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Abstract

As the number of solved protein structures increases, the opportunities
for meta-analysis of this dataset increase too. Here we explore two
approaches for analysing protein structure, both starting from the three-
dimensional co-ordinates of each atom within the structure, which are
then abstracted into a more useful form.

The first method transforms the protein into a network in which its amino
acids are the nodes, and where the edges are generated using a simple
proximity test. By applying the Infomap community detection algorithm,
we can fragment the protein into highly intra-connected subregions -
these subregions are compact and globular, and can be compared with
known structural and functional subunits of the protein (also known
as domains). By performing this fragmentation process systematically
across a large set of proteins, and checking for structurally conserved
fragments, we can search for novel candidate domains. This method
for automatically decomposing a protein into compact substructures
may also be useful in coarse-graining molecular dynamics, analysing
the protein’s topology, in de novo protein design, or in fitting electron
density maps derived from single particle electron microscopy.

The second method calculates a descriptor for each atom of the protein
based on its local environment, known as a Smooth Overlap of Atomic
Positions (SOAP) descriptor. Using these descriptors we can perform
overall comparisons of the subregions identified above. In addition, by
comparing the descriptors of a set of proteins known to share common
structural or functional features (such as binding of a particular ligand),
we can automatically identify the most highly conserved atoms of the set.
These atoms may line ligand binding pockets or correspond to allosteric
sites, which could inform drug design.
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Chapter 1

Motivation

Proteins are key to all cellular life, as they form the structures responsible for almost all
functions within the cell. These structures consist of long chains of covalently bonded
amino acids. These chains then fold into a shape which minimises their free energy, either
freely or with the help of chaperone proteins. Understanding the structure of a given
protein can give insight into its function within the cell, and suggest drug targets for
modifying this function. Understanding the organisational and evolutionary principles
behind protein structure as a whole may be more valuable still.

Determining a protein’s structure is done experimentally, using X-ray crystallography,
Nuclear Magnetic Resonance, or cryo-electron microscopy (EM). The majority of struc-
tures have historically been solved using X-ray diffraction, though recent advances in
EM may result in it becoming the dominant method. In both cases, it is a costly process
in terms of time and human effort, and cannot be done systematically, as the exact
conditions required to crystallise a protein must be determined empirically. However, over
130,000 proteins now have publicly available structures, and the size of this dataset is
growing exponentially [1]. We need automated tools to be able to find common patterns
or principles in a dataset of this scale.

There have been many past efforts at protein structure meta-analysis, using topological
similarity [2] or evolutionary homology [3], in order to understand common origins and
help infer function from structure. The most widely used structural databases search for
repeated sub-structures in sets of proteins, and attempt to tie this to a given cellular
function.

This work aims to assess the potential for describing protein structure globally in terms of
spatial networks of amino acids, and locally in terms of each atom’s specific environment.
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Motivation 2

Both descriptions are based on an abstracted form of the 3D co-ordinates of the individual
atoms.

In the first, we abstract the protein into a network. We let the atoms or amino acids of
the protein be vertices in the network, and apply a distance threshold to generate edges.
Converting the protein structure into a network allows us to use pre-existing network
analysis methods to examine the pattern of bonding within the protein.

The specific network property investigated in this work is community structure [4–7];
the idea that many networks are formed of highly intra-connected sub-networks, weakly
connected to each other. These communities have been shown to be functionally relevant
in many different systems, from finance networks to food webs [8–11].

Whilst network-based descriptions have shown promise in previous work in predicting key
amino acids within proteins for allostery, and for protein stability [12–14], no previous
work has systematically analysed the community structures of large sets of proteins,
either as a method for extracting candidate protein domains (Chapter 4) or as a tool for
investigating protein topology (Chapter 5).

In the second, we use the Smooth Overlap of Atomic Positions (SOAP) descriptor. This
method describes an atom not by its 3D location in space, but by describing the relative
position and identity of its neighbours, in a rotationally-invariant way. These descriptors
have been successfully used in condensed-matter physics in the fitting of potentials, and
in classification problems on ligands and crystal structures [15–17]. Here we extend this
method to sets of protein structures, with the specific goal of discovering binding pockets
(Chapter 6).



Chapter 2

Background theory

In this chapter the biology and bioinformatics required for this work are introduced,
including a summary of existing protein classification methods. This is followed by an
overview of the relevant areas of network science. Pre-existing work on the application of
network analysis to protein structure will also be discussed. Finally, the theory underlying
the Smooth Overlap of Atomic Positions (SOAP) descriptor will be given.

2.1 Proteins

In each human cell there are roughly 2 billion proteins [18]. Virtually every function
or task performed by a cell is carried out by a protein, from enzymes which catalyse
biological reactions, to membrane proteins allowing transport of material into and out
of the cell. The diverse range of possible cellular functions is reflected in the dizzying
variety of protein shapes; each protein fulfils a specific role, and this role is determined
by its structure.

All proteins are formed from a chain of amino acids, covalently bonded. There are only
twenty types of amino acids found within most eukaryotes, and yet the amino acid
sequence is enough to uniquely specify the protein’s structure [19]. Each amino acid has
different properties, such as charge or hydrophobicity, and the interaction between these
amino acids causes the chain to fold into a specific shape.

A protein’s sequence is specified within the cell’s DNA. Each amino acid is specified by a
set of three nucleotides, known as a codon. The sequence of DNA base pairs is transcribed
into mRNA, and then this mRNA sequence is translated into a sequence of amino acids
by the ribosome. This amino acid chain then folds into the required shape, often with
the help of chaperone proteins [20]. The direction of the flow of genetic information, from

3



Background theory 4

DNA to RNA and from RNA to protein, is known as The Central Dogma [21]. In the
human genome around 30,000 proteins are encoded (ignoring alternative splicing, which
results in alternative processing of one mRNA such that a number of related proteins are
produced), though not all are expressed in each cell [22].

Whilst the underlying chemistry is well understood, the way in which this gives rise to
the final structure is not. Predicting the structure of a protein from its sequence has
long been an active area of research. However, with over 130,000 protein structures now
known, the problem of inferring function from structure has acquired new importance.
In this section the relevant features of protein biochemistry are summarised, followed by
an overview of the attempts within bioinformatics to perform meta-analysis of protein
structure. Finally, we detail existing applications of network science to proteins.

Protein biochemistry

Despite the extreme variety in structures and functions of proteins, all proteins share a
common synthesis pathway. In addition, almost all eukaryotes have a repository of only
twenty possible amino acid building blocks. This means that the proteins obey common
chemistry, and can be compared at several length scales, as shown below.

The fundamental building block of the protein is the amino acid. This is an organic
compound comprised of a central carbon atom, labelled Cα, bearing four functional
groups; an amino group (-NH2), a carboxyl group (-COOH), a hydrogen, and a variable
group known as the side-chain (see Figure 2.1). At physiological pH, both of the amino-
and carboxyl- groups are ionised. The amino group of one amino acid can bond covalently
with the carboxyl group of another, creating a strong C-N bond known as a peptide bond.
This process can repeat, generating a polypeptide chain. This chain is directional, with
an unbound amino group at one end (the N-terminus) and an unbound carboxyl group
at the other (the C-terminus). The bonded amino acids are known as residues.

The twenty possible amino acids are distinguished by their side-chain. The amino acid’s
side-chains can have different chemical properties (acidic, basic, polar, nonpolar, hy-
drophobic, hydrophilic), which enable them to interact with each other non-covalently and
independently of their position in the polypeptide chain. These non-covalent interactions
give rise to a protein’s unique structure. Changing the amino acid sequence changes
the chemical properties of the side-chain at a given position. This in turn changes
the non-covalent bonding pattern across the residues, and hence its structure. It has
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Figure 2.1: Schematic representation of amino acids, showing bond formation. R1
and R2 are the side-chains which vary between amino acids, and can be one of 20
possible structures. Figure taken from [23].

been shown that the ground state of the protein (its native conformation) is uniquely
determined by its sequence [19].

There are four types of non-covalent interaction determining the folding of the covalently
bonded chain:

• Hydrogen Bonding: Covalent N-H and O-H bonds are highly polarised, and as
such a highly directional bond can form between the electropositive H on a donor
atom and an electronegative acceptor atom. All amino acid residues contain possible
hydrogen bond donors and acceptors making up the peptide bond, making repeated
hydrogen bonds between sections of the polypeptide chain feasible. Hydrogen
bonding between water and the side-chains is also possible.

• Ionic Bonding: Several of the possible side-chains are ionised in physiological
conditions, either negatively charged (aspartic acid, glutamic acid) or positively
charged (arginine, histidine, lysine). These charges are screened by water, but
electrostatic interaction between such charges still occurs.

• Van-der-Waals Bonding: Electron density will fluctuate with time; this can
result in spontaneous dipole interactions between non-polar atoms. This interaction
is weak, but significant when two surfaces come into close contact.

• Hydrophobicity (i.e Entropy): Bulk water will form a constantly shifting net-
work of hydrogen bonds, with high entropy. A large nonpolar molecule will disrupt
this network, as a solvation shell around the molecule is formed. This shell reduces
the mobility of the water molecules, and hence the entropy of the system. This
entropic cost causes non-polar side-chains to be preferentially buried within the
interior of the protein.
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These interactions are 10-100 times weaker than the typical covalent bond [24], but are
much more numerous. In addition, proteins are metastable. The energies of possible
conformations often differ by only the energy of a few hydrogen bonds.

Levels of Protein Structure

Biologists classify the structures formed as a result of the above interactions into four
discrete levels:

• Primary Structure: The structure at the amino-acid level, i.e. the linear sequence
of the residues within the polypeptide chain.

• Secondary Structure: The N-H and C=O groups in each amino acid can form
hydrogen bonds. By considering the steric constraints on the peptide bond, and the
possible interactions between different elements of the chain, it can be shown that
there are two (and only two) highly regular patterns of hydrogen bonding [25,26].
These are known as α-helices, and β-sheets. These structures require no solvent,
and no specific side-chain, so often form within the core of the protein. α-helices
are formed when a single polypeptide chain coils to form a rigid cylinder, such that
every fourth peptide bond forms a hydrogen bond in a right-hand helix. A β-sheet
forms when two sections of chain run either parallel or anti-parallel to each other.
The arrangement of these regular substructures defines the secondary structure.

• Tertiary Structure: The full three-dimensional arrangement of a single, folded,
polypeptide chain.

• Quaternary Structure: Often a protein is formed from several polypeptide chains
as a non-covalently bonded complex. The canonical example is haemoglobin, which
forms a single functional unit made of four chains [27]. The quaternary structure is
the relative positioning of these component polypeptide chains.

In addition to these levels, the protein domain is a region of sequence or structure repeated
across groups of proteins, normally 40-350 residues in size [24]. Protein structure domains
are compact, globular subregions within the protein that are normally associated with
a specific function - likewise, protein sequence domains tend to be contiguous regions
of the polypeptide chain, though sequence and structure domains may not overlap.
Protein evolution is often modelled as the threading of beads (domains) on a string (the
polypeptide chain), with a protein acquiring additional functionality by incorporating
the relevant domain.
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Protein classification

There are roughly 125,000,000 unique protein sequences stored in UniProtKB [28], and
roughly 130,000 protein structures stored in the Protein Data Bank [29]. The disparity in
the size of the datasets is due to disparity in the effort required; structure determination
is carried out either using nuclear magnetic resonance (NMR), electron cryo-microscopy,
or X-ray diffraction. This is extremely costly in time and effort, and cannot be done
systematically. In contrast, a protein’s sequence can be determined using DNA sequencing
of the relevant organism. Advances in sequencing mean that a genome can typically
be mapped for under £1000, and in under 1 day [30,31]. If the gene encoding a given
protein is known, then the amino acid sequence can be inferred.

The size of these datasets is growing at an exponential rate [1]. Whilst individual
structures may give valuable insight into specific biochemical pathways, and present crucial
drug targets, the principles behind protein structure evolution cannot be understood
on a case-by-case basis. Many attempts have been made to group the set of solved
protein sequences and structures, in order to understand evolutionary relationships or
elucidate function. Here a selection of such databases are given. All are based on the
idea of domains as defined previously; regions of sequence or structure repeated across
groups of proteins, normally 40-350 residues [24]. These domains have traditionally been
found using manual curation. Automated methods often use Hidden Markov Models
(HMMs) [32] which find repeats across the full range of structures, yet cannot infer
whether these repeats have any functional meaning.

Pfam: The Pfam database [33] is a collection of protein families, which classifies proteins
by sequence. Sequence domains are found using HMMs, giving conserved regions across
sets of proteins. This gives insight into protein evolution. There are currently over 16,000
PFAM families, covering >80% of the total sequence set stored in UniProtKB.

SCOP: The Structural Classification of Proteins (SCOP) database [2,34] is a hierarchical
protein structure classification scheme, grouping proteins by shared regions of structure.
The set of known protein structures is separated by Class; proteins within a class have
large-scale structural differences, but have a similar composition of secondary structure.
For example, class a of the SCOP database corresponds to fully α-helical proteins. Each
class is split into Folds; proteins within a Fold share regions of structural similarity, though
without clear evidence of evolutionary similarity. Each Fold is split into a Superfamily;
within a Superfamily structural and functional attributes suggest a common evolutionary
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origin, though without sequence similarity. The lowest level of hierarchy is the Family;
proteins within a family will have significant sequence and structural similarity.

CATH: The Class, Architecture, Topology, Homology database [35] is, similarly to
SCOP, a hierarchical structural classification. Three independent domain identification
methods (PUU [36], DETECTIVE [37] and DOMAK [38]) identify structural domains.
The classification is more geometric and less functional than SCOP.

ECOD: The Evolutionary Classification of Domains database [3] is also a structural
database, but differs from SCOP and CATH in that its groupings are evolutionary
rather than topological, with an emphasis on distant evolutionary relationships that are
otherwise difficult to detect.

Another key resource is the Gene Ontology (GO) project [39]. This uses a directed
acyclic graph to assign attributes (e.g. lactase activity, oxidoreduction) to genes. This
has traditionally been used in gene sequencing efforts, in which the enrichment (i.e. the
occurrence at a greater rate than predicted by chance) of given terms may give insight
into the function of a given protein variant [40, 41].

However, given that genes encode proteins, this implies that for each protein in the PDB
there is a set of associated GO terms. This mapping has been carried out by SIFTS [42],
and can be used to assign functions to proteins.

Protein similarity algorithms

To find patterns in a large set of proteins, such as conserved domains or binding sites,
we need a metric for the similarity of two proteins. More fundamentally, in order to
generate such a metric, we need a way of describing the protein in a machine-parsable
way. There are two widely-used classes of descriptors:

• Those based on the proteins’ sequences. Here the descriptor is a string of characters
representing the amino acid sequence.

• Those based on the proteins’ structure. Here the descriptors are the spatial positions
of each atom in the protein, as a vector of 3D co-ordinates.

Here we focus on descriptions based on the proteins’ structure.

The earliest methods for comparing two sets of co-ordinates are based on alignment [43].
By arranging the proteins so as to minimise the distance between pairs of equivalent
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atoms, we can obtain the root-mean-square distance (RMSD) between the two proteins’
atoms. This RMSD then functions as a similarity score.

The problem of protein alignment is NP-hard [44], and is especially challenging when
the proteins have different lengths or have highly differing sequences (as the notion of
’equivalent pairs’ of atoms then becomes difficult to define). The RMSD measure also has
the effect of prioritising local over global similarity, with more recent scoring methods
such as the TM-score [45] using an adjusted metric to compensate for this.

