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TOPICAL REVIEW
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Abstract
With estimatedworldwide cost over $1 trillion just for dementia, diseases of the central nervous
systempose amajor problem to health and healthcare systems, with significant socio-economic
implications for sufferers and society at large. In the last two decades, numerous strategies and
technologies have been developed and adapted to achieve drug penetration into the brain, evolving
alongside our understanding of the physiological barriers between the brain and surrounding tissues.
The blood brain barrier (BBB) has been known as themajor barrier for drug delivery to the brain. Both
invasive andminimally-invasive approaches have been investigated extensively, with theminimally-
invasive approaches to drug delivery beingmore suitable. Peptide based brain targeting has been
explored extensively in the last two decades. In this review paper, we focused on self-assembled
peptides, shuttle peptides and nanoparticles drug delivery systems decorated/conjugatedwith
peptides for brain penetration.
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α-Syn α-synuclein

ABCB1 ATP-binding cassette sub-family Bmember 1 (ABCB1)

AC Astrocyte

AChR Acetylcholine receptor

AD Alzheimer’s disease

AF6 lL1-fused gene from chromosome 6 protein

AFM Atomic forcemicroscopy

AMT Adsorptive-mediated transport

ANG Angiopep

ApoB Apolipoprotein B

ApoE Apolipoprotein E

AuNP Gold nanoparticle

ASNP Alginate-stearic acid nanoparticles
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B6 CGHKAKGPRKpeptide

BBB Blood-brain barrier

BCSFB Blood-cerebrospinal fluid barrier

BSA Bovine serum albumin

CNT Carbon nanotubes

CMC Criticalmicelle concentration

CNS Central nervous system

CSF Cerebrospinal fluid

DLS Dynamic light scattering

EAE Experimental autoimmune encephalomyelitis

ECs Endothelial cells

FBS foetal bovine serum

FITC Fluorescein isothiocyanate

g7 7-amino acid glycoprotein, GFtGPLS (O-β-d-Glucoseglucose)CONH2

GE11 CYHWYGYTPQNVI peptide

GSH Glutathione

HD Huntington’s disease

HIFU High-intensity focused ultrasound

HuHtt Human huntingtin exon 1

IFN-α Interferon-α

IFN- γ Interferon gamma

i.v. Intravenous

Lamp2b Lysosome-associatedmembrane protein 2b

LDLR Low-density lipoprotein receptor

LRP-1 lipoprotein receptor-related protein 1

MCAO Middle cerebral artery occlusion

miniAp-4 H-DapKAPETALD-NH2 peptide

MMP Matrixmetalloproteinase

MND Motor neurone disease

MOR Opioid receptormu

MS Multiple sclerosis

MSC Mesenchymal stem/stromal cell

MWCNT Multi wall carbon nanotubes

nAChR Nicotinic acetylcholine receptor

ND Neurodegenerative Disease

NP Nanoparticle

NIR Near infrared

NVUs Neurovascular Units

NW Nanowire

PAH Poly allylamine hydrochloride

PD Parkinson’s Disease

PEG Polyethylene glycol

PepH3 AGILKRWpeptide

PLA Poly(lactic acid)

PMNP Polymeric nanoparticles

pSiNPs Porous silica nanoparticles

RES Reticuloendothelial system
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ROS Reactive oxygen species

RVG Rabies virus glycoprotein

RVG-29 YTIWMPENPRPGTPCDIFTNSRGKRASNG

SWCNT Single wall carbon nanotubes

SE Status epilepticus

SEM Scanning electronmicroscopy

siRNA Small interfering RNA

SNALP Stable nucleic acid lipid particle

SPION Superparamagnetic iron oxide nanoparticle

t-MCAO transientmiddle cerebral artery occlusion

TAT Trans-activating transcriptional activator

TEM Transmission electronmicroscopy

Tf Transferrin

TfR Transferrin receptor

TJ Tight junction

TNF-α Tumor necrosis factor-α

WHO WorldHealthOrganisation

ZO Zonula occludens (a.k.a. tight junction protein)

1. Introduction

The central nervous system (CNS) comprises the brain and the spinal cord. Any injury or damage to theCNS
affects its normal functioning andmay lead to permanent disability inmany cases, due to a largely limited ability
for neural tissue regeneration in humans [1, 2]. The broad term ‘NeurodegenerativeDiseases’ (NDs) covers a
range of pathologies, principally affecting neurons in the brain and causing significant neuronal dysfunction,
neuronal death and neuronal loss. NDs once established are irreversible and sapping conditions resulting in
progressive degeneration of neuronal cells [3]. The signs and symptoms are diverse in range, depending on the
affected part of the brain. The cause of anND is often unknown but can involve a complex convergence of
multiplemolecularmechanisms; and disease progression is usually unpredictable. NDs include a number of
conditions: Alzheimer’s disease (AD) and other forms of primary dementias,Multiple Sclerosis (MS) and other
forms of chronic inflammatory neurological disease, Parkinson’s disease (PD),MotorNeuroneDisease (MND),
Huntington’s disease (HD) and ataxias [4]. TheWorldHealthOrganisation (WHO) reported thatNDs affect
around 0.1 billion individuals (24million individuals suffer fromADand other dementias) [5] all over theworld,
and the incidence is on the rise as average life expectancy is increasing. Around 850,000 people in theUK are
affected by dementia, costing the healthcare systemover £26 billion a year [6]. In theUS nearly 100million
people are affected byNDs costing around $724 billion in 2014 [7]. It is estimated that the cost of ADwould be
over 1 trillion dollars worldwide [8]; and the estimated number of people with dementia will reach 131.5million
by 2050 [9] in the absence of effective therapies. Just in Europe, the annual cost of neurological disease reaches
800 billion Euros per year, with amajority attributed to direct costs [10].

The brain is one of themost vital and sensitive organs in the body, which, to perform its functions in an
appropriate way, needs nutrients and gases [11]. Due to its pivotal role and functions, it is protected in a number
of ways, including by the skull, the outer skin, three layers ofmeninges and the blood-brain barrier (BBB) [12].
The BBB is a layer of endothelial cells (ECs) associatedwith pericytes (PCs) and astrocytes (ACs) and acts as a
separator of the blood fromparenchymal cells, thus preventing penetration of drugs into theCNS. It therefore
protects the brain fromoverexposure to substances such as potassium, glycine and glutamate, which, in high
levels such as found in pathological conditions, are neurotoxic [13, 14].

Despitemany advances in drug delivery systems that target the brain, it is still a challenging area. The failure
of therapies administered via an intravenous (i.v.) or an oral route is often due to their inability to cross/
penetrate the brain parenchyma. The use of peptides for drug delivery to the brain has been extensively explored
in the last decade. Self-assembled peptides, shuttle peptides and peptide-decorated nanoparticles have been
reported to effectively deliver drugs in the brain. This review covers peptide based drug delivery systems for the
brain and future prospects.
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2. Blood-brain barrier

Figure 1 is the schematic representation of healthy and diseased BBB.Numerous gateways have been reported to
provide access the brain; themost significant are through blood streamor by getting access to the cerebrospinal
fluid (CSF) circulation. Penetration of anymolecules administered via the parenteral route is controlled by the
BBB, the blood–cerebrospinal fluid barrier (BCSFB), arachnoid barrier and circumventricular organ barrier.
However, drugmolecules up taken by the brain areflushed back towards the blood through the return of the
CSF to the blood or transporters on the BBB [15]. The BBB acts as a guard filter that prevents the uptake of large-
molecules andmore than 98%of pharmaceuticals [12, 16] and small-molecule drugs [17]. Smallmolecules that
are lipid soluble, electrically neutral andweak basesmay be able to diffuse passively across the BBB.

