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Summzry of a Dissertation Intitled

"ihe Calculation of Instanton Determinants!

oy
Glyn Patricl ioody

This dissertation deals with successive elucidations of tﬁe form and
structure of functional determinants of operators acting in the backsround
field of Yang-iiills instantons.

in the first chapter 2 general review is given of the way in which
instanton effects arise in field theory calculations, and how the principal
technique of semi~-classical approximation of relevant functional integrals

leads naturally to a consideration of instanton determinants. A4 brief
outline of the construction of Atiyan, Drinfeld, iitchin and Hanin - of
central importance in such calculations - is appended, together with the
forms taken by the Green functions (including those for tensor products)
in this formalisn.

The second chapter employs zcta-function renormalisation (as used by
a number. of zuthors) to obtain an expression for the variation of the det-

riinant with respect to its parameters; this lcads to a discussion of

4]

the vacuum polarisation current due to instantons, an extension of the work
of 3rown and Creamer being presented, and then compared with the work of
Corrigan, Goddard, Osborn and Templeton. » ‘

The third chapter deals with the efforts of various authors (Osborn,
lers and Lischer) to remove the variation from the deteruinant ootained by
the methods avove; Jack's generalisation of this work to tensor products
is introduced, and .its inplications for 3U(2) discussed along with explicit
forms for the 't looft instanton solutions.
an ansatz due to Osborn for the form of the determinant in the
case of 3U(2) is presented, with an investigction of its limiting and con-
formal provertics; details of numerical checks on its accurascy are given
for k=2 and k=3. '

Usine resulis from this calculation, and employing conformal propert-

—

ies of voricus integrals involved, an exact form for the determinsnt in the

c35¢ of ceneral two-instanton 't Hooft (8U(2)) solutions is obtained.

A finzl chapter briefly reviews the progress mode in these investi

ions and possible future developments.
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CHAPTER 1: Basic Results and Formalism

1. Introduction

It is generally believed that the most likely candidate at present
for a theory of Nature will be one in which the strong interactions are
modelled by Quantum Chromodynamics, a non-Abelian gauge theory of 2
type first introduced by Yaag and Mills.1 In an attempt to elucidate the
| detailed structure of this theory, standard perturbative techniques have
been used; but the situation is complicaied by the occurrence of non-
perturbative effects.

The first of these arises from the presence of non-trivial local
minima found by Belavin, Polyakov, Schwarz and Tyupkiq2 in the Euclidean
domain of the action functional of such non-Abelian gauge theories, A
direct consequence of this is the dependence of the corresponding quantum
field theories on an additional parameter @ . (at least in the absence of
any coupled massless fermion fields or scalar fields which realise (J (1)
chiral symmetry). Even though O is presumably zero in Quantum Chromo-
dynamics, and coupled quark fields are involved as well as gluons, E(@),
the vacuum energy density, contains information of interest: E“ (0) can
be rela.ted to the mass of the (J (1) singlét pseudo-scalar Goldstone boson
(insofar as the 1/N expansion provides a good approximation).

V-Further, ‘the fact that these local minima are characterised by an
integer k (the Pontryagin index), which labels the topologically inequivalent
classes of such field configurations, leads to a resolution of the {J (1) problem
associated with this supposed Goldstone boson, and provides perhaps the

. N =
main phenomenological consequence of these non-perturbative ideas so far.°®




2. The Semi-Classical Approximation

Otherwise, when investigating these effects, one has recourse to
. . 6,7 . o .
semi~classical methods. Typically one is dealing with a Euclidean

functional integral of the form

> = £ dLP] e 559 ¢ () (1.1)

where 54, will be the gauge-invariant Euclidean action. By a suitable
choice of @ , 2= generates all the (Euclidean) Green functions of the
theory (which themselves effectively define that theory). For small values
of g the integral may be approximated to leading order in this parameter
by a sum of Gaussian integrals centred at the minima of the action 54,

Belavin et al 2 first investigated these minima and exhibited an
explicit form for one of them. As noted above, it was shown how they
could be characterised by their Pontryagin index k (én integer), which
1abels topologically inequivalent classes of field configurations. Within
each of these classes the action is bounded by a constant multiple of Ikl
and, furthermore, this bound is saturated by values of the gauge potential
for which the field strength E“’ = <& Fay , where *F:v - -?Ldg}“,fa E*fe
is the dual of F:/:'v .

The self-dual solution found by Belavin g_t_al2 with k =1, generally
called an instanton ('t Hooft's terminology) depends on five parameters:
four co-ordinates of position and a scale which corrésponds to the instanton's
""size". The calculation of the semi-classical contribution to the functional
integration measure in terms of integrals over these solution parameters

; 8
was first obtained by 't Hooft for the gauge group SU (2), calculations




further analysed9 and subsequently extended to SU(n) .10 Use has been
made of these results for a variety of purposes,11 generally in the "dilute
gas'' approximation.

