose tissue-mediated partial lipodystrophy associated with all the characteristic features of the 

metabolic syndrome, the severity of which correlates, at least broadly, with residual PPARg activity. 

 

AGPAT2: 

The most severe form of lipodystrophy is congenital generalized lipodystrophy (CGL), which is 

inherited in an autosomal recessive manner (49). Mutations in AGPAT2 (encoding 1-acylglycerol-3-

phosphate O-acyltransferase 2) are responsible for a substantial proportion of these patients (50). 

AGPAT2 is a lysophosphatidic acid acyltransferase that plays a key role in the synthesis of 

triglycerides from glycerol-3-phosphate (51). 

 

Affected patients present from infancy with an almost complete lack of adipose tissue, extreme 

insulin resistance, hypertriglyceridemia (potentially leading to pancreatitis), and severe hepatic 

steatosis (52). Many have acanthosis nigricans, a condition characterized by dark discoloration and 

velvety thickening of flexural skin, and children may have a progeroid-like appearance due to the 

lack of facial adipose tissue. Patients are essentially aleptinemic and leptin replacement therapy is 

now a mainstay of therapy, as discussed below. 
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Biallelic AGPAT2 mutations associated with CGL are predicted to profoundly disrupt the protein 

product. Many are splice site mutations that result in a frameshift with premature stop codons or 

exon skipping (53). Only a few missense variants have been identified in patients with AGPAT2-

associated CGL, including p.Glu172Lys, which is thought to prevent the binding of substrate and 

catalytic activity (54). Functional studies have consistently demonstrated that mutants linked to CGL 

result in almost complete loss of AGPAT2 enzymatic activity (55). 

 

AGPAT2 demonstrates tissue-selective expression in both visceral and subcutaneous adipose tissue, 

unlike AGPAT1, which is widely expressed (56). Homozygous loss-of-function variants appear to 

cause a failure of early adipogenesis due to several proposed interlinked mechanisms: perturbation 

of phospholipids, inhibition of PPARg, and adipocyte apoptosis (57–59). There is a profound 

alteration of the lipidome, including reduced phosphatidylinositol and elevated 

lysophosphosphatidyl choline (LPC), in AGPAT2 knockdown 3T3-L1 adipocytes (60), the result of 

which is reduced activity in the PI3K/Akt pathway and inhibition of PPARg activity. The lack of Akt 

signalling results in adipocyte apoptosis and, though PPARg over-expression may partially restore the 

adipogenic potential in AGPAT2 knockout cells, they still undergo apoptosis (61). These conclusions 

are supported by a lipodystrophic phenotype in Agpat2-null mice (62). 

 

These findings highlight the devastating metabolic consequences of near-total fat loss due to a major 

impairment in the ability of adipocytes to synthesize triglyceride. This defect in neutral lipid 

synthesis is compounded by sustained hyperphagia due to severe leptin deficiency in CGL. 

 

PLIN1: 

The perilipins are a group of proteins that were originally identified as highly abundant proteins 

covering the surface of lipid droplets (63–65). Since then they have been found to be critical for the 

regulation of lipolysis from lipid droplets (66–69); specifically, PLIN1 regulates the first two steps in 
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triglyceride hydrolysis, namely those catalysed by adipose tissue triglyceride lipase (ATGL) and 

hormone-sensitive lipase (HSL (encoded by LIPE)), the major diglyceride lipase. 

 

Gandotra et al. identified the first three families affected with heterozygous loss-of-function PLIN1 

mutations, all of which were inherited in an autosomal dominant fashion (70). They presented with 

partial lipodystrophy, particularly manifesting a lack of subcutaneous lower limb and gluteofemoral 

fat. Biochemically, they had hypoadiponectinaemia, hyperinsulinemia, NAFLD, and profound 

hypertriglyceridemia. Two different frameshift mutations were reported, both of which were shown 

to be expressed and to be targeted to the surface of lipid droplets (70). The mutant PLIN1 reported 

in these cohorts increased basal lipolysis in an in vitro model (67) by failing to effectively bind 

ABHD5, a key activator of ATGL (71–73). PLIN1 is almost exclusively expressed in white and brown 

adipocytes, where it is very specifically involved in stabilising lipid droplets and in regulating lipolysis, 

thus the phenotype described in patients with PLIN1 mutations highlights the fact that a highly 

specific defect affecting energy storage in adipocytes is sufficient to produce almost all the features 

of the metabolic syndrome. 