Thus, the BBB, with its extensive blood capillary network, is considered themost important barrier that
controls amolecule’s access to the brain parenchyma.Neurovascular units (NVUs) comprising endothelial cells,
extracellular basemembrane, adjoining pericytes, astrocytes, andmicroglia (although not a structural
component of the BBB, are often included in theNVUas they influence barrier function in response to injury
and disease [18] are integral parts of the BBB supporting system [19]. NVUs collect signals from the adjacent cells
and generate functional responses that are crucial for appropriate CNS function [20, 21]. Both tight intracellular
junctions (i.e. zona occludens, characteristic of the BBB) and the absence of fenestrations limit the permeability
of drugmolecules [22].

Various transport routes have been reported bywhich solutes and drugmolecules can cross the BBB,[23, 24]
as shown infigure 2.Diffusion of substances across the BBB can be generally categorised into paracellular
(namely the transfer of nutrients/drugs across an epitheliumby passing through the intercellular space between
the cells) and transcellular (namely themovements of solutes through a cell). In order to cross the BBB by passive
diffusion, various parameters play pivotal roles.Molecularmass is an important factor and the idealmolecular
weight reported to be suitable for passive diffusion is<400Da [25]. A value of between 5.0 and 6.0 for the log of
the octanol-water partition coefficient (logPo/w), ameasure of lipophilicity, is suitable for passive diffusion [26].

Compounds that are lipophilic, neutral or uncharged at pH 7.4 and have less than 8 hydrogen bonding
groups aremore suitable to cross the BBB [27]. In another study, reported by Partridge in 2012, [28] it was found
that small drugmolecules can cross the BBB if theirmolecularmass is less than 400 and they have the ability to
form8–10 hydrogen bonds. Unfortunately, it has been reported thatmore than 98%of drugs for theCNS are
unable to cross the BBB adequately to attain theminimum therapeutic concentration [12]. Several invasive and
non-invasive approaches have been anticipated to evade the BBB and enhance drug delivery to theCNS.

Figure 1.BBB composition and pathological conditions. (A) In normal states, the BBB comprises vascular endothelial cells connected
with TJs and the PCs layer. A basementmembrane linkedwith AC end-feet surrounds the endothelium. (B) Increased permeability of
the BBB in pathological conditions results fromhighmatrixmetalloproteinase (MMP) activity and increased reactive oxygen species
(ROS) and nitric oxide (NO) levels. Cytokines and chemokines are released and then activatemicroglia/macrophages, leading to
basementmembrane degradation, TJs disruption and an inflammatory response.
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3.Novel shuttle peptides

Shuttle peptides facilitate the influx of a diverse range of smallmolecule cargoes across the BBB. The concept of
shuttle peptides for BBBwas coined byWilliamMPardridge in themid-1980s [29]. Small synthetic peptide
shuttles (comprising natural amino acids) have been reported to cross the BBB. For example, the short rabies
virus glycoprotein (RVG), RVG-29 (YTIWMPENPRPGTPCDIFTNSRGKRASNG), binds exclusively to the
nicotinic acetylcholine (nAChR) receptor found on neuronal cells and on the endothelial cell lining of the BBB,
making it possible for peptide carriers to penetrate [30]. Javed et al (2016) usedC2-9r
(H2N-CDIFTNSRGKRAGGGGrrrrrrrrr, where r is D-arginine) to deliver siRNA for suppressing the
α-synuclein (α-Syn) gene, implicated in the development of PD.CDIFTNSRGKRA is a shorter version of RVG,
linkedwith four extra glycine acting as a spacer and positively charged arginine (R), which at the end of the
C-terminus bindwith negatively-charged siRNA. It was reported that this delivery system (peptide-based)not
only crosses the BBB, but also stabilizes the siRNA that supresses theα-Syn protein, thusmitigating PD-like
symptoms [31]. Although this delivery systemhas been derived from the rabies virus, it was reported to be non-
toxic to neuronal cells.

Venom-derived, peptide-based shuttles have been reported to cross the BBB and to be able to deliver drugs
to the desired site. Oller-Salvia et al (2016) have demonstrated thatminiAp-4 (H-DapKAPETALD-NH2) derived
fromApamin (a neurological toxin frombee venom) is able to cross the BBB and can deliver gold nanoparticles
(NPs), showing proof of concept for drug delivery [32]. PepH3 (AGILKRW) has shown greater penetration upon
i.v. administration inCD1mice and bio-distributionwasmeasured inmice sacrificed 5 min and 1 h after
administration. Furthermore, its clearance and excretion is relatively fast,making it a good candidate for a
shuttle carrier [33]. Spontaneous internalisation of nanowires (NW), linkedwith a cell penetrating peptide: the
trans-activating transcriptional activator (TAT) fromhuman immunodeficiency virus 1, has also been reported
[34]. Two other shuttle peptides PWVPSWMPPRHT andGPWVPSWMPPRHT (composed ofD-amino acids)
have been found to cross the BBB and are able to transport drugmolecules or diagnostic substances into the
CNS. These peptides have been reported to be biocompatible and non-toxic (as theyweremade up of amino
acids) [35]. In recent decades, a number of BBB shuttle peptides with improved efficiency have been reported
(table 1). Apolipoprotein (Apo) derivative peptides have been shown to cross the BBB (in in vitro and in vivo
experiments) [36, 37].Whilst numerous studies have demonstrated that Apolipoprotein B (ApoB)
(SSVIDALQYKLEGTTRLTRKRGLKLATALSLSNKFVEGS) andApolipoprotein E (ApoE) (LRKLRKRLL)2
analogues are able to cross the BBB [38–40]. Gao et al (2012) reported the use PEG-(poly(ε-caprolactone))NPs
(prepared by emulsion solvent evaporation) for brain drug delivery, and contained docetaxel, a widely used drug
in the treatment of severalmalignancies including brain tumours. They successfully conjugated a phage
displayed TGN (table 1) peptide and anAS1411 aptamer, which specifically targets the ligands on the BBB and
cancer cells respectively. In vitro experiments showed excellent permeability across the BBB alongwith suitable
endothelialmonolayer targeting. In vivo imaging showed that unmodifiedNPs hardly distributed in the brain

Figure 2.Transport routes across the BBB. Solutemolecules follow from ‘a’ to ‘f’ pathways and the route ‘g’ involvesmonocytes,
macrophages andNPs (NPs).
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Table 1.A list of shuttle peptides that can target the BBB.

