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The syncytiotrophoblast (STB) is the epithelial covering of the villous tree in the human 22 

placenta. This multinucleated syncytium displays unusual cell biology. The  nuclei 23 

within the syncytiotrophoblast are terminally-differentiated and non-proliferative [1], 24 

and instead, the syncytium is sustained across gestation by continuous fusion of 25 

underlying differentiating cytotrophoblast (CTB) cells. CTB and STB nuclear 26 

populations display contrasting morphologies [2]. Undifferentiated CTB cells have a 27 

large and ovoid nucleus, with a morphologically diffuse chromatin structure. As CTB 28 

cells begin to differentiate the nuclei become more irregular in appearance. Chromatin 29 

at the periphery of the nucleus begins to condense and the nuclear volume reduces [3]. 30 

Prior to fusion, CTB nuclei become electron-dense, more irregular in outline and 31 

resemble those nuclei resident in the syncytium [4]. A range of morphologies is 32 

observed in the STB: most nuclei are small with a convoluted nuclear envelope and 33 

contain varying degrees of heterochromatin. The most highly condensed nuclei are 34 

aggregated into knots, where nuclei are closely juxtaposed and have smooth outlines 35 

with euchromatin restricted to areas near nuclear pores or to a central island [5].  36 

 37 

Our understanding of the regulation of nuclear turnover in the trophoblast is being re-38 

interpreted in light of new investigations [6]. It had been thought that the condensation 39 

in STB nuclei was indicative of apoptotic changes initiated during CTB differentiation 40 

[7], and that STB nuclei are held in latent states of apoptosis and transcriptionally 41 

inactive [8]. However, recent studies have shown that apoptosis is absent from the 42 

syncytium [9, 10], and that the majority of STB nuclei are transcriptionally active at all 43 

stages of gestation [11, 12]. Nonetheless, a range of transcriptional states are observed 44 

amongst nuclei within the syncytium. The most highly condensed nuclei residing in 45 

syncytial knots have been demonstrated to be transcriptionally inactive, with evidence 46 

of associated oxidative damage [13]. These recent observations suggest that the 47 
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characteristic chromatin condensation observed in STB nuclei may be a feature of the 48 

biology of the syncytiotrophoblast, serving to regulate transcription during the life-cycle 49 

of a nucleus.   50 

 51 

Chromatin structure is epigenetically regulated by histone modifications and DNA 52 

methylation. Specific histone modifications confer active or repressive transcriptional 53 

states [14]. Trimethylation of Histone3-Lysine9 (H3K9me3), Histone3-Lysine27 54 

(H3K27me3) and Histone4-Lysine20 (H4K20me3) are markers of tightly-packaged 55 

heterochromatin and are associated with gene repression [15]. Levels of H4K20me3 are 56 

increased in senescent fibroblasts [16]. By contrast, tri-methylated Histone3-Lysine4 57 

(H3K4me3) residues are enriched at promoters of expressed genes and are features of 58 

open euchromatic structure. Histone modification states are reversible, which allows 59 

for dynamic regulation of chromatin structure in accordance with cellular 60 

differentiation, development, and responses to environmental signals [17].  61 

 62 

Methylation and hydroxymethylation of cytosine residues modify DNA and are 63 

associated with its interactions with transcription factors and other DNA-associated 64 

proteins.  DNA methylation occurs at cytosine bases which are converted to 65 

5’methylcytosine (5mC) by DNA methyltransferase enzymes  and is associated with local 66 

control and  typically , with genomic imprints, repetitive elements and the inactive X 67 

chromosome displaying hypermethylation [18]. Methylated cytosine residues can 68 

mediate heterochromatin formation through the recruitment of methylcytosine binding 69 

proteins, linker histones and other remodelling complexes and is usually associated 70 

with gene repression [19]. DNMT1 is involved in maintaining existing methylation 71 

patterns whereas DNMT3a and 3b regulate de novo methylation by adding methyl 72 

groups to unmodified cytosine bases .  Hydroxymethylation, generated by the oxidation 73 
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of mC by TET enzymes cytosine, has been associated with active DNA demethylation 74 

and DNA repair however, its functional roles are not well understood. In mouse and 75 

human embryonic stem cells 5hmC is detected in euchromatic areas of the nucleus, 76 

suggesting that this epigenetic modification may be associated with gene activity [21, 77 

