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Abstract: Extracellular ATP (eATP) has long been established in animals as an important signalling
molecule but this is less understood in plants. The identification of Arabidopsis thaliana DORN1
(Does Not Respond to Nucleotides) as the first plant eATP receptor has shown that it is fundamental
to the elevation of cytosolic free Ca2+ ([Ca2+]cyt) as a possible second messenger. eATP causes
other downstream responses such as increase in reactive oxygen species (ROS) and nitric oxide,
plus changes in gene expression. The plasma membrane Ca2+ influx channels involved in eATP-
induced [Ca2+]cyt increase remain unknown at the genetic level. Arabidopsis thaliana Annexin 1 has
been found to mediate ROS-activated Ca2+ influx in root epidermis, consistent with its operating
as a transport pathway. In this study, the loss of function Annexin 1 mutant was found to have
impaired [Ca2+]cyt elevation in roots in response to eATP or eADP. Additionally, this annexin was
implicated in modulating eATP-induced intracellular ROS accumulation in roots as well as expression
of eATP-responsive genes.

Keywords: extracellular ATP; ADP; root; Arabidopsis; annexin 1; calcium; calcium channel; reactive
oxygen species

1. Introduction

Extracellular ATP (eATP) is implicated as an apoplastic signal molecule in the abiotic
and biotic stress responses of plants, their cellular viability, growth and stomatal regula-
tion [1–6]. In Arabidopsis thaliana, eATP can act as a damage-associated molecular pattern
(DAMP) and activates immunity signalling through the plasma membrane purinorecep-
tor AtDORN1 (Does Not Respond to Nucleotides1, also known as P2K1) [7]. A plasma
membrane co-receptor P2K2 has recently been identified and both DORN1/P2K1 and
P2K2 are lectin receptor kinases [8]. eATP-dependent but AtDORN1-independent effects
have also been reported [9,10], pointing to the presence of other perception mechanisms.
eATP perception triggers increase in root and leaf free cytosolic Ca2+ ([Ca2+]cyt) [5] that
can lead to the production of reactive oxygen species (ROS) as further putative signalling
agents [11–14]. Nitric oxide (NO) production can also be increased [2,15,16]. Eventually,
signalling causes changes in gene expression [7,10,12,17–19]. Many eATP-responsive genes
contain the CAM-box motif, which suggests that CAMTAs (Calmodulin-binding Transcrip-
tion Activators) are important components [18]. Indeed, gene regulation could run through
CAMTA3 [18], potentially connecting Ca2+ as a second messenger to changes in transcrip-
tion due to eATP. It may be that the nuclear Ca2+ increase that follows eATP-induced
[Ca2+]cyt increase [20] activates CAMTA3 through Ca2+-CAM interaction. Understanding
how eATP causes [Ca2+]cyt increase is, therefore, relevant to downstream responses.
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It is known that eATP-induced [Ca2+]cyt increase in Arabidopsis roots requires plasma
membrane Ca2+ influx channels but the molecular identities of these channels remain un-
known, as is also the case for other organs [9,11,14,21–23]. It has been hypothesized that the
Arabidopsis annexin 1 protein (AtANN1) could be involved in mediating plasma membrane
Ca2+ influx [5,24] and recently AtANN4 was found to mediate eATP-induced [Ca2+]cyt
increase when expressed in Xenopus oocytes [25]. AtANN1 is thought to act as a plasma
membrane Ca2+ channel in the root [Ca2+]cyt response to salinity stress, hyperosmotic stress,
and oxidative stress [26–28]. In this study, the possible involvement of AtANN1 in the root
and leaf eATP-[Ca2+]cyt signalling pathway has been tested using an Atann1 loss of func-
tion mutant constitutively expressing cytosolic (apo)aequorin as a luminescent [Ca2+]cyt
reporter [26–28]. As eADP has also been shown to increase [Ca2+]cyt [7,11,12,14,21], this
nucleotide was also tested. The consequences for eATP-induced root intracellular ROS
elevation and gene transcription were also investigated. The results show that AtANN1
is required for the normal [Ca2+]cyt response towards both eATP and eADP in roots. It
affects the spatial extent of intracellular ROS accumulation in roots and influences their
eATP-induced transcriptional response.

2. Results

2.1. AtANN1 Mediates Root [Ca2+]cyt Elevation In Response To eATP and eADP

Previously, eATP-dependent root [Ca2+]cyt elevation was found to be wholly reliant
on the AtDORN1 receptor [5]. To assess the role of AtANN1 in this response, seven-
day-old whole roots of Atann1 (loss of function mutant) and Col-0 (expressing cytosolic
(apo)aequorin under the 35S CaMV promoter) were excised and assayed individually to
measure [Ca2+]cyt in the presence of eATP. Addition of control solution after 35 s of mea-
surement evoked a monophasic [Ca2+]cyt increase in response to mechanical stimulation
(“touch response”) before returning to the basal level (Figure 1a). The touch response of
Atann1 roots was similar to Col-0 in terms of the amplitude (“touch peak”) and the total
accumulation of [Ca2+]cyt (estimated as the area under the curve, AUC) (p > 0.05; Figure 1b).
Measurement of [Ca2+]cyt in response to 1 mM eATP revealed a biphasic increase compris-
ing a first peak and second peak after the initial touch response (Figure 1c). A biphasic
response in roots was also observed previously [5,11]. The touch response was similar be-
tween genotypes (p > 0.5) and although the first eATP peak was lower in Atann1 it was not
significantly different to Col-0 (p > 0.05) (Figure 1d). The second eATP-induced [Ca2+]cyt
peak response of Atann1 was significantly lower than Col-0 (p < 0.0001) (Figure 1e). The
total [Ca2+]cyt accumulated was also significantly lower in Atann1 (p < 0.0001; Figure 1e).

