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Abstract

Many governments who preside over liberalised energy markets are
developing policies aimed at promoting investment in renewable
generation whilst maintaining the level of security of supply customers
have come to expect. Of particular interest is the mix and amount of
generation investment over time in response to policies promoting high
penetrations of variable output renewable power such as wind.

Modelling the dynamics of merchant generation investment in market
environments can inform the debate. Such models need improved
methods to calculate expected output, costs and revenue of thermal
generation subject to varying load and random independent thermal
outages in a power system with high penetrations of wind.

This paper presents a dynamic simulation model of the aggregated
Great Britain (GB) generation investment market. The short-term energy
market is simulated using probabilistic production costing based on the
Mix of Normals distribution technique with a residual load calculation
(load net of wind output). Price mark-ups due to market power are
accounted for. These models are embedded in a dynamic model in
which generation companies use a Value at Risk (VaR)

criterion for investment decisions. An ‘energy-only’ EEEENENEI@
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security of supply. Simulated results for the GB market case study show
a pattern of increased relative security of supply risk during the 2020s.
In addition, fixed cost recovery for many new investments can only
occur during years in which more frequent supply shortages push
energy prices higher. A sensitivity analyses on a number of key model
assumptions provides insight into factors affecting the simulated timing
and level of generation investment. This is achieved by considering the
relative change in simulated levels of security of supply risk metric such
as de-rated capacity margins and expected energy unserved.

The model can be used as a decision support tool in policy design, in
particular how to address the increased “energy-only' market revenue
risk facing thermal generation, particularly peaking units, that rely on a
small number of high price periods to recover fixed costs and make
adequate returns on investment.
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Dynamic Long-Term Modelling of Generation
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Abstract

Many governments who preside over liberalised energy nsrkee developing policies aimed
at promoting investment in renewable generation whilstntaa@ning the level of security of supply
customers have come to expect. Of particular interest igrtixeand amount of generation investment
over time in response to policies promoting high penetratiof variable output renewable power such
as wind.

Modelling the dynamics of merchant generation investmemharket environments can inform the
debate. Such models need improved methods to calculatetedpeutput, costs and revenue of thermal
generation subject to varying load and random independemiial outages in a power system with
high penetrations of wind.

This paper presents a dynamic simulation model of the agtgdgGreat Britain (GB) generation
investment market. The short-term energy market is siradlaising probabilistic production costing
based on the Mix of Normals distribution technique with adeal load calculation (load net of wind
output). Price mark-ups due to market power are accounteditiese models are embedded in a dynamic
model in which generation companies use a Value at Risk (\&irion for investment decisions. An
‘energy-only’ market setting is used to estimate the ecaognofitability of investments and forecast
the evolution of security of supply. Simulated results foe IGB market case study show a pattern of
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investments can only occur during years in which more fratsepply shortages push energy prices
higher. A sensitivity analyses on a number of key model agsioms provides insight into factors
affecting the simulated timing and level of generation siw@ent. This is achieved by considering the
relative change in simulated levels of security of suppsk ninetric such as de-rated capacity margins
and expected energy unserved. These results provide isdigh the increased ‘energy-only’ market
revenue risk facing thermal generating units, particylgeaking units that rely on a small number of

high price periods in order to recover fixed costs and makedaqueate return on investment.

Index Terms

Power generation economics, Mix of Normals distributiohefimal power generation, Wind power

generation.

I. INTRODUCTION

When making an economic assessment of the potential for gmgrcapacity investments,
we must model varying loads (e.g., in the form of the load tlomacurve), the expected
contribution of generating units to serving these loads, #ye revenues they receive by doing
so. It is helpful if the technique used is computationallgtfeaccurate and robust, especially
when multi-year simulations of a market are to be repeatedly One approach is to use
probabilistic production costing, a long established rodtfor calculating the expected output
and costs of a thermal generation system subject to vargiad &nd random and independent
forced outages [1, 2]. The first focus of this paper is thegragon in a dynamic capacity
investment simulation of a probabilistic production cogtmethod that considers the annual load
curve and convolves it with generator outages using the MiKarmals distribution (MOND)
approximation. This production costing method was firstdbed in [3] and then extended and
used for the calculation of equilibrium capacity investingna power market in [4] and [5],
respectively. In this study, the method is applied for thst fiime to a nonequilibrium setting as
part of a dynamic market simulation.

The second focus of the work is to assess the impact of higetmions of wind power
on the investment risks associated with conventional taegeneration. Therefore the method
above is extended to include a residual load calculaticad(leet of wind output) using empirical
load and simulated wind data. This residual load data is ted in the MOND production

costing model. Finally, the MOND model is incorporated ie thynamic investment model and



applied to a simplified GB power system for an assumed (exagsy increasing) installed wind
capacity.

The goal of this research is to address concerns about whiethergy-only’ markets (i.e.,
without capacity mechanisms) with high penetrations ofdvare capable of inducing timely
generation investments over a long-term time frame. Exasgl ‘energy-only’ markets currently
operating include GB, Australia’s National Electricity Mat, Alberta, Nordpool, Ontario and
Midwest ISO. This is of particular interest to policy makensose combined goals are to promote
investment in renewable generation, maintain an adeqeedf resources, and reduce customer
costs.

The dynamic model employs classical control theory to aa@pthe interactions between
electricity supply and demand. It shares similarities va#isting dynamic models of merchant
generation investments (e.g., [6-9]), however this paldicapplication to the GB market with a
high wind penetration is unique. Furthermore, the produnctosting methods used by previous
dynamic models are deterministic, and therefore undenesti average costs (due to Jensen’s
inequality [10]).

This paper is organised as follows: in Section II, the dymamvestment model in which
the MOND technique is embedded is described. Features ointlestment decision element
of the model are provided in Section Ill. In Section IV a MONB formally defined and
its application to a market situation is given. Section V aléd®s input assumptions and the
wind models used. The purpose of this paper is to present lstrate a methodology. For
the purposes of illustration, a number of assumptions ardenihat in an actual application
would require careful validation. Results from the dynamimigation of capacity investment in
a system with an existing installed capacity similar to tbGGB are given in Section VI and

finally, Section VII presents conclusions.

[I. THE INVESTMENT MARKET MODEL

Techniqgues from control theory are used to model marketsinvent dynamics (Fig. 1).
Because the model is dynamic, current market conditions, (eapacity under construction
or retirements), prices and their predictions are fed backhé investment block, modifying
the investment behaviour. The resulting investment deassiare then fed back to the pricing

mechanism, hence closing the loop.
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Fig. 1. Modelling generation capacity investment as a control problerasiment can be viewed as a negative feedback control

mechanism with current and future energy prices (as a function afrgéon capacity margin) acting as a feedback signal.

The dynamics of the system concern the evolution of ingtajleneration capacity and rate of
demand growth. The rate of change in capacity at a partitutee-step depends on new plant
coming online or being de-mothballed net of any plant beietyed or mothballed. Both are
delayed signals from some earlier time. In the case of newtpthis delay is the lead time
for construction, and in the case of retiring plant, thisagieis the design lifetime. Mothballing
requires zero delay, whilst de-mothballing requires a ekt is significantly less than full
construction. An aggregate approach is taken whereby ttgps.combined into five technology
categories, namely nuclear, coal, wind, CCGT and OCGT, each wgtown financial and
technological characteristics.

The elegant notation used in [11] is employed to formallyriethe state of the system. That is,
the state of the dynamic system is defined by the ve¢tors), ) wherey, = {(n;,§;),i =1...n,}
and —7, < n < nmy < ... < n,,. The ordering convention ensures that the oldest investmen
block &; will be completed first at time), + 7. [11]. Note thatn; indicates the time at which
the decision is taken, anad, is the number of projects of type under constructionl, is the
installed capacity of plant type, andr, is the expected build time. The indgxprovides the

total number of non zero investment years since time zere. cdmtrol system is now defined



as the volume of installed capaciti(t), which is a parallel cascade of the four technology
categories. Each single category is defined by a Delay Bifteal Equation (DDE):

dl,

= Gltmmi—m) = Y &GOt —n - T - aa), (1)

(15,85 €Ya (15,85 EYa
whered(t) is the Dirac delta function. The first term in (1) accountstfo addition of capacity
¢; installed at timen; + 7,. The second term accounts for deletion of capagjtpuilt at time
n; + 7, and retired at time); + 7, + o, Whereq,, is the expected lifetime. The equation can be
extended to include mothballing or premature retiremertdapfacity with an additional variable
introduced to represent the lead time to de-mothb&lch lump in (1) consists of a number of
smaller components that represent individual generatmig.urhese are 500 MW for nuclear and
coal, 200 MW for CCGT and 50 MW for OCGT. Note that any mothballegacity continues
to age whilst it is “disconnected” from the system.

Evaluation of potential investments by generating firmsimusated by predicting future
investment revenues and costs; this prediction uses mewkelitions in the “real-time” (actually,
annual) energy market simulation as initial conditions #meh predicts the future state of the
system during the lifetime of a potential investment. Crugrecertainties such as future demand,
fuel prices and wholesale energy prices are all simulatatienprediction. The model does not

consider the transmission network and is conceptually glesibus system.

I11. GENERATION CAPACITY INVESTMENT

In order for adequate capacity to be maintained in the fackeofand growth and retirement of
existing capacity, investment in new capacity must be fathing. In this model the investment
decision is taken annually and is considered an irreversilgcision. It is based on the Net

Present Value (NPV) of anticipated future profits.

A. Investment model logic

Investors are assumed to have the modelling capabilitiagade to formulate a reasonable

approximation of the effect of wind generation on residuamdnd. That is, the investors are

'Note that any mothballed capacity must continue to age whilst it is “discoediefrom the system to ensure it is permanently

retired once it reaches the end of its design lifetime.



rational, but only within the limits of the information alable to them, and thus do not possess
perfect information about the future state of the systemis Tdesign follows the adaptive
expectations hypothesis and has been applied in other dgnawwdels (e.g., [6, 8, 9, 12]).
Plainly boom and bust type dynamics will be less severe isiors have rational expectations
(see [13]) because they eliminate systematic forecastsgtowever this is arguably not possible
in most electricity markets owing to their relative infan@gd ongoing modification [14]. These
overshoot dynamics are further confounded by the limiteddasting certainty which modelling
tools can provide concerning variables such as economiwtgrand future weather patterns.
Note that variations in weather patterns are likely to ayeraut to zero over the economic
lifetime of an investment and thus do not affect decisionsuailcapacity expansion.

For simplicity, a single investor who is well acquainted lwihe structure of the market
and capable of securing the necessary debt to finance leadeslant investment is modelled.
This representative agent approach has been used by othamity capacity market models
(e.g., [14]). When estimating the profitability of an invesimy a Monte Carlo (MC) approach is
taken to obtain a probability distribution of profitabilityhereby estimates for conventional plant
already under construction (including delays), demandvtiroand fuel prices are considered
stochastic.

The representative agent is aware of conventional plaeadyr under construction at the start
of each decision process. However there is uncertaintytafyahe time remaining to build these
plants, b) whether they will in fact make it to operation, andf rivals will jump in and invest
in response to increases in expected profits. In the base gaserators assume all plant will
come online with 100% certainty, and remaining build timesischastic. This is modelled as
the sum of the expected build time (minus one year) plus aom@neariable (r.v) that is sampled
from a lognormal distributionin N (11, 02), wherep ando are the mean (one year) and standard
deviation (six months) of the distribution, respectiveBecision making under uncertainty is
modelled by taking a risk averse attitude to investmeng ithidiscussed in the next sub-section.
Currently operational plant is expected to generate for tiratebn of its design lifetime.

