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Microscopic Forces and Flows due to

Temperature Gradients

Raman S. Ganti

Abstract

Nano-scale fluid flow is unlike transport on the macro-scale. Pressure gra-
dients typically dominate effects on a large scale while thermal gradients
contribute negligibly to the motion of fluid. The situation entirely reverses
on the nano-scale. At a microscopic level, flows induced by thermal gradi-
ents are caused by forces that act on atoms or molecules near an interface.
These thermo-osmotic forces cannot, at present, be derived analytically or
measured experimentally.

Clearly, it would be useful to calculate these forces via molecular simu-
lations, but direct approaches fail because in the steady-state, the average
force per particle vanishes, as the thermo-osmotic force is balanced by a
gradient in shear stress. In our journey to indirectly calculate the osmotic
force, we met another unknown in the field of molecular theory at interfaces:
the microscopic pressure tensor. The latter is an open problem since the
microscopic pressure near an interface is not uniquely defined.

Using local thermodynamics theories, we relate the thermo-osmotic force
to the gradient of the microscopic pressure tensor. Yet, because the pressure
is not uniquely defined, we arrive at multiple answers for the thermo-osmotic
force, where at most one can be correct.

To resolve the latter puzzle, we develop a direct, non-equilibrium sim-
ulation protocol to measure the thermo-osmotic force, whereby a thermal
gradient is imposed and the osmotic force is measured by eliminating the
shear force. Surprisingly, we find that the osmotic force cannot be derived
from the gradient of well-known microscopic pressure expressions. We, there-
fore, derive a thermodynamic expression that gets close.

In this work, we report the first, direct calculation of the thermo-osmotic
force while simultaneously showing that standard microscopic pressure ex-
pressions fail to predict pressure gradients.
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Chapter 1

Introduction

God made the bulk; surfaces

were invented by the devil.

Wolfgang Pauli

Nanotechnology is not just conventional technology scaled down to the

nano-scale. The reason is that processes that are relatively unimportant on

macroscopic scales may become dominant on the nano-scale. Case in point

are phoretic flows: the movement of fluids under the influence of gradients of

thermodynamic quantities such as temperature or chemical potential. On a

macroscopic scale, the application of a pressure gradient or a body force is the

most efficient way to move fluid through a tube. The resulting flux is propor-

tional to the fourth power of the tube diameter. However, on a sub-micron

scale, phoretic flows tend to become important because the resulting volu-

metric flow rates scale as the square of the tube diameter. Hence, for many

problems, be they technological (e.g. nano-fluidics) or natural (e.g. fluid flow

through porous networks or gels), it is becoming increasingly important to

be able to predict phoretic flows.

A key feature of phoretic flows is that they are driven by forces that
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only act on those parts of the fluid that interact with the confining surfaces.

The range of the fluid-wall interactions is typically in the nano-meter regime,

except in the case of electrolytes in contact with charged surfaces, in which

case the interaction layers may have thicknesses ranging from nanometers to

microns. Here we will be considering thermo-osmotic flows in non-polar fluids

near a wall. For such systems, the thermo-osmotic force driving the flow is

typically confined to an interfacial layer with a thickness of a few molecular

diameters. The effect is therefore described as the induced slippage of fluid

along an interface, due to an external temperature gradient.

Thermo-osmotic flows have been known for well over a century [39, 2], but

the relevance of this phenomenon is increasing as more experiments probe

transport on the nano-scale. Moreover, there is increasing evidence that large

temperature gradients may exist inside eukaryotic cells [8], which is also an

environment full of interfaces.

On a macroscropic scale, thermo-osmotic effects play a significant role

in thermophoresis [1, 54, 75], thermodiffusion [16, 72], and the propulsion of

active matter [26, 9]. Phoretic motion of colloids is driven by thermo-osmotic

flows in the microscopic boundary region, where properties of the solvent are

influenced by interactions with the surface (or interface) [1, 54, 75].

Clearly, it would be useful to predict thermo-osmotic slip on the basis

of a molecular description of the solid-liquid interface. However, in prac-

tice this is not simple because much of the existing theoretical framework is

couched in terms that assume the validity of a local continuum theory (e.g.

Debye-Hückel plus the (Navier-)Stokes equation) and make drastic assump-

tions about the excess enthalpy density and viscosity near the surface [5].

Yet, crucially, near an interface, a continuum description of the structure or

dynamics of a liquid is not allowed. More ominously, the definition of the
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stress in a liquid is not unique. This non-uniqueness has no effect on the com-

puted value of, say, the liquid-liquid surface tension [65], but it could affect

the prediction of phoretic flows, where the local value of the stress gradient

is what drives the flow. In this work, we consider this problem and explore

novel ‘microscopic’ methods to predict thermo-osmotic forces and flows in a

simple model system.

1.1 Theoretical Background

1.1.1 Irreversible Thermodynamics

To treat the problem of transport induced by thermal gradients, it is crucial

to establish the mathematical formalism that has been conventionally used

to describe non-equilibrium processes in the linear regime. Irreversible ther-

modynamics treats intensive state parameters such as temperature, pressure,

and chemical potential as field variables. The critical step is starting with

entropy balance and the second law. This must consider the entropy flux

into the system and a source term that arises from irreversible responses due

to gradients of the state variables. Following this line of reasoning gives an

expression for the total entropy production in the system.

Using mass, energy, and entropy balance laws, De Groot and Mazur [11]

derive the rate of entropy production due to all possible thermodynamic

forces and chemical affinities (see Appendix 9.1). Repeated indices are summed

Tρṡ = −Jq ·
∇T
T
−

n∑

k=1

Jk ·
(
T∇

(µk
T

)
− Fk

)
(1.1)

−
∑

α 6=β

Παβ∇βvα − Π∇ · v −
n∑

k=1

r∑

j=1

νkjµkJj ≥ 0
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where Jq is the heat flux, Jk is the diffusive flux of species k, Fk is an external

force on k e.g. due to an electric field, Παβ is the viscous stress tensor, νkjJj

is the production of k per unit volume in the jth chemical reaction, and µk

is the chemical potential. Note that bulk and shear viscosity contributions

are separated. For an incompressible fluid, the term −Π∇ · v vanishes.

The form of Eq. (1.1) is fixed by the additional constraints that the en-

tropy production is Galileian invariant and must vanish in equilibrium. It is

clear that Eq. (1.1) satisfies these constraints. From Eq. (1.1), we can clearly

see all possible sources of entropy production. The first term is heat con-

duction, second is diffusion of different species, third and fourth are viscous

flow, and fifth is chemical reactions. It is also worth noting that the entropy

production is a sum of the products of fluxes and thermodynamic forces.

Upon closer examination of the second term, De Groot and Mazur note

through chain rule that the diffusive flux of different species also couples to

gradients in temperature. Using the thermodynamic relation

Td
(µk
T

)
= (dµk)T −

hk
T
dT (1.2)

where the subscript T means the differential is taken at constant T and hk is

the partial specific enthalpy of species k, we can introduce the measureable

heat flux J′q

J′q = Jq −
n∑

k=1

hkJk. (1.3)

The difference between J′q and Jq is transfer of heat due to diffusion. J′q is

described as irreversible heat transfer since it is the net flux of heat that con-

tributes to the production of entropy within the system (see Appendix 9.1).

Alternatively, it is called the measurable heat flux as it is the transferred

heat content that can be measured via calorimetry. Substitution of Eq. (1.3)
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into Eq. (1.1) gives

Tρṡ = −J′q ·
∇T
T
−

n∑

k=1

Jk · ((∇µk)T − Fk) (1.4)

−
∑

α 6=β

Παβ∇βvα − Π∇ · v −
n∑

k=1

r∑

j=1

νkjµkJj ≥ 0

where now, the contributions from different thermodynamic forces can be

neatly decoupled.

Yet, the entropy production alone is not sufficient since the relationship

between fluxes and thermodynamic forces is unknown. Therefore, an addi-

tional set of phenomenological equations that relate fluxes to forces must be

included. Examples include Fick’s Law of diffusion, Fourier’s Law of thermal

conductivity, and Ohm’s Law of electrical conductivity. The phenomenolog-

ical equations that supplement Eq. (1.4) are given by

J′q = −Lqq
∇T
T
−

n∑

k=1

Lqk ((∇µk)T − Fk) (1.5)

Ji = −Liq
∇T
T
−

n∑

k=1

Lik ((∇µk)T − Fk) (1.6)

(Παβ)α 6=β = −L(∇βvα)α 6=β (1.7)

Π = −lvv∇ · v −
r∑

m=1

lvm

n∑

k=1

νkmµk (1.8)

Jj = −ljv∇ · v −
r∑

m=1

ljm

n∑

k=1

νkmµk. (1.9)

The coefficients Lqq, Liq, Lqk, Lik are scalar quantities that describe the

vectorial phenomena of heat conduction, diffusion, and cross-effects. L is

the shear viscosity, which for an isotropic fluid is the same in all directions.

Lastly, lvv, lvm, ljv, ljm are scalar coefficients that describe scalar processes
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of bulk viscosity, chemical reactions, and their cross-effects to linear order.

Due to the Curie symmetry principle, fluxes and thermodynamic forces of

different tensorial character do not couple for an isotropic system. There are,

for example, no cross-coefficients that relate chemical affinity to heat or mass

transport.

The symmetry principle allows Eq. (1.4) to be split into three contribu-

tions which are separately positive definite

Tρṡ0 = −Π∇ · v −
n∑

k=1

r∑

j=1

νkjµkJj ≥ 0 (1.10)

Tρṡ1 = −J′q ·
∇T
T
−

n∑

k=1

Jk · ((∇µk)T − Fk) ≥ 0 (1.11)

Tρṡ2 = −
∑

α 6=β

Παβ∇βvα ≥ 0. (1.12)

In this work, we are primarily interested in understanding cross-effects,

specifically Eq. (1.6), that relates mass diffusion to a temperature gradient.

Such cross-effects have special symmetry properties. The Onsager-Casimir

reciprocity theorem proves that Lqk = (Liq)i=k, Lik = Lki, lvm = (ljv)j=m,

and ljm = lmj, thereby reducing the number of independent unknowns. Once

the thermodynamic forces are known, the relevant terms can be retained in

Eq. (1.4) and Eq. (1.5)-Eq. (1.9). As we will show in the next section, the

reciprocal relations prove to be useful in deriving an expression for thermo-

osmotic slip.

1.1.2 Derjaguin

The ‘classical’ approach to predict thermo-osmotic slippage is based on On-

sager’s reciprocity relations. Derjaguin [14] used Onsager’s theory of Lin-
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Figure 1.1: Fluid (blue) interacting with solid walls (grey) in a slit pore. 2d
is the gap width.

ear Non-Equilibrium Thermodynamics (LNET) to derive an expression for

thermo-osmotic slip.

Consider the slit pore as depicted in Fig. 1.1. A pressure and temperature

gradient is maintained across the slit. Fluid flows in the −x direction as

depicted by the arrows. For a single-component fluid, the rate of entropy

production due to vectorial phenomena can be written as

Tρṡ = −vx∇P − Jq′x
∇T
T

(1.13)

where vx is the fluid velocity (m/s) and Jq′x is the irreversible heat flux

(J/(m2 ·s)). Derjaguin considers ∇P as the conjugate force to the mass flux,

but we can easily recover Eq. (1.11). Using the Gibbs-Duhem relation at

constant temperature,

∇P = ρ∇Tµ (1.14)
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Eq. (1.13) can be re-expressed as

Tρṡ = −Jx∇Tµ− Jq′x
∇T
T
. (1.15)

This is equivalent to Eq. (1.11) for a single-component system in the absence

of external forces.

Eq. (1.13) implies the following phenomenological equations:

vx = −β11∇P − β12
∇T
T

(1.16)

Jq′x = −β21∇P − β22
∇T
T

(1.17)

where β11 is the mass diffusion coefficient that describes isothermal flow due

to the pressure gradient and β22/T is the thermal conductivity of the fluid.

The coefficient of interest here is clearly β12, which describes mass transport

induced by the thermal gradient. Due to Onsager’s reciprocity theorem,

the problem can be solved by considering instead the equivalent β21, the

coefficient describing heat diffusion due to hydrodynamic flow.

Consider the isothermal, irreversible heat flux across the pore in Fig. 1.1

Jq′x = Jqx − hBvx =
1

2d

∫ +d

−d
∆h(z)vx(z)dz (1.18)

where hB is the bulk enthalpy density and ∆h(z) is the excess near the

surface. Subtracting the diffusive contribution to the total heat transfer

(Eq. (1.3)), Jqx, leaves only the excess heat flux in the boundary layers. An

expression for vx due to ∇P can be derived starting with the Stokes equation

while assuming the viscosity η is constant in the boundary layers,

η
∂2vx
∂z2

=
∂P

∂x
. (1.19)
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Since the pressure gradient is independent of z and ∂vx(z)
∂z

= 0 at z = 0,

integrating once gives

η

∫ d

z

∂vx
∂z′

dz′ =

∫ d

z

z′
∂P

∂x
dz′. (1.20)

Assuming no surface slip i.e. vx(z = d) = 0, the expression can be integrated

again to give

vx(z) = − 1

2η

∂P

∂x
(d2 − z2). (1.21)

If we assume a linear velocity profile in the thin boundary layer (δ << d)

where the enthalpy is in excess, Eq. (1.21) can be expanded about the point

z = −d to give

vx(z) = −1

η

∂P

∂x
d(z + d) +O(z2). (1.22)

Keeping the term linear in z and redefining z as the distance to the wall gives

vx(z) = −dz
η
∇P. (1.23)

Substituting Eq. (1.23) into Eq. (1.18) and considering that only the bound-

ary regions contribute to the integral, the excess heat current can be re-

written as

Jq′x = −1

η

∫ δ

0

∆h(z)z dz∇P (1.24)

where ∆h(z) is the excess enthalpy density at a height z above the surface.
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Referring back to the phenomenological expressions (Eq. (1.16)-Eq. (1.17)),

β12 = β21 = −
(
Jq′x
∇P

)

T

(1.25)

where β21 is typically referred to as the ‘mechano-caloric’ coefficient and β12

is the ‘thermo-osmotic’ slip coefficient. Using Eq. (1.16), Eq. (1.24), and

Eq. (1.25), the expression for the thermo-osmotic slip velocity is given by

vs = −1

η

∫ δ

0

∆h(z)z dz
∇T
T

(1.26)

where δ is the extent of the thin boundary region with altered enthalpy. It

should be noted that Derjaguin in his original derivation missed the factor

of 1/2 in his expression for Poiseuille flow (Eq. (1.21)) leading to an error

that has been propagated in numerous works [1, 52, 54, 56]. The difficulty

with Eq. (1.26) is that there is a great deal of ambiguity in the microscopic

definition of the local excess enthalpy ∆h(z), a quantity that is also not easy

to probe in experiments [1] (see Chapter 1.2.1).

The key motivation for our work is that while a continuum approximation

to Eq. (1.26) may be sufficient for interaction lengths on the order of tens

of nanometers, it does not work for atomic or molecular liquids that do not

contain free charges. Rather, the excess enthalpy density ∆h(z) is a function

of the solvent polarity [56], liquid structure in the boundary layer [5], tem-

perature, and pressure. Additionally, the viscosity η can vary dramatically

near a (structured) surface. Our approach circumvents these issues: we argue

that the numerical tools that we use can be applied to realistic models that

cannot be described using continuum approaches.
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Figure 1.2: Schematic showing the vessel in Levich’s example. The fluid-air
interface is located at z = 0 and the bottom of the pan is at z = h.

1.1.3 Levich

There is an intimate connection between thermo-osmosis and the thermo-

capillary effect. Thermo-capillary motion was first described by Levich [38]

as movement of liquid due to a surface tension gradient.

Consider as shown in Fig. 1.2 a liquid poured into a shallow pan of depth

h with boundary walls kept at temperatures T1 and T2 where T2 > T1. Due

to the thermal gradient along the fluid-air interface, the surface tension γ will

vary. The resulting surface tension gradient will induce thermo-capillary con-

vection in the fluid. If the diameter of the liquid surface D is large compared

to its depth h, the Bond number, Bo= ∆ρgDh/∆γ where ∆ρ = ρfluid− ρair,
will be much less than one and surface tension forces will be significant in

comparison to gravitational forces. Any usual convective motion is assumed

to be negligible in comparison to thermo-capillary convection.

The liquid surface is located at z = 0 and the bottom of the pan is at

z = h. Typically, surface tension is a decreasing function of temperature.
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Levich therefore assumes that the surface tension attains a maximum value

at the colder wall and decreases linearly toward the warmer wall. Assuming

also that there are no temperature or chemical potential gradients in z and

no convection due to heating of the liquid, there can be no forces or flow in

the z direction. Stokes’ equation then simplifies to

η

(
∂2vx(z)

∂z2
+
∂2vx(z)

∂x2

)
=

(
∂P

∂x

)
. (1.27)

Once again, since the pan depth is small in comparison to its other dimen-

sions, the first term in the left-hand side of Eq. (1.27) will dominate. For the

same reasons, it may be assumed that the pressure is also not a function of

z. Therefore, Eq. (1.27) can be re-expressed as

η

(
∂2vx(z)

∂z2

)
=

(
∂P (x)

∂x

)
(1.28)

where pressure is only a function of x.

Because the system is enclosed with walls, flow of liquid at the surface

due to the surface tension gradient is accompanied by flow in the opposite

direction in the bulk. The continuity equation is then given by

∫ h

0

vx dz = 0. (1.29)

With this last piece of information, it is possible to write the boundary

conditions for fluid motion in the vessel. At the bottom of the vessel, the

liquid velocity is given by

(vx)z=h = 0. (1.30)

After fluid motion sets in, a viscous shear stress from the pan balances the
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surface tension gradient

η

(
∂vx
∂z

)

z=0

=
∂γ

∂T
∇T. (1.31)

Integrating Eq. (1.28) with the above boundary conditions gives the thermo-

capillary flow profile in the vessel

vx(z) =
1

η

(
∂γ

∂x

)
(h− z)− 1

2η

(
∂P

∂x

)
(h2 − z2). (1.32)

Levich’s macroscopic treatment considers the surface tension gradient as in-

dependent of z. We will show in Chapter 2.2 that ∂γ/∂x is related to the

thermo-osmotic force.

1.2 State of the Art

1.2.1 Past Experimental Work

Thermo-osmosis was first observed more than a century ago by Lippmann [39]

and Aubert [2] while studying the passage of water through gelatin and

pig’s bladder. Because the magnitude of flow depended on water-soluble

electrolytes within the membrane, the effect was thought to be electrical in

origin. Denbigh [12, 13] offered a theoretical treatment on thermo-osmosis of

gases. In his formulation, the flow of gas due to the thermal gradient leads

to a pressure difference across the membrane which stops flow.

Dividing the phenomenological equations (Eq. (1.16)) at ∇T = 0, he

defined the heat of transport in the membrane

Q∗m =
β21

β11

−Hm (1.33)
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Figure 1.3: Early experimental setup to measure thermo-osmosis through
cellophane membranes depicted in Ref. [57].

where Hm is the partial molar enthalpy of the dissolved gas in the membrane.