eADP also evokes a biphasic [Ca2+]cyt increase in roots [5,11] that is entirely dependent
on AtDORN1 [5]. To assess whether AtANN1 is also required, a similar test with eADP on
seven-day-old excised roots was carried out for Col-0 and Atann1. As shown in Figure 2a,
control treatment elicited a monophasic touch response in both genotypes. No significant
differences were evident for either the touch peak (p > 0.05) or the overall [Ca2+]cyt (p > 0.05)
between Col-0 and Atann1 (Figure 2b). In the presence of 1 mM eADP as shown in Figure 2c,
both Col-0 and Atann1 produced a biphasic [Ca2+]cyt increase following the touch response.
No significant difference was found between Col-0 and Atann1 in the touch peak response
(p > 0.05) (Figure 2d). Unlike eATP treatment however, Atann1 showed a significantly
impaired ability to produce both a normal first peak in response to 1 mM eADP (p < 0.0001)
(Figure 2d) and a normal second peak (p < 0.0001) (Figure 2e). Overall, the loss of functional
AtANN1 protein led to a reduced total accumulation of [Ca2+]cyt compared to Col-0
(p < 0.0001) (Figure 2e). Lowered AtDORN1 expression cannot explain the impairments in
Atann1′s response to extracellular nucleotides as no significant difference in the receptor’s
expression between Col-0 and Atann1 roots was found in either control conditions (p > 0.5)
or in the presence of 1 mM ATP (p > 0.5) (Figure 2f). Therefore, the defects in [Ca2+]cyt
elevation appear to rest with the lack of AtANN1.
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Figure 1. Arabidopsis annexin 1 (AtANN1) is needed for normal [Ca2+]cyt elevation in a root by eATP. 
(a) Time course of [Ca2+]cyt elevation produced by control treatment in three experiments (mean (± 
SEM): Col-0 in red, n = 14 roots in total; Atann1 loss of function mutant in blue, n = 14). (b) The 
[Ca2+]cyt touch peak values and area under the curve (AUC) extracted from the control time course 
(± SEM). Middle line of the boxplot represents the median whereas the inverted triangle represents 
the mean. (c) Time course of [Ca2+]cyt elevation with 1 mM eATP treatment in 3 experiments (Col-0 
in green, n = 16; Atann1 in orange, n = 16). (d) The touch peak and the first peak [Ca2+]cyt values 
extracted from the 1 mM eATP time course. (e) Second peak and the AUC [Ca2+]cyt values. (f) Sche-
matic diagram of different time course sections. Each section was calculated with the average base-
line value (indicated by (i)) subtracted. Touch peak (ii) was the highest [Ca2+]cyt value of the touch 
response between 35 and 40 s due to mechanical stimulus from solution addition at the 35th second. 
First peak (iii) and second peak (iv) were the highest [Ca2+]cyt value between 40 s and 60 s and 60 s 
and 155 s, respectively. Total [Ca2+]cyt accumulation was obtained from the AUC (v; 35 s–155 s). p-
values were obtained from analysis of variance (ANOVA) with Tukey’s post-hoc test or Kruskal–
Wallis test for non-parametric approaches. Different lower-case letters indicate a significant differ-
ence between means (p < 0.05). 
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Figure 1. Arabidopsis annexin 1 (AtANN1) is needed for normal [Ca2+]cyt elevation in a root by eATP.
(a) Time course of [Ca2+]cyt elevation produced by control treatment in three experiments (mean
(± SEM): Col-0 in red, n = 14 roots in total; Atann1 loss of function mutant in blue, n = 14). (b) The
[Ca2+]cyt touch peak values and area under the curve (AUC) extracted from the control time course
(± SEM). Middle line of the boxplot represents the median whereas the inverted triangle represents
the mean. (c) Time course of [Ca2+]cyt elevation with 1 mM eATP treatment in 3 experiments
(Col-0 in green, n = 16; Atann1 in orange, n = 16). (d) The touch peak and the first peak [Ca2+]cyt

values extracted from the 1 mM eATP time course. (e) Second peak and the AUC [Ca2+]cyt values.
(f) Schematic diagram of different time course sections. Each section was calculated with the average
baseline value (indicated by (i)) subtracted. Touch peak (ii) was the highest [Ca2+]cyt value of the
touch response between 35 and 40 s due to mechanical stimulus from solution addition at the 35th
second. First peak (iii) and second peak (iv) were the highest [Ca2+]cyt value between 40 s and
60 s and 60 s and 155 s, respectively. Total [Ca2+]cyt accumulation was obtained from the AUC (v;
35 s–155 s). p-values were obtained from analysis of variance (ANOVA) with Tukey’s post-hoc test or
Kruskal–Wallis test for non-parametric approaches. Different lower-case letters indicate a significant
difference between means (p < 0.05).
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Figure 2. AtANN1 is involved in eADP-induced [Ca2+]cyt elevation in the root. (a) Mean (± SEM)
time course of [Ca2+]cyt increase by control treatment in three experiments (Col-0 in red, n = 19;
Atann1 in blue, n = 18). (b) [Ca2+]cyt touch peak values and AUC extracted from the control time
course. Middle line of the boxplot represents the median whereas the inverted triangle represents
the mean. (c) Mean (± SEM) time course of [Ca2+]cyt increase by 1 mM eADP treatment obtained
from three experiments (Col-0 in brown, n = 14; Atann1 in light blue, n = 14). (d) The touch peak and
the first peak [Ca2+]cyt values from the 1 mM eADP time course. (e) Second peak and the total AUC
[Ca2+]cyt values. (f) Quantification of AtDORN1 gene expression in Col-0 and Atann1 roots after
seven days of growth on control medium or 1 mM eATP-containing medium (Col-0 in black, Atann1
in grey with n = 11 for each genotype and treatment) obtained from three experiments. p-values were
obtained from ANOVA with Tukey’s post-hoc test. Different lower-case letters indicate a significant
difference between means (p < 0.05).

