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We have investigated scaling properties of the Aubry—André model and related one-dimensional quasiperiodic
Hamiltonians near their localisation transitions. We find numerically that the scaling of characteristic energies
near the ground state, usually captured by a single dynamical exponent, does not obey a power law relation.
Instead, the scaling behaviour depends strongly on the correlation length in a manner governed by the continued
fraction expansion of the irrational number 8 describing incommensurability in the system: this dependence is,
however, found to be universal between a range of models sharing the same value of 8. For the Aubry—André
model, we explain this behaviour in terms of a discrete renormalisation group protocol which predicts rich
critical behaviour. This result is complemented by studies of the expansion dynamics of a wave packet under the
Aubry—André model at the critical point. Anomalous diffusion exponents are derived in terms of multifractal
(Rényi) dimensions of the critical spectrum; non-power-law universality similar to that found in ground state
dynamics is observed between a range of critical tight-binding Hamiltonians.

I. INTRODUCTION

Quasiperiodic structures, which are long-range ordered
without being periodic, represent a rich and fascinating mid-
dle ground between ordinary periodic crystals and disordered
systems. They were first discovered among aperiodic tilings
of the plane, the best known of which is the fivefold symmet-
ric Penrose tiling [1, 2]. Interest in quasiperiodicity within
the physics community was sparked by the discovery of qua-
sicrystals by Shechtman [3] and the equivalence between Lan-
dau levels on two-dimensional lattices and a one-dimensional
quasiperiodic chain [4-6]. Recently, quasiperiodic structures
became popular in ultracold atom experiments as a proxy for
random potentials in the study of disordered quantum gases,
Bose glasses and many-body localisation, as they can con-
veniently be realised by superimposing two incommensurate
optical lattices [7-12]. Quasiperiodic tilings also lie at the
heart of recent results in the study of quantum complexity,
such as the proof of the undecidability of the spectral gap [13].

Quasiperiodicity gives rise to a range of unusual behaviour
including critical spectra and multifractal eigenstates away
from phase transitions [14—19] and localisation transitions at
a finite modulation of the on-site potential [18—20]. In this pa-
per, we investigate localisation transitions of one-dimensional
quasiperiodic systems, in particular the tight-binding Aubry—
André model, also known as the Harper model [4, 20]:

H=-1) (aj.aj+1 + h.c.) ~ 1Y cosnpj)ala; (1)
J J

and related models. Here 8 ¢ Q and A are the incommensu-
rate wave number and dimensionless amplitude of the on-site
energy modulation, respectively, J is the hopping matrix ele-
ment, and a}' is a bosonic creation operator on the jth lattice
site. Since the integer part of (3 is irrelevant, we assume 8 < 1.
This model is known to undergo a localisation transition at
A\ = 2 for any irrational value of 8 [20-23]: below this critical
value, all eigenstates are extended while above it, they are ex-
ponentially localised. This is a consequence of Aubry duality:
under the Fourier transform

by = \/LN Zn: exp (2nifkn) ay, ()

(1) turns into another Aubry—André Hamiltonian in momen-
tum space with A changed to 4/)\ and all energies rescaled by
a factor of /2 [20]: A = 2 is the fixed point of this transfor-
mation.

It is well known that the spectra of one-dimensional
quasiperiodic Hamiltonians are hierarchical [14, 16, 17, 21,
24-29], meaning they contain a hierarchy of progressively
smaller gaps. In the case of tight-binding models, the spec-
trum is bounded and its entire structure is governed by the
continued fraction expansion of the incommensurate ratio 8
[17, 21, 30],
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where ny are integers and the irrational residuals B are be-
tween 0 and 1. The hierarchical spectrum of these Hamil-
tonians can be constructed as the limiting case of periodic
superlattices with increasing periods Nj described by rational
approximants of 8 ~ My /Ny = [0;ny, ..., ng], as discussed in
detail below. In going from the kth-order superlattice to the
(k + 1)st, each band of the spectrum is split into 7] new ones
[21], see Fig. 1. In this manner, the periods of these approx-
imant superlattices, N, act as ‘microscopic length scales’ of
the problem: the structure of the spectrum and eigenstates of
the Hamiltonian on length scales around each Ny is controlled
solely by the coefficient n;. As a consequence, the spectrum is
self-similar if and only if the continued fraction expansion of
B is periodic. Furthermore, its hierarchy is topologically pro-
tected under smooth deformations between different models
sharing the same value of 8 [31, 32].

In a continuous phase transition, the correlation length &
diverges at the transition point. In conventional disordered
or crystalline systems, the effect of microscopic structure be-
comes immaterial once ¢ is much larger than all microscopic
scales of the system: therefore, their behaviour near the phase
transition is described by scale-invariant functions, that is,
power laws [33]. In quasiperiodic systems, however, such a
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FIG. 1. Spectrum of the Aubry—André model for different rational
My, /Ny ~ [0;2] at the critical point A = 2. In each case, the spectrum
consists of N bands: most of these are accounted for by splitting the
Nj_1 bands of the previous rational approximation into n; narrower
ones. Some additional bands appear due to the slight changes to the
approximation of 3 [6, 36-39]. Double crosses denote a pair of bands
with a very small gap, not resolved well in the plot.

scaling regime is never reached due to the increasingly large
‘microscopic’ length scales Ny discussed above. Instead, the
behaviour of the system is governed by scaling properties of
the critical spectrum and eigenstates at length scales close to
¢ as it diverges, which in turn depends on the coefficients
ny. While the connection between the structure of the spec-
trum and the length scales of the system has tacitly been
known, its effects on phase transitions were not discussed,
mostly because all numerical and most analytical studies fo-
cused on f’s of particularly simple continued fraction expan-
sions, such as the golden mean ¢~' = (V5 - 1)/2 = [0;1]
[14-16, 34, 35]. (The overbar denotes a periodic continued
fraction, e.g. [0;1,2,3] =[0;1,2,3,2,3,...].)

In this paper, we explore some consequences of this non-
power-law critical behaviour on the localisation transition of
the single-particle Aubry—André model (1) using exact diago-
nalisation and renormalisation group arguments. In particular,
we investigate the critical dynamics of the model for different
values of 5 and demonstrate that power-law behaviour emerges
only when the continued fraction expansion of § is periodic.

Sec. II reviews the origins of hierarchical spectra in
quasiperiodic systems and presents a renormalisation group
treatment of the Aubry—André model based on Ref. 21. In
Sec. ITI, we discuss the scaling of energy scales near the ground
state; Sec. IV deals with fractal properties of the spectrum and
quench dynamics at critical points. In both cases, we find
equivalent behaviour for different models sharing the same 3:
we understand this equivalence as a novel kind of universal-
ity, distinct from power-law thermodynamic universality, but
similarly protected by symmetries of the underlying systems.
Conclusions are presented in Sec. V.

II. STRUCTURE OF THE SPECTRUM AND
EIGENSTATES

A. Structure of the critical spectrum

We consider a one-dimensional quasiperiodic tight-binding
system characterised by the incommensurate ratio 8. For sim-
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FIG. 2. Cartoon of the renormalisation transformation of the lowest
subband of the Aubry—André model. Black dots mark the lattice
sites of the original tight-binding model: their quasiperiodic on-site
potentials are indicated by the black line. In the first step of the
transformation, every subband gives rise to one effective Wannier
state (indicated in red) for each period of the on-site potential. For
each subband, an effective tight-binding Hamiltonian can now be
defined by taking the centres of the corresponding Wannier states
as new lattice sites. Due to the incommensurability of the on-site
potential and the original lattice, the jth such Wannier state is shifted
by jB; relative to the original lattice sites: as a result, the on-site
energy of these new sites will depend on j in a quasiperiodic manner
described by the incommensurate ratio 8 (green line). The procedure
is then repeated using the first-order Wannier states as lattice sites
(green dots), introducing S3,, and so on indefinitely.

plicity, we assume that the continued fraction terms of 3, ng,
are all very large; however, the qualitative structure of the
spectrum remains the same for all nx > 2 [6, 38—40]. Now,
as discussed in Sec. I, the structure of the spectrum can be
described in terms of a sequence of periodic superlattices de-
scribed by My /Ny = [0;ny,...,nt], which are the closest
rational approximations of § in the sense that [30]

INeB— My| < |INB—=M| VM,N€Z0<N < N.