Q∗m is, therefore, the amount of transported energy that exceeds the enthalpy

of the gas. This quantity is related to the measurable heat flux given by

Eq. (1.3). He correctly noted that Q∗m is the quantity characterizing thermal

diffusion across the membrane. The heat of transport can be equivalently

given by setting vx = 0 in Eq. (1.16)

Q∗m =
β12

β11

= −T
(

∆P

∆T

)

vx=0

(1.34)

where ∆P is the thermo-osmotic pressure difference that stops flow. Eq. (1.34)

expresses the thermo-mechanical effect, where a stationary pressure differ-

ence arises as a result of a temperature gradient [14].
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Since Denbigh’s introduction of Q∗m, there has been numerous experi-

mental attempts to measure the heat of transport. Rastogi et. al [57] used

the experimental setup shown in Fig. 1.3 to measure the thermo-osmosis

coefficient of water through a cellophane membrane. The glass tubes (B,

C) contain water and the cellophane was fixed between ebonite discs (A,

A’). The difference in temperature was measured by thermocouples (D, E)

passing through the brass tubes (F, F’) near the membrane. Water level

on both sides of the membrane was kept the same via titration (L) so that

∇P = 0. Fluid velocity was determined by measuring the displacement of

the water column. Using the fluid velocity and temperature difference, the

thermo-osmosis coefficient could be determined via Eq. (1.16).

To validate their findings [58, 59], they measured the heat of transport

via Eq. (1.34) by allowing a pressure difference to develop on both sides of

the membrane so that flow vanishes in the steady state. For temperatures

between 319 − 327◦K, they report heat of transport values ranging from

0.088 − 0.137 cal/mol with no clear dependence on temperature. Haase et.

al [29] concurrently carried out calculations of thermo-osmotic water flow

through cellophane membranes. For temperatures between 284−350◦K, they

report Q∗m values ranging from 2.43 to −0.46 cal/mol where Q∗m decreases as

a function of temperature.

Dariel and Kedem [10] pointed out that the latter studies failed to account

for the thermal conductivity of the membranes, assuming therefore that the

temperature difference between the bulk phases (∆Tb) is equivalent to the

actual difference across the membrane (∆Tm). Exploiting the relationship

between volumetric flow and membrane thickness, ∆Tm could be determined.

For temperatures between 283−328◦K, they measured values of Q∗m for water

across cellulose acetate membranes. Their values for Q∗m range from 370
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to 500 cal/mol, which was three orders of magnitude higher than previous

studies and showed the opposite dependence of Q∗m on temperature. While

failure to correct for the actual temperature difference could account for a

factor of ten discrepancy, the additional two orders of magnitude could not

be explained.

Vink and Chishti [69] used magnetic stirrers to eliminate thermal gra-

dients in the bulk liquid compartments so that the temperature difference

across the membrane could be more accurately estimated. Due to thermal

conductivity of the membrane, the temperature of stationary liquid layers

near the membrane surfaces may be different from the bulk, an effect known

as temperature polarization. Magnetic stirrers reduce thickness of the liquid

layers causing them to thermalize with the bulk. The latter procedure im-

proves estimation of the actual temperature difference across the membrane.

Vink and Chishti measure heat of transport values for water across cello-

phane that are twice those reported by Haase [69]. The discrepancy, they

explain, may be due to differences in the structural density of the membranes.

In comparison with Dariel and Kedem’s anomalous values, they pointed out

that the latter authors do not measure the thermo-osmotic pressure directly

and therefore their measurements cannot be trusted.

Mengual et al [45, 46] carried out a series of experiments to measure

thermo-osmosis of water through cellulose acetate membranes. Using Vink

and Chishti’s method of magnetic stirring to reduce the effects of tempera-

ture polarization, they measured the thermo-osmotic permeability coefficient

B, which is related to the heat of transport via B = ρβ11Q
∗/T , where ρ is

the fluid density. They constructed three membranes of differing thicknesses

by dissolving 200, 250, and 300 mg of cellulose acetate in 60 cm3 of ace-

tone. Measurements of B increased with the magnetic stirring rate. By
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extrapolating to infinite stirring rates, they introduced a correction factor to

account for temperature polarization effects. The B value for the thinnest

membrane was on the order of 10−10 mole/(m sec K) and increasing to 10−9

mole/(m sec K) for the thicker ones. Comparing to literature values, Dariel

and Kedem [10] obtained values on the order of 10−9 mole/(m sec K) for

dense cellulose acetate membranes whereas Haase [29] and Rastogi [59] re-

ported values on the order of 10−8 and 10−6 mole/(m sec K), respectively, for

cellophane. Overall, their measurements underestimated the thermo-osmotic

permeability with respect to literature values.

Besides transport through cellulose-acetate or cellophane membranes,

there have been numerous studies estimating thermo-osmotic flow through

porous clay-rich media [17, 66, 28, 67]. Such measurements can improve

safety assessments of nuclear-waste repositories in shale layers [7, 50, 27].

Derjaguin and Sidorenkov [15, 14] carried out the earliest experiments of

thermo-osmotic water flow through porous glass. In the latter case, the pres-

ence of surface charges complicates the story and there is still no consensus

on the sign of the thermo-osmosis coefficient [5].

1.2.2 Recent Experimental Work

Bregulla et. al [5] recently attempted to experimentally measure the thermo-

osmosis coefficient of water interacting with a Pluronic F-127 coated surface

and a glass surface. Pluronic F-127 is a nonionic triblock copolymer con-

taining a hydrophobic block of polypropylene glycol, which attaches to the

surface and two hydrophilic blocks of polyethylene glycol, which form an

aqueous polymer brush.

Their experimental setup shown in Fig. 1.4 includes heating a 250nm Au

nanoparticle fixed to the surface and tracing the flow field by tracking 150
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Figure 1.4: Experimental setup from Ref. [5] to measure thermo-osmosis of
water in contact with glass and a polymer brush (Pluronic F-127).

nm tracer particles. By extracting the slip velocity from the flow field, they

calculated β12 (Eq. (1.25)): −13 × 10−10 m2/s for the water-polymer and

−1.8× 10−10 m2/s for the water-glass interface.

To validate the experimental measurements, they offered a theoretical es-

timate of β12. The enthalpy of mixing for PEG is ∆H = −0.66×10−20J/monomer.

Treating the polymer as a rod of radius b and length d while assuming the

excess enthalpy density is constant within an interaction length λ and zero

beyond, ∆h = ∆H/2πbdλ. Their theoretical approximation for the thermo-

osmosis coefficient is given by

β12 ≈
(

1

η

)(
∆Hλ

4πbd

)
∼ −14× 10−10 m2/s (1.35)

where b = λ and d = 3.5Å. For the water-glass interface, they use the

Debye-Hückel approximation to estimate β12 ∼ −10−10 m2/s.

While the agreement between theoretical estimates and experimental

measurements seems impressive, the assumptions in deriving the former are

drastic. As we will show in Chapter 5.4, even for a simple solid-liquid inter-

face the excess enthalpy density is not constant within the interaction length.
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Moreover, especially in the case of a grafted polymer brush, one would ex-

pect the viscosity near the interface to differ significantly with respect to the

bulk. In the case of water interacting with glass, Debye-Hückel theory does

not account for structuration of the fluid near the interface. It also fails to

include the effects of thermal electrostriction ∂ε/∂T .

Aside from the dangerous assumptions built in to their theoretical esti-

mates, the experimental measurements also fail to account for thermophoresis

of the tracer particles due to the thermal gradient, which cannot be neglected.

Clearly, thermo-osmosis demands robust numerical attention as precise ex-

perimental measurement still proves to be difficult.

1.2.3 Connections to Thermophoresis and Soret Effect

Thermo-osmotic slip is intimately related to thermophoresis, the motion of a

colloidal particle under the influence of a thermal gradient. Thermophoresis

is typically considered in two limiting cases: the Hückel limit and boundary

layer approximation [6, 75]. In the Hückel limit, particle-solvent interactions

are long-range such that r << δ, where r is the colloid radius and δ denotes

the interaction range of the colloid with solvent. In the boundary layer ap-

proximation, r >> δ such that the particle can be treated as a flat surface

interacting with the solvent via short range forces. In this case, the temper-

ature gradient induces a local pressure gradient (see Chapter 2.1) that drives

thermo-osmotic slip at the colloid surface. For a homogeneous surface, the

slip velocity varies with the sign of the polar angle [75]

v̂s(θ) = vs sin θ (1.36)
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where vs is the maximal value at θ = π/2 given by Eq. (1.26). Due to

momentum conservation, the resulting particle velocity will be opposite to

the osmotic flow in the boundary layer. An orientational average of Eq. (1.36)

over the colloidal surface gives the thermophoretic velocity [75]

u = −2

3
vs. (1.37)

Of course, the preceding analysis greatly simplifies thermophoresis in the

boundary layer approximation. Derjaguin duly notes that thermophoresis is

an open problem due to difficulties involved in correctly taking into account

thermal conduction and Brownian motion of small particles [14]. Heat con-

duction through the particle surface causes the temperature profile around

the colloid to change. Thus, for a curved surface, ∇T in Eq. (1.26) will not

simply be equal to the externally imposed temperature gradient.

Thermophoresis is closely related to the Soret effect, the motion of many

particles suspended in fluid due to a thermal gradient. The total mass flux

in such a system can be written as

J = −D∇c− cDT∇T (1.38)

where c is the particle concentration, D is the Brownian diffusion coefficient,

and DT is the thermophoretic mobility given by −u/∇T . At steady-state,

flux due to Brownian diffusion cancels flux due to thermal diffusion such that

J vanishes. The Soret coefficient is then given by

ST =
DT

D
= − ∇c

c∇T . (1.39)

If ST > 0, particles move to the cold region, while the reverse occurs for
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ST < 0.

McNab and Meisen conducted the earliest studies of thermophoresis by

observing latex spheres suspended in water and n-hexane [44]. They imposed

a vertical temperature gradient by trapping a suspension of particles between

horizontal parallel disks. The thermophoretic velocity was determined as

the difference between the vertical displacement of particles in the thermal

field and the Stokes settling velocity [14]. Their measurements showed that

the phenomenon is independent of particle size, which is consistent with

Eq. (1.37) [1].

Since McNab and Meisen’s early work, advances in optical techniques

have allowed for more accurate study of thermophoresis. Beam deflection

(BD), developed by Giglio and Vendramini [25], involves focusing a laser

beam onto the mid-plane of a thin mixture confined between two horizon-

tal plates at different temperatures. Due to the temperature difference, a

gradient in the refractive index (dn/dz) builds up in the fluid and the beam

is deflected [25]. The angular deflection due to first thermal expansion and

then a thermally induced concentration gradient allows for estimation of the

Soret coefficient [54].

Piazza and Guarino [53] used BD to study thermal diffusion of charged

micelles. Their experiments show that ST scales as the square of the Debye-

Hückel length, deviating from standard electro-kinetic phenomena [42]. Us-

ing a micro BD setup, Putnam and Cahill [56] measured DT for charged

polystyrene spheres. Particles with different surface chemistries exhibited a

wide range of values for DT , validating the significance of the excess enthalpy

density (Eq. (1.26)) in driving transport.

Iacopini et al. [33, 34] studied the temperature dependence of ST . They

attempted to discern a threshold temperature T ∗ above which particles drift
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to the cold region and below which the reverse motion occurs. From their

experiments, the dependence of ST on temperature could be described by

the empirical fitting function

ST (T ) = S∞T

[
1− exp

(
T ∗ − T
T0

)]
(1.40)

where S∞T is the high-T asymptotic limit and T0 is the exponential growth

rate that determines the strength of temperature effects. The fitting func-

tion accurately described a large class of aqueous systems including protein

solutions, SDS ionic micelles, and DNA [34].

Recent advances in particle-tracking methods and confocal microscopy

have paved the way towards direct visualization of colloidal thermophore-

sis. Duhr and Braun [18, 19] use laser beam adsorption to induce localized

thermal gradients within aqueous micro-fluidic cells. The concentration of

fluorescent-dyed particles can be reconstructed from the fluorescence inten-

sity. Because the dye’s emission is temperature dependent, the temperature

field around the colloid can be monitored [20]. If particles are sufficiently

large such that individual emission can be resolved, measurement of vT and

DT is possible [54].

The latter “Microscale Thermophoresis” (MST) technique developed by

Braun and coworkers has been used to study thermophoresis of DNA [18,

60]. Insights from these experiments have led them to suggest that thermal

gradients across porous media may have provided essential non-equilibrium

conditions for autonomous molecular evolution [4].
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1.2.4 Molecular Simulation Studies

Most molecular simulation studies of thermal transport have dealt with calcu-

lating the Soret coefficient of atomic species [61, 62]. Typically, this involves

simulating a binary mixture driven to a non-equilibrium steady state by a

temperature gradient. At steady state, heat continues to flow while the mass

flux stops due to an opposing concentration gradient. For a binary mixture,

the Soret coefficient is given by [61]

ST = − 1

n1(1− n1)

(
∂n1

∂x

)(
∂T

∂x

)−1

where n1 is the mole fraction of species 1. For equimolar mixtures the ex-

pression reduces to

ST = −4

(
∂n1

∂x

)(
∂T

∂x

)−1

.

By simulating a temperature gradient with the RNEMD algorithm (see Chap-

ter 4.3.1), Reith and Müller-Plathe compute the temperature and concentra-

tion gradients in the steady state and therefore the Soret coefficient for a

Lennard-Jones fluid. Römer et al [62] used the Heat-Exchange (HEX) algo-

rithm (see Chapter 4.3.2) to compute the Soret coefficient for alkali halide

aqueous solutions (Na+/K+ − Cl−).

Thermo-osmotic flow is different from the Soret effect since forces due to

the density gradient balance thermodynamic forces due to the temperature

gradient in the bulk. Near the surface, the force balance does not remain

resulting in a local pressure gradient that drives mass flux (see Chapter 2.1).

Direct molecular simulation of thermo-osmosis has practical drawbacks, as

a constant temperature gradient is incompatible with the periodic boundary
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conditions commonly used in simulations to minimize finite-size effects (see

Fig. 6.2). As a result, indirect methods have been pursued.

Han [30] developed a mechanical approach via the microscopic pressure

tensor (see Chapter 5.1). Conducting equilibrium simulations at different

temperatures, he evaluated the change in transverse pressure near the sur-

face due to the change in temperature (∂Pxx(z)/∂T ). Using a bulk viscosity

calculation, he integrated ∂Pxx(z)/∂T with the Stokes equation (Eq. (1.28)),

while assuming no slip at the surface, and determined the thermo-osmotic

slip velocity as a function of the temperature gradient. The primary short-

comings of the latter approach are the macroscopic assumptions of no slip

and constant viscosity. Moreover, Han fails to validate the slip calculations

with any independent approaches.

1.3 Thesis Structure

The scarcity of molecular simulations suggests that thermo-osmotic flow can-

not be computed via standard approaches. In this dissertation, we develop

a number of independent techniques to calculate thermo-osmotic forces and

flows without making macroscopic hydrodynamic assumptions.

In Chapter 2, we introduce a theoretical framework for thermo-osmosis

and thermo-capillary motion based on Local Thermal Equilibrium (LTE)

approximations. Using the Gibbs-Duhem relation, we explicitly show that

the external temperature gradient induces a local pressure gradient, whose

magnitude is directly determined by the excess enthalpy density near the sur-

face. Integrating the local pressure gradient via Stokes equation, we recover

Derjaguin’s expression for the slip velocity. For a liquid-liquid interface, we

use the Gibbs-Adsorption relation to equate the integral of the local pressure
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gradient to the surface tension gradient. In doing so, we clearly establish that

thermo-osmotic and thermo-capillary flow are driven by the same microscopic

forces.

To translate the macroscopic theory presented in Section 1.1.2 and Chap-

ter 2 into microscopic terms, we derive the relevant expressions in Chapter 3.

In the process, we show that there are ambiguities in defining the atomic

pressure tensor and heat current. As we intend to use these expressions to

compute thermo-osmotic forces and flows, we must be cautiously aware of

how such ambiguities can affect our predictions.

As a prelude to the simulations presented in the remaining chapters,

we briefly describe various molecular simulation techniques in Chapter 4.

We introduce standard Molecular Dynamics integration and thermostatting

schemes and conclude with algorithms for setting up temperature gradients

in molecular systems.

In Chapter 5, we describe the ‘stress gradient’, ‘LTE’, and ‘Derjaguin’

methods for computing thermo-osmotic slip. Using microscopic expressions

developed in Chapter 3, we evaluate the local pressure gradient via equi-

librium calculations of the transverse pressure. We also offer a molecular

expression for local enthalpy in order to determine the thermodynamic driv-

ing force. We then apply the mechanical and thermodynamic forces to an

equilibrium system and measure the non-equilibrium flow profile. Interest-

ingly, the methods yield different force and flow profiles near the surface,

while predicting roughly the same bulk flow velocity. As an independent

validation step, we compute the reciprocal ‘mechano-caloric’ coefficient by

simulating a pressure gradient and evaluating the excess heat current. The

slip velocity determined via the Onsager coefficient agrees well with the ve-

locities predicted by the mechanical and thermodynamic approaches.
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We pursue in Chapter 6 a direct route to compute thermo-osmotic forces

in order to determine which, if any of the approaches offered in Chap-

ter 5, predicts the correct interfacial forces. By treating the mass M of

the fluid particles as a tensor in the Hamiltonian, we can eliminate the bal-

ancing shear force in a non-equilibrium simulation and therefore compute

the thermo-osmotic force at simple solid-fluid interfaces. We compare the

non-equilibrium force measurement with estimates of the thermo-osmotic

force based on computing gradients of the microscopic pressure tensor. We

find that the thermo-osmotic force as measured in our simulations cannot be

derived from the most common microscopic definitions of the pressure ten-

sor. Surprisingly, the thermodynamic force predicted by our local enthalpy

expression gets extremely close to the non-equilibrium result.

In Chapter 7, we examine the failure of pressure expressions from a macro-

scopic perspective. By integrating the thermo-osmotic force profiles predicted

by the mechanical and thermodynamic expressions, we evaluate the surface

tension gradient. Interestingly, pressure gradients fail to predict the sur-

face tension gradient for structured surfaces. If solid phase contributions to

the transverse pressure are removed as is the case with a flat wall or near

a de-wetting regime, the problem disappears. Based on these results, we

conclude that any hydrodynamic formulation of pressure will fail to predict

surface tension gradients since it will incorrectly treat solid surface contri-

butions. As an alternative, we contend that the thermodynamic expression

for surface tension gradients derived in Chapter 2 always gives the correct

answer.

Finally, in Chapter 8 we summarize our results and compare with related

work on microscopic flows due to chemical potential gradients. We end with

a brief discussion on avenues for future research in non-equilibrium transport.
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Chapter 2

Developing Theoretical

Framework

Derjaguin’s clever use of the Onsager reciprocal relation does not lend a

clear physical explanation for the origin of the thermo-osmotic force. Fur-

thermore, Levich’s treatment of thermo-capillary motion gives no expression

for the surface tension gradient. To fill in the conceptual gaps regarding

thermo-osmotic and thermo-capillary motion, we consider the classical ther-

modynamic approach to the problem, based on the assumption of Local

Thermal Equilibrium (LTE).