2.2. AtANN1’s Involvement in the eATP-Generated First Peak Response Is Concentration-Dependent

A non-hydrolysable ATP analogue (ATPγS; Adenosine 5′-[γ-thio] triphosphate) and
ADP analogue (ADPβS; Adenosine 5′-[β-thio] diphosphate) were then used to confirm that
the agonists acted as signal molecules rather than as energy sources that drive the [Ca2+]cyt
increase. The ATPγS used was a tetralithium salt whereas the ADPβS was a trilithium salt.
A LiCl treatment (4 mM for ATPγS and 3 mM for ADPβS) was carried out alongside the
non-hydrolysable analogues as a lithium control. Seven-day-old individual whole roots
responded with the biphasic [Ca2+]cyt increase when tested with different concentrations
of eATPγS, or the eATP/LiCl salt control (Figure 3a). As seen in Figure 3b, the touch
peak responses were not significantly different between genotypes (p > 0.5). The Col-0
first [Ca2+]cyt peak did not require eATP hydrolysis (no significant difference between
1 mM eATPγS and 1 mM eATP/LiCl) and indeed was already “saturated” at 0.1 mM
eATPγS (no significant difference, p > 0.05, between 0.1 and 1 mM eATPγS) (Figure 3c).
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The first peak responses of Atann1 also appeared saturated at 0.1 mM eATPγS (Figure 3c).
As in the response to 1 mM eATP in Figure 1d, the first peak of Atann1 in response
to 1 mM eATPγS was lower than Col-0 but was not significant (Figure 3c). However,
when 1 mM eATP was tested with LiCl as a control for Li+ addition, the difference did
become significant. This may be due to the range of Col-0 values in the 1 mM eATPγS
test. Importantly, within each genotype there was no evidence for eATP’s acting as an
energy source at 1 mM. Atann1 showed a significantly lower first peak [Ca2+]cyt response
compared to Col-0 in response to 0.1 mM eATPγS (p < 0.001) and 0.2 mM eATPγS (p < 0.001)
(Figure 3c). These results suggest that the role of AtANN1 in the first peak response
relies on the concentration of agonist used. The second [Ca2+]cyt peak of Col-0 showed a
significant dependence on the concentration of eATPγS, as did Atann1 between 0.1 and
1 mM (Figure 3d). AtANN1 proved to be important in generating the second peak as the
Atann1 mutant failed to respond in similar magnitude as the Col-0 over the concentration
range (p < 0.001) (Figure 3d). This was also evident in the total [Ca2+]cyt accumulated
where there were significant differences between Col-0 and Atann1 (p < 0.0001) in the AUC
for every concentration tested (Figure 3e).
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Figure 3. AtANN1 is crucial for the first peak [Ca2+]cyt response at lower eATP concentration.
(a) Mean (± SEM) [Ca2+]cyt time course in response to different concentrations of eATPγS or eATP
with LiCl control from 3 experiments with n = 14–15 per genotype and treatment. (b) The [Ca2+]cyt

touch peak values (± SEM), (c) first peak [Ca2+]cyt values (± SEM), (d) second peak [Ca2+]cyt values
(± SEM) and (e) the total [Ca2+]cyt accumulated obtained from AUC (± SEM) for each concentration
tested in both Col-0 and Atann1 extracted from the time course. p-values were obtained from ANOVA
with Tukey’s post-hoc test or Kruskal-Wallis test for non-parametric approach. Different lower case
letters indicate significant difference between means (p < 0.05).
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Both Col-0 and Atann1 generated the transient biphasic [Ca2+]cyt elevation after the
touch peak response when challenged with different concentrations of eADPβS or 1 mM
eADP with 3 mM LiCl (Figure 4a). Both Col-0 and Atann1 produced the same level of touch
peak response for each treatment (p > 0.5) (Figure 4b). Just like the first peak response
to eATPγS, the response of both genotypes to eADPβS appeared saturated at 0.1 mM
(Figure 4c). In contrast to the eATPyS test, there were significant differences between Col-0
and Atann1 in the first peak [Ca2+]cyt response regardless of the concentration of eADPβS
tested (p < 0.001) (Figure 4c). Consistent with the results in the hydrolysable eADP test,
Atann1 was found to produce lower [Ca2+]cyt responses than the Col-0 in the second peak
(p < 0.001) (Figure 4d) and in the AUC (p < 0.001) (Figure 4e) for all the concentrations tested.
There was no evidence for eADP’s acting as an energy source. Overall, these results suggest
that the involvement of AtANN1 in generating the first peak response is specific to lower
concentrations of eATP, with the likelihood of other components participating at higher
concentration. AtANN1 is still needed for the first peak response to high concentration of
eADP and for the second peak regardless of agonist concentration.
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Figure 4. AtANN1 is involved in the eADPβS-induced [Ca2+]cyt response at all concentrations tested.
(a) Mean (± SEM) [Ca2+]cyt time course in response to different concentrations of eADPβS or ADP
with LiCl control from 3 experiments (n = 13—15 per genotype and treatment). (b) The [Ca2+]cyt

touch peak values (± SEM), (c) first peak [Ca2+]cyt values (± SEM), (d) second peak [Ca2+]cyt values
(± SEM) and (e) the total [Ca2+]cyt accumulated obtained from AUC (± SEM) for each concentration
tested in both Col-0 and Atann1 extracted from the time courses. p-values were obtained from
ANOVA with Tukey’s post-hoc test or Kruskal-Wallis test for non-parametric approach. Different
lower case letters indicate a significant difference between means (p < 0.05).
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2.3. AtANN1 Sets the Spatial Extent of Intracellular ROS in Roots in Response to eATP