At the first step of this protocol, M /N; = 1/n;: Bloch’s the-
orem applies to the superlattice of period nj, resulting in a
spectrum consisting of n; subbands with continuous disper-
sion. At the next step, the period of the superlattice and thus
the number of subbands is N, = niny + 1 = nyny [41]: since
the approximation to 8 changes very little, the spectrum is still
dominated by the n; first-order bands, each now split into n;
narrower subbands, see Fig. 1. As further continued fraction
terms are taken into account, more and more narrow subbands
are formed, each time by splitting existing subbands into 7y
new ones.

The formation of this hierarchical structure can be under-
stood in terms of a discrete renormalisation group procedure
[21, 24-26, 28]. Creating first-order subbands can be taken as
renormalising length scales by a factor of f~! ~ n;: the new
‘lattice sites’ correspond to approximate Wannier states located
at each minimum of the quasiperiodic modulation (see Fig. 2).
Since the modulation period is incommensurate to the lattice
spacing, the jth renormalised lattice site will have a phase shift
2r31j compared to the original lattice sites. This results in
a quasiperiodic modulation of incommensurate ratio 3; in the
effective Hamiltonian of each subband. These Hamiltonians
can now be renormalised by a factor of ,6’1_1 ~ np, giving rise
to second-level subbands modulated with the new incommen-
surate ratio 3,: repeating such steps indefinitely constructs
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FIG. 3. Thermal entropy per particle in the Aubry—André model for
B = 1405/8658 ~ [0;6] and different values of A. At criticality,
the distinct sizes of gaps appearing at different renormalisation steps,
and thus length scales Ny, result in an infinite staircase structure: in a
finite portion of the model, this structure gets cut off at the narrowest
band width of the system. For A # 2, the critical structure persists
in the stairs corresponding to N < &. At lower energy scales, the
system is effectively localised or extended, therefore, the temperature
dependence of entropy is equivalent to that of an unmodulated tight-
binding chain, S(T') ~ kg log(T)/2 at the lowest temperatures.

the entire spectrum. It can be shown [21] that for the Aubry—
André model with n; > 1, the renormalised on-site potential
remains purely sinusoidal, that is, the effective Hamiltonian of
each subband is of Aubry—André form with incommensurate
ratio Sy at the kth step.

B. Behaviour in the extended and localised regimes

At A = 2 in the Aubry—André model, the hierarchical struc-
ture of the spectrum described above is manifest at all energy
scales and therefore all length scales. Away from the critical
point, the correlation length & of the system becomes finite.
On this length scale, either the potential or the kinetic energy
term of (1) becomes irrelevant, resulting in an either abso-
lutely continuous spectrum and extended states for A < 2 or
a dense point spectrum and exponentially localised states for
A > 2. The crossover between the critical spectrum and the
extended or localised spectra can be demonstrated using the
thermal entropy of a single particle in a canonical ensemble:

¢~ Ei/(ksT)

Y, e EiltksT)” @)

S=—@§}M%m pi =
i

At temperature T, exp(S/kp) is a measure of the number of
states up to ~ kg7 above the ground state. S(T) is plotted
for different values of A < 2 in Fig. 3. At criticality, each
renormalisation step defines a new energy scale resulting in
an infinite staircase structure. For A # 2, such stairs persist
down to energy scales corresponding to lengths on the order
of &: below this scale, the stairs smooth out and the scaling
of entropy with temperature approaches that expected for an
unmodulated tight-binding chain.

(@ 10— . . ; . . : :
g 0.8 |

2 06l I
S

- I |
= |

& Ll
:)) 100 LJ JLJL. ll llul IJI J|. W i il !

i

10-10 £ i 1‘ T,

1015 b y 4 \

Scaled probability

1020 |F '

et l?wﬂ

10725 |

| I I I I I I I 1
-4 -3 -2 —1 0 1 2 3 4
Site index n,/1000

FIG. 4. Scaled ground state probability distribution |y (n)|? /| (0)|?
in the Aubry—André model for 8 = 1405/8658 ~ [0; 6] at the critical
point (A = 2; orange), and for £ ~ 200 in the extended (A = 1.99;
blue) and the localised (A = 2.01; green) phases on linear (a) and
logarithmic (b) scales. On length scales shorter than &, all wave
functions appear similar; on larger scales, the coarse-grained density
distribution of the extended state becomes uniform, while the lo-
calised wave function is dominated by exponential decay oc e2Inl/g
(straight lines).

In the localised phase A > 2, £ is normally identified with the
localisation length of the wave function envelope which can be
calculated without detailed analysis of the wave function [42]:
in the Aubry—André case [20],

3!
Eh>2)= (log 5) (5a)

for all eigenstates and all values of 8. Due to Aubry duality,
the structure of the Aubry—André spectrum for modulation
amplitudes A and 4 /A is identical save for an overall rescaling
[20]: this implies that the length scale & where the crossover
happens in the two cases is the same, giving

-1

&) = (5b)

A
log =
g7

The crossover between critical and extended or localised
behaviour is also manifest in the structure of the wave func-
tions. At A = 2, non-trivial structure appears at all length
scales: away from criticality, this structure is only manifest up
to length scales ~ & beyond which the density distribution is
either dominated by exponential decay or becomes uniform.
This is demonstrated for the ground state in Fig. 4 which also
confirms the localisation length given by (5a).



C. Analytic scaling theory

In this section, we present a full renormalisation group treat-
ment of the Aubry—André model based on Ref. [21]. This treat-
ment becomes exact in the limit when all continued fraction
terms of B are large, thatis, 8, 81, -+ < 1.

As in Sec. Il A, we start by approximating 8 with 1/n;, that
is, we consider the following periodic Hamiltonian:

H = —J; (a;ajﬂ + h.c.) - Jk; cos (i—?(] - ¢)) a;aj,

(6)
where ¢ is a well-defined global spatial offset. The spectrum
of the resulting periodic lattice splits into n; subbands each
of which gives rise to Wannier states with a spacing of n;
lattice sites (red in Fig. 2). Since n; is large, beyond-nearest-
neighbour couplings between these new states are vanishingly
small, and thus each subband can be well described by a new
tight binding model with dispersion

E(k, ¢) = Eo(¢) — 2J'(¢) cos k, )

where J’ is the hopping between two neighbouring Wannier
states, « is the renormalised quasimomentum and Ej is the
mean energy of the subband. In principle, both Ey and J’
depend on the phase ¢ in (6). As we will discuss below, the
variations of E are on the order of J’, which is exponentially
small. Similarly, for large n;, the variations of J’ are exponen-
tially smaller than J” itself, thus they can safely be ignored in
any effective theory.

We now determine the dependence of Ey on ¢ in this pe-
riodic approximation by applying the Aubry duality transfor-
mation (2). It is important to note that, as S is rational, (2)
only generates n; distinct reciprocal space modes. In order to
make the transformation unitary, (6) is replaced by a Hamilto-
nian acting on n; lattice sites with twisted periodic boundary
conditions:

n]
H= —JZ (a;aj_leik/"‘ + h.c.)
j=1

ny 2 . .
_kaz:;cos (n—T(]—q))) a}aj (8)

where ag = a,,. Applying the duality transformation (2) to
(8), it becomes

VARS 4
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That is, the duality transformation exchanges the quasimomen-
tum « and the offset ¢. By (7), the energy eigenvalue of the
dual Hamiltonian depends on its quasimomentum 27¢ as a
simple cosine the amplitude of which is taken independent of

k. Therefore, Ey also has a cosine dependence on ¢:
Eo(¢) = Eo — (JA) cos(2m¢) (10)

(N = % X 200 (11)

Combining (7) and (10), the dispersion relation of the periodic
approximation is finally given by

E(x,¢) = Ey —2J' cos k — (JL) cos(2n ). (12)

In the quasiperiodic system however, 1/ differs from n; by
a small irrational number (i, therefore, the jth minimum of
the potential is shifted ¢; = jB; away from a lattice site (see
Fig. 2). Eq. 12 is thus not exact, but as B; is assumed to be
small, ¢; changes slowly: therefore, (12) can be used as an
effective Hamiltonian for the new Wannier states of separation
1/B. That is, upon rescaling by 1/, the resulting model is
described by the Hamiltonian

H = -2J cos p’ — (J1) cos(2n %), (13)

an Aubry—André model of parameter 5; with renormalised
potential and hopping terms. The same procedure can then
be repeated with step sizes 1/B¢ to obtain a renormalisation
group treatment of the full spectrum.