22] .    78 

 79 

Changes in patterns of histone modifications and DNA methylation are associated with 80 

cellular differentiation [23]. Chromatin remodelling results in the silencing of subsets of 81 

genes while simultaneously activating other genes characteristic of the differentiated 82 

cell type. Here we investigate the hypothesis that the variations in epigenetic 83 

modifications observed between CTB and STB nuclei underlie the different chromatin 84 

structures observed cytologically in these nuclear populations. 85 

 86 

2. Methods 87 

2.1 Sample preparation 88 

Blocks from paraffin-embedded placentas ranging from 11-19 weeks (n=5) and 31-39 89 

weeks of gestation (n=4) were obtained from an archive collected in accordance with 90 

ethical protocols [2].  Samples from 11-19 weeks of gestation were obtained from 91 

terminated pregnancies which were otherwise clinically normal. Placental samples from 92 

later gestational ages were obtained from clinically normal pregnancies which 93 

underwent spontaneous onset of labour.    94 

 95 

2.2 Knot identification 96 

Knots were identified as previously described [24]. Briefly, serial sections were cut at 5 97 

μm to minimize the superimposition of nuclei. Every 4th section in the series was 98 
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stained for the target antigen, whereas the adjacent sections were stained with 99 

haematoxylin and eosin. True knots were defined a sessile aggregations which 100 

protruded gently from the surface of the syncytium, and were observed to appear and 101 

disappear when moving through the series.  102 

 103 

2.3 Immunostaining 104 

Sections were rehydrated in Histo-clear (Sigma, Poole, UK), graded ethanol, and 105 

deionized water. Heat-induced antigen retrieval was performed by boiling sections in 106 

0.1 mol/L Tris-EDTA buffer (pH 9.0) in a pressure cooker. Sections were blocked in non-107 

immune serum for 30 minutes at room temperature. Endogenous peroxidases were 108 

quenched by incubating the sections in 3% H2O2 for 15 minutes. Primary antibodies 109 

including anti-H3K9me3, anti-H3K27me3, anti-H4K20me3 and anti-H3K4me3 (1:100; 110 

ab8898, ab6002, ab9053 and ab8580; Abcam, Cambridge, UK), anti-111 

5’hydroxymethylcytosine (1:100; Catalogue number 39769; Active Motif, Rixensart, 112 

Belgium), anti-5’methylcytosine (1:200; sc56615; Santa Cruz, Santa Cruz, CA), DNMT1 113 

(1:200; sc20701; Santa Cruz) and DNMT3a (1:200; sc20703; Santa Cruz) were added 114 

and incubated overnight at 4°C. Sections were washed in Tris-buffered saline with 0.1% 115 

Tween-20 (Sigma) and 0.1% Triton X-100 (Sigma). Biotin-labeled species-specific 116 

secondary antibodies were added at a concentration of 1:200 and incubated at room 117 

temperature for 1 h. Vectastain Elite ABC system (Vector Labs, Burlingame, CA) and 118 

SigmaFast DAB (Sigma) were used according to manufacturer instructions. Sections 119 

were lightly counterstained with hematoxylin, rinsed in deionized water, and 120 

dehydrated in increasing grades of alcohol and Histo-clear. Coverslips were mounted 121 

with DPX (Sigma). Images were captured and viewed using a Nanozoomer slide scanner 122 

and NDP.view2 software (Nanozoomer 2.0-RS; Hamamatsu Photonics, Hertfordshire, 123 
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UK).  CTB and STB nuclei were identified on the basis of their characteristic location 124 

within the trophoblast layers.  125 

2.4 Data analysis 126 

We used a semi-quantitative method similar to those used in clinical assessments of 127 

tumour [25]. Briefly, 50 counting frames were applied to each section and the relative 128 

proportion of positive nuclei was determined to generate a scoring system (+, 10-20%; 129 