Peptide Typical Sequence Origin TransportMechanism References

g7 GFtGPLS (O-β-d-glucose)CONH2 Enkephalin analogues/opioid RMT [48–51]
Apamin H-CNCKAPETALCARRCQQH-NH2 Venomneurotoxin Unknown [32]
MiniAp-4 [Dap]KAPETALD Venomneurotoxin Unknown [32]
Regulon polypeptides PTVIHGKREVTLHL Neurotropic endogenous Protein LDLR [52]
RAP ELKHFEAKIEKHNHYQKQLE Neurotropic endogenous Protein LDLR [52]
Angiopep-2 TFFYGGSRGKRNNFKTEEY Neurotropic endogenous Protein LRP1 [53, 54]
TAT (47-57) GGGGYGRKKRRQRRR HIVProtein CD4+T lymphocytes [55]
PhPro [Phenyl-Proline]4 Chiral library design Passive transport (paracellular and transcellular) [56]
RI-OR2-TAT Ac-rGffvlkGrrrrqrrkkrGy-NH2 HIVProtein andAmyloid beta Aβ peptide binding [57]
SynB1 RGGRLSYSRRRFSTSTGR Protegrins AMT [58]
Pep 22 Ac-[cMPRLRGC]c-NH2 Phage display (receptor) LDLR [59]
Leptin 30 YQQVLTSLPSQNVLQIANDLENLRDLLHLLC Leptin RMT [60]
TGN TGNYKALHPHNG Phage display Unknown [61, 62]
CNG-QSH (d-CGNHPHLAKYNGT) (d-QSHYRHISPAQVC) Phage display Unknown/Aβ peptide binding [63]
LNP KKRTLRKNDRKKRC the nucleolar translocation signal sequence of the LIMKinase 2

protein

Caveolae-mediated endocytosis and

macropinocytosis

[64]

ApoE (157-167) (LRKLRKRLLR)2 Apolipoprotein E LRP1 [38, 39, 65]
ApoB SSVIDALQYKLEGTTRLTRKRGLKLATALSLSNKFVEGS Apolipoprotein B LRP2 [40]
RVG-29 YTIWMPENPRPGTPCDIFTNSRGKRASNG Rabies VirusGlycoprotein nAChR [30]
G23 HLNILSTLWKYRC Phage display GM1 andGT1b [66, 67]
T7 HAIYPRH Phage display hTfR [68–71]
THR THRPPMWSPVWP Phage display hTfR [35, 72–74]
THRre pwvpswmpprht (retro-enantio version of THR) Phage display hTfR

THRre_2f (pwvpswmpprht)2KKGK(CF)G Branched - Phage display hTfR [75]
DKP Phe(p-NH-Dhp)-L-N-Me[Cha]/[2Nal] Unknown Passive diffusion [76]
GSH-PEG GSH[PEG] Endogenous tripeptide Glutathione [77–79]
CDX D-[FKESWREARGTRIERG] Structure-guided design nAchR [80, 81]
CRT CRTIGPSVC Phage display TfR [82]
T7 -#2077 RLSSVDSDLSGC Phage display RMT [83]
CAQK CAQK Phage display Proteoglycan complex [84]
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while AsNPs (AS11411 conjugatedNPs) accumulated slightly in the brain.However, the accumulation of TGN
conjugatedNPs in the brain significantly increased and the brain distribution achieved the highest intensity at 12
h [41]. GRN1005 a peptide-drug conjugate (taxane paclitaxel and angiopep-2
(ANG=TFFYGGSRGKRNNFKTEEY)) that interacts with lipoprotein receptor-related protein 1 (LRP1) has
shown excellent permeability across the BBB. Phase I and II clinical trials suggested thatGRN1005was able to
cross the BBB and limit tumour growth [42, 43]. Similarly, Li et al (2016) used a combination of two peptides
(ANGandTAT) conjugatedwith paclitaxel to deliver the drug across the BBB [44]. Zou et al (2019) used a 16
lysine (K16) residue-linked low-density lipoprotein receptor-related protein (LDLR)-binding amino acid
segment of apolipoprotein E (K16APoE) to deliver a therapeutic peptide (HAYED) into anADmousemodel
brain leading to reduced the necrosis [45]. Numerous shuttle peptides have been investigated for drug delivery to
the brain but there is still a need tofindmagical combination. In another study, Sonoda et al (2018) formulated a
BBBpenetrant protein conjugate (JR-141), comprising an anti-human transferrin receptor (hTfR) antibody and
human iduronate-2-sulfatase (hIDS) to treatmucopolysaccharidosis II (MPS II, caused by accumulation of
glycosaminoglycans) [46]. Upon i.v. administration, JR-141was detected in the brain but hIDS alone failed to
penetrate into the brain. In addition, ostensibly therapeutic outcomeswere observed, with a lower accumulation
of glycosaminoglycansmeasured in brain and peripheral tissues [46]. Self-assembled peptide nanoligand
derived fromphage display librarywas used to down regulate the BACE1without toxicity and inflammation
[47] .

Datta et al (2000) used a receptor binding domain peptide derived fromhuman apolipoprotein E (hApoE),
LRKLRKRLLR [hApoE (141–150)] as a vehicle to cross the BBB. They fused hApoE (141–150)with 18A
(DWLKAFYDKVAEKLKEAF) [Ac-He18a-NH2], a high affinity lipid-associated peptide to assess the uptake and
degradation of low-density lipoprotein (LDL) inmurine embryonic fibroblast (MEF1). In addition, four
analogueswere prepared, of which, Ac-LRRLRRRLLR-18A-NH2 [Ac-hE(R)18A-NH2] and
Ac-LRKMRKRLMR-18A-NH2 (Ac-mE18A-NH2) have an extended hydrophobicmoiety, including the
receptor binding region. Control peptides were Ac-LRLLRKLKRR-18A-NH2 [Ac-hE(Sc)18A-NH2], which has
amino acid residues of theApoE to disrupt the hydrophobic face, andAc-RRRRRRRRRR-18A-NH2

(Ac-R1018A-NH2), which has only positively charged arginine (R) as the receptor binding domain. Increased
internalisation of LDLwas observed by 3-, 5- and 7-fold byAc-mE18A-NH2, Ac-hE18A-NH2, and
Ac-hE(R)18A-NH2, respectively, whereas the control peptides had no significant biological activity as illustrated
infigure 3 [38].Wang et al (2013) used a receptor binding peptide of ApoE (residues 159–167 [monomer:
LAVYQAGAR], but the peptide had 18 amino acids, 2×monomer) fused to IDUA (a lysosomal enzyme,α-L-
iduronidase) [IDUAe1] to deliver across the BBBby targeting the LRP1, for the treatment of
mucopolysaccharidosis (MPS) type I [39]. Zhang et al (2018)used BBB shuttle peptides to enhance the brain
transduction of AAV8 after systemic administration. THR (THRPPMWSPVWP-NH2), a shuttle peptide that
binds specifically to TfR1was used to promote the internalization and transduction of AAV8 in a dose
dependentmanner [85].

Figure 3. Schematic presentation of high affinity lipid peptide linkedwith poly-arginine andApoE. Peptide conjugatedwith poly-
arginine served as control and no permeationwas observed, while conjugated ApoE showed improved internalization into cells.
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4.Novel nanotechnology for brain drug delivery

NPs are carriers composed of natural (e.g. lipidic) or synthetic (e.g. polymeric)materials ranging from1–500 nm
in size. NPs are able to encapsulate, adsorb, or conjugate drugs or diagnostics and release the payload at a specific
rate in the human body [86]. The physicochemical properties ofNPs such as size, surface charge (zeta potential),
morphology and composition are important factors deciding the fate ofNPs, such as passage across the BBB,
biological activity, release profile and biocompatibility [87]. A list ofNPs used for brain drug delivery are
summarised in table 2.