The terms J’, (JA)" entering (13) may be estimated numeri-
cally from the scaling of bandwidths over a single step of the
procedure. In the limit of large ng, the scaling of J for states
sufficiently far from E = 0 can be calculated analytically using
the WKB approximation (see Appendix A). These calculations
show that the renormalisation of the potential-to-hopping ra-
tio A does not depend on energy (and hence the place of the
subband in the spectrum), and is given by (see Appendix B)

1B
N = 2(%) : (14)

Iterating this procedure on the emerging quasiperiodic lattices
gives the effective amplitude A on length scale ~ Ny as

@ _ & 1/B...Br-1 N & Nk

AN =2 ( 2) ~2 > . (15)
For A <2, A > )\ > \"” > ...: the RG procedure tends to
A% = 0, that is, the quasiperiodic modulation becomes irrele-
vant and hence all eigenstates are extended. On the other hand,
if A > 2, A increases upon renormalisation: the system flows
to A®) — co where hopping is irrelevant, and all eigenstates
are localised. The critical exponent of the reduced tuning pa-
rameter lg = log(A/2) is v = 1: indeed, according to (5b),
lgl =€

III. CRITICAL SCALING NEAR THE
SUPERFLUID-INSULATOR TRANSITION

We performed exact diagonalisation on the single-particle
Aubry—André Hamiltonian (1) and extrapolated the behaviour
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FIG. 5. Cartoon of the extended lowest band of a periodic tight-
binding model of period N > £. On length scales Ny above the
correlation length, any effective potential A s very small, resulting
only in narrow avoided crossings. That is, the band structure is
similar to an uninterrupted band of a model of period ~ &, as shown
in the extended Brillouin zone on the right. The effective lowest
band governing quantum critical dynamics is thus ~ 27/¢ wide in
momentum space and its width AE tends to a constant valueas N > &:
this can be used to estimate I resulting in the scaling relation (19).

of the truly incommensurate model from the sequence of ratio-
nal approximations My / Ny of 3, all implemented with periodic
boundary conditions.

The key quantity we considered was the curvature of the
lowest band,

1 dek)| 1 n?

- 2Ja(2) dk? |l - 7meffa§

(16)

where meg is the effective mass of particles near the bottom
of the band and ay is the lattice spacing. The normalisation
is chosen such that " for an unmodulated tight-binding chain
is unity. In an extended phase, the motion of a single particle
becomes ballistic beyond a length scale, therefore, its effective
mass tends to a finite value in the limit of an infinite system.
Bands of a localised model, however, become completely flat,
resulting in an infinite effective mass and thus zero curvature.
As aconsequence, the limit limy o, ', where N is the period
of the lattice, can be used as an order parameter in a quantum
localisation transition. We approximate the second derivative
using the energy difference over a finite segment of the lowest
band:

_ 1 Eg—Ey

I "

where Eg and Ej are the ground state energies of the sys-
tem in periodic boundary conditions twisted by ® or without
twist, respectively. Eqs. 16 and 17 are equivalent for ® — 0,
but in practice, I" remains essentially unchanged for signifi-
cant fractions of . In this paper, ® = /20 was normally
used. In interacting many-particle systems, the appropriate
generalisation of I gives the superfluid fraction or superfluid
stiffness, which is widely used to analyse superfluid—insulator
transitions [34, 43, 44].

We note that the curvature of a band is related to its width
AE and therefore can be used to extract the scaling properties

of the bandwidth; in a homogeneous or crystalline system, this
scaling is governed by the dynamical exponent z:

AE ~ 72, (18)

To elucidate this connection, the typical band structure in the
extended phase is sketched in Fig. 5. On length scales Ny > &,
the effective potential is irrelevant compared to the effective
hopping (that is, the renormalised A®) < 1) and the spectrum
of any periodic approximation with N > & becomes similar to
the spectrum for N =~ ¢: the effective lowest band is folded up,
largely conserving the continuity of the spectrum. In particu-
lar, the small gaps introduced by the remaining weak potential
do not affect the curvature at k = 0. That is, regardless of
the period Ny > ¢ of the lattice, the lowest dynamical band is
~ /¢ wide in k-space. Approximating its dispersion by

(k) ~ =0 cos(eh)

the band curvature follows as
AE

I~ 2
(1/¢)

by the definition of z and v: note that v = 1 for all g in
the Aubry—André model (cf. Eq. 5b). We note that the scaling
behaviour of the many-particle superfluid fraction is also given
by (19) [45], as expected given its relation to I'.

~ET 2P (19)

A. Results for the Aubry—André model

The curvature of the lowest band was calculated for the
Aubry—-André model (1) near A = 2 for several different in-
commensurate ratios and plotted in Fig. 6. The rational ap-
proximations to 8 were always chosen such that the period
of the resulting superlattice be much larger than the longest
correlation length considered, &max = 10*. In contrast to ho-
mogeneous systems, the order parameter never follows a power
law, even when ¢ is on the order of thousands of lattice sites:
this contradicts the conventional notion of a ‘scaling regime’
where the only relevant length scale is the correlation length,
resulting in power law behaviour [33].

The origin of this discrepancy is the emergence of the arbi-
trarily large ‘microscopic’ length scales Ny discussed in Secs. I
and IT A. Consider a near-critical Hamiltonian with extended
eigenstates of correlation length & = Nj: broadly speaking, its
spectrum displays the first k levels of the hierarchical critical
spectrum, but further ones are not resolved and thus do not
have an effect on I' (¢f. Figs. 3 and 5). As a result, its critical
scaling at £ ~ N; depends on the kth step of the renormali-
sation protocol of Sec. II which is in turn governed by Sx. In
particular, the slope of the log-log plot in Fig. 6 is determined
by the local dynamical exponent z; = z(Bx) defined by

AE(Niy1) _ (Nent
AE(Ny) Ni

) = g (20)

In Fig. 6(a), the continued fraction expansions of all values
of B become periodic with identical periods; this implies that
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FIG. 6. Curvature of the lowest band, I', as a function of the reduced
tuning parameter g = log(A/2) = &~! for several incommensurate
ratios . Small dots indicate all computed data points, large symbols
appear at g = 1/N;. Smoothing splines (thin solid lines) were
added to two data sets to guide the eye. The period of the simulated
superlattice for each curve is much greater than &px = 10%. (a) The
continued fraction expansions of the 3 are identical except for the first
few terms. The sequences {8} governing the fine structure of the
spectrum are hence the same up to a shift, resulting in identical line
shapes and effective critical exponents. The marks appear on the same
parts of this line shape, indicating that the deviations from power law
behaviour are caused by the hierarchical structure of the spectrum. (b)
The three values of g differ by less than a part in 10°; however, their
continued fraction expansions diverge after the 8th term (Ng = 985),
resulting in identical scaling up to |g| = 1/985 (black dots) followed
by markedly different critical behaviour for |g| < 1/985.

the sequence {B;} and thus the scaling behaviour is identical
from a point on. This is manifest in the identical but shifted
curves in the plot: the difference in overall scaling stems from
the different initial terms in the continued fraction expansion
which result in different Ny ’s corresponding to the same S ’s.

In Fig. 6(b), the values of 8 are very close to each other,
and so their continued fraction expansions start with the same
terms. Since the first few By differ by very little, the critical
scaling is almost identical for relatively small &: this changes
noticeably as further terms in the continued fraction expan-
sions become different, giving rise to completely different
scalings. This behaviour demonstrates that while the structure
of quasiperiodic systems described by only slightly different
incommensurate ratios may be very different on sufficiently
long length scales, such differences are immaterial in short
samples. Such unpredictability of the large-scale behaviour of
quasiperiodic systems also plays a key role in quantum com-

plexity theory [13].

We have thus found that the existence of “‘microscopic’ struc-
ture on all length scales prevents the formation of a conven-
tional scaling regime where exact power-law scaling relations
such as (19) would hold. For ’s with periodic continued frac-
tion expansions, however, the sequence {fy } itself is periodic
and so the scaling behaviour repeats itself on arbitrarily long
length scales. In this case, one can combine all renormalisa-
tion steps in one period into a discrete RG protocol where all
steps are identical. For such RG schemes, it is common to find
a power-law behaviour on average, with log-periodic oscilla-
tions around it [46-50]: indeed, we observe such oscillations
in Fig. 6(a). Nonetheless, a single period of these oscillations
may contain an arbitrarily complex pattern of the RG steps de-
fined in Sec. II C, and so a description of the critical behaviour
in terms of log-periodic oscillations is not generally practical.