Fuel and carbon forward prices are based upon the UK DepattofeEnergy and Climate

Change (DECC) central case estimates [15, 16]. Assuming mvpsdte forecasts are similar to

2Under the heroic assumption that climate change does not impact oe fuaather.



these estimatesthe investor model uses the DECC estimate plus a r.v. to estifuture fuel

prices. This r.v. is modelled as a mean reverting stochasticess with seasonality [18]:

dfy = a(m(t) — Fy)dt + v(F)dW,, (2
mit) = 400, @

where F; is the price at time, ¢(t) is the DECC estimaten(t) is the time dependent mean
reverting level which depends on the DECC estimates the volatility, « is the speed of mean
reversion andi/ is a standard one-dimensional Brownian motion [19]. Irligjalk = 0.7 in
all cases (indicating a reasonably short excursion lengtid)v is 5%, 7%, 10% and 20% for
uranium, coal, gas and carbon prices, respectively to tefhecrelative price volatilities.

Investors consider annual load growth to be stochastic arshipled from a Normal dis-
tribution. Our application assumes a mean of 0% and standiewtion of 1%. This is based
on variations in demand growth [14] as well as the percepti@at economic growth could be
offset by increased energy efficiency (e.g., [20]), thusvaithg for small or even negative load
growth.

The present value of an investment in technolagy.e., nuclear, coal, CCGT, OCGT) at time
T, 1S given by: v o P
=l

=Ty

— (IC, + DC,) (4)

wherer = (y.) - v+ (1 — x) - €, IS the firm’s weighted average cost of capital (WACC), with
X and~ as the gearing ratio and expected bond return (assumed t&pee8pectively, and,
is the required investor equity returG.)/! is the gross margin (cf. (24) or (37) depending on
market bidding assumptions) for yearF'C, is the generator fixed operating costs, apdand

o, (cf. (1)) are both expressed in years., is the present worth of the investment cost:

Te—1

]Gac - Z Mimcazp:v<1 + T)_(i_m)a (5)

=0
wherep,, is the construction cosE(MW), ¢, is the plant capacityJ/” is the capital expenditure

vector for the project with-72* M = 1. For simplicity, the expenditure schedule uses a lagged

SWhich in the case of natural gas match quite well with available future prives fCE Futures Europe (out to 2017) but
are arguably a little low for coal - at the time of writing, Newcastle futureseweing at about 1.5% annually not falling by
6% as suggested by DECC [17].



formulation with
M7 = zM7,, (6)

wherez = 0.8 (i.e., the capital outlay increases by 25% each year). Totatest accumulated
during construction is given byY'TAC, = IC, — c,p,. Finally, DC, is the present worth
of the decommissioning cost. Only nuclear projects havesidenable decommissioning costs
(estimated at 12% of,%); in the case of other plant types the decommissioningliiesi are
assumed to be offset by the salvage value of the assets [@2le& decommissioning is assumed
to take 150 years and the equivalent incidence of capitdputatrix contains 0.05 for the first
10 entries and (i.e., 50% of total decommissioning comin@rst 10 years after closure) and
the remaining entries are/140 (i.e., 50% of cost spread over 140 years).

All cashflows are discounted to the start of the first year aérapon. The total annualised
costs per unforced MW (TAFC)E(unfor.MW/yr) are given by:

AcI(IC, + DC,) + FC,
1 —ps
where A”/ is the deferred capital recovery factor andis the generator FOR.

TAFC, = , 7)

Only the firstn years of expected revenues are stochastically simulatetiebinvestor (here
n = T7); for the remaining years the (discounted) average of theulgsited revenues are used
(e.g., similar to [14]), i.e., assume that simulated priceghe first 7 years of plant operation are
representative of the total expected plant lifetime. Femtiore, investors cap the total expected
annual revenues received from scarcity rents (see Sec#®®) lat the annualised cost of an
OCGT. These actions ensure that expectations about futueaues are not unduly influenced
by high forward simulated wholesale prices owing to genenatetirements far in the future.
No regulatory price caps are implemented in the real-timaukition.

Investors in peaking capacity (i.e., OCGT) assume an additicevenue o£10,000/unforced
MW/yr can be obtained from the ancillary services (AS) marlke& revenues form a critical
component of peaking capacity profitability, however theyiasufficient by themselves to trigger
investment and a combination of energy market and AS revenuequired in order to obtain
adequate gross margins. Investors will not include AS regerin the profitability calculation
if OCGT capacity exceeds 8 GW (i.e., volume of installed OCGpac#ty at the start of the

“Estimated to be between 9-12% by the World Nuclear Association [21].



simulation, c.f. Table Ill), this essentially limits thet&b obtainable revenue from AS if the
volume of peaking capacity becomes large. However, in atcofithe point made above, this
limit should not unduly dampen peaking capacity investment

Because the model randomly samples capacity constructiastifuel prices and load growth,
a large sample is required in order for investors to obtaliabke estimate of expected project
value (4). Here, 100 MC simulation runs are carried out farheplant type in each decision

year.

B. VaR criterion

Value at Risk (VaR) is a common criterion used in finance wheastwrs place a high priority
on avoiding poor outcomes (i.e., they are risk averse) [@&nerally speaking, given a project
value V, and defining the level of risk aversion lgy the VaR is defined as the valug such
thatp(V <wv,) =1-g¢.

In this model, the distribution of potential profits are cwasted from the MC simulations
of the stochastic variables and a risk averse investor yith5% is assumed. The distribution
of V, in (4) is computed by MC simulation for each plant type and mrestment is deemed
attractive ifp(V, > V.P*) > (100 — q)%, whereV,°?* is the minimal acceptabl&,; i.e., V. is
a lower bound for the project value used in the VaR criteribmis is assumed to be zero (i.e.,
investors recover initial investment and receive adequettegn on investment in account of the
WACC applied in (4)).

The decision to mothball (or de-mothball), is based on tleglisted gross margins over fixed
operational costs (AGM)EMW) for the next three years of operation averaged over the MC
simulation runs, i.e., o s i

ACM, = > % Gj‘é;fc
j=1Vji=1
If this is negative (or positive) then some currently operal (or offline) plant will be moth-
balled (or de-mothballed).

(8)

C. Modelling aggregate investment response

In some circumstances the expected profitability of newdtments is extremely high, thus

triggering a wave of new builds. In such cases, the investrage will be limited by: 1) the
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firm’s beliefs about how many other market participants mwitive to invest; 2) the impact of new
investment on the profitability of their existing plant; aBgthe ability of the firm to secure the
debt required to fund multiple projects [8]. Using an aggtegnvestor response curve is useful
in models of this type. For instance, in [14], the aggregatestment rate is increasing with
the “risk-adjusted forecast profit; which is derived from the investor’s (risk averse, congave
utility function. Also in [8], an S-shaped nonlinear furasti of Profitability Index (P1) is used
and various profitability functions are used in [7] to modeldstment rates based on managerial
optimism concerning economic (i.e., expected profitahiland strategic (i.e., retaining market
share) considerations.

In this paper, a function is applied to the outcome of the VaBision rule in order to estimate
the aggregate investment response of the market. Thisidinist increasing with the expected

profitability and is given by:

& = max {Ofmax . (1 — 6(—5-1315))} , (9)

where .

PI! = ([CQC—%DCQ;) (10)
is the Profitability Index (PI) (i.e., critical{©) V,. divided by investment cost per unit of capacity)
and¢,... is the maximum investment per year in technolagys,,... and G are calibrated so
zero investment is made P12 < PI%" (with PI%" the result of substituting/*”* into (10)),
and¢; = i, volume of investment is made /¢ = 1, wherei, is a fixed constant. Note that
provides the link to the state equation (1).

The function used in the base case is shown in Fig. 2 with fixed 2 GW and¢,,.. = 4 GW,
and 3 = 0.7 resulting from the calibration. Changingalters the aggregate response, as shown
by the dotted lines. There is the potential to include ddfgrresponse curves within each fuel
or peak/base generator type (e.g., as in [8]). There is alsadditional step whereby after each
2 GW of capacity of investment is triggered, the investorisien is re-run to ensure that no
other plant types become more attractive in relation torotipgions as a result of this addition.
This maintains the iterative adding characteristic in [@4hereby the decision is to 1) invest in
the most profitable technology (if any), followed by 2) a wof the investment decision with

all new investments accounted for. 1-2 are then repeatealdnonadditional plants are profitable.
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For multiple investments witl#7, > 0, the option with the highesPI, is chosen. Finally, total

annual investments are limited to 10% of installed capacity
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Fig. 2. Plot of model aggregate investment response curve defin€d) ifsolid line) wherei, = 2 GW and&a. = 4 GW.

Also shown are the minimum investment lump sizes along with curves fardiit values ofs.

The volume (GW) of plant mothballed or de-mothballed is dateed simplistically using
the linear function¢; = min(M, AGM,/10%), i.e., decreasing or increasing #G'M, (E/MW)
up to a maximum ofA/ GW (Fig. 3). In this casel/ is chosen to be 2 GW.
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Fig. 3. Plot of model aggregate mothballing response curve. Note that-#xis has been rescaled &kW).
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IV. PRODUCTION COSTING BY MIX OFNORMALS

When estimating expected long-run production costs, ttseaeneed for a reasonably accurate
approximation of the load duration curve (LDC). A MOND approation meets this requirement
and is also very easy to convolve with plant outages for theeeted output calculations.

A MOND is described as follows: consider a s&t= {yi,...,y,}, of Normally distributed
r.vs. with thei'” element having meap; and variancer;. Let ®(z|u;, 0;) be the cumulative
distribution function (cdf) ofy;. A MOND is a convex combination of the Normal distributions

and is defined by
F(z) =Y pi® (x|, o), (11)
=1
with > | p; = 1 andp; > 0, wherep; is the weight of the component [3]. Let x ando be the

mean and standard deviation respectively of the cdf desttrity (11). These parameters have

the following properties:

no= Zpiﬂzw (12)
1=1
o’ = Y pilo] + i) — . (13)

i=1

Another property is that the sum of two variables each disteéd as a MOND is itself a MOND.
The proof of these properties is in appendix A of [3].

The process starts by splitting the time horizon over whigst are calculated into periods.
In this case, the duration of each period is one year; althosigorter periods can also be used
to account, e.qg., for seasonal capacity. The expected lbadch hour is a r.v.

A MOND fit for approximating the annual LDC (MW) is required. Fexample, if f;(z)
is the probability density function of load anfd (z) is the cumulative distribution function of
fr(x), then the LDC is simply the rotated and rescaled leadeedenc@listribution® This is
the inverse oR760(1 — F(z)) where

Fi(r) = ipk@k(ﬂﬂk»%), (14)

k=1
which is a mixture of’ Normals (b;) with the same properties as (11). For a particitarthe

best fitting value of eachy, o, andp, can be found by solving an optimization problem that

minimizes the sum of squares of the difference between wedand fitted values of the LDC.