4.1. PolymericNPs (PMNPs)
PolymericNPs (PMNPs) aremost extensively studied for the purpose of drug delivery. TheseNPs can not only
deliver small drugmolecules but can also be used for the delivery of genes and proteins [101]. PMNPs can have
good penetration through cellmembranes, serum stability, and can be easilymanufactured. Furthermore, the
surface ofNPs can bemodified for variousmedical applications. For brain drug delivery, PMNPs aremade up of
proteins, amino acids, polysaccharides and polyesters. Differentmechanisms can be adapted by the PMNPs to
cross the BBB. They can cross the BBB either by transcytosis through endothelial cells,mucoadhesion, or by
disturbing the TJ in the brain capillaries [102]. On the other hand, PMNPs can be identified upon i.v. injection
by the reticuloendothelial system (RES), leading towide distribution to liver, spleen and bonemarrow, resulting
in elimination or very short half-lives [103]. Tf and poly-L-arginine (cell penetrating peptide) linkedwith 1,
2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) liposomeswere developed
for brain delivery of imaging agents andDNA [104]. B6 (CGHKAKGPRK), a TfR-specific peptide, andGE11
(CYHWYGYTPQNVI), a peptide specific for endothelial growth factor receptor (EGFR) overexpressed on
cancer cells, were linkedwith poly(amido)amine-PEG (PAMAM-PEG) based dendriplexes for siRNA
delivery [105].

PLGA-NPsmodifiedwith 7-amino acid glycopeptide (g7) have been shown to deliver small drugmolecules
across the BBB in rodents. Furthermore, g7-NPs successfully crossed the BBBwithmodel drug (fluorescein
isothiocyanate (FITC)-albumin). Injection inwild-type and knockoutmice clearly showed penetration into the
brain [88]. Luo et al (2017) developed high-intensity focused ultrasound (HIFU) responsive angiopep-2-
decorated poly(lactic-co-glycolic acid) (PLGA) hybridNPs able to transport doxorubicin/perfluorooctyl
bromide (ANP-D/P). Decorated-NPs showed 17-fold increased accumulation in glioblastoma and 13.4 fold
higher than unmodifiedNPs. Significant amount (47%) of drug releasedwithin twominutes afterHIFU
irradiation, causing apoptosis of tumour cells [106].Methoxypolyethylene glycol (MPEG) andmethoxypoly
(ethylene glycol)-b-polycaprolactone (PCL)NPs, conjugatedwith angiopep-2 (CTFFYGGSRGKRNNFKTKRY)
peptidewith encapsulation efficiency ofmore than 95% showed higher in vivo accumulation in the brain [107].

DiMauro et al (2018) developed novel biodegradable block co-polymericNPs, functionalizedwith two
different peptides AGBBB015F (CGGKTFFYGGSRGKRNNFKTEEY) andRegulon
(HKKWQFNSPFVPRADEPARKGKVHIPFPLDNITCRVPMAREPTVIHGKREVTLHLHPDH). These peptide
functionalizedNPs showed higher brain permeability than non-functionalized inU-87MGcell line [108].
K16ApoEdecorated PLGA-NPs have shownbetter accumulation in the cerebral vasculature. TheseNPs showed
higher uptake into brain and provided betterMRI contrast for diagnostic purpose [109].

4.2.Metallic NPs
MetallicNPs for brain delivery have been under investigation due to their serum stability and long half-life.
Ghorbani et al (2018) reported the use of gold-iron nanocomposites encapsulatedwith curcumin-lipoic acid, a
pH-sensitive delivery system for the brain. GSH is used as targeting ligand, leading to 2-fold increases in cellular
uptake [110]. Nosrati et al (2019) reported the use for glutathione (GSH) decorated ironNPs (GSHIONPs) for
brain drug delivery. IONPs@Asp-PTX-PEG-GSH are stable, non-toxic and enhanceMRI contrast for diagnostic
purpose [111].

In a comparative study conducted byWang et al (2019) reported the peptide functionalized polyethylene
glycol andmaleic anhydride‐coated superparamagnetic iron oxide nanoparticles (Mal‐SPIONs) showed better
diffusion to the thalamus, frontal cortex and temporal lobe than bovine serumalbumin (BSA) conjugatedNPs
[112]. In another study, Albertini et al (2019) usedAUNPs decoratedwith RGD like peptides (GRGDG-NH2,
GRGDS) for drug delivery to brain tumour. Twohours after injection, the concentrations ofNPswere 1.5 and 5
fold higher than undecoratedNPs and PEGylatedNPs [113]. TAT-conjugated goldNPs have been employed for
brain drug delivery. The cellular uptake of AuNPs-TATwas 7.4% compared to 0.03%of AuNPs-PEG [114].
Chlorotoxin (CTX), a glioma specific peptide conjugatedwith polyethylenimine-entrapped gold nanoparticles
(AuPENPs) showed excellent penetration into brain [115]. Ivask et al (2018) evaluated the uptake of iron oxide
NPs conjugatedwith biomimetic phosphorylcholine brushes in an in vitroBBBmodel system. They reported
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Table 2.A summary of formulations (NPs) targeting the BBB.

Formulation/Polymer Drug Disease

Method used forNP

preparation Mechanism for BBB crossing Keyfindings References

g7-PLGA-NPs (NPs of less than 300 nm) FITC-albumin MPS I andMPS II Double emulsion

technique

RMT TheC57BL/6 Idua knockout and

C57BL/6 Ids knockoutmicewere

used.HighMWmolecule delivery

across the BBB achieved

[88]

Functionalized solid lipidNPswith apolipoprotein

E, (SLN-DSPE-ApoE) (Average sizewas less than
200 nmwith zeta potential of –10–15mV)

Resveratrol Neuroprotective High shear

homogenization

LDLR In vitro cytotoxicity evaluation via

MTT and LDHusing hCMEC/D3

cell line showed that SLNs affected

neither themetabolic activity of the

cells nor themembrane integrity at

concentrations less than 1500

μg ml−1. hCMEC/D3monolayers

in transwell devices showed SLN-

DSPE-ApoE, permeabilities 1.5-

fold higher than for non-functiona-

lized SLNs

[89]

Bovine SerumAlbuminNPswith LMWPcell pene-

trating peptide (LMWP-albumin) [LMWP:

CVSRRRRRRGGRRRR] (Particle size less than
200 nm,)

PTX and 4-HPR Brain cancer Self-assembly Brain penetrationmainly by EPR,

but also through SPARC and

gp60 albumin binding proteins

overexpressed in glioma tissues

FACS showed in vitro cellular uptake

of theNPs. bEnd.3 cell line showed

BBB penetration of theNPsU87

cells showed cytotoxicity of NPs.

TheNPswere administered by i.v.

injection to orthotopic glioma (Luc-
U87)mousemodel (bearing intra-
cranial tumor). Themice received

theNPs (LMWP-modified bovine

serum albumin (BSA)NPs contain-
ing PTX and 4-HPR) showed the
longest survival time

[90]

PEG–PLA-penetratin (RQIKIWFQNRRMKWKK)
(Particle size 100 nm, zeta potential−4.42mV)

Coumarin-6 CNS disorders Emulsion/solvent eva-

poration technique

AMT/RMT MDCK-MDRcellmodel showed

enhanced accumulation via both

lipid raft-mediated endocytosis and

direct translocation. In vivo admin-

istration showed significant brain

uptake with less deposition in non-

target tissues

[91]
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Table 2. (Continued.)