 

CIDEC: 

Cell death-inducing DFFA-like effector C (CIDEC; also known as the murine form, Fsp27) is another 

lipid droplet-associated protein that is expressed in white adipose tissue (74, 75) where it is required 

for the formation of large unilocular lipid droplets (76). Mice lacking Fsp27 uniformly manifest 

reduced fat mass with multilocular lipid droplets in all white adipocytes (77, 78), and over-

expression of Fsp27/CIDEC in a range of cell types consistently increases lipid droplet size (75, 79–

81). Many human cell types can contain lipid droplets, including myocytes, hepatocytes, and 

pancreatic islet cells. However, these lipid droplets always adopt a multilocular form, whereas the 

ability to form a single massive lipid droplet is a unique property of the white adipocyte (82). This 

high volume-to-surface area ratio facilitates very precise regulation of lipolysis, which is clearly 
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important in a cell type responsible for bulk storage (and release) of surplus energy as neutral lipid 

for the whole organism. 

 

In 2009, a single patient was identified with a partial lipodystrophy phenotype caused by a 

homozygous nonsense mutation in CIDEC (83). Clinically, the patient had absent lower limb and 

gluteofemoral adipose tissue with reduced total body fat mass. The proband had poorly controlled 

diabetes mellitus with a propensity for ketoacidosis despite elevated C-peptide and negative anti-

islet and anti-glutamic acid decarboxylase antibodies. She also had severe hypertriglyceridemia 

(resulting in acute pancreatitis), acanthosis nigricans, hepatic steatosis, and hypertension. Fat biopsy 

demonstrated a mixed population of white adipocytes with many, though not all, containing 

multilocular lipid droplets. This unusual phenotype was recapitulated in an adipocyte-specific Fsp27 

knockout mouse (84), which similarly demonstrated multilocular white adipocytes, in addition to 

insulin resistance. When fed a chow diet, Fsp27-null mice are lean and insulin sensitive; however, 

when challenged over many weeks with a high fat diet, or when crossed with obesity-prone ob/ob 

mice or mice lacking brown adipose tissue, these mice do manifest NAFLD and severe insulin 

resistance (78). 

 

Though apparently a very rare condition in humans, these data further demonstrate that disruption 

of the ability of white adipocytes to form unilocular lipid droplets is sufficient to cause partial 

lipodystrophy and features of the metabolic syndrome. 

 

Other genetic lipodystrophies 

Several other human genetic lipodystrophies have been recognised, though exactly how these 

cause lipodystrophy is less clear. Biallelic loss-of-function mutations in BSCL2 (encoding seipin) on 

chromosome 11 are a major cause of congenital generalized lipodystrophy (52). Affected patients 

have almost complete absence of body fat from birth, severe insulin resistance, and 
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hypertriglyceridemia (85). The syndrome is also associated with cardiomyopathy and intellectual 

disability. BSCL2 is clearly critical for the development and function of cultured white adipocytes 

(86, 87), and both whole-body and adipose-specific Bscl2 knockout mice manifest a lipodystrophic 

phenotype (88). Recent cryogenic electron microscopy-derived structural models suggest that 

both the Drosphila orthologue (89) and human seipin (90) oligomerize to form a ring-like structure 

in the ER membrane. These data are consistent with seipin’s proposed involvement in the early 

formation of lipid droplets from the ER, a model supported by a series of yeast (91) and other cell-

based experiments (92, 93). 

 

Heterozygous mutations in lamin A/C are probably the most common cause of monogenic partial 

lipodystrophy (94–96). Lamin A/C is a well-established component of the nuclear lamina network 

expressed in almost all cells. Different LMNA mutations have also been linked to cardiomyopathy 

and muscular dystrophy, and some patients with LMNA-associated partial lipodystrophy do also 

manifest variable degrees of cardiac and skeletal muscle impairment. As intermediate filaments, 

lamins clearly impact nuclear structure and transcriptional regulation of gene expression, but exactly 

why specific mutations are more strongly associated with particular phenotypes and why nuclear 

perturbation leads to partial lipodystrophy remains unclear (97, 98). 

 

Finally, one specific variant (R707W) in mitofusin 2 (MFN2), the gene classically mutated in Charcot-

Marie Tooth type 2A, has been linked to a striking adipose overgrowth-lipodystrophy phenotype 

known as multiple symmetric lipomatosis (99). Patients with biallelic R707W mutants develop fat 

hyperplasia on their back and neck with lower limb lipodystrophy, NAFLD, insulin resistance, and 

peripheral neuropathy (100). A particularly remarkable aspect of this phenotype is very low leptin 

levels despite the fact that patients retain excess upper body fat (100, 101). Mitochondrial fusion-

fission dynamics are essential for all metabolically active tissues, but how this single variant confers 

an adipose phenotype is yet to be established (102). 