The continued fraction expansions of almost all irrational
numbers are, however, not periodic. For these numbers, the RG
protocol cannot be described in terms of a single, if complex,
step, resulting in a situation more complicated than the log-
periodic oscillations discussed above. In particular, there is no
way to sensibly define single critical exponents for the Aubry—
André model for these values of B: the critical behaviour
is only appropriately described by the detailed dependence
of observables on the length scale. An example of such a
description is the set of local dynamical exponents (20): using
the analytic RG procedure discussed in Sec. II C, z; can be
calculated for B < 1 (see Appendix C). To leading order,

B!
log(B)’

meaning that zz — oo as Bx — 0. Therefore, for an in-
commensurate ratio 8 = [0;ny, np, ... ] with ng, < ng, for all
K < ki < ky for some K, the conventional definition of the
dynamical exponent,

2% ~ 1.166 1)

1
= lim og AE’
E—o0 1()g .f

(22)

diverges: we note that these numbers form a dense, uncount-
able subset of [0, 1]. This marks a completely novel critical
behaviour, one not even approximated by power laws.

B. Ground state universality of quasiperiodic models

In addition to the Aubry—André model, we investigated a
generalised Hamiltonian that also allows for quasiperiodic
modulation of the hopping [18, 19, 27]:

H= —Z [J+J,ucos(2n'ﬁ(n+ %) +¢)] X
(a;anﬂ + h.c.) - JA Z cos(27rﬁn)aj,an (23)

where p is the dimensionless modulation amplitude of the
hopping. Remarkably, (23) still has no mobility edges: locali-
sation transitions occur simultaneously in all eigenstates, sim-
ilarly to the simple Aubry—André case [18, 19]. The boundary
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FIG.7. Phase diagram of the generalised Aubry—André model (23) for
¢ =0(a)and ¢ = 7/2(b)[19]. Forall values of ¢, alocalisation phase
transition line appears in the (A, i) plane; additionally, a critical phase
dominated by u appears if ¢ = O precisely. The dashed lines show
the paths (25) along which localisation transitions were considered in
Sec. III B.

between extended and localised phases is given by

>, \/(k/2)2 +hpcos ¢+ p? =2 (24)

for ¢ # 0, regardless of the value of 8 [19]. For ¢ = O,
the phase diagram consists of an extended (A < 2;u < 1),
localised (A > 2,2u), and a critical phase 2u > 2,)) [18, 19].
As examples, localisation transitions along the following paths
were considered (see Fig. 7):

=0 u=1/2
p=n/2  2u=k=A/V2

Even though the hopping in these models is no longer uniform,
I' was calculated using the unchanged definition (16): it is
an appropriate order parameter of the localisation transition
regardless of normalisation.

Further to this generalised Aubry—André model, we consid-
ered the continuum quasiperiodic Hamiltonian

A~ 2;
A=x2.

(25a)
(25b)

P

2m

H = + Vi cos?(kx) + Va cos?(Bkx). (26)
Eq. 26 reproduces the Aubry—André model in the limit V; >
E, > V, where the recoil energy,

T — 2m B
is the typical kinetic energy scale of the system. In addition to
this limit, we studied the case of equal absolute lattice depths
Vi = Vo = VE, /2. Periodic approximations to the Hamiltonian
were implemented in momentum space and the curvature of
the lowest band was calculated by exact diagonalisation using
a formula adapted from (17) [43, 44]:
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A localisation transition was observed in the ground state of
this model for all tested values of the incommensurate ratio
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FIG. 8. Finite-size scaling of I" at the localisation transition of the
Aubry—André (AA) model, the generalised Aubry—André (GAA)
model with parameters (25) (bottom left axes), and the continuum
model (26) with V; = V, (top right axes) for 8 = V2-1=1[0;2].
The scaling parameters for tight-binding models are naa = {aa = 1;
Na ~ 1.155, £y = 1.233; n, = 1.408, ¢, = 1.203. All models share
critical exponents and the data collapse onto the same scaling curve,
suggesting they belong to the same universality class.

at a B-dependent critical V.. Unlike the generalised Aubry—
André model, however, its spectrum is unbounded, and several
mobility edges appear in the spectrum of excited states. Nev-
ertheless, we expect that the structure of the ground state has
a hierarchical structure similar to that discussed in Sec. I.

To test this hypothesis, the curvature of the lowest band was
computed for several rational approximations of 8 = [0; 2] near
the transition point of all these models. Since this continued
fraction expansion is periodic, effective critical exponents v
and z exist and can be determined using a finite-size scaling
method [35, 51]. For ahomogeneous system near a localisation
transition, the finite-size scaling hypothesis can be applied to
(19) to give

[ =L"20(L') (28)

where L is the size of the finite system, d is the distance from the
transition point (e.g. (A — 2) for the Aubry—André model) and
®(x) is a scaling function determined by the universality class
[35, 51]. In such systems, all sufficiently large length scales
are equivalent: taking I'(6) for several different system sizes,
critical exponents can be found accurately as the ones resulting
in the best collapse of the scaled curves on each other [51,
52]. For quasiperiodic models, (28) does not hold in general,
but for 5’s with periodic continued fraction expansions, Ni’s
separated by a full period of the expansion correspond to the
same S and thus display the same emergent structure: using
these values of Ny as system sizes or period lengths, (28)
applies and fitting to it yields the average dynamical exponent
discussed in Sec. IIT A.

The result of such a fit is shown in Fig. 8 for the Aubry—
André model, the generalised models (23, 25) and the con-
tinuum model (26) with 8 = [0;2]. The resulting critical
exponents are the same as are the scaling curves apart from
overall rescaling. This suggests strongly that both the gener-
alised Aubry—André transitions and the continuum quasicrys-
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FIG. 9. Curvature of the lowest band in the Aubry—André model,
the generalised Aubry—André model with parameters (25) (bottom
left axes), and the continuum model (26) with V| = V, (top right
axes) as a function of the reduced tuning parameter A —2 and V -V,
respectively, for 8 = [0;2,...,2, 6]. The scaling parameters  and ¢
are the same as in Fig. 8. Apart from overall rescaling, the scaling
behaviour of all models are equivalent, suggesting they belong to the
same universality class which, however, is not properly described by
power-law scaling.

tal belong to the same ground state universality class as the
Aubry—André model.

For general 3, however, the Aubry—André phase transition
has no well-defined critical exponents, and so the critical be-
haviour depends qualitatively on the correlation length. There-
fore, such a universality class cannot be described in terms
of critical exponents and finite-size scaling functions, only
through the detailed dependence of observables on the length
scale. To illustrate such universality, the curvature of the low-
est band in all models was plotted in Fig. 9 as a function of
the distance from the transition point. The curves can be col-
lapsed on top of each other: points mapped onto each other
correspond to an equivalent correlation length. This notion of
universality is markedly different from the conventional one
based on the existence of a scaling regime in which the only
effect of microscopic structure is to set critical exponents.

IV. MULTIFRACTAL ANALYSIS

The ground state dynamical exponent considered in Sec. I1I
is a key quantity in quantum phase transitions, since at zero
temperature, only the behaviour of the ground state is relevant.
Unlike most quantum phase transitions, however, localisation
transitions in the Aubry—André model and its generalisation
(23) occur at the same point for all eigenstates [18-20], result-
ing in a fully singular continuous spectrum. A probe of the
entire spectrum, as opposed to the ground state only, is also
more relevant to experiments on Anderson and many-body
localisation.

To explore the overall behaviour of the spectrum, we em-
ployed a multifractal scaling technique which yields statistics
describing differences in the scaling behaviour at different
parts of the spectrum. Furthermore, we demonstrate the con-

nection between the structure of the spectrum and the resulting
quantum dynamics by analysing the anomalous diffusion dy-
namics, a key experimental diagnostic, of the same models at
criticality.