++, 20-50%; +++, >50%). 130 

 131 

3. Results 132 

Semi-quantitative immunohistochemical analysis demonstrates that CTB and STB 133 

nuclear populations display different repertoires of histone modifications with some 134 

differences observed at different gestational ages.  135 

CTB nuclei show a range of immunoreactivities for H4K20me3, with positive and 136 

negative nuclei observed in close proximity to each other within samples (Fig 1 A and 137 

B). The relative proportions of H4K20me3-postive CTB nuclei remain constant from 1st 138 

trimester to 3rd trimester with around 20-50% of nuclei displaying immunoreactivity. A 139 

higher proportion of STB nuclei stain intensely for this modification in the first and 140 

early second trimester placentas. However, the proportion of H4K20me3-positive STB 141 

nuclei is reduced to less than half in the third trimester (Fig 3). Syncytial knots are 142 

composed almost entirely of intensely staining nuclei (Fig 1 C).  143 

The majority of CTB nuclei are H3K27me3- (Fig 1 D, E and F) and H3K9me3-positive 144 

(Figs 1 G, H, and I). In contrast to CTB nuclei STB nuclei contain low levels of these 145 

modifications, with only 10-20% of nuclei displaying immunoreactivity. 146 
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Both CTB and STB nuclear populations show heterogenous staining for H3K4me3, with 147 

immunopositive and negative nuclei observed in each compartment, including syncytial 148 

knots (Figure 1 J, K and L).  149 

Over 50% of CTB nuclei are 5mC-positive. In contrast, and unexpectedly, the majority of 150 

STB nuclei do not display appreciable levels of 5mC staining across gestation (Fig 2 A, B 151 

and C). DNMT1 is detected in almost all CTB nuclei in both early and late gestation (Fig 152 

3A, B, C; solid arrows). DNMT1 levels are heterogeneous in the STB compartment, with 153 

approximately 20-50% of nuclei displaying immunoreactivity in 1st and 2nd trimester 154 

samples (Fig 3A, B, C; dashed arrows). This proportion is reduced to 10-20% in the 155 

third trimester. Similar staining patterns are observed with DNMT3a. CTB nuclei are 156 

mostly immunopositive for DNMT3a, with more intense staining observed in early 157 

gestation, and STB nuclei exhibit heterogeneous staining for DNMT3a. The presence of 158 

DNMTs in most CTB nuclei correlates with the high proportion of 5mC-positive nuclei in 159 

this compartment. Syncytial knots contain DNMT1 and DNMT3a-negative nuclei, which 160 

is correlative with the low levels of 5mC observed in these structures. 161 

In contrast to their staining for 5mC, a greater proportion of STB nuclei are 162 

immunopositive for 5hmC; 20-50% of STB nuclei in 1st and 2nd trimester and greater 163 

than 50% in the third trimester are immunopositive. The 5hmC-positive STB nuclei 164 

stain intensely for this modification. Moreover syncytial knots consist entirely of 5hmC -165 

positive nuclei (Fig 2F). This compares with 10-20% of CTB nuclei which are 166 

immunopositive for hmC at all stages investigated and which show a much higher 167 

proportion of mC positive nuclei (Fig 2 D and E).  168 

CTB 50% mC and 20% hmC (has Dnmts)  – STB show 50% hmC and no mC and v low 169 

Dnmts. Knots show 100% hmC and no mC and no Dnmts.  170 

 171 
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 172 

4. Discussion 173 

Villous cytotrophoblasts (CTB) have the potential to differentiate into the 174 

syncytiotrophoblast (STB) of the placenta, which forms the feto-maternal interface of 175 

the placenta and also, in the first trimester, into invasive extravillous trophoblast cells.  176 