A more recent class of scoring methods forgoes alignment and the absolute positions of
the atoms, and instead compares the positions of the atoms in the protein relative to
each other. By creating an N by N matrix of the distance from each atom in the protein
to every other atom in the same protein, we generate a contact map. By using matrix
comparison methods we can thus compare the structures of two proteins [46–48].

For a more coarse-grained representation, the spatial positions of the amino acids, as
encoded by the Cα, can be used instead.

In this work, we apply two classes of protein structure descriptors; one based upon local
environment similarity, and one based on spatial networks. In section Section 2.2, the
mathematics behind the SOAP descriptor is introduced, and in Section 2.3 the relevant
network science.

2.2 Smooth Overlap of Atomic Positions

In Chapter 6 we apply a descriptor based on the local environment of each atom within
the structure, i.e. the overall arrangement of the atom’s neighbours. This approach is
distinct from both the comparison of absolute atomic positions (as in alignment), or
the relative position between atoms (as in the spatial network approach). These local
environment descriptors have shown promise in solid-state physics when used to train
models on inorganic crystal structures or protein ligands [16, 17], but have yet to be
applied to protein structure itself. This descriptor is known as the Smooth Overlap
of Atomic Positions (SOAP) descriptor. The derivation below summarises work given
in [17].

For each atom, we get the position of every other atom within a certain cutoff distance
R - these atoms are defined as belonging to environment χ.
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We then represent each atom i within this environment with a Gaussian with variance
σ2, centred on xi, the atom’s original position.

The local density in environment χ is then:

ρχ(r) =
∑
i∈χ

exp
(
−(xi − r)2

2σ2

)

The SOAP similarity kernel between two atoms with local environments χ and χ′ is then
defined as the overlap between the two densities ρχ(r) and ρχ′(r), integrated over all
three-dimensional rotations R̂.

k(χ, χ′) =
∫

dR̂
∣∣∣∣∫ ρχ(r)ρχ′(R̂r)dr

∣∣∣∣2

It can be shown [15] that this integral can be performed analytically. If the local
environment density is expanded in a basis of spherical harmonics Ylm and radial functions
gb :

ρχ(r) =
∑
blm

cblmgb(|r|)Ylm(r̂)

Then the power spectrum is defined as

p(χ)b1b2l =
∑
m

(cb1lm)†cb2lm

If these elements of the power spectrum are collected as a unit-length vector p̂, the SOAP
similarity kernel between atomic environments χ and χ′ can be shown to be [15]:

k(χ, χ′) = p̂(χ) · p̂(χ′)

The practical result of this surprising mathematical equivalence between the power
spectrum and the rotational overlap integral is that the SOAP descriptor for an atom
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can be considered to be this unit-length vector p̂, with the similarity score between two
atoms simply equal to the inner product between their SOAP descriptors.

(a) (b) (c)

Figure 2.2: Schematic of the SOAP descriptor generation process. (a) For the target
atom in green, the atoms within a given cutoff radius are selected (as indicated by the
dotted line). (b) For each atom within the cutoff radius, a Gaussian with variance
σ2 is placed at the atom’s position. (c) This set of Gaussians is expanded in terms
of spherical and radius basis functions, and the power spectrum calculated. The
coefficients of the power spectrum, as a vector, give us the SOAP descriptor.

Once the SOAP descriptors for each of a protein’s atoms have been calculated, they can
then be used to calculate global similarity between two proteins, as follows.

Global Similarity (GLOSIM)

Given the set of SOAP descriptors for two structures A and B, we can calculate the
overall (or global) similarity between A and B in one of three ways [16]. The GLOSIM
measure of overall similarity between two structures will be used in Chapter 4 to compare
protein fragments.

For each atom xi in structure A, and atom xj in structure B, we define the SOAP kernel
as k(xi, xj).

1. Average: The simplest method is to average over all possible pairs of environments:
K(A,B) = ∑

i∈A,j∈B Pijk(xi, xj) where P is the permutation matrix mapping i to j.

2. MATCH: Alternatively, we can find the permutation matrix P such that each i-j
pair has the highest k(xi, xj). This can be computed in polynomial time using the
Hungarian algorithm [49].

3. Regularized MATCH (REMATCH): Using a regularized entropy, we can
smoothly interpolate between the average and MATCH method above (see [16] for
details). Unlike the MATCH method, this can be applied in cases when A and B
have different numbers of atoms.
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In practice, we often wish to compare structures with different numbers of atoms, and
REMATCH is fast enough that there is no need to use the less-accurate Average method,
so the REMATCH kernel is used throughout the rest of the work.
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2.3 Networks

Figure 2.3: An example of a network with 15 nodes and 23 edges.

In Chapter 4 and Chapter 5 we investigate application of network science methods
- specifically, community detection - to networks based on protein structure. In the
remainder of this chapter the required theory is introduced. This closely follows previous
MPhil work [23].

A network (also known as a graph) is a set of nodes (or vertices, V), connected by links
(or edges, E), as in Figure 2.3.

The study of the intrinsic properties of networks is known as graph theory. Within the
framework of graph theory, a graph is defined as a pair (V,E) where V is a set and E is
a subset of V (2) := {{x, y} : x, y ∈ V, x 6= y}, which is the set of unordered pairs of V .

The behaviour of these abstract objects has traditionally been a problem of pure mathe-
matics, and over hundreds of years the investigation of these properties have led to some
of the most elegant and incisive proofs in mathematics. However, it is the application of
graphs to real-world problems that has seen graphs gain new relevance in recent years.

The nodes and links of a graph can be used to represent any system of interacting
components; the nodes represent the components themselves, and the links some aspect
of their interaction. Abstracting away the details of the system allow the patterns of
interaction to be explored. This can help identify key components, key interactions, or
key properties of the system as a whole. The application of graphs to understanding
real-world systems is normally referred to as network analysis, and fields such as finance,



Background theory 14

genetics, agriculture and sociology [50–52] have all seen network analysis yield new
insights.

The field of network analysis has gained new prominence due to increasing availability of
massive data sets, and increasing computational power. Analysis of these data sets has
shown that many real-world networks share key properties, regardless of the underlying
system.

Network Representation

In order for different networks to be compared and analysed, a common format for their
representation is required. One standard form for representing a network is an edge
list. The nodes are labelled [1, N ] in arbitrary order. Then by specifying the number of
vertices, N , along with a list of the start and end points for each edge e.g. [(1,2), (1,3),
(2,4),..], we can completely specify the network. If there are no isolated nodes without
edges, then the list of start and end points is sufficient. This form is convenient for
reading and writing networks.

An alternative representation of a network takes the form of an adjacency matrix. This
matrix A is defined as:

Aij =

 1 if vertices i and j share an edge.

0 otherwise.

The representation allows matrix methods to be applied to network analysis. For
example, it has been shown that the eigenvalues of this matrix are linked to the network’s
connectivity [53].

Networks in which the edges have uniform importance, and in which an edge i → j

implies an edge j → i, are known as unweighted and undirected networks respectively.
In many cases the interactions of a system have varying strength; this data can be
incorporated by giving the edges a weight. The adjacency matrix representation can be
extended to weighted networks by letting Aij be the weight of the edge from i to j. The
edge-list representation can be extended by added a third term to each row of the list,
representing the weight e.g. [(1, 2, 0.5), (1, 3, 2.0), (2, 4, 1.0),..].
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Additionally, there are many examples of systems in which the interactions are unidirec-
tional, for instance in a network of citations [54], or hyperlinks within the Internet [55].
Networks for which this is true are known as directed networks. Note that for undirected
networks the adjacency matrix is symmetric; for directed networks this is not generally
true.

Network Properties

Once a system has been converted to a network, the properties of interest are often
dependent on the exact system, or the problem under study. However, in many systems
what is required is some metric of node or edge importance. The simplest possible proxy
for a node’s importance is its degree; the number of edges connecting to it. In terms of
the adjacency matrix, the degree of node i, ki, is:

ki =
n∑
j=1

Aij

Nodes with high degree may occupy key positions within the network. The degree
distribution is characteristic of the network.

(a) (b) (c)

Figure 2.4: Example networks showing three different degree distributions:
a) 10 nodes of degree 5 (i.e a uniform degree distribution).
b) 8 nodes of degree 2, and 2 nodes of degree 7 (i.e a low-skewed degree distribution).
c) 8 nodes of degree 7, and 2 nodes of degree 2 (i.e a high-skewed degree distribution).

Another network descriptor commonly of interest is the average path length. This defines
how many edges separate each node from every other node in the system. Defining the
geodesic distance, dij, as the shortest path from node i to node j (and := 0 if no such
path exists). Then the average path length for the graph G is:
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lG := 1
N (N − 1)

∑
i 6=j

dij

(a) (b)

Figure 2.5: Example networks showing low and high average path length. It can be
seen that the path length corresponds to intuitive notions of connectivity.
a) a Barabási-Albert graph [56] with n=15, m=3, lG=1.7.
b) an Erdős-Rényi graph [57] with n=15, p=0.2. lG is 2.9.

A third example of a network descriptor is the clustering coefficient, which details the
likelihood that two connected nodes share a neighbour. The local clustering coefficient for
a vertex i can be defined as the proportion of pairs of neighbours of i that are connected.

Ci :=
∑
j,k Aij Ajk Aki∑
j,k Aij Ajk

=
∑
j,k Aij Ajk Aki
1
2ki(ki − 1)

We can then define a global clustering coefficient as an average over nodes:

C = 1
N

∑
i

Ci

These three properties are often characteristic of the type of network being studied.
In addition, many networks show the same key form of given network parameters.
For instance, many networks show a power-law distribution in the degree distribution,
regardless of the underlying system, P (k)∼ k−γ. Different types of networks will then
exhibit different values of γ [50, 51, 59]. In addition, the average path length and the
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(a) (b)

Figure 2.6: Example networks showing low and high average clustering. Example (a)
shows that the clustering coefficient can give unintuitive results, due to its dependence
on triangles.
a) The Chvátal graph [58], with clustering coefficient of 0.
b) A graph with clustering coefficient 0.72.

clustering coefficient both deviate significantly from the values that would be expected
by chance (the “Small-World Effect” [60]).

In addition to evaluating the properties of a network, we often wish to compare two
networks to each other. Two networks are isomorphic if there nodes and edges match
perfectly; that is, there is a relabelling of nodes of the first graph such that the edges
of the second graph are recovered. Formally, networks G = (V, E) and H = (V’, E’)
are isomorphic if there is a bijection f : V → V ′ such that xy ∈ E ⇐⇒ f(x)f(y) ∈ E ′.
It is not yet known whether graph isomorphism can be checked in polynomial time, or
whether it is NP-complete; an algorithm has recently been proposed that may run in
quasi-polynomial time [61].

A broader comparison can be given as a similarity measure between networks, also
known as “fuzzy isomorphism”. This may also be recast in terms of the edit distance,
the minimum number of edges that must be added or removed in order to convert one
network to another. Alternative methods have focussed on graph fingerprinting; by
creating a vector of characteristic graph properties we can compare graphs in terms of the
Euclidean distance between their vectors. In Chapter 5 a novel subgraph isomorphism
algorithm is developed, based on the matching subtrees.
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2.4 Community structure

Figure 2.7: A network showing three communities, generated using the “relaxed
caveman” model [62].

Many networks share a feature which cannot be extracted from either the local properties
of each node, nor from the global properties of the network. This is the tendency of many
observed networks to form communities; tightly bound collections of nodes, with few links
to nodes outside the community (see Figure 2.7). Often, these communities correspond to
relevant organisational units of the system. These communities have obvious meaning in
the field of social science (corresponding to the traditional usage of the word “community”),
but community structure has also been shown to be important in the the study of
transport, biology, finance, and ecology, among others [9–11, 63, 64]. This community
structure can be hierarchical, with multiple levels of nested communities [65–68].

Historically the realm of sociology [69–71], study of community detection by network
scientists accelerated in 2002 with the introduction of modularity [4] as a metric for
community strength. The field of community detection is today one of the busiest research
areas in network science. Many comprehensive reviews of the field exist [5–7,72–77]; here
the salient features are presented, following previous MPhil work [23].

Community detection refers to the problem of extracting the community membership of a
network, using only the nodes and edges of the graph (i.e. without any prior knowledge).
This results in a partition, which is a list of each node’s community.

Two properties of communities are: They should be connected (i.e. there should be some
path from every point in the community to every other point in the community), and
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they should be locally dense (i.e. nodes in a community should be more likely to connect
to other nodes within their community than outside their community).

The most basic possible definition of a community which satisfies these properties is a
complete subgraph, or clique; a subgraph C of the main graph G in which every node is
connected to every other node (see Figure 2.8). However, this definition proves too rigid
for practical use. Above the level of triangles, there are very few cliques within most
networks, and many plausible community structures can be devised without enforcing
completeness, such as below.

For a given connected subgraph S of the graph G, and a given node within that subgraph,
i, we can distinguish between the internal degree, kinti , the number of edges connecting the
node to other nodes in S, and the external degree, kexti , the number of edges connecting
the node to nodes not in S. Two definitions of communities can then be given:

Strong community: a subgraph in which for each node i ∈ S, kinti (S) > kexti (S).

Weak community: a subgraph in which ∑i∈S k
int
i (S) > ∑

i∈S k
ext
i (S).

A weak community provides a less severe constraint on the possible nodes within the
community, as nodes can have more edges leaving the community than remaining in
it, as long as the total internal degree of the community remains higher than the total
external degree.

Strong Community
Clique
Unclassified 

Weak Community

Figure 2.8: Examples of three possible community definitions: a clique (green), a
strong community (orange), and a weak community (purple). The two black nodes are
unclassified. This demonstrates that the clique is most likely too rigid a unit to use as
a community definition.

A better definition would move away from edge counting to focus on the probability of
an edge occurring inside or outside a community. However, the problem of calculating
the edge probabilities remains in general ill-defined [6].

Community detection is a challenge for three reasons:
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1. Perhaps most importantly, there is no clear definition of what constitutes a commu-
nity, let alone what metric of “goodness” a community should obey. This reflects the
many different requirements on the communities found, and is highlighted by the
wide range of terms used to describe communities (e.g. blocks, modules, clusters).

2. Unlike the related problem of graph partitioning [78], the number of communities,
if any, is not known in advance.

3. The total number of partitions for a system rises faster than exponentially with the
number of nodes (see Appendix A.1), even in the simplest case of network bisection.
This makes exhaustive search of partitions computationally unfeasible.

Community detection methods

There have been a multitude of algorithms developed for identifying communities within
networks. Often these algorithms are developed to generate communities with different
properties. Many attempts have been made to group, classify and evaluate these methods.
Schaub [7] uses a problem-based approach, in which the motivation for finding the
communities can be split into four categories:

• Cut-based: Communities are generated to minimise the external links, such as in
the Kernighan-Lin algorithm [79], regardless of any internal structure.

• Clustering-based: Communities are required to be densely connected, as in data
clustering.

• Inference-based: Here the detection process aims to identify groups of structurally
equivalent nodes.

• Dynamic: Here the communities are used to simplify the description of processes
occurring in the network.

Community detection algorithms are traditionally specialised towards one of these
requirements. In addition, there have been many attempts to compare the accuracy
of methods, based upon how well they reconstruct known communities [80–85]. These
communities are either known from metadata collected about the network, or artificially
generated (see Section 2.4). It has recently been shown that no method can perform
best on all networks [86]; specifically, that the average accuracy of any method f over all
possible community detection problems is a constant, independent of f . This “No Free
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Lunch” theorem implies that, as in unsupervised learning, the method must be selected
to address the specific problem at hand.

To show the diversity of approaches taken to detecting community structure, four popular
methods are given below.