In this one assumes that the set of minima can be represented
tolerably faithfully by an arbitrary superposition of arbitrary numbers of
single instanton and anti-instanton fields; the corresponding contribution
to the functional measure is then taken to be the appropriate product of
single instanton measures together with a statistical weight factor 1/(n+1 n i),
where n, o, n_ are respectively the numbers of instantons and anti-instantons.
In this form the functional measure corresponds precisely (in statistical
mechanics terms) to a free gas of two types of bosons, although interactions
of some kind need to be introduced subsequently between ‘insta‘ntons and
anti-instantons since arbitrary configurations of these will not, in general,
be stationary points of the acti 011.12’13 But even neglecting these problems,
and calculating E(E)) = K= cme) ,5’12 one finds K infinite
from a divergent integral over the instanton scale size. This highlights
the crucial difficulty with the dilute gas approximation: the formalism
itself is weighted towards large scale sizes, but if the instanton scales
become. comparable with their separations the initial superposed configurations
are no longer even an approximate stationafy point of the action.

There is a further problem with this approach, for it is unclear to
what extent one may be over-counting in the functional measure by virtue
of the overlapping superpositions. Indeed, Witten14 arguing from calculations
based on the 1/N expression, has questioned the whole basis of the approxi-

~

; 15,16 ,
mation, though exact calculations™ ’ in the closely-related two-dimensional
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¢ " -model suggest no fundamental conflict between the 1/N expansion
and instanton methods as such. As a further indication of the doubtful
nature of the dilute gas approxinﬁation, calculations by Frolov and Schwarzl'7
on the 0(3) o -model and Berg and L'Lischer18 for the CP"~ generalisation;
suggest that the instant'ons behave as a Coulomb gas in its dense phase
(see also Belavin, Fateev, Schwarz and Tyupkinlg).

Thus it would clearly be desirable to apply the semi-classical pro-
cedure systematically to gauge theories, making use of a well-defined,
complete set of classical solutions abouf which one can expand the functional
integral measure. Wittenzo, "t Hooft21 and Jackiw, Nohl and Rebbi22 suc-
ceeded in progressively generalising the instanton solutions of Belavin M,z
to one depending on 5k + 4 parameters, and having Pontryagin index k.
These results were later subsumed and extended by the construction of
Atiyah, Hitchin, Drinfeld and Manin (referred to as AEHM hereinafter).23
In this, the general self-dual solution for arbitrary compact classical group
is exhibited. The work of these authors is of such importance in what
follows that it is given in some detail below. Although all self-dual
solutions are produced by this technique and Atiyah and Jones24 have shown
that the space of self-dual instanton solutions largely exhausts the topological
structure of the full space of field configurations, it remains only a con-
‘jecturezs that the functional integrals occurring can be well-approximated by
the semi-classical approach of above just using thesé configurations for

arbitrary k.
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3. Asymptotic Expansions of Functional Integrals

26
In using this approach to calculate (1.1), it is instructive - .to con-

sider the finite-dimension analogue:

_L S
T = yot"_x 7[(2")@ g2 C)‘ (1.2)

If the minimum of S(x) occurs on a k-dimensional set of points M,

parametrised by x(tl,. .o ,tk) with S (M) & So,

?ﬁ} = o, ?}E ) = Cyle, ., 8,) (1.3)
@mL - ':)I,“ij " :

then as 9-50 the leading contribution to I is an integral over M :

N9 ?_'rr) Kl fW%F-ﬁ; e (duz/ﬁC) {La4)

@—ao

s »
where N = Jdel (5: ?———-—" > (1.5)
£ gt{, ’éf:m )
and f0 is the restriction of f(x) to M. The prime on detC indicates

that only non-zero eigenvalues are to be taken.

Returning to the field theory version of (1.4) a similar result is ob-
tained, but care must be taken that the measﬁre has been suitably normalised
to ensure rno factors of (m)n y N> e0, occur, and that only
determinants of dimensionless quantities are computed. The latter is
achieryed by the introduction of a parameter ol of dimension length -

Thus a more appropriate finite dimension analogy is.

fot"x{_/i )%e“é‘:g mé/*) e f TTat JoT £, (Jotc)? oY

2T’ Ny
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which can then be taken over directly to the field theories under discussion
~ since the set of parameters describing the minima of the action in this
case come to be finite—dimensioﬁal.
In the general situation under consideration,a Yang-Mills gauge theory,
with gauge group G , is described by a vector potential A/q and a field

strength Fu. , where

Fav = Ao ~WwAu + LAu, A (1.7)

both taking values in the lie algebra at G and transforming under elements

of G as

—1 - 1.8
Ap 7 9l Apold) + 969" dua(x), -
Bov 5 3607 B 9(=) - | -9
Then an appropriate gauge-invariant Euclidean action S is
= L 4
S = “‘2fol o T ( Fuw F;w] (s 10}

2, N . 2
The. investigations of Belavin et al~ concerned vector potentials

which are pure gauges at Euclidean =0 ., Then (as stated above)
=L Y. 5 ® :
Z f”{ x lP‘(F/uv F/m) = Pwik (1.11)
k = o tl, 2.
And since

S = = “("{_f o{q‘;r, -T'r- [ (F :f:*p)l + 2 F/{\)*F/Av] y
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self-dual on anti-self-dual field strengths clearly saturate the lower bound
of the action, and are minima,

The gauge theory analogue of the argumeit leading to (1.4) in the
- ; : ; 26
finite dimension case can then be carried through .