>The exceedence distribution givé§ X > x), that is the probability that the r\X (in this case load) is greater than
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To illustrate the accuracy of this technique at approxingati LDC, Fig. 4 shows the distribu-
tion of the GB hourly loads for the period 2005-09 (normalis®y the year’s average demand)
and the fitted distribution. This normalisation is necegsahen comparing multiple years to
account for demand growth. The difference between the twEG pIdts in Fig. 4(b) is not visible
at this scale owing to the excellent fit provided by the MOND.

3 65
2.5F f
! -
> NG 2
o0 N
215 / e
: 3
o el
2
1,
0.5
0
0.6 0.8 1 1.2 14 0 8760
Normalised load Duration (hours)

@)

Fig. 4. (a) MOND pdf (4 Normal components clearly visible by their distipeaks) and histogram of normalised load data

and (b) LDC fit with negligible visible difference between mix of 4 Normalsl @mpirical data.

A. MOND with conventional thermal generation (after [3])

The next step is to estimate the available capacity for afsgeerating units. The available
capacity at each hour from a particular unit is a r.v. whicleharacterised by the unit’s Forced
Outage Rate (FOR). Let the capacity of unibe defined by,, its FOR byp, and expected
available capacityG, = c,(1 — p,). That is, the distribution of the unit's available capacity
follows a Bernoulli distribution between zero amg; thus, the unit is either available at full
capacity (with probabilityl — p,) or on full outage with (with probability,,).®

If m, units of typen share the same capacity and FOR characteristics and arecsub]

independent forced outages, they can be treated as a sisglel@unit (or generator) with a

®More general models exist to account for partial unit outages (geg.[25]), however they are not considered here.
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distribution with the following moments:

E(G,) =pn =mucu(l — pu), (15)

Var(G,) =02 =m.p.(1—pu), (16)

n

where each (pseudo-) generatGr,, has capacity:,, = m,c,.’

Now the convolution property of the MOND is used to deterntine distribution for the ex-
pected load still to be served after each generator is dispdt(in merit order). This distribution
is called theeffective load duration curv€ELDC) facing the next generator to be dispatched
[26]. If the units can be grouped int¥ (pseudo-) generatdtgach with characteristics (15) and

(16), then we can define

Lo(2) :P{L—zn:Gi >a:} (17)

=1
as the load minus the available capacity of generator typesn (1 <n < N) [3]. If F,(z) =
1 — L,(x) is the cumulative probability of effective load= L — 3", G; facing the(n + 1)
generator, then

Fu@) = [ Bl +9)faly)dy (18)

and
L,(z)=1- F,(z), (19)

where f,,(y) is the pdf of the Normal that approximates the Binomial distiion describing the
available capacity of the'" type of generation with installed capacity.® F,,(x) is computed
by performing the convolution of the Normal distributionsr fload (which is a MOND) and
available capacity.

The convolution property of a MOND [3] is applied, with geatar loading carried out by
merit order. The expected energy servedin MWh/yr) by generator type: can then be given

"To simplify the presentation for the remainder of the paper, the conveniilbie to use ‘generator’ when referring to a
‘pseudo-unit’ (collection of units of a given type), ad when referring to the capacity of that generator, because this is the
last time individual units will be discussed.

8The more units in a group, the closer the Binomial distribution is to Normal.

®Technically for a Normal distribution, the bounds in (18) should-b& to co, but it is assumed here that the probability

of falling outside the physically possible ranffe c,,] is negligible owing to the Binomial distribution being rescaled te,0/
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by
Elen] = 8760 /O L (@) — Lo(2)]dz, (20)

whereL,_;(z) is the load still to be met after adding generator typel and L, () is the load
still to be met after adding generator which at the start of the convolution process=£ 0) is

obtained from (14).
The distribution for the ELDC after convolving in generators is given by:

1

i=1

Thus, the ELDC is described by a MOND with the same number ofpument Normals as the

K

Lo(z) = 1= pp®i(@lpr, — Y pic,
i=1

k=1

original LDC. An example of the iterative convolution prosas shown in Fig. 5. The diagram
depicts how the remaining expected load to be served is egldeach time a group of generators
is convolved with the ELDC.

Start with
full 7
LDC, no
units
added;
n=0.

R
Load (x) [GW]

70

Fig. 5. Example of the convolution process. Shaded region is the expestrgy served by the first unit dispatched (i.e., the
result of (20) withn = 1).

Given eachl,(x) (n = 1... N), the probability that generatar or higher (in the merit order)
is the marginal source of energy (and so sets the price) endwy L,,(0), i.e., the point where

the function crosses the vertical axis in Fig. 5. Further,
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is the probability that generataris on the margin. This result is used in Section IV-C to caltail
expected revenues per MW for a generator belonging to tmergéor type in an ‘energy-only’
market setting.

The unserved energy (MW) is then simply any positive remgithdad once allV generators
have been added. The annual expected energy unserved (BEWeccalculated by integrating
Ly.1(z) (i.e., after convolving in the complete setdfgenerators) from 0 teo and multiplying
by 8760 hrs/yr. Furthermore the Loss-of-Load Expectatld@L(E) for the period is determined
by computing8760 - Lx1(0) [25].

B. MOND with a thermal-wind system

Unlike conventional thermal generation units whose irdiral availabilities are assumed to
be independent, wind generators rely on the availabilitghef “fuel” resource and therefore a
dependency between available wind generation at diffeverd plants is introduced. As a result,
the convolution technique used to model thermal generatigi3] cannot be directly used to
account for wind power generation.

To address this issue, an exogenous wind capacity is assanaethe resulting residual LDC
facing thermal generation is computed and the MOND appration is applied to this wind-
adjusted data set. The residual load is simply the load mimei®utput from all wind plants at
each hour. By taking this approach, the analysis can takeaictount both spatial correlations
and seasonal (e.g., monthly and diurnal) trends in windlawidity and their relationship with
demand.

It is important to note that the residual LDC approach remsaye chronological issues that
arise in the wind and load time series. This is particulanhportant in the presence of large
amounts of hydro and pumped hydro generation where chrgiwalioproduction costing methods
may be preferred to load duration curve methods. Howeverithplementation of the MOND
technique is applied to the GB power system where the amduhydro and pumped hydro
is relatively small (about 4% of capacity), so the use of adlomration curve approach is

reasonablé®

ONote that there is little scope for new build of hydro technologies in GB due tdatteof suitable sites.
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C. Expected revenues from the energy market

In the absence of market power and unless there is a capadttage, the market price for
energy will equal the marginal cost of the last generatorgalispatched. If there is a capacity
shortage, and assuming there is no price cap, the price ledl @t the level necessary to ration
demand to the available capacity. More precisely, becaossutners are not generally exposed
to the real-time price, there is a willingness of supplidoad serving entities in US parlance)
to pay up to the Value of Loss Load (VOLL) when there is a stgwta This methodology is
applied in [4] in a long-run equilibrium model; that apprbais extended here to a dynamic
long run nonequilibrium setting.

During a particular year, the probability that generatowill be at the margin is given by
(22) and the price in that event will be the marginal cost & gfenerator)/C,,. This assumes
price-taking (competitive) behaviour by generators. Reminore, once the convolution process
has been completed for all generators, the probability that there will be insufficigaheration
to meet demand is given b¥y.;(0) and under this condition the price is assumed to reach
VOLL. Using the result in (22), the expected gross margin doparticular MW of capacity

belonging to generatat when generator is at the margin is given byE(MWh):
. =max {hi(m; — MC,),0} (23)

wherem; is the wholesale price when generatas at the margin, which in the absence of market
power is given byM C;. Using (22) to calculate (23), the expected annual pegfeximpetitive
gross margin (revenue minus variable cost) used in (4) caralweilated by £/MW/yr):
N
CGM,, = 8T60(1 — p,)[3° R, + (hy41 (VOLL — MC,))]. (24)

i=1

Economists term these “scarcity rents”. It is preciselyséhecarcity rents that, in a simple
long-run competitive ‘energy-only’ market model, are jagyh enough to cover fixed costs and
trigger investment [27]. The main numerical work here is amputing theL, (x) in (20); once
these are known, the revenues are calculated easily byphyuiy by the price - marginal cost
differentials. Note that no start-up or no-load costs anesmered here.

It is assumed that in a competitive energy market, genexdim to produce electricity at
or around their marginal cost. The rules of the GB marketvalior generators to trade freely,

n a more general case, some or all customers are exposed to ktienesarice.
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i.e., there is no marginal cost bid rule in place. Howeves tisi not a problem because the
equilibrium concepts for bilateral and central pool maskkave been proved equivalent (see
[28] or [29] for the Cournot case). Recent analyses of the GBketdB0] showed a tendency
for balancing market (BM) prices to rise above the estimatadgmal cost of the last generator
dispatched in peak demand hours. Other examples of enm@nedyses which support this claim
include [31, 32]. In [31], an analysis of the Texas BM reveagitience of bidders, particularly
smaller firms, submitting supply curves in excess of thedotktical optimal supply functiott.
[32] found that a Cournot oligopoly model provided a bettegresentation of the California,
Pennsylvania-New Jersey-Maryland (PJM) and New Englanalegle markets than a perfectly
competitive model during peak hoursand it was during these hours that the presence of price
mark-ups was detected. This price mark-up during peak ddnhawirs occurs because firms
can raise their bids knowing that the lack of alternativeoueses will mean their bids will be
accepted. In this case the market does not necessarilyatlfa@ marginal cost of production, so
in this study pricesr, includes an additional mark-up term that alters the shdplkeeoaggregate
supply curve as the system approaches scarcity. This nee famction is described in [24] and

is defined here as:
7(L,Gy,Gs,...,GNn) =mc(L,Gy,Gs,...,GN) +w(L,GYy) (25)

where mc(L, G, Gy, ..., Gy) is the marginal production cost of meeting the lodd,given
realised total available generatidiy, = >V | G;, andw(L, G%) = ae’ =%V is a function of
the capacity margin, defined as total available capacityumionad in a particular hour (similar
to [33]) whereL and G, are expressed in GW. Note that the parameteasndb are calibrated
so that a capacity margin of zero provides a mark-up equahéoMOLL (e.g., Fig. 7(b)}*
The use of this function can be justified by comparisons ofGBeforward Market Index Price
and simulated prices with accurate fuel price data (preseimt [24]), however in this example

application the parameters used vary slightly. This alseegywith the methodology used in

2profit-maximization where profit function is based on a contract foerfices between offer price and cost incurred for

supplying contractually obligated and BM quantities.
B3It vertical arrangements were also accounted for in the PIM and Nelafioh case.

YFor instance, for a VOLL 0£10,000/MWh,a = 10,000 andb = —1.123, and for£2,000/MWh,a = 2,000 andb = —1.101.
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[30] to simulate GB system marginal prices where wholesatsep were simulated using a price
mark-up function in peak hours.

For simplicity, linear variable costs are assumed for allegators, that is total variable costs
are given byC,,(P) = b, P, which leads to a stepped aggregate supply function in tbhe-stin
(if bids are assumed to equal generator marginal dast;,, = b,) based on the marginal costs
of the entire generation set. Fig. 6 shows an example of tloe punction given by (25); the
curve behaves like a classical linear step-wise marginstl ®pply function for small loads, but
as the system approaches scarcity, the mark-up functioontest evident and soon dominates

the pricing mechanism.