Spectral Methods:

These make use of the properties of a matrix associated with the graph; most usually,
the Laplacian. The Laplacian L has elements [53]:

Lij =


ki if i = j

−1 if i 6= j and ∃ an edge (i,j).

0 otherwise.

Here ki is the degree of node i. It can be shown that the eigenvectors of this Laplacian
give key information on the connectivity of the nodes in the graph; this can be exploited
to cluster the nodes. This is closely related to the problem of minimum cut. However,
spectral methods often fail when the graph is sparse (as is often the case in real-world
networks), and require the number of communities to be specified in advance [87].

Modularity optimisation:

Perhaps the most popular method used in community detection, this technique relies
on the fact that a random graph is not expected to exhibit community structure. By
comparing the connectivity within a community to that of a null model, we can define
a metric of community “goodness” that can be optimised to find the best community
structure in the graph [88]. The modularity is defined as:

Q = 1
2w

∑
i,j

(Aij − Pij) δ(Ci, Cj)

Where N is the number of nodes, with i, j ∈ [1, N ] and δ(Ci, Cj) = 1 if nodes i and j
belong to the same community, and 0 otherwise. Aij and Pij are the adjacency matrices
of the network and of the null model, respectively. w is the total number of edges in the
network. Choosing that the null model has the same degree distribution as the network
under study gives:
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Q = 1
2w

∑
i,j

(
Aij −

Ai Aj
2w

)
δ(Ci, Cj)

This recasts the problem of community detection as an optimisation problem, which
allows existing optimisation methods to be applied (though modularity maximisation
is NP-hard [89], meaning approximate algorithms must be used). However, modularity
optimisation suffers from two key flaws. Firstly, the modularity has been shown to have
a resolution limit [90]. If the communities within a graph are smaller than a certain size,
relative to the total size of the graph, then they will not be found. (It has been shown that
this limit applies in general to any method with a comparison to a null model [91,92].)
Secondly, the modularity is highly degenerate [93]; the number of local maxima with
modularity close to the global maximum increases exponentially with system size. This
reduces the confidence in the resulting partition.

Interesting, modularity maximisation can be interpreted as both maximisation of a
specific type of stochastic block model [94], and of a specific diffusion process on the
network [95].

Stochastic Block Models:

The stochastic block model (SBM) is a generative network process which creates a random
graph containing some known community structure [71]. Specifically, the model takes a
partition of the nodes into b communities, and a b-by-b matrix listing the number of edges
linking each community; edges are then placed randomly satisfying these constraints.
This model assumes that edges are placed randomly inside each community, which results
in nodes within the same community having very similar degrees. As many real-world
networks have highly varying degrees, the degree-corrected stochastic block model corrects
for this by specifying the degree sequence of each node as an additional parameter [96].

Once we have a generative process, Bayesian inference can be used to obtain the probability
that the network under study would be seen as a result of this process. By finding a
block model that maximises this probability, we obtain the community structure for the
network [97].

This method has the advantage that the nature of the inference process automatically
provides the significance of the community structure, e.g. as a p-value. On the other
hand, this method also suffers from a resolution limit, scaling as O(

√
N), as in the case

of modularity maximisation; nested models can reduce this limit to O(logN) [98].
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Infomap:

Infomap uses the equivalence between compression of data and finding repeated patterns
within that data (known as Minimum Description Length statistics [99]), where the data
to be compressed is here the dynamics of a random walker moving through the network.

Each node is assigned a label. The movement can then be described by specifying
the sequence of nodes visited by the walker. However, we expect that if the network
has strong communities, the random walker will spend most time within a community,
transitioning between communities infrequently. As such, using a second set of labels
to describe the communities, then reusing the node labels, will reduce the information
required to describe the movement, also known as the description length (e.g. rather
than node 1, node 147, node 80 we could say community 1, node 1, community 1, node 2,
community 1, node 3 etc.). It can be shown that Shannon’s source coding theorem [100]
gives the per-step description length as [101]:

L(M) = qxH(Q) +
m∑
i=1

pi H(Pi)

• L(M) is the per-step description length for the partition M.

• qx is the rate at which the index reference is used.

• H(Q) is the average length of the labels in the index reference, weighted by frequency.

• pi is the rate at which the i th community reference is used.

• H(Pi) is the average length of the labels in the i th community reference, weighted
by frequency.

Assigning communities to minimise this description length will reveal the natural com-
munity structure of the network. This method has the advantage that its resolution
limit depends on the total weight of edges between communities, rather than the weight
of all edges in the network [102]. This allows it to find smaller communities in larger
networks. The method is recursive, finding nested community structure in a single pass
of the algorithm [103].

The Infomap algorithm is used to generate the communities given in Chapter 4 and
Chapter 5.
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Validating Community Structure

The four example methods given in Section 2.4 highlight the diversity of approaches
taken towards community detection. In order to compare these diverse methods, we need
a way to validate the output partition; this requires metrics of community “goodness”.
We can distinguish between structural metrics, which measure the properties of the
communities as locally dense subgraphs, and performance metrics, which measure how
well the community structure agrees with benchmark data [82].

Structural Metrics

Structural metrics are based upon measures of internal connectivity within the community,
external connectivity from the community to the rest of the graph, or some combined
measure of the two. For a graph within N nodes, NS of which are in the community S,
example metrics are (see also [104]):

• Internal density: the fraction of possible edges within the community that actually
occur. ∑i∈S k

int
i (S) / NS(NS − 1)

• Cut ratio: the fraction of all possible edges leaving the community,∑i∈S k
ext
i (S) / N(N−

NS).

• Conductance: the ratio between the number of edges leaving the community, and
the number of edges within the community: φ(S) for a community S is given by∑
i∈S k

ext
i (S) / min

(∑
i∈S k

int
i (S),∑i∈S̄ k

int
i (S̄)

)
. Here S̄ is the set of nodes not in

community S. Lower conductance implies a more well-defined community, and can
be interpreted in terms of “surface-area-to-volume ratio”.

The modularity can also be used, as a measure of community non-randomness. As
expected, many of these measures are highly correlated.

Performance Metrics

Measuring how well a community detection algorithm can find known community structure
requires a reliable set of benchmark networks. These benchmark networks can either
be real-world networks with known community structure (although the level of trust in
metadata as a proxy for communities has been recently brought into question [86]), or
between artificially generated benchmark networks. The most widely used benchmark is
that of Lancichinetti, Fortunato and Radicchi (LFR) [105]. This will generate networks of
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an arbitrary size, and with an arbitrary number of communities. The degree distribution
and community size distribution obey power laws with distinct exponents, reflecting
commonly observed community structures, and with a mixing parameter µ which gives a
variable level of random network rewiring.

Performance metrics measure the similarity between a generated and an expected partition.
They can be split into three general classes (following [6]); those based on pair counting,
those based on cluster overlap, and those derived from information theory. Examples of
each are given below.

Rand index: For all pairs of vertices across the two partitions, we identify those
pairs classified as belonging to the same community, and those belonging to different
communities. Define the number of pairs assigned to the same community in both
partitions as A, the number assigned to the same community in one partition and
different communities in the other as B and C, and the number of pairs assigned to
different communities in both partitions as D. Then the Rand index between partitions
X and Y is defined as:

R(X ,Y) = A+D
A+ B + C +D

i.e. the fraction of pairs that are correctly classified.

Jaccard index: Using the same terminology, the Jaccard can be defined as:

J(X ,Y) = A
A+ B + C

i.e. the number of pairs classified into the same community in both partitions, divided
by the total number of pairs in which at least one partition groups them together.
The Jaccard can also be formulated more generally as the ratio of the intersection and
the union of two sets, where here the sets are of vertex pairs classified into the same
community in two different partitions.

J(X ,Y) = |X ∩ Y|
|X ∪ Y|
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Neither the Jaccard nor the Rand indices take the full range of values from 0 to 1,
however standard z-scoring can be used to assess the significance of the result.

Fraction of correctly detected vertices: A vertex is defined as correctly detected if
more than half the nodes in the generated community are assigned to the same expected
community, with the caveat that if two or more expected communities fit within the
generated community, all nodes within it are rejected as misclassified. The number of
correctly detected vertices divided by the total number of nodes then gives a similarity
measure.

Normalised Mutual Information (NMI): This is perhaps the most widely used sim-
ilarity measure, evaluating the amount of information shared between the two partitions
(derivation follows [23]). The Shannon Entropy, HA, for a partition X is defined as:

HA = −
mX∑
i=1

Ni

N
log Ni

N

Where mX is the number of communities in partition X , Ni is the number of nodes in
community i, and N is the total number of nodes. The mutual information is defined
in terms of a “confusion matrix”, where the element Nij gives the number of nodes in
community i of partition X that are also in community j of partition Y :

I(A,B) =
∑
i

∑
j

Nij

N
log

(
Nij N

Ni Nj

)

Finally, normalising by the total Shannon Entropy gives the normalised mutual informa-
tion IN between the two partitions X and Y :

IN(A,B) = 2I(A,B)
H(A) +H(B)

This gives a performance metric such that 0 ≤ IN ≤ 1, with 0 indicating zero agreement
and 1 perfect agreement between the two partitions.

In this work, we use a modified version of the Jaccard index for assessing performance,
and the conductance for assessing the structure of the communities.
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2.5 Previous work on protein structure networks

It is the complex pattern of bonding in the protein that determines its shape and function.
A network description seems a feasible route for exploring this pattern of bonding, and
has indeed become a popular avenue for investigating protein topology. Surveying the
literature is made more complicated by the popularity of protein interaction networks, in
which whole proteins are the nodes, linked if they interact either genetically or physically
in the cell. These have found extensive use in the mapping of the proteome [106–108].

Most investigation of protein structure networks has been done using Residue Interaction
Networks (also referred to as Amino Acid Networks or Protein Contact Networks), in which
the residues are the nodes, and distance thresholding is used to create edges [109–111].
These networks have been used to identify key residues within each protein, such as
for protein stability or allostery [12–14]. Web servers [112] and network visualisation
tools [113,114] have been developed to aid this analysis.

In terms of the application of community detection to protein structure, existing efforts
are surveyed below.

• Barahona et al. have demonstrated the mapping of communities to functional
domains for the case of myosin and adenylate kinase, using atomistic networks
generated using bonding calculations [115,116].

• Tasdighian et al. have compared the results obtained from traditionally k-means
spatial clustering with that obtained from community detection on a set of 11 protein
structures, and shown that the network model gives more promising results [117].

• Feldman has used spatial clustering methods to identify structural domains in
∼ 7000 protein chains, and shown that these domains broadly agree (∼ 80%) with
the SCOP and CATH databases [118].

• Hleap et al. have used correlation networks, in which residues are linked if they are
related by homology, to identify sub-domain level architecture within a set of 24
α-amylase proteins [119].

• Finally, Csermely et al. have developed a plugin for Cytoscape, a widely used
visualisation tool, to enable the automatic generation and visualisation of the
overlapping community structure resulting from a residue interaction network [120].

Existing efforts differ from the work presented here in key ways. No previous work
has systematically analysed the community structures of large sets of proteins, either
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as a method for generating candidate protein domains (Chapter 4) or as a tool for
investigating protein topology (Chapter 5).



Chapter 3

Codebase development

In order to explore community detection as a tool for protein structure analysis, we need
an automated way to convert solved protein structures into networks, run community
detection on the networks, and store, analyse, and visualise the results. This process
involves a large number of design choices and hyperparameters, which may greatly
influence the results. In this chapter we introduce the computational tools developed,
and explain the rationale behind their design.

3.1 Software architecture

The software was written in Python. This language has wide use in the bioinformatics and
network analysis communities, with a full-featured testing, packaging and documentation
system, and a language design that allows for quick exploratory coding. We can use
standard packaging tools for installation. This improves reproducibility and reduces the
initial effort needed for future users. Each section of the pipeline is an encapsulated
submodule, with error checking at all stages. For example, the network generation process
is encapsulated in a Network object, with rigorous input and output validation. This
allows users to have confidence in the results obtained. A suite of automated tests can be
run using pytest, and the regions of the code currently being tested can be checked using
coverage.py. Again, this use of industry-standard monitoring allows for confidence in
the results. The code is stored on GitHub, and the full test suite is run on every update
to the GitHub repository using TravisCI to monitor for new errors.

This Python package is connected to a secured MongoDB database storing the generated
networks and community structures, preventing redundant computational effort. If a
network with a given set of parameters is requested by the user, first the database is

29
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checked. If a matching network is found, it is retrieved. Otherwise, a new network is
generated and stored. In this way, a large dataset of structural data, network edge lists,
and community structures gradually accrues, without duplication of effort.

Care was taken to distinguish between the user and developer of the codebase - the
applications of the code given above, i.e. the code used to generate actual results, are
stored in a separate repository, and are generally written as Jupyter notebooks [121].
The full codebase is available at https://github.com/ProteinNetworks/.

ProteinNetworks
codebase

GitHub
MongoDB
Database Unit testing

with TravisCI

Local installation
with pip

Record
Validation

Network class

Partition class

Analysis functions

SuperNetwork class

Applications using Jupyter

Figure 3.1: Logic diagram for the codebase. Arrows indicate the direction of the flow
of data.

The three major components of the codebase are network generation (handled by the
Network class), community detection (handled by the Partition class), and output
storage/analysis. Network generation and community detection will be covered in this
chapter, whilst the analysis tools will be introduced as required in subsequent chapters.

3.2 Network generation

The central data store of protein structure is the Protein Data Bank (PDB), a publicly
accessible repository in which each solved structure is indexed by a four-character
reference. Each structure is stored as a .pdb file. This file format is rigorously defined,
with each row specified by a given descriptor, and every column given a specific role (see

https://github.com/ProteinNetworks/
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Figure 3.2). This allows for easy fetching and parsing of the data. In order to apply
community detection methods to the protein structure, we must first convert this list of
atomic positions into a network representation.

ATOM 13 CB GLN A 2 26.733 30.148 2.905 1.00 14.46 C
ATOM 14 CG GLN A 2 26.882 31.546 3.409 1.00 17.01 C
ATOM 15 CD GLN A 2 26.786 32.562 2.270 1.00 20.10 C
ATOM 16 OE1 GLN A 2 27.783 33.160 1.870 1.00 21.89 O
ATOM 17 NE2 GLN A 2 25.562 32.733 1.806 1.00 19.49 N
ATOM 18 N ILE A 3 26.849 29.656 6.217 1.00 5.87 N
ATOM 19 CA ILE A 3 26.235 30.058 7.497 1.00 5.07 C
ATOM 20 C ILE A 3 26.882 31.428 7.862 1.00 4.01 C
ATOM 21 O ILE A 3 27.906 31.711 7.264 1.00 4.61 O
ATOM 22 CB ILE A 3 26.344 29.050 8.645 1.00 6.55 C
ATOM 23 CG1 ILE A 3 27.810 28.748 8.999 1.00 4.72 C

Figure 3.2: Example rows from a PDB file - this is the protein with reference 1UBQ,
ubiquitin. Every row starts with a row identifier - here ATOM indicates that what
follows are the 3D co-ordinates of an atom in the structure. The atom’s serial number,
name, and element are specified, as well as the residue name and sequence number
to which the atom belongs. The set of five decimals indicates the [x,y,z] position, the
occupancy, and B-factor in order.

The network generation process implemented in this work involves reading the atomic
positions from the PDB. The atoms of the protein are then used as nodes in the network,
with an edge between nodes if the corresponding atoms are within a certain distance.
This process has the following key parameters (shown in grey on Figure 3.3 overleaf, and
described in detail in what follows).

• Treatment of hydrogen atoms.