A. Formulation

Consider a periodic approximation S = My /Ny of the in-
commensurate Hamiltonian. The singularity strength «; of the
ith subband is defined by

A; ~ N (29)

where A; is the width of the subbband: by comparison to (18),
the ground state dynamical exponent is 1/a for the lowest
subband. For an incommensurate ratio with periodic continued
fraction expansion, and hence a uniform scaling behaviour
over different length scales, it is expected that the subbands of
given singularity strength form a fully self-similar structure,
the fractal dimension f(«@) of which is given by [37, 53]

Qa) ~ (A) 7@ (30)

where Q(a)da is the number of subbands with singularity

strength between @ and @ + da and (A) = N,/ Vs a typical
bandwidth of singularity strength «. The function f(a) con-
tains complete information about the scaling behaviour of the
spectrum and is routinely used to characterise critical spectra
of various systems [18, 37, 54]. We note that the Hausdorft
dimension of the entire spectrum is the maximum value of
f(a) [37].

To accurately find f(a) numerically, we considered the scal-
ing exponents 7, defined through [37]

N
ZA;” ~N{ 31)
i=1

this set of dimensions gives f(a) through the Legendre trans-
form [37, 53]

B d‘rq' 3
a = E’ ( a)
fla) =qa -1,. (32b)

It is now straightforward to show (see Appendix D) that the
slope of a straight line fit to

N(N;7) = — Z 17 log A; (33a)
and
$(Ni; ) == > i log ", (33b)
i
respectively, as a function of log Ny, where
ATT
(T) i
i T Y Ao (33¢)
’Lll Z] A]T

gives a~! and f/a corresponding to a particular value of 7;
from this, the f(@) curve can be obtained parametrically.
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FIG. 10. Multifractal dimensions f(«) for 8 = [0; 1] (n = 2,6, 10) at
the critical point of the Aubry—André model. The smallest « in the
spectrum coincides with the inverse of the ground state dynamical
exponent, indicating the narrowest bands of the spectrum occur near
the ground state. Symbols denote the peak of each curve: the most
probable « is approximately 0.5 for small continued fraction terms,
but significantly more for n = 10. The f(a) curves of the critical
generalised Aubry—André Hamiltonian (23, 25) are indistinguishably
close to the ones plotted here.

B. Results, universal multifractality

Multifractal analysis using the above formalism was car-
ried out for B8 = [0;n] (n = 2,6,10): the resulting f(@)
curves for the Aubry—André model are shown in Fig. 10.
f(a) is only defined on an interval apy, < @ < apyx and
Sf(@min) = f(@max) = 0: @minmax give the scaling exponents of
the smallest and largest bandwidths of the system, respectively,
but these represent a vanishing minority of all bands. In fact,
a;ﬂln equals the ground state dynamical exponent (18) in all
cases we considered: this suggests that the narrowest bands of
the spectrum are near the bottom (and the top) of it and their
scaling behaviour is atypical for the spectrum.

Localisation transitions in the generalised Aubry—André
model (23) were also observed to occur simulataneously in
all eigenstates [18, 19], giving rise to fully critical spectra at
transitions. The multifractal dimensions f(«) at the transi-
tion points (25) were thus obtained using the same method.
The f(a) curves for the simple and generalised Aubry—André
models are identical for a given (: this directly shows that the
universality observed in the ground state also applies to the
entire spectrum. For B = [0; 1], the golden mean, and ¢ = 0,
this behaviour was already known [18]. In this particular case,
singular continuous spectra appear away from the localisation
transition line as well (¢f. Fig. 7): in accordance with Ref. 18,
we found that the multifractal structure of these critical spectra
is markedly different from the ones on the transition line (not
shown). However, the existence of a critical region appears
to be a peculiarity of the ¢ = 0 phase diagram [19], thus no
universal features are expected of it.

It has been conjectured that the peak of the f(a) curve is
at * = 1/2 for all B, that is, the Hausdorff measure of the
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FIG. 11. (a) RMS wave function width ¢ in the critical Aubry—André
model for rational approximations of 8 = [0;n] (n = 2,6,10) as a
function of time for a state initially localised on a single site, averaged
over the initial site (solid lines). For all values of 8, the expansion is
well described by the power law £ o« 112 (dashed and dotted lines).
Convergence to a constant value at long times is a finite size effect.
Inset: comparison of £(¢) for the simple (A = 2: AA, bottom time
axis) and generalised [(A, i, @) = (2,1/2,0): GAA, top time axis]
Aubry—André models with § = [0;10]. Except for very short times,
the two curves are related by time dilation: [gAA(t) = [;‘A(O.867t).
(b) €2/t]/ 2 for the same expansions. As before, this ratio tends
to a constant at long times, and the initial oscillations around this
limit decay in time. (c) £, for g = [0;6] and p = 1,2,4 in the
same set-up. For each p, {;, increases as a power law, however, the
critical exponents o, depend on p [0 = 0.4616(12), 0p = 1/2,
oy = 0.5500(4)]. Inset: comparison of o, calculated from the
multifractal spectrum using (42) (solid line) to the exponents obtained
numerically (coloured crosses).

spectrum is dominated by bands scaling as A ~ N~2 [37].
While this appears to be the case for 8 = [0;2] and maybe
for [0;6], it certainly is not for [0;10] where a* =~ 0.515
(the numerical error of « is at most ~ 0.005). Lower quality
evidence for [0; 7] with large n suggests « increases further
with n: the observation of Ref. 37 appears to be a consequence
of only using (more easily accessible) 8’s with small continued
fraction terms.



C. Expansion of a wave packet

The multifractal dimensions f(@) contain full information
on the scaling behaviour of the spectrum, and since the dy-
namics of a quantum system depends on differences between
its energy levels, they capture the dynamical behaviour of the
critical system. A straightforward example is the diffusion
dynamics of an initially site-localised particle after a sudden
quench onto the Aubry—André Hamiltonian (23). This ex-
pansion can be characterised through the evolution of the pth
moment of the resulting quantum state:

fp = (|x = x0l"); ty = )" (34)
where x is the position where the wave function is initially
localised and p is an arbitrary positive real number. In a con-
ventional critical system, £,, ~ t1/2 because ¢ is a characteristic
time scale corresponding to the length scale £,(¢) [55]. In this
context, oo = 1/z is commonly referred to as the anomalous
diffusion exponent.

Using exact diagonalisation, the time evolution of the initial
state can be obtained directly from

(@) = > Inye ™ (nly (0)) (35)

where |n) are the eigenstates of the Hamiltonian with energy
E,: given |y(t)), pp can be calculated straightforwardly. As
the details of the expansion dynamics will depend on the choice
of initial state [56], we show in Fig. 11(a) the evolution of
the rms width £, averaged over all initial sites xo for periodic
approximations of 8 = [0; 1] (n = 2, 6, 10) in the Aubry—André
model. Apart from finite size effects, each expansion follows
an approximate power law: fitting a power law to each plot
resulted in a diffusion exponent o = 0.5 within the error of
the fit. Similar behaviour has previously been found for other
values of 3 as well [57]. On the other hand, o for a fixed value
of B does depend on p, as shown in Fig. 11(c) for 8 = [0;6]
and p = 1,2, 4. This unusual behaviour is readily accessible by
measuring higher moments of the diffused density distribution
in typical sudden expansion experiments [58—60].

In addition to the Aubry—André model, £, () was calculated
by the same method for the critical point A = 2, u = 1/2,
¢ = 0 of the generalised Aubry—André Hamiltonian: ¢, for
B = [0;10] was plotted in the inset of Fig. 11(a) together with
¢, for the simple Aubry—André model. The exponents of the
approximate power laws were found to match, together with
the structure of oscillations around it:

(57 (1) = £5(0.8671)
holds accurately for all but the shortest time scales.