10000 voll
— ”(L)GI)GZJ°°°)GN)
000 4 LG 1.Go, Gy ) = MOy + WILG, ) NG
£
=
=
wd
\ . IMCy
(LG .G 3,esG y) = MC oy + (LG, )
10
Gp, |+ available Gy, —_— | Gy
Load

Fig. 6. Supply function for a given realised available capacity for ggnes N — 2, N — 1 and N with mark-up function

defined byw(L, G ) = ae’*~¢~) (shown as black line). Marginal cost dashed, price is solid line.

Now the market price (25) no longer just depends on which iggaeis on the margin, which
is the case under the classic perfectly competitive maikst ¢24); it now depends on the overall
margin, G — L as well. Furthermore, since the price can excééd,, if n is on the margin,
the question of whether a particular incremental MW of c#gaaithin » is called upon or not
must be considered. This is because marginal generatan still earn a positive gross margin.

If Ry“N is the gross margin received by a MW of capacity from generatfor load L and

total available generatio6y, then Riy“V will be calculated by one of the following means:
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1) If the marginal generator, sayis belown in the merit order (i.e., has a lower marginal
cost) then the generatar will not be dispatched andy “~ = 0.15

2) Else if the marginal generator has a higher marginal dwst ¢, then the probability of
dispatch is 1 andz, N = me(L, Gy, Ga,...,Gy) +w(L,Gy) — MC,,.

3) Else if n is the marginal generator, then the probability of dispatchesveen 0 and 1

and

RN = me(L, Gy, Gy, G) + w(L, GR)pir — MC, (26)
= w(L, Gy)pdisr,

wherep®s? is the probability that a MW belonging to generatois dispatched.

n

This probability of dispatch is approximated by

. . —M,,_
disp — max (mln {1, 1} ,0) , (27)
Cn(l - pn)

where M, , = Y7 !'G; — L is the surplus margin aftef. has been met using all available
generation lower in the merit order than(e.g., Fig. 7). In plain terms, (27) is the ratio of the
MWs of generatorn that are dispatched to the average total MWhdhat are available (which
is will differ from the actual available MWs of in any particular realisation). In the event that
this margin is negative, the fractional term in (27) will beegter than 1, therefore the m{in}
function is required in order to eliminate this possibilifyhis method of calculating dispatch
probabilities is required to account for market price mapk{25).

The expected gross margin (24) must now be extended to @rthiel price function (25) and
merit order operation. This is less straight-forward thader marginal cost-based pricing (23)
because the market price mark-up requires consideratigheofotal (generation-load) margin,
My, as well as the marginal unit.

By assuming that price mark-up is non-zero (ize(/L,G%) > 0) only when generatoiN or
N —1is on the margin, calculation of the probability distritmtiof w(L, G%,) can be achieved by
considering the joint probability distribution of just tlrapacity margins\/y_; and My. This
assumption is reasonable in an aggregated capacity modsiewhe generator size is large.

What's more, empirical evidence from the GB market (e.g.])[8that mark-up tends to occur

BThus we are assuming for simplicity that dispatch is still in merit order, itke$ipe presence of market power. However,
in oligopolies with asymmetric generating companies, a small high costaenenight produce power before a large low cost

generator, as the latter is more likely to withhold capacity. This possibility is onsidered here.
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—— Calibrated for VOLL = 10,000 £/MWh — — Calibrated for VOLL = 2,000 £/MWh
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200 - — * disp | N J
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=< 8,000 -
= | .
T e — M= @ 7o No mark-up if
2 Nt . o 60001 margin is
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Fig. 7. (a) Aggregate supply curve showing price (solid upper line)ldad L and revenue for generator of typgé — 1.

mark-up function also shown (dashed line). (b) Shows price marfeuplifferent values of capacity margin and calibrations
for a = 10, 000, 2,000 and 1, 000.

predominately during peak periods when surplus marginsedag¢ively small, and the surplus of
available resource in other periods means the presencer&etm@ower is unlikely. Therefore, it
is reasonable to assume that price mark-up is significaytwhen peaking plantdV or N — 1
are on the margin.

D. Expected price mark-up calculation

Firstly, for each component of the MOND (11), we considerjthiet distribution of capacity
marginsMy_; and My, which is given byf(My_,, My). The correlation is calculated as:
cov(Mpy ,Mn_1)

OMpn_10Mpy
o iy (28)

TMpy_1"TMy
IMpN_1

corr(My, My_1) =

TM
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This can be proved by considering the correlation betw&en Y and X, whereX andY are

independent variables, then

_ cov(X+Y)Y)
corr(X +Y¥,X) = /Var(X+Y)Var(X)

E([(X+Y]-[EX)+E(Y)]) (X—E(X)))
sqrtVar(X+Y)-Var(X)
E(X-EX)+[Y-EY)]) (X-E(X)))
VVar(X+Y)Var(X)
E(X-EX)|-(X-EX)+[Y-E})](X-E(X))
/Var(X+Y)Var(X)
Var(X)+0
VVar(X+Y)Var(X)
Var(X)
Var(X+Y)"®

(29)

Fig. 8 shows a plot of the isoquants of the bivariate Normaisdg for { My _, My}, which
are highly positively correlated owing to increaseshifyy_; increasingMy. For a particular
point (My_1, My), the diagram shows the value of the joint pdf (ellipses) arnidepmark-up
isoquants (dotted lines in each quadrant centfed)). By splitting the space into four quadrants
and sketching the isoquant maps, the effect of availablaagpmargins on plant revenues can
be assessed. For instance, when plant ty¥pes not dispatched (north-east quadrant), increases
in My result in a decrease in mark-up (indicated by parallel lomtizl lines, two example
mark-ups shown). Likewise, wheN is dispatched (north-west quadrant,y_; is in shortage).

If My is in shortage (south-west quadrant), the mark-up is zer@lfocombinations)M and
My (i.e., system is short of resource and the price will reaehMOLL). Note that the south-
east quadrant is assumed to have zero probability; it woalddlculated as having a nonzero
probability only because the Normal approximation will@ian unrealistic nonzero probability
for negative availability capacity for generatdr— 1. However, in the application, this probability
is negligible.

Next, for each component of the MOND (11), the revenue thatVel belonging to generator
n < N earns from price mark-upz PM,, (EIMWNh), is considered for the following cases:

1) If n < N—1 (i.e., lower in merit order thav — 1), then the expected revenue from price

mark-up for a particular MW of that capacity is given by
RPM, = /0 (1 — po) (M) w(My)dMy, (30)

where f(M) is the pdf of the surplus margif/y = G — L. This assumes that(My)

is a function of My only, i.e., the overall system margin, and that generators 2 and
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339 ' Price mark-up isoquants Myrand My surplus;
Myyshortage; | ] ~_____\ generator N not
generator N m dispatched
dispatched =) | : .
Example mark-up isogquants:
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] " mark-lp = 0.1 £/MWh
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Fig. 8. Diagram showing 3-D plot of bivariate Normal ¢f\/nx_1, Mx} (right) and its image on a 2-D plane (left) with

isoquant maps for the priamarkupelement of (25).

N — 3, etc are all fully dispatched when mark-up is nonzero. Thiegral lower bound

in (30) is zero due to price mark-up being zera\ify < 0. More precisely, if the overall

margin is negative then there is no mark-up and the priceti®pehe marginal cost of

demand (i.e., VOLL). The integral upper bound in (30) is sorakie,v, above which the

price mark-up is negligible owing to the large surplus mar@.g., 7 GW in Fig. 7(b)).
2) Else ifn =N — 1, then RPM,, is broken down into two sub-cases:

a) If My_, <0 (i.e., north- or south-west quadrant of Fig. 8) then
0 &
RPM, = / / (1 — pu) (M, My_1)w(My)dMydMy_1, (31)
J—o0 JO

which is the case where all of generafér 1's available capacity will be dispatched
because load exceeds the available capacity of generathw®udgh N — 1. Again,
the inner integral lower bound & becauselM < 0 results in zero price mark-up

(south-west quadrant of Fig. 8).
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b) Else if Mx_; > 0 (which impliesMy > 0, so north-east quadrant of Fig.8then

RPM, = [ [ DT (M, My )w(My)dMydMy-1, (32)
N—-1

wherep‘f\?’s_ﬁ’1 is the probability of dispatch of generatdr — 1, given by:

pdisp _ (1 - ,0N71>MN72
N 1 (My_y — My )

where My _, is the surplus margin after all available generation lowethie merit

(33)

order thanN — 1 has been dispatchéd.My_, is a r.v. and computation of its pdf is
awkward; however it can be approximated as followsy » ~ (E(Gy_1) — My_1).
This is achieved by approximating the realised valueGgf_; by its expectation,
(15): E(Gy_1) = eny_1(1 — py_1).*® Leading to:

PP (1 —pn_1)(env—a1(l — py_1) — Mn_q)
N 1 (Mo — (enoi(1 = py—1) — My-1))’
i.e., the expected surplus margin over generatoexpected available capacity. Note

that My_, > 0, S0 My_s < 0,2% and thusd < p%, < 1.

(34)

3) Elsen =N andMy_; < 0 and My > 0 (i.e., north-west quadrant of Fig. 8):
0 v .
RPM,, = /_ /0 Pt f(My, My_1)w(My)dMydMy_y, (35)

where
disp _ (1 B pN)MN—l
N —1-(My — My_y)’

i.e., the case wheré/y_, is in shortage and some volume of capacity from generator

(36)

(= N) will be required to meef.?!

18\We assume that the probability of being in the south-east quadrant 08 Fégzero because of the discussion above.

1"The —1 scalar is applied to the denominator of (33) in accountf\ff_, being negative. If it was positive, thefy_1

2i*P = (), which is not considered in (32).

would not be dispatched (i.ep.

8Note here thaty_; is the capacity of the generator typé — 1, which is the sum of a number of individual units who
share the same capacity and FOR characteristics (see footnote 7).

9In general,My_» could be positive, however the assumption here is that it is negative primmark-up is greater than
zero.

2There is no second case here; only the case whéte ; < 0 is of interest (if My_1 > 0 thenGy is not dispatched and
mark-up revenue is zero).

21The pdf of capacity margin is Normal in account of both available geiverand load (in fact, a MOND) being Normal.
ThereforeM_1 and My could conceivably be-oo. However, practically speaking the outer integral lower bound in (3d) an

(35) is set to—1 - [maximum value of loafl(i.e., the highly unlikely situation when all generation is unavailable).
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Finally, by integrating over the subregions of thé/y_,, My} space in Fig. 8 (i.e., using

cases 1-3 above), the expected annual gross margin foragenercan be calculated as
GM, = CGM,, + Ele,| - RPM,,. (37)

This is repeated for each component of the MOND.

This is an important extension to (24); by exploiting the geuies of the probability distri-
bution of capacity margins, this allows for the additionatenue received from market price
mark-up to be calculated during the production costing @secProcedures for calculating price
mark-ups in probabilistic production costing models hagerbproposed (e.g., see [34] where a
Cournot model is proposed). To our knowledge this is the fins¢ these derivations have been
presented.

To speed up the computation of (31)-(35), the outer integgralarried out using Gaussian
guadrature (GQ), which requires fewer function evaluaidiman other methods, such as the

recursive adaptive Simpson quadrature and is given by
1 n
[ f@)de x> wif () (38)
- =1

which after some manipulations, can be applied to the iatémnb]. Heren = 100 is used.