2.1 Gibbs Duhem Relation

We note that neither temperature gradients nor, for that matter, chemical

potential gradients at constant pressure can exert a net force on a fluid

element in a bulk liquid. Mechanical forces in liquids can only be caused

by external forces such as gravity or pressure gradients. If a temperature

gradient causes flow, it is only because a local pressure gradient is induced.
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Consider flow due to a temperature gradient parallel to a hard wall in

the +x direction; the z coordinate measures distance perpendicular to the

wall. Starting from the Gibbs-Duhem relation for an n-component mixture,

we write

V dP =
n∑

i=1

Nidµi + SdT (2.1)

Dividing through by V and differentiating with respect to x gives the follow-

ing expression:

∂P

∂x
=

(
n∑

i=1

ρi
∂µi
∂T

+
S

V

)
∂T

∂x
(2.2)

The Gibbs-Duhem equation makes use of the fact that the system is homo-

geneous. A stratified system in equilibrium, is homogeneous in the directions

parallel to the stratification, but not perpendicular to it. Hence, here and

in what follows, the ‘pressure’ P refers to a component of the pressure ten-

sor parallel to the surface (e.g. Pxx). In the bulk, the pressure is equalized

quickly and the fluid reaches hydrostatic equilibrium.

n∑

i=1

ρBi
∂µBi
∂TB

= −S
B

V
(2.3)

where the superscript B denotes bulk quantities. Since the bulk pressure is

constant, this leads to the well-known thermodynamic relation,

(
∂µi
∂T

)

P

= −si (2.4)

where si is the specific entropy of species i. As before, we can write a similar
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expression for the pressure gradient at a position z above the surface:

∂Pxx(z)

∂x
=

(
n∑

i=1

ρi(z)
∂µi
∂T

+
S(z)

V

)
∂T

∂x
(2.5)

Using the assumption of LTE, µi and T do not depend on z meaning that

µi(z) = µBi and T (z) = TB. Thus, Eq. (2.5) can be rewritten as

∂Pxx(z)

∂x
=

(
−

n∑

i=1

ρi(z)sBi +
n∑

i=1

ρi(z)si(z)

)
∂T

∂x
(2.6)

It may be convenient to write

ρi(z, x) = ρBi e
−β∆µexi (z,x) (2.7)

Note that while µi does not depend on z, the excess chemical potential µexi

does indeed depend on z. Eq. (2.6) can therefore be written as

∂Pxx(z)

∂x
=

(
n∑

i=1

ρBi e
−β∆µexi (z,x)[si(z)− sBi ]

)
∂T

∂x
(2.8)

Eq. (2.8) can be simplified by noting that the expression in brackets is the

difference between the specific entropy at position z and the bulk specific

entropy. Since µi and T do not depend on z, µi = hi − Tsi can be used to

rewrite Eq. (2.8) so that the thermo-osmotic force is given by

∂Pxx(z)

∂x
=

(∑n
i=1 ρ

B
i e
−β∆µexi (z,x)[hi(z)− hBi ]

T

)
∂T

∂x

=

(
∆h(z)

T

)
∂T

∂x

(2.9)

(2.10)

where ∆h(z) is the excess enthalpy density at a distance z from the surface.
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Eq. (2.9) is the key relation in this work. The remainder of this dissertation is

concerned with developing numerical methods in order to compute Eq. (2.9)

and the resulting flows.

To relate our expression for the thermo-osmotic force to the flow velocity,

the Stokes equation given by

η

(
∂2vx(z)

∂z2

)
=

(
∂Pxx(x, z)

∂x

)
(2.11)

can be integrated twice while assuming ∂vx/∂z = 0 in the bulk and no slip

at the surface to give

vx = −1

η

∫ ∞

0

dz′
∫ ∞

z′
dz

(
∆h(z)

T

)
∂T

∂x
(2.12)

far away from the surface. Using partial integration, the expression can be

re-written as

vx = −1

η

([
z′
∫ ∞

z′
dz

(
∆h(z)

T

)
∂T

∂x

]∞

0

+

∫ ∞

0

dz′ z′
(

∆h(z′)

T

)
∂T

∂x

)
(2.13)

which simplifies to give

vx = −1

η

∫ ∞

0

dz z

(
∆h(z)

T

)
∂T

∂x
(2.14)

It is important to note here that δ can be substituted for the upper bound

of the integral in Eq. (2.14) since ∆h(z) = 0 outside of the boundary region.

Doing so recovers Derjaguin’s expression (Eq. (1.26)).

The usual definition of the ‘slip’ velocity is the extrapolated velocity at

the interface, where the fluid density approaches zero. For a thin boundary

layer, we define slip as the fluid velocity in the bulk just outside the boundary

layer. In this way, thermo-osmotic slippage is the velocity of the fluid outside
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of the surface interaction length.

The advantage of our LTE approach is that Eq. (2.9) gives a clear rela-

tionship between the external temperature gradient and the local pressure

gradient that induces slip at the surface. The magnitude of this coupling is

determined exclusively by the excess enthalpy density. In principle, a sim-

pler approach to derive Eq. (2.9) would be to note that thermo-osmotic flow

can only be induced by a mechanical force such as a pressure gradient [1].

Working backwards via partial integration of Eq. (2.11) gives

vx = −1

η

∫ ∞

0

dz z
∂Pxx(x, z)

∂x
(2.15)

Comparing with Eq. (1.26), we immediately recover Eq. (2.9). The advantage

of the Gibbs-Duhem approach is that it shows how the pressure gradient

can be equivalently related to the excess specific entropy. Furthermore, it

provides additional insight that the problem can be treated with the LTE

approximation.

2.2 Gibbs Adsorption Relation

We can see upon comparing Levich’s approach in Chapter 1.1.3 to our deriva-

tion of thermo-osmosis in the previous section that the surface tension gra-

dient is directly related to the local pressure gradient. The connection to

thermo-capillary motion can be derived through the use of the Gibbs-Duhem

and Gibbs-Adsorption relations. Consider two fluid phases meeting at a thin

transition zone as shown in Fig. 2.1. While the exact location of the Gibbs

dividing surface is arbitrary for a planar interface, we choose it to lie in the

transition zone [51]. For a single-component system, the dividing surface is

typically chosen at a point where the excess density vanishes. In the system
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Figure 2.1: Schematic showing two interacting fluid phases α and β. The
slab z denotes a volume element in the interfacial region where the number
of atoms and entropy is either deficient or in excess with respect to the same
size volume element in the bulk phases.

considered here, there is no point at the interface where the latter statement

is true [63]. The dividing surface is defined such that ραi (z ≥ 0) = ραi while

below it, ραi (z < 0) = 0; ρβi (z < 0) = ρβi and ρβi (z ≥ 0) = 0.

We once again write the Gibbs-Duhem relation for the bulk phases α and

β. When referring to the bulk, we consider a slab of thickness dz denoted
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‘Bulk’ in Fig. 2.1.

V αdP =
n∑

i

Nα
i dµi + SαdT (2.16)

V βdP =
n∑

i

Nβ
i dµi + SβdT (2.17)

A temperature gradient in the +x direction leads to an opposing density

gradient such that the bulk phases remain hydrostatic.

∂P

∂x
= 0 =

(
n∑

i

ραi

(
∂µi
∂T

)
+
Sα

V α

)(
∂T

∂x

)
(2.18)

∂P

∂x
= 0 =

(
n∑

i

ρβi

(
∂µi
∂T

)
+
Sβ

V β

)(
∂T

∂x

)
(2.19)

Since α and β are in mechanical and thermal equilibrium in the z direction,

T and µi are independent of z. However, ∂µi/∂T can change across the

dividing surface. Eq. (2.18) and Eq. (2.19) reduce to

(
∂µi
∂T

)α

P

= −sαi (2.20)

(
∂µi
∂T

)β

P

= −sβi (2.21)

We therefore define the bulk specific entropy of species i as

sBi (z) =




sβi , z < 0

sαi , z ≥ 0.

(2.22)
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Now, consider the Gibbs-Adsorption relation in its general form

Adγ + SsdT +
n∑

i

N s
i dµi = 0 (2.23)

where the superscript s denotes excess quantities

N s
i = Ni − (Nα

i +Nβ
i ) (2.24)

Ss = S − (Sα + Sβ). (2.25)

For a temperature gradient in the +x direction, Eq. (2.23) becomes

∂γ

∂x
= − 1

A

(
Ss +

n∑

i=1

N s
i

(
∂µi
∂T

))(
∂T

∂x

)
. (2.26)

Dividing Eq. (2.24) and Eq. (2.25) by the volume V and substituting for

Eq. (2.20), Eq. (2.26) can be re-expressed as

∂γ

∂x
= −

∫ ∞

−∞
dz

n∑

i=1

(
ρi(z)si(z)− (ραi Θ(z)sαi + ρβi Θ̃(−z)sβi ) (2.27)

−(ρi(z)− (ραi Θ(z) + ρβi Θ̃(−z)))sBi (z)
)(∂T

∂x

)

where

Θ(n) =





0, n < 0

1, n ≥ 0

(2.28)
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and

Θ̃(n) =





0, n ≤ 0

1, n > 0

(2.29)

Using Eq. (2.22), the expression simplifies to

∂γ

∂x
= −

∫ ∞

−∞
dz

n∑

i=1

ρi(z)(si(z)− sBi (z))

(
∂T

∂x

)
(2.30)

which again using µi = hi − Tsi can be written as

∂γ

∂x
= −

∫ ∞

−∞
dz

(
∆h(z)

T

)(
∂T

∂x

)
. (2.31)

Substituting Eq. (2.9), the surface tension gradient can be related to the

thermo-osmotic force

∂γ

∂x
= −

∫ ∞

−∞
dz

∂Pxx(z)

∂x
. (2.32)

Thus, the physical origin of thermo-osmotic flow is equivalent to that of

the thermo-capillary or thermal Marangoni effect. In the case of a fluid-

fluid interface, it is conventionally described as flow due to a surface tension

gradient.

We note that Ruckenstein [64] postulated a connection between the ther-

mal Marangoni effect and thermophoresis by using an analogous derivation

of the electrophoretic velocity in terms of the interfacial tension gradient.

Würger [74], in a hydrodynamic treatment of thermophoresis, showed that

the surface tension gradient serves as the slip boundary condition that drives

colloid transport.
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Chapter 3

Microscopic Expressions

In Chapters 1 and 2, we derived expressions for thermo-osmotic slip using

both linear non-equilibrium thermodynamics and local thermal equilibrium

approximations. In the process, we established that the temperature gra-

dient induces a local pressure gradient, which drives thermo-osmotic flow.

Our motivation is to translate the macroscopic picture of the problem into

microscopic terms where both fluid and solid are explicitly treated as atoms.

To do so, we must examine closely the relevant microscopic expressions.

3.1 Atomic Pressure Expressions

3.1.1 Irving-Kirkwood

A mechanical expression for the pressure tensor in terms of pair distribu-

tion functions and pairwise potentials was formulated by Irving and Kirk-

wood [36]. The derivation that follows is the approach by Ono and Kondo in

their comprehensive formulation of the molecular theory of surface tension

in liquids [51].

Consider an artificial surface element dS located at r that divides the
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fluid into two parts as shown in Fig. 3.1. The volume of fluid into which the

vector dS points is the outer fluid, while the volume that the vector points

away from is the inner fluid. The force between pairs of molecules acts across

dS when the straight line that connects the centers of the molecules passes

through dS. Thus, the force can only act on dS when the molecules are on

opposite sides of the surface element.

A molecule at r′ in the inner fluid feels a force (R/R)φ′(R) from a molecule

at r′ + R in the outer fluid, where R is the relative displacement between

the molecules. Following the description above, the intermolecular force acts

across dS if the vector r′ + λR terminates on dS for a value of λ between

zero and one. If R is fixed, the volume element over which the vector r′+λR

terminates on dS for λ between λ and λ + dλ is dS ·Rdλ. The probability

of finding a molecule in this volume element and another at r′ + R ranging

over a volume dR is given by

ρ(2)(r′, r′ + R)(dS ·Rdλ)dR = ρ(2)(r− λR, r− λR + R)(dS ·Rdλ)dR

(3.1)

where ρ(2) is referred to as the pair distribution function defined as

ρ(2)(r−λR, r−λR+R) =

〈
N∑

i,j

δ(r− λR− ri)δ(r− λR + R− rj)

〉
. (3.2)

The total force acting across dS on the inner fluid is obtained by multi-

plying Eq. (3.2) by (R/R)φ′(R) and integrating over the outer volume

F(φ)dS = dS ·
∫

R·dS>0

dR

[∫ 1

0

RR

R
φ′(R)ρ(2)(r− λR, r− λR + R)dλ

]
.

(3.3)
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Figure 3.1: Schematic showing the IK definition of the potential contribution
to the pressure.

Newton’s third law means that

∫ 1

0

RR

R
φ′(R)ρ(2)(r− λR, r− λR + R)dλ = (3.4)

∫ 1

0

RR

R
φ′(R)ρ(2)(r− λR + R, r− λR)dλ. (3.5)

Therefore, Eq. (3.3) can be re-expressed as

F(φ)dS =
1

2
dS ·

∫
dR

[∫ 1

0

RR

R
φ′(R)ρ(2)(r− λR, r− λR + R)dλ

]
(3.6)

where now the integration with respect to R extends over all space.

The pressure tensor consists of both kinetic and potential contributions.

The kinetic term is momentum flux per unit area due to thermal motion of
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the particles. This is given by

PK
αβ(r, t) =

〈
N∑

i=1

pαi p
β
i

mi

δ(r− ri)

〉
= ρ(r)kBT (3.7)

where the equipartition theorem is used in the last equality. In the case of

the Irving-Kirkwood pressure expression, the potential contribution is the

force acting across dS due to molecules interacting on opposite sides of the

surface. This is given by dividing Eq. (3.6) by −dS

P φ
αβ(r) = −1

2

∫
dR

[∫ 1

0

RαRβ

R
φ′(R)ρ(2)(r− λR, r− λR + R)dλ

]
. (3.8)

Essentially, the Irving-Kirkwood definition of pressure gives the force per

unit area that separates two molecules.

Eq. (3.8) can be re-expressed for systems with the dividing surface as a

(x, y) plane and z axis normal to the surface. Because fluid in such a system is

homogeneous in the directions parallel to the interface, the pair distribution

function can be expressed as ρ(2)(z − λZ, z − λZ + R). The pressure tensor

near a planar interface can be expressed as

Pαβ(z) = PT (z)(x̂x̂+ ŷŷ) + PN(z)ẑẑ. (3.9)

Substituting Eq. (3.2), Eq. (3.7) and Eq. (3.8) into Eq. (3.9), the pressure
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tensor simplifies to

PT (z) = ρ(z)kBT −
1

2

〈
N∑

i,j

∫
x2
ij

rij
φ′(rij) × (3.10)

∫ 1

0

δ(z − λZ − ri)δ(z − λZ + R− rj)dλdR

〉

PN(z) = ρ(z)kBT −
1

2

〈
N∑

i,j

∫
z2
ij

rij
φ′(rij) × (3.11)

∫ 1

0

δ(z − λZ − ri)δ(z − λZ + R− rj)dλdR

〉
.

Since PT = Pxx = Pyy for the planar geometry, the transverse component

can equivalently be expressed as

PT (z) = ρ(z)kBT −
1

4

〈
N∑

i,j

∫
x2
ij + y2

ij

rij
φ′(rij) × (3.12)

∫ 1

0

δ(z − λZ − ri)δ(z − λZ + R− rj)dλdR

〉
.

Because the fluid is in mechanical equilibrium, PN must equal the bulk hy-

drostatic pressure and therefore will be constant for all z.

Irving and Kirkwood add a crucial footnote regarding Eq. (3.6) in that

the definition of the force acting across dS is arbitrary. As we will show in the

next section, the arbitrariness is reflected in the shape of the contour joining

the centers of i and j. Irving and Kirkwood choose a straight line. However,

another contour would lead to a different expression for the pressure tensor.

From a mesoscopic point of view, integration over a domain large compared

with the range of intermolecular forces causes these differences to wash out.

Yet, since we are interested in computing the forces on atoms near the

surface, the domain in which we intend to evaluate the pressure is smaller
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than the range of intermolecular forces. Therefore, the ambiguity in the

definition of the microscopic pressure must be addressed.

3.1.2 Gauge Variance

Schofield and Henderson [65] first related the ambiguity in the microscopic

pressure tensor to a gauge variance. Consider a system of interacting particles

within a volume. The total linear momentum is given by

p(t) =
N∑

i=1

pi(t) =

∫
dr J(r, t) (3.13)

where J is the momentum density which can be expressed in terms of a delta

function as

J(r, t) =
N∑

i=1

pi(t)δ(r− ri). (3.14)

The force on the volume is defined as the rate of change of the linear mo-

mentum on the material given by

J̇(r, t) = −∇r ·
N∑

i=1

pi(t)ṙiδ(r− ri) +
N∑

i=1

ṗi(t)δ(r− ri). (3.15)

The first term in Eq. (3.15) when inserted into Eq. (3.13) can be expressed

as the divergence of a second-rank tensor

σKαβ(r, t) = −
N∑

i=1

pαi p
β
i

mi

δ(r− ri). (3.16)

Once again, using the equipartition theorem this quantity is equivalent to

the kinetic contribution to the momentum flux.

Assuming the mass does not change with time and neglecting any external
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forces, the second term in Eq. (3.15) can be expressed as

N∑

i=1

ṗi(t)δ(r− ri) = −
N∑

i=1

∇riφ(ri)δ(r− ri) (3.17)

where φ(ri) is the interaction potential between particles. Using the fact that

the inter-particle potential is translationally invariant, under the transforma-

tion ri → ri + a
N∑

i=1

∇riφ(ri) = 0. (3.18)

Due to translational invariance and considering pair-wise additive potentials

where rij = rj − ri, the right-hand side of Eq. (3.17) can be expressed as

N∑

i=1

∇riφ(ri)δ(r− ri) =
1

2

∑

i 6=j

rij
φ′(rij)

rij
[δ(r− ri)− δ(r− rj)] (3.19)

=
1

2

∑

i 6=j

rij
φ′(rij)

rij
δ(r− l)

∣∣∣
ri

rj
(3.20)

= −1

2

∑

i 6=j

rij
φ′(rij)

rij
∇r ·

∮

Cij

dl δ(r− l) (3.21)

where the contour integral runs from ri to rj. From Eq. (3.21), it is clear

that the second term in Eq. (3.15) can also be expressed as the divergence

of a second rank tensor

σφαβ(r, t) =
1

2

N∑

i,j

rαij
φ′(rij)

rij

∮

Cij

dlβ δ(r− l). (3.22)

This contribution is momentum flux due to inter-particle forces acting along

the contour connecting particles i and j. Upon substitution of Eq. (3.16)

48



and Eq. (3.22) into Eq. (3.15), momentum balance is recovered

J̇(r, t) = ∇ · σαβ(r, t). (3.23)

This expression defines the stress tensor, though not uniquely, since any δσαβ

can be added to Eq. (3.23)

J̇(r, t) = −∇ · (σαβ(r, t) + δσαβ(r, t)) (3.24)

such that

∇ · δσαβ(r, t) = 0. (3.25)

The gauge variance in σαβ is reflected in the contour Cij chosen in Eq. (3.22).