D. Connection between expansion dynamics and spectrum
multifractality

In order to connect the expansion dynamics in a critical tight-
binding model to the multifractal properties of the spectrum,
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consider the Aubry—André model with an arbitrary value of
B with periodic continued fraction expansion. Since the only
natural length and time scales of the problem are the lattice
spacing ao and the ‘hopping time’ i/J, u, depends on these
scales as

Hp(t; x0, BN) = agm,,(Jt; X0, B, \) (36)

where m,, is now a dimensionless function of dimensionless
variables. To get an overall description of the critical dynam-
ics, we set A = 2 and average over the position of the initial
site:

N

Z my(Jt; x0, A = 2).  (37)

X0=—

mp(JEA) = im S

Consider now the kth step of the renormalisation process out-
lined in Sec. I C: the spectrum consists of N critical subbands
with incommensurate ratio Sy ; let the effective hopping term
in each be J; (1 <i < Ng). Provided the time ¢ is longer than
the timescales corresponding to typical band gaps, interference
between bands averages out, leaving

Ni
mp (It %0, B) = 1 1x0) PNE mp (Jits 5§, B) - (38)

i=1

where |x(<)’)) is the Wannier state of the ith subband living
(among others) on site xg; the factor le is due to the renor-
malisation of the lattice spacing. To average (38) over lattice
sites, we note that each renormalised band has one Wannier
state per Ny lattice sites and the sum of the overlap integrals
|<)c(()l)|xo)|2 over all xq is 1 since the |xp) form a basis. As a
result, the overlap integrals average to 1/Ny for all lattice sites,
and hence

Nk
(It B) = NP ) i (Jit: ). (39)

i=1

Now, consider those k that correspond to full periods of the
continued fraction expansion, that is, S = 5. Assuming that
the expansion is governed by a power law at long times,

mp(Jt; B) o« (J)P7P - (Jt — ), (40)
Eq. 39 gives
N
NS e = (gepee

i=1
Ny Ny
DT S AT e NP (41)
i=1 i=1

where A; is the width of the ith subband for 8 = M /Ng,
4J; in the unmodulated tight binding approximation. In terms
of the multifractal dimensions introduced in Sec. IV A, the
anomalous diffusion exponents o, are given by

op = ——2. (42)



In contrast to conventional diffusion dynamics, o, now de-
pends on p and is not equal to the inverse of the ground state
critical exponent. The only crucial assumption in deriving
(42) is the self-similarity of the spectrum, therefore, we expect
it to hold for the dynamics of other singular continuous spec-
tra, e. g. the Fibonacci quasicrystal [61-63]. In particular, as
the spectra of all generalised Aubry—André transition points
are described by the same multifractal exponents, the o7, are
universal too: the differences seen at very short times can be
attributed to initial renormalisation steps required to attain a
fixed point.

An interesting special case is that of p = 2. There is strong
numerical and analytical evidence [36, 64—-66] suggesting that
for the Aubry—André Hamiltonian with rational 8 = M /N, the
sum of bandwidths scales as

N
lim N ) A; =9.3299 (43)

N—oo :
i=1

regardless of M. This implies that 7_; = —1 for any 8: com-
paring with (42), we find that o» = 1/2, as seen numerically
in Fig. 11(a). Unlike diffusive systems, however, o0 = 1/2
here cannot be regarded as the consequence of a random walk
between scatterers since 0}, # 1/2 in general.

In Fig. 11(b), we note that oscillations around the approxi-
mate power law scaling of £,,(¢) decrease with time and become
unnoticeable for sufficiently long times. The origin of this be-
haviour is clear from (39): for Jt > 1, the expansion dynamics
can be regarded as a superposition of the same dynamics at
earlier times J;¢. Since these J; range over several orders of
magnitude for sufficiently large Ni, m(J;t) probes any short-
time oscillations over several periods, thus averaging them out.
That is, expansion length scales in different subbands can be
very different, of which ¢, is only an average. This distinc-
tion becomes manifest in the expansion dynamics for 8’s with
aperiodic continued fraction expansions: while expansion dy-
namics at different length scales is different, at any particular
time, these are averaged out, preventing the formation of clean
crossovers similar to those seen in Fig. 6 for a single sequence
of subbands (namely, the ground state).

V. CONCLUSION

We have investigated the critical behaviour of the Aubry—
André model and other one-dimensional quasiperiodic systems
near their localisation transitions. In particular, we considered
the dependence of energy scales near the ground state, AE, on
the correlation length £&. While the standard theory of phase
transitions dictates that for large &, the system attains a scaling
regime in which AE o £7%, we found that the critical behaviour
is not described accurately by a power law on arbitrarily large
length scales.

This is caused by the hierarchical structure of the critical
spectrum of quasiperiodic models, captured by the continued
fraction expansion of the irrational number 8 = [0; ny, np, . . . |
describing their incommensurability. Each continued fraction
term ny has associated with it a length scale Ng: scaling prop-
erties of the critical spectrum near this length scale were found
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to be fully determined by ny. Since the spectrum of a system
near a phase transition is sensitive to spatial features on length
scales up to the correlation length &, the critical behaviour of
quasiperiodic models at ¢ = N; will also be governed by ny.
As the sequence of these n can be arbitrary and is controlled
by the precise value of S, the dynamical exponent z can typi-
cally not be defined for quasiperiodic models. As an example,
we found that for a wide class of 8’s, AE tends to zero faster
than any power of £, heralding critical behaviour qualitatively
different from any conventional system. Furthermore, the de-
pendence of the critical behaviour on the incommensurate ratio
is unusual: arbitrarily close values of S can result in qualita-
tively different asymptotic behaviours very near the transition,
as their continued fraction eventually start to deviate.

Even though the localisation transition of one-dimensional
quasiperiodic models cannot be described by power law rela-
tions, we find numerically that transitions in different models
sharing the same value of 3 display universal features. Instead
of critical exponents, such universality classes are described by
the detailed dependence of observables such as AE on the cor-
relation length: for models belonging to the same universality
class, such functions can be scaled onto each other, similarly
to finite-size scaling techniques for conventional phase tran-
sitions. The origin of such universality remains the identical
behaviour under the renormalisation of length scales; the key
difference is that quasiperiodic systems only admit a single
sequence of discrete renormalisation steps that themselves de-
pend on the length scale.

To complement studies of the ground state, we considered
scaling properties of the entire spectrum on different length
scales. For B’s with a periodic continued fraction expansion,
the spectrum is expected to be self-similar at the Aubry—André
critical point: the structure was found to be a multifractal, and
multifractal dimensions were calculated for several values of
B. We also investigated the expansion dynamics of a localised
wavepacket and found that the evolution of the spread (r”)!/?
of the wave function is described by a power law the exponent
of which depends on p and 8: this is at odds with the behaviour
of diffusive systems, where this exponent is 1/2 for all p. Sim-
ilarly to ground state properties, we again found universality
between transition points of different quasiperiodic models in
both their multifractal spectrum and expansion dynamics.

For the Aubry—André model, we used a discrete renormal-
isation group protocol [21] to construct the critical spectrum
and thus explicitly calculate the scaling of AE with &; non-
power-law universality classes could be understood through
the renormalisation behaviour of other types of quasiperiodic
models near phase transitions.

Quasiperiodicity in higher dimensions leads to the emer-
gence of arbitrarily large ‘microscopic’ length scales the same
way as in one dimension: this discrete large-scale structure
is manifest in sharp diffraction peaks at progressively smaller
momenta [3, 67, 68]. Therefore, it is reasonable to expect
that phase transitions in such systems (including material qua-
sicrystals) also display non-power-law behaviour. In general,
quasiperiodic systems open the door to more complex large-
scale behaviours, especially with interactions, which can show
up, for instance, in increased quantum complexities [13], as



novel universality classes for the many-body localisation tran-
sition [69], and in conjunction with their inherited topological
features [70, 71].
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Appendix A: WKB theory of tight-binding models

In this Appendix, we develop a semiclassical theory of tight-
binding lattices with potentials slowly varying compared to
the lattice spacing. The derivations presented here follow
closely the standard derivations of WKB theory for an ordi-
nary, quadratic dispersion relation [72, 73]. Since the period
of the incommensuarate modulation, 8~! is large, this theory
is applicable to the Aubry—André model for the class of §’s
considered, and can be used to accurately estimate the renor-
malised hopping and thus the critical exponents v and z [21].