 12 

 

As summarized in Tables 1 and 2, several additional genetic variants have been linked to specific 

forms of lipodystrophy. Further details related to all these disorders can be found in the references 

cited in Tables 1 and 2. 
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Gene and clinical 
syndrome 

Pattern of 
inheritance 

Clinical phenotype Mechanism category Gene product function Reference 

Congenital generalized lipodystrophies (CGL) 

AGPAT2 
(CGL1) 

Autosomal 

recessive 

Near complete absence of adipose tissue from birth, severe insulin 

resistance (IR), profound hypertriglyceridemia, non-alcoholic fatty 

liver disease (NAFLD) 

Failure of triglyceride 

synthesis 

Lysophosphatidic acid acyltransferase: synthesis of 

triglycerides from glycerol-3-phosphate 

(53, 57, 59, 

60) 

BSCL2 
(CGL2) 

Autosomal 

recessive 
As for CGL1, plus intellectual disability and cardiomyopathy 

Lipid droplet dysfunction 

and/or impaired 

adipogenesis 

Endoplasmic reticulum-localised protein needed for lipid 

droplet formation and adipogenesis 

(87, 103–

108) 

CAV1 
(CGL3) 

Autosomal 

recessive 

Neonatal loss of adipose tissue, severe IR, dyslipidaemia, pulmonary 

hypertension, short stature 

Perturbed caveolar 

function 

Key component of plasma membrane caveolae, which may 

participate in lipid uptake 

(109–112) 

PTRF 
(CGL4) 

Autosomal 

recessive 

Generalised loss of adipose tissue, cardiomyopathy, (hypertrophic) 

skeletal myopathy, less severe IR 

Perturbed caveolar 

function 

PTRF encodes cavin-1, which forms a protein complex 

needed for assembling, regulating, and stabilising caveolae 

(113, 114) 

Familial partial lipodystrophies (FPLD) 
Polygenic 

(FPLD1 ‘Kobberling’) 
Polygenic 

Distal lipoatrophy, increased visceral adiposity, NAFLD, IR, low leptin 

& adiponectin 

Various Polygenic influences impairing adipogenesis and fat 

distribution 

(115) 

LMNA 
(FPLD2, ‘Dunnigan’) 

Autosomal 

dominant 

Loss of subcutaneous fat (particularly gluteofemoral) with face & 

neck sparing, NAFLD, IR; cardiomyopathy and/or muscular 

dystrophy in some 

Nuclear envelope 

perturbation 

Nuclear envelope protein which influences transcriptional 

regulation but tissue-specific effects are poorly understood 

(94, 96) 

PPARG 
(FPLD3) 

Autosomal 

dominant 

Distal lipoatrophy with variable visceral adiposity, hypertension, 

(post-prandial) hypertriglyceridemia, NAFLD, and PCOS 

Defect in adipogenesis Nuclear receptor central to transcriptional control of 

adipogenesis and mature adipocyte function 

(26, 28, 28, 

39) 

PLIN1 
(FPLD4) 

Autosomal 

dominant 
Distal (particularly gluteofemoral) lipoatrophy, NAFLD, IR 

Lipid droplet dysfunction Lipid droplet protein that regulates triglyceride lipolysis (66–68, 70) 

CIDEC 
(FPLD5) 

Autosomal 

recessive 

Distal lipoatrophy with preserved neck and axillary fat, NAFLD, 

hypertriglyceridemia, pancreatitis, hypertension, microalbuminuria, 

multilocular adipocytes [N.B. single patient] 

Lipid droplet dysfunction Lipid droplet protein that is needed for the formation of 

large, unilocular lipid droplets 

(79, 83, 

116) 

LIPE 
(FPLD6) 

Autosomal 

recessive 
Distal lipoatrophy, myopathy, dyslipidaemia, IR, NAFLD 

Altered lipolysis  Encodes hormone-sensitive lipase, a key lipolytic enzyme (117, 118) 

AKT2 
(Unclassified) 

Autosomal 

dominant 
Distal lipoatrophy and IR 

Defect in adipogenesis AKT2 (protein kinase B) is a component of the insulin 

signalling pathway and is required for normal adipogenesis 

(119) 

ADRA2A 
(Unclassified) 

Autosomal 

dominant 

Peripheral lipoatrophy with excess facial and neck adipose tissue, 

buffalo hump, IR, hypertension. 

Altered lipolysis Adrenergic receptor normally involved in reducing 

adipocyte lipolysis 

(120) 

Table 1. The main congenital generalized and familial partial lipodystrophies with their involved genes and proposed pathogenic mechanism. The four 

recognized CGL syndromes result in extreme IR with almost complete loss of adipose, whereas FPLD is associated with peripheral (lower limb) adipose loss 

and substantial IR. In some cases the mechanism linking the gene product and lipodystrophy and adipose tissue dysfunction is unclear. ADRA2A, alpha-2A-

adrenergic receptor; AGPAT2, 1-acylglycerol-3-phosphate O-acyltransferase 2; AKT2, AKT Serine/Threonine Kinase 2; BSCL2, Berardinelli-Seip congenital 

lipodystrophy 2; CGL, congenital generalized lipodystrophy; CAV1, Caveolin 1; CIDEC, cell death inducing DFFA like effector C; FPLD, familial partial 

lipodystrophy; IR, insulin resistance; LIPE, hormone sensitive lipase; LMNA, lamin A/C; NAFLD, non-alcoholic fatty liver disease; PLIN1, perilipin 1; PPARG, 

peroxisome proliferator-activated receptor gamma; and PTRF, polymerase I and transcript release factor.  