Addition of eATP (but not eADP) causes rapid intracellular accumulation of ROS in Ara-
bidopsis roots that requires Ca2+ influx and is largely dependent on AtRBOHC activity [14,21].
Whether AtANN1 is involved in the production of intracellular ROS was tested here with
ester-loaded CM-H2DCFDA (5-(and-6-)-chloromethyl-2′,7′-dichlorodihydrofluorscein diac-
etate) [14]. Figure 5a shows the baseline ROS detected in control conditions. In the presence
of 1 mM eATP (Figure 5b), ROS increase was detectable within 20 s, as reported previ-
ously [14]. Signal intensity was higher than the baseline in both Col-0 and Atann1 with the
latter supporting a greater length of ROS production that clearly extended into the mature
zone supporting root hairs (Figure 5b). Further statistical analysis carried out confirmed
this significant difference between Atann1 and Col-0 (Figure 5c). In line with previous
studies [14,21], 1 mM eADP failed to induce any intracellular ROS accumulation in either
genotype (Figure 5d).
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Figure 5. Atann1 supports a longer zone of intracellular ROS accumulation than Col-0 in response
to eATP. (a) CM-H2DCFDA fluorescence from a Col-0 or Atann1 root under control conditions.
Corresponding bright field images are also shown. (b) Roots after exposure to 1 mM eATP. (c) Mean
(± SEM) length of root from the tip fluorescing after exposure to eATP (Col-0 n = 48; Atann1 n = 68;
p = 0.0026, Student’s t-test). (d) Roots after exposure to 1 mM eADP. Scale bar = 4 mm. Different
lower-case letters indicate a significant difference between means (p < 0.05).

The focus of the analysis was then shifted to the root apex to distinguish any differ-
ences in signal intensity between Col-0 and Atann1 (Figure 6a). Based on the mean signal
intensity, there was no significant difference in ROS production between genotypes under
control conditions. Both Col-0 and Atann1 treated with 1 mM eATP produced significantly
higher ROS than under control conditions but although Atann1 supported a greater spatial
extent of ROS accumulation, the mean signal intensity at the root apex was similar to Col-0
in the presence of eATP. Once again, 1 mM eADP treatment failed to increase ROS in either
genotype (Figure 6b). Overall, these data suggest that AtANN1 is involved in controlling
the spatial extent of ROS accumulation evoked by 1 mM eATP.
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Figure 6. eATP-induced intracellular ROS accumulation at the root apex at higher resolution. (a)
CM-H2DCFDA fluorescence from (i) a representative Atann1 root exposed to 1 mM eATP and (ii)
corresponding bright field image. (iii) A representative Col-0 root after exposure to 1 mM eATP and
(iv) corresponding bright field image. (b) Mean (± SEM) of fluorescence pixel intensity at root apices
under control conditions and after 30 s exposure to 1 mM eATP (Col-0 n = 48; Atann1 n = 68) or 1 mM
ADP (Col-0 n = 32; Atann1 n = 38). Both genotypes responded significantly to eATP but not eADP
(p < 0.001; ANOVA with Dunnett’s post-hoc test). Scale bar = 2 mm. Different lower-case letters
indicate a significant difference between means (p < 0.05).

2.4. AtANN1 Is Required For eATP-Induced Changes in the Expression of ACS6 and WRKY40

eATP has been shown previously to be able to induce transcription of genes involved in
stress responses [7,10,12,18,29–31]. eATP-induced genes AtRBOHD (NADPH/Respiratory
Burst Oxidase Protein D), AtWRKY40 (WRKY DNA-Binding Protein 40) and AtACS6 (1-
Aminocyclopropane-1-carboxylic Acid Synthase 6) [7,12,18] were tested for regulation by
1 mM eATP in roots and the possibility of AtANN1′s affecting their regulation (Figure 7).
Ionic composition of the control solution was identical to that used in the aequorin tests
(10 mM CaCl2, 0.1 mM KCl). AtANN1 transcript was almost completely knocked-down
in Atann1 compared to the Col-0 in control conditions (p < 0.05) and after eATP treatment
(p < 0.01). Transcript level did not increase in Col-0 after eATP treatment (Figure 7a).
AtRBOHD gene was not up-regulated by either 10 min or 30 min of eATP treatment when
compared with the control for both Col-0 (p > 0.05) and Atann1 (p > 0.05) (Figure 7b). In
contrast, AtACS6 was significantly upregulated in Col-0 when treated for 10 min with eATP
compared to the control treatment (p < 0.01) but fell back to control levels after 30 min
(p > 0.05; Figure 7c). Expression was not significantly upregulated in Atann1 after 10 min
of eATP treatment (p > 0.5) and it remained significantly lower than Col-0 at this time point
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(p < 0.05). No significant difference was evident in AtACS6 expression between 30 min
control treatment and eATP treatment for Atann1 (p > 0.05; Figure 7c). These findings
suggest a temporal regulation of AtACS6 by AtANN1 in the presence of eATP.
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Figure 7. Transcriptional regulation of stress responsive genes by AtANN1. Col-0 and Atann1 whole
roots were treated with control solution or 1 mM eATP for 10 or 30 min. Transcript abundance of
(a) AtANN1, (b) AtRBOHD, (c) AtACS6 and (d) AtWRKY40 normalised to two housekeeping genes;
AtUBQ10 and AtTUB4. Data were from the means (± SEM) of four independent trials. Student’s
t-test and Welch’s t-test were used to test parametric data whereas Wilcoxon rank sum test was used
for non-parametric data. Different lower-case letters indicate a significant difference between means
(p < 0.05).

Transcript abundance of AtWRKY40 was upregulated by eATP exposure (Figure 7d).
Col-0 and Atann1 samples treated with eATP for 10 and 30 min had significantly higher
AtWRKY40 transcript abundance compared to their controls (Col-0, p < 0.05; Atann1,
p < 0.05). Notably, Atann1 supported a significantly higher increase in AtWRKY40 transcript
than Col-0 after 10 min of eATP treatment (p < 0.05) but over time, no significant difference
in transcript abundance between genotypes was found after 30 min of eATP treatment
(p > 0.5) (Figure 7c), suggesting a temporal effect on the response. Overall, AtANN1
appears important in regulating the eATP-induced changes in the transcription of AtACS6
and AtWRKY40.