1. Construction of the wave function

We assume that the period of the modulating potential is
very much larger than the lattice spacing: in this case, the
discreteness of the wave function becomes irrelevant, and the
Hamiltonian can be written as (the unit of length is the lattice
spacing, h = 1)

H=-2Jcosp+V(%). (A1)

where the non-quadratic dependence on p follows from the
tight-binding dispersion relation. Due to this non-quadratic
dispersion relation, the quasiclassical wave numbers depend
differently on energy:

3 Vix)-E\
k(x) = arccos (—2 7 ) ; (A2)
TP E - V(x)
k(x) = ik(x) = arcosh —7 | (A3)

J

D'
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Using k(x), the Schrodinger’s equation (A1) and the WKB
ansatz can be written as

0 = —(cos pl(x) + cos k(x)y(x) (A4)

W(x) ~ A(x)exp (ii /xk(x')dx') = A(x)p(x). (A5)

where both A(x) and k(x) are assumed to vary slowly. Due to
this slow variation, considering terms with a different number
of derivatives amounts to separation of scales: in first order
WKB approximation, only terms with zero or one derivatives
are retained. The nth derivative of ¥(x) is given by

Yy M(x) = Ap"™ + nA’¢" D + O(A”)  where (A6)
¢’ (x) = +iko

¢"(x) = (ik)>¢p + ik’

¢ (x) = (xik)> ¢ + 3(xi)*kk’ ¢ + ik" ¢

2 () = (ik) ¢ + (;)(ﬂ)"‘lk"—zk’qﬁ +O(k"); (A7)

Eq. A7 can be proved by induction. Combining (A6,A7) gives
@™ and p"y as

Y = (xik)"A¢ + (;)(iik)n_z(iik’)Aqﬁ

+n(xik)" A’ ¢; (A8)
P = (k)" A — i(1)"! (’;)k"-%'m
—in(£k)" 1A%, (A9)

Writing cos p as a Taylor series, we finally obtain

R A2n a k2n
(cos py = Y -1y = {
n=0 0

n)!

Writing this into (A4) yields

(_l)n k2n—2 , N k2n—1 ,
am!” T [ 3 Gno AT D G A ¢”
=cosk Xy +i (% cos(k)k’A - sin(k)A’) @. (A10)
1
A(x) ¢ ——: All
() /sin k(x) (AD

1
3 cos(k)k’A — sin(k)A’ =0



noting that the velocity of a classical particle moving under
this Hamiltonian would be

o0H
v=x=-— =2Jsinp,
ap

(A12)
A(x) can be interpreted as reproducing the classical probability
of the particle being found at x, similarly to the amplitude in
standard WKB theory [72].

The derivation above does not depend on k(x) being real: at
points with too large potentials, k = ix with k defined in (A3).
The wave function (A5) becomes

1 o ’ ’
/sinh k(x) P (_ /xo KL )

where the classical turning point xg is given by E = V(xg) — 2.
At this turning point, k = 0, and so the cosine dispersion may
be replaced with a quadratic one: as a result, the Schrodinger’s
equation near the turning point reduces to the Airy equation.
Solving this equation gives connection formulae equivalent to
those in standard WKB theory:

W(x) o (A13)

X
————exp / de’)
2Vsinh (

¢ cos(/xkd ﬂ)
x——=1.
Vsink X0 4

The similarity of the connection formulae to standard WKB
also means that the Bohr—Sommerfeld quantisation condition
holds for this dispersion relation too:

‘/x:l k(x)dx = (n + %) n

We note that the region E > V(x) + 2 is also inaccessible clas-
sically: there, k(x) = ik(x) + 7, corresponding to an exponen-
tially decaying wave function changing signs at every lattice
site. Egs. A13, A14, and A15 generalise straightforwardly; we
shall not discuss them in detail as they only become relevant
near the top of the Aubry—André spectrum.

—>

(Al4)

(A15)
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Finally, we find the normalisation constant C for a wave
function living in a single potential minimum. Ignoring the
exponentially decaying part, the normalisation requirement is

X1 Cz X1 C2 1
1= / —— cos? p(x)dx = /
¥ Sinp x, Sinp 2

c? ora2J i J
=5 | Tdx —JCZ/ ar =2t -2 ”
2 X 2 w

X0 =X0

w
=./— Al6
c T (Al6)

where w is the frequency of classical oscillations in the well.

2. Hopping between neighbouring wells

Consider a potential consisting of identical, centrosymmet-
ric wells centred on x = na, n € Z. If a is large compared
to the classically allowed region near the minimum of the
potential, there is only appreciable hopping between neigh-
bouring minima, and its value can accurately be estimated
using WKB approximation. This calculation follows that of
[73, §55, Problem 3] which solves the same problem for a
quadratic dispersion.

Assuming that the overlap between wave functions ¥(x—an)
living in neighbouring wells is small, each one can be treated
as a Wannier function, that is, Bloch states are of the form

Yr(x)=C Z eFY(x — an). (A17)

n=—co

The Schrédinger’s equation for a single well and for the Bloch
state are then

= JYi(x = 1) = Jype(x + 1) + [V(x) - exJyu(x) = 0 (Al8a)
—J¥Y(x-1)—-J¥x+1)+[V(x)—e]¥(x)=0; (Al8b)

where ¢ is the energy of a well state in isolation and & is the
dispersion of the resulting band. Multiplying (A18a) by ¥(x),
(A18b) by ¥ (x), subtracting and integrating from x = —a/2
to a/2 gives

(er = W ()V(x) + J [Yie(x = DP(x) + e (x + DF(x) = () (x = 1) = e ()P (x + D] =

(ex —e)C=-J [(//2 | /;2/21

=-J

V() (x + 1)dx +

a+l/2 1
L Peemg)on e

—-a/2+1

a/2+1
un - '/a/z )‘I’(x)z,bk(x - l)dxl

(A19)
al2

Consider the integral in brackets. At @ = a/2, only the n = 0 and n = 1 terms are relevant in (A17):

Yi(x) = C(P(x) £ P(a — x)e'*)
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where the sign depends on whether the well eigenstate in question is even or odd. Substituting this form in the integral of (A19)

gives

(a+1)/2
-/(61—1)/2

(a+1)/2 1 .
dx:C/ [‘I—'(x——)‘l’(x+ )i‘I’ x——)‘I’(a———x)e’k“
(a=1)/2 2 2 2

1
X — —
2

1 1

_T(H%)w( - )w(ﬂé)w(“%_x)aka]dx

= lka/l/2 ((,l-i-l
1/2

Similarly, for @ = —a/2, the n = 0 and n = —1 terms yield
-(a-1)/2
[(a+1)/2

and hence by (A19),

12

sk—sziZJcoska/
-1/2

lP(a+1 N
2

|

: 12 1 1 -1 -1
dx:iCe_’k“/ [‘P(a+ +x)‘I’(a+ —x)—‘{—’(a +x)‘I’(a —x)]dx,
-1)2 2 2 2 2

dx.

a+1 a—1 a—1
> —x)—‘I’(—2 +x)‘l’( 5 —x)

To evaluate each term of the integral in (A20), we employ a saddle point approximation to (A13): writing

Insinh k(@ + x) =

we obtain

-1/2

12 L,
= ‘P(a/)2/ e WX gy,
-1/2

The Gaussian integral is only significantly different from 1 if
the factor multiplying x> is O(1); however, under the WKB
approximation, x changes very slowly and so «’, s o« k" < 1.
That is, (A20) can be written as

w5 ()
)

zJ_rZJcoska-‘I’z( (CIES

g — &~ x2Jcoska

= F4J cos ka - P* (5) sinh k

where only the dominant variation in W(x) due to exponential
decay was retained. Finally, substituting the wave function
(A13,A14, A16) yields

w al2
& —E X F—exp —2/ k(x)dx | cos ka. (A22)
b8 X0

That is, each well eigenstate broadens into a tight-binding type
band with effective hopping term

w al2
J =+—exp —2/ k(x)dx] .
2r x0

(A23)

1/2 1/2 ’ ’
/ ¥ (a+x)¥(a - x)dx ~ ¥(a) / exp (—KX—K—)C2+£)C+£)CZ) exp (+Kx—K—x s 2 dx

+1 -1 -1
x)‘P(az —x)—‘{’(a2 +x)‘P(a2 —x)]dx. (A20)
Insinh k(@) + rx + sx> + O(x>),
2
2 2 2 2 2 2
(A21)
[
Appendix B: Renormalisation of A
From (11), the renormalised hopping is given by
J'(4/\2Ey/\;
vy L/ 4/12E0 1 B) ®1)

J'(\ Eo; B)

where J'(A, E; B8) is the hopping term (A23) for a band at
energy E in an Aubry—André model with parameters A and .
Substituting (A23) gives

T e 1/(B)
A =h—exp 2/ k(x)dx — 2/ «(x)dx| (B2)
T X0 x(')

where T is the classical period of oscillation around the min-
imum and «(x) is the imaginary wave vector (A3); primes
denote quantities of the dual model. For brevity, we write
e=-E/J.



o w o
AI
A
_______________________________ | X
T 1 K K
ay

FIG. 12. The integration domain of (B6a) and (B7) after the change
of variables a = cos @, k = coshk for A < 2. In the latter case, the
integration domains of I (gray) and I’ (striped and gray) are both
right triangles and since A < A’, K < K’, the integration domain of
I — I’ (striped) is a convex quadrilateral.