Formulation/Polymer Drug Disease

Method used forNP

preparation Mechanism for BBB crossing Keyfindings References

Angiopep conjugatedwith poly(ethylene glycol)-co-
poly(ε-caprolactone): ANG-PEG– poly(ε-capro-
lactone) (Particle size was less than 100 nmwith

zeta potential of 3.28±0.75mV)

Paclitaxel Glioblastoma

multiforme

Sonication LDLR U87MGglioma cells indicated the

ANG-PEG- poly(ε-caprolactone)
NPs uptake via LDLR (Angiopep-2
andAprotinin significantly reduced

the cellular uptake of theNPs). Real
time fluorescence imaging showed

accumulation of ANG-NPs in the

brain of intracranial U87MG

glioma tumor-bearing nudemice

after i.v. injection.

[92]

TAT-poly(ethylene glycol) (PEG)-b-cholesterol:
TAT–PEG-b-Chol (Particle size less than 200 nm)

Ciprofloxacin Encephalitis Self-assembly AMT Enhanced in vitro cellular (ACBRI 376)
uptake. NPs crossed the BBB and

located around the cell nucleus of

neurons (SD adult rats) following i.
v. injection

[93]

RVG-29-PEG-PLGA/DTX-NPs (Particle sizewas
around 110 nm)

Docetaxel Gliomas Nanoprecipitation nAchR In vitro bEnd3 cells showed erme-

ability across the BBB. RVG-29-

PEG-PLGA/DTX-NPs had a stron-

ger inhibitory effect onC6 cell pro-

liferation than freeDTX. In vivo

experiments confirmed selective

accumulation ofNPs in intracranial

glioma tissues following i.v.

injection.

[94]

PEG-Poly(ε-caprolactone)-CH2R4H2C/Stearate-

CH2R4H2C (CH2R4H2C: CHHRRRRHHC

peptide) (Particle size was in the range of
50–100 nmwith zeta potential of 15–20mV)

Dextran (as
model drug)

CNSdisorders Self-assembly Olfactory nerve channels Hydrophobic carrier ismore suitable

for the delivery of drug in forebrain,

while hydrophilic carrier is suitable

for hindbrain (brainstem).

[95]

g7- PLGA-Np (Particle size was in the range of
155±26 nmwith zeta potential of

−15±5.6mV)

Loperamide CNS disorders Nanoprecipitation AMT Long term in vitro release over 192 h

and 20% in 2 h. In vivo experiments

showed excellent bio-distribution

in brain.

[96, 97]

mPEG−PLGA-RVG (Particle sizewas in the range
of 168.8±1.9 nmwith zeta potential of

−27.40±0.71mV)

Deferoxamine PD Double emulsion

technique

nAchR In vivo administration reduced the

oxidative stress and iron contents in

[98]
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Table 2. (Continued.)

Formulation/Polymer Drug Disease

Method used forNP

preparation Mechanism for BBB crossing Keyfindings References

the substantia nigra and striatumof

PDmice.

siRNA/TMC–PEG-RVG (Particle sizewas in the
range of 207±2 nmwith zeta potential of

9±2.5mV)

siRNA AD — nAchR In vitro and in vivo experiment showed

excellent penetration into brain

with low toxicity and higher serum

stability.

[99]

AuNCs-RDP (Particle sizewas in the range of
10±2.85 nmwith zeta potential of

−5.92±3.16mV)

Carboxyfluorescein Neural cell imaging Green synthetic route RMT In vitro and in vivo results suggested

the effective internalization in the

brain cells.

[100]
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that after 24 h, 78%of the formulation crossed the BBB via adsorptionmediated transport (AMT) [116]. This
ability of iron oxideNPs has provided the opportunity of delivering therapeutic peptides to the brain by
conjugating the peptide to the surface of iron-oxideNPs (5 nmdiameter) [117]. Tf-conjugatedmagnetic
dextran‐spermineNPs (DS‐NPs) have also demonstrated excellent penetration across the BBB [118].

Kang et al (2016) reported a single-step procedure to simultaneously load porous siliconNPswith high
concentrations of siRNA andprotecting themby formation of Ca2SiO4 at the surface ofNPs (pSiNPs). These
core–shell NPs had the size of 180±20 nm. Then pSiNPswere surface functionalisedwith RVGpeptide (cell
targeting ligand) and a cell penetrating peptide (myr-GWTLNSAGYLLGKINLKALAALAKKIL(GGCC), a
myristoylated transportan) to deliver the siRNA across the BBB. Addition of these peptides increased the size of
pSiNPs to 220 nm. The pSiNPswere administered intravenously tomicewith brain injury, and a significant
amounts of siRNAwere accumulated at the site of injury [119]. Similarly, Lee et al (2017) reported the use of
rabies virus‐mimetic silica‐coated gold nanorods to treat brain gliomas. The nanorodswere prepared by
converting spherical goldNPs to gold nanorods. Then coating the gold nanorodswith SiO2. This was to adjust
the size of the nanorods to the size of rabies virus asmuch as possible. This was followed by coating the resulting
Au-SiO2 nanorods by PEG andRVG-29. The nanorods (RVG-PEG-Au@SiO2) had the length of 117.7±7.3 nm
andwidth of 50.3±3.1 nm. TheRVG-PEG-Au@SiO2 nanorodswere administered intravenously to orthotopic
glioma-bearingmice, which in vivofluorescence imaging indicated the accumulation of RVG-PEG-Au@SiO2

nanorods in themouse brains. Themicewere subjected to photothermal therapy using near infrared (NIR)
laser. The temperature changes (up to 60 °C) caused by the laser therapy (localized surface plasmon resonance)
of gold nanorods resulted in irreversible damages to or death of tumor cells. Tumor volumes inmice treated
with RVG-PEG-AuNRs@SiO2 nanorods and applyingNIR laser were considerably smaller than those ofmice
treatedwith PEG-AuNRs@SiO2 nanorods or control saline (124.8±147.5, 1067.4±295.4, and
2323.2±436.3mm3 , respectively) at 7 d after the treatment. Even, the tumors of twomice treatedwith
RVG-PEG-AuNRs@SiO2 nanorods nearly vanished. This therapy caused slight skin damage by 808 nm laser
irradiation, whichwas healed after 13 days [120]. This study indicates that even the EPRof the brain tumorswas
not sufficient to allow accumulation of PEG-AuNRs@SiO2 nanorods in the tumors and use of RVG-29 cell
targeting peptidewas necessary to achieve desired therapeutic outcomes. In addition, the size of
RVG-PEG-AuNRs@SiO2 nanorods could be part of the successful application of theseNPs.

Numerous factors control the systemic circulation, cell penetration andBBBpassage ofNPs. Particle size is
one of the important factors controlling the access ofNPs across the BBB. Studies conducted in animalmodels of
AD, PD and stroke have usedNPs of 50–100 nm [121–126]. Several techniques, such as dynamic light scattering
(DLS), atomic forcemicroscopy (AFM), TEMand scanning electronmicroscopy (SEM) are used to characterise
NPs [127]. Several factors control the particle size, such as the polymers used, drug loading, drug/polymer ratio
and hydrophilic/lipophilic ratio. Previous studies have reported an increase in particle size after drug loading
[128, 129]. On the other hand, Lopalco et al (2015) have reported no changes in the size ofNPsmade up of
PLGA, PLGA-d-α-tocopheryl polyethylene glycol 1000 succinate (TGPS) andResomer RGPd5055 pre- and
post-loading of drugs (oxcarbazepine and coumarin-6) [130].