It is convenient to split an arbitrary potential /-‘\/W into three pieces

(=}

Ao = A Db tor w2

: Q
Here A/,‘ is an instanton potential depending on a number N(k)
of parameters ti’ Do is the covariant derivative formed from this

/.L

defined by

Did =29 + AL, ) (.19

and Q/" D;CZ),‘ Q_ﬁ; (L:l)...)N(k)) ‘ are chosen to
be mutually orthogonal, i.?;‘ |

[+

j O D de =0
In this, O represent q.uantum fluctuations about the classical

background field /\; , While D;,.¢ re essentially gauge transformations,
contributing only a volume term in the calculation (albeit infinite, as the
group of gauge transformations is infinite-dimensional) which is divided
out by Zo in (1.1)

The expansion of the action up to terms quadratic in O is

S = & |k| -(‘fd*a;Tr(qﬂaﬂva) + O(cf) | (1.14)
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where

Dyvay = (Di)lqﬂ + 2 [ Fo s o] = DS D; oy .  (1.15)

The Jacobian VI corresponding to JI'l in (1.4) has two parts:

one from the finite-dimensional set of parameters ti 5

X
= [oLak de*mTr QA A ﬂ (1.16)
. €L &

and another from the functional integral over Qz) 5

L
[dat (=0 /e2)] " . (1.17)
, -3
The analogue of [c{o/é, (C//“Z)] is
! "'é“
[ et (= pf)] *
It may then be shown26, by relating
N L
[M (- A/w//ﬁ-)]z ko [ohz/b’ (A///_‘;l)]z
where (A')/w ay 5 = Dzo apm - 2 [ F;v ) av] (1.18)
using the self—duality of F';n, , that the leading contribution to the

asymptotic expansion as 9 »o for each k is given by

‘ 4

M B M e (- 0% )]

( “ > e 3 '(;[' ou:;E ( ( )//“q ln/'@ ‘ (1.19)
g [dot' (4, [2]]E

This provides an expansion in terms of the functional determinants

of operators in background fields of classical instantons, which are seen

to enter crucially in this approach.
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4, The ADHM Construction

The construction of Atiyah, Hitchin, Drinfeld and Manin23 mentioned
above has played a central rdle in the subsequent investigations of instantons ‘
and their properties (see 26,27 for full discussion in this context). i

The techniques employed have their origins in twistor methodszg.

Atiyah and Ward29 used these to reduce the problem of constructing all ;1
self-dual solutions of the Yang-Mills eq-uations to one of complex algebraic
geometry; then building on the work of Barth30 and Horrocksgl, ADHM
obtained the general method of construction outlined below (following the
treatment and notation of 27 ).

For a general compact lie group the self-dual solutions are obtained
by adding together the relevant constructions for each corhpone‘nt simple lie
algebra occurring in the decomposition of the lie algebra of the original
group. Quite simple descriptions of the solutions existr for each of the
four sequences of compact groups (SUCV\H) y O(2n+) , o(2n), SYL(Q))
but only SpU’L) will be treated here, since the formalism is simplest
and the others may be obtained by suitable embeddings.

The instanton gauge potential can be written in this formalism as

= gt 1.20
where. (for the case of the symplectic group Sp(n) 27) V(x) is an [pt-lk)xn
matrix of quaternions subject to

wity = 1. - (1.21)

and \J+(‘r_)ﬂ('x) =0 . (1.22)
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Here

Doy (=) = ey +by,=,

| ¢eth, le€xcnrk,
so /A , o and b are h+k)xk matrices of quaternions
( 22 = xo — (xX.& : the quaternionic representation);

k is the instanton number. For (1.20) to yield a self-dual field strength,
T % .

a a, b'b and a b are constrained to be symmetric as kxl quaternionic
matrices. This, in its turn, forces [f[) to be the real and symmetric

for all = ; it must also be non-singular. Thus the following quantities

may be defined:

f = @), (1.23)
Mmooz ote (1.24)
T | (1. 25)

It is then straightforward to show that the resultant 5‘“’ is self-
dual, and that k is indeed the instanton number (

In terms of this construction the Green function of the covariant
Laplacian transforming under the fundamental repregentation takes a particu-
Mlarly ‘elegant form:

Gleig) = VI vly) (1. 25)
= Ix-y* :
this being, in fact, the simplest possible generalisation of the ordinary

Green function




1.11

G (= R T : (1.27)
2 e
that transforms correctly under the gauge group, i.e.
N |
Q (=, y) ? 9 (=) Ql%g)a(g) . (1.28)

27
It is fairly straightforward ', using standard techniques of this
construction, to verify that (1.26) does indeed satisfy the remaining con-

dition

D‘L CI('I/ ‘j) - o 5 x # Y (1.29)

(since clearly G (':c/ *j) Co (ac,kg) as is also required).

e
.‘JCQ\‘Q
On the other hand, to derive an equivalent form for the adjoint representation —
which will be of importance in evaluating the determinants arising in (1.19) —-=
. ; 32
is very much more involved .