• Distance threshold used.

• Weighted vs unweighted networks.

• Residue networks vs atomic networks.
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PDB File

Explicit
Hydrogens?

Run HAAD

Read Atomic Positions
into array

Choose cutoff radius

Find all pairs of atoms
closer than the given cutoff

Weighting?

Let all pairs be edges
with uniform weight

Let all pairs be edges
linearly weighted by proximity

Explicit
H-bonds?

Run STRIDE

Output as edge list

Residue
or atomic 
networks?

Add all calculated hydrogen
bonds as edges in the network

Let nodes be residues in the network.
Join residues if an edge exists between 

their atoms

No

Yes

Unweighted Weighted

Yes

No

Residue

Atomic

Figure 3.3: Logic diagram for the network generation process. The route chosen for
this work is shown in bold.
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Treatment of hydrogen atoms

The protein structures stored in the PDB have overwhelmingly been solved using X-
ray diffraction (>90%, with the remainder solved using NMR and cryo-EM). Due to
hydrogen’s low electron density, this method is unable to identify the positions of the
hydrogen atoms directly, and as such the raw PDB data contains no information on
hydrogen positions.

If the goal of the network generation process is to accurately represent the pattern of
bonding within the protein, this exclusion represents a challenge. The C-C covalent bond
length is ∼ 1.5Å, whilst the average hydrogen bond length (donor-acceptor distance) is
∼ 3Å. As such, any distance-threshold based approach faces a choice between excluding
hydrogen bonds (known to be key for proper protein folding) and introducing unphysical
next-nearest-neighbour covalent bonds. There are two possible approaches to rectify this.

1. Add hydrogens at their predicted positions. Whilst the hydrogen atoms are
not explicitly included, the amino acid sequence of a protein is known, and the
amino acid structure remains largely invariant. This means that, in principle, the
location of the hydrogen atoms can be predicted, from constraints on the valency
and bond lengths of the surrounding atoms. The program HAAD [122] can be
used to process the PDB file and predict the location of each hydrogen. This then
reduces the distance threshold required to capture hydrogen bonding.

2. Calculate the likely hydrogen bonds, and add these as edges. Hydrogen
bonds are highly directional, and tools exist to predict their occurrence. These
tools are integrated into most molecular viewers, but here the program STRIDE is
used [123]. This allows a low distance threshold to be used to capture the covalent
bonding within the chain, and edges representing the hydrogen bonds to be added
afterwards (see Figure 3.4 for an example of the bonds introduced by STRIDE).

Each of the above tools introduce external dependencies into the code, and vastly
increase the time required for network generation. The HAAD program in particular
will occasionally crash with a SIGSEGV error, making incorporation into the codebase
difficult. Both codes add hydrogen-based information by altering the PDB file in a
manner that makes systematic parsing more difficult. In addition, when comparing the
community structures of networks with and without hydrogen atoms, we see no gross
difference in the resulting communities found. This holds both for atomic networks and
for amino acid networks (see Figure 3.5). As such, we elected to ignore hydrogen atoms
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in the network generation process, instead choosing a distance threshold that would
incorporate the relevant information (see overleaf).

Figure 3.4: An example of the edges generated using STRIDE on ubiquitin (PDB
reference 1UBQ); regular covalent bonds, shown in green, are found using a cutoff
scaling of 2. Hydrogen bonds are calculated using the STRIDE program, shown in red.

0 500 1000 1500 2000

(a) Atomic network, no hydrogens
0 1000 2000 3000 4000

(b) Atomic network, HAAD-
generated hydrogens

0 50 100 150 200 250

(c) Amino acid network, no hydrogens
0 50 100 150 200 250

(d) Amino acid network, HAAD-
generated hydrogens

Figure 3.5: Comparison between the community structure generated before and
after hydrogen addition using HAAD [122], for atomic networks (top) and amino acid
networks (bottom), using the Infomap community detection algorithm [103], for the
protein with PDB reference 3P8T. The community structure is plotted as a linear
sequence, with distinct colours corresponding to distinct communities. We see that
overall the community structure does not significantly alter as a result of the hydrogen
addition.
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Distance threshold used

Edges are generated between nodes if the corresponding atoms are within a certain
distance. Clearly this distance is a key factor in the connectivity of the resulting network.
When the distance chosen is less than the maximum covalent bond length, the graph will
no longer be connected and community detection will fail. At the opposite extreme, a fully
connected ((N-1)-regular) graph will also fail to give relevant communities. The distance
threshold giving the best communities is unknown; however, previous literature [110,112]
has suggested a cutoff distance of between 8Å and 5Å for networks of amino acids. Whilst
the most simple choice is an absolute cutoff, this fails to take account of the variable
atom size. As such, the distance threshold between atoms i and j is defined as:

cij = s
(
ri + rj

)

Where ri is the covalent radius of atom i (as defined in [124]), and s is a scaling. It is
this scaling that will be varied as a free parameter in the codebase, with s = 4 being
used in Chapter 4 and Chapter 5.

(a) s = 2 (b) s = 3 (c) s = 6

Figure 3.6: Examples of high and low scaling parameters, for protein 3P8T. Networks
are plotted using the SFDP spring-layout algorithm [125], as part of the graph-tool
package [126]. These plots demonstrate that strong dependence of the scaling on the
graph properties.

Weighted vs unweighted

Networks can be weighted or unweighted (see Section 2.3), and the choice will impact
the community detection algorithm used, as many cannot handle weighted networks.
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Unweighted networks are more space-efficient, and algorithms generally run more quickly.
However, by weighting the network we can encode more information about the nature of
the bonds. As bond energy and bond length negatively correlate [127], we choose the
following linear weighting:

Aij =


cij−|dij |

cij
∀ dij ≤ cij

0 otherwise

where Aij is the weight of the generated edge, and |dij| is the absolute distance between
atoms i and j. cij is the cutoff distance as defined previously. This linear weighting
scheme should induce community detection algorithms to preferentially break weaker
bonds over stronger bonds.

Amino acid networks vs atomic networks

Amino acid networks have been used previously in the literature to investigate the
structure of proteins [110,112]. For an amino acid network, the edges are generated if
two residues are within a certain distance. This distance measure can be based upon the
inter-Cα distance, or on the number of pairs of atoms within a certain proximity. Here
the latter is used.

However, these networks will inevitably carry less information on the protein’s true
bonding (for example, due to side-chain movement), than an atomic network. If the
amino acid network can capture all the relevant features of the protein, then it should be
used, as this resulting network will be significantly smaller. These will result in quicker
analysis, and a faster development time.

As shown overleaf, we see no structural distinction between amino acid networks and
atomic networks, and as such amino acid networks are used throughout this work.

Performing this analysis on a protein with multiple chains often results in a network with
distinct connected components, corresponding to each chain. As such, for this analysis
the proteins are first split by chain. This helps ensure that any results are fixed at the
sub-quaternary level.
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Testing the network parameters

The effect of the input parameters chosen on the network generated can be investigated
directly by plotting the network’s properties as a function of the input parameters, for a
selection of test proteins:

PDB Reference PFAM ID SCOP ID Protein Size / Atoms

1FL3 PF07686.13 b.1.1.2 6364

3RPI PF07686.13 b.1.1.0 6476

2GHW PF07686.13 d.318.1.1 6614

3RJ3 PF00084.16 a.102.4.4 9840

3MYM None a.1.1.2 2586

1R76 PF09492 a.102.5.1 2963

(a) 1FL3 (b) 3RPI (c) 2GHW

(d) 3RJ3 (e) 3MYM (f) 1R76

Figure 3.7: The test proteins used in investigating the properties of the generated
networks, indexed by PDB accession code and colored by chain.

These proteins are chosen to exhibit a range of sequences, structures and sizes. The
aim is to generate community structures that are as informative as possible about the
protein’s underlying structure. As such, the network properties of structurally distinct
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proteins should be as distinct as possible. Two network measures are explored; closeness
centrality, and the clustering coefficient.

Closeness Centrality:

The closeness centrality is a measure of how central a node is within a network, as the
average of the shortest path lengths between a node and all others, normalised by the
graph size. Figure 3.8 gives the distribution of the closeness centrality for each test
protein, for several choices of scaling parameter s.

It can be seen that the distributions for the amino acid and atomic networks agree,
giving confidence in the use of amino acid networks in further analysis. However, the
distributions of closeness centrality do not discriminate between SCOP families, but
rather between proteins of different size.
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(b) Amino Acid networks

Figure 3.8: The distribution of closeness centralities for 6 test proteins, for different
values of the distance threshold. Each coloured shape can be considered as a “vertical
histogram”, showing the frequency density of the closeness centrality for a given protein
and cutoff. Several conclusions can be drawn. Firstly, that the closeness centralities of
the amino acid and atomic networks are almost indistinguishable. Secondly, increasing
the cutoff radius alters the distributions only by an overall scaling. Thirdly, the SCOP
membership (i.e. structural similarity) seems to have no bearing on the distribution.
Proteins 3RPI (dark blue) and 1FL3 (purple) share a SCOP family, and proteins 3RJ3
(green) and 1R76 (light blue) share a SCOP superfamily, yet neither show similar
distributions. Rather, there seems to be a strong agreement between the protein’s size
and the breadth of its distribution.

Clustering Coefficient:

The clustering coefficient, as defined in Section 2.3, gives the proportion of a node’s
neighbours that are connected. The distributions of the clustering coefficient are given
in Figure 3.9.



Codebase development 40

4.0 5.0 6.0 7.0 8.0 9.0
cutoff

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cl
us

te
rin

g

protein
3rpi
3rj3
3mym
1fl3
2ghw
1r76

(a) Atomic networks

4.0 5.0 6.0 7.0 8.0 9.0
cutoff

0.2

0.4

0.6

0.8

1.0

cl
us

te
rin

g

protein
3rpi
3rj3
3mym
1fl3
2ghw
1r76

(b) Amino acid networks

Figure 3.9: The distribution of clustering coefficient for 6 test proteins, for different
values of the distance threshold. As in Figure 3.8, the amino acid and atomic networks
show excellent agreement, and the proteins’ structural similarities are not reflected
in the network plots. Unlike Figure 3.8, the broadness of the clustering distributions
remains roughly constant with distance threshold, for values of the threshold used here.

As in Figure 3.8, the amino acid and atomic networks show strong agreement, and
fail to discriminate between proteins with distinct topologies. These figures show that
the traditionally measured properties of the networks cannot discriminate between
structurally distinct and structurally similar proteins.

Network Size:

We can also investigate the network size, i.e. the number of edges, as a function of the
scaling parameter (Figure 3.10). As before, this appears to scale with the number of
nodes in the network, as opposed to the structural class.
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Figure 3.10: Variation of network size with cutoff radius for atomic networks.

Further traditional network properties are given in Appendix A.3.

Performance

A network generator was implemented in Python with the options given above (except
the treatment of hydrogen atoms). The all-to-all comparison gives the algorithm an N2

scaling, which makes the Python code too slow for analysis of the full PDB. As such, a
Rust version of the code was implemented. This resulted in a code an order of magnitude
faster (Figure 3.11).



Codebase development 42

103 104

Size of Protein (atoms)
10 2

10 1

100

101

102

Ti
m

e 
(s

)
Python
Rust

Figure 3.11: The run time of Rust code vs Python code. Both show N2 scaling, but
the Rust version lacks the fixed overhead of an interpreted language such as Python,
so this scaling continues to extremely low times.

3.3 Community detection

Due to the wide variety of community detection algorithms in the public domain (see
Section 2.3), no additional methods were implemented for this work. Most software
for community detection takes the form of a compiled executable. This can then be
integrated into the rest of the code. Development effort was focussed on ensuring a
common interface for the outputs of different community detection methods.

Given a candidate community detection method, we can check the output either by
examining the community structure on the network, on the sequence, or plotted directly
onto the protein structure using Pymol [128]. Pymol is a 3D molecular visualisation tool
written in Python. Pymol has powerful and flexible scripting for modifying or colouring
structures, and reads a wide array of file formats, including PDB files.

All three visualisation methods have been implemented and integrated into the Python
package (see Figure 3.12 for an example of direct network visualisation).

In choosing a community detection algorithm, we require a method that does not require
the length scale or number of communities to be specified beforehand; we also require a
method that is fast enough to allow for all 130 000 proteins in the PDB to be analysed in
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(a) Direct network labelling (b) Protein labelling
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1pkn

Atomic Number

(c) Sequence labelling

Figure 3.12: All three visualization methods exemplified on the 1PKN protein
structure, on an atomic network with scaling parameter s = 3 (a) Communities
visualized on the network. (b) Communities visualized on the protein structure. (c)
Communitites at three levels mapped onto the linear amino-acid sequence.

a reasonable timeframe. We need the method to detect hierarchical community structure,
in order to investigate the multi-scale structure of the protein, and a method with a
resolution limit that will not impede the discovery of domain-level structure.

Three different community detection algorithms were selected as suitable, and investigated:
the AFG algorithm, Stochastical Block Models (SBM), and Infomap. A hier-
archical SBM has been implemented as part of the open-source graph-tool package [126],
and the Infomap algorithm has been open-sourced as a standalone executable under the
GPLv3 license [103] (the relevant theory for both methods is covered in Section 2.4). The
AFG algorithm, named after Arenas, Fernández and Gómez [129], has been implemented
in previous MPhil work [23]. The AFG algorithm gave qualitatively correct results on
test proteins (see Appendix A.2), but proved computationally unfeasible, requiring weeks
or months of CPU time to analyse a single protein. The choice was therefore between
SBM and Infomap. SBM and Infomap are fundamentally distinct community detection
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methods, addressing different problems and finding communities according to different
definitions.

(a) 1UL3 (b) 1RFY

(c) 1VYR (d) 2AQ6

Figure 3.13: Comparison between the hierarchical partitions generated using SBM
(right) and Infomap (left), on the same protein networks, corresponding to the 4-digit
PDB references given. The partitions are displayed with the most coarse-grained
community structure on the top, with increasingly fine community below. When one
method has generated more levels of community structure, grey sequences are displayed
for the other. Broad agreement is demonstrated in the community structures of these
four protein examples.

Hierarchical SBM is tightly embedded within the graph-tool package - the method works
on graph-tool’s own Graph data structures, and outputs a BlockState data structure. The
graph-tool package itself is a highly optimised Python wrapper on C++ code which must
be compiled. As it is based on Bayesian statistics, the output of the SBM process includes
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posterior probabilities of the community membership and the number of communities in
total, but the method does not span the full protein structure (there are regions of the
protein that will be unclassified).

Infomap exists as a stand-alone executable that could be easily embedded, with wider
use in the literature, and generates a partition covering the full protein structure (which
will be key in Chapter 5). Infomap has only one tunable parameter, which is the number
of repetitions of the optimisation to carry out before choosing the best result.

Although Infomap and SBM broadly agreed when tested on 4 example proteins (Fig-
ure 3.13), Infomap was chosen for integration into the analysis pipeline, due to the ease
of its implementation, and strict hierarchical structure. Infomap’s repetition parameter,
N , was set to 1000, as this was the value at which the conductance (see Section 2.4) of
the resulting communities converged (see Figure 3.15). Infomap has the disadvantage
that it is prone to overpartitioning networks with geometric constraints, including spatial
networks such as those generated in this work [130]. However, in this work, on networks
generated with a scaling parameter of s = 4, this tendency is not pronounced (see
Figure 3.14).

(a) Generated (b) Expected

Figure 3.14: The generated community structure (a) using a residue network with
scaling parameter s = 4 compared with the known SCOP domains (b) for a pyruvate
kinase with PDB code 1PKN. One colour signifies one domain/community. Here we
see that one of the communities matches well to the existing SCOP domain (both
shown in red). This figure is taken from [131].
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Figure 3.15: The variation of conductance with infomap repetitions for five test
proteins.