 14 

Gene and clinical 
syndrome 

Pattern of 
inheritance 

Clinical phenotype Mechanism category Gene product function Reference 

Unclassified genetic lipodystrophies 

MFN2 
(Unclassified) 

Autosomal 

recessive 

Lower limb lipoatrophy with truncal & neck lipomatosis, peripheral 

neuropathy 

Mitochondrial 

network perturbation 

An outer mitochondrial membrane fusion protein that is also involved in 

mitochondrial-ER tethering 

(99–101) 

PCYT1A 
(Unclassified) 

Autosomal 

recessive 

Short stature, lipoatrophy, IR, NAFLD, cone-rod dystrophy, 

spondylometaphyseal dysplasia (variable penetrance of features with each 

mutation) 

Key regulator of 

phosphatidylcholine 

synthesis 

Enzyme involved in the rate-limiting step in phosphatidylcholine (PC) 

synthesis 

(121–126) 

FBN1 
(Unclassified) 

Autosomal 

dominant 

Tall stature (Marfanoid), cranial abnormalities, progeroid facies, neonatal-

onset lipodystrophy, variable IR. 

Unclear FBN1 encodes profibrillin (127–129) 

Complex genetic syndromes associated with lipodystrophy 

BLM (RECQL3) 

(Bloom syndrome) 

Autosomal 

recessive 

Short stature, microcephaly, lipodystrophy, IR, telangiectasia DNA repair An ATP-dependent DNA helicase needed for control of homologous 

recombination repair 

(130) 

WRN (RECQL2) 

(Werner Syndrome) 

Autosomal 

recessive 

Progeroid, premature cataracts, hypogonadism, scleroderma-like skin 

changes, lipodystrophy, IR 

DNA repair An ATP-dependent DNA helicase needed for a variety of forms of DNA 

repair 

(131, 132) 

ZMPSTE24 
(Mandibuloacral 

dysplasia and 

lipodystrophy) 

Autosomal 

recessive 

Mandibular & clavicular hypoplasia, acro-osteolysis, and cutaneous 

atrophy with lipoatrophy (progeroid-like faces), premature renal failure; 

also caused by mutations in LMNA 

Lamin processing A metallopeptidase needed for processing of pre-lamin A into functional 

lamin A 

(133) 

POLD1 
(MDPL syndrome) 

Autosomal 

dominant 

Mandibular hypoplasia, Deafness, Progeroid features, and Lipodystrophy 

(MDPL syndrome) 

DNA repair The catalytic subunit of DNA polymerase delta, which is needed for lagging 

strand DNA replication 

(134) 

PIK3R1 
(SHORT syndrome) 

Autosomal 

dominant 

Short stature, Hyperextensibility (and Hernias), Ocular depression, Rieger 

anomaly (anterior eye chamber abnormality), Tooth eruption delay, plus 

lipoatrophy, IR, and nephrocalcinosis 

Defect in adipogenesis Encodes a regulatory subunit of phosphatidylinositol 3-kinase, which is a 

key enzyme in the proximal insulin signalling pathway 

(135, 136) 

Autoinflammatory lipodystrophies 

PSMB8 
(JMP or CANDLE 

syndrome) 

Autosomal 

recessive 

Joint contractures, Muscle atrophy, Microcytic anaemia, and Panniculitis-

induced lipodystrophy (JMP); and Chronic atypical Neutrophilic Dermatosis 

with Lipodystrophy and Elevated temperature (CANDLE) syndrome 

Adipocyte apoptosis 

Encodes a subunit of the proteasome, which is required for degradation of 

immunogenic complexes. Lipodystrophy follows (or is concomitant with) 

autoimmune panniculitis 

(137–139) 

Lawrence syndrome 
Acquired 

Variable lipoatrophy with sparing of visceral adipose, IR, hepatic steatosis, 

and dyslipidaemia 

Presumed 

autoimmune 

Can be associated with low serum complement 4 and therefore may have 

aetiology involving the classical pathway of complement 

(140) 