Using 9 to denote the fundamental representation of a gauge group & ,
the adjoint representation can be obtained by decomposing 9I® i ; this
is then regarded as a 2-index object, one index transforming according to

the fundamental representation and the other as its complex conjugate, The

appropriate covariant derivative is

o Du = 1®10u + Au®l + 104, . (1. 30)

Naively one might hope that the obvious extension of (1. 26)

Glx,y) = vVl @ ve viy) (1. 31)
Ler® e —y)*
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provides the correct form for the Green function; but as Brown, Carlitz,
33 .
Creamer and Lee  at first pointed out, a further non-singular term has to

be added.
Considering the geuneral case of a direct product of two simple groups

Gr1 and Gz with covariant derivative

Dn = 1010, +Au®l + 1@A. , (1. 32)

. 32
the Green function is found after some analysis ~ to be

Ciloe,g) = Cvtx) ®vi=f) (1~ M vty ® valv]]l  (1.33)
i

where 1Tl is a square matrix of dimension 4(n1+k1)(n2+kz). It is defined

with reference to another matrix, M , which is (klk2 x k k2)-—dimensional,

1
and constant (as is 7Tl ) (see 32 for details); both are conformally in-
variant, The latter matrix, which acts on the tensor product \A/, 9] \/\/,_

of a kl—dimensional space \/\/, and kz—dimensional space \/\/_2_ enters

)
crucially into a number of calculations that follow, particularly in the
related fomns M; and MA derived from it, respectively the restrictions
to the 2k(k+1)-dimensional symmetric and #k(k-1)-dimensional anti-symmetric
subspaces of W ® \/\/_ .

Utilising the fundamental results and working in the formalism
outli.nvéd above, ‘expressions may now be sought for the instanton determinants
occurring in (1.19). This is attempted in the work below according to

the following scheme:

Chapter two employs zeta-function renormalisation (as used by a

number of authors) to obtain an expression for the variation of the determinants
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with réspect to its parameters; this leads to a discussion of the vacuum
polarisation current due to instantons, an extension of the work of Brown
34 . ‘ :
and Creamer  being presented, and then compared with the work of
35
Corrigan, Goddard, Osborn and Templeton
. . . 36
The third chapter deals with the effects of various authors (Osborn® ,
.. 37 ns . .
Berg and Liischer ) to remove the variation from the determinant obtained
by the methods above; Jack's38 generalisation of this work to tensor
products is introduced, and its implications for SU(Z) discussed with explicit
forms for the 't Hooft instanton solutions.
39 g .
Next an ansatz due to Osborn = for the form of the determinant in
the case of 5u(1) is presented, with an investigation of its limiting and
conformal properties; details of numerical checks on its accuracy are given
for k=2 and k=3.
Using results from this calculation, and employing conformal properties
of various integrals involved, an exact form for the determinants in the
case of the general two-instanton 't Hooft ( SU ('2.) ) solution is obtained.

A final chapter briefly reviews the progress made in these investigations

and possible future developments.
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CHAPTER 2: Zeta-Function Regularisation of Determinants

In this chapter a method of defining and regularising functional
determinants is discussed, and then applied to the case in hand, namely
that of the covariant Laplacian in the background field of instantons, the
variation of this determ.inant with respect to the instanton parameters
being obtained.

Arising naturally in this context is the vacuum polarisation current
induced by these field configurations, In section 2 an extension of the first
work by Brown and Creamer is presented and then compared with the later
calculations of Corrigan, Goddard, Osborn and Templeton; the latter form

the basis of subsequent investigations in the following chapter,

1. Zeta-Function Methods

There have been two principal means of defining functional determinants

developed by field theorists in instanton calculations, namely a Pauli-Villars
o1 ) 2-5
technique” and a zeta-function method . The latter seems to possess a num-
ber of advantages in this context, particularly for discussing conformal
. . 6,7 . . ;

properties of the determinants , although its part in a consistent scheme
for defining and evaluating Green functions of the theory has not yet been
shown to all orders in the coupling constant,

As in the introduction to the semi-classical approximation, it is
: . . . . ) 1,8 ;
instructive to consider a finite-dimensional analogue (following in this
and what follows). For a finite n xn  hermitian matrix A, positive definite
with eigenvalues >\L , 1L < (not necessarily distiﬁct), one may

=

set

3: (5) = ?‘E >\—: | (2.1)




which defines a function analytic in s with the following properties:

S,(6) =n (2.2)

~ et 4 . (2.3)

il

3, ©)

2
Similarly for a differential operator (such as -D , which is positive
4
definite if one works on the sphere S°, conformally related to the flat

4
Euclidean space R ) with an infinite set of eigenvalues, define

S—D"(r) - Z' }\—ns . (2.4)

But this leads to difficulties with j_oz(o) . In fact the series
in (2.4) is typically only defined for Re(!j >2 : to continue analytically
beyond this to s=0 a technique from the analysis of the Riemannian zeta

9
function = can be employed, where

0

Ti= 5+ = #)y&em L (2.5)
t lr A [

e -|
The integral in (2.5) is then suitable for evaluating the analytic con-

tinuation of T to all complex s , revealing a pole at s=1 (and 2).
Analogously we can define
(T | |
and further generalise this to — p* by noting that the equivalent of e—‘At

in this case is eD"b "' or, more properly, '§t(a:, 3;&) satisfying

/g\:% _ Dz,,%/ (2:7)

2E
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which defines a function analytic in s with the following properties:

{
)

B’A (O) - N (2. 2)

i

T 0) = ~tadetn | (2.3)

2
Similarly for a differential operator (such as -D°, which is positive
4
definite if one works on the sphere S, conformally related to the flat

4
Euclidean space R") with an infinite set of eigenvalues, define

S_Dz(s") = 2 P (2. 4)

But this leads to difficulties with j_oz_(o) . In fact the series
in (2.4) is typically only defined for Re(r) > 2 : to continue analytically
beyond this to s=0 a technique from the analysis of the Riemannian zeta

9
function ~ can be employed, where

o0

T = Ej’; = 4 | a ) (2. 5)

e
“‘)0 e —|

The integral in (2.5) is then suitable for evaluating the analytic con-
tinuation of § to all complex s , revealing a pole at s=1 (and 2).