Chapter 4

Communities as conserved modules

Using the methodology developed in Chapter 3, we are now in the position to systemati-
cally fragment large sets of protein structures into substructures corresponding to the
communities found on their networks. We expect these substructures to be compact,
and highly intra-connected, therefore plausibly defining protein domains. One feature of
domains is that they are conserved across different protein families. The extent to which
the fragments found using this method are conserved, and how this process may inform
the definition of novel candidate domains, will be the focus of this chapter.

We will first compare the derived communities with existing protein classification schemes
based on sequence (Pfam) and structure (SCOP), as well as to previous work on protein
structure networks. The method used here differs highly from existing approaches [119]
each protein is processed individually, with no reference to previously found fragments,
and without taking account of sequence similarity or evolutionary ties. Both the case
where there is high overlap with existing methods, and the case where there is low overlap,
are therefore interesting. Subsequently, we will present ways of analysing the derived
communities in their own right.

4.1 Defining the modified Jaccard index

In order to make a comparison between Pfam or SCOP and our generated commu-
nity structure, we first need to devise a similarity metric. The simplest method for
comparing two protein structure annotations is to map both the community structure
and the existing annotation onto the protein’s sequence. The problem then becomes a
straightforward comparison between two vectors of the same length. However, traditional
performance metrics for comparing expected and generated community structure such as

47
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the Normalised Mutual Information (see Section 2.4) are unsuitable for this task; the
predicted structure (for instance the Pfam domain structure) occupies only a subset of
the protein sequence, whilst the generated community structure assigns every residue to a
community, thus tiling the structure completely. Additional assigned amino acids outside
the region spanned by the conventionally predicted structure should not be penalised.

We therefore use a modified version of the Jaccard index for a comparison to the expected
domain structure of each protein (the following analysis adapted from [131]). The Jaccard
index is defined as the intersection between two sets, divided by their union, where in
this case the sets correspond to regions of the protein sequence.

The index is modified as follows:

For each “expected” domain:

• Calculate the Jaccard index for all generated communities that overlap with the
expected domain, J = A∩B

A∪B , where A ∩B is the size of the overlap and A ∪B the
total length of sequence spanned by either the expected domain or the generated
community.

• Perform an average of all the calculated Jaccard indices, weighted by the proportion
of the total expected domain spanned by each module.

This gives a score for each domain in the protein, indicating how well it is reflected in
the community structure. On simulated test data, this Jaccard performs sensibly (see
Figure 4.1), giving high scores to close matches and low scores to poor matches. Note
that like the original Jaccard, this score does not take values in the full range [0, 1] (see
Section 2.4).

In order to calculate the significance of a given modified Jaccard, we use the z-score.
This is defined as:

z = J̃ − µ
σ

where J̃ is the modified Jaccard index between the expected and generated partitions.
µ and σ are the average and standard deviation of the modified Jaccard between the
expected partition and a set of null models. µ therefore indicates the modified Jaccard
expected by chance. A z-score of 2 indicates that the modified Jaccard between the
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Figure 4.1: The performance of the modified Jaccard index on test data, with the
expected domains above and example community structures below. Each expected
domain is assigned a modified Jaccard, J̃ . The score for the protein is then the average
over all expected domains. We see a perfect score on perfect matching, with lower-
quality matches scoring lower values. Note that the lower right figure, representing
roughly the poorest imaginable case, still achieves a modified Jaccard of 0.2. This
figure is taken from [131].

generated and expected partitions is 2 standard deviations higher than the expected
value, and therefore corresponds to a p-value of ∼ 0.02 (assuming a normal distribution).

The null models used here are randomly generated, such that some key properties of the
generated community structure are retained. In this work the null models are created by
constraining the number of boundaries (changes from one community to another along
the sequence), and the total number of communities. Boundaries and community labels
are then placed randomly to obey these constraints. Figure 4.2 shows the community
structure to be tested above, with 6 generated null models below. These models succeed
in capturing the rough features of the generated structure, whilst preserving randomness.
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(a) 1CKI (b) 1H3Q (c) 3LMZ (d) 2QTI

Figure 4.2: Randomly generated null models, such that the number of boundaries
between communities, and the total number of communities, is preserved. The generated
structure to be tested is shown above, with six null models shown below. These null
models succeed in capturing the properties of the test structure, ensuring that the
comparison between null model and test is fair. This figure is taken from [131].

4.2 Collating existing annotation schemes

In addition to a similarity metric, we also need to generate a dataset of existing annotation
schemes, with the region of the PDB file that they correspond to. In order to create this
resource, we use the PDBe REST API [132]. For a given PDB reference, this API allows
you to request information on the regions of structure annotated by CATH, SCOP, Pfam,
and others. By systematically querying this web resource and storing the information on
each PDB studied, we incrementally generate a local dataset which can then be parsed
and searched systematically.

4.3 Comparing communities to Pfam annotation

Plotting the Infomap-generated community structure and comparing to Pfam domains
shows reasonable agreement for initial test proteins (see Figure 4.3).
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Figure 4.3: Comparison between Pfam domains and Infomap results for three test
proteins, using a scaling factor of 4.5 on amino acid networks. All proteins show
reasonable agreement between the Pfam domains and a level of the Infomap community
structure, though note that the level giving the best match varies between proteins.
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Extending this comparison to a larger set of ∼ 1000 proteins, Figure 4.4 shows that there
is indeed a significant agreement in general between the Pfam domains and the generated
community structure. We see a bimodal frequency density, with a reduced frequency
density near z=0. The reason for this could not be established - no large-scale differences
between the community or Pfam structures corresponding to z-scores near either modal
value could be seen.

The agreement between Pfam domains and generated community structure is striking, as
the communities found are based purely on the protein’s structure (through its network
representation), whilst the Pfam domains are based purely on sequence homology.

However, we expect discrepancies when the sequence domains correspond to more
spatially extended regions of the structure, which are not well intra-connected. This
can be measured by mapping the region of the protein corresponding to the Pfam
domain onto the network, and calculating the conductance of that region. The lower the
conductance, the more well-isolated an area of network the Pfam domain corresponds to
(see Section 2.4). As such, we expect the Jaccard, which reports on the match between
the Pfam domain and the generated community structure, and the conductance, to
negatively correlate. Figure 4.5 shows this is indeed the case.
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Figure 4.4: Histogram showing the distribution of z-scores, giving the significance of
the match between the Pfam sequence domains and the community structure generated
using Infomap. This figure is taken from [131].
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Figure 4.5: The conductance of the Pfam domain, when mapped onto the network,
against the modified Jaccard (indicating how well it corresponds to the community
structure). The conductance is 0 for perfectly-isolated communities, and 1 for commu-
nities fully connected to the rest of the network, so we expect a negative correlation
between Jaccard and conductance; this is seen for the proteins studied here. This
figure is taken from [131].
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4.4 Comparing communities to SCOP annotation

As the communities are created from purely structural information, a natural comparison
is between the generated communities and the structure-based SCOP annotation set. In
order to perform this comparison, we use a test set of proteins known to share a similar
SCOP domain (superfamily c.1.8), but with distinct structure elsewhere.

The c.1.8 SCOP reference represents a superfamily of transferases - we expect these to
share a catalytic core to carry out their function, but with distinct auxiliary domains
(see Figure 4.6 and Figure 4.7).

Figure 4.6: Three members of the c.1.8 superfamily (PDB references 1TA3, 1WKY,
3BMV), aligned on their common SCOP domain. We see a common “β-barrel” structure,
and similar arrangement of the helices within the aligned region. Outside the SCOP
domain, the structures differ highly. The aligned regions have RMSD 8.286Å(between
1TA3 and 1WKY)and 5.743 Å(between 1TA3 and 3BMV).

The proteins are converted into networks of amino acids with scaling parameter s = 4,
then community detection is performed with Infomap and the resulting communities are
mapped onto the protein structure. We use the GLOSIM structural similarity algorithm
(see Section 2.2) to compare the generated protein fragments to one another.
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(a) 1TA3 (b) 1WKY (c) 3BMV

Figure 4.7: The same three members of the c.1.8 superfamily as in Figure 4.6, here
showing how the SCOP domain relates to the full protein structure.

The GLOSIM similarity algorithm has been successfully used on crystal structures and
small organic molecules, but has never been scaled to protein-sized structures. The
GLOSIM algorithm uses the SOAP descriptor for each atom in the target structure,
which specifies the atom’s local environment. The SOAP descriptors are then matched
between pairs of atoms in the two structures to be compared, to generate an overall
similarity metric. The SOAP descriptors have two key parameters:

• The cutoff radius, R. This determines which atoms are considered to be part of a
target atom’s local environment. A larger cutoff radius will include more information,
but has greater computational expense.

• The smoothing parameter, σ. For a target atom, we take all nearby atoms and
replace them with Gaussians of width σ2. This parameter therefore determines the
sensitivity to small fluctuations. A smaller σ parameter requires a longer descriptor,
as more spherical harmonic functions are needed to account for the variation in the
density. As a result, decreasing σ will also increase computational complexity.

In the remainder of the chapter, we apply the GLOSIM algorithm to the alpha-carbons
of each protein, and use R = 15Å and σ = 1.5Å (roughly the length of a carbon-carbon
bond).

In order to find sets of fragments which are all structurally similar to each other, we use
hierarchical clustering on the matrix of similarity scores (see Figure 4.9). Hierarchical
clustering is an iterative process in which all protein fragments start in their own cluster,
and clusters are merged according to their similarity. This results in a tree structure,
or dendrogram, of cluster membership, which can be cut at any level to choose a set
of clusters. We choose the clustering level based on the silhouette score [133], which
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Figure 4.8: The silhouette score against dendrogram level for the 40 proteins in the
c.1.8 test set. We see a clear ‘elbow’ point at a cutoff of 0.15 - this is the level at which
we cut the dendrogram, giving the clusters shown in Figure 4.9.

maximises the difference between the intra-cluster variability and the inter-cluster distance
(as shown in Figure 4.8). We choose this level by selecting the “elbow” point where
the gradient sharply decreases. This method has been shown to be successful when
combined with hierarchical clustering as a way to estimate the number of clusters in a
data set [134]. Once this level is chosen (here 0.15 of the maximum dendrogram distance),
we can extract the sets of similar protein fragments and compare to the known SCOP
domains.

Figure 4.9 shows the seven sets of fragments at this dendrogram level, that are conserved
at this across the SCOP superfamily.

We can investigate the statistics of these sets by plotting a histogram of module sizes
for each cluster (Figure 4.10). Domains traditionally consist of 40-350 amino acids [24] -
with the exception of clusters two and three, the fragments found here are within this
range.

We can check the extent to which the modules are structurally similar by plotting a
histogram of the root-mean-square distance (RSMD) between the aligned fragments
within a cluster, and compare this to the RMSD of the chains that these fragments are
taken from. In both cases, the alignment is performed using Pymol [128]. As shown in
Figure 4.11, for each cluster we see a significant reduction in RSMD relative to the set of
full protein chains.
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Figure 4.9: The clustered matrix of GLOSIM similarity scores for the protein
fragments generated from a set of 40 proteins, all known to share a similar SCOP
domain but with distinct structure outside this region. A lighter colour indicates a
stronger similarity - we see there are clusters of fragments that are indeed highly similar
to each other.

By structurally aligning the fragments corresponding to a given cluster, we can obtain a
sense for how structurally similar the fragments are, and how they compare to the original
c.1.8 domain. Here we look at cluster five (Figure 4.12). We see that the fragments
in this cluster are extremely similar to each other. However, when we compare these
generated fragments to the SCOP domain (Figure 4.13), we see that they correspond to
a separate region of the protein structure.

When we use our modified Jaccard index to compare these clusters to the SCOP, Pfam
and CATH annotations to each structure, we see that none of these sets of conserved
fragments individually match existing annotations, as shown in Figure 4.14.
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Figure 4.10: A violin plot showing the distribution of fragment sizes, measured in
amino acids, for each of the seven clusters found. A domain is traditionally of size
40-350 amino acids [24] - the modules found here are broadly within this range.
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Figure 4.11: A violin plot showing the distribution of RSMD values for each pair of
fragments in a cluster, for 6 of the 7 clusters (cluster 0 not shown). The left side of the
distribution (blue) is the RSMD for the fragments, when aligned using Pymol. The
right side of the distribution is the RSMD for the full protein chains. In all cases we
see a reduction in the RSMD as a result of the fragmentation process.
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(a) 1xcl (b) 1jae (c) 1kxv

(d) Overlay

Figure 4.12: Three fragments from the sixth cluster in Figure 4.9. Each proteins’
structure is shown in blue, with the subregion isolated with community detection shown
in white (1cxl), red (1jae) and green (1kxv). Below, we show these three subregions
aligned, with an RMSD of 4.8 and 5.1Å.
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Figure 4.13: The Infomap module and SCOP domains for the proteins 1CXL, 1JAE,
and 1KXV as in Figure 4.12. The proteins are aligned on their Infomap modules. The
Infomap module is given in red, the SCOP domain is blue, the region where they
overlap in purple, and unannotated regions in gray. The Infomap module overlaps with
the SCOP domain, but also includes a region unclassified by SCOP.
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Figure 4.14: The mean modified Jaccard between the region of sequence corresponding
to the generated fragment, and existing protein annotations (Pfam, CATH and SCOP),
averaged over each community in the cluster of similar fragments, for the six clusters
found in Figure 4.9. Only the Jaccard scores for the top three most similar annotations
are displayed.

4.5 Communities as novel candidate domains

To explore the discrepancies between our modules and the structure-based SCOP domains,
and attempt to find novel candidate domains which do not correspond to existing SCOP
annotation, we extend our analysis to a larger subset of the PDB.

The ASTRAL compendium [135, 136] is a companion to SCOP which, in addition to
other functionality, provides representative subsets of the PDB which span the set of
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classified protein structures. Using this, we obtain a subset of the PDB in which the
sequence similarity is less than 90 percent. This corresponds to 27330 proteins.

We then filter this dataset to a high-quality and high-resolution subset, using the
AEROSPACI score (also a part of ASTRAL). The AEROSPACI score takes account
the quality of the structural data used to generate PDB models; the resolution of the
structure, the R-factor describing the model’s fit to the experimentally determined
electron density map, and the stereochemistry of the model. By selecting only those
proteins with a score greater than 0.5, we limit ourselves to 4064 proteins.

Unfortunately, this process naturally biases our dataset towards proteins with fewer
numbers of atoms, where we don’t expect our method to generate sensible results. As
such, we further filter for proteins known to have multiple domains in SCOP - a total of
422 single-chain proteins. This dataset is highly structurally diverse, with 433 unique
SCOP classes represented in the dataset, 223 of these occurring only once.

When converted to networks with scaling parameter s = 4, and fragmented using Infomap,
this results in 1573 fragments.

These can then be compared for similarity in an all-to-all fashion using GLOSIM, as
previously, and the resulting score matrix clustered to identify sets of structurally similar
fragments, as shown in Figure 4.15.

The dendrogram can be cut at any arbitrary point, and each will result in a different
set of clusters. To obtain the optimal clustering level, as before, we plot the silhouette
score [133] against the level of the dendrogram chosen, and choose the ‘elbow’ point.

Choosing this point gives the dendrogram seen in Figure 4.17, resulting in 11 clusters of
protein fragments, numbered 0 to 10.