2.5. eATP-Induced [Ca2+]cyt Elevation Is Not Mediated by AtANN1 in Cotyledons

Whole seedlings of A. thaliana were found previously to elevate [Ca2+]cyt in response to
eATP [7]. To assess whether AtANN1 is involved in mediating this response in aerial organs
as well as roots, the [Ca2+]cyt elevation by 1 mM eATP of seven-day-old cotyledons of Col-0
and Atann1 was compared. Consistent with previous results on Col-0 true leaves [5], control
treatment of cotyledons caused a monophasic touch response in both Col-0 and Atann1
(Figure 8a) that was not significantly different between genotypes (p > 0.05; Figure 8b).
Also in common with previous results on Col-0 true leaves [5], 1 mM eATP treatment of
cotyledons caused a prolonged monophasic [Ca2+]cyt increase after the touch response
(Figure 8c). No significant differences were found between Col-0 and Atann1 in either
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the touch peak (p > 0.05), the first peak (p > 0.05) or in the total [Ca2+]cyt accumulated
(p > 0.05; Figure 8d,e). Based on these observations, it is certain that AtANN1′s role in
eATP signalling does not extend to the cotyledon and that the [Ca2+]cyt signature caused
by eATP treatment differs with the type of tissues or organs tested.
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Figure 8. AtANN1 is not needed for eATP-induced [Ca2+]cyt increase in cotyledons. (a) Mean (± SEM)
time course of [Ca2+]cyt increase due to control treatment of seven-day-old individual cotyledons.
(b) The [Ca2+]cyt touch peak (± SEM) and the total [Ca2+]cyt accumulation by the AUC (± SEM).
Middle line of the boxplot represents the median whereas the inverted triangle represents the mean.
(c) Mean (± SEM) time course of [Ca2+]cyt increase due to 1 mM eATP treatment. (d) The [Ca2+]cyt

touch peak values (± SEM) and the first peak values (± SEM). (e) Total [Ca2+]cyt accumulated values
(± SEM) from the AUC. Data were obtained from four experiments with n = 21–39 cotyledons per
genotype and treatment. p-values obtained from ANOVA with Tukey’s post-hoc test. Identical
lower-case letters indicate an insignificant difference between means (p > 0.05).

2.6. AtANN1 Is Less Important in the [Ca2+]cyt Response of True Leaves to Extracellular ATP or ADP

AtANN1 expression is evident in true leaves as well as cotyledons [32–34]. To as-
sess whether AtANN1′s participation in [Ca2+]cyt elevation is limited to roots, individual
14-days-old leaves were tested with varying concentrations of eATP and eADP. All the
eATP concentrations used (0.1 mM, Figure 9a; 0.5 mM, Figure 9b; 1 mM, Figure 9c) gener-
ated a prolonged monophasic [Ca2+]cyt response after the touch peak that was similar to
both the seven-day-old cotyledon [Ca2+]cyt pattern in the previous test and 14-day-old Col-0
leaves studied previously [5]. Although Atann1 produced a lower peak response than Col-0,
differences between the genotypes were not significant except for 1 mM eATP’s causing
Col-0 to produce a significantly higher total [Ca2+]cyt than Atann1 (p < 0.05) (Figure 9d).
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Figure 9. AtANN1 is required for leaf [Ca2+]cyt elevation at higher concentrations of eATP. Mean
(± SEM) [Ca2+]cyt time course (t = 36 s–155 s) of 14-day-old individual true leaves treated with
(a) 0.1 mM eATP, (b) 0.5 mM eATP or (c) 1 mM eATP. (d) The total [Ca2+]cyt accumulated over
the period of measurement for each concentration given as AUC. Data were obtained from four
experiments with n = 17–22 per genotype and treatment. Middle line of the boxplot represents the
median whereas the inverted triangle represents the mean. p-values were obtained from ANOVA
with Tukey’s post-hoc test. Different lower-case letters indicate a significant difference between
means (p < 0.05).

A similar pattern was found in tests of eADP, which evoked a monophasic [Ca2+]cyt
response at 0.1 mM (Figure 10a), 0.5 mM (Figure 10b) and 1 mM ADP (Figure 10c). Al-
though Atann1 leaf samples had lower peak [Ca2+]cyt responses than Col-0, these were not
significantly different and no significant differences were found between Col-0 and Atann1
for the total [Ca2+]cyt accumulated at each concentration (in all cases p > 0.05) (Figure 10d).
Thus, at this level of resolution, AtANN1 appears only to have an impact in leaves at
1 mM eATP.
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Figure 10. AtANN1 is not involved in mediating eADP-induced [Ca2+]cyt increase in leaves. Mean
(± SEM) time course of [Ca2+]cyt increase (t = 36s–155s) when 14-day-old individual leaves were
treated with (a) 0.1 mM eADP, (b) 0.5 mM eADP or (c) 1 mM eADP agonist. (d) The total [Ca2+]cyt

accumulated over the period of measurement for each concentration by calculating the AUC. Data
were obtained from four experiments (Col-0 n = 16–23; Atann1 n = 17–24). The middle line of the
boxplot represents the median whereas the inverted triangle represents the mean. p-values were
obtained from ANOVA with Tukey’s post-hoc test. Different lower-case letters indicate a significant
difference between means (p < 0.05).