Analdgously we can define

I G AL
S = ﬁ)jdﬁe”—r”(‘e ") (2.6)

and further generalise this to — p* by noting that the equivalent of ef‘Ae

in this case is " eD"b " or, more properly, 'Z}(x, 355) satisfying

/g? _ DZ’% 2.7)




_ equating powers of &

2.

and ”g— (""‘)5 )O) == SC_ZL-S) . (2' R)

-1 2
These define the heat kernel 8 in the case where -D  is a second-

order elliptic operator on a compact manifold (see also 11 ).
Y
Then Tr (&P 6) = Tr G = j%«'ﬁ(x,r &) ol (2. 9)
( & referring to internal indices). The asymptotic properties of
Cle,%; ) oo Elo show that g_pztf) is regular for

Re (s) > “17: n and there are poles (as above) at s=2 and 1; Q_D; ()

is regular at s=0.

!
To calculate 6 5 (o), this asymptotic expansion of the heat kernel

1
must be investigated in greater depth. Setting 0

_j__,. l X3 = | .
é(x,fj)f:) (::,’O | o W%‘"Q{x—a[}zaandﬂ; (2.10)

the co-efficients @« may be evaluated iteratively from (2.7), (2.8) by

3, 12

(I"j)/A D,v\ao(x, y)=o°o, by lee,c) 2l , (2.11)

na, (xy) +@:-3)/.,~ Dyt (x,y) = DLo.,L_,(_oc,j) , n2l _(2.12)

Apart from infra-red problems (cf. below), the residues of § (s) at

3

s=1,2 and its value at s=0 are controlled by the small-t behaviour of ‘g_(x,x/-g)‘,

Q@}n‘g(ﬂ & "é;zjﬂtrao(x, =) d (2.13)

Reg,_ Bls) = — ytral(x,m)ot‘a:, (2. 14)
= lorr

. {
g(O) T lems | B le, k) d (2.15)




2.4

(2.11) is solved by the standard path-ordered exponential (taken along

the straight-line path from x to y)

a‘oéx/‘é) = PW(—'%JCA/A 0!00/,) (2.16)

which can then be used with (2.12) to give

i

al("""/r)

[Dzao(vc, gj)]x:y = o (2.17)

and

1)

( ¢ 2
JéD.LD?.R"(x/ 3)]123: T F/:uv 5”\) . (2.18)

O‘*q_ (_'JCI t)

So the residue of \g(s) at =2 is infra-red divergent, at s=1 it

vanishes and

{
- .o L 2.19
Sto) 12.1@1&‘“ Guo Bav e = =5 ke (2.29)
for a self-dual solution.
!
To calculate S (0), using the fact that
Res, (M 51) = Re, yo\b(:f" Tr e = Ga.iz, ) di
J=0o =0 (6‘!{’
o (2.20)
one obtains from differentiation
I (
. & [— .
5 (o) = o [rf’(:)][ko lem‘(d G o (2, 3)
) (2.21)
f e T () = (m olaztro»z(wx)]
and | 2] ot =Y Euler' stant 2.22
;l; ¢ M (Euler's constant). (2.22)




Aside from the difficulty of analytically continuing the right-hand
side of (2.21), it is not apparent how it could be evaluated without detailed
knowledge of the eigenvalues of —Dz.
These difficulties, and the problems of infra-red divergences (which
arise only in the deterrﬁinant as a multiplicative factor independent of the
instanton parameters) can be obviated if one considers 87;0) - the
variation in ‘5’(;) induced by a change (Sf/?\/\,L of the potential. As Qo (2y2e) =1,
SE(J) is regular at both s=1 and 2 (2.13), and further ~5(0) = o
if A/u satisfies the equations of motion, (2.19) then being proportional
to the action, a constant,

In these circumstances

$Cl) = #{—;}job&,e’ T.{ewtgb‘] (2. 23)

and so.  $5 (o) = [L b T [&” g[ﬂ]r: ' (2. 24)

(@

* the integrals defined by analytic continuation,

. . . 2
Integrating by parts, and denoting the inverse of D~ by its Green

function, ’

D" Glx,y) = = §(x-y) , (2. 25)

then = § 5 (o] = [Sf obcer"Tr[eéDiC:SDﬂl_ _ (2. 26)

Now §0% = Du §A4. + §AuD, | (4. 2%) |

SO (2.26) becomes \;




§5'10) = [sj;u g TrL”LSA/A@lq + g5, SA/JL:O (2. 28)

with the notation

=

D Gl y) = '%/* Glo,y) + Auld) Glx,y) (2. 29)

and Q('x_/j) 4{5/; = “S_/QQ(QC/EQ) + Q(M/fj)A/’\(j_) . » (2.30)
J

Thus the residue at =0 in

jo(é £ T [SA/& ( 5; G + 5 B’/u}] (2.381)