Consider the following contour connecting ri to rj:

l(ri, rj) = ri + l̂(rij); 0 ≤ l̂ ≤ rij (3.26)
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Eq. (3.22) then becomes

σφαβ(r, t) =
1

2

N∑

i,j

rαij
φ′(rij)

rij

∮

Cij

dl̂β δ(r− ri − l̂)

=
1

2

∫
dR

N∑

i,j

rαij
φ′(rij)

rij

∮

Cij

dl̂β δ(r− ri − l̂)δ(R− rij)

=
1

2

∫
dR

N∑

i,j

rαij
φ′(rij)

rij

∮

Cij

dl̂β δ(r− l̂− ri)δ(ri + R− rj)

=
1

2

∫
dR

N∑

i,j

rαij
φ′(rij)

rij

∮

Cij

dl̂β δ(r− l̂− ri)δ(r− l̂ + R− rj)

=
1

2

∫
dR

N∑

i,j

rαij
φ′(rij)

rij

∮

Cij

dl̂β δ(r− l̂− ri)δ(r− l̂ + R− rj)

(3.27)

where R is the separation vector between points ri and rj. The pressure

tensor is the ensemble average of the negative of the stress tensor

Pαβ(r) = −〈σαβ(r, t)〉. (3.28)

We may, therefore, re-write Eq. (3.27) as

P φ
αβ(r) = −1

2

∫
dRRαφ

′(R)

R

∮

CR

dl̂β

〈
N∑

i,j

δ(r− l̂− ri)δ(r− l̂ + R− rj)

〉

= −1

2

∫
dRRαφ

′(R)

R

∮

CR

dl̂β ρ(2)(r− l̂, r− l̂ + R). (3.29)

Choosing a straight line contour (Fig. 3.1),

l̂(rij) = λrij (3.30)
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Figure 3.2: Schematic showing the Harasima definition of the potential con-
tribution to the pressure.

we immediately recover the Irving-Kirkwood expression (Eq. (3.8))

P φ
αβ(r) = −1

2

∫
dR

RαRβ

R
φ′(R)

∫ 1

0

dλ ρ(2)(r− λR, r− λR + R) (3.31)

which reduces to Eq. (3.10) and Eq. (3.11) for a planar geometry.

While a straight line between i and j is the simplest option, it may not

be the correct one for an inhomogeneous fluid [65]. For a planar vapor-liquid

interface, Harasima derived a different expression for pressure by choosing

an asymmetrical contour, l̂(rij), that first runs parallel to the interface from

ri to (xj, yj, zi) and then along the perpendicular to rj as shown in Fig. 3.2.

The transverse and normal components of the Harasima pressure tensor are
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given by

Pxx(z) = ρ(z)kBT −
1

2

〈
N∑

i,j

∫
x2
ij

rij
φ′(rij)δ(z − ri)δ(z + R− rj)dR

〉

(3.32)

Pzz(z) = ρ(z)kBT −
1

2

〈
N∑

i,j

∫
dR

z2
ij

rij
φ′(rij)×

∫ 1

0

δ(z − λZ − ri)δ(z − λZ + R− rj)dλ

〉
. (3.33)

The Irving-Kirkwood and Harasima pressure tensor are two standard ex-

pressions derived from momentum balance (Eq. (3.23)). In principle, any

contour with arbitrary rotation (Eq. (3.25)) can be chosen resulting in a

different microscopic pressure tensor. For an isotropic fluid, choice of the

contour is irrelevant since pressure is the same at all points. In Chapter 5,

we will show numerically for an inhomogeneous fluid near an interface that

the gauge variance does indeed matter.

3.1.3 Virial

The Irving-Kirkwood and Harasima pressure tensors developed in the previ-

ous sections are derived from momentum balance (Eq. (3.23)) and therefore

ought to be referred to as hydrodynamic expressions. In principle, we should

be able to derive a statistical mechanical expression that is consistent with

the hydrodynamic expressions. A statistical mechanical expression for pres-

sure can be derived directly from differentiating the free energy with respect

to a volume expansion [63]

P = −
(
∂F

∂V

)

T,N

. (3.34)
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Figure 3.3: Schematic showing the virial definition of the potential contribu-
tion to the pressure.

Consider a system of fluid particles contained in a rectangular box with

dimensions lx, ly, lz as shown in Fig. 3.3. We introduce the scaled coordinates

sN by

ri = lxsix + lysiy + lzsiz (3.35)

for i = 1, 2, 3, ..., N meaning that each coordinate six, siy, siz for any particle

i ranges between 0 and 1 within the box.

Inserting scaled coordinates into the expression for the canonical partition

function gives

Q(N, V, T ) =
(lxlylz)

N

Λ3NN !

∫ 1

0

...

∫ 1

0

dsN exp[−βU((lxsx)
N , (lysy)

N , (lzsz)
N)].

(3.36)

To obtain the Pxx component of pressure, we can differentiate the free energy
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with respect to a volume expansion in x

Pxx = −
(
∂F

∂lx

)

ly ,lz ,T,N

(
∂V

∂lx

)−1

. (3.37)

Given that V = lxlylz,

Pxx =
kBT

lylz

(
∂ lnQ

∂lx

)
. (3.38)

The first term in the derivative is the kinetic contribution to the pressure

PK
xx =

kBT

lxlylzQ

(
NV N

Λ3NN !

∫ 1

0

...

∫ 1

0

dsN exp[−βU((lxsx)
N , (lysy)

N , (lzsz)
N)]

)

(3.39)

=
NkBT

V
. (3.40)

The second term gives the potential contribution

P φ
xx = −βkBT

lylzQ

(
V N

Λ3NN !

∫ 1

0

...

∫ 1

0

dsN
(
∂U

∂lx

)
exp[−βU ]

)
. (3.41)

Since
∂

∂lx
=

N∑

i=1

∂xi
∂lx
· ∂
∂xi

(3.42)

and

xi = lxsix (3.43)

we can write
∂U

∂lx
=

N∑

i=1

six ·
∂U

∂xi
. (3.44)
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Therefore, the potential contribution to the pressure can be expressed as

P φ
xx = − 1

V Q

(
V N

Λ3NN !

∫ 1

0

...

∫ 1

0

dsN
N∑

i=1

xi ·
∂U

∂xi
exp[−βU ]

)
(3.45)

=
1

V

〈
N∑

i=1

xif
x
i

〉
. (3.46)

Using the fact that
N∑

i=1

xif
x
i =

1

2

N∑

i,j

xijf
x
ij (3.47)

the transverse component of the virial pressure for a volume element at po-

sition z is given by

Pxx(z) = ρ(z)kBT +
1

V

〈
1

2

N∑

i,j

xijf
x
ij

〉
. (3.48)

For an isotropic fluid, the same procedure can be applied to a volume

expansion in z to give the normal component

Pzz(z) = ρ(z)kBT +
1

V

〈
1

2

N∑

i,j

zijf
z
ij

〉
. (3.49)

Eq. (3.48) and Eq. (3.49) can be re-expressed in the form

Pxx(z) = ρ(z)kBT −
1

2

〈
N∑

i,j

∫
x2
ij

rij
φ′(rij)δ(z − ri)δ(z + R− rj)dR

〉

(3.50)

Pzz(z) = ρ(z)kBT −
1

2

〈
N∑

i,j

∫
z2
ij

rij
φ′(rij)δ(z − ri)δ(z + R− rj)dR

〉
.

(3.51)

55



Interestingly, in the case of a planar geometry, the transverse component of

the virial pressure is equivalent to the transverse component of the Harasima

pressure (Eq. (3.32)). The virial expressions for pressure are acceptable with

a caveat. The fluid must be homogeneous in the direction of volume expan-

sion. For a slab near an interface, the fluid is homogeneous in x and y but

not in z. Thus, in a region where the fluid is inhomogeneous, the trans-

verse component (Eq. (3.48)) is a legitimate expression whereas the normal

component (Eq. (3.49)) is not.

3.2 Invariance of Surface Tension

As elucidated in the previous sections, the ambiguity in defining the pressure

only becomes a significant issue once knowledge of the microscopic details

near an interface is required. From a mesoscopic point of view, all pressure

expressions should give the same surface tension. In most cases, when deter-

mining the coexistence and stability of interacting phases, knowledge of the

surface tension is sufficient and therefore, the ambiguity is typically ignored

[48]. We follow the derivation given by Ono and Kondo [51].

The expression for surface tension of a planar interface is given by

γ =

∫ ∞

−∞
PN(z)− PT (z)dz. (3.52)

Introducing

ρij(z − λZ, z − λZ + R) = δ(z − λZ − ri)δ(z − λZ + R− rj) (3.53)
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we may substitute Eq. (3.10) and Eq. (3.11) into Eq. (3.52) giving

γ =
1

2

〈
N∑

i,j

∫ ∞

−∞
dz

∫
dR

∫ 1

0

x2
ij − z2

ij

rij
φ′(rij)ρij(z − λZ, z − λZ + R)dλ

〉
.

(3.54)

The order of integration with respect to λ and z can be switched such that

∫ ∞

−∞
dz

∫ 1

0

ρij(z − λZ, z − λZ + R)dλ =

∫ 1

0

dλ

∫ ∞

−∞
ρij(z − λZ, z − λZ + R)dz.

(3.55)

Since

∫ 1

0

dλ

∫ ∞

−∞
ρij(z − λZ, z − λZ + R)dz =

∫ 1

0

dλ

∫ ∞

−∞
ρij(z, z + R)dz,

(3.56)

that is to say integration of the pair distribution function over all z is invariant

to whether atom i is located at z − λZ or z. Therefore, Eq. (3.55) simplifies

to

∫ 1

0

dλ

∫ ∞

−∞
ρij(z − λZ, z − λZ + R)dz =

∫ ∞

−∞
ρij(z, z + R)dz. (3.57)

The surface tension can be re-expressed in terms of the new pair distri-

bution function

γ =
1

2

〈
N∑

i,j

∫ ∞

−∞
dz

∫
x2
ij − z2

ij

rij
φ′(rij)ρij(z, z + R)dR

〉
. (3.58)

The connection to the virial pressure can be observed more clearly. Substitut-

ing Eq. (3.50) and Eq. (3.51) into Eq. (3.52) immediately recovers Eq. (3.58).
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In short, the surface tension is invariant with respect to the definition of mi-

croscopic pressure because upon integration over all z, it is irrelevant where

the potential contribution is assigned. For the latter reason, we also expect

that from a mesoscopic standpoint, the surface tension gradient induced by

the thermal gradient should be the same regardless of the pressure expression.

3.3 Atomic Heat Current Expressions

The ambiguity in defining the potential contribution to the pressure (Sec-

tion 3.1.2) also extends to heat currents. The microscopic expression for

heat transport can be derived from the law of energy conservation

∂E

∂t
+∇ · [Ev + Jq − vασαβ] = 0 (3.59)

where E is the energy density, Ev is the convective energy current, Jq is the

heat current, and σαβ is the stress tensor.

Following Irving and Kirkwood’s approach [36], the heat current is given

by

Jq(r, t) = JKq (r, t) + Jφq (r, t) (3.60)

where JKq is the heat current due to transport of kinetic energy

JKq (r, t) =
N∑

i=1

m

2

〈∣∣∣pi
m
− v

∣∣∣
2 (pi

m
− v

)
δ(r− ri)

〉
(3.61)
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and Jφq is heat transport due to molecular interactions

Jφq (r, t) =
1

2

∑

i,j

∫ [
φ(rij)−

rijrij
rij

φ′(rij) (3.62)

×
{

1− 1

2
rij · ∇+ ...+

1

n!
(−rij · ∇)n−1 + ...

}]

×
〈(pi

m
− v

)
ρij(r, r + R)

〉
dR.

From the Appendix in [36], the expansion in Eq. (3.62) can be re-expressed

as

Jφq (r, t) =
1

2

∑

i,j

∫
φ(rij)

〈(pi
m
− v

)
ρij(r, r + R)

〉
dR (3.63)

− 1

2

∫
rijrij
rij

φ′(rij)

∫ 1

0

{
1− λrij · ∇+ ...+

λn−1

(n− 1)!
(−rij · ∇)n−1 + ...

}

×
〈(pi

m
− v

)
ρij(r, r + R)

〉
dλdR.

This can be further simplified to

Jφ,IKq (r, t) =
1

2

∑

i,j

[∫
φ(rij)

〈(pi
m
− v

)
ρij(r, r + R)

〉
dR (3.64)

−
∫

rijrij
rij

φ′(rij)

∫ 1

0

〈(pi
m
− v

)
ρij(r− λR, r− λR + R)

〉
dλdR

]
.

The second term in the brackets is P φ
αβ(r) (Eq. (3.8)) multiplied by the fluid

velocity in the center of momentum frame. This term is equivalent to the

work done per unit time of particle i on j due to net displacement of the

fluid.

We can clearly see how the ambiguity discussed in Section 3.1.2 also arises

in the heat current. Irving and Kirkwood consider the work that particle i

does on j as acting along a straight line that connects their centers. Instead
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of distributing the work along the contour, we can instead use the virial

expression for pressure to re-express the potential contribution to the heat

current as

Jφ,Vq (r, t) =
1

2

∑

i,j

[∫
φ(rij)

〈(pi
m
− v

)
ρij(r, r + R)

〉
dR (3.65)

−
∫

rijrij
rij

φ′(rij)
〈(pi

m
− v

)
ρij(r, r + R)

〉
dR

]
.

The virial expression for heat transport can alternatively be derived from the

virial theorem [21] or from taking the first term in the expansion shown in

Eq. (3.63). The work that particle j does on i is now assigned at the position

of i. For a planar geometry, Eq. (3.65) reduces to

Jφ,Vq (z, t) =
1

2

∑

i,j

[∫
φ(rij)

〈(pi
m
− v

)
ρij(z, z + R)

〉
dR (3.66)

−
∫

rijrij
rij

φ′(rij)
〈(pi

m
− v

)
ρij(z, z + R)

〉
dR

]
.

Of course, the ambiguity in defining the microscopic heat current vanishes

upon integration over a domain large compared with the range of intermolec-

ular forces since it no longer matters where the work is done.
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Chapter 4

Computational Tools

In this chapter, we briefly discuss various algorithms used to carry out the

calculations presented in Chapters 5-7. All simulations are carried out using

standard Molecular Dynamics (MD) methods. The algorithms have been im-

plemented in the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) developed by Plimpton and co-workers [55].

4.1 Velocity Verlet

There are several ways of integrating Newton’s equations of motion to gen-

erate an MD trajectory [22]. The conventional Verlet algorithm estimates

new positions of molecules with an error of O(∆t4). The expression for ve-

locity is only accurate to O(∆t2). The total energy during the trajectory is

conserved. The Leap Frog algorithm is a variation of the Verlet scheme that

gives rise to identical trajectories. Yet, the velocities are not defined at the

same time as the positions, rendering a computation of the total energy at

each time-step infeasible. In order to cast the Verlet algorithm in a form that

computes positions and velocities simultaneously, we use the velocity Verlet
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algorithm. The algorithm starts with a Taylor expansion of the coordinates

in the same way as the standard Verlet:

r(t+ ∆t) = r(t) + v(t)∆t+
f(t)

2m
∆t2 (4.1)

Yet, the update of the velocities changes to

v(t+ ∆t) = v(t) +
f(t+ ∆t) + f(t)

2m
∆t. (4.2)

In this algorithm, new velocities can be computed only after new positions

are computed. From the new positions, f(t+ ∆t) can be computed.

The standard implementation of the algorithm splits integration of posi-

tions and velocities into half steps. In the first half-step,

vx

(
t+

∆t

2

)
= vx(t) +

fx(t)

2m
∆t (4.3)

vy

(
t+

∆t

2

)
= vy(t) +

fy(t)

2m
∆t (4.4)

vz

(
t+

∆t

2

)
= vz(t) +

fz(t)

2m
∆t (4.5)

x(t+ ∆t) = x(t) + vx

(
t+

∆t

2

)
∆t (4.6)

y(t+ ∆t) = y(t) + vy

(
t+

∆t

2

)
∆t (4.7)

z(t+ ∆t) = z(t) + vz

(
t+

∆t

2

)
∆t. (4.8)
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In the second half-step,

vx(t+ ∆t) = vx

(
t+

∆t

2

)
+
fx(t+ ∆t)

2m
∆t (4.9)

vy(t+ ∆t) = vy

(
t+

∆t

2

)
+
fy(t+ ∆t)

2m
∆t (4.10)

vz(t+ ∆t) = vz

(
t+

∆t

2

)
+
fz(t+ ∆t)

2m
∆t. (4.11)

4.2 Nosé Hoover Thermostat

In order to produce a sampling of the canonical phase space distribution,

we use the extended phase approaches developed in detail by Nosé [49],

Hoover [32] and Martyna et al [43]. These methods extend phase space

by introducing variables that mimic the effect of a heat bath. Nosé’s original

approach introduces a Maxwell daemon that checks if the kinetic energy is

higher or lower than the target temperature and then scales the velocities [68].

The addition of a coordinate variable s and its conjugate momentum ps to

the Hamiltonian allows the agent to scale the kinetic energy. For a sys-

tem with physical coordinates r1, ..., rN , and momenta p1, ...,pN , the Nosé

Hamiltonian is given by

HN =
N∑

i=1

p2
i

2mis2
+ U(r1, ..., rN) +

p2
s

2Q
+ gkT ln s (4.12)

where Q is a parameter that determines the time scale on which the daemon

acts. The fudge factor gkT ln s is chosen so that a micro-canonical distri-

bution of phase space given by HN yields a canonical distribution in phase

space. While the equations of motion generated by the Nosé Hamiltonian

samples the canonical distribution, presence of the scaling variable s makes

it difficult to implement them in algorithmic form.
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Hoover [32] introduced a non-canonical change of variables to remove the

scaling variable [68]. The Nosé-Hoover Hamiltonian is then given by

H′(r, η,p, pη) = H(r,p) +
p2
η

2Q
+ dNkTη (4.13)

where η is related to s. The equations of motion generated by H′ is given by

ṙi =
pi
mi

ṗi = Fi −
pη
Q

pi

η̇ =
pη
Q

ṗη =
N∑

i=1

p2
i

mi

− dNkT.

The Nosé-Hoover equations of motion generate the canonical distribution

when H′ is the only conserved quantity. However, with additional conserva-

tion laws like Newton’s third law,

N∑

i=1

Fi = 0 (4.14)

the Nosé-Hoover equations do not generate the correct distribution.

Martyna et al. [43] found that failure of the Nosé-Hoover equations is due

to an insufficient number of variables in the extended phase space to offset re-

strictions imposed by additional conservation laws. The momentum variable

of the thermostat pη must also obey Maxwell-Boltzmann statistics. This can

be accomplished by coupling pη to its own Nosé-Hoover thermostat, which

introduces new variables η′ and its conjugate momentum pη′ . Of course, the

new thermostat will also need to couple to another thermostat so that pη′
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obeys the Maxwell-Boltzmann distribution. This chain of thermostats can

continue indefinitely though typically a chain length of 3 or 4 is sufficient for

the equations of motion to accurately generate the canonical distribution.

The Nosé-Hoover chain equations are given by

ṙi =
pi
mi

ṗi = Fi −
pη1
Q1

pi

η̇j =
pηj
Qj

j = 1, ...,M

ṗη1 =

[
N∑

i=1

p2
i

mi

− dNkT
]
− pη2
Q2

pη1

ṗηj =

[
p2
ηj−1

Qj−1

− kT
]
− pηj+1

Qj+1

pηj j = 2, ...,M − 1

ṗηM =

[
p2
ηM−1

QM−1

− kT
]
.