Barraquer-Simmons 

syndrome 
Acquired 

Symmetrical loss of adipose in a cephalo-caudal pattern, may have 

increased gluteofemoral adipose, not insulin resistant 

Presumed 

autoimmune 

Low serum C3 and complement 3-nephritic factor antibody positive, which 

may result in complement-mediated destruction of adipocytes 

(140) 

Antiretroviral treatment associated lipodystrophy 

HAART-induced 
Acquired 

Distal (and facial) lipoatrophy with (variably) increased truncal and visceral 

adipose, mild IR, hypertriglyceridemia 

Unclear Variety of mechanisms have been proposed including mitochondrial 

toxicity and inhibition of prelamin A synthesis due to ZMPSTE24 inhibition 

(141–143) 

Table 2. Other genetic and acquired lipodystrophies with their involved genes and proposed pathogenic mechanisms. Lipodystrophy is an associated 

feature in several complex genetic syndromes and other isolated genetic defects, in most cases the mechanism of which is unclear. Acquired lipodystrophy 

is presumed to be autoimmune in origin or may be related to treatment for HIV. BLM/RECQL3, BLM RecQ like helicase; FBN1, fibrillin 1; HAART, highly 

active antiretroviral therapy; IR, insulin resistance; MFN2, mitofusin 2; NAFLD, non-alcoholic fatty liver disease; PCYT1A, phosphate cytidylyltransferase 1A; 

PIK3R1, phosphoinositide-3-kinase regulatory subunit 1; POLD1, DNA polymerase delta 1, catalytic subunit; PSMB8, proteasome subunit beta 8; 

WRN/RECQL2, Werner syndrome RecQ like helicase ; ZMPSTE24, zinc metallopeptidase STE24; 
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Lipodystrophy and insulin resistance 

The central hallmark of the metabolic syndrome is insulin resistance and, other than obesity itself, 

compelling arguments exist linking almost all the features of the metabolic syndrome to underlying 

insulin resistance (144). Insulin resistance is a consistent feature of lipodystrophy and reveals a 

number of specific insights: 

1. Despite the range of different genetic and acquired causes of lipodystrophy, almost all 

‘appreciable’ (by which we mean at least partial in terms of extent) lipodystrophies are associated 

with insulin resistance. Exceptions which we are aware of include patients with FBN1 mutations, 

though in this setting, the “apparent lipodystrophy” is more likely to be secondary to reduced food 

intake. In all other instances, lipodystrophies are associated with very or at least relatively low leptin 

levels, and thus a tendency to hyperphagia.  

2. The severity of insulin resistance is broadly proportional to the extent of fat loss or dysfunction. In 

other words, generalized lipodystrophy is typically associated with more severe metabolic 

manifestations than partial lipodystrophy. Furthermore, upper body fat loss is less prone to be 

associated with metabolic disease than gluteofemoral fat loss. This is best exemplified by cases of 

Barraquer-Simons acquired partial lipodystrophy, where the fat loss proceeds in a cephalo-caudal 

pattern: this entity is often associated with the presence of C3 nephritic factor and sometimes with 

renal glomerular disease, and insulin resistance is usually not a feature unless fat loss extends down 

to the gluteofemoral adipose depot and/or patients are otherwise obese (140). 

Another intriguing form of partial lipodystrophy is that associated with dermatomyositis – in these 

cases, lipodystrophy most prominently affects subcutaneous depots, whereas visceral fat is often 

preserved (145). The patients frequently manifest advanced NAFLD and insulin resistance. 

Finally, in this context, metabolic disease is also typically more severe in affected girls/women than 

in boys/men, presumably because under normal circumstances fat mass in a lean women is roughly 
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twice that of a lean man (146). Collectively, the two points above indicate that lack and/or 

dysfunction of white fat is consistently associated with insulin resistance and the metabolic 

syndrome, particularly when the defect in white fat is compounded by hyperphagia due to relative 

leptin deficiency (147, 148).  

3. NAFLD is a very consistent feature in insulin-resistant lipodystrophies, and is typically associated 

with metabolic dyslipidaemia (high triglycerides and low HDL cholesterol). Whilst there is limited 

data on liver histology in patients with lipodystrophy (149, 150), one study found that 40% of 

biopsied patients had bridging fibrosis or cirrhosis and 62% had definite steatohepatitis at a mean 

age of 29 years (38). 

4. Patients with lipodystrophy are prone to early-onset cardiovascular disease. In some ways, this 

appears to be as severe as the cardiovascular disease associated with heterozygous familial 

hypercholesterolemia, as we have had several women present with ischaemic events well before the 

age of 50 years (151, 152). 

5. Circulating markers of cellular or mitochondrial stress (e.g. FGF21, and GDF15) are elevated in 

both obesity (153, 154) and lipodystrophy (155). Patel et al. recently showed that chronic energetic 

overload results in an increase in serum GDF15 and FGF21 in mice (156), and at least in the case of 

GDF15, this change may help to alleviate ongoing surplus energy intake. 