/
which is controlled by small-t behaviour will provide & §(o) . In

fact it is the constant term in the asymptotic expansion of

f e olty €L A (Bl Go) Slos ) + 6 i 9615 T,] - 2.52)

that is required; this is obtained from consideration of the expansion of

“?(x/j/. g - An obvious choice like
é(xfjjé) = Ple,y) Sl=-y) + otg (2. 33)
where S—ﬁ (X,Lj) = A, 5) ) the path-ordered exponential

po

13
of (2.16), will reproduce the expression obtained by Brown and Creamer

in their investigation of the vacuum polarisation current created by instantons

(see bélow). In their work, a point-splitting approach was adopted that led

to ill-defined expressions whose ambiguities were resolved by rather ad hoc

means,

Noting with these authors that




e e

- A EOTSOESE T

Gz, ) = 1 ( @?{ + R(zﬂj)) ] (2. 34)

T -y

where R(X,y) is non-singular at x=y, one may furtier apply the
Zeta~-function method to obtain rigorously their end result7.
For Brown and Creamer found that only this reguilar part of Q(x,j)

contributes to the constant term sought in (2.32). This will occur if

o ja‘fm\‘fj u[SAﬂ Dy ( @m)) Glyee)) (2. 35)

L ey [t

has no such term as &4 o.

Now
%,
‘ - - 4t
.zf;fi‘ra: ol L e ™ e (2.36)
Nz ~ M
is finite and (changing variables) of order & , vanishing by anti-

symmetry if N is odd, provided > N —m > 2

Thus the only terms of relevance are

- lxﬁf
_I_, (_(4 oq— = ()c‘,ﬁ)) ey 2.37
B\S'dx lfﬁ%”“[g’qﬂ Do (%m~311 (Q"(?/‘*’) * 6“’(3’”»6 . !
Expanding

5; (@ﬁ,g)

[yl

- —-‘> -
J: lz -y lDﬂ§(“fd) - 2 |-yl 4(93”3)/« @@C'f’)

multip-liéd by Ao(y,x) + ELa,ly,x) _ in a Taylor series

3,14
about x=y, one uses

25 % | y
D/M Q (=, y) = = F‘/“ (x) (Lj —x)
(2. 38)

3 D)\ F/"‘v(’x)<3"mj>\(y"av‘? + O( lDCM\\j\L)




and @(DC,V) @(3,;’;) P , (2.39)
% (y,=) = O(l=-y1*) . (2. 40)
Then with
v o 5
| 2 wr*

the contribution of the singular part of G(x,y) to (2.33) is

. jdq’x & [gfﬂrﬂ(x) Dy Fﬁw(x)__} (2.42)
- P>

which vanishes in the case under consideration, since Aﬂ satisfies the

equation of motion Dy (71“, = o , So finally only R(x,y) remains, and
using
— e
! A% o = 1 : (2.43)
1 én__’l&\

. 13 . :
- Brown and Creamer's expression is achieved:

§30) = -§ budet[- p?) :f,,ﬁ,c & LSAuto Jn ], (2. 44)
, - P
where j/—; (DC) et z;,-;’b [ D/UL Q. (T., 5) -+ R({:Y;, j) Dﬂ]}“:d (2. 4:5)

is the vacuum polarisation current induced by the presence of the instantons

~ (see 13 for a full discussion of this aspect).

2 Calculation of Vacuum Polarisation Current

This current thus enters critically in the calculation of instanton

determinants. The basic technique employed in its evaluation is the ex-




2.9

traction of the regular component of the Green function G(x,y)

| _ _ Bbxy)
‘Z;;i Q(.’»/:j) - C’(x/‘;ﬁ) qum‘x_b‘-t (2'46)

where @(X,\g) is the standard path-ordered exponential; 3;4 is then
calculated via (2.45). ’i’his method was developed by Brown and Creamer13
and first applied by them in the case of the extended 't Hooft solution
in what follows we treat the general situation in the formalism of Atiyah,
Drinfeld, Hitchin and Manin (cf. infra). Simple Taylor expansions afe
used to this end.

Expanding about y, only first-order in x-y need be considered, since

higher-order terms in (2.45) will vanish as ==y . With
CI("/B) = w (2.47)
G ey [
by (1.26) M (., g] = V‘f‘(x) V(D)/' the expansion is straight-
forward:

My, I+ B Ivl) + R Qg vy
2]

t 5 5 Bunvily vy + O3
—“**3’!””' (2.48)

where \9,/& = (I/“:IJ/&'

Similarly we may expand

St = tael-fh i)

15,16




= 1

= 1

denominator)

Also X =

‘ )
\? = % Y

So X =

+

x
1 j
J

- where F (x /) =

- ;L‘ A/* 00'75’/’L
A/*ola;“j Ao do? (2.49)
g |
% *y X
- J A/AoLx{*j‘ A,,M;j,q%oﬁ«; o
9 ' Y 9
- EA/@A/L/* + X+ Y +... (2. 50)

<J

To third order in ¢ (since we have a factor lx-—yfz in the

L Apdap = O+ Auly) T + 5 5 9, Ay

|

¥ S,«Rﬁ%; /‘;/;_pA% + O(—%\") .. (2.561)
3! ;

f SNCITICY
. .

Tehuly)  t B BAnly
2!
BRI % Anly O3
3!

S + 7/'-‘.9/'\: EA/A Av]

2!

-gf'ﬁvﬁ) [ ’a-o A/«/A\}\ 'f’gkA/eAv
B

« EDR, Ay v 4] + 01592, 52)

2.