We can investigate the properties of this set by comparison to existing classification
schemes, as well as by aligning the fragments and visually inspecting. Plotting histograms
of the module sizes (Figure 4.18) as before shows that the clustering process groups
fragments into sets of broadly similar sizes - fragments within the same cluster tend to be
within 25 residues of each other. We also see that the fragments are, with the exception
of clusters 0 and 10, the correct size to be considered as domains.

The Infomap-based community detection method does not reliably generate fragments
with the desired properties on this extremely diverse dataset. We see that the generated
fragments often don’t correspond to compact, globular regions of the protein structure
(Figure 4.20). We also find overpartitioning, i.e. that the protein’s fragments are on
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Figure 4.15: The matrix of similarity scores between the fragments found using
Infomap on a test-set of 422 high-resolution protein chains, hierarchically clustered
using the scikit-learn library [137]. The bracket indicates cluster membership, labelled
by number (cluster 0 not included). A lighter shade indicates more similar fragments.

Figure 4.16: The silhouette score of the clusters against the level of the dendrogram
chosen for the clustering. We see an ‘elbow’ at roughly 0.175.
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Figure 4.17: The clustering dendrogram, cut at a threshold of 0.175 of the maximum
distance. Clusters are shown in distinct colours - a total of 11 are seen here.

a length scale too small to be useful. In addition to these issues with the community
detection process, the GLOSIM structural similarity scoring appears to give surprisingly
high scores to intuitively mismatching fragments (such as in Figure 4.21, where all-beta
and all-alpha fragments are grouped). Example fragments for the full set of protein
clusters are given in Appendix A.4.
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Figure 4.18: Violin plots showing the distribution of the fragment sizes, in number
of residues/amino acids, for each of the 11 clusters found. We see that the fragments
within each cluster have broadly similar sizes, and we also see, with the exception
of clusters 0 and 10, that the fragments are approximately the right size (typically
domains tend to range from 40-350 amino acids in size).
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(a) 1pj5 (b) 1rwh (c) 2c42

Figure 4.19: Selected protein fragments from the multi-domain test set, in cluster 0,
demonstrating underpartitioning.

(a) 1ojn (b) 1w4x (c) 1qba

Figure 4.20: Selected protein fragments from the multi-domain test set, in cluster 1.
We see correctly sized fragments, but the fragments are not continguous regions of the
protein’s structure.

In agreement with manual inspection of the fragments, the overlap between the fragments
generated and the known SCOP, CATH and Pfam annotations using the modified Jaccard
is extremely low (see Figure 4.22).

Overall, we see that the communities generated behave as expected when compared
to the Pfam sequence domains, and generate promising results on the c.1.8 SCOP
superfamily test set, correctly identifying structurally similar subregions. The method
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(a) 1kcz (b) 1gpe (c) 2gf3

Figure 4.21: Selected protein fragments from the multi-domain test set, in cluster 2,
demonstrating overpartitioning, and showing that dissimilar fragments may still give
high GLOSIM scores (notice 2gf3 is an all-beta fragment whilsts 1gpe is all-alpha).

Figure 4.22: The overlap between the areas of sequence corresponding to the generated
fragments, and the existing annotations (SCOP, CATH, and Pfam), as given by the
modified Jaccard score. As before, only the scores for the top three most similar
annotations of each type are given.
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breaks down on the extremely structurally diverse dataset - however, this is equally likely
to be a failure of the hierarchical clustering method as the community detection process,
as the number of unique SCOP domains in the dataset suggest that there will be few
structurally repeated subregions in the dataset.

4.6 Comparison to existing methods

Following the assessment of the Infomap-based method in its own right, here we compare
its performance to previous work, based on correlation networks [119]. This method
uses a set of homologous proteins to calculate the correlation between the amino acid
positions in the set - this results in a single network, with the correlation defining the
edge weights. A drawback of the correlation-based approach is that a set of homologous
proteins is needed; our method has the advantage that it can be performed on single
proteins, meaning that the partition spans the full protein structure, making the approach
scalable to larger datasets.

However, even when the two methods are directly compared, the Infomap-based approach
yields partitions with a closer resemblance to the SCOP annotations. Figure 4.23 compares
these results qualitatively on a single reference protein, to SCOP annotations and to
the results obtained using our protocol. We see that the correlation-based approach
leaves large sections of the protein unannotated - in addition, the method fails to discover
auxiliary variable regions. Figure 4.24 compares the results over the full set of proteins
described in [119], using the z-score. We see a more significant correspondence for both
Pfam and SCOP using the Infomap-based approach.‘’
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(a) Modularity + Cor-
relation

(b) Infomap (c) SCOP

(d) Sequence Labelling

Figure 4.23: A comparison of annotations of the protein 1BF2. (a) The decomposition
generated in previous work using a modularity-based method, combined with residue
correlation analysis [119]. Grey regions correspond to un-annotated regions of the
structure. (b) The decomposition using Infomap presented in this chapter. (c) The
domains listed in the SCOP structural domain database. (d) The same comparison,
along with the Pfam annotations, presented as labellings of the protein sequence.
Again, dark blue represents unannotated regions of the sequence. This figure is adapted
from [131].

4.7 Community structure at a sub-domain length scale

Given the relative success of partitioning protein structure at the level of domains, here
we explore possible uses for communities at smaller length scales. We have previously
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Figure 4.24: A comparison of the z-scores for a set of twenty reference proteins,
giving the significance of the overlap between SCOP (above) and Pfam (below) for the
modularity+correlation method [119] and the proposed Infomap-based method. We
see that in both cases the Infomap-based method has a more significant similarity to
existing annotations. This figure is taken from [131].

applied community structure at this smaller scale to identify parsimonious descriptions
of inorganic crystal structures [138], using the AFG method (see Section 2.4).

One aspect of protein structure that makes modelling difficult is the extremely large
configuration space occupied by the protein. This space can be reduced by using a
description in terms of the relative orientation of protein fragments. The extent to which
this compression occurs can be quantified by calculating the effective degrees of freedom
(DoF) of the protein.

The maximum number of degrees of freedom of an N -atom structure, Imax, is 3N − 6.
This corresponds to each atom moving freely in three dimensions, with global rotation and
translation constrained. However, we can reduce the effective DoF by using a modular
structure, in which the protein can be specified by the relative position and orientation of
its modules, plus the positioning of each atom within each type of module. A reduction
occurs whenever there are repeated modules.
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If a structure is divided into M modules, of which M1 have a single atom and M2 two
atoms, the total DoF in the position and rotation of the modules is 6M − 6−M2 − 3M1,
as each module with more than three atoms has 6 DoF. Each module with two atoms has
5 DoF (3 positional, 2 rotational) and each module with one atom has 3 DoF (positional
only).

The DoF required to describe each module’s internal structure is 3Ni − 6, where Ni

is the number of inequivalent atoms in module i, if the module has more than three
atoms. Two-atom modules have one internal DoF, the absolute distance between the two
atoms. One-atom modules have zero internal DoF. The total DoF required to describe
the system, in terms of its modules, is then the sum of the positional/rotational DoF of
the modules and the internal DoF of each unique module:

I = 6M −M2 − 3M1 − 6 +
M

′∑
i=1

(
3Ni − 6 + 3δ1,Ni

+ δ2,Ni

)

where M ′ is the number of unique modular structures. We can establish which modules
are unique by generating a SMILES string [139] using OpenBabel. This encodes the
chemical structure as a unique text string. We assume that two modules are copies if
they share a SMILES string.

Normalising this by Imax gives a result ∈ [0, 1] giving the compression achieved by using
a modular description. Since compression of information occurs when modules repeat, we
expect a description in terms of amino acid residues to result in high compression; other
regions of high compression may reveal relevant structural motifs within the protein.

Calculating the decomposition obtained when using amino acids results in a normalised
DoF (IN) of ∼ 0.3. This may suggest possible information-theoretic grounds for the
twenty-amino-acid alphabet used in protein structure.

For a test set of proteins, we can plot the compression achieved for a given partition
against the average community size in that partition. We see that IN is most often
1 (atomic networks). This is due to the lack of repeated communities within a single
protein. However, a clear reduction in IN is seen when the communities are roughly the
same size as amino acids. This also suggests that the most compact description of a
protein is found by using amino acids as the building blocks.
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Figure 4.25: The normalised degrees of freedom IN for a protein using a modular
description, against the average module size for that modular description. The average
size of an amino acid in atoms is shown as a blue line. A clear dip in IN is seen as the
module size becomes comparable to the amino acid size.

The same compression can be calculated across sets of proteins. As the number of
proteins compressed increases, we expect the number of repeated modules to increase,
and with it the compression. Figure 4.26 shows that this is the case - however, as before,
IN remains close to 1.

Overall, we see that coarse-graining using the smaller communities does result in a
reduced configuration space for the protein, with the effective degrees of freedom reduced
by 40%. However, this remains less effective than coarse-graining using the residues.
This is perhaps unsurprising - the Infomap communities are constructed to optimise a
different quantity, which may only weakly correlate with the objective measured here.
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Figure 4.26: The normalised degrees of freedom IN for a protein using a modular
description, against the average module size for that modular description, across sets of
proteins of different sizes (10, 100, and 1000 proteins). Increasing the set size increases
the number of repeated modules found, thus increasing the compression, but the trend
remains as in Figure 4.25.



Chapter 5

Community structure as a proxy for
topology

We have explored the communities found using Infomap as candidate domains; in this
chapter, we turn to analysing the connections between domain-level fragments to reveal
common global patterns underlying multi-domain protein architecture. We show that
these global patterns are associated with GO descriptors of protein function.

5.1 Generating and describing protein super-networks

The arrangement of the protein’s modules can be quantified by creating a network in
which the protein’s communities become nodes, linked if the respective communities are
neighbours (known in the literature as a condensation network, coarse-grained network or
super-network), as shown in Figure 5.1. By checking whether the relevant super-networks
are isomorphic (if the nodes of one network can be relabelled such that the edges of the
second network are recovered), we can group the set of proteins into classes which share
the same super-network. Here we use the isomorphism checks built into the NetworkX
package [140].

Once the super-networks are generated, and the separation into classes performed, GO
term enrichment is used to investigate whether the groupings are functionally relevant
(see Section 2.1).

From an initial set of proteins, we construct their supernetworks from the top level of the
Infomap community structure. From there, we identify a subset which have isomorphic
supernetworks. Each protein is associated with a given number of GO terms. Each

73
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Figure 5.1: Example of the supernetwork generation process. Given a network with
three communities (coloured on the left), we three a three-node supernetwork where
the nodes are linked if there are edges between their corresponding communities.

GO term will occur a certain number of times in the wider dataset. So for a given GO
term, we can work out the likelihood that the given number would appear by chance in
the subset, and thus obtain a p-value (the following analysis adapted from [131]). This
is done by taking the cumulative distribution function of the hypergeometric function
(which is equivalent to the binomial distribution, but sampling without replacement).
Let n be the number of proteins in the subset, and N the total number of proteins. For
a given GO term, let k be the number of times it occurs in the subset, and K be the
number of times it occurs across the full dataset. Then the likelihood that the term
would be seen k times by chance is:

where 3F2 is the generalised hypergeometric function. We conduct the test for each GO
term and as such, need to adjust for multiple testing. We choose to apply the Bonferroni
correction. If comparisons of M GO terms are being made, the raw p-value must be
multiplied by M to give a more conservative estimate of the likelihood.

Selecting only the terms with a corrected p-value less than 0.01 gives a list of GO terms
that are appear significantly more often within the subset than would be expected by
chance.

5.2 The properties of protein super-networks

When we perform the supernetwork generation process on a set of ∼ 12, 000 multi-chain
proteins, we see the topologies shown in Figure 5.2. This classification is displayed using
Javascript and D3.js [141] at wpg.io. Double-clicking a super-network reveals all the pro-

https://www.wpg.io
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teins belonging to that super-network, listed by PDB reference, along with the enriched
GO-terms. For example, the top five unique GO terms associated with the five-node
clique are GO:0008872 (glucarate dehydratase activity), GO:0009098 (leucine biosyn-
thetic process), GO:0003862 (3-isopropylmalate dehydrogenase activity), GO:0004109
(coproporphyrinogen oxidase activity) and GO:0006725 (cellular aromatic compound
metabolic process)

We see a large number of terms with p<0.01 for each supernetwork.

Figure 5.2: The set of super-networks resulting from community detection on a set
of roughly 12,000 multi-chain proteins. We see a wide array of protein shapes and
sizes. This visualisation is interactive at wpg.io. Double-clicking a network lists the
proteins, including the enriched GO terms found in that class. The node size indicates
the number of proteins with that supernetwork.

When we consider each protein chain individually (as in Chapter 4), we see that 90%
of the protein chains can be represented using only 10 super-networks, all of which are
associated with GO-term enrichment (see Figure 5.3 and Table 5.1).

https://www.wpg.io
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Figure 5.3: The super-networks generated from the community structures of ∼ 4300
protein chains, taken randomly from a non-redundant subset of the Protein Data Bank.
Only super-networks common to at least 3 proteins are shown (accounting for ∼ 3900
proteins in total). The node size is proportional to the number of proteins exhibiting
that super-network. This figure is taken from [131].

Super-network Number of enriched GO Terms (p<0.01) Number of proteins

331 1725

130 307

116 841

104 445

34 55

52 207

48 26

23 19

9 6

22 8

Table 5.1: The ten most common protein topologies in the data set studied in
Figure 5.3, ordered by prevalance.This table is taken from [131].
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5.3 Network vs structure similarity

GO-term enrichment suggests that the grouping according to supernetwork is capturing
functionally relevant information. As it is likely that proteins sharing structural domains
will perform similar function, we predict that SCOP class and supernetwork topology
will be co-variant.

Initial tests suggest that members of different SCOP classes have distinct supernetworks:
from the high-resolution dataset of proteins with less than 90% similarity introduced in
Chapter 4, we select 100 members of the c.1 and d.58 Folds (chosen because these Folds
are well represented in the dataset). Class c and d correspond to proteins containing
both alpha-helices and beta-sheets, with parallel and anti-parallel beta sheets respectively.
Comparing the number of communities obtained, we see a clear difference between the
two classes (see Figure 5.4), as well as a large degree of heterogeneity for each Fold.
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Figure 5.4: A histogram of the number of nodes in the supernetworks formed by
members of fold c.1 vs fold d.58 - this is equivalent to displaying the number of
communities.

Implementing the maximum common subgraph similarity measure

In order to further compare network similarity and structural similarity, we implement
a network similarity measure based on the Maximal Common Subgraph (MCS). This
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has been shown to behave as a distance metric between graphs [142], and is valid for the
unlabelled networks used here.

The similarity between two graphs G and H is defined as:

s(G,H) := |MCS (G,H) |
max (|G|, |H|)

where |G| is the number of nodes in the graph G, and the MCS is the largest subgraph
found in both networks. Finding the MCS is known to be a NP-complete problem. The
algorithm implemented here is the simplest possible; starting from all N nodes of the
smaller graph, say G, check for isomorphism with all N -node subgraphs of H. If no
isomorphism is found, generate all subgraphs formed from N −1 of the nodes, and repeat.

This algorithm has worst-case time complexity:

N∑
i=1

i

(
N

i

)(
M

i

)
f(N,M)

where N is the size of graph G, and M the size of graph H, where N < M , and f(N,M)
is the time complexity of the isomorphism check. In this case, the VF2 algorithm is
used [143]. This has worst-case time complexity O(M ! ·M). Graphs with under 30 nodes
can be compared using this MCS algorithm in a reasonable time.