All simulations were thermostatted using the Nosé-Hoover chain equations

with chain length M = 3. A standard implementation of the algorithm can

be found in Ref [22].

4.3 Temperature Gradient Algorithms

In Chapter 6, we develop a protocol to directly measure thermo-osmotic

forces via explicit simulation of a temperature gradient. To create a steady-

state temperature profile, we describe here a variety of algorithms offered in

the literature.
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4.3.1 RNEMD

Muller-Plathe [47] developed an algorithm for setting up a temperature gra-

dient by reversing the cause and effect picture: a heat flux is imposed leading

to a temperature gradient in the simulation. He, therefore, called it a Re-

verse Non-equilibrium Molecular Dynamics (RNEMD) approach to simulate

a thermal gradient. The algorithm was originally developed as a way to mea-

sure thermal conductivity since the Green Kubo route via calculation of the

heat flux converges slowly.

The protocol is straightforward. Assuming periodic boundary conditions,

the simulation box is divided into N slabs of identical thickness perpendicular

to the x-direction. The instantaneous temperature in slab k is given by the

equipartition theorem:

Tk =
1

3NkkB

Nk∑

i

miv
2
i (4.15)

where Nk is the number of atoms in the slab. Slab 0 is the cool region and

N/2 is the hot region.

A heat flux is generated by exchanging the velocity vector of the hottest

atom in the cold region with that of the coldest atom in the hot region so

that the temperature in the hot region increases while the temperature of the

cold region decreases. Energy transfer from the cold to hot regions results

in a temperature gradient in the intervening regions. The swapping rate

of velocity vectors determines the magnitude of the imposed heat flux and

therefore the temperature gradient.

It can be shown that the RNEMD algorithm conserves total linear mo-

mentum, kinetic energy, and total energy. The main drawback is that it is

difficult to know a priori the resulting magnitude of the temperature gradient

without knowing the thermal conductivity of the fluid.
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4.3.2 HEX

The Heat Exchange algorithm (HEX) [35, 3] is similar to the RNEMD ap-

proach in that a heat flux is imposed leading to a temperature gradient.

Once again, the simulation box is divided into N regions of identical thick-

ness. While energy exchange in RNEMD is carried out by swapping velocity

vectors between hot and cold regions, HEX adds and removes energy from

regions via rescaling of particle velocities by a factor R. R is chosen in such

a way that the non-translational kinetic energy of a region k [73]

Kk =

Nk∑

i

miv
2
i

2
−
mcm,kv

2
cm,k

2
(4.16)

changes by ∆Ek while the center of mass velocity vcm,k remains the same.

Within k, rescaling is accomplished by adding an integration step to the

velocity Verlet algorithm (see Section 4.1):

v
(k)
i = Rv

(k)
i + (1−R)v(k)

cm (4.17)

where the rescaling factor R is given by

R =

√
1 +

∆Ek
Kk

(4.18)

If energy is removed from k, ∆Ek < 0 whereas if energy is added, ∆Ek > 0.

As the same amount of energy ∆E removed from the “cold” region is added

to the “hot” region, the total energy should remain constant. In the steady

state, the heat flux between the two regions is given by

Jqx =
∆E

2∆tLzLy
(4.19)
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where the factor of two accounts for periodic boundary conditions since half

of the heat flows to the hot reservoir in the reference box while the other half

flows to the image reservoir.

Wirnsberger et al. [73] pointed out that HEX exhibits a pronounced en-

ergy drift over long simulation times. It can be shown that the drift is due to

truncation of higher order terms in the Trotter factorization of the Liouville

operator. By adding a coordinate integration step to the original algorithm,

the enhanced version (eHEX) exhibits no long term energy drift.

4.3.3 Temperature Rescale

Yet, perhaps the most convenient route for imposing a thermal gradient is to

rescale the velocities of fluid atoms in different regions of the simulation box.

Simply put, slab 0 is thermostatted at a value lower (Tlow) than the average

temperature, while slab N/2 is thermostatted at a value higher (Thigh) than

the average temperature. The resulting heat flux sets up the thermal gra-

dient. At each time-step, the velocities of fluid atoms in the Thigh and Tlow

regions are rescaled using the following algorithm:

vx(t+ ∆t) = vx(t)

√
Ttarget
T (t)

(4.20)

vy(t+ ∆t) = vy(t)

√
Ttarget
T (t)

(4.21)

vz(t+ ∆t) = vz(t)

√
Ttarget
T (t)

(4.22)

While the temperature rescale algorithm may not be as rigorous as the

other approaches in regards to energy conservation, it is the simplest method

for controlling the magnitude of the temperature gradient, a critical conve-
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nience for the non-equilibrium calculations presented in Chapter 6.
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Chapter 5

Indirect Approaches

The analytical theory presented in Chapters 1 and 2 does not provide a

molecular description of thermo-osmosis. The viscosity η is not constant

near the interface and there is yet no molecular expression for the excess

enthalpy density ∆h(z). To avoid making continuum assumptions, we aim

to use the molecular expressions derived in Chapter 3 to compute thermo-

osmotic slip. The work presented in this chapter describes in detail what has

been published in Ref [24].

5.1 Stress Gradient Method

We first use a mechanical route, i.e. by computing the thermo-osmotic force

on a volume element directly from the gradient of the microscopic pressure

tensor. In essence, we compute the left-hand side of Eq. (2.9) written here

for convenience
∂Pxx(z)

∂x
=

(
∆h(z)

T

)
∂T

∂x
. (5.1)

Yet, such an approach could be problematic due to non-uniqueness of the

definition of the microscopic pressure (see Chapter 3.1).
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⇢1

T1
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⇢ave

Tave

P

Figure 5.1: A thermal gradient is imposed on fluid interacting with a
structured solid surface. ∆x1 and ∆x2 are local equilibrium reservoirs at
(ρ1, T1, P ) and (ρ2, T2, P ) respectively.

Han [30] postulated a similar approach using local equilibrium approxi-

mations. If the temperature gradient is sufficiently slowly varying, the liquid

states may still be close to equilibrium. Fig. 5.1 shows that for a slowly

varying temperature profile, fluid within a region ∆x is locally in thermal

equilibrium. Using the fact that Pxx depends on x, only through T ,

Pxx(x, z) ≈ P eq
xx(x, z) +O(∇T ) (5.2)

where the superscript eq denotes the pressure evaluated at equilibrium. The

higher order states can be determined by evaluating the pressure in a system

out of equilibrium. The pressure gradient is given by

∂Pxx(z)

∂x
≈ P eq

xx(T (x2), z)− P eq
xx(T (x1), z)

x2 − x1

+O((∇T )2). (5.3)
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⇢1
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⇢ave

Tave

P

Figure 5.2: Fluid at equilibrium interacting with a structured solid surface.
(a) corresponds to local equilibrium state ∆x1, (b) to ∆x2, and (c) to the
state in between as shown in Fig. 5.1.

Assuming that fluid states are close to equilibrium, we may neglect the higher

order term. Since the variation in pressure is solely due to the temperature

gradient, Eq. (5.3) can be re-expressed as

∂Pxx(z)

∂x
≈ P eq

xx(T2, z)− P eq
xx(T1, z)

T2 − T1

(
∂T

∂x

)
. (5.4)

Eq. (5.4) is consistent with the local equilibrium approximations used to

derive Eq. (5.1).

Eq. (5.4) is powerful since it provides a simple method for computing the

thermo-osmotic force. Because pressure is intensive, Pxx(z) within the local

equilibrium reservoirs denoted ∆x1 and ∆x2 (Fig. 5.1) will be equivalent to

P eq
xx(z) in equilibrium systems under the same thermodynamic conditions.

Therefore, we may instead consider the systems shown in Fig. 5.2.

72



To evaluate Eq. (5.4), we equilibrate a system at (ρ1, T1, P ) (Fig. 5.2(a))

and compute P eq
xx(T1, z) from z = 0, where the solid-fluid interface is located,

to z = 10, where the fluid density approaches the bulk value ρ1. We then

increase the temperature in such a way that the change in pressure is linear

with respect to the change in temperature. The system is then allowed to

equilibrate to (ρ2, T2, P ). Note that the bulk pressure is kept constant. We

now compute the transverse pressure profile P eq
xx(T2, z) for the system at

T2. Using these pressure calculations, ∆Pxx/∆T is determined, and for any

∂T/∂x, the pressure gradient can be computed via Eq. (5.4).

The procedure above gives the average thermo-osmotic force at Tave. The

reason is that ∆Pxx/∆T also depends on T . Therefore, the entire procedure

must be repeated to evaluate the force at a different temperature. To com-

pute the flow profile, we carry out an additional non-equilibrium simulation

at T = Tave where we apply the force profile computed via Eq. (5.4) as an

artificial body force to the fluid. In practice, because it is difficult to apply

a force per unit volume, we divide by the local density profile ρ(Tave, z) to

calculate the force per particle

fPx (z) = − 1

ρ(Tave, z)

(
P eq
xx(T2, z)− P eq

xx(T1, z)

T2 − T1

)(
∂T

∂x

)
. (5.5)

After applying fPx (z) to fluid particles, we wait for the system to approach

a steady velocity. The resulting thermo-osmotic flow profile is computed.

Using the bulk velocity measurement from the non-equilibrium simulation,

the thermo-osmosis coefficient β12 is given by Eq. (1.16)

β12 =

(
vs
∇T/T

)

P

. (5.6)

Note that the bulk pressure is kept constant in the non-equilibrium simula-
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tion.

The calculation as described above is complicated by the fact that the

pressure tensor in an inhomogeneous fluid is not uniquely defined (see Chap-

ter 3.1). Irving and Kirkwood (IK) [36] derived an expression by integrating

the total momentum flux acting across a virtual surface element (see Chap-

ter 3.1.1). This approach gives the appropriate mechanical force balance

normal to the interface, that is, Pzz is independent of z. However, we want

to compute the thermo-osmotic force acting on atoms, rather than the force

on a fictitious surface of a volume element. This would suggest that the

atom-based virial (V) expression for pressure might be preferable. Yet as

discussed in Chapter 3.1.3, the normal component of the virial pressure near

the interface will be sensitive to inhomogeneities of fluid density. Devia-

tions from the bulk hydrostatic pressure incorrectly imply a mechanical force

imbalance normal to the interface.

In order to determine if the choice of pressure affects the computed

thermo-osmosis coefficient, we calculated Pxx in Eq. (5.5) using both the

V and IK expressions. The V pressure is given by [31] (see Chapter 3.1.3 for

derivation)

P V
xx(z) = 〈ρ(z)〉kBT −

1

2V (z)

〈
N(z)∑

i

∑

j 6=i

x2
ij

rij
φ′(rij)

〉
(5.7)

where rij is the distance between atoms i and j, xij is the distance in x, φ(rij)

is the interaction potential between the atoms, V (z) and N(z) are the bin

volume and number of atoms in the bin at position z. The IK pressure (see
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Chapter 3.1.1 for derivation) can be expressed as [70] (see Appendix 9.3)

P IK
xx (z) = 〈ρ(z)〉kBT

− 1

2A

〈
N∑

i

∑

j 6=i

x2
ij

rij

φ′(rij)

|zij|
Θ

(
z − zi
zij

)
Θ

(
zj − z
zij

)〉
.

(5.8)

5.2 Thermodynamic Method

The mechanical approach suffers from the ambiguity in defining where the

potential contribution to the pressure acts. An alternative approach is to

evaluate the right-hand side of Eq. (5.1). In Chapter 1, we contended that

there exists no molecular expression for evaluating the excess enthalpy den-

sity. The reason is that the local specific enthalpy h(z) near an interface is

ill-defined. In the bulk, the specific enthalpy is simply given by

hB = uB + P/ρB (5.9)

where uB is the bulk specific internal energy, P is the thermodynamic pres-

sure, and ρB is the bulk density. All of these quantities are uniquely defined

in the bulk where fluid is homogeneous and isotropic. The difficulty in defin-

ing h(z) is that PT 6= PN near the interface. Thus, there is an ambiguity in

deciding whether the normal or transverse component of the pressure tensor

should enter.

Consider Derjaguin’s expression for isothermal heat transfer due to a

pressure gradient (Eq. (1.18)). The microscopic expression for heat flux in a

one component system is

Jq =
1

V

[
N∑

i=1

uivi +
1

2

N∑

i,j

rij(vi · fij)
]

(5.10)
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Figure 5.3: Sample density profile of a Lennard-Jones fluid interacting with
a solid surface. Within a slab dV , fluid is in local thermal equilibrium. If
the slab is near the interface, fluid density is homogeneous in the x and y
directions, but inhomogeneous in the z direction.
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where ui is the instantaneous internal energy of particle i, rij = ri− rj is the

vectorial distance between particles i and j, vi is the velocity of particle i,

and fij is the intermolecular force acting between particles i and j.

To calculate the Onsager reciprocal coefficient via Derjaguin’s approach,

we evaluate the excess heat flux (Eq. (1.18)) at a height z above the surface

due to a steady flow field parallel to the interface. Recalling Eq. (1.3), if flow

due to the pressure gradient is in the x direction, the measurable heat flux

is given by

〈J ′q,x(z)〉 = ρ(z)vx(z)(u(z)− 〈uB〉) (5.11)

+
1

2V
〈vx(z)〉

∑

i,j

(xijf
x
ij(z)− 〈xijfxij(bulk)〉)

where u is the specific internal energy. As expected, in the bulk, there is no

heat transfer. According to Eq. (5.11), the measurable heat flux is equivalent

to the excess enthalpy flux provided that the virial contribution to the local

enthalpy contains only the transverse component.

The preceding analysis can explain why the transverse component of the

pressure enters the local enthalpy. Yet, we should proceed with caution since

as described in Chapter 3.3, we can equivalently consider the IK expression

for heat transfer (Eq. (3.64)) in formulating Eq. (5.11). Doing so would

suggest that the transverse component of the IK pressure ought to enter the

local enthalpy.

To resolve the latter ambiguity, consider the fluid shown in Fig. 5.3. If

the entire fluid is in equilibrium, then we can choose a volume element near

the surface dV = lxlydz, which is also in equilibrium. The enthalpy is a

thermodynamic state function depending on the internal energy, pressure
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and volume of the element. Therefore, the pressure that enters is given by

P = −
(
∂F

∂V

)

T,N

. (5.12)

Yet as shown in Chapter 3.1.3, Eq. (5.12) only holds for a volume expan-

sion in x and y, the directions in which the fluid is homogeneous. Due to

symmetry, Pxx = Pyy for all z. Therefore, in order for pressure to reflect

the thermodynamic state of the volume element P = Pxx = Pyy and it is

the transverse component of the virial pressure tensor that must enter the

expression for local enthalpy.

Using the latter argument, we express the local specific enthalpy as

h(z) = u(z) +
P V
xx(z)

ρ(z)
, (5.13)

where the virial expression for pressure enters since it is derived from dif-

ferentiating the free energy (Chapter 3.1.3). The thermo-osmotic force per

particle is then given by

fPx (z) = −(h(z)− hB)

T

(
∂T

∂x

)
. (5.14)

We refer to the force computed via Eq. (5.14) as the LTE approach. We can

compute Eq. (5.14) in a simulation thermostatted at Tave (Fig. 5.2(c)) and

apply it as a body force in the same vein as Eq. (5.5).

5.3 Derjaguin Method

The arguments (Eq. (5.10)-Eq. (5.11)) used in constructing an expression for

the local enthalpy suggest another approach for computing thermo-osmotic
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slip. Because it is difficult to directly calculate the fluid flow due to a thermal

gradient, we consider the Onsager reciprocal coefficient that describes the

excess heat flux due to hydrodynamic flow. As derived in Chapter 1.1.2, β21,

the ratio of isothermal excess heat transfer to an externally imposed pressure

gradient, is given by

β21 = −
(
Jqx − hBvx
∇P

)

T

. (5.15)

Substituting Eq. (5.10) into Eq. (5.15) gives

β21 =




1
V

[∑N
i (p2

i /2m+
∑

i<j φij)v
x
i − 1/2

∑
i<j(x

2
ij/rij)φ

′(rij)(v
x
i + vxj )−∑N

i h
Bvxi

]

∇P



T

.

(5.16)

We must note that because the excess heat current is integrated over the

entire fluid domain, choice of the heat current expression (see Chapter 3.3)

is irrelevant. We pick the virial expression since it is most convenient to

compute.

A pressure gradient can be easily introduced as an artificial body force

on the fluid

fPx (z) = −∇P
ρ(z)

(5.17)

where ρ(z) is the density profile at Tave. We can then compute β21 via

Eq. (5.16). The mechanical and thermodynamic approaches for computing

β12 and the ‘Derjaguin’ method for calculating β21 should be equivalent if

the temperature and pressure gradients are small enough to ensure that the

resulting response is linear. Indeed, we can test if transport is in the linear

regime by applying pressure gradients of different magnitude and checking

if β21 remains constant. Unlike the other methods, the ‘Derjaguin’ method

does not give a flow profile. It can only predict the slip velocity.
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Figure 5.4: Atomic fluid (blue) interacting with solid walls (grey) in a slit
pore.

5.4 Results

All Molecular Dynamics simulations reported here were performed using the

LAMMPS package [55]. The simulation setup is depicted in Fig. 5.4. The

system consists of N = 2640 fluid atoms interacting with other fluid atoms

and solid atoms via a truncated and shifted Lennard-Jones potential

Vtrunc(r) =





4ε
[(

σ
r

)12 −
(
σ
r

)6
]
− V (rc) r ≤ rc

0 r > rc.

(5.18)

where rc = 4σ, σfluid-fluid = σsolid-fluid = σ and εfluid-fluid = ε. Two differ-

ent wall-fluid interactions were investigated: a less attractive Lennard-Jones

potential where εsolid-fluid = 0.55ε and a purely repulsive Weeks-Chandler-

Andersen potential [71] such that rc = 21/6σ for solid-fluid interactions.
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Figure 5.5: Interaction potentials used in the simulations.

Fig. 5.5 shows all possible intermolecular potentials describing fluid-fluid and

wall-fluid interactions.

Solid atoms are bonded via a harmonic potential to nearest neighbors in

an fcc lattice of density 0.9σ−3

Vbond(r) =
1

2
k(r − req)2 (5.19)

where the spring constant k = 5000ε/σ2 and equilibrium rest length req =

1.1626σ. The fluid is in contact with the {001} face of the crystal lattice.

All computed quantities are expressed in Lennard-Jones reduced units.

NVT dynamics with a time-step ∆t = 0.001τ were run to equilibrate

the system. This was accomplished using a Nosé-Hoover thermostat (see

Chapter 4.2) for 100, 000 MD steps. For an additional 100, 000 steps, the
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system was barostatted at Pext ≈ 0.122 by applying a downward force to the

top wall atoms

fpz = −Pextlxly
Ntop

. (5.20)

Fluid density profiles at T = 0.8, 0.9, 1.0 for the different surfaces are shown

in Figs. 5.6 and 5.7. The density profile is given by

ρ(z) = ρBe−β∆µex(z) (5.21)

where ∆µex(z) is the difference between the excess chemical potential at a

distance z from the wall and its value in the bulk. For Lennard-Jones wall-

fluid interactions, the density profile resembles the pair correlation function

of an isotropic Lennard-Jones fluid. However, for WCA interactions, the

density monotonically increases as a function of z. For the WCA wall, the

system is close to a de-wetting regime where a vapor phase exists between

the solid surface and the liquid.