At cytological resolution, the differentiation of CTB nuclei into STB nuclei appears to be 177 

accompanied by an increase in nuclear condensation and heterochromatin formation. 178 

Here we show that there are epigenetic differences between CTB and STB nuclei, 179 

suggesting that differentiation is associated with changes in the epigenetic state as 180 

evident by  changes in histone modifications and DNA methylation. However, in these 181 

trophoblast cell types, at immunocytological resolution, the patterns of immunostaining 182 

are not consistent with the functions usually attributed to these modifications. 183 

As STB nuclei are heavily condensed in comparison to CTB nuclei we investigated 184 

canonical markers of constitutive and facultative heterochromatin, H3K9me3 and 185 

H3K27m3. [26, 27]. We found that STB nuclei contain lower levels of these histone 186 

modifications than CTB nuclei. The unexpected paucity of H3K9me3 in the STB nuclei 187 

may reflect a cell-specific effect, as it has been shown that modifications can silence 188 

genes in a cell-specific manner [28, 29]. Previous studies have demonstrated that the 189 

human growth hormone gene cluster is regulated by distinct histone modifications in 190 

the brain and placenta. Brain-specific isoforms are regulated by broad domains of 191 

histone acetylation, whereas the placental isoforms have additional discrete foci of 192 

H3K4 di- and tri- methylation [30]. Thus the absence of canonical heterochromatin 193 

markers may be further evidence of trophoblast-specific epigenetic mechanisms. Higher 194 

levels of H3K27me3 in progenitor CTB nuclei may serve to regulate genes involved in 195 

CTB to STB differentiation. In other contexts, bivalent domains containing both 196 
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repressive H3K27me3 and active H3K4me3 are found at developmentally-regulated 197 

genes, with levels of H3K27me3 decreasing upon differentiation allowing transcription 198 

to proceed [17]. In the trophoblast, H3K27me3 may allow for transient repression of 199 

genes which are required rapidly upon fusion of a CTB nucleus into the STB. If 200 

H3K27me3 is indeed regulating a transient repressive state, the apparent reduction in 201 

the proportion of H3K27me3-positive CTB across gestation suggests that they might be 202 

losing their ability to dynamically regulate bivalent genes. This is consistent with the 203 

coincident reduction in H3K4me3 as gestation proceeds. The increase in H3K9me3 in 204 

later gestation CTB cells may suggest the acquisition of a less dynamic repressive state.  205 

H4K20me3 has been shown to be a conserved marker of pericentric heterochromatin, 206 

and co-localises with DAPI-dense condensed regions of nuclei [31]. Levels of H4K20me3 207 

have also been observed to be increased in ageing cells [32]. We see constant 208 

proportions of H4K20me3-positive CTB nuclei across gestation. In contrast the majority 209 

of dispersed first trimester STB nuclei are H4K20me-positive with this proportion 210 

reduced in later stages. Despite this reduction, syncytial knots, which are more 211 

abundant in the third trimester, are almost entirely composed of H4K20me3-positive 212 

nuclei. We therefore speculate that the patterns of H4K20me3 staining in the STB may 213 

reflect the heterogeneity of nuclear age within the syncytium: STB nuclei may contain 214 

low amounts of H4K20me3 at the time of incorporation into the syncytium, and begin to 215 

accumulate the modification as the syncytium ages, until the oldest nuclei with the 216 

highest levels of this modification are aggregated into syncytial knots. The movement of 217 

nuclei into knots would result in reduced proportions of immunopositive nuclei within 218 

the dispersed compartment. Tracer studies using a marker for recent incorporation 219 

could test this hypothesis [11]. 220 

We also investigated the distributions of H3K4me3, which is associated with active 221 

euchromatin. Intermediate proportions of both nuclear populations were determined to 222 
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be H3K4me3-positive across gestation. This is in contrast to the findings of a previous 223 