However, this potentially ‘corrective’ GDF15 signal is offset in lipodystrophic patients by relative or 

near-complete leptin deficiency, a key signal for the persistent hyperphagia observed in many 

patients with lipodystrophy. Unfortunately, hyperphagia compounds the relative deficiency of 

adipocyte energy storage capacity and is considered a major factor in the pathogenesis of metabolic 

disease in this disorder. Obese patients have elevated leptin levels, in keeping with their increased 

total fat mass (157), though it is does not seem to suppress hunger, and therefore the term ‘leptin 

resistance’ has been coined. In both lipodystrophy and obesity (158), the relative lack of leptin 
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action contributes to ongoing surplus energy intake and insulin resistance, although it should be 

noted that leptin signalling at its receptor is actually increased in obesity and that a lack of response 

to additional exogenous leptin is complex and incompletely understood (159). 

Adiponectin is an adipokine that paradoxically falls in obesity and insulin resistance, though the 

mechanisms underlying control of its release is unclear. Adiponectin levels are also low in 

lipodystrophy, and this is generally in proportion to the loss of adipose tissue (i.e. lower in CGL than 

FPLD) and the severity of insulin resistance (160). 

Insulin receptor signalling defects 

“Insulin receptoropathies”, a term used to describe insulin-resistant states caused by a mutation or 

acquired defect in one of the proximal insulin signalling components (most commonly the insulin 

receptor (INSR) itself), represent another cluster of monogenic disorders associated with severe 

insulin resistance (161). Examination of the differences between patients with obesity-related 

metabolic syndrome, lipodystrophy, and “insulin receptoropathies” (Table 3) indicates that whereas 

lipodystrophy- and obesity-associated metabolic syndrome are strikingly concordant, there are 

several marked differences between the latter and insulin receptoropathies. In particular, NAFLD 

and dyslipidaemia are typically not seen in insulin receptoropathies (162), and adiponectin levels 

tend to be high rather than low in these conditions (163).  
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Characteristic Obesity with metabolic syndrome Lipodystrophy Insulin receptoropathy 
Body mass index ­ ¯ in CGL 

­ or « in FPLD 
« 

Body fat percentage ­ ¯¯¯ in CGL 
¯  in FPLD (especially gluteofemoral 
fat) 

« 

Waist circumference ­ « or ­ « 
Hip circumference Relative ¯ ¯¯ « 
Waist : hip ratio ­­ ­­ « 
Insulin resistance ­ ­­ ­­­ 
Triglycerides ­ ­­ « 
HDL-Cholesterol ¯ ¯ « 
Leptin ­­ ¯¯¯ in CGL 

Relative ¯ in FPLD 
« 

Adiponectin ¯ ¯¯ ­­ 
NAFLD ­ ­­ Absent 
PCOS ­ ­­ ­­ 
Atherosclerosis ­ ­­ Unknown 

 

Table 3. Comparison of obesity, lipodystrophy, and insulin receptoropathies. Key differences and 
similarities between patients with obesity and the metabolic syndrome, lipodystrophy, and insulin 
receptor defects. The number of arrows is indicative of the severity and/or magnitude of the 
perturbation. CGL, congenital generalized lipodystrophy; FPLD, familial partial lipodystrophy; HDL, 
high-density lipoprotein; NAFLD, non-alcoholic fatty liver disease; and PCOS, polycystic ovarian 
syndrome. 
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Adipose inflammation 

Histological assessment of adipose tissue from patients with the metabolic syndrome consistently 

demonstrates features of inflammation (164–166), the extent of which correlates with the severity 

of insulin resistance and NAFLD in humans (167). Inflammation appears to be more prominent in 

adipose tissue with higher lipolytic capacity (particularly visceral adipose); however, opinion remains 

divided on the extent to which macrophage infiltration is pathogenic in adipose dysfunction and/or 

insulin resistance (168). Obesity-associated insulin resistance is a state of chronic, systemic 

inflammation, as evidenced by elevated IL-6, high-sensitivity C-reactive protein, and GDF15, among 

other markers, but these derive from more than just adipose tissue. Nevertheless, adipose tissue 

macrophages certainly act as one source of inflammatory cytokines that contribute to the systemic 

inflammatory state, and their contribution appears to be ameliorated by weight loss (169).  

 

There have been only a few studies examining the histology of adipose tissue in patients with 

inherited lipodystrophy. Patients with FPLD4 secondary to PLIN1 mutations had similar features of 

inflammation and fibrosis to those reported in obese people, whereas patients with CIDEC-

associated lipodystrophy (83), MFN2-associated lipodystrophy (100), and LMNA mutations (170) did 

not demonstrate gross inflammation. Collectively, evidence from genetic lipodystrophies that almost 

always cause severe insulin resistance tends to suggest that adipose inflammation is a second ‘hit’ 

rather than the primary driver of adipose dysfunction and so, at least in our view, raises questions 

about the widespread interest in anti-inflammatory strategies for obesity-associated metabolic 

disease.  