- 4@ ]
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Let h//‘V}\ (j) = rav A/,,L A?\ -t g} A/u. A\J

AL (9 Ay + Ay

Then

Y = f A/u,(_‘x‘)d.‘ﬂ”//‘” a(:t:,)
9

(2.53)

twhere e} = -zﬁE[:Aﬂ(ﬂ)"Av(b)] T E/Ij?\l,%; \'L/Lwy\(b) )
3

3!

giving Y = i,u?v—g% LA

B

So @(x/‘ﬂ) ;;j 1 = A

T \2/"3‘) [-QVA/-« -t A/u, Aw:l

2!

T ?/A?\)QS?A E" A/u A) Ay -+ gVA/A Ax

2!

+ Ap (35 A, +"a,\Av)] +0(3%) .

Ve (AvAy +AVAK) + O%%) . (2.54)
£ ,

(2.55)




2.12

Since ity = 1 (cf. 1.21)
we have @/«V+V = - v'”c)/J.\/
and so _g/w 9/,\\/*'\/ = - o V"'g/_ﬂv
= - 2.56
A Sp (2. 56)

causing the first-order terms in (2.48) and (2.55) to cancel in (2.46),

leaving
Lo K(Dcfﬂj) = B/W 2/_”__‘%,‘) + Cpn E/AEV E,\ (2. 6T)
2',-?1 3! %2
where
B/).y = s viv — ( A/u Av e Ty A/J) , (2.58)
and wak — /afm}\\/fv
| (2.59)

- [~ A/A—A'\)A)\ +9VA/.~ A)N T /t;)\A/uAV

~ Qv Ayt /jﬁ(@\,A”’ahAvﬂ

In oxfder to compute Tf* of (2.45) it is necessary to adopt some
convention for the limiting value of ﬁﬂ % /‘%2 as $ -0 . Naively
one might take this as S/W /q, , the symmetric limit; but in fact there
are tv'vo‘ limiting processes involved here, and it is important that the
orders be strictly preserved.

D/w acts on R in two ways: differentiation by ’a/” , and via
multiplication by A/.,, . Clearly, in any sensible limitiﬁg scheme, the latter

will only contribute a term from B/M, ‘2,4 %y 3 but the pieces obtained

203




2.13

by ”a/u acting on R must be considered more carefully.

Now

O (_%“ .%V—Z,\)
4571

= g”‘ﬂ .2\:‘%?\ t E/AS; qu’ "'_?,« gv gu% (2. 60)
»%'L

SRR e 1% 7
3t

Having performed this limiting process of differentiation we may now

take
é/* R (2.61)
'T'??? 20 ‘:: ‘
and. \gf‘ ?\r ?}fa\' =P _l__ ( S/N S}\oc -+ SN gy)\ T+ g \A &x) 3 (2.62)
T Y=o S0 24 A

*2‘(’

so (2.60) becomes

X (?C%QJZO 'lé (X“r Sox j‘g}*x Cva + Suv SM) (2.63)

) 1
not, as might be expected, 3 of the symmetrised sum of (2. 61).

Similarly

O (?,?\.) = Sa',ﬁ\, + 8,”‘;!4 - 2%:'%, % (2. 64)
¥ K G
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The latter term -—o o» g - © ; but the first is ill-defined.

For present purposes it will be taken to be zero (as J(x) is regular). This

point will be returned to later.

Out acting on C/w) produces ncthing in the limit oc >y but
Ow B/W will contribute.
The term produced is proportional to “Ou 8/“} _‘E/ ‘gv} R
. ?7 320
which becomes " Buv . 8&! ) Here there is no ambiguity about
L{/

limiting processes and the S/w, may be taken within the differentiation,

producing /c)d Bf&/u /4

Now from (2.58) B/M/A = vty + C" A/.A/u ~+ Q.A) . (2.65)

g e 3 15
As is usual in instanton contexts (e.g. 't Hooft's solutions™ ) we work

in the gauge “2-A=zo , so

8/7,‘ = vty — A _ (2. 66)

and gd@ - JL‘:(aa(_glV:{.V +razv+gdv MgdA;\A)\’AAQ“A,\)-(Z.G'”
L‘P

So using (2.65) and putting together the component parts obtained

above, we have

. I
Ju = %erl{/c)/fc) vioy

! gzﬁsﬁ ’ %[A/AAQ*AXA/AA> * AiAﬂ]




—1 (264 44, + Ay A,

293 An Ay + AARAL]
2

T3 [,/A(az\lf\/ + 91\l+9/,\\/ - 9,«« /Af?vA;\ - Ae.gﬁ AP\]

t SA(Fvhy - AZ)} . (2.68)

3. Vacuum Polarisation Current for 't Hooft Solutions

The vacuum polarisation current was first obtained by Brown and
13 . 15
Creamer = for the case of the 't Hooft SU (2) solutions™  ; (2.68) can be
- checked against their result,

In this case

A = c«z/_,:,%uﬂ (2. 69)
P

Wher817 o
o= (Comn + Bopbin = Su Sp)on 20

( o™ Pauli matrices),

T

k \;
o [=-y(?

and TT7 =

(2.71)

: . 418 ;
the instanton superpotential™ ; /\i’ Vi respectively the instanton strengths

and positions.
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Then regarding v as a column of k+1 quaternions

s
Ve = Ns 2, T ™. o

(™
(oY
"
~

(2.72)
¢

where Xs = x—ys, in the quaternionic representation. Using (2.72)

+
@m@f\/ -V may be calculated .