study which suggested that H3K4me3 immunoreactivity was mainly confined to CTB 224 

nuclei [12]. The conflicting results may be due to differences in gestational ages of the 225 

sampled tissues. Ellery et al. performed immunohistochemistry for H3K4me3 only on 226 

first trimester samples from 5 – 17 weeks of gestation, whereas this present study 227 

included samples from 13-19 weeks gestation and the third trimester. The presence of 228 

both H3K4me3-positive and –negative STB nuclei may reflect the range of 229 

transcriptional states in this tissue. It may reflect activation of genes bivalently marked 230 

in the CTB but also H3K4me3 has been shown to persist in nuclei as a marker of recent 231 

transcription [33]. The STB produces and secretes very large quantities of hormones 232 

throughout pregnancy. Towards the end of pregnancy the STB secretes 1-4g of human 233 

placental lactogen per day, revealing the high transcriptional and translational 234 

capacities of this tissue [34]. It is likely that the high H3K4me3 in the STB across 235 

gestation reflects the transcriptional activity of that tissue.   236 

We investigated states of methylation as DNA methylation is associated with gene 237 

repression, inversely correlated with transcription factor binding and it can also 238 

influence chromatin organisation by interacting with linker histones and other 239 

chromatin associated proteins [35]. Unexpectedly, we observed higher numbers of 240 

5mC-immunoreactive CTB nuclei in comparison to STB nuclei at all stages investigated. 241 

The relative proportions of 5mC-positive nuclei remains similar in the two 242 

compartments across gestation, perhaps suggesting that chromatin and gene regulation 243 

by methylation is not subject to major fluctuations. Indeed, genome-wide sequencing 244 

has revealed the presence of partially demethylated domains in the placenta. These 245 

large domains of DNA containing lower levels of DNA methylation than the rest of the 246 

genome are thought to be a unique feature of the placenta, perhaps reflecting its 247 

differential epigenetic control and divergence from the inner cell mass and all somatic 248 
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cells in early embryogenesis [36]. Thus the lower levels of methylation in placental cells 249 

suggests that regulation by methylation may be involve much smaller regions that can 250 

not be detected by our assay. Furthermore, non-canonical mechanisms of regulation by 251 

methylation may act in these cell types.  252 

 253 

 254 

We also investigated the tissue distribution of selected DNMTs in the trophoblast.  255 

DNMT1 is considered to be the major enzyme regulating the maintenance of 256 

methylation patterns. [37]. While DNMT3a and 3b both regulate de novo methylation 257 

DNMT3a methylates at a higher rate than DNMT3b [38]. As expected, we found levels of 258 

DNMTs to correlate with the levels of 5mC in the nuclear populations: nearly all CTB 259 

nuclei contain DNMT1 and 3a and also are 5mC-positive whereas STB nuclei, which 260 

contain low levels of 5mC, have lower levels of DNMTs. 261 

In contrast to 5mC, the proportion of 5hmC-immunopositive nuclei in the STB is higher 262 

than that observed in the CTB compartment, Hence there appears to be a reciprocal 263 

relationship between 5mC and 5hmC in the two cell types, with high 5mC and low 5hmC 264 

a feature of CTB and vice versa in the STB. Although the low levels of 5mC do not change 265 

in the STB across gestation, the proportion of 5hmC-positive STB nuclei increases over 266 

time suggesting accumulation of hmC at previously mC residues. While the function of 267 

this residue has not been fully elucidated, it has been proposed that oxidative stress 268 

may result in the formation of 5hmC [39]. Increasing accumulation of 5hmC in STB 269 

nuclei as gestation proceeds in this non-replicative cell population may reflect the 270 

continuous fusion of mC-associated CTB cells into a syncytiotrophoblast that loses mC 271 

as it accumulates hmC. Consistent with this theory is our observation that syncytial 272 

knots consist almost entirely of 5hmC-positive nuclei, perhaps associated with the 273 
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integration of the older hmC positive STB nuclei. We have previously shown that nuclei 274 

in syncytial knots contain oxidatively damaged nuclei [24]; the presence of 5hmC in 275 

these nuclei may be further evidence of the role of oxidative damage in knot formation 276 

and perhaps implicates 5hmC in DNA repair processes [40].  277 

We observe variation in histone modifications within both trophoblast compartments. 278 