3. Discussion

Few components of eATP (or eADP) signalling pathways have been identified at
the genetic level. In this study, the evidence suggests that AtANN1 is a component of
both eATP- and eADP-induced [Ca2+]cyt elevation in roots, with consequences for eATP-
induced ROS accumulation and gene expression. Mechanical or “touch” stimulus can
cause accumulation of extracellular ATP by Arabidopsis root tips but much less so in older
regions of the root [35]. Here, the addition of control solution alone caused a touch-induced
monophasic increase in [Ca2+]cyt (Figure 1a) but it is not known whether it also caused
accumulation of extracellular ATP to trigger all or part of that [Ca2+]cyt increase. There
was no significant difference between the touch response of Col-0 and Atann1, which may
indicate that AtANN1 does not contribute to any [Ca2+]cyt increase that is downstream of
any touch-induced eATP increase. There were no indications of further [Ca2+]cyt elevations
in response to addition of control solution, suggesting that any extracellular ATP produced
by that mechanical stimulus was insufficient to trigger the biphasic [Ca2+]cyt increase
seen when ATP is added experimentally. However, it cannot be ruled out that it could
affect the root’s subsequent response to experimental addition of nucleotides. Previous
analysis of the Col-0 root’s biphasic [Ca2+]cyt response to experimental additions of eATP
or eADP demonstrated that this biphasic pattern is wholly reliant on AtDORN1 as an eATP
receptor [5]. For eATP, the first peak originates at the root apex whereas the second peak
originates sub-apically in more mature cells, possibly as part of a [Ca2+]cyt “wave” that
travels from the apex [5,20,36–38]. Mature regions can also respond to eATP when it is
added there specifically rather than to the whole root [5], showing a level of autonomy
from the apex. It is assumed that the biphasic eADP response maps to the same areas.
AtANN1 is present at the root apex and in more mature cells such as trichoblasts [32,34]
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so it could contribute to both phases. The near normal first peak [Ca2+]cyt in the Atann1
mutant with 1 mM eATP (Figure 1d, Figure 3c) but not with 0.2 mM or 0.1 mM eATPγS
(Figure 3c) suggests that at high concentration, other components can compensate for
the loss of AtANN1 especially in the root apex. No such redundancy was observed with
eADP. A far clearer need for AtANN1 was seen in the second eATP- and eADP-induced
[Ca2+]cyt increase across the concentration range tested and this could map to mature
cells. A study of Atann1 using a [Ca2+]cyt reporter affording spatial resolution such as
YC3.6 (Yellow Cameleon 3.6) or root cell-specific GCaMP3 [20,36–39] is now needed to
determine which cells and regions AtANN1 operates in. Challenging specific regions of
the root with agonist could also help determine whether an impaired apical/first peak
response leads to an impaired sub-apical/second peak response (which could help explain
the patterns observed here) and the extent to which the lesion in the Atann1 second peak is
a consequence of a local response to agonist independent of the apex.

In Arabidopsis roots, eATP (but not eADP) causes intracellular ROS accumulation,
which relies on Ca2+ influx and the AtRBOHC NADPH oxidase [14,21]. Another source of
ROS production is AtRBOHD, which is a phosphorylation target of AtDORN1 in guard
cells [7,40]. It is envisaged that Ca2+ influx acts downstream of AtDORN1 and upstream of
AtRBOHC/AtRBOHD. It is not known why eADP is ineffective. The pharmacological block
that effectively eliminates eATP-activated Ca2+ influx across the plasma membrane only
inhibits half of the intracellular ROS in roots caused by eATP [14]. The residual [Ca2+]cyt
elevation in Atann1 roots in response to eATP could therefore have been sufficient to
cause the observed normal level of ROS accumulation, particularly at the apex (Figure 6b).
However, the results show that AtANN1 plays a role in limiting the spatial extent of the
ROS increase, limiting its distal spread (Figure 5). AtANN1 can be a cytosolic protein in
root cells [34] as well as being a plasma membrane protein. Recombinant AtANN1 has
a very low level peroxidase activity in vitro [41], which suggests that loss of its activity
would act to increase cytosolic ROS. However, this in vitro activity could have arisen from
a co-purified protein [41]. Peroxide treatment of roots suppresses AtANN1 expression [28],
which is inconsistent with a role as a protective peroxidase. Annexin overexpression can
protect against oxidative stress by elevating peroxidase, catalase and superoxide dismutase
activities [42–44]. One possibility is that the AtANN1-dependent pathway spatially fine-
tunes the expression or activity of one or more of the five peroxidases that are regulated by
extracellular ATP [45]. Therefore, the Atann1 mutant would exhibit the observed loss of
spatial control of eATP-induced ROS accumulation.

Changes in gene expression were also examined to investigate the effect of Atann1 in
the downstream responses to eATP. eATP induction of AtRBOHD expression is AtDORN1-
dependent in seedlings, suggesting [Ca2+]cyt dependence [7], but here no effect of eATP on
its expression was found in Col-0 or Atann1 roots (Figure 7b). It could be that the effect of
eATP treatment on AtRBOHD gene expression is more pronounced in leaves compared to
the roots. Figure 7c reveals the potential importance of eATP signal regulation on ethylene
production. AtACS6 is one of the many isoforms of 1-aminocyclopropane-1-carboxylix
acid synthase (ACS) that is an important enzyme in the biosynthesis of ethylene. Its eATP-
induced expression is AtDORN1-dependent [18]. Here, AtACS6 expression was transiently
upregulated in Col-0 whole roots. Transient up-regulation was also observed in previous
studies over a similar time course [12,46]. The Atann1 mutant failed to upregulate AtACS6
expression compared to Col-0, indicating an important requirement for AtANN1 in this
part of the eATP signalling pathway. A recent study showed that eATP-dependent ethylene
production alleviates salinity stress by regulating Na+ and K+ homeostasis [47]. Salt stress
itself promotes eATP accumulation by Arabidopsis roots [48] and Atann1 is impaired in both
the root’s transcriptional response to NaCl and the adaptive growth response [26,27]. It
is possible, therefore, that a component of the salt stress response involves eATP’s acting
through AtANN1 to up-regulate ACS6 expression and ethylene production. Salt stress
also up-regulates expression of AtWRKY40 [49] and its up-regulation by eATP in roots
is AtDORN1-dependent [7]. Both Col-0 and Atann1 showed up-regulation of AtWRKY40
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expression by eATP, with Atann1′s exhibiting greater expression at 10 min than Col-0
(Figure 7d). This difference in the time course could relate more readily to the higher ROS in
the mutant than the lesion in [Ca2+]cyt response. With the demonstration that eATP-induced
transcriptional responses can be affected by AtANN1, further studies should expand to the
level of RNAseq analysis to determine the extent to which this annexin is involved.

Although expressed in cotyledons and true leaves [32], no evidence was found here for
the involvement of AtANN1 in the cotyledon eATP-induced [Ca2+]cyt increase (Figure 8).
For true leaves tested with eATP or eADP, only 1 mM eATP supported a significant
difference between Atann1 and Col-0 (Figures 9 and 10). This is might be due to the
temporal regulation of AtANN1 function and it seems that, in contrast to the root first
[Ca2+]cyt peak, AtANN1 is recruited to the pathway only at higher agonist concentration.
It would be worthwhile to repeat these studies with another [Ca2+]cyt reporter to afford
spatial resolution and resolve any cell- or tissue-specific involvement of AtANN1.