4.3. Exosomes
Exosomes are comprised of natural lipid bilayers with an abundance of adhesive proteins that readily interact
with cellularmembranes. These are small extracellular nanovesicles secreted by numerous cell [131, 132].
Naturally-occurring extracellular vesicles such as exosomes traffic endogenous smallmolecules, proteins and
nucleic acids between cells,[133, 134] and they have shown considerable promise for the delivery of exogenous
drugs or biological therapeutics,[135–138] including to the brain [139, 140]. Exosomes have several advantages
over syntheticNPs in that their biocompatibility confers upon them an inherent non-immunogenicity and long
circulation times, however surface-functionalisation (e.g. for targeted delivery) and synthetic analogues of
‘natural’ exosomes have also proven to be successful therapeutic strategies [141–143]. Drugs delivered bymeans
of an exosomal vector often show enhanced efficacy and fewer adverse effects. Enhancing and exploiting the
innate drug-delivery capabilities of exosomesmake for a highly attractive therapeutic approach.

Alvarez-Erviti et al (2011) used exosomes (obtained from self-derived dendritic cells) decorated to express
Lysosome-associatedmembrane protein 2b (Lamp2b) and fusedwith neuron-specific RVGpeptide to deliver
siRNA intomouse brains [144]. They also compared the immune response of siRNA-RVG exosomes and
siRNA-RVG-9R in vivo bymeasuring the interleukin (IL)−6, interferon gamma-induced protein (IP)−10,
tumor necrosis factor (TNF)-α and interferon (IFN)-α serum levels. They found non-substantial changes in all
cytokines compared to siRNA-RVG-9R [144]. Although, IFN-α and IP-10 increased in average formice injected
with siRNA-RVG exosomes compared to controlmice [144].

Curcumin-loaded exosomes taggedwith cyclo(Arg-Gly-Asp-D-Tyr-Lys) peptide [c(RGDyK)]were used to
target the lesion region of the ischemic brain in a transientmiddle cerebral artery occlusion (tMCAO)mouse

12

Nano Express 1 (2020) 012002 Y Islam et al



model [145]. Alvarez-Erviti et al (2011) used RVGdecorated exosomes to deliver siRNA to themouse brain
[144]. Long et al (2017) usedA-1 exosomes (derived fromhuman bonemarrowmesenchymal stem/stromal
cells (MSCs)) for the rectification of pilocarpine-induced status epilepticus (SE) [146]. Exo-JSI124 exosomes
derived fromEL-4 cells (amouse lymphoma cell line)were used to deliver an encapsulated anti-inflammatory
drug in experimental autoimmune encephalomyelitis (EAE)mice via an intranasal route,modulating
inflammation [147]. Exosomes derived fromdendritic cell cultures treatedwith interferon-γwere found to
increasemyelination in rats upon intranasal administration, possibly by delivery ofmiR-219 [148]. Exosomes
loadedwith superparamagnetic iron oxideNPs (SPIONs) and curcumin and conjugatedwith neuroleptin-1-
targeted peptide (RGERPRR) crossed the BBB andwere used for imaging and treatment of glioma [149]. Iraci
et al (2017) revealed the unexpected ability of stem cell exosomes to harbour and deliver functional enzymes (e.g.
Asparaginase-like 1) extracellularly, thus behaving as fully independent smallmetabolic units with exciting
therapeutic implications [150].

Cooper et al (2014) described the use of exosomes derived frommurine bonemarrow dendritic cells to block
the aggregation ofα-Syn, a pathological process implicated in PDprogression. siRNA-loaded exosomes
decoratedwith RVG (targeting ligand) effectively reduced theα-Syn aggregation in normalmice and transgenic
mice expressing the human phosphorylation-mimic S129Dα-Syn [151]. Dopamine-loaded exosomes derived
from the blood ofmicewere used to deliver drugs across the BBBwith lower systemic toxicity compared to i.v.
administration of naked dopamine [152]. As an alternative approach,Haney et al (2015) circumvented the BBB,
using intranasal delivery to successfully administer the catalase-loadedmacrophage-derived exosomes to the
brain ofmicewith amodel of PD, resulting in significant neuroprotective effects [131]. Conversely, a potential
role of exosomes in diagnosing neurodegenerative conditionswas highlighted byGui et al (2015)who developed
amicroRNA-profiling strategy for the early detection of PD. They used exosomes isolated from theCSF of PD
andADpatients, reporting sixteenmiRNAs upregulated and 11miRNAs under regulated in PD [153].

Liu et al (2015) successfully deployed exosomes expressing RVGon the surface loadedwith opioid receptor
mu (MOR) siRNA into the brain for the treatment ofmorphine addiction [154].Wu et al (2018) also used RVG
decorated exosomes for brain drug delivery. They encapsulated siRNA targeting human huntingtin exon 1
(HuHtt) transcript. HuHtt-siRNA loadedRVG-exosomes were then administered intravenously to normalmice
andBACHDandN171–82Q transgenic (Huntington’sDisease-model)mice at 10 mg kg−1 every two days for 2
weeks. siRNA-loadedRVG exosomes significantly reducedHuHttmRNA andprotein levels up to 46%and
54%, respectively, in transgenic animals [155].

4.4. Liposomes for brain drug delivery
Liposomes are self-assembledNPsmade up of phospholipid bilayermembrane. Phospholipids are
heterogeneousmolecules containing phosphate residues, polar head groups, and non-polar alkyl chains [156]
that self-assemble (according to thefluidmosaicmodel) into biologicalmembranes. Liposomes for brain drug
delivery have been studied extensively in the last two decades.

Pulford et al (2010) formulated liposomes (178±20 nm) containing cationic lipid octadecenolyoxy[ethyl-
2-heptadecenyl-3 hydroxyethyl] imidazolinium chloride to deliver siRNA into the brain ofmice following i.v.
injection. The cationic liposome-siRNA-peptide (RVG-9r) penetrates the BBB, with the peptidemoiety binding
to nAChRs [157]. Bender et al (2016) used two liposomal systems for the delivery of prion protein siRNA to the
brain ofmice following i.v. injection.One of the liposome formulations was cationic liposomes containing 1,2-
dioleoyl-3-trimethylammonium-propane (DOTAP), which formed a complexwith siRNA andRVGpeptide.
The other liposomal system containedDOTAPor 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)
to encapsulate the siRNA. Both systems decreased the prion protein expression of neurons in theCNS [158].
Grinberg et al (2005) reported novel cationic amphiphilic compounds synthesised from vernonia oil. The
quaternarymethyl ester derivative ofmethyl vernolate self-assembled into vesicles (in the presence of cholesterol
1:1)with the size of 50–200 nm in diameter [159]. Vesiclesmade from the quaternary vernonia oil derivative
(triple-headed amphiphile)were found to be efficient in transfection of cDNA encoding forGFP into cultured
COS-7 cells [159]. These vesicles were employed to deliver analgesic peptides (kyotorphin or leu-enkephalin) to
the brain ofmale ICRmice following i.v. injection [160].