STB nuclei harbour heterogeneities in their timing of incorporation within the 279 

syncytium, which is might be reflected in the variations in chromatin morphologies 280 

observed in this compartment. Although we assessed the CTB as a uniform population, 281 

asymmetric division of CTB nuclei to produce one daughter cell to fuse with the 282 

syncytium and one remaining in the progenitor pool results in variation in this 283 

compartment. It would be interesting to determine whether this asymmetry yields 284 

daughter cells which are epigenetically different from each other. GCM-1 is thought to 285 

be upregulated in the cell destined to fuse [41], and could perhaps be used as a marker 286 

to distinguish the two CTB types in epigenetic co-localisation studies.  287 

This study describes for the first time broad epigenetic signatures of the two main 288 

populations of trophoblast nuclei in normal pregnancy. It would be intriguing to 289 

investigate patterns of epigenetic modifications in the trophoblast of placentas from 290 

pathological pregnancies. Aberrant trophoblast turnover is associated with 291 

preeclampsia and IUGR, with these placentas demonstrating reduced trophoblast 292 

volume and surface area as well as decreased the total number of trophoblast nuclei. 293 

consideration of epigenetic patterns in  abnormal placentas might provide insights into 294 

the role of epigenetic states in trophoblast development and homeostasis  and may 295 

contribute to our understanding of the pathophysiology of these conditions. 296 

Futhermore, increased syncytial knot formation (Tenney-Parker changes) is observed 297 

in preeclampsia and is used as a biomarker to assess placental well-being. We show 298 

here that knots can be identified by an epigenetic signature of high 5hmC and 299 
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H4K20me3, and low H3K27me3, H3K9me3 and 5mC. This panel of markers could be 300 

employed in clinical assessments of knotting index.  301 

It has been reported that preeclampsia is associated with global hypermethylation, as 302 

shown by both 5mC immunohistochemistry and pyrosequencing of repeat elements [42, 303 

43]. However when specific promoters were investigated it was found that some 304 

exhibited hyper- and others hypomethylation relative to normotensive placentas. This 305 

is likely to be due to dysregulated gene expression as some are known to be 306 

upregulated and others down regulated in the pathophysiology of the disease; for 307 

example, Kisspeptin is increased in preeclampsia whereas MMPs Superoxide dismutase 308 

are reduced [44, 45]. 309 

  310 

This semi-quantitative investigation of global levels of histone modifications reveals 311 

that there are differences between the epigenetic signatures of chromatin in STB and 312 

CTB nuclei, with may contribute to the observed differences in chromatin conformation 313 

and nuclear morphology between the two populations. These nuclear populations have 314 

been previously demonstrated to utilize different repertoires of transcription factors to 315 

promote differentiation-dependent gene expression [46]. Epigenetic mechanisms may 316 

similarly confer differential gene regulation in CTB and STB nuclei. Differences in the 317 

epigenetic profiles of STB nuclei across gestation may be considered in the context of 318 

the syncytium as a terminally-differentiated, non-proliferative but transcriptionally 319 

active tissue.  320 

 321 

As histone modifications often interact with each other, further investigations into 322 

combinations of modifications in nuclei would increase our understanding of the 323 

regulatory processes. In conclusion, these qualitative observations and the presence of 324 
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transcriptionally active nuclei in the STB support the hypothesis that epigenetic factors, 325 

and not apoptosis as previously suggested, results in the observed chromatin 326 

condensation.  327 

 328 
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