To calculate the thermo-osmotic force via the ‘stress gradient’ method,

the V (Eq. (5.7)) and IK (Eq. (5.8)) transverse pressure profiles were com-

puted within slabs of thickness dz = 0.05 for 3× 107 time-steps. In order to

determine the temperature dependence of the thermo-osmotic force, the pres-

sure was calculated for a range of temperatures T ≈ 0.75 − 1.05. Figs. 5.8

and 5.9 show V and IK pressure profiles near the purely repulsive surface

while Figs. 5.10 and 5.11 show those near the Lennard-Jones wall. At the

Lennard-Jones surface, the fluid density is significantly more inhomogeneous

(Fig. 5.6) causing large fluctuations in the transverse pressure.

As temperature increases in both cases, the difference in fluid density

with respect to the bulk decreases, causing the anisotropy in the transverse

pressure to also decrease. In the bulk, all profiles converge to the hydrostatic
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Figure 5.6: Density profiles for Lennard-Jones wall-fluid interactions. The
solid wall is located at z ∼ 0.
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is located at z ∼ 0.
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Figure 5.8: Transverse virial pressure profiles for WCA wall-fluid interactions.

pressure P ≈ 0.122 as expected.

Using the pressure profiles in Figs. 5.8-5.11, ∆Pxx(z)/∆T was computed

for T = 0.8, 0.9, 1.0 and shown in Figs. 5.12-5.13(a, b). As an example, the

profile for T = 0.9 is computed by taking the difference in Pxx at T = 0.95

and 0.85 in Figs. 5.8-5.11 and dividing by ∆T = 0.1. Interestingly, for WCA

wall-fluid interactions, choice of the pressure tensor does not seem to make

an appreciable difference.

To calculate the thermo-osmotic force via the ‘thermodynamic’ method,

we first compute u(z) in Eq. (5.13). At constant temperature, the specific

kinetic energy is uniform everywhere and therefore given by (3/2)kBT . For

T = 0.8, 0.9, and 1.0, the specific potential energy profiles were spatially

averaged in z using a slab thickness dz = 0.05. Fig. 5.14 shows the sum

of the specific kinetic and potential energy profiles as a function of z. Di-
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Figure 5.9: Transverse Irving-Kirkwood pressure profiles for WCA wall-fluid
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Figure 5.10: Transverse virial pressure profiles for LJ wall-fluid interactions.
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Figure 5.11: Transverse Irving-Kirkwood pressure profiles for LJ wall-fluid
interactions.

viding the profiles of P V
xx at the same temperatures (Figs. 5.8 and 5.10) by

the corresponding density profiles in Figs. 5.6-5.7 and adding them to u(z)

(Fig. 5.14) gives the specific enthalpy h(z). The bulk specific enthalpy hB is

calculated by taking the average value of h(z) from z = 6 to z = 10. Finally,

∆h(z)/T was computed via Eq. (5.13) and Eq. (5.14). Profiles are shown in

Figs. 5.12-5.13(c).

We note that the IK and V expressions (Figs. 5.12-5.13(a,b)) and LTE

quantity (Figs. 5.12-5.13(c)) show similar qualitative behavior. The force

profiles flatten and shift outward as the temperature increases, while vanish-

ing in the bulk.

The body force per particle fPx (z) can be computed by dividing the

profiles in Figs. 5.12-5.13(a-c) by the corresponding density profiles ρ(z)

(Figs. 5.6-5.7) and multiplying by a sufficiently small gradient such that the
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Figure 5.12: WCA wall-fluid interactions: −∆Pxx(z)/∆T [kB/σ
3] computed

using the (a) IK and (b) V pressure tensor. (c) Purely repulsive interactions
significantly exclude volume and thereby create a large enthalpy difference
at the surface.

resulting transport is in the linear regime. We choose ∇T = 0.0005 for

the WCA and ∇T = 0.003 for the Lennard-Jones surface. To compute the

slip velocity, non-equilibrium simulations were carried out by applying these

forces to the equilibrated systems. To obtain reasonable statistics, the forces

were applied for 108 steps until the fluid approached a steady velocity. The

slip was then computed for an additional 2× 108 steps. Figs. 5.15(a,b) show

calculations of the slip velocity. Interestingly, although the mechanical and

LTE approaches give different force profiles (Figs. 5.12-5.13), they predict

similar slip velocities far away from the surface. We offer an explanation for
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the latter finding in Chapter 7.

To compute the Onsager reciprocal coefficient, β21, a uniform pressure

gradient was simulated by applying a force per particle fPx (z) = −∇P/ρ(z)

to all fluid atoms. Fig. 5.16 shows the force profile for different values of

∇P at T = 0.9 for the WCA surface. Body forces were applied for 108 steps

and the excess heat flux given by Eq. (5.11) was computed for 2× 108 steps.

Fig. 5.17 shows calculations of β21 via Eq. (5.16) at a WCA surface for each

force profile shown in Fig. 5.16.

For sufficiently small gradients, β21 remains constant, indicating that

transport is in the linear regime. Within this regime, the Onsager reciprocal

relations hold. Beyond ∇P = 0.0001, β21 increases, indicating entrance into

a nonlinear regime. In the bulk, the excess heat current vanishes as long as

the response is linear.

The flow profiles computed at T = 0.9 (Fig. 5.18(a)) shows that for

WCA wall interactions the velocity decreases monotonically, indicating that

the viscosity remains constant close to the surface. Interestingly, the flow

profile is effectively the same for all methods. For a less attractive Lennard-

Jones surface (Fig. 5.18(b)), the viscosity and forces are clearly not constant,

showing significant departure from (Navier-)Stokes and Derjaguin’s result

(Eq. (1.26)). Moreover, the thermo-osmotic flow profile in the latter case de-

pends strongly on the method. The slip velocity predicted by the ‘Derjaguin

method’ is shown in red and agrees well with both the stress gradient and

LTE approaches.

To clearly compare our approaches for different temperatures, β12 was

computed via Eq. (5.6) using the slip calculations shown in Fig. 5.15. Fig. 5.19

shows reasonable agreement among all four methods. For T ∼ 96− 120 K in

Argon units, the thermo-osmosis coefficient ranges from 0.85−3.8×10−8m2/s
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for less attractive Lennard-Jones and 4.2−5.6×10−6m2/s for WCA walls. As

expected, the slip velocities for solely repulsive wall-fluid interactions are con-

siderably larger than those for surface forces with an attractive component.

Furthermore, both cases demonstrate an approximately linear dependence of

the thermo-osmosis coefficient with respect to temperature.

Previous molecular simulation studies of thermal transport have dealt

with the Soret coefficient of atomic species [61][62]. One cannot directly

compare the Soret coefficient ST with our computed values of the thermo-

osmosis coefficient β12 since there is no distinction between excess and bulk

enthalpy density if all particles have the same size. In a poly-disperse system,

it may be possible to relate the excess enthalpy density to the solvation free

energy of larger particles. Yet, even in this Hückel limit, the mechanism of

transport is different from what we have explored here [6].

As a rough comparison, given that ST = (β12/T )/DAr, taking the average

of our computed values of β12 for T = 0.8 and 0.9 and using DAr ' 2.47×10−5

cm2s−1 as reported in Ref. [61], we compute ST ∼ 0.047 K−1, which is the

same order of magnitude as their value for ST ∼ 0.014 K−1 at T = 0.85.

The key results reported in this chapter are encouraging and surprising:

for certain wall-fluid interactions, the thermo-osmotic flow profile does not

monotonically depend on the distance from the surface, indicating that the

viscosity and forces near the surface are not constant. Furthermore, we

find that all methods yield results for the thermo-osmosis coefficient that

do not differ significantly. None of these methods assume that macroscopic

thermodynamics or hydrodynamics holds close to an interface.
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Chapter 6

Direct Approaches

While the method of choice may not matter in regards to calculating the

slip velocity, it is clear from Fig. 5.13 that the microscopic pressure expres-

sions and the thermodynamic approach predict significantly different thermo-

osmotic force profiles. The question then becomes which, if any, is correct?

In this chapter, we formulate a non-equilibrium protocol to answer the pre-

ceding question. The work presented in this chapter describes in detail what

was published in Ref [23].

6.1 Non-equilibrium Method

As described in Chapter 3, the microscopic pressure expressions suffer from

the ambiguity in defining where the potential contribution acts. While the

IK expression recovers mechanical force balance normal to the interface, the

pressure is formulated by considering the force acting across an artificial

plane. The gradient of the IK pressure gives the thermo-osmotic force on the

plane. Yet, we are interested in computing the real atomic forces that act on

the fluid. Therefore, we expect the gradient of the V pressure to give the cor-

97



rect answer. The thermodynamic expression is formulated from arguments

of local equilibrium and irreversible thermodynamics. As there appears to be

no mathematically rigorous derivation of local enthalpy, we cannot conclude

that the thermodynamic expression predicts the right answer.

The obvious way to resolve the puzzle is to compute the thermo-osmotic

force in a steady-state, non-equilibrium simulation. However, such an ap-

proach cannot work, because in steady state the average force on all fluid

particles must necessarily vanish: the flow induced by the temperature gra-

dient causes a gradient in shear stress that cancels the thermo-osmotic force

[1]

∂σxz(z)

∂z
= −∂σxx(z)

∂x
(6.1)

∂σxx(z)

∂x
=

(
∂σxx(z)

∂T

)
∂T

∂x
. (6.2)

Eq. (6.2) is related to Eq. (5.4) by noting that the σαβ = −Pαβ.

To eliminate the shear stress in a non-equilibrium simulation, such that

only the thermo-osmotic force remains, we propose the following non-equilibrium

simulation technique: first, the system shown in Fig. 6.1 is equilibrated to

an NPT ensemble (T ≈ 0.9, P ≈ 0.122) by using a Nosé-Hoover thermo-

stat and applying a downward force to the top wall. In short, the system is

equilibrated to the same thermodynamic conditions described in Chapter 5.4.

After equilibration, the thermostat is switched off so that the system

now samples an NPH ensemble. Next, we impose a periodic temperature

gradient along x using the temperature rescale algorithm (see Chapter 4.3.3).

We thermostat the left-most part of the simulation box (x = 0.0− 1.644) at

a temperature lower than the average (T = 0.9) while also thermostatting

the middle of the simulation box (x = 24.66−26.31) at a temperature higher
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Figure 6.1: Simulation box used for non-equilibrium force calculation where
fluid near the bottom interacts with a structured wall. Temperature profiles
for the simulation are plotted over the box.

than the average. The resulting heat current sets up the thermal gradient as

shown in Fig. 6.2.

After the system has reached steady-state, we change the equations of

motion for the fluid atoms: in particular, we now treat the mass M of the

fluid particles as a tensor in the Hamiltonian, and consider the limit where

Myy = Mzz = M , the original mass of the particles, whilst Mxx → ∞. The

Velocity Verlet integration (see Chapter 4.1) changes in the following way:
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Figure 6.2: Temperature profiles computed from the non-equilibrium sim-
ulations. Since particle motion is only constrained in x, the tempera-
ture gradient is left unchanged. Left (x = 0.82207 − 24.6621) and Right
(x = 25.48417−48.50213) denote sampling regions where the thermo-osmotic
force is measured. The bounds for these regions are chosen so that they co-
incide with the lattice positions of solid atoms.
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In the second half-step,

vx(t+ ∆t) = 0

vy(t+ ∆t) = vy

(
t+

∆t

2

)
+
fy(t+ ∆t)

2Myy

∆t

vz(t+ ∆t) = vz

(
t+

∆t

2

)
+
fz(t+ ∆t)

2Mzz

∆t

Transforming the Hamiltonian in this way changes the dynamics of the sys-

tem, but static properties such as inter-molecular interactions remain the

same. As temperature remains finite, vx → 0 for all fluid atoms:

vx =

√
kBT

Mxx

, (6.3)

In other words, we have switched off the shear flow, whilst maintaining the

temperature gradient.

Yet, fluid atoms are still diffusing in the y and z directions. In equilibrium,

equipartition would still hold in this model system: hence, the average kinetic

energy associated with motion in the x direction is still kBT/2. As shown

in Fig. 6.2, the temperature gradient is invariant to changing the equations

of motion. In this stationary system, the bulk serves as a reservoir of atoms

so that fluid near the surface can rearrange to the local-equilibrium density

profiles. As the gradient in shear stress ∂σxz(z)/∂z now vanishes, only the

thermo-osmotic force will remain.

Note, that the density profile, ρ(x), for the stationary system will greatly

depend on the instantaneous density profile before setting vx = 0. Thus, in

order for each reservoir ∆xi along x to sample an NPT ensemble, we must

average the force calculation over at least 100 different initial configurations.

As shown in Fig. 6.3, ensemble averaging will cause the density profile in
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Figure 6.3: Density profiles for ∇T = 0.003 (blue in Fig. 6.2) of the con-
strained system averaged over 10 (blue), 50 (green), 100 (red) different initial
configurations. Ensemble averaging over more configurations causes the den-
sity profile in the system where vx → 0 to approach the steady-state profile
(cyan).

the system where vx → 0 to approach the steady-state density profile in the

unconstrained system.

6.2 Results

6.2.1 Structured Walls

In the direct, non-equilibrium measurement discussed in Section 6.1, we con-

sider a fluid consisting of N = 7920 atoms interacting via a truncated and

shifted Lennard-Jones potential given by Eq. (5.18). The fluid is in contact

with the same surfaces discussed in Chapter 5.4: a structured wall interacting

with fluid through a less attractive Lennard-Jones potential and another in-
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teracting via a purely repulsive Weeks-Chandler-Andersen (WCA) potential

as shown in Fig. 6.1. The Lennard-Jones parameters determining fluid-fluid,

fluid-solid, and solid-solid interactions are described in Chapter 5.4.

Fig. 6.1 shows a simulation cell of length 〈Lx〉 = 49.32σ and 〈Ly〉 = 9.86σ

containing fluid that interacts with a structured wall. To ensure that P =

0.122 in the bulk, the top wall acts as a piston that is free to move in the

x- and z-directions. When comparing the directly computed thermo-osmotic

force in the non-equilibrium simulation with the force predicted by the ‘stress

gradient’ and LTE methods, we should note that the direct calculation will

only include the gradient of the potential contribution to the pressure tensor

fP,φx (z) = − 1

ρ(z)

(
∂P φ

xx(z)

∂T

)(
∂T

∂x

)
(6.4)

since the force computation will simply be a summation over all pairwise

forces.

Yet, as discussed in Chapter 3.1, the non-uniqueness of microscopic pres-

sure arises due to different definitions of the potential contribution not the

kinetic. The kinetic pressure gradient is given by

fP,kx (z) = − 1

ρ(z)

(
ρ(z, T2)kBT2 − ρ(z, T1)kBT1

T2 − T1

)(
∂T

∂x

)
(6.5)

We can use equilibrium measurements of the kinetic contribution to the pres-

sure at different temperatures to compute Eq. (6.5). Fig. 6.4(a, b) shows

calculations of the kinetic pressure and the gradient at T = 0.9, respectively.

Adding the kinetic pressure gradient to the direct calculation should give the

full thermo-osmotic force.

Using the method described in Section 6.1, we compute the force per

particle in the system where Mxx → ∞ and vx → 0. The force profile is
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Figure 6.4: (a) Ideal contribution to the pressure at T = 0.85 and T = 0.95
for Lennard-Jones and WCA walls are used to compute the (b) kinetic force
per particle given by Eq. (6.5) at ∇T = 1.

measured in the left (green in Fig. 6.2) where ∇T > 0 and right region (red

in Fig. 6.2) where ∇T < 0. Figs. 6.5 and 6.6 show direct calculations of the

force near Lennard-Jones and WCA surfaces, respectively. Encouragingly,

the force profiles in the left and right regions are mirror images of each other.

Moreover, it is clear from Fig. 6.6 that doubling the temperature gradient

doubles the force.

To improve statistics, the non-equilibrium forces from the left and right

regions shown in Figs. 6.5 and 6.6 were averaged. Adding the profiles of

fP,φx (z) to fP,kx (z) (Fig. 6.4(b)) at the corresponding ∇T gives the total

thermo-osmotic force. The total force is shown by the blue curves in Figs. 6.7

and 6.8. As expected, the thermo-osmotic force is a monotonically increasing
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function of the gradient.

Figs. 6.7 and 6.8 compare the force per particle predicted by the stress

gradient (cyan, red) and LTE methods (green) with those computed directly

via the non-equilibrium technique (blue). Surprisingly, in all cases, both

the V (red) and IK (cyan) pressure gradients fail to predict the thermo-

osmotic force (blue). Perhaps more significantly, the LTE approach (green)

gets extremely close, but still differs from the non-equilibrium result (blue).

It is possible that this discrepancy is due to deviation of the non-equilibrium

result from the local thermal equilibrium approximation. Encouragingly, all

methods agree in predicting zero net force in the bulk, consistent with the

theory (Eq. (2.9)).

6.2.2 Wall Stress

The failure of both pressure expressions is surprising and demands further

analysis. In the previous section, we assume that the structure of the confin-

ing solid does not depend on temperature. Symmetry then implies that, on

average, a flat solid wall exerts zero net transverse force on a fluid atom, sug-

gesting that the wall potential should not contribute to the thermo-osmotic

force. Yet, the mechanical expressions contradict the latter conjecture. Con-

sider Eq. (5.7) while separating fluid-fluid and wall-fluid atomic interactions

P V,φ
xx (z) = − 1

2V (z)

(〈∑N(z)
i

∑Nf

j 6=i
x2ij
rij
φ′ff (rij)

〉

+
〈∑N(z)

i

∑Nw

j 6=i
x2ij
rij
φ′wf (rij)

〉)
(6.6)

where the subscripts f and w denote fluid and wall atoms, φff (rij) and

φwf (rij) are the fluid-fluid and wall-fluid interaction potentials. Differentiat-
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ing the term containing φ′wf (rij) with respect to T gives

∂P
V,φwf
xx (z)

∂T
=

∂

∂T


− 1

2V (z)

〈
N(z)∑

i

Nw∑

j 6=i

x2
ij

rij
φ′wf (rij)

〉
 . (6.7)

The first summation over N(z) is equivalent to the density of fluid atoms at

height z. Clearly, the fluid density will change when the temperature changes.

The second summation over Nw will certainly not change since the number

of wall atoms stays constant. Yet, due to the temperature dependence of the

first summation, substituting Eq. (6.7) into Eq. (5.5) results in an unexpected

force contribution from the wall. The same analysis applies equally well to

the IK pressure. In that case, the gradient in momentum flux per unit area

from the wall across an artificial plane will be non-zero.

Rather than summing over all intermolecular interactions to compute the

force, Fig. 6.9(b) shows the resulting force if only wall-fluid interactions φwf

in the Right region (Fig. 6.2) are summed. As a test case, the same force

was measured in equilibrium simulations (blue circles) while vx → 0. Sur-

prisingly, from z = 0.8− 1.4, there appears to be a significant force exerted

by the wall on the fluid that scales linearly with the gradient. Below z = 0.8,

the signal becomes poor and the calculation needs to be averaged over many

more initial configurations. To account for the unexpected wall forces shown

in Fig. 6.9(b), we consider the possibility that due to the density gradi-

ent induced by the thermal gradient, the average center-of-mass x−position

(Fig. 6.9(a)) of a fluid atom (red spheres) in each slab dz is asymmetric with

respect to the lattice positions of the solid atoms (yellow spheres) below.