Moreover, Conceicao et al (2016) reported that the RVG-9r peptide decorated liposomes (also referred as
stable nucleic acid lipid particles [SNALPs])were able to cross the BBB and deliver siRNA,which can target
mutant ataxin-3 in the brain ofMachado-Joseph diseasemousemodels. These SNALPs offered high
encapsulation of siRNA, optimumparticle size and almost no toxicity. In vivo experiments showed the ability of
SNALPs to accumulate in the brain and silence themutant ataxin-3 upon i.v. injection as shown infigure 4 [161].
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4.5.Dendrimers for brain drug delivery
Dendrimers are chemically synthesised polymeric particles with defined shapes (due tomonodispersity).
Dendrimers have been investigated for brain drug delivery. It has been reported, apolipoprotein A-I (ApoA-I)
andNL4-peptide dualmodified dendrimerNPswere efficient carriers for siRNAdelivery to PC12 cells and
efficiently penetrate through a bEnd.3monolayer via LDLR [162]. KE et al (2009) used PAMAM–PEG–
Angiopep/DNA-NPs to deliver plasmidDNAacross the BBB. The PAMAMwas fifth generationwith 128
surface primary amino groups. In vitroBBBmodel showed clathrin and caveolae-mediated endocytosis (also
partly throughmarcopinocytosis) of the nanocarriers containing Angiopep peptide
[TFFYGGSRGKRNNFKTEEYC]. PAMAM–PEG–Angiopep dendrimers were loadedwith pEGFP plasmid; and
theNPswere administered intravenously tomice. Gene expressionwas observed in all four regions of themouse
brain for the PAMAM–PEG–Angiopep/DNANPs, whichwasmuch higher than those for the PAMAM/DNA
NPs [163]. In another study, low generation lysine dendrons (G0 andG1) conjugatedwithApoE derived peptide
(LRKLRKRLLR)were reported to cross the BBB efficiently with no cytotoxicity up to 400μm [164]. It should be
noted that PAMAM/siRNA complexes appear to show significant cell toxicity even at low concentrations such
as 20 μg ml−1 [165]. As it would be expected, the cationic dendrimers showhaemolytic activity.However,
increasing the dendrimer generation decreases the haemolytic activity. For example, G2 dendrimers showed
100%haemolysis at 1 mg ml−1 concentration after 24 h incubationwith RBCs, whileG5 dendrimers showed no
haemolysis (comparable to negative control) at the same concentration and incubation period [166]. Dynamic
light scattering (DLS) studies showed that PAMAM/siRNA complexes had sizes in the range of 150–200 nm,
while TEM results indicated awider size distributionwithmajority in the range of 30–45 nm forG7 PAMAM/

siRNAwithN/P ration of 10 [167].

4.6. Carbonnanotubes
Carbon nanotubes (CNT) are cylindricalmolecules that consist of rolled-up sheets of single-layer carbon atoms.
Distinctive properties of CNT such as good electronic properties, excellent penetration into cellmembrane, high
loading capacity, pH-dependent unloading, greater surface area and ease ofmodificationmake themone of the
suitable drug delivery system for the brain [168, 169]. CNThave been extensively investigated as a drug carrier to
the brain in past few years. FunctionalizedCNT can potentially be used as a carrier for drugs that have poor
permeability across the BBB and also can be used for diagnostic and for the treatment of brain disorders [170].

CNT can be synthesized electric arc discharge and laser ablation using vaporisation of graphite target [171]
or by chemical vapour deposition [172]. CNT can be grouped into single wall carbon nanotubes (SWCNT) or
multi wall carbon nanotubes (MWCNT) depending on the number of layers that constitute aCNT. CNT size
ranges from0.4nm to 100nmdepending on the layers. CNT can be functionalized covalently or non-
covalently [173].

Ren et al (2012) developed PEGylated oxidizedmulti-walled carbon nanotubes (O-MWNTs)modifiedwith
angiopep-2 (O-MWNTs-PEG-ANG) to treat brain glioma. They reported the high uptake and accumulation of
CNT in the desired areawith excellent loading capacity. Angiopep-2 specifically binds to LDLR and promotes
the internalization. Doxorubicin loadedCNTwere found to have better anti-glioma effects than naked
doxorubicin [174]. In another study, ANG functionalized radiolabelledCNTwere employed to deliver drug

Figure 4. In vivo images showing the uptake of the RVG-9r decorated SNALPs inmice (C57BL/6 ataxin-3 [Q69]-transgenic) after i.v.
injection reproduced from [161] after permission (NI: non-injected animal, RV-MAT-9r: non-targeted liposomes, RVG-9r: targeted-
liposomes). Reprinted from [161], Copyright (2016), with permission fromElsevier.
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across the BBB. In vitro experiments suggested higher penetration of ANG-CNT than chemically functionalized
CNT. Enhanced localization of ANG-CNTwas reported upon in vivo injection and 2%of the injected dosewas
accumulated in the brainwithin the first hour post-injection [175, 176]. TAT (YGRKKRRQRRR) conjugated
CNTwere reported to have excellent BBB penetration and anticancer activity through increased ROS
production [177].

4.7. Parameters affecting the BBB transport
4.7.1. Size, morphology and surface zeta potential
NPs in the range of 120–180 nmafter crossing the BBBmay be entrapped in the BL [178]. However, NPswith the
size in the range of 16–24 nmare able to diffuse in the brain parenchyma [178]. These observations indicate that
NPs should be less than 120 nm such as exosomes in order to diffuse in the brain parenchyma, otherwise they
will remain trapped in the BL following crossing the BBB.

Themorphology ofNPs affects their bio-distribution and cellular uptake. NPs could be spherical, cubic,
tubular or rod-like in shape [179, 180]. Amajority of the particles reported for brain delivery are roughly
spherical in shape. Zeta potential or surface charge ofNPs is another factor that controls the diffusion across the
BBB. It has been reported that a high (positive) zeta potential causes toxicity to the BBB [181, 182]. Rassu et al
(2017) reported that a positive surface charge onNPs ensures theirmucoadhesion [183]. On the other hand,NP
formulations have been reported for brain delivery with zeta potentials between−1 and−45mV [184–186].
Different shapes ofNPs are shown infigure 5.

4.7.2. Critical micelle concentration (CMC)
CMC is theminimumconcentration of a compound atwhich it formsmicelles. CMCplays amajor role in the
stability ofmicelles/NPs due to excessive dilution in the blood, upon i.v. injection. If the concentration in
systemic circulation drops below theCMC, then it releases the payload in the blood streambefore getting to its
target.

CMC can be determined by using set concentrations of a pyrene probewith serial dilution of copolymer
solution [187, 188]. Ruan et al (2018) usedRAP12 peptide (a part of the receptor associated protein that binds to
LRP1) and decorated PEG-poly(lactic acid) (PLA)micelles to deliver drug (paclitaxel) across the BBB [189]. Liu
et al (2009) reported CG3R6TAT (CGGGRRRRRRYGRKKRRQRRR), a self-assembled cationic antimicrobial
peptide able to cross the BBB. Theymeasured theCMCby using the pyrene as a probe and found to be
31.6 mg l−1 (10.1μm) in deionizedwater [187].Micelles and PMNPs both can target the brain and cross the
BBB. Efficacy and efficiency of crossing the BBB are dependent on targeting via the surface of the nanocarriers.