E. Test of accuracy

To test the accuracy of this method, the results of a MonteoC@C) simulation were
compared with the MOND technique. That is, for the load (a MD)Mnd generator cost inputs
given in Table I, capacity mix given in Table Ill and mark-upnttion calibrated to VOLL
10,000 £/MWh, random samples for load and generator availabilityem@ken. Using these
samples, the margin\/y, price (25), and energy market gross margins were calalfateeach
unit. Close attention was paid to the tail of the distributiynusing importance sampling. More
precisely, high loads were oversampled using the compoNenial of the MOND with the
largest mean (i.e., row 1 in Table I) with corresponding mgarstandard deviation,, and pdf
f*(z). Samples were then weighted using the weighting functiofx) = f(x)/f.(z), where
f(x) is the 4 component MOND pdf and is the random sample fromV (p,, 0?).

The MC simulation was repeatdd® times. The results of this test are displayed in Table II.

“MOND” shows the results for the MOND technique includingetmethods and approximations
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of Section 1V, above. “Monte Carlo” is for a Monte Carlo (MC) teghere available capacity is
sampled from a Normal distribution with parameters defingd15)-(16). Finally, “Bernoulli”
samples available capacity from a Bernoulli distributiae.(iO or full capacity based on uniform
random number generation for given FORs). The Bernoulli testas no approximations con-
cerning the distribution of available capacity or its effeon prices and mark-up, and so is the
standard against which the new MOND model should be comp&wexchparing the MOND and
Bernoulli tests shows the effect of using a Normal approxiomator available capacity rather
than the Bernoulli distribution. Encouragingly the MOND hea@ue matched quite well to the
MC simulation (with only a mild over-estimation of gross mias by the MOND technique).
Further, the Normal approximation for available capaciigogperforms well. This test gives
confidence that the MOND approximation is a good one. Not¢ ttia “energy expected per
generator” in Table Il for the Monte Carlo and Bernoulli teststhe result of multiplying the
mean utilisation across the MC runs of each generator byata¢ theoretical available energy
of each generator. For instance, if the capacity of gener&te- 3 is 11 GW and the mean
utilisation is, say 0.75, then energy expected is given b§08¥1*0.75=72,270 GWh. For the
MOND test, this is calculated using (20).

TABLE |
INPUTS FORMOND TEST CASE

Loads (MOND) wi (MW) | o; (MW) Di
43802 5743 0.43
41650 1410 0.12
33971 3372 0.33
26089 1771 0.12
N -3 N -2 N—-1| N

Generator MCsf/MWh) 7 40 45 60

V. CASE STUDY ASSUMPTIONS

The new dynamic model is applied to an ‘energy-only’ markewhich there is no separate

capacity market, setting with a initial capacity mix conmgdale to the GB power system and a
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TABLE I

SUMMARY OF RESULTS FORMONTE CARLO TEST.

Scarcity rent £/MWh) Price mark-up £/MWh) Energy expected per generator (TWh)
N—-3 N-2 N-1 N N—-3 N-2 N-1 N N—-3 N-2 N-1 N
MOND 1.48 1.70 1.70 1.3 39.03 6.03 2.15 2.0 72.27 198.89 63.12 0.12
Monte Carlo | 1.43 1.64 1.66 1.33 38.96 5.96 2.09 199 7224 198.88 63.09 0.12
Bernoulli 1.41 161 1.63 1.30 38.91 5.92 2.04 1.94 7224 19940 63.11 0.12

VOLL of £10,000/MWh with a simulation time horizon of 30 years (2010)-4To reflect the
restrictions in suitable sites for nuclear builds in GB, katatalled nuclear capacity is constrained
to 30 GW.

The expected hourly aggregated onshore wind output in GBnslated using the methodol-
ogy described in [35] by obtaining GB wind speed data for 2005to match the empirical load
data), transforming to capacity factors using a Vestas ¥ 80w wind turbine power curve and
applying regional weightings derived from the current woapacity in operation, construction,
or consented in GB.

For offshore wind, the expected hourly aggregated capdadtiors are calculated using the
simulated wind speeds from the Weather Research Forecast|Medeloped at the University
of Edinburgh [36]. This is a fully compressible, nonhydaigt mesoscale atmospheric 3km grid
point model similar to the Met Office Unified Model [37]. It hbsen validated against measured
offshore wind speed data for a number of sites [38], and iratience of extensive measurement
data, provides credible estimates in time and space for BieftShore wind resource. The wind
speeds are transformed to capacity factor using the sameaggbpas [35] using the larger Vestas
V90-3 MW power curve. The weighted regional capacity fastare based on the results from
the GB 1-3 Crown Estate Round auctions [39].

The total installed wind capacity is exogenous to the maatal, is expected to increase linearly
from 2010 levels up to 30 GW by 2020 with a maximum of 35 GW in 20&fter which it levels
off. We justify this approach by the fact that, to date, lasgale investment in wind capacity is

driven by political, rather than economical consideradiolt is therefore assumed that policies
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promoting investment in wind generation are successfuléeting renewables targefsand the
purpose of this work is to provide insights into the respaofsevestment in thermal generation
and subsequent levels of security of supply risk. The allonabetween onshore and offshore
areas is consistent with the data in [35] and [39].

The residual load facing thermal units for a particular hisucalculated by scaling the hourly
wind production by the installed capacity and subtractinigam the full load. Fig. 9 shows an
example of the impact on the 2005-09 residual load histograsnpenetration of wind increases.
Each of the 30 year's MOND residual load curves are precafedlassuming fixed underlying

demand patterns and are then scaled over time in order tchrttagcload growth assumptions.

x 107
L rds

—2Gweew,oaw| | |[— 2GW (2GW, 0GW)
6| | —20GW (10GW, 10GW) i

Density

3
Load [GW] < 10° Load [GW] < 10*

(a) (b)

Fig. 9. Result of increasing installed wind capacity from (a) 2 GW to (b) 20 @ residual load histograms. Data shown is

for 2005-09. Numbers in brackets indicate volume of onshore arsthafé capacity respectively.

Data on initial 2010 system capacity in Table Il is deriveddggregating GB capacity data
[41] into the five capacity types and unit sizes describedactign Il. To keep the model simple,
minor sources of peaking capacity such as oil and pumpedg#as combined with OCGT. CHP
and hydro are aggregated with CCGT plant to obtain the unilststeown in Table I1I. To reflect
capacity already under construction in GB, 10.7 GW of CCGT dapas assumed to come
online during the first (1.5 GW), second (5 GW) and third (4.2 GWang of the simulation.

Z2For instance, the UK Government has a target of around 30% retewtaotricity generation by 2020 in order to meet the

binding European Union target for renewable energy [40].
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GENERATOR INPUT ASSUMPTIONS WITH SYMBOLS DEFINED INSECTION I1I.
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Technology | Therm. | FOR | Capex FC Var. O&M | Lifetime | Build WACC TAFC TIAC | Initial No.
x eff. P £EIKW | £/kW/yr £/MWh a (yrs) | 7 (yrs) | r (realf | £unforMW/yr | EIMW (GW) | units
Nuclear 0.36 0.10 2,913 37.5 18 40 7 0.09 400,750 931,170 11 22
Coal 0.35 0.14 1,789 38.0 2.0 40 5 0.07 216,710 344,100 | 27.5 55
CCGT 0.53 0.13 718 15.0 2.2 25 3 0.07 91,840 96,030 28.6 143
OCGT 0.39 0.10 359 15.0 4.4 40 2 0.07 47,250 36,690 7.7 154

8Assuming a 2.5% rate of inflatiofiRecent years have shown a decline in the annual availabilitge GB nuclear fleet (likely due to age),
therefore this value is reduced to 75% for existing nuclegracity. New nuclear builds are expected to have 90% avityab

Existing plant included in the Large Combustion Plant Dikec{LCPDY? is modelled with a
reduced lifetime based on the estimates of remaining gegngrhours given in [42]. All other
existing units are given retirement dates consistent with lifetime assumptions in Table Il
This table also shows the financial and technology inputrapsions, including capacity cost
assumptions7’AFC, andTIAC, (cf. Section IlI-A).

We assume there will be no load growth until 2020 (althoughexplained, realised growth
varies around the mean rate). This is broadly in line withtre@rJpdated Energy Projections
published by DECC [43] and base forecast winter peak demandeBgfrom the GB System
Operator (SO) [41]. Expected electricity demand after gosit is assumed to grow at 1% per
year until 2025, after which it levels off.

Exchange rates are assumed to remain consta@&il &0£ and $1.5(&. All calculations are
carried out in real pounds sterling. Real discount rates seel wwing to the forward estimates
for fuel and carbon prices being in real terms. All capitatl @perating costs are constant in

real terms (2008 prices).

ZA control on emissions from heavily polluting large combustion plant intceduby the European Union in 2001.
Approximately 11 GW of emission-intensive capacity is expected to bend@issioned by 2016 under this legislation

%Note that the DECC projections do not go beyond 2025 and the GB SO piptimiascale is up to 7 winters ahead.
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VI. CASE STUDY RESULTS
A. Base case results

The model has been implemented using in the Matlab/Sim@imkronment. For a GQ (38)
with 100 points, the computational efficiency of the MONDHeirjue allowed for each produc-
tion costing run to execute in under 1.5 seconds. Thus thechastically simulated years and
100 MC simulations required 7x100x2=1400 seconds. Consglguéor the 30 year simulation,
execution took between 525 and 1575 minutes, dependingeonuimber of technologies chosen
for investment (recall the iterative characteristic disamt in Section I1I-C)°

Fig. 10(b) shows the evolution of total installed capacitythe simulation. New builds and
plant retirements are shown in Fig. 11(a) along with the @wi@h of the mix and amount of
generation over time in Fig. 11(b). Shown in Fig. 10(a) isfileand de-rated capacity margin.
The de-rated margin is the ratio of de-rated capacity (DGtéiled capacity scaled by expected
availability at peak demand) to most probable peak load;(P&) [DC]/[PL]— 1. The forecast
for PL is obtained from the 99.9% percentile of the year’s MD&df for full load (i.e., the load
which is exceeded approximately 9 hours per year). The FORslte Il are used to de-rate
conventional capacity, and for wind the long-term capacigdit (%) values are calculated using
only those hours within 10% of peak demand [35]; these ranya B-35% depending on level
of installed capacity (the higher the total installed cagyathe lower the capacity credit). These
capacity credits provide an estimate of the expected darion of wind generation to supporting
peak demand® Furthermore the use of de-rated margin permits the levekofisty of supply
risk to be estimated when high penetrations of wind ger@aire present and calculation of an
absolute level of risk is difficult. Moreover it can easily bempared with the GB SO'’s current
estimate of what constitutes an acceptable m&rgin.

To compare the performance of the simulation against histoegnds in GB, the model was

run from 2001-10 and a comparison between the modelled andlacapacity margins was

Bplainly, reducing the number of GQ points shortens the production costemugon time (e.g., 25 points provided a 0.7
second saving), however the accuracy of the MOND technique showakile Il decreases.

*periods of highest demand are typically associated with at least some[44ihd

Z’For example, see Appendix to [42] and the UK Government’s recemsuitation on GB electricity market reform [40].
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Fig. 10.
using data from [42] and [45]. (b) Plot of simulated capacity growthtddis 'actual’ capacity (2001-10) derived using data
from GB SO’s Winter Outlook reports [42].