Fig. 6.9(a) shows the average x−position of an atom as a function of z in the

equilibrium (blue circles) and non-equilibrium simulations (green, red, cyan

circles).
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As expected, in equilibrium, the center-of-mass position of a fluid atom

in the Right region (x = 25.48− 48.50) is located at the center of the region

x = 36.99, also the lattice position of a solid atom. Out of equilibrium, the

average position shifts away from the center in a way that scales linearly

with the gradient and breaks symmetry. The force profile in Fig. 6.9(b) is

consistent with the position shift shown in Fig. 6.9(a), as the fluid atom expe-

riences a negative force where it is shifted right (z = 0.8− 1.0), zero force at

z = 1.075 where there is no shift, and a small positive force where it is shifted

left (z = 1.1 − 1.4). As expected, the wall force decays extremely quickly.

Perhaps surprisingly, the potential stress gradient shown in Fig. 6.9(c) pre-

dicts wall forces that are opposite in sign to the actual values (Fig. 6.9(b))

and decay slowly. It seems that wall contributions to the pressure gradient

given by Eq. (6.7) (Fig. 6.9(c)) predict excess forces that in reality do not

exist (Fig. 6.9(b)).

In the case of a surface that attracts some of the fluid, wall contributions

to the stress gradient are significant. It is likely in the case of a WCA

surface, fluid will on average be sufficiently far away such that the wall force

will become exceedingly small.

6.2.3 Flat Wall

Based on the findings in the previous section, perhaps the pressure expres-

sions can predict the correct answer if transverse force contributions from

the wall were removed, that is, if ∂φwf/∂x = 0 in Eq. (6.7). The simplest

way to test this idea is to consider fluid interacting with a flat, unstructured

surface at z = 0 as shown in Fig. 6.10. This wall simply flips the sign of

vz if fluid atoms attempt to cross the surface. Fig. 6.11(a) shows that the

equilibrium density profile monotonically increases from the surface into the
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bulk, similar to the case of a WCA surface (Fig. 5.7). Yet, because fluid may

still cross the surface, the density at z = 0 is non-zero.

As before, the force per particle is computed via the stress gradient (see

Chapter 5.1) and thermodynamic (see Chapter 5.2) methods and shown

in Fig. 6.11(b). Consistent with our previous results, the mechanical and

thermodynamic approaches predict different answers for the thermo-osmotic

force.

Using the direct, non-equilibrium approach described in Chapter 6.1, we

can measure the thermo-osmotic force near the reflective surface. Fig. 6.12(a)

shows evaluation of Eq. (6.4) via the direct method. As expected, the profiles

are approximately mirror images of each other across the z− plane. Surpris-

ingly, Fig. 6.12(b) shows that the V (red) and IK (cyan) pressure gradients

fail to predict the thermo-osmotic force (blue) even in the case of a flat

surface, while the thermodynamic approach (green) gets close. Therefore,

failure of the pressure gradient route cannot simply be attributed to wall

contributions to the thermo-osmotic force given by Eq. (6.7) and shown in

Fig. 6.9(c). The results for a flat surface point to a different explanation on

why pressure expressions fail.

In related work, there was consistent numerical evidence indicating that

pressure gradients fail to predict microscopic Marangoni [40] and diffusio-

osmotic [41] forces (see Appendix 9.4). Therefore, we have shown in multiple

cases that near an interface, microscopic forces cannot be expressed as the

gradient of the pressure tensor.

We attempt to explain the failure of the pressure gradient route by revis-

iting the assumptions made in formulating the atomic pressure expressions.

In deriving the transverse virial pressure (see Chapter 3.1.3), we differenti-

ate the free energy of a thin slab with respect to volume expansion in x as
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shown in Fig. 3.3. In doing so, we carry out the volume expansion of the

slab while fixing the remaining volume in the system. Within a slab in the

bulk fluid, intermolecular forces are isotropic so that it makes no difference

whether we differentiate the free energy of the entire system or the slab with

respect to a volume expansion. Inside a slab near the surface, forces are

anisotropic, which may indeed make a significant difference. In regards to

Irving-Kirkwood, the IK pressure gradient yields forces on artificial surfaces

rather than on atoms. Therefore, it is difficult to determine how the non-

equilibrium calculation, which measures forces on atoms, can be derived from

the IK expression. Additionally, we should note that because the virial and

Harasima expressions for the transverse pressure are equivalent (see Chap-

ter 3.1.2), simply choosing a different contour does not resolve the problem.
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Figure 6.5: Direct calculation of the potential contribution to the pressure
gradient (Eq. (6.4)) near a Lennard-Jones surface. Measurements are carried
out for (a) ∇T = 0.003 (b) ∇T = 0.006 and (c) ∇T = 0.009.
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Figure 6.6: Direct calculation of the potential contribution to the pressure
gradient (Eq. (6.4)) near a WCA surface. Measurements are carried out for
(a) ∇T = 0.003 and (b) ∇T = 0.006.
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112



−0.015

−0.010

−0.005

0.000

0.005

0.010
∇T = 0.003

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

z [σ]

−0.03

−0.02

−0.01

0.00

0.01

f
P x

(z
)

[ε
/σ

] ∇T = 0.006f
P x

(z
)

[ε
/σ

]

LTE

V

IK

Non-Equilibrium

Figure 6.8: Comparison of non-equilibrium force measurement (blue) with
‘stress gradient’ approaches (cyan, red) and LTE approach (green) for the
structured WCA wall. Below z = 0.825, the fluid density is less than 10% of
the bulk giving poor statistics.

113



36.0 36.5 37.0 37.5 38.0

hxcmi [�]

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

z
[�

]

(a)

�0.04�0.02 0.00 0.02 0.04

f
P,�wf
x [✏/�]

(b) Equilibrium

rT = �0.003

rT = �0.006

rT = �0.009

�0.04�0.02 0.00 0.02 0.04

(1/⇢(z))(@�
V,�wf
xx (z)/@x)

(c)

�0.0005 0.0005
1.0

1.2

1.4
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Figure 6.10: Simulation box used for non-equilibrium force calculation where
fluid near the bottom interacts with a flat, reflective surface.
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Figure 6.11: (a) Density profiles at different temperatures of fluid interacting
with a flat, reflective wall. (b) The thermo-osmotic force per particle at
T = 0.9 for ∇T = 1.0. The stress gradient methods, computed via Eq. (5.5),
predicts the force profile shown in red and cyan while the thermodynamic
method Eq. (5.14) predicts the profile shown in green.
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for the setup shown in Fig. 6.10. (b) Comparison of the force profiles using
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Chapter 7

Surface Tension Gradients

In the previous chapter, we established for three distinct surfaces that pres-

sure gradients derived from the virial and Irving-Kirkwood expressions fail

to predict thermo-osmotic forces. Yet, in Fig. 5.18, especially in the case of

a purely repulsive surface, all methods predict the same thermo-osmotic slip

velocity. While pressure gradients clearly fail to predict the correct force and

flow profile, in certain cases they manage to give an accurate estimate of the

slip velocity. It is therefore possible that on a macroscopic scale, pressure

gradients can predict the right answer.

7.1 Kirkwood & Buff

The limited success of the pressure gradient approach can be attributed to

the fact that both mechanical and thermodynamic expressions predict the

same surface tension gradient. We start by closely examining the mechanical

definition of surface tension. Kirkwood and Buff [37] consider an interface

dividing homogeneous phases α and β where the pressure tensor reduces to

the hydrostatic pressure multiplied by the unit tensor in the bulk. Then,
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they consider a strip of unit width in y extending from −l/2 to l/2 in z [51].

The total stress acting in the x direction across the strip is

∆Σx = −
∫ l/2

−l/2
PT (z)dz. (7.1)

In the absence of an interface, the stress acting across the strip would simply

be −Pl where P is the hydrostatic pressure. The excess stress due to the

interface gives the surface tension

γ = −
∫ l/2

−l/2
PT (z)dz + Pl =

∫ l/2

−l/2
P − PT (z)dz. (7.2)

The surface tension is independent of l provided that PT (z) = P at z = −l/2
and z = l/2. Furthermore, the Irving-Kirkwood normal pressure, PN , is

independent of z and equal to P . With these added considerations, Eq. (7.2)

reduces to Eq. (3.52) (see Chapter 3.2). However, since PN of the virial

pressure does depend on z, we use Eq. (7.2) to avoid any ambiguity.

We should note that the stress integral given by Eq. (7.2) gives the surface

tension if the bulk phases α and β are homogeneous. Yet, in the case of a

structured solid surface interacting with the fluid, the transverse pressure will

oscillate as a function of z due to the lattice spacing between solid atoms.

These oscillations in the bulk solid phase would incorrectly contribute to

the surface tension integral. Therefore, Eq. (7.2) does not give the surface

tension across solid-fluid interfaces.

Differentiating Eq. (7.2) gives

∂γ

∂x
= −

∫ ∞

−∞

∂Pxx(z)

∂x
dz. (7.3)

Therefore, integrating the pressure gradient derived from microscopic ex-
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Surface Tension Gradients

Lennard-Jones WCA Specular

LTE -0.57 ± 0.01 -1.78 ± 0.01 -1.71 ± 0.01

V -1.15 ± 0.02 -1.74 ± 0.07 -1.72 ± 0.02

IK -1.39 ± 0.04 -1.74 ± 0.07 -1.71 ± 0.01

�1

Table 7.1: Predictions of the surface tension gradient by the mechanical and
thermodynamic methods for the three surfaces described in Chapter 6.

pressions would give the total mechanical prediction of the surface tension

gradient.

The thermodynamic definition of the surface tension gradient is given by

differentiating the Gibbs-Adsorption relation (see Chapter 2.2):

∂γ

∂x
= −

∫ ∞

−∞
dz

(
∆h(z)

T

)(
∂T

∂x

)
. (7.4)

Eq. (7.4) can be numerically evaluated by integrating the volume force pre-

dicted by the LTE approach.

7.2 Results

We can numerically test whether Eq. (7.3) and Eq. (7.4) predict the same

surface tension gradient. Fig. 7.1(a, b) show the force density predicted by

the mechanical and thermodynamic expressions for Lennard-Jones and WCA

walls, respectively. Integration of the V and IK force profiles gives mechan-

ical predictions of the surface tension gradient (Eq. (7.3)) and integration of

the LTE profile gives the thermodynamic prediction (Eq. (7.4)). Table 7.1

shows the surface tension gradient predicted by different methods.
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Surprisingly, for fluid interacting with the Lennard-Jones surface, the

methods predict significantly different answers. To explain the discrepancy,

we revisit the mechanical definition of surface tension (Eq. (7.2)). Eq. (7.2)

assumes that PT reduces to P in the bulk phases. This is true for the fluid

phase, but not the case in the solid phase. Therefore, for fluid interacting

with a structured, solid phase, the excess stress across the strip is not simply

given by Eq. (7.2). The thermodynamic expression (Eq. (7.4)) as derived

from the Gibbs-Adsorption relation is independent of phase information and

should therefore give the correct answer.

Based on the preceding analysis, we expect that removing solid phase

contributions to the surface tension gradient causes the discrepancy to van-

ish. Since Eq. (7.3) only depends on Pxx, we remove solid contributions to

the surface tension gradient by considering fluid interacting with a specular,

reflective wall. As shown in Table 7.1, all methods predict the same surface

tension gradient when the wall no longer exerts any transverse stresses.

In related work on diffusio-osmotic and microscopic Marangoni flows (see

Appendix 9.4), we found that mechanical and thermodynamic expressions

predict the same surface tension gradient across a flat wall (Table 9.1) and

liquid-liquid interface (Table 9.2). As Kirkwood and Buff theory is formu-

lated for interacting, homogeneous bulk phases, the results for a liquid-liquid

interface are unsurprising. Nevertheless, the agreement among the methods

in these systems is consistent with what is presented in Table 7.1.

We may now explain why all methods can predict the same slip velocity

in certain cases. If fluid is near a de-wetting transition, as it was with a WCA

wall (see Fig. 5.7), solid contributions to the transverse pressure gradient are

negligible and all methods roughly predict the same surface tension gradient

(Table 7.1). If the integrated force density on the fluid does not differ sig-
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nificantly among the methods, the slip velocity will likely be the same in all

cases.

The failure of pressure expressions in predicting the surface tension gradi-

ent along a structured wall supports the argument that microscopic thermo-

osmotic forces cannot be derived from pressure gradients. Independent of

the chosen contour, any pressure tensor derived from momentum balance

(see Chapter 3.1.2, Eq. (3.29))

P φ
αβ(r) = −1

2

∫
dRRαφ

′(R)

R

∮

CR

dl̂β ρ(2)(r− l̂, r− l̂ + R) (7.5)

will contain surface contributions. For a structured, solid that attracts the

fluid, these contributions will cause incorrect predictions of the surface ten-

sion gradient. Therefore, even though we only explicitly tested the Irving-

Kirkwood, virial, and Harasima stress tensors, it is likely that any other

expression derived from Eq. (7.5) will also fail.

In short, Eq. (7.4), derived from the Gibbs-Adsorption relation, should

always be used to compute surface tension gradients.
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Chapter 8

Conclusion

In this work, we made significant advances towards a microscopic under-

standing of thermo-osmotic forces and flows. Using local thermal equilib-

rium approximations, we related the local pressure gradient to the product

of the excess enthalpy density and temperature gradient. In doing so, we

formulated the mechanical ‘stress gradient’ and thermodynamic ‘LTE’ ap-

proaches to compute the slip coefficient. For completeness, we also followed

Derjaguin’s ‘LNET’ method by computing the excess heat flux due to a

global pressure gradient giving the equivalent mechano-caloric coefficient.

All methods yield reasonable agreement, but some are more noisy than oth-

ers. The slip velocity serves as an inner boundary condition for mesoscopic

hydrodynamic calculation of thermophoretic flows.

While calculation of the thermo-osmotic slip coefficient seemed invariant

to the method of choice, we still needed to resolve which approach correctly

predicts the thermo-osmotic force profile. By treating the mass of particles

as a tensor in the Hamiltonian, we explored the limit where Mxx → ∞,

thereby eliminating the shear force induced by the thermal gradient. We

could then compare the thermo-osmotic force that remains in the station-
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ary system to those predicted by the stress gradient and LTE approaches.

Surprisingly, both statistical mechanical and hydrodynamic formulations of

pressure fail to accurately predict surface forces due to temperature gradi-

ents. Although the pressure tensor is useful for a hydrodynamic description

of the problem [1], it does not match with what is measured microscopically.

Fortunately, we find that the LTE expression for the thermo-osmotic force

based on explicit calculation of the local enthalpy gets extremely close to the

true result. The small discrepancy may be due to deviations from the local

thermal equilibrium approximation.

In related work, we found that the same microscopic pressure expressions

fail to predict diffusio-osmotic and solutal Marangoni flow profiles, whereas

analogous LTE expressions make predictions that agree with direct, non-

equilibrium calculations. These results bolster what we have found with

thermal gradients.

In the penultimate chapter, we examine more deeply the failure of micro-

scopic pressure expressions. From a macroscopic perspective, we expect all

methods to predict the same surface tension gradient. Yet, in the case of a

structured, solid wall that attracts the fluid, pressure expressions yield the

wrong answer. We attribute the latter failure to the fact that the Kirkwood

and Buff molecular theory of surface tension is not meant to be used for

structured solid-fluid interfaces. Thus, removing solid phase contributions

to the surface tension gradient by considering a flat, specular wall immedi-

ately resolves the problem. We conclude that on a macroscopic length scale,

pressure expressions succeed in limiting cases.

To summarize the dissertation briefly, mechanical expressions of pressure

fail to describe microscopic flows due to temperature and chemical potential

gradients, whereas thermodynamic approaches almost succeed. Our simula-
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tions suggest that there is a great need for a truly microscopic, statistical-

mechanical theory of interfacial transport processes.

8.1 Future Work

In future work, we plan to use the Hamiltonian transformation described

in Chapter 6.1 to definitively establish the microscopic force in thermal

Marangoni and diffusio-osmotic transport. In the former case, it would be in-

teresting to see how the presence of a membrane at the liquid-liquid interface

changes the local viscosity and therefore the flow profile.

Furthermore, we plan to extend our simulation protocols to realistic sys-

tems so that we can compare slip calculations to existing experimental mea-

surements. Using the slip velocities as inner boundary conditions in con-

tinuum simulations would allow us to connect the microscopic dynamics of

thermo-osmosis to the macroscopic motion of colloids under the influence of

thermal gradients.
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Chapter 9

Appendix

9.1 Entropy Production from the Second Law

In this section, we shall closely follow De Groot and Mazur’s derivation of

the entropy production [11]. We start with the second law. The change in

entropy within a system is given by

dS = deS + diS (9.1)

where deS is entropy supplied to the system from the surroundings and diS is

entropy produced within the system. In the presence of irreversible processes,

diS ≥ 0. (9.2)

For a closed system that can only exchange heat with its surroundings, the

Clausius Theorem gives

deS =
dQ

T
. (9.3)
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Substitution of Eq. (9.2) and Eq. (9.3) into Eq. (9.1) recovers the conventional

form of the second law

dS ≥ dQ

T
. (9.4)

The total entropy within an arbitrary volume is given by

S =

∫
ρs dV (9.5)

where s is the specific entropy. In the presence of non-equilibrium processes,

we must relate diS to the irreversible fluxes within the system. The rate of

change of the entropy supplied to the system is equivalent to the entropy flux

across the surface area A that bounds the volume

deS

dt
= −

∫
Jαs,tot dAα = −

∫
∇αJαs,tot dV (9.6)

where Jαs,tot is the total entropy flow per unit area and time and Gauss’

theorem is used in the second equality. The rate at which entropy is produced

in the system is given by

diS

dt
=

∫
σ dV (9.7)

where σ is the entropy production per unit volume and time. Differentiating

Eq. (9.1) with respect to time and substituting the above expressions gives

∫
∂ρs

∂t
+∇αJαs,tot − σ dV = 0. (9.8)
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Since Eq. (9.1) and Eq. (9.2) holds for an arbitrary volume,

∂ρs

∂t
= −∇αJαs,tot + σ (9.9)

σ ≥ 0. (9.10)

Eq. (9.9) is the entropy balance equation with a source term σ. Using a re-

lation derived from mass balance (see Appendix 9.2), written here for clarity

ρ
da

dt
=
∂ρa

∂t
+∇αρavα (9.11)

we can re-express Eq. (9.9) as

ρ
ds

dt
= −∇αJαs + σ (9.12)

where

Jαs = Jαs,tot − ρsvα. (9.13)

In the process of deriving Eq. (9.12), we have assumed that macroscopic laws

hold for infinitesimally small volume elements of the system. These volumes

still contain large numbers of particles and therefore, it is possible to discuss

local values of entropy and entropy production.