If the grouping by supernetwork is indeed into classes with the same broad topology,
then we expect the MCS similarity to correlate well with the structural similarity, as
measured by the TM-score [45], which uses a weighted version of the root-mean-square
distance (RMSD) in order to more accurately compare global topology. However, as
shown in Figure 5.5, there is only very weak correlation between the two measures.

We would also expect proteins which share a given super-network to show a greater
structural similarity on average than proteins in distinct classes. Figure 5.6 shows only
very slight evidence that this is the case.

Taken together, Figure 5.6 and Figure 5.5 suggest that whilst the grouping according to
super-network is functionally relevant, the proteins’ structures differ highly. This could
be related to the breadth of the classes, or to the crude nature of the MCS measure.
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Figure 5.5: The super-network similarity (as measured by the Maximal Common
Subgraph) against the structure similarity (as measured by the TM-score). A very
weak correlation is seen. The discretisation along the x-axis is due to the fact that the
networks under study are small, such that the MCS is a simple fraction.
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Figure 5.6: The structural similarity (as measured by the TM-score) between proteins
with isomorphic super-networks (blue) and between the original dataset (green), showing
only a slight increase in similarity for proteins with isomorphic supernetworks.

Alternatively, the issue could lie in the fact that proteins with highly differing sizes could
have the same network structure at different levels
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To address this issue and enable comparison of networks across several different levels, a
measure which attempts to provide a better comparison is introduced in the remainder
of the chapter.

5.4 Iterative subtree similarity

The previous comparison between the community structures of different proteins used
only a single level of the proteins’ community structure (in practice, the level with
the largest communities). However, the community structure returned by Infomap is
hierarchical.

We can extend the notion of the super-network given previously to the full hierarchical
community structure. From there, we implement a novel comparison method based on
iterative subtree labelling. The method proposed here is applicable to any instance where
two hierarchical community structures are compared.

For single-level community structure, the super-network is generated as in Figure 5.1.
For multi-level community structure, as shown in Figure 5.7 and Figure 5.8, we proceed
as follows. From the hierarchical community structure, we generate a tree in which each
community is a node. Communities are linked, between hierarchy levels, if one community
is a sub-community of the other (see Figure 5.9). This is akin to the dendrograms seen
in traditional hierarchical clustering methods.
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(a) Level 0 (b) Level 1

Figure 5.7: Example of a network with multi-scale hierarchical community structure.
Each of the three broad communities (in level 0) is itself made of a variable number of
smaller communities (in level 1). Running Infomap on this network will result in a set
of partitions for each level of the community structure (see Figure 5.8).

0 100 200 300 400 500

0 100 200 300 400 500

Level 0

Level 1

Figure 5.8: The output of Infomap when applied to the network shown in Fig-
ure 5.7 - two vectors of community membership. Distinct colours indicate the different
communities.

Root

Level 0

Level 1

Figure 5.9: The tree structure generated from Figure 5.8 - From the root node
(indicating the single-community partition), we add a tree level for each level of the
community structure. Nodes are coloured according to the colour of their original
communities.
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Once this tree has been created, we perform a bottom-up labelling process. All the “leaf”
nodes (those within sub-communities) receive the label 0. We then proceed one level
up the dendrogram, and label each node according to the super-network formed by its
children, maintaining a map of which label each unique supernetwork corresponds to. For
instance, the first node (in purple) on the first level of the community structure has five
sub-communities. In the original network, these sub-communities are all connected to
each other in a clique. We add an entry in our map (e.g. label "1") for this five-member
clique of nodes with label 0, and proceed. If, when labelling a different node, another
five-member clique of nodes with label 0 is seen, this is given the same label as previously.

In this way, we build a labelled tree, along with an index showing which supernetwork
each label corresponds to. Figure 5.10 shows an example labelling.
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(b) Label Map

Figure 5.10: The result of bottom-up labelling of the tree in Figure 5.9. Leaf nodes
are assigned a label 0, then each node above is assign a label according to the relative
arrangement of its children. Importantly, the mapping from label to supernetwork
takes account of the labelling - the network with label 2 and label 4 are considered
distinct..

Given two community structures, we can now find the largest subtree shared between
the two structures, by searching for shared labels and examining how many nodes in the
original network this community corresponds to. We can remove leaf nodes as appropriate
to reduce the sensitivity to small-scale fluctuations. However, when we generate the
labelled trees for the 200 members of the c.1 and d.58 families used previously, even
when removing the bottom-level leaf nodes (resulting in a tree of average depth 2.3
for c.1 and 1.6 for d.58), we end up with a label-to-graph mapping with 910 unique
elements. 100 of these graphs found are shown in Figure 5.11. This indicates an issue
with the method - it is extremely sensitive to small changes in the small-scale structure.
Changing the community structure of one node will result in a completely different
network. The labelling algorithm exacerbates this problem - the different network will
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result in completely different labelling. As this is a bottom-up method, this new labelling
will propagate all the way to the top of the tree. However, even when a map is maintained
with unlabelled nodes (so that e.g. a triangle of nodes labelled 0,0,0 and 1,2,3 would
be considered equivalent), 821 unique graphs are found. The issue is therefore one of
combinatorics - once a network has a certain number of nodes, the number of possible
arrangements becomes too high.

Protein structure networks tend to have a level of community at roughly the length-scale
of a domain, followed by communities at the length-scale of a single helix or beta-sheet
strand. This makes them especially difficult to deal with using the iterative labelling
method developed here. However, the algorithm may still be a useful tool for networks
with larger-scale community structure, such as more traditional social networks.

The method could be refined by removing smaller communities from the tree, or by
performing a MCS-based method in which the labelling process is “fuzzy” - networks are
given the same label if they have above a certain similarity score.
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Figure 5.11: 100 of the 910 unique networks found using the tree-labelling algorithm
given in this section. Each network represents the arrangement of sub-communities
within a single community. We see a vast array of different topologies. We see that
most nodes here have the label 0, as they are leaf nodes in the dendrogram.



Chapter 6

Application of SOAP to binding sites

In this chapter we move from a network-based description of protein structure to one
in which each atom is described in terms of its local environment - the relative position
and orientation of its neighbours, as described using the SOAP descriptor. We hope to
use the SOAP descriptor introduced in Section 2.2 to identify sets of distinct structural
features. We initially prove the validity of the method by successfully distinguishing
between well-defined patterns of secondary structure. Following this, we explore the
applicability of this descriptor to find and define pharmaceutically relevant ligand binding
pockets.

Given two structures, and the SOAP descriptors for their atoms, we can then use the
GLOSIM similarity score (also introduced in Section 2.2) to calculate the overall similarity,
by effectively matching up atoms pairwise between the two structures as to maximise the
overall similarity [17]. Defining the SOAP similarity between atoms xi, xj as k(xi, xj),
the overall similarity score between structures A and B is given by:

K(A,B) =
∑

i∈A,j∈B
Pijk(xi, xj)

where Pij is the permutation matrix. The GLOSIM score was used in Chapter 4 to
calculate the similarity between protein fragments. Here we explore GLOSIM as a metric
for classifying distinct protein subsets.

85
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6.1 Classifying proteins according to secondary structure
composition

Given a training set of protein structures made up of two classes, we can use the GLOSIM
score as a to classify unseen test structures. For this test case we chose the two most
fundamentally disinct typse of protein structures - all alpha-helical (SCOP class a) and
all beta-sheet (SCOP class b) proteins.

We perform classification using a support vector machine (SVM) [144] - specifically a
kernel-SVM. Given a set of proteins known to be in class a, with class label +1, and a
set of proteins in class b, with class label -1, we calculate the GLOSIM score for every
pair of proteins. The SVM then attempts to draw a hyperplane through our dataset,
given the matrix of scores, in order to separate the training data into the two classes.
Using this hyperplane, we can then classify a test protein into one of the two classes
according to the GLOSIM score K(A,B) between this new protein and the members
of the training set. If the new training protein has a very high score when compared
to the proteins in class a, it will be assigned to class a, and similarly for class b. This
SVM-based visualisation method has been successfully used in [16] on sets of binding and
non-binding ligands - here it is used on the proteins themselves to try and reconstruct
SCOP classes.

Once we have trained the SVM, the decision function for deciding the class of a new test
structure, B, is:

zB =
∑
A

αAyAK(A,B) + β

where yA is either +1 or -1, the class label of the structure A in the training set. αA and
β are the coefficients of the hyperplane, optimised using scikit-learn [137]. The predicted
class for B is the the sign of zB, with the magnitude of zB roughly corresponding to
confidence in the classification.

This method allows us to classify structures according to their structural similarity. Cru-
cially, since the GLOSIM score is simply a linear sum of individual atomic contributions,
this decision on class membership can be decomposed into atomic contributions. For
atom j in structure B, we can obtain the contribution to the SVM classification as:
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δZJ ,B
=
∑
A

αAyA
∑
i∈A

Pijkij(A,B) + β

|B|

where |B| is the total number of atoms in B.

This result allows us to highlight which atoms are key in the classification process. Let
us consider our test case of two sets of proteins from SCOP class a and b - all-alpha
helix proteins and all-beta sheet proteins. We perform an all-to-all GLOSIM similarity
scoring, using an radial cutoff of R = 15 and smoothing of σ = 1.5 as before for the
SOAP descriptors, and operating on the alpha-carbons only. We cluster the resulting
matrix, as shown in Figure 6.1. We colour the rows of the matrix to indicate whether a
protein belongs to class a (blue) or b (orange), and we see that hierarchical clustering
results in good separation between the two classes.

Figure 6.1: The clustered matrix of GLOSIM scores for our training data, members
of SCOP classes a and b. A lighter colour in the heatmap indicates a higher similarity
score. We colour the rows according to which SCOP class the protein is a member
of - blue-green indicates SCOP class a, whilst orange indicates SCOP class b. We
see greater similarity within the classes than between the classes, and hence they are
grouped together.

If we then train an SVM on this matrix, we can classify new test proteins, and highlight
the contribution of each residue to the classification. We colour a contribution towards
scop class a (all-alpha) in blue, and a contribution towards scop class b (all-beta) in red.
Figure 6.2 shows that the classifier behaves as expected - residues corresponding to alpha
helices are coloured blue, whilst residues corresponding to beta sheets are coloured red.
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No prior information about secondary structure is provided to the SVM - this information
is all learned from the training set. This demonstrates that given a set of proteins known
to share structural features, we can use the SVM contributions to highlight the most
important atoms or residues.

(a) 1b8l (b) 1oa4

Figure 6.2: Two test proteins from SCOP classes a (1b8l) and b (1oa4), coloured
according to each amino acid’s contribution to the SVM classification. Blue indicates
that the atom is contributing towards an a classification, red a contribution towards
class b. As expected, the alpha-helices are blue (as class a is an all-alpha helix class),
and the beta sheets red (as class b is an all-beta sheet class).

When we extend this analysis to a test set based on the folds defining c.1 and d.58
proteins, as used in Chapter 4, in which the class distinction is more subtle , we still see
reasonable separation using hierarchical clustering (Figure 6.3). However, the limitations
of this method become apparent - the GLOSIM scores between members of different
classes are still high.

This is a result of the score’s design - the score is made up of the similarities of individual
atoms. Since both classes have both alpha-helices and beta-sheets, similar atoms can be
found when comparing between classes. Distinguishing features arise only from atoms
at the interfaces between these secondary structure elements, as it is only their relative
configuration which distinguishes the folds. The high inter-class GLOSIM score makes
classification difficult, as the effective range is reduced.
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Figure 6.3: The clustered matrix of GLOSIM scores for our training data, members
of SCOP classes c.1 and d.58. A lighter colour in the heatmap indicates a higher
similarity score, with rows coloured according to class membership as before (class c in
blue-green and class d in orange). We see that the inter-class similarity score is high,
which may be the reason for the failure to fully separate the classes.

6.2 Application to Binding Pockets

Given the solid performance on well-defined structural classes,we hoped that the same
method could be used to investigate more interesting structural features - for instance,
given two sets of proteins which bind different ligands, can we use the contributions to
an SVM decision to highlight the binding pockets?

We use the Enzyme Commission (EC) numbering system [145] to select proteins from
the high-resolution ASTRAL dataset from Chapter 4, choosing proteins which catalyse
five different chemical reactions. We select 30 proteins for each reaction. These proteins
should all catalyse the same reaction, and so share common binding sites. We perform
the all-to-all GLOSIM scoring on these proteins, and hierarchically cluster and classify
as before (Figure 6.4).

We see that while the clustering process yields strong clusters, they fail to map to the
EC classes. The related process of SVM classification yields poor results with overall
accuracy of 53%. As previously, the clustering and classification process take place
using the GLOSIM score between the full proteins - each atomic similarity is weighted
equally. As such, the signal due to any similar subregions related to ligand binding
is overwhelmed by comparisons between the bulk protein structure, such as defined
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Figure 6.4: The clustered matrix of GLOSIM scores for a set of 150 protein binders,
belonging to 5 EC numbers - 3.5.2.6 (Beta-lactamase, in pink), 3.2.1.8 (xylanase,
in purple), 5.2.1.8 (Peptidylprolyl isomerase, in light green), 1.15.1.1 (Superoxide
dismutase, in dark green), and 2.7.11.1 (serine/threonine protein kinase, in orange).
A lighter colour in the heatmap indicates a higher similarity score, with rows coloured
according to class membership as before. We see that the inter-class similarity score
is high in some cases, and this may be the reason for the failure to fully separate the
classes.

alpha-helix and beta-sheet content. Since the SVM has a poor classification accuracy, the
atomic contributions to the SVM are uninformative, and the visualisation process fails.

In the remainder of the chapter, we bypass the SVM contributions as a tool for exploring
each atom’s importance, and use the GLOSIM data directly to compare a test protein
to a previously defined protein set. The GLOSIM comparison process generates two
matrices; [Pij], the permutation matrix mapping the atom i in structure A to atom j in
structure B, and [k(xi, xj)], alternatively written as [kij], the similarity between atoms i
and j. Given this data, we can extract the regions of structural similarity from a test set
of proteins using the following algorithm, summarised in Figure 6.5:

• Take a set of proteins, known to share a structural feature; our test set is comprised
of proteins which bind the heme ligand.
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• Select a target protein A from that test set, and calculate K and P between that
protein and each other protein in the set using REMATCH. (The overall GLOSIM
score would then be ∑i,jKijPij).

• Calculate KA = ∑
jKijPij for each protein in the set. Each KA will be a 1D vector

of length N, where N is the number of atoms in protein A, giving the similarity of
each atom in A to each protein in the test set.

• Create a matrix in which each row is the KA between the target protein and each
protein in the test set.

• Average over columns of this matrix, giving the average similarity of each atom in
A to the corresponding atoms in the test set, K̄A.

This K̄A will give the average similarity of each atom in protein A to the corresponding
atoms in the test set. The averaging over the atoms in the test set reduces noise due to
coincidental atomic similarities, and allows the feature common to the entire test set to
be highlighted. This may highlight the binding pocket or important allosteric regions in
the case of ligand binders, but could generalise to any set of proteins in which we believe
there to be an important subset of the atoms whose relative position is structurally
conserved (e.g proteins with a shared GO term, or members of a SCOP superfamily).

To test this hypothesis, we use a curated set of heme binders that have previously been
used in protein binding classification [146]. We filter this set to include only those with
a ligand with id ‘HEM’ (as alternative confirmations of heme exist), For reasons of
computing power, a sample of 100 proteins from the set are chosen. We generate the [Pij ]
and [kij] matrices using GLOSIM with radial cutoff of R = 10 and σ = 1.0, and for this
analysis, we apply GLOSIM to all the atoms in the test proteins. Whilst this increases
the computational cost, we require an atomic level of detail in order to investigate the
binding pocket.