4.7.3. Protein corona
NPs, upon contact with biological fluids, are surrounded by a protein layer that is called protein corona
[190–193]. Thefirst layer of protein corona is bound tightly on the surface (primary contact withNPs), which is
referred as ‘hard’ corona. Usually, another layer is loosely bound on thefirst layer, which is referred as ‘soft’
corona; and that consists of serumproteins,mainly comprising albumin and its derivatives [194–196]. This
surface adsorption of protein can alter the physiological response [195]. The adsorption of proteins onNPs
mostly has undesirable effects such as prompt clearance fromblood stream, compromised targeting capacity
[197] and toxicity [198, 199]. Proteins bound to aNP surfacemay rearrange their structure and shape according

Figure 5.Differentmorphologies and shapes ofNPs used for brain drug delivery.
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toNP surface and environment, this is known as ‘conformational change’. Conformational change
accompaniedwith themodification of secondary or tertiary protein structure. Proteins are supposed to interact
with other biomolecules to initiate biological responses, hence a smallmodification in protein structure has
huge impact on their pharmacological activities [200].

Several factors dictate the nature of adsorbed proteins. Particle size plays an important role in protein
adsorption. AsNPs are bigger than proteins, NPsmake proteins to adapt theNPs’ surface. SmallerNPs has less
interactionwith proteins [201]. Surface charge of theNPs affects the secondary structure of proteins. Huhn et al
(2014) reported that goldNPswith different surface charge (positive [+9.7±8.9mV] or negative
[−39.8±10.0mV]), but similar sizes adsorbed comparable amounts ofHSA.Whereas, positively chargedNPs
showed higher cellular uptake than negatively chargedNPs. This change in the activity can be due to
conformation changes in protein structure due to surface charge [202]. Fleischer andPayne (2014) observed that
similarNPswith identical protein corona compositions bind to different cellular receptors, suggesting that a
difference in the structure of the adsorbed proteinmay be responsible for the differences in cellular binding of
the protein–NP complexes. These authors also found that cationic polystyreneNPs showed improved cellular
binding tomonkey kidney epithelial cells compared to negatively chargedNPs in the presence of fetal bovine
serum (FBS). It should be noted that in both cases, theNPs formed protein–NP complexes immediately
following exposure to FBS [199].

Media composition affects the protein corona. SilicaNPs in the presence of serumproteins showed less
uptake compared to serum freemedia [203]. GoldNPs incubatedwithDulbecco’sModified Eagle’sMedium
(DMEM)media for 48 h showed higher protein adsorption thanRoswell ParkMemorial Institutemedia
(RPMI), but same amount after 1 h incubation [204]. Protein concentration inmedia affects the protein corona.
SilicaNPs incubatedwith 3%, 20%and 80%plasma exhibited different protein patterns. Changes in primary
protein bandwas observedwith increasing plasma concentration. Lower amounts of proteins weremeasured on
silicaNPs compared to sulfonated polystyrene (PSOSO3)NPswith increased plasma concentrations [205].
Exposure time affects the protein corona. Protein corona forms immediately as soon as theNPs come into
contact with humanplasma. Tenzer et al (2013) reported complex protein corona (formed of 300 proteins) just
after 30 s [206]. In addition, temperature plays an important role inprotein corona formation.Cu-NPs showed
higher protein adsorptionwhen incubatedby increasing temperature from15 °C, 27 °C, and 37 °C to 42 °C [207].

A decline (from76% to 26%) in the cellular uptake of cRGDdecoratedNPswas reported by Su et al (2018) in
protein boundNPs compared to non-protein boundNPs. They found that even the targeting ability was not
affected but cellular uptakewas compromised [208]. Tf decoratedNPswere reported to lose their targeting
ability in the biologicalmedium. Proteins in themedium are reported to shield theNPs and hence results in
disappearance of targeting ability. HoweverNPs can enter the cells but the targeting capacity is lost [209].
Aptamer functionalized AuNPs lost the targeting ability due to protein corona blocking after serum exposure.
Immune related proteins were found on the surface of aptamer that can induce immune reaction and clearance
eventually [210].

4.7.4. Stability of NPs
The stability ofNPs can be categorised into two, shelf stability and serum stability. NPs should be stable enough
to retain their therapeutic effects for a specific timewhen stored or administered to the body.Oller‐Salvia et al
(2016) tested the serum stability of peptideNPs in human serum. They found that switching from linear to
monocyclic analogue didn’t affect the permeability but showed 30-fold enhanced stability than linear peptide
analogue [32]. In addition, upon switching disulphide to a lactambridge inMiniap-4 shuttle peptide, they found
50%higher permeability with better resistance to proteases [32]. El-Marakby et al (2017) assessed the serum
stability of chitosanNPs in rat serum. They reported a sharp reduction in particle size (up to 62%of original size)
prepared from the native chitosan, whereasmodified chitosan showed slight increase in the size from
87.39±1.56 nm to 122.33±1.95 nmafter 2 h incubationwith the serum. After 24 h incubation no significant
changes were noticed [211]. Oliveira et al (2017), tested uncoated and poly allylamine hydrochloride (PAH)-
coated PLGA-NPs in biological environments: BSA solution,mouse and human plasma. Both formulations
were reported stable in BSA andmouse plasma on incubation, but surprisingly not stable in human plasma
(formed aggregates greater than 1μm). They also studied protein corona in all solutions. Inmouse plasma
uncoatedNPs showed protein concentration of 4.1±2.6 μg ml−1, whichwasmuch greater than incubating
theseNPs in BSA solution. Surprisingly, in human plasma it was 2.5-fold higher (10.4±3.0 μg ml−1) than
mouse plasma. Similarly PAH-coated PLGA-NPs showed higher protein adsorption after incubationwith
humanplasma than BSA solution andmouse plasma [212].

Uncoated chitosanNPswere to increase in size by storage at 25 °C for 3m in 10%glucose solution [213].
This alteration in size results inmodified physicochemical, pharmacodynamic and pharmacokinetic properties
of the PMNPs. Lyophilisationwith cryoprotectants is reported to enhance the stability and to stop contents
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leaking from theNPs [214–216]. Cryoprotectants such as glucose, sucrose,mannitol and trehalose aremost
commonly used because of their low toxicity [214, 217].

5. Conclusion

Peptide based drug delivery systems have been studied extensively in the last two decades to overcome the BBB.
Peptide based formulations comewith its advantages (less toxicity, low alteration in the BBB integrity and
specific targeting) and disadvantages (serum stability). Shuttle peptides, exosomes, liposomes, NPs and
dendrimers decoratedwith peptides have shownmuch improved permeability across the BBB. Targeting and
crossing the BBB is an ever expanding and challenging yet promising field. To design and develop aCNS drug
that can target the BBB requires a detailed understanding of both the BBB at amolecular level and drug
properties (pharmacokinetics and pharmacodynamics). Despitemany advances in drug delivery systems, there
is still an essential need for research aimed at attaining improved delivery systemswith fewer limitations. Peptide
based delivery systems alongwith pro and cons need further optimization and high specificity in brain targeting.

6. Future direction

Despite extensive research in the use of peptides in nanoparticles for drug delivery to the brain, yet there is no
clinical trial of them. Then, the next steps would be developing scalable and reproducible brain targeting
nanoparticle delivery systemusing peptides as targeting ligands. Peptide basedNPs provide the opportunity of
formulating enzyme responsive or biodegradable delivery systems, whichmay offer less toxicity and
immunogenicity, and improved efficacy. Peptide based nanoparticles should be able to deliver/encapsulate
suitable amounts of drug to the brain; and these should protect the drug from enzymes in the blood.
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