 

NAFLD is a very consistent feature of lipodystrophies that are severe enough to cause insulin 

resistance and other features of the metabolic syndrome. In this scenario, non-alcoholic 

steatohepatitis (NASH) is very common and could conceivably be involved in causing hepatic insulin 
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resistance. However, here too the liver pathology is very likely to occur secondary to adipose tissue 

dysfunction.  
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Evidence for subtle lipodystrophy in the general population 

The striking overlap between lipodystrophy and more prevalent forms of the metabolic syndrome 

(see Table 3) has long suggested that subtle forms of lipodystrophy may be relevant to the 

pathogenesis of metabolic syndrome and type 2 diabetes in particular (171–173). However, direct 

supportive evidence has been hard to come by so it has remained a largely hypothetical premise.  

 

In 2014, Scott et al. undertook a GWAS that used fasting insulin as a proxy for insulin resistance 

(174). Intriguingly, just over half the loci associated with a higher fasting insulin were also associated 

with higher triglycerides, lower HDL cholesterol, and either a lower BMI and/or a reduction in 

gluteofemoral fat mass as measured by dual X-ray absorptiometry (DXA) scanning. Lotta et al. later 

performed a much larger GWAS focused on loci associated with a combination of BMI-adjusted 

insulin, higher triglycerides, and lower HDL cholesterol (175). This analysis identified 53 loci, which 

were replicated in a second cohort and shown to be significantly associated with gold-standard 

hyperinsulinaemic euglycaemic clamp-based measures of insulin resistance. In a large human cohort 

in whom fat mass and distribution were documented with DXA scans, there was a significant 

association between higher insulin-resistant SNP scores and lower levels of gynoid and leg fat mass 

(175). Interestingly, in this study, reduced expansion of gluteofemoral fat depot was also 

documented in response to weight gain (175). Importantly, this 53 SNP score was enriched in 

patients with FPLD1, which is in many ways an extreme form of apple-shaped fat distribution, 

implying that these common alleles contribute to both common insulin resistance and a specific 

form of partial lipodystrophy known as FPLD1 (Figure 3). This is also consistent with observations 

that there are a large number of patients with clinical features of FPLD1 (or FPLD2) with no known 

genetic diagnosis. 

  

Waist-hip ratio (WHR) is a widely used non-invasive measure of adipose tissue distribution, and its 

relationship to diabetes and cardiovascular risk is well established (176, 177). Given the fact that 



 22 

WHR is a ratio, it can be modified by changes in either the numerator or denominator. However, 

visceral fat accumulation (i.e. an increase in the numerator) is usually assumed to be the driving 

factor behind the link between this index of fat distribution and insulin resistance. This notion is also 

supported by considerable scientific evidence (178–182). However, when Lotta et al. generated SNP 

risk scores for loci shown to be associated with a higher WHR, through a specific association with 

either a reduction in hip circumference (22 out of a total of 202 loci) or with an increase in waist 

circumference (36 out of 202 loci), both scores were associated with cardiometabolic risk factors as 

well as an increase in the odds ratio of developing type 2 diabetes mellitus and coronary disease 

(183). Intriguingly, the odds ratio for the risk of type 2 diabetes was statistically significantly greater 

for the hip-specific risk score than the waist-specific score, whereas the odds ratios for 

cardiovascular disease were similar. Collectively these data are at least consistent with the notion 

that subtle partial lipodystrophy is a major factor in the pathogenesis of the metabolic syndrome in 

the general population (Figure 3). Put another way, people with an impaired capacity to increase hip 

fat mass in response to weight gain are more likely to develop insulin resistance and type 2 diabetes 

if they do increase their weight.   
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Shared treatment strategies for lipodystrophy and obesity 

The implications of these observations are that therapeutic strategies in both lipodystrophy and 

obesity-related metabolic syndrome should aim to minimize adipocyte overload. This could be 

achieved by increasing adipocyte number/function or by reducing the energetic load on adipose 

tissue. 

 

Increasing fat mass is a highly effective method for treating the metabolic syndrome in mice. 

Evidence from animal models has demonstrated the profound benefits associated with adipose 

transplant in severely lipodystrophic mice (184, 185). But, aside from being cosmetically 

unappealing, fat transplantation would also be technically challenging in humans. However, 

thiazolidinediones (TZDs), which selectively activate PPARg, very effectively improve insulin 

sensitivity in the clinical setting, primarily by increasing subcutaneous fat mass (186).  