(a) Plot of simulated de-rated and full capacity margins. Histbgoretical GB capacity margins (2001-10) derived

performed®® The comparison shows that simulated margins do not peyfestitch historic
trends in all years (e.g., 2002/3), however there is a redsprgood agreement of our model

with reality, which gives a degree of confidence in the realsf our future projections. Note

28See [24] for cost and initial capacity data.
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Fig. 11. (a) Plot of simulated new builds and retirements over time. Neghévs indicate plant retirements and positive bars
indicate new builds. Also shown are historic new builds (all CCGT) for 208X columns labelled ‘CCGT DUKES’ [46]). (b)

Plot of total installed capacity over time, i.e., the result of the mix and amolugeneration investment and retirements over

time.

that the “historical theoretical de-rated margin” is whag forecast de-rated margin would have

been for a given winter using the assumptions about plantadilgly and winter peak load.
This data can be obtained from the GB SO’s Winter Outlook rrsp.g., [42]). Furthermore,
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the comparison of available historical data on capacityitexhd plotted in Fig. 11(a) shows that
the CCGT investments triggered by the simulation (columnsr&003) do not correspond in
all years (e.g., 2008) but the volumes and timing are notasmeably different.

The future trend shows an erosion of de-rated capacity msrgfter around 2015. This
coincides with the LCPD plant retirements and rapid offshwired growth. Of the 30 simulated
future years, the average de-rated margin is 5.6% with adatdndeviation of 7.1%. De-rated
margins are negative in 4 years, below 5% in 15 years, andvb®&086 in 25 years. For those
years where margins are below 10%, an average shortfall 8Ilo€Gcapacity was projected. The
UK Government’s recent consultation and subsequent wihipep(July 2011) on GB electricity
market reform has stipulated that a peak de-rated margirO% firovides an acceptable level
of generation adequacy risk [40]. Further, the GB SO hasntgcstipulated that a de-rated
capacity margin of 5 GW over expected peak demand is desifabe Appendix to [42]). These
simulation results suggest that a lower than desirable lgvadequacy risk could potentially
occur.

The annual LOLE and EEU was also calculated (cf. Section )Vi&e average annual LOLE
across the 30-year simulation was 0.03 hrs/yr with a stahdawiation of 0.05, and average
annual EEU of 5.7 GWh (less than 0.002% of typical year’s tatalual energy demand). The
yearly LOLE together with the volume of hypothetical adaial capacity required to meet a 5
GW de-rated capacity margin at peak is plotted in Fig?°1Zhe graph shows how the LOLE
is higher in some years, particularly in 2023-26, which i#ected in the de-rated peak margin
shortfall. To put these figures in context, an historic gatien adequacy risk calculation is
required; this will allow performance relative to histotevels of risk to be assessed. However
this analysis is beyond the scope of this paper. Furtheti@aID representation is less accurate
for the tails of the distribution and so these risk indicesuti interpreted with caution. With
this in mind, the values for LOLE and EEU are used primariljagsess the changes in relative
levels of risk over the simulation time horizon and to benahkthe sensitivity analyses described
below rather than to predict absolute levels of system risk.

These projected risk and de-rated capacity margin figurggest that the system may ex-

perience tight supply conditions during peak demand in sge@s. Some of these results can

29A value of zero implies that de-rated margin is in excess of 5 GW.
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Fig. 12. Plot of simulated LOLE (bars) and capacity shortfall over 5 Gdfated capacity margin (solid line).

perhaps be explained by inspection of the residual loaddnams from Fig. 9(b); the shape
of the right-most tail suggests that even with very high pextens, wind power does not

contribute in all high demands periods. However the freqyest these high-demand/low-wind

periods is too low to justify investment by private investoAnd it is these very high-demand
hours when the potential for a capacity shortfall is highHegtluding here SO actions such as
voltage reductions). From a policy perspective, it is abdypaineconomical to design policies

aimed at ensuring there is adequate generating resourtabdedor these low-frequency events;
an alternative approach would be to encourage demand-sidigipation through smart grids

and smart metering. However these mechanisms will intreduice dynamics not currently

witnessed in most liberalised energy markets and therefareful consideration of the impact
of demand response on generator’s anticipated energy traslenues is required. However this
consideration is beyond the scope of our investigation.

Further, an analysis of generator revenues shows symptbrmsfoom and bust investment
cycle. Simulated OCGT total gross margins, which includeuatised capital costs (cf. Table Ill),
are plotted in Fig. 13. Also shown are the triggered investsié this technology. Recall here
that investors stochastically simulate 7 years of priceghe largest investment years (2017/18)

include the forecast prices for (2023-25), the period whessg margins are highest. However
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Fig. 13. Plot of simulated total gross margins for OCGT capacity (solid lafeaxis). Also shown are the OCGT investment

and mothballing amounts over time (black bars, right axis).

investment reduces in 2019-22 in response to expectatimmg arices being dampened (although
not sufficiently to prevent an overshoot) as new investme@CGT and other technologies enter
the system. It is easy to see the pattern of high gross margimesponding to those years where
adequacy risk is highest (cf. Fig. 12). The graph shows hebibom in OCGT investment in
expectation of the high gross margins after 2023 is followgd bust phase around 2026 when
large volumes of new nuclear capacity begin entering theesygcf. Fig. 11(b)). This increases
the capacity margin but reduces profitability for peakingtsunin fact, a significant volume of
plant is mothballed toward the end of the simulation timeizwr suggesting that generators
expect energy market revenues to remain low.

The mothballing of OCGT early in the simulation (2011) is likeéo be a direct result of
unrealistically high capacity margins out to 2014 (cf. Fif(b)); the existing CCGT builds
come online during these years in anticipation of LCPD clesycf. Section V). To avoid over
complicating the plots, the profitability of other techngiles is not included, however similar
profitability trends were withessed for CCGT. Investment in QQapacity begins around 2014
with similar trends witnessed in CCGT and nuclear, howeveraab iovestments are made (a plot

of technology screening curves showed coal as unecononeiegive to the other technologies).
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After 2025, very little CCGT or OCGT investment is triggered agndogenous capacity
growth is minimal. Nuclear plants experience a sustainethgef positive gross margins after
2023, which is attributed to the rising fuel and carbon cestsessed for fossil-fuel technologies
(DECC central case estimates) and hence increasing sceeniyy Combining this with the data
presented in Fig. 11(a), implies a period of intense CCGT and D@&estment for the 10
years after 2015 to offset retirements to existing capaity respond to demand growth during
2020-25. Average annual endogenous capacity growth i86-d@tween 2015-25 as a result of
29.7 GW of new thermal build being offset by 42.2 GW of thermkint retirements (options
for lifetime extension not considered here). This suggtsis thermal capacity is not replaced
on a like-for-like basis, which is hardly surprising givdmt average growth in installed wind
generation is 12% over the same period. The ten years afg& @@vide better growth (average
endogenous capacity growth 1.2% between 2026-35), on atcbwind capacity levelling off,
demand remaining flat and retirements continuing. In faatlear is the only endogenous plant
type to increase in terms of total installed capacity forpgkeeaod 2025-40. This analysis suggests
that new investments struggle to recover fixed costs duhageriod after 2026 owing to growth
in nuclear capacity within a high wind system dampening gynenarket revenues for fossil-fuel
generation.

An interesting analysis is to compare simulated real-tiamen(ial) prices with investor expec-
tations. This can be used to determine how well investorgigiiens of gross margins track
those realised. Fig. 14 shows the average simulated camegtrices across the MC runs versus
realised competitive prices for 1 and 3 years ahead for ehtteoyears 2010, 2015, 2020 and
2025. Choosing 2020 as an example, in Fig. 14(a) (x-axis)atleeage of expected simulated
competitive price for 2021 (solid line with squares) is heghhan the realized price for 2021
(dashed line with triangles) by EMWh. The degree of difference is also directly related to the
volume of plant under construction; the more plant beindtbthie greater the over-estimation
of market prices (and hence gross margins). Furthermoeeprtbportion of long lead time plant
under construction exacerbates this trait. For instanc&0R0 the volumes of OCGT, CCGT
and nuclear capacity under construction are 3.9, 5.8 and 3 ré8jgectively, where as in 2025
it is 0, 10 and 6.5 GW, respectively, which is the year with Higgest difference. Note that,
although mark-ups from market power are not shown herejgglgcthe same pattern occurs for

simulated revenues from mark-ups. This can be traced bathetalegree of uncertainty with
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which plant under construction is treated by the investuoe; éxact timings of when new plants
will arrive are modelled as stochastic (cf. Section IlI-Ap test this hypothesis, a sensitivity
case was modelled where investors have perfect foresighit atvestments in the pipeline, this

is described in the next section (case 2c).

I Capacity under construction at start of year

—=— Average simulated competitive prices +1 yr ahead

- +- Realised competitive prices +1 yr ahead

—— Average simulated competitive prices +1 yr ahead (sensitivity 2c)
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Fig. 14. (a) Plot of expected competitive market prices 1 year ahead decision year (x-axis) and (b) expected competitive
market prices 3 years ahead from decision year. Volume of capauitgriconstruction at time decision is taken also shown in

each case (columns).
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B. Sensitivity analyses

In order to test the robustness of the model, extensivetsgtysanalyses have been performed

on a number of model assumptions. Those found to be the mtisarsome of which are plotted

in Fig. 15 with key associated metrics shown in Tables IV andn¢lude:

1)

2)

3)

4)

5)

6)

The level of expected scarcity price (i.e., VOLL). Hetee maximum value of 10,08IMWh
is reduced and the price mark-up functiar(L,G%) is altered (cf. Fig. 7(b)) when
calculating expected gross margins (37). Experimentggusase a) VOLL 30000’: 30,000
£/MWh and b) ‘VOLL 2000’: 2,000£/MWh are carried out.

Investor expectations about new builds. Taking insgirafrom [6], we test case a) the
‘believers’ case; here the investor ignores plants under constructi@nwnaking expec-
tations about revenues. The impact of new builds on pricesoaty considered once
plants are fully operational (i.e., will systematicallyesypredict market prices). Secondly,
case b), thépre counter’is used where the investor views all plant under constractio
as operational (i.e., will systematically under-predicarket prices). Finally, case c), a
'accurate’ investor is modelled where estimates about constructiad tenes match the
delays experienced in reality (i.e., lead times shown inlgal). This last case can be
used to test the hypothesis that differences betweenedadisd investor expectations about
prices is due to the uncertainty surrounding capacity uedestruction.

The aggregate investment response from the market. Shachieved by altering the
constant exponentj, in the aggregate investment response function (9) to g)'Rekp.
higher’ and b) 0.5,'Resp. lower’ (cf. Fig. 2).

The ability of plant owners to exercise market power anldwes of revenues received by
doing so, reference ‘No markup’. This is achieved by cakindpexpected gross margins
using (24) instead of (37) (i.e., no price mark-up and a pésfecompetitive market).
Investor risk preferences: achieved by case a) ‘VaR highereasing criticalg to 0.5
in VaR test (cf. Section IlI-B), case b) ‘VaR lower’: lowegrcritical ¢ to 0.01, case c)
‘WACC lower’: reducing investor WACC and case d) ‘WACC highdricreasing investor
WACC.