AtANN1 is now known to be involved in [Ca2+]cyt elevation in response to chitin,
salinity stress, heat stress, extracellular hydroxyl radicals and H2O2 [26–28,50–53]. Here,
in roots, it most likely operates downstream of AtDORN1, given the dependency of
the root eATP- and eADP-induced [Ca2+]cyt response on this receptor [5]. Studies on
the root epidermal plasma membrane have indicated that AtANN1 can operate as an
extracellular ROS-activated Ca2+-permeable channel and it is likely to act as such in salt
stress signalling [26,27]. While AtANN1 function in eATP signalling may well differ from
cell type to cell type, we propose that this is the most likely mode of action for eATP
signalling in the root epidermis (Figure 11), especially given AtDORN1′s ability to activate
the AtRBOHD plasma membrane NADPH oxidase that would generate extracellular ROS.
This now requires testing. As eATP-and eADP-induced root [Ca2+]cyt increase still occurred
in Atann1, there remain Ca2+ channels downstream of AtDORN1 (and probably upstream
of NADPH oxidases) to be discovered.
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Figure 11. eATP perception by AtDORN1 at the root epidermal plasma membrane could be upstream
of AtANN1 via production of extracellular ROS. Perception of eATP by AtDORN1 activates as yet
unknown Ca2+ influx channels. AtDORN1 could phosphorylate an NADPH oxidase (AtRBOHC and
AtRBOHD being the most likely candidates) with its kinase domain (KD) and the NADPH oxidase
could also be activated by [Ca2+]cyt at its EF hands. This would result in production of extracellular
hydroxyl radicals that could readily be converted to peroxide (H2O2) or hydroxyl radicals [26,27].
These could promote AtANN1-mediated Ca2+ influx. Peroxide could enter the cytosol through
aquaporins (AQP) [54], which could account for eATP-induced intracellular ROS accumulation.
The latter is the clearest point for the divergence between eATP and eADP pathways. Decoding of
[Ca2+]cyt as a second messenger leads ultimately to a nuclear transcriptional response that can be
impaired in Atann1. The position of AtP2K2 in such a pathway has yet to be tested. This original
figure was created with BioRender.com.
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4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The annexin 1 loss of function mutant (Atann1) was in the Columbia (Col-0) wild
type background with a T-DNA insertion in the third exon [26]. The Atann1 line ex-
pressing the (apo)aequorin protein cytosolically under the 35S promoter was as described
in [26]. Surface-sterilised seeds were sown on half-strength Murashige-Skoog (MS; Duchefa
Biochemie, Haarlem, The Netherlands) medium (0.8% w/v) Bactoagar (BD Diagnostics
VWR, Sparks, MD, USA); pH 5.6 with 0.1 M KOH +/− 1 mM ATP) in square petri dishes
(12 cm × 12 cm, Greiner Bio-One, Frickenhausen, Germany) and incubated in the dark
at 4 ◦C. After two days of stratification, plates were transferred into a growth chamber
(PERCIVAL, CLF Plant Climatics, Emersacker, Germany) at 23 ◦C with a 16 h photope-
riod (80 µmol m−2 s−1). Plants were grown vertically for excised root experiments or
horizontally for leaf experiments.

4.2. Measurement of [Ca2+]cyt

A. thaliana (apo)aequorin-expressing samples were incubated in 100 µL of control solu-
tion (2 mM Bis-Tris Propane; 10 mM CaCl2; 0.1 mM KCl, pH 5.8 adjusted using 1 M Bis-Tris
Propane and 0.5 M MES) containing 10 µL coelanterazine (10 µM; Nanolight Technology,
Pinetop, AZ, USA) overnight in the dark at room temperature in a 96-well plate (Greiner
Bio-One, Frickenhausen, Germany). All samples were washed with coelanterazine-free
control solution before any luminescence measurement was taken and then placed (as
individual samples) into a 96-well plate containing 100 µL fresh control solution. Lumi-
nescence (as an output of free cytosolic calcium ion, [Ca2+]cyt) upon different treatments
was measured using a FLUOstar OPTIMA (BMG Labtech, Ortenberg, Germany) plate
reader. All the treatment solutions were prepared as additions to the control solution and
adjusted to pH 5.8 (1 M Bis-Tris Propane and 0.5 M MES) prior to measurement. After 35 s
of initial background measurement, 100 µL of control or treatment solution was added
and the luminescence measured every second for 155s. At the end of each measurement,
100 µL discharge solution (10% (v/v) ethanol; 1 M CaCl2) was added to quench the total
(apo)aequorin luminescence in each sample. [Ca2+]cyt was determined according to the
calibration formula given in [55]. ATP (adenosine-5′-triphosphate, disodium salt trihy-
drate) and ADP (adenosine-5′-diphosphate, disodium salt dihydrate) were purchased from
Melford Laboratories Ltd. (Ipswich, UK) whereas non-hydrolysable analogues ATPγS
(adenosine 5′-[γ-thio] triphosphate tetralithium salt and ADPβS (Adenosine 5′-[β-thio]
diphosphate trilithium salt) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.3. Determination of Intracellular ROS

Accumulation of intracellular reactive oxygen species in individual roots was deter-
mined using 50 µM CM-H2DCFDA (5-(and-6-)-chloromethyl-2′,7′-dichlorodihydrofluorscein
diacetate, acetyl ester; Molecular Probes/Invitrogen, Waltham, MA, USA), as described
previously [14]. The assay medium comprised LSM medium [56]; when eATP was added,
medium was supplemented with CaCl2 to counteract chelation. Images of roots were
acquired with a Nikon SMZ 1500 microscope and a QImaging Retiga cooled 12-bit camera
(www.qimaging.com).