We still have the crucial task of constructing explicit expressions for Js

and σ in Eq. (9.12). Using the Gibbs relation for an n−component mixture

and dividing by the total number of atoms gives

Tds = du+ pdv −
n∑

k=1

µkdck (9.14)
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where s is the specific entropy, u is the internal energy, p is the equilibrium

pressure, v = 1/ρ, µk is the chemical potential of species k, and ck is the mass

fraction of species k. While globally the system is out of equilibrium, there

are still small volume elements in a state of local equilibrium. Therefore, we

assume that the form of the Gibbs-relation holds even though the differentials

in Eq. (9.14) are changing with time

T
ds

dt
=
du

dt
+ p

dv

dt
−

n∑

k=1

µk
dck
dt
. (9.15)

All differentials here are material derivatives

d

dt
=

∂

∂t
+ vα∇α. (9.16)

Using the relations derived from mass balance (see Chapter 2.2 in Ref [11])

written here for convenience

dck
dt

=

(
1

ρ

)
(−∇αJαk +

r∑

j=1

νkjJj) (9.17)

and energy balance (see Chapter 2.4 in Ref [11])

du

dt
+ p

dv

dt
=

(
1

ρ

)
(−∇αJαq − Παβ∇βvα +

n∑

k=1

Jαk F
α
k ) (9.18)

we can re-express Eq. (9.15) as

ρ
ds

dt
=

(
1

T

)
(−∇αJαq −Παβ∇βvα+

n∑

k=1

Jαk F
α
k +

n∑

k=1

µk∇αJαk −
n∑

k=1

r∑

j=1

νkjµkJj).

(9.19)

We would now like to determine which contributions to the entropy pro-

duction from the right-hand side are due to entropy flow into the system
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from the surroundings and which are due to entropy production within the

system. We can rearrange Eq. (9.19) into the form

ρ
ds

dt
= −∇α

(
Jαq −

∑n
k=1 µkJ

α
k

T

)
(9.20)

− 1

T

(
Jαq
∇αT

T
+

n∑

k=1

Jαk

(
T∇α

(µk
T

)
− Fα

k

)
+ Παβ∇βvα +

n∑

k=1

r∑

j=1

νkjµkJj

)
.

Comparing Eq. (9.20) with Eq. (9.12) gives the entropy flux from the sur-

roundings

Jαs =

(
1

T

)(
Jαq −

n∑

k=1

µkJ
α
k

)
(9.21)

and the entropy production

σ = − 1

T

(
Jαq
∇αT

T
+

n∑

k=1

Jαk

(
T∇α

(µk
T

)
− Fα

k

)
(9.22)

+Παβ∇βvα +
n∑

k=1

r∑

j=1

νkjµkJj

)
≥ 0.

While separation between the flow and source term may seem arbitrary, the

form of Eq. (9.22) is fixed by the additional constraints that the entropy pro-

duction is Galileian invariant and must vanish in equilibrium. It is clear that

Eq. (9.22) satisfies these constraints. From Eq. (9.22), we can now clearly see

all possible sources of entropy production. The first term is heat conduction,

second is diffusion of different species, third is viscous flow, and fourth is

chemical reactions. It is also worth noting that the entropy production is a

sum of the products of fluxes and gradients of intensive state variables.
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9.2 Mass Balance

In the process of deriving the entropy production, we made use of Eq. (9.11).

We derive the relation here using conservation of mass [11]

∂ρ

∂t
= −∇α(ρvα) (9.23)

where ρ is the total density in the system. The material derivative is given

by
d

dt
=

∂

∂t
+ vα∇α. (9.24)

Suppose there is an arbitrary local property a, which can be a scalar,

vectorial, or tensorial quantity. Taking the material derivative of a and mul-

tiplying through by ρ gives

ρ
da

dt
= ρ

∂a

∂t
+ ρvα∇αa (9.25)

=
∂ρa

∂t
− a∂ρ

∂t
+ ρvα∇αa. (9.26)

Using Eq. (9.23), this can be rearranged into the form

ρ
da

dt
=
∂ρa

∂t
+ a∇αρvα + ρvα∇αa (9.27)

=
∂ρa

∂t
+∇α(ρavα). (9.28)
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9.3 Irving-Kirkwood Computational Expres-

sion

In Chapter 3.1.1, we derived the Irving-Kirkwood pressure tensor at a planar

interface:

PT (z) = ρ(z)kBT −
1

2

〈
N∑

i,j

∫
x2
ij

rij
φ′(rij) × (9.29)

∫ 1

0

δ(z − λZ − ri)δ(z − λZ + R− rj)dλdR

〉

PN(z) = ρ(z)kBT −
1

2

〈
N∑

i,j

∫
z2
ij

rij
φ′(rij) × (9.30)

∫ 1

0

δ(z − λZ − ri)δ(z − λZ + R− rj)dλdR

〉
.

We are interested in casting Eq. (9.29) and Eq. (9.30) into forms more suitable

for calculation in simulation. To do so, we must express the pair distribution
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function in a more tractable form

〈∫ ∫ 1

0

δ(z − λZ − ri)δ(z − λZ + R− rj)dλdR

〉

=

〈∫ ∫ 1

0

δ(z − λZ − ri)δ(R− rij)dλdR

〉

=

〈∫ 1

0

δ(z − λzij − ri)dλ

〉

=
1

A

〈∫ 1

0

δ(z − λzij − zi)dλ
〉

=
1

A

〈∫ 1

0

δ

(
λ− z − zi

zij

)

|zij|
dλ

〉

=
1

A

〈∫ 1

0

Θ(λ)Θ(1− λ)

δ

(
λ− z − zi

zij

)

|zij|
dλ

〉

=
1

A

〈Θ

(
z − zi
zij

)
Θ

(
zj − z
zij

)

|zij|

〉
. (9.31)

We can now substitute Eq. (9.31) into Eq. (9.29) and Eq. (9.30) to give

PT (z) = ρ(z)kBT −
1

2A

〈
N∑

i,j

x2
ij

rij

φ′(rij)

|zij|
Θ

(
z − zi
zij

)
Θ

(
zj − z
zij

)〉
(9.32)

PN(z) = ρ(z)kBT −
1

2A

〈
N∑

i,j

z2
ij

rij

φ′(rij)

|zij|
Θ

(
z − zi
zij

)
Θ

(
zj − z
zij

)〉
. (9.33)

9.4 Microscopic Flows due to Chemical Po-

tential Gradients

In addition to exploring microscopic flows due to temperature gradients, the

theoretical and computational methods described in Chapters 2 and 5 can be
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applied towards understanding microscopic flows due to chemical potential

gradients. We explore two cases: diffusio-osmotic flow induced at a liquid-

solid interface and solutal Marangoni flow at a liquid-liquid interface. In the

latter case, the flow is induced by a surface tension gradient. As was the case

with thermo-osmosis and the thermo-capillary effect, Derjaguin formulated

a picture of diffusio-osmosis using Linear Non-equilibrium Thermodynam-

ics [14], while Levich offered a hydrodynamic treatment of the Marangoni

effect [38]. In this section, we will show that the same theoretical treatment

and molecular expressions developed in the main text can be exploited to for-

mulate a microscopic understanding of interfacial flows induced by chemical

potential gradients.

9.4.1 Diffusio-osmosis

The work presented in this section is part of a collaborative effort that is in

preparation [41].

Consider a fluid mixture containing a majority of solvent (A) and a mi-

nority of solute (B) interacting via a Lennard-Jones potential (Eq. (5.18))

with an atomically structured wall as shown in Fig. 9.1(a). The only differ-

ence between the two species is in the strength with which they interact with

the bottom wall (εB,wall = 2εA,wall = 1.1ε). In the bulk, the Gibbs-Duhem

relation is given by

V dP = Nbulk
A dµA +Nbulk

B dµB. (9.34)

At constant pressure, a concentration gradient in either species leads to chem-
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Figure 9.1: (a) Simulation box used to compute the diffusio-osmotic force and
flow profiles using the stress gradient and LTE approaches. (b) Simulation
box used in the non-equilibrium MD simulations with explicitly imposed
concentration gradients. The blue particles represent the solvent (A), the
green particles represent the solute (B), the red and yellow particles represent
the solid particles in the top wall, and the black and silver particles represent
the solid particles in the bottom wall.

ical potential gradients in both species. Eq. (9.34) therefore reduces to

0 = ρbulk
A (x)

(
∂µA
∂x

)
+ ρbulk

B (x)

(
∂µB
∂x

)
. (9.35)

At a position z near the interface, an excess pressure gradient remains. Sub-

tracting the Gibbs-Duhem relation at z from Eq. (9.35) gives the local pres-

sure gradient that drives diffusio-osmotic flow:

fV (z) = −∂Pxx(x, z)
∂x

= −
[
(ρA(z, x)− ρbulk

A (x))

(
∂µA
∂x

)
(9.36)

+(ρB(z, x)− ρbulk
B (x))

(
∂µB
∂x

)]
.

Upon comparison with the derivation of thermo-osmosis from the Gibbs-

Duhem relation (see Chapter 2.1), we see that the critical difference in

diffusio-osmosis is that the local pressure gradient arises due to the inter-
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facial coupling of the excess densities to the chemical potential gradients.

The excess density of different species is unambiguously defined, whereas the

excess enthalpy density suffers from ambiguities (see Chapter 5.2).

We can use a variation of the stress gradient method (see Chapter 5.1)

to compute the left-hand side of Eq. (9.36):

∂Pxx(z)

∂x
≈ Pxx(ρB + ∆ρB, z)− Pxx(ρB, z)

∆ρB

(
∂ρB
∂x

)
. (9.37)

The local pressure gradient can be computed by evaluating the transverse

pressure profiles in equilibrium simulations at ρB and ρB + ∆ρB. As before,

the non-uniqueness of the microscopic definition of pressure once again arises

(see Chapter 3.1). We may use the virial or Irving-Kirkwood expression to

evaluate Pxx(z) and the pressure gradient will depend on the choice.

To bypass the ambiguities of mechanical expressions, we can formulate a

Local Thermal Equilibrium (LTE) approach (see Chapter 5.2) to compute

the right-hand side of Eq. (9.36). The chemical potential for a component i

is given by

µi = µref
i + kBT ln ρbulk

i + µexc
i (9.38)

where µref
i is the reference chemical potential related to the deBroglie wave-

length and µexc
i is the excess chemical potential. Assuming the bulk solution

is ideal, that is, µref
i and µexc

i are insensitive to a change in solute or solvent

concentration, the chemical potential gradient of species i is given by

∂µi
∂x

=

(
kBT

ρbulk
i

)
∂ρbulk

i

∂x
. (9.39)

For a given ∇ρB and ρB, ∂µB/∂x can be computed using Eq. (9.39) and

∂µA/∂x from rearrangement of Eq. (9.35). The excess density profiles ρA(z)−
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LTE

Figure 9.2: Average per-particle force profiles computed at ρB = 0.02 and
∇ρB = 1.0 using the virial (red) and Irving-Kirkwood (blue) expressions in
Eq. (9.37) and the LTE (green) approach (Eq. (9.36))

ρbulk
A and ρB(z)− ρbulk

B can be calculated in an equilibrium simulation at the

same ρB. Using the latter information, the right-hand side of Eq. (9.36) can

be determined.

Fig. 9.2 shows the force per particle f(z)/ρ(z) computed via the stress

gradient and LTE approaches. As was the case with thermo-osmotic forces

(Fig. 6.7), the methods give three different answers. Applying the force

profiles as artificial body forces to systems at ρB = 0.02 gives three different

flow velocity profiles as shown in Fig. 9.4(a).

To determine which, if any, give the true answer, a direct non-equilibrium

approach was implemented. The non-equilibrium setup is shown in Fig. 9.1(b).

A concentration gradient ∇ρB is imposed by changing the identities of fluid

particles in the source regions every 500 steps. In the low concentration
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Figure 9.3: The bulk concentration profiles in the non-equilibrium simula-
tions.

source region ρB = 0, that is, all particles are reset to type A, whereas

ρB = 0.04 in the high concentration source region. To test different magni-

tudes of ∇ρB, the simulation box size in x was varied as shown in Fig. 9.3.

The flow profile in the diffusio-osmosis region is compared to the flow profiles

predicted by the stress gradient and LTE methods in Fig. 9.4. It appears

that the LTE predictions (Fig. 9.4(c)) agree with the non-equilibrium flow

profiles (Fig. 9.4(b)) whereas those predicted by stress gradients fail. These

calculations are consistent with Figs. 6.7 and 6.8, which show that stress

gradients fail to predict thermo-osmotic forces.

Yet, it is worth noting that stress gradients also fail to predict the diffusio-

osmotic slip velocity, that is, the velocity far away from the surface. As we

did in Chapter 7, we contend that the discrepancy can be explained by the

methods predicting different surface tension gradients. In the next section,
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(b)

LTE
(a)

(c)

Figure 9.4: (a) Flow velocity profiles at ρB = 0.02 and ∇ρB = 0.0025 pre-
dicted by the stress gradient and LTE methods. (b) Flow velocity profiles
directly measured from the non-equilibrium simulations. (c) Flow velocity
profiles at different concentration gradients using the LTE method.

we show that Eq. (9.36) can be related to the surface tension gradient via the

Gibbs-Adsorption relation. Upon integration of the force density predicted

by the different methods, we find indeed that the stress gradient and LTE

methods give significantly different surface tension gradients as shown in

Table 9.1. Following the same line of reasoning in Chapter 7, we considered

that wall contributions to the transverse stress cause the latter discrepancy.

To remove wall contributions, we replaced the surface with a specular wall

that exerts a z-dependent Lennard-Jones potential on the fluid

Ufluid−wall(z) = 4εfw
[
(σ/z)12 − (σ/z)6

]
(9.40)
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Surface Tension Gradients

Lennard-Jones Specular

LTE -5.81± 0.1 -0.19 ± 0.01

V 1.07 ± 0.1 -0.2 ± 0.1

IK 1.07 ± 0.1 -0.26 ± 0.1

�1

Table 9.1: Diffusio-osmotic surface tension gradient predictions by the me-
chanical and thermodynamic methods near Lennard-Jones and specular
walls.

where εB,w = 2εA,w = 1.1ε.

Once again, we measured the diffusio-osmotic force density via the stress

gradient and LTE methods. Integration gives the surface tension gradients

shown in Table 9.1. Consistent with our analysis in Chapter 7, stress gra-

dients fail to predict the surface tension gradient for structured walls and

succeed for flat walls that do not exert any transverse stress on the fluid.

9.4.2 Solutal Marangoni Effect

The non-equilibrium, stress gradient and thermodynamic methods discussed

in the previous section are not limited to liquid-solid interfaces. At a liquid-

liquid interface, external chemical potential gradients induce a local stress

gradient leading to Marangoni flow. The difference in the latter case is that

the interface also moves due to the gradient. Therefore, there is no balancing

shear flow as was the case with a fixed solid surface. Clearly, the boundary

conditions become significant if one wants to compute the Marangoni flow

profile. In this section, we use the same computational methods to construct

a microscopic picture of the solutal Marangoni effect. The work presented in

this section was part of a collaborative effort published in Ref [40].
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Figure 9.5: (a) Simulation box used to compute the solutal Marangoni force
and flow profiles using stress gradient and local equilibrium techniques. (b)
Simulation box used in the non-equilibrium MD simulations with explicitly
imposed concentration gradients. The red and blue particles represent the
two solvents (A and B), the green particles represent the solute (C), and the
black particles represent the solid walls.

Consider a fluid mixture containing two immiscible solvents (A and B)

and miscible solute (C) as shown in Fig. 9.5(a). A concentration gradient in

species C induces a surface tension gradient at the interface

∂γ

∂x
=

(
∂γ

∂ρC

)
∂ρC
∂x

. (9.41)

Using the Gibbs-Adsorption relation (Eq. (2.23)) at constant temperature,

the surface tension gradient is given by

∂γ

∂x
=

∫ ∞

−∞

n∑

i=1

(
ρi(z, x)− ρbulk

i (x)
)(
−∂µi
∂x

)
dz. (9.42)

The right-hand side is an integration of Eq. (9.36) showing the connection to

diffusio-osmosis. Using Eq. (7.3), we can relate the local pressure gradient to
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LTE

Figure 9.6: Force profiles per unit ∇ρC along z near one of the interfaces
shown in Fig. 9.5(a) (z = 10.6) corresponding to a system at ρC ∼ 0.02.

the excess densities and chemical potential gradients of the different species:

−∂Pxx(x, z)
∂x

= −
[
(ρA(z, x)− ρbulk

A (x))

(
∂µA
∂x

)
(9.43)

+(ρB(z, x)− ρbulk
B (x))

(
∂µB
∂x

)

+(ρC(z, x)− ρbulk
C (x))

(
∂µC
∂x

)]
.

We may now use the stress gradient (Eq. (9.37)) and LTE (Eq. (9.35),

Eq. (9.36), Eq. (9.39)) approaches to calculate microscopic Marangoni forces

in three different ways. The stress gradient method remains unchanged due

to the presence of C. The LTE approach does change. However, Fig. 9.5(a)

shows that apart from the interaction of A with B, the two species are

identical in the bulk. Since ρbulk
A = ρbulk

B , ∇µA = ∇µB due to force balance

in the bulk.
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Surface Tension Gradients

Liquid-Liquid

LTE -4.7 ± 0.1

V -4.8 ± 0.1

IK -4.8 ± 0.1

�1

Table 9.2: Marangoni surface tension gradient predictions by the mechanical
and thermodynamic methods at a liquid-liquid interface.

Fig. 9.6 shows the force profiles calculated using the stress gradient and

LTE methods. As before, the LTE approach predicts an entirely different

answer. Interestingly, the virial and Irving-Kirkwood expressions predict

approximately the same stress gradient, deviating from what was observed

with diffusio-osmotic forces (Fig. 9.2). This is consistent with Schofield and

Henderson’s statement [65] that while the stress tensor cannot be uniquely

defined, the stress gradient is indeed well-defined (see Chapter 3.1.2) though

this may only be true for a liquid-liquid interface. Furthermore, integrating

the force profiles in Fig. 9.6 gives the surface tension gradient (Eq. (9.42)).

Interestingly, Table 9.2 shows that mechanical and thermodynamic expres-

sions predict the same surface tension gradient.

Dividing the force densities in Fig. 9.6 by ρ(z) gives the force per par-

ticle, which can be introduced as a body force to an equilibrium system at

ρC = 0.02. As the virial and Irving-Kirkwood force profiles do not differ

significantly, only the body force predicted by the virial is applied. Because

there is no balancing shear flow, a constant opposing force must be applied

to all fluid particles so that the integrated flow profile vanishes. The com-
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Figure 9.7: The bulk concentration profiles along x from the non-equilibrium
simulations.

pensating force causes back-flow in the bulk as shown in Fig. 9.8.

Once again, a direct, non-equilibrium approach was explored as shown in

Fig. 9.5(b). Near each solid wall, a source region is defined. Every 500 steps,

the identities of fluid particles in the source regions are changed to maintain

a constant concentration gradient as shown in Fig. 9.7. The presence of solid

walls causes back-flow in the bulk such that the flow profile integrates to

zero.

Consistent with the diffusio-osmotic picture, the flow profile predicted

by the LTE approach appears to agree with the non-equilibrium measure-

ment whereas the stress gradient approximation fails. However, because all

methods predict the same surface tension gradient (Table 9.2), the bulk flow

velocity is the same in all cases.
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LTE LTE

LTE LTE

Figure 9.8: The velocity profiles along z from different methods at (a-b)
∇ρC = 0.0010 and (c-d) ∇ρC = 0.0005. The horizontal dashed line corre-
sponds to the velocity of zero.
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