As shown in Figure 6.6 and Figure 6.7, the results are mixed, and hard to interpret. It is
not the case that the binding pocket uniformly receives a high similarity score, and the
bulk pocket receives a low similarity score. However, we do see a concentration of high
similarity scores around the pocket.
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HEM binder HEM binder test set
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calculate KA = ∑ KijPij 
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protein
A

HEM pocket

2.
average over

all proteins
in test set

HEM
pocket

protein
A

??

protein
A

3. visualize identified common element

Figure 6.5: A schematic of the structure-highlighting process. Given a test set of
proteins that we know shares a certain structural motif, we select one protein from the
set. We then calculate the GLOSIM matrices giving the atomic similarity for every
protein in the set, and sum to give the similarity of each atom in the selected protein
to the atoms in the set. By averaging over the set, we hope to eliminate noise, and
highlight the common structural feature - in this case, a binding pocket.

A limitation of this method lies in its tendency to identify isolated sidechain non-carbon
atoms as locally similar. Since these side-chain atoms are common on the protein’s
structure it is highly likely that a match is made between the sidechain on the test protein
and every other protein in the set (Figure 6.8). This distorts the result.

A potential way to mitigate this problem would be to only consider the alpha-carbons,
rather than each atom individually. However, for binding pocket identification, we found
that the resolution of the method was insufficient (data not shown). Instead, we attempt
to correct for this problem by performing spatial averaging over the protein, weighted
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Figure 6.6: The results of the similarity-highlighting algorithm on the protein with
reference 2D2M, chain A. The protein is coloured by similarity, with blue indicating
low similarity, and red high simlarity. The HEM ligand is coloured in green. Whilst
there is substantial noise in the colouring, we see a concentrated region of similarity
near the pocket.

Figure 6.7: The results of the similarity-highlighting algorithm on the protein with
reference 1X9F, chain D. Blue indicates low similarity, red high similarity, with the
HEM ligand coloured green. As in Figure 6.6, the binding pocket is not uniformly
coloured, but key atoms are highlighted.
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Figure 6.8: The simlarity-highlighting algorithm acting on 1X9F, chain D, as in
Figure 6.7, but showing the full protein. We see that in addition to the atoms close to
the HEM ligand, the isolated sidechain non-carbon atoms on the protein’s surface are
also given high scores.

by proximity. Given the original scores β, and the k nearest neighbours of an atom, the
new score for atom i:

β̂i = 1
k

∑
k

βk exp
(
−|xi − xk|

σ

)

Here we choose k = 20 and σ = 10Å, and |xi − xk| is the distance between atom i and k.
This gives higher scores to regions of similar atoms, in addition to smoothing the data
(Figure 6.9).

We can quantify the extent to which similar atoms are close to the ligand by generating
a receiver operating characteristic (ROC) curve [147]. This graph plots the false positive
rate (FPR) against the true positive rate (TPR) for a classifier, for a range of model
parameters, and is widely used in machine learning to assess model performance. The
TPR is given by the number of positive results correctly classified, as a proportion of the
total positive results, and the FPR the number of negative results incorrectly classified as
positive, as a proportion of the total negative results. A classifier based on random guesses



Application of SOAP to binding sites 95

Figure 6.9: The simlarity-highlighting algorithm acting on 1X9F, chain D, as in
Figure 6.7, now with k-nearest neighbour distance-weighted averaging, with k = 20
and σ = 10. We see that the high-scoring sidechains now have low similarity, and a
band of similar structure is revealed around the binding site.

will have the TPR equal to the FPR for the full range, while a near-perfect classifier will
have a TRP roughly equal to 1, when the FPR is roughly equal to 0. Figure 6.10 gives
an example ROC curve, showing random performance, worse-than-random performance,
and better-than-random performance.

We create a classifier from our set of similarity scores as follows:

1. Label each atom as either "High similarity" or "Low similarity" by applying a
threshold. Here a similarity threshold of 0.9 is used. These are then our “expected”
labels.

2. We create a model in which all the atoms within a certain distance, d, of the ligand,
are assigned the "High similarity" label. In an idealised case, all the atoms in the
binding pocket, near the ligand, would be highly similar, with no high-scoring atoms
outside the pocket.
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Figure 6.10: A demonstration of the ROC curve. The model under test will typically
have a parameter that biases the model towards finding positive results. As this
parameter is varied, the true positive rate will increase (as more positives are correctly
identified), but so will the false positive rate (as more negatives are classified as being
positive). In a random classifier, these two rates of increase are the same.

3. The TPR of the model is then the number of atoms that we correctly predict are
highly similar using our model, as a fraction of the total number of highly similar
atoms. The FPR is defined similarly.

4. As we increase d, the model predicts that more and more atoms will be highly
similar, until all atoms in the protein are labelled as high similarity - at this point
the TPR is 1 (as every truly high-similarity atom will be classified as such), as is
the FPR (as every low-similarity atom is also classified as highly similar).

The ROC curves for selected proteins in the dataset are shown in Figure 6.11. We see
high variability in the quality of the results, with the majority of proteins explored having
a better-than-random performance, but with some proteins significantly underperforming,
and others doing no better than chance.

We can also average these curves over the full dataset of 100 heme binders, to get an
idea of the extent to which, on average, atoms highlighted using our method are located
close to the HEM ligand (Figure 6.12). We see that, on average, the scoring algorithm
given here does favour the atoms that are closer to the ligand, as expected.
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(c) 1GDI
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(d) 2HPD
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(e) 3OV0

Figure 6.11: The ROC curves for the two proteins explored previously (1X9F and
2D2M), and three other examples (1GDI, 3OV0, and 2HPD). The plotted line indicates
the performance expected by chance. We see better than random performance for
1X9F and 2D2M, and good perfomance for 1GDI. However, the case of 2HPD the
method performs no better than chance, and in the case of 3OV0 the method actually
underperforms the random classifier.

Overall, this method shows strong promise as an extremely general way to identify key
structural features in a dataset. In the case of protein binding, it may highlight the
binding site, but it may also reveal key shared regions for allostery.

In fact, the test set of HEM binders (haemoglobins) already used in this work would lend
themselves well to the future investigation of binding sites and allosteric elements, as the
haemoglobin tetramer is a textbook case of allostery [27].
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Figure 6.12: The ROC curve, averaged over the full dataset. We see that our scoring
algorithm is indeed favouring atoms closer to the ligand, despite the variation in
performance shown in Figure 6.11.



Chapter 7

Discussion

The aim of this work was to investigate the merit of two new ways of describing a protein
structure - one using networks, and one using SOAP descriptors. We found applications
for both of these methods, with the features found by both methods comparing well to
pre-existing bioinformatic annotation on large protein sets.

The challenge in this work was twofold. On one hand it was necessary to tailor existing
network science and condensed-matter approaches, to find de-novo features in large sets
of complex protein structures. On the other hand, to enable evaluation of the novel
methods presented here, and interface with existing bioinformatics, we also had to find
ways to define meaningful datasets, by collating current protein sequence, structure and
functional annotation.

We developed a set of necessary tools, in which we integrated a wide variety of protein
annotation schemes in one centralised database, provided a uniform interface to those
annotation schemes, and included other relevant information such as the AEROSPACI
score. These will be of great benefit to any future work developing computational protein
structure analysis approaches.

The application of Infomap to protein networks outperformed previous network-based
methods, and the hierarchical community structure was applicable at multiple length
scales:

• At the domain level, we find good correspondence between Pfam and SCOP domains,
extracting highly conserved subregions from a test set of proteins known to have
conserved structure.
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• At the sub-domain level, we show that communities on the length scale of amino
acids are the only ones which result in a significantly compressed description of the
protein.

• At the super-domain level, we show that grouping proteins according to their
community structure is functionally significant. We also develop a tool for analysing
this structure which, though ultimately unapplicable to the types of communities
found in protein structure networks, suggests a novel way to compare hierarchical
community structure.

The SOAP-based descriptor was successfully extended from its initial use on small
molecules to large-scale protein structure analysis, reliably recognising secondary structure
elements, and successfuly grouping a-helical and b-sheet containing proteins. For finding
binding pockets, the SOAP-based descriptor shows promising initial results, with obvious
future avenues for exploration.

While both methods yield statistically significant results, they do not perfectly match
manually curated annotation. While the descriptors might serve as a basis of novel
protein classification, or drug discovery, we must carefully consider on a case-by-case
basis the data sets analysed, and the parameters used, as well as manual curation of
the results. Whilst on average the SOAP descriptor will highlight atoms near a HEM
ligand, given a dataset of HEM binders, it cannot guarantee a clear result. Similarly,
whilst Infomap does produce protein fragments which are highly structurally similar, it
may not recapitulate the exact SCOP domain, or structurally conserved region.

Overall, this work demonstrates the merit of applying modern computational methods
to the outcomes of systematic biological research. The interface between computing and
biology is vast, and in the future the integration of computation methods will become
ever more necessary in biological research.



Appendix

A.1 Scaling of the number of partitions with network
size

Here it is shown that the number of possible partitions grows at least exponentially with
the number of nodes, for the simplest possible case of a bisection into two communities.
A graph with N nodes is partitioned into communities with N1 and N2 nodes such that
N1 +N2 = N .

Then the number of possible partitions is N !
N1!N2! . Using Stirling’s approximation and

cancelling factors of e this becomes:

NN+1/2

N
N1+1/2
1 N

N2+1/2
2

For communities of roughly equal size such that N1∼N2∼N/2, this becomes:

NN+1/2

N
2
N+1 = 2N+1

√
N

For the case of a partition into k communities, the total number of options generalises to
the Stirling number of the second kind [148],

{
N
k

}
. This is defined as:

{
N

k

}
:= 1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)N
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The number of communities a network can be partitioned into ranges from 1 to N , so
the total number of possible partitions is given by Bell’s number:

BN =
N∑
k=1

{
N

k

}

A.2 The AFG algorithm

As discussed in Section 2.4, modularity optimization suffers from a fundamental resolution
limit. If the communities are below a certain size, then they will not be detected, even
for the limiting case of two cliques separated by a single edge. This limit can be shown
to be:

∑
i

kinti < 2
(√

w

2 − 1
)

Where kinti is the number of edges connecting node i to other nodes in its community,
and w is the total number of edges in the network, as previously, and the sum is over all
nodes within the community. The AFG algorithm uses this resolution limit to investigate
the community structure at multiple length scales. By applying self-edges of strength r
to each node, the resolution limit becomes:

∑
i

kinti <
√

2w +Nr −NSr − 2

As
√
r grows more slowly than r, this allows the resolution limit to be tuned to find

smaller or larger modules. Performing a modularity optimisation at each required r

value will give the community structure at multiple scales, with each optimisation an
independent process.

To perform each modularity optimisation, a Relax-and-Shake (RASH) algorithm was
used. This optimisation method has previously been used to find decompositions of
crystal structures [138] and relies on repeated local optimisations, followed by random
noise to escape local minima. For details of the algorithm see overleaf or [138].
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The AFG method requires a separate modularity optimisation for each community length-
scale; as such, it may take weeks or months of CPU time to achieve a good mapping of
the community structure. The relevant communities must then be chosen by selecting
regions in which the number of communities is stable. This hand-selection makes the
AFG method unsuitable for large sets of proteins. However, Figure A.1 shows that the
method does achieve sensible partitions of the protein.

Figure A.1: A decomposition of 1UBQ into modules using the AFG method, showing
the number of modules generated as a function of both the AFG parameter and the
cutoff used. Regions in which the number of modules are constant (shaded with
the same colour) are believed to correspond to the relevant partitions; the figure
demonstrates the issue with the approach, as locating these regions cannot be easily
automated. Two example partitions are shown, mapped onto the protein structure,
showing that the method correctly separates the secondary structure elements.
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The Relax and Shake (RASH) algorithm

Here the details of the RASH algorithm are given, following the explanation given in [138].

The algorithm is used to optimise the modularity, by changing the community membership
of the nodes. This is achieved by a series of local optimisations (relax) followed by shifting
a subset of nodes into random communities (shake). This shaking is required due to
the high degeneracy of the modularity [93]. The local optimisation follows existing work
on modularity optimisation by simulated annealing [149]; for each node, the modularity
change resulting from a move into the community of each of its neighbours is calculated.
The move resulting in the greatest change is then carried out (if it results in a nett
increase). This is repeated until there are no local moves which increase the modularity.
A subset of the nodes are then shaken into new communities, and the local optimisation
repeated. This continues until 200 consecutive relax-and-shake iterations fail to improve
the modularity.

The modularity change as a result of merging any two communities is then calculated; if
this results in an increased modularity the merge is performed, and the whole relax-and-
shake process is repeated.

The repeated set of relax-and-shake steps, followed by the merge check, can be considered
a single step of the optimisation. Following this step, a larger subset of the nodes are
shaken into random communities, and the full process repeated until 200 iterations fail
to improve the modularity.

The whole process above is repeated until ten consecutive runs have failed to produce a
community structure with a higher modularity.

The degree of repetition at each step is parametrisable, and allows for an accuracy-speed
trade-off.
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A.3 Network properties of test proteins

Here we continue the investigation of traditional network properties started in Chapter 3.
For an explanation of the network property, please see [53].

Betweenness centrality:
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(b) Residue networks

Figure A.2: The distributions of betweenness centrality for 6 test proteins.

Degree centrality:
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Figure A.3: The distributions of degree centrality for 6 test proteins.

Eigenvector centrality:
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Figure A.4: The distributions of eigenvector centrality for 6 test proteins.
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Katz centrality:
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Figure A.5: The distributions of Katz centrality for 6 test proteins.

Pagerank:
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Figure A.6: The distributions of Pagerank scores for 6 test proteins.

A.4 Example communities for the filtered ASTRAL
dataset

Here we give example fragments for 10 of the 11 clusters found in Section 4.5 - the 11th
cluster corresponds to a malformed PDB file and is not shown.
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(a) 1pj5 (b) 1rwh (c) 2c42

Figure A.7: Selected protein fragments from the multi-domain test set, in cluster 0,
demonstrating underpartitioning.

(a) 1ojn (b) 1w4x (c) 1qba

Figure A.8: Selected protein fragments from the multi-domain test set, in cluster 1.
We see correctly sized fragments, but the fragments are not continguous regions of the
protein’s structure.



Appendix 108

(a) 1kcz (b) 1gpe (c) 2gf3

Figure A.9: Selected protein fragments from the multi-domain test set, in cluster 2,
demonstrating overpartitioning, and showing that dissimilar fragments may still give
high GLOSIM scores (notice 2gf3 is an all-beta fragment whilsts 1gpe is all-alpha).

(a) 1ukv (b) 1e5m (c) 1k92

Figure A.10: Selected protein fragments from the multi-domain test set, in cluster 3,
again showing overpartitioning.
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(a) 2q9o (b) 1wmd (c) 1kxv

Figure A.11: Selected protein fragments from the multi-domain test set, in cluster 4

(a) 1eu1 (b) 3c8d (c) 1e43

Figure A.12: Selected protein fragments from the multi-domain test set, in cluster 5
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(a) 1itx (b) 1s3e (c) 2cve

Figure A.13: Selected protein fragments from the multi-domain test set, in cluster 6

(a) 1gtt (b) 1hw1 (c) 6gsw

Figure A.14: Selected protein fragments from the multi-domain test set, in cluster 7

(a) 1kfw (b) 3bvx (c) 1yv1

Figure A.15: Selected protein fragments from the multi-domain test set, in cluster 8
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(a) 1k3x (b) 1uer (c) 3d4u

Figure A.16: Selected protein fragments from the multi-domain test set, in cluster 9
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