Increasing investor uncertainty about load growth. $twes still consider load growth to

be stochastic, however the standard deviation of the Nodhsadibution used to sample



load growth is increased from 1% to 3%, reference ‘Load SD'.
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7) Economics of peaking plants: achieved by case a) ‘AS @@dueducing the amount of

AS revenue for OCGT plants and case b) ‘FC increase’: inangasital fixed costs (i.e.,

TAFC,).
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Fig. 15. Plot of simulated LOLE for selected sensitivities (nos. 1-6). Ntmelogarithmic scale.

Overall, the model’'s qualitative behaviour was reasondbtethe sensitivities listed and

provided some useful insights, particularly when compatime oligopolistic base case to the

perfectly competitive market results (i.e., zero price kaap, see below).

For test case ‘VOLL 30000, by increasing the VOLL, the exjpdion would be to see more

investment as price spikes signals are stronger, whichdgoodentially lead to a lower level of

risk and also more investment relative to the base caseeBbrase ‘VOLL 2000, by reducing

the VOLL, the expectation would be to see delays in investrasrprice spikes are dampened,

which could potentially lead to a higher level of risk andaalsss investment relative to the base

case. For instance, in a perfectly competitive market, oheoffor an OCGT plant to recover
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TABLE IV
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ANALYSIS. FIGURES IN BRACKETS BELOW EACH CASE FIGURE SHOW STANDARD DEWTION (SECURITY OF SUPPLY RISK

METRICS) OR VOLUME OF PLANT MOTHBALLED (TOTAL INVESTMENT AND MOTHBALLING )

Security of supply risk metrics Total investment and mothballing
Average Average No. years Deepest LOLE EELU 2010-40
de-rated  diff. in negative shortfall (hrslyr)  (GWh (GW)
margin margins (%,yr)
2010-40  relative
Test (%) to base
case (%) Nuclear Coal CCGT OCGT
Base case 5.6 - 4 (-6.8, 2024) 0.03 5.7 30.5 0 34 12.1
(7.1) (0.05) 9.2) - 3.00 (12 (4.6)
VOLL 30000 6.5 1.2 1 (-1.3, 2025) 0.02 3.3 315 0 37 15
(5.0) (0.02) (3.1) - (25) (7.8) (10.9)
VOLL 2000 3.8 -3.0 10 (-9.0, 2022) 0.22 46.8| 30.5 0 32.6 13.3
(7.8) (0.49) (116.7) - (3.00 (3.0 (5.0)
Believer 12.9 7.0 1 (-2.6, 2018) 0.01 1.9 30.5 0 34 32.4
(6.7) (0.02) (4.8) 0 (3.5) 0 (15.0)
Pre counter -5.1 -10.1 21 (-16.9, 2026) 0.71 158.1 30.5 0 27.6 12.0
(8.5) (0.70)  (167.3) - (3.0) (36) (5.3
Accurate 1.7 -3.9 15 (-5.9, 2030) 0.06 10.2| 31.0 0 24.2 229
(4.5) (0.05) (8.3) - (1.5) (3.6) (6.2)
Resp. higher 6.3 0.8 6 (-4.7, 2024) 0.02 4.0 31.0 0 36.8 13.7
(5.2) (0.03) (5.3) - (3.0) (5.8) (6.6)
Resp. lower 5.0 -0.5 8 (-5.8, 2023) 0.05 8.9 29.0 0.5 35.2 19.8
(5.7) (0.08) (14.3) - (25) (1.0 (4.9)
No markup -8.3 -13.0 20 (-33.2, 2024) 3.9 1474, 31.0 0 32.6 8.5
(14.4) (6.25) (2621.2)] - (1.0) (0.6) (1.4)
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TABLE V
SECOND SUMMARY TABLE OF SECURITY OF SUPPLY AND INVESTMENT RESLTS FOR BASE CASE AND SENSITIVITY
ANALYSIS. FIGURES IN BRACKETS BELOW EACH CASE FIGURE SHOW STANDARD DEWTION (SECURITY OF SUPPLY RISK

METRICS) OR VOLUME OF PLANT MOTHBALLED (TOTAL INVESTMENT AND MOTHBALLING )

Security of supply risk metrics Total investment and mothballing
Average Average No. years Deepest LOLE EEV 2010-40
de-rated  diff. in negative shortfall (hrsfyr)  (GWh) (GW)
margin margins (%,yr)
2010-40  relative
Test (%) to base
case (%) Nuclear Coal CCGT OCGT
Base case 5.6 4 (-6.8, 2024) 0.03 5.7 30.5 0 34 12.1
(7.1) (0.05) (9.2) - 3.00 (1.2 (4.6)
VaR higher 7.3 1.7 4 (-5.3, 2023) 0.02 34| 295 0 30.6 18.2
(5.2) (0.03)  (5.1) - (35) (28 (6.4)
VaR lower 6.2 0.9 5 (-5.7, 2023) 0.02 4.2 30 0 31 16.6
(5.0) (0.03) (6.1) - (3.0) (3.6) (7.2)
WACC lower 7.0 1.4 4 (-4.9, 2023) 0.02 3.3 30.5 0 28.4 7.8
(4.8) (0.03) (4.8) - (3.00 (1.0 (1.6)
WACC higher 4.8 -0.8 7 (-5.5, 2023) 0.03 5.8 31.5 0 39.2 19.1
(4.6) (0.04)  (7.5) - (3.0) (@14 @7
Load SD 8.5 2.9 3 (-1.9, 2026) 0.01 2.0 30.5 0 324 22.6
(5.3) (0.01) (2.9) 0 (2.0) (0.8) (6.7)
AS reduce 3.9 -1.6 12 (-6.9, 2023) 0.05 9.3 31 0 39.2 9.9
(5.0) (0.07)  (12.5) - (3.0) (.00 (5.1)
FC increase 5.9 0.0 5 (-4.1, 2023) 0.04 7.4 30.5 0 38.8 12.8
(4.3) (0.04) (7.1) - 3.0) (3.00 (14.3)

its fixed costs (47.2%/unforced kWl/yr), the price must reach the VOLL (10,0808/Wh) in

at least 4.7 hrs/yr (actually more to account for short-ru@ bf production), and reducing the
VOLL to 2,000 £MWh increases this duration to 23.6 hrs/yr. The simulatiesuits showed
that increasing the VOLL to 30,008/MWh leads to a small improvement in average de-rated

margins to 6.5% with a standard deviation of 5.0%. Furtheende-rated margins are negative
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during only 2026/27. The average annual LOLE reduces to lx§3r with average annaul EEU
of 3.3 GWh. Interestingly, CCGT investment begins 1 year gaaiiel has a smoother cumulative
profile relative to the base case (standard deviation of-geayear volumes 0.8 GW versus 1.2
GW in base case). This displaces some OCGT investment earlyubroverall volume during
2015-25 increase by 2 GW. Reducing the VOLL to 2,BWh alters investment timings, but
overall volumes are only slightly reduced (3% lower thanebease). The average annual LOLE
increases to 0.22 hrs/yr with average annaul EEU of 46.8 GWh.TCi@@&stment starts 2 years
later relative to the base case, which interestingly ire@eaiuclear investment by 2 GW during
2015-20. OCGT investment is less intense during 2015-18 buimes are significantly higher
during 2020-23 (4.7 GW compared with 1.1 GW). This is in reggoto higher expected gross
margins in 2022-26 as a result of less short lead time plamtsiment early on.

For test casébelievers’, the anticipation would be more investment relative to theebcase
due to the investor now systematically over-estimatingnexes because they do not account for
the impact of new builds when formulating price expectatidResults produced more investment
than under the base case, with more severe over-shoot dymaritnessed. As a result, average
annual LOLE falls to 0.01 hrs/yr with generators unable toower fixed costs with significant
increases in the volume of mothballed OCGT capacity.

For test casére counters,; the anticipation would be less investment relative to thsebcase
due to the investor now systematically under-estimatingmaes because they include new builds
before they are operational when formulating their pricpeetations. Results showed under-
investment and average annual LOLE increases to 0.71 hisgya result of less investment,
overall profitability of existing plant improves, with sormeothballing in the early part of the
simulation in response to high forecast margins.

For test caseéaccurate’, the expectation would be reduced over-shoot dynamics atterb
prediction of out-turn prices relative to the base cases Thon account of the investor making
a better prediction of the timing of capacity under condtam; which is particularly important
when there is a lot of long lead time plant (e.g., nuclear)aurmbnstruction. Simulation results
show that nuclear, CCGT and OCGT receive positive gross margaimost all years after 2015,
however average LOLE doubles to 0.06 hrs/yr and with a nalilee oscillation of frequency
5 years and amplitude 0.12 hrs/yr (Fig. 15). Average EEU alsceases to 10.2 GWh. Fig.

14 shows a significant improvement in investor price expexta at the 1 year ahead stage,
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with expectation 3 years ahead also more akin to reality.eEtgtions about years 4-7 ahead
performed better than the base case, however, due to théiys®f new investments (or
mothballing) impacting on those years, significant differes remain.

For test case ‘Resp. lower’, the expectation would be thaiatahs to the exponerit in (9)
to reduce investment, and increases under ‘Resp. highenctease investment. This could also
impact on the timing of investments later in the simulatinoraccount of changes to investment
levels early on. The results followed expectations; chargeduced similar investment timings
to the base case for OCGT and CCGT early in the time horizon buttheced (resp. increased)
levels of aggregate response lead to increases (resp.adesjein generation adequacy risk in
the medium-term (out to 2020) but higher (resp. lower) Ie#linvestment later on in response
to higher (resp. lower) forecast revenues. In the case deaya reduced response curve time-
slipped the investment pattern by two years from 2020, wdgefer the increased response curve
the patterns were broadly similar.

For test case ‘No markup’, the perfectly competitive martase, the expectation would be
lower overall levels of investment on account of price maps-being removed from the revenue
calculation. Here more sustained periods of high priced (@nce scarcity rents) are required
in order to recover invested capital and receive adequdtenr®n investment. Indeed, when
limiting the ability to exercise market power by removal afge mark-up, CCGT investments
are most affected. Investment in this technology starts j@ars later than the base case and
cumulative investment is on average 4.4 GW lower. Nucleaestments are also dampened,
with investment during the first 15 years of the simulation @/ Gower than the base case.
These dynamics led to an order of magnitude increase in geemanual LOLE and EEU to 3.9
hrs/yr and 1474 GWh, respectively. Of course these dynamagsdiffer in a model representing
more sophisticated firms who account for the effect of therestment upon mark-ups for their
existing fleet. In this case firms may deliberately not invasbrder to keep prices (including
mark-ups) high, however this type of investor logic is nohsidered here.