1. Relation of T and 7’
From the classical velocity-momentum relation (A12),
Sl
2J sin k(x)
/ \/4 (e - kcos(27rﬁx))
da

- Zfﬂﬁ 0 +/4—-(g—-Acosa)?
4 A dy
2T Jo2 \iZ = y2A - (e - y)?

(B3)

where @ = 278x is the phase of the modulating potential and
y = Acos a. Very similarly, the classical period of the dual is

2.17r,8 /%\/

2
)L COS G,’)

o 2 dy
207 Je-i \J4 — y2412

—(e—-y)?

where now y = 2cosa. The two integrals can be turned into
each other by changing y into y’ = & — y, therefore they are
equal: (B2) becomes

0 0

1/28 1/2p
N =2exp (2/ k(x)dx — 2/ K’(x)dx) . (BY)

15

2. Evaluating the integrals f kdx

To evaluate (B4), we first rewrite the integrals in terms of
the phase @ = 278x:

I1-r
~2exp ( ) (BS)
B
where I, I’ are integrals independent of 3, defined as
4 g—hcosa -2
1= arcosh| ——— |da g = arccos
@ 2 I
(B6a)
, 7 g—-2cosa , g—A
I = arcosh | ————|da «, = arccos
ag M 2
(B6b)

These integrals can be thought of as the area in (a, k) space
bounded by 2 cosh k + Acosa = € and Acoshk + 2cosa = ¢,
respectively. Introducing the variables a = cos @, k = coshk,
the area integrals can be rewritten as

, dadk
LI = _— B7)
V(1 —a?)(k? - 1)
the integration areas are bounded by the lines a = -1, k = 1,

and 2k + ha = & (for I) or Mk + 2a = ¢ (for I’; see Fig. 12).
It follows that I — I’ entering (BS) is the integral of the same

integrand over the difference of the two domains. Since for
A<2,
, €—-h_ &-2 , €+2 &g+
A_2>X_A’K_X>Z_K

(and vice versa for A < 2), this area difference is a quadrilateral
bounded by all four lines bounding the triangles (see Fig. 12).

For simplicity, we assume that A is infinitesimally close to
2: A =2+n,|n| < 1. In this case, the difference quadrilateral
is infinitesimally thin: slicing it along lines of constant a gives
the integral

ops [l K)
-1 V1 = a2\ko(a)? - 1

(B8)

In writing (B8), we have ignored the variation of k across
one slice in the denominator, and replaced it with ko(a) cor-
responding to A = 2: this introduces first order corrections to
the denominator which, since k — k’ is first order in 77, can be
ignored. Now,

k(a) - k(a') = 222 - ~

zka s—kZa (s )77



:n/e+l xdx
—e+l \/(1 —(e=x)?)((e+x)?-1)

7 ‘/»(1+e)2 d(x2)
2 J-ep \/4e2 — (2= (1+e2))
, T
1-1~—. B9
> (B9)
Writing this into (BS) gives
N =261 20 4 %; (B10)

that is, the reduced tuning parameter A — 2 increases by a factor
of 8! on rescaling.
It is possible to evaluate I — I’ for an arbitrary value of A:
we omit the derivation due to its length and report that
A Az 1/
I—I’=7rlog§ = k’:Z(E) (B11)

as stated in Sec. II C.

Appendix C: Renormalisation of the hopping, the dynamical
exponent

To estimate the ground state dynamical exponent corre-
sponding to a particular length scale, we consider the definition
(20):

_ log (AE(NkH)/AE(Nk)) - 1Og(-]k+] /Jk)
log Bk log B

% (ChH

at A = 2; since the renormalisation of J in one RG step only
depends on S in that step, we anticipate that z; only depends
on fy.

We first consider the Bohr—Sommerfeld quantisation condi-
tion (A15) for 8 < 1: in terms of the phase a = 278x,

}15 k(@)da = 2(2n + Dn’B (C2)

where the integrand is given by 2cos k +2cosa = -E/J = &.
For small values of k£ and a, both cosines can be approxi-
mated as quadratics: the contour of the area integral becomes
approximately a circle, and thus

‘7{ k()da ~ naé ~n(d-¢)

&n =4 -22n+ )np. (C3)
In particular, n = 0 in the ground state, and so &g ~ 4 — 2nf5.
The most important consequence of this is that the ground state
energy in the limit 8 <« 1 is close to —4J and thus most of
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§ WKB theory
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=
2 4+ _
g
<
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Rescaling of length 1/

FIG. 13. Comparison of effective dynamical exponents given by
WKB theory with exact diagonalisation results for 8 = [0;n] and
B = 1/n. For B = [0;n], Bn = B at all RG steps and hence the
dynamical exponent given by finite-size scaling is applicable to all
steps. For 8 = 1/n, the renormalisation of J in a single RG step was
obtained from the width of the lowest band.

the distance between two neighbouring minima is classically
unaccessible.

Consider now the expression (A23) of the renormalised hop-
ping. By the quadratic approximation introduced above, the
classical motion around a minimum can be treated as har-
monic: the frequency follows from the coefficients of p* and

asw = 4JnB. Similarly to (B5), J’ can now be written as

J' ~2JBexp (_niﬁ) (C4)

Sz(B) =1+ (C5)

1
7| log B
where [ is given by (B6a): it also depends on S through the
ground state energy. Since € ~ 4 for any small £, the leading
order term in z(3) can be obtained by assuming & = 4 and thus
Qp = 0:

T
I~ / arcosh(2 — cos a)da ~ 3.6639 (Co)
0

-1

2pB) = 1'166210g(,8‘1)'
That is, the ground state dynamical exponent diverges as B —
0, as discussed in Sec. III. More accurate estimates can be
obtained by numerically solving (C2) for £ and evaluating
(A23) directly.

To provide a numerical check on this result, the ground
state dynamical exponent was obtained by the finite-size scal-
ing method outlined in Sec. III B for 8, = [0;7n], 2 < n < 10.
For these numbers, S5 = S for all k, and so the average dy-
namical exponent yielded by the finite-size scaling procedure
equals z(8). In addition, z(1/n) was estimated by calculating
the lowest bandwidth for 8 = 1/n and equating it to 4J’ in
the first and only step of the RG procedure. The resulting
critical exponents are plotted against 87! in Fig. 13 together
with the z(B) curve predicted by WKB theory. The correspon-
dence between numerical and analytic results improves with
decreasing 3,,, as expected from the underlying assumptions
of the analytic theory.

(C7)



Appendix D: Numerical computation of f (o)

Due to its definition (31), it is more straightforward to obtain
q for a given value of 7 than the other way around. Therefore,
we consider the alternative Legendre transform
dg

-1
= —; D1
a Ir (Dla)

' =f@/a=q-ta". (D1b)

In principle, this Legendre transform could now be obtained
from g(t), given by power law fitting to (31), numerically:
however, taking derivatives numerically tends to introduce
significant noise. To mitigate this, we perform the Legendre
transform before power law fitting, as suggested by Ref. 74.
Eq. 31 is equivalent to

lo AT
Ni—oo 10g Ny

writing this into (D1) gives
log (X; A7)
log Ny
= li AT
ngloo log N dT (Z )

AT log A;
2 AT ’

o7(®)= - Jim

Nk—>00

le —00 log Ny Z
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A" log AT

f0)=g-ra”!
-1 AT

k—>oo logNk Z ZjA_.T 8 (Z ! )

-7 AT

lim 1 .
" Np—oo ]ogNk Z Z]A T 08 ZjAj_.T

That is, @~ !(t) and f’(t) are given by fitting a straight line to

R(Ni;7) = = > ul” log Ay, (D3a)
i
o(Ne:T) = = > i log 7, (D3b)
respectively as a function of log Ny, where
ATT
() i
Ky = (D3¢)
i Zj Aj‘r

as stated in Sec. IV A.
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