 

Thus, reducing caloric intake is the mainstay of treatment for the metabolic syndrome and it is highly 

effective. Data suggests that whilst there are some mild benefits of diets of various composition (the 

Mediterranean diet, for example), the most effective therapy is considerable calorie restriction. 

Limiting intake to <650 kcal/day can result in complete remission of diabetes (187) in patients with a 

relatively short duration of type 2 diabetes. A similar approach can be achieved through bariatric 

surgery (188); though the metabolic impact varies depending on the technique used, the greater the 

reduction in net energy intake, the greater the reduction in weight and improvement in insulin 

sensitivity (7). Bariatric surgery has also been demonstrated to be very effective in a small number of 

patients with FPLD, despite these patients having a BMI lower than would be typically used as an 

eligibility criterion for surgery (4). 

 

Lastly, as mentioned previously, leptin replacement therapy is highly effective in lipodystrophy (38, 

189) but patients with obesity (who have high circulating leptin) do not appear to show a response 
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to additional exogenous leptin unless they are already in a weight-reduced state (190). However, 

there is ongoing interest in targeting leptin therapy to obese subjects with relatively low leptin 

levels. 

 

Conclusion 

Inherited lipodystrophies are a complex group of conditions, all of which ultimately impair adipose 

tissue function and particularly its capacity to efficiently store surplus energy. The metabolic 

sequelae of lipodystrophy are remarkably similar to those associated with obesity, and compelling 

human genetic evidence now suggests that this similarity reflects adipocyte overload in both 

settings. Thus the goal of treatment in both states is to alleviate the energetic burden on adipocytes 

by inducing negative energy balance and/or weight loss.  
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Figures 

 
Figure 1. White adipose tissue contains the body’s major store of energy. Even lean adults store 600-
800mJ of energy as triglyceride in adipose tissue, compared to 6-8mJ as glycogen in liver and muscle. 
They physiological regulation of triglyceride stores varies in different adipose tissue depots. 
Gluteofemoral subcutaneous white adipose is relatively insulin sensitive and its expansion is not 
associated with cardiometabolic disease, whereas visceral adipose tissue has a higher rate of 
lipolysis and is more closely linked with insulin resistance. 
 
 
Figure 2. Some of the genes in which mutations cause lipodystrophy have well characterized roles in 
the function of adipocytes. PPARγ (mutated in FPLD3) is the ‘master regulator’ of adipogenesis. It 
heterodimerises with retinoid X receptor and co-ordinates transcription of multiple proteins central 
to adipocyte function (e.g. perilipin, CD36 and lipoprotein lipase). BSCL2, or seipin, (mutated in 
CGL2) is an ER (endoplasmic reticulum) protein required for early lipid droplet (LD) biogenesis. 
AGPAT2 (mutated in CGL1) is necessary for the conversion of glycerophosphates (G-3-P) into 
triacylglycerols (TAG) using fatty acids linked to co-enzyme A (FA-CoA). CAV1 (mutated in CGL3) and 
PTRF (mutated in CGL4) are required for the formation of caveolae, which may be sites for non-
esterified fatty acid (NEFA) uptake. PLIN1 (mutated in FPLD4) regulates lipolysis from lipid droplets, 
and HSL (mutated in FPLD6) is one of the lipases involved in this process. Finally, CIDEC (mutated in 
FPLD5) is required for the formation of unilocular lipid droplets, though how this is achieved is 
unclear. 
 
Figure 3. The severity of lipodystrophy and the degree of adipose dysfunction correlate broadly with 
the severity of insulin resistance. This principle extends from the most extreme form of 
lipodystrophy (congenital generalized lipodystrophy, CGL) through familial partial lipodystrophies 
(FPLD) to the general population. People in the highest quintile (“Q5”) for a polygenic risk score for 
insulin resistance (see Lotta et al. (ref 153)) have less gluteofemoral fat, resulting in an ‘apple-shape’ 
fat distribution, whereas those in the lowest quintile (“Q1”) manifest a protective “pear-shaped” fat 
distribution and are less insulin resistant. FLPD type 1 (“FPLD1”) represents an intermediate state 
between other monogenic forms of FPLD and the highest risk individuals from the general 
population.  
 
The degree of genetic disruption of adipose tissue also correlates with these phenotypes as 
exemplified by the impact of a range of PPARG mutations: complete loss of PPARG function can 
cause CGL; dominant negative PPARG mutants cause FPLD3; and common PPARG variants impact on 
insulin resistance at a population level. Exemplar PPARG mutations in each of these categories have 
been included. Each black dot represents a distinct monogenic disease (see Table 1 for 
classifications) and each red diamond represents a common genetic variant that influences 
adipogenesis and insulin resistance. 