For test case ‘VaR higher’ and ‘VaR lower’, the expectatioould be to see changes to the
level of investments, particularly early on when the tho#ghor investment, which is considered
only if the VaR criterionp(V,2 > 0) > (100 — ¢)% is met. This means that an investment could
be deemed attractive earlier (in the case whgere 0.5) or later (in the case wherg = 0.01)

relative to the base case. Moreover, the VaR criterionesléd the degree of risk aversion (cf.
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Section 11I-B), thereforeg = 0.5 models a less risk averse investor, and= 0.01 models a
more risk averse investor. Results of this experiment shawatimodelling a less risk averse
investor leads to marginally earlier nuclear investmeypi¢ally viewed as high risk due to high
investment costs and operational inflexibility), with pemkplant investment timings remaining
unchanged but volumes increasing in some years. Modellingpie risk averse investor leads
to OCGT investment timings remaining unchanged but volumerseasing and displacing some
CCGT (5.4 GW overall reduction in CCGT and 3.3 GW increase in OC®il3;is attributed to
a higher degree of certainty about prices in the near tersultreg in less variance in projected
revenues for short lead time plant. Hence the VaR criteridhtend to favour this type of plant
for low values ofq.

For test case ‘WACC lower’ and ‘WACC higher’, a similar expédida to that of ‘VaR higher’
and ‘VaR lower’ were held. Results show that the degree of engaat changes to the WACC
had on investment timings was related to construction lead.tThis is hardly surprising given
that investment costs for long lead time plant are highlysé®e to the discount rate used. For
instance, increasing required equity by 3% across all t@olgies delays nuclear investment by
3 years and overall volume by 5.5 GW during 2010-25. Thissdachigher generation adequacy
risk during 2018-22. Similarly, CCGT investments are delalpg® years although volumes are
similar in account of the lower nuclear builds increasingented gross margins and triggering
investment. Reducing the equity return by 3% leads to higher earlier volumes of nuclear
investment with annual average LOLE reduced, however graagjins are reduced.

For test case ‘Load SD’, the expectation would be that areas® to the standard deviation
of load growth to lead to a higher standard deviation of thetrithution of project value. This
increased uncertainty surrounding profitability wouldueedd and/or delay investment. In fact,
increasing investor load growth uncertainty leads to less T@@d nuclear investment out to
2020, however OCGT investment increases by 10 GW over thedaassefor the period 2019-21
in anticipation of high market prices in 2022-26. This higblume of investment lowers the
generation adequacy risk and serves to dampen market pandsOCGT gross margins are
positive in 2026 only (the only year when de-rated margiresragative).

For test case ‘AS reduce’, a reduction in AS revenues (andéhprofitability) was expected
to reduce OCGT investments, although not massively in adcfulS revenues alone not being

sufficient to trigger investment (cf. Section IlI-A). In fageducing OCGT AS revenues from
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10,000/MW/yr to 5,000/MW/yr alters investment timings angaeity choice early on in the
simulation, however long-term overall volumes are only givaally affected. More precisely, a
reduction in OCGT investment during 2014-2018 (1.6 GW comgavith 11 GW in base case)
is somewhat offset by increases in CCGT (8.8 GW compared withrdbase case) and nuclear
(up 2.5 GW on base case) investment during this period. A#ehtechnologies were deemed
profitable during this period; the model chooses the tedgyMith the highest Pl (10) and
iterates until no additional plants are profitable (cf. &etill-C). A reduction in AS revenues
for OCGT means that other technologies have more favourablégbility in the first iteration
of the investment decision. OCGT is not chosen in subsequerdtions as a result of other
capacity additions reducing its profitability to suboptirevels. By choosing to invest in longer
lead time plant, total LOLE over 2019-2023 increases fro2®@o 0.97 hrs. Interestingly, higher
volumes of OCGT investment occur in these later years (5.6 Gvihg 2019-2020 compared
with 1.1 GW in base case). This is likely to be a consequendkeoincreased volumes of longer
lead time plant under construction during this period iasreg the differences between investor
price predictions and reality (i.e., as discussed in seitgi2c).

Finally, for case ‘FC increase’, increasing OCGTMFC, from 42.5 to 60£/MWI/yr was
expected to produce similar dynamics to ‘AS reduce’. Thiméd out to be the case, however
the increase in LOLE is less severe (although still highantthe base case).

In summary, a pattern of increased relative levels of risk arosion of de-rated capacity
margins was experienced during the 2020s to some degrekdasals. Furthermore, the period
of highest security of supply risk is 2023-28, however thegynitude of the risk (measured by
LOLE) differs between experiments. A prolonged period afr@gased security of supply risk
is experienced throughout the 2020s for the perfectly caitnge market case. Also, providing
investors with perfect foresight about capacity under trocon produces less investment and
more frequent periods of relatively high LOLE and low desthimargins after 2020. However,
generators experience positive gross margins in more yaaraccount of reduced surplus
margins, and hence higher prices.

The 2020s is the period of most intense change; during thiswdie over 40 GW of new
capacity is built with over 34 GW retiring; 14.5 GW of capgcleaves the system during the
period 2023-26 alone. This further exacerbates the highetive levels of risk during this period.

Furthermore, no new coal investments are made, with therityajaf new investment coming
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from gas-fired generation. That said, however, a sengitmit the primary fuel prices is not
included here. For instance, lower coal prices (or indegtidr gas prices) may lead to different
technology choice, however the impact on overall volumesl (@ence relative levels of risk) is

likely to remain unchanged.

VII. CONCLUSION

The MOND technique to calculate expected output, costs amehues of thermal generation
subject to varying load and random independent thermalgegténas been presented. This
method has been adapted for use in a dynamic capacity maddslwith high penetrations of
wind by performing a residual load calculation with simelhtwind outputs. An ‘energy-only’
market setting has been used to estimate the economic pilititaof capacity investments.
Using relative levels of de-rated capacity margin and LOLEtlae risk metric, simulation
results for GB show that levels of generation investmend leaa mild increase in generation
adequacy risk in some years, with erosion of de-rated cgpawrgins in the mid 2020s, and
very tight supply conditions are experienced during a smathber of peak hours. Many new
investments, particularly peaking units, were unable tover their fixed costs. A sensitivity
analysis demonstrated that assumptions about investopridiles and expectations about new
builds, load growth and the ability to exercise market poh&re a strong impact on simulated
investment dynamics and subsequent levels of generatiequady risk. However a relative
increase in generation adequacy risk in the mid 2020s wasriexged across all experiments,
with increases occurring earlier and more severely in soases

A key goal for policy makers is to ensure that liberalisedrgpenarkets incentivise timely and
sufficient thermal generating capacity investment in otdezompliment increasing penetrations
of variable output generation such as wind. This is paridultrue of peaking generation and
energy storage technologies. Due to their low utilisatiactdrs, these units will rely on being
dispatched at high prices in order to recover their fixed s@std provide adequate returns
on investment. Results presented here suggest that revérmmsan ‘energy-only’ market
are insufficient and additional mechanisms may be requikaieover a sensitivity analyses
demonstrated that investor expectations about wholesalesp in particular the demand-side’s
willingness to pay and the damping effect that new buildsshav revenues, exacerbate the risk

of investment shortfalls. This has significant policy incplions for GB where sizeable demand
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response and new smart-loads are expected to emerge. Wioethet these entities will in
fact respond to high wholesale prices by reducing consumptmains to be seen. However
if generators anticipate a price responsive demand-sideitaiails to emerge, then a relative
increase in the risk of investment shortfall is likely to acc

The topic of subsequent research will be to determine whegkglicit capacity mechanisms
such as tendering for strategic reserve (e.g., [40]) anchapp markets (e.g., [14]) can be
designed to alleviate resource shortfall and prevent tnvest overshoot. The results here indicate

that such a mechanism may be desirable to improve reserngngaan the mid 2020s in GB.
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APPENDIXA

ABBREVIATIONS & FORMULA VARIABLES

A. Abbreviations

AS
BM
CCGT
cdf
DDE
DECC
DC
ELDC
EEU
FOR
GQ
GB
LCPD
LDC
LOLE
MOND
MC
NPV
PL
PJM
Pl
OCGT
r.v.

SO
WACC
VaR
VOLL

Ancillary services

Balancing market

Combined cycle gas turbine
Cumulative distribution function
Delay Differential Equation
Department of Energy and Climate Change
De-rated capacity

Effective load duration curve
Expected energy unserved
Forced outage rate

Gaussian quadrature

Great Britain

Large Combustion Plant Directive
Load duration curve

Loss-of-load Expectation

Mix of Normals distribution

Monte Carlo

Net Present Value

Most probable peak load
Pennsylvania-New Jersey-Maryland
Profitability Index

Open cycle gas turbine

Random variable

System Operator

Weighted average cost of capital
Value at Risk

Value of Lost Load
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B. Formula variables
Qy - Operating lifetime (technology type)

o - Speed of mean reversion
- Calibrated exponential constant in aggregate investmesgonse function

- Gearing ratio

o(t) - Dirac delta function

€ - Required equity investor return

~ - Expected bond return

N - Time investment capacity block triggered (technologyetyp
I - Mean of distribution

e - Wholesale price when generators at the margin

- Forced outage rate

o - Standard deviation of distribution

T - Build time (technology typer)

& - Investment capacity block (technology type

Emag - Maximum annual investment per technology

Uy - Vector of new build capacity blocks (technology typg

d - cdf of Normal distribution

a - Scalar in wholesale price mark-up function

b - Exponent in wholesale price mark-up function

c - Capacity

én - Expected energy served by generator type

f(M) - pdf of the surplus margid/

f(My_1, M) - Joint distribution of capacity margins/y_; and My

han - Probability generator. is on the margin

Iy - Constant used to calibrate aggregate investment resgonston (technologyr)
me(L,Gy,Ge,...,GN) - Marginal production cost of meeting the lodd

My, - Number of units of typen

m(t) - Stochastic process time dependent mean reverting levghatt
Da - Construction cost (technology typg

pdisp - Probability that a MW belonging to generatoris dispatched
q(t) - DECC fuel price estimate at time

r - Weighted Average Cost of Capital

v - Integral upper bound in (30), (31), (32), and (31) abovechtprice mark-up is

negligible owing to the large surplus margin



w(L,GYy)
Acrf
AGM,
Cn(P)
CGM,
DC,
E(Gn)
FC,

Fy

*
N

Gy — L
GMi
GM,
1C,

I(t)
Ly—1(x)
Ly (x)
Ln+1(0)
MC;

]\/[nfl

PIa

LG
R,V

RPM,,
TAFC,
TIAC,
Ve

opt

Wholesale price mark-up function

Deferred CRF (technology type)

Gross margins over fixed operating costs (technology ty)pe

Total variable operating cost of generator typepower outputP
Expected annual perfectly competitive gross margin

Present worth of the decommissioning cost (technologg ty)p
Expected available capacity from generator type

Fixed costs (technology type)

Fuel cost at time

Generator expected available capacity

Total available generation

Overall capacity margin

Expected annual gross margin (technology typeear)

Expected annual gross margin for generator

Present worth of investment cost (technology type

Installed capacity (technology type

Total installed capacity at time

Load still to be met after adding generator type- 1

Load still to be met after adding generator type

Probability that there will be insufficient generation teeh demand
Marginal cost of generatar

Capital expenditure vector (technology typeyeari)

Surplus margin aftel. has been met using all available generation lower in thetmeri
order thamn

Total number of psuedo-generators

Profitability index (technology type)

Expected gross margin for a particular MW of capacity bglog to generatorn. when
generator; is at the margin

Gross margin received by a MW of capacity from generatdor load L. and total
available generatio,

Expected revenue from price mark-up

Total annualised costs per unforced MW

Total interest accumulated during construction

NPV of an investment (for technology)

Minimal acceptabléd/, (for technologyx)

Standard one-dimensional Brownian motion
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