4.4. Quantification of eATP-Induced Gene Expression

Seven-days-old Col-0 and Atann1 were acclimatised for 1 h at room temperature in the
light in 8 mL control solution (2 mM Bis-Tris Propane; 10 mM CaCl2; 0.1 mM KCl) pH 5.8 in
separate small petri dishes (Thermo Scientific, Waltham, MA, USA). Either 8 mL of control
solution or 2 mM ATP solution (prepared in control solution to give a final concentration of
1 mM) was added. After 10 or 30 min, seedlings were placed in 10 mL RNAlater solution
(25 mM sodium citrate, 10 mM EDTA, 70 g ammonium sulphate/100 mL solution, pH 5.2).
The root from each seedling was excised (in the RNAlater solution), dried briefly on filter
paper and then frozen in liquid nitrogen. RNA extraction was carried out by using the

www.qimaging.com
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RNEasy Plant Mini Kit (QIAGEN, Hilden, Germany) with a DNAse treatment additional
step (RNAse free DNAse kit, QIAGEN, Hilden, Germany) and LiCl purification. Com-
plementary DNA (cDNA) was synthesised by using the Quantitect Reverse Transcription
kit (QIAGEN, Hilden, Germany) following the manufacturer’s protocol. Quantitative
Polymerase Chain Reaction (qPCR) was done with a Rotor-Gene 3000 thermocycler with
the Rotor-GeneTM SYBR® Green PCR Kit (QIAGEN, Hilden, Germany) according to the
manufacturer’s protocol. cDNA final concentration was 5 ng with 0.25 µM final primer
concentration. The qPCR programme was: Initial stage 95 ◦C for 5 min, 40 cycles of 95 ◦C
for 5 s, 60 ◦C for 10 s. Melting curves were used to check for specific amplification (ramping
from 55 ◦C to 95 ◦C with 1 ◦C rise each step and 5 s delay between steps). The primer pairs
used in the qPCR reaction were as shown in Appendix A (Table 1). Raw data were analysed
by using the ‘modlist’ and the ‘getPar’ function in R (qpcR package) [57]. Quantification (R
value) was performed by using the average of the selected Ct and efficiency values using the
formula Esample = Efficiency (−Ct). Data were normalised with two different housekeeping
genes UBQ10 and TUB4 using the formula Rsample = Esample/(sqrt(EUBQ10 × ETUB4)) [58].

4.5. Statistical Analysis

All the data collected were analysed with the R statistical programme (https://www.r-
project.org). ANOVA, Student’s t-test or Welch two sample t-test were used for parametric
tests whereas either Wilcoxon rank-sum test or Kruskal–Wallis test was used for non-
parametric tests. Further comparison was analysed with Tukey’s HSD or Dunnett’s post-
hoc test. A 95% confidence interval was used for all tests carried out.

5. Conclusions

This study has identified AtANN1 as a component in mediating the root increase
of [Ca2+]cyt in response to both eATP and eADP. It is postulated that AtANN1 might
operate as an ROS-activated plasma membrane Ca2+ channel, downstream of AtDORN1.
Since loss of AtANN1 does not completely abolish the [Ca2+]cyt increase, there are clearly
other channels in the pathway. AtANN1 appears to regulate the spatial extent of eATP-
induced intracellular ROS in the root. At the gene expression level, AtANN1 is involved in
eATP-induced up-regulation of AtACS6 and AtWRKY40, thus potentially directing eATP
signalling towards ethylene production and salt stress tolerance.
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Abbreviations
ACS 1-Aminocyclopropane-1-carboxylate synthase
ADPβS Adenosine 5′-[β-thio] diphosphate
ANN1 Annexin1
ANOVA Analysis of Variance
AQP Aquaporins
ATPγS Adenosine 5′-[γ-thio] triphosphate
AUC Area Under the Curve
[Ca2+]cyt Cytosolic free calcium ion
CAM Calmodulin
CAMTA Calmodulin-binding Transcription Activators
CAMV Cauliflower Mosaic Virus
cDNA Complementary DNA
CM-H2DCFDA 5-(and-6-)-Chloromethyl-2′,7′-dichlorodihydrofluorscein diacetate
DAMP Damage Associated Molecular Pattern
DORN1 Does not Respond to Nucleotides1
eATP Extracellular ATP
eADP Extracellular ADP
H2O2 Hydrogen peroxide
MES 2-(N-morpholino) ethanesulfonic
MS Murashige and Skoog nutrient medium
NADPH Nicotinamide adenine dinucleotide phosphate
NO Nitric oxide
PA Phosphatidic Acid
qRT-PCR Quantitative reverse transcription-polymerase chain reaction
RBOH Respiratory burst homologue
ROS Reactive oxygen species
RNAseq RNA sequencing
SEM Standard error of mean
T-DNA Transfer DNA
Tris Tris base, 2-amino-2-(hydroxymethyl)-1,3-propanediol
TUB4 Tubulin Beta Chain4
UBQ10 Polyubiquitin10
YC3.6 Yellow Cameleon 3.6

Appendix A

Table 1. The forward and reverse sequences of primers used for the gene expression tests.

Gene Forward (5′–3′) Reverse (3′–5′)

AtANN1 (AT1G35720.1) TGTTCTTCGTTCAGCAATCAAC GTACTCCTCTCCAATGACCTTC

AtDORN1 (AT5G60300) ATGGTCACATTGCCTGCAGAAG TCCCTCTTTACAGGCTGGACTCTC

AtRBOHD (AT5G47910) ATGATCAAGGTGGCTGTTTACCC ATCCTTGTGGCTTCGTCATGTG

AtACS6 (AT4G11280) TATCCAGGGTTTGATAGAGA TCCACCGTAATCTTGAACC

AtWRKY40 (AT1G80840) AGCTTCTGACACTACCCTCGTTG TTGACAGAACAGCTTGGAGCAC

AtUBQ10 (AT4G05320) CCGACTACAACATTCAGAAGGA TCAGAACTCTCCACCTCCAAA

AtTUB4 (AT5G44340) AGGGAAACGAAGACAGCAAG GCTCGCTAATCCTACCTTTGG
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