First
4 + <k ~—~—-.l.
2 =T oy
(2.73)
\
L
with e;\ =
-£ "
o Qv = 2T ST Ahwl o LT Q0 TT ), o5
| -3 M
SETTR TN, (e, = o )
=,
L rr~% ; -
S LR N, (s — =) o
x%
t
-+
+ TT 7N (- S0 )b (2. 74)
xt :
s
] + v
: [NV (Lqpvfl“x}})('"‘/])\xx_r +:c§v).~cf
| < =
1 — &4 TT. 7 & (_Cﬁ,/*\’xr —-II}) 2 ey
: 6
e




2,17
and
"al V+.(‘ - %(:TT (,ﬂT) \ '—?i,r s Tr-‘/\ TT( V] -o'x, -tc/“]D«J}
ﬂf '.')C_L(_Jx
— 217 T N (2.75)
>cp
Giving
- 2 _Z
ENCRY S TTERu) Qs+ 2T PN U
'3 » oo =3 =
2 TT‘:{” LA D I R o
Ty (g/wrr) ((‘7}\\77"«' xf) -
o
+ 21T T’;f{‘r(% oy — ek ) T 2
% (J« 7]
— % A 2.76
T Q/MXTT("V(/,\\)'JC; DC/") 9‘;’% ( )
5
— -2
’
-2 . .
— 1T gﬂTT("Vl/wau_,—’x—/:) 7\,¢m; 3'201) w"
\ =5,
+ -2 -+ >y =
g 3 z‘x-f' T g)jﬂf - 417 (‘-'V]}\K_:u,ag—— 39‘35)"—2
= =




2.18 |
and - } ,
®A®L\'+.v = ?; g{éiv‘_} s |
L -3 5 i
= LT € 2T T 90T T |
“+ ':':/: ]—T'g@ﬂwl E: LC«/])\\’._,O‘; - z'},‘) &
x¥
+ 2T BT QT F (s ==4) Ar
x5
- W—l ré/«)\TT ;(i%\,vaf-sc/_ﬁ_) X: !
X i
- TT—v;/u'[T [cle_ YY) ;}:’L (2.77) ‘
- C Ul
=TT Z (e o) lopasie 30
.
! |
- = '
+ ZTT T 0OWTT 2 A {
C)f'/‘fr |
!
. L!(’-(—T—-Ii("’flk\d_m"}—' 32,;) }\_{ }
%6; l
|
: 1
Then considering the other terms in (2. 68) }
|
EEA/AAi—eA;AFA}\f—AIA—H] |
‘ . i 5(®>TT)L ! Trf a R
= 3’[1 \T:F/L‘IA/A *;({;}10 A/“‘G]
= -2 ST 2.78
- 2 f/n? (BVIT @}\Tr) U s ( )




——l

2.19

fgz%‘r/ = _gl'jlm (@ATT)ZQ\)’W T - gw'\T’Q{\TTT_) (2.79)

and ' '
by direct calculation. |
|

Also

~(p Ay Ay + A Ay)

1

3 ﬂxxu%ﬁuﬁwu pUT (607 + 07 0a)

Pl

|
|

[

%(%FTT,%WTF'“ ﬂ(’c)uml@/ﬂr_rr‘q’ 5 (2.80)

T O Ay Ay

Il

L'T, 1>\o(krét"(ub1 i 1;%-,#@9(”\‘“* (Sw + ( €gbe 0'°)

1}

1&; ['7)«:(-&. V‘(}\Pd« + (€qpe O‘C"]}&c'/‘;\gl.]()ﬁ/uh«—ﬂ_gp (J/\’rr .

Then using standard combination formulae for the 7 s (for which see

Appendix of first reference in 1 ),

Moo pe = 2 Sorp

and

Ccab Paea Japb =~ ?’7“-"‘? ’




we have

~ O Ax Ay
= 4 (39uTTATITT™ - 26T yTr 7T
L ;1. .81
Ve B TR TITTT )L @8
éimilarly

l
= _L;’ y]/i““\ r)}\&uﬂ‘/\)‘{;h ,}F lQTT (c’qo-b + O*‘bO‘Q)

\

_L. |
2. V]/Ao(d'y]%f;d'%'\"( LAW’DF b TT , |

= 3 D TTRTT 1772

(2. 82)

7

using 7,«:@- ffo« = é;,xgd(; - g/‘“f &o\ = 6/”(}‘13

Also

A1
i /2/4aq/a>\dLuTr ‘f'w@)g L TT oo &,

{1

JLF v}/w(a. %fgbgMb«TTi)p(nTl‘C Saly =+ (€ g he o-c:[

which, using (2.82) and

Eobye, "]/4::&0\7}\&3@ = g/"’\‘/felfc - S}*‘B '7l>f)\c - Sdk‘qf«fc -« go/fs ‘7/n>~<: s




becomes

. - -0 . -2 . - -2
lr/a/uu TTQ@W TT + —L; V',;LFQ/«(WQPITW "",&(F V)/A)\(D}\mw/;d{—rﬁ .

(2. 83)
From (2.75)
2 2 . S
ava:~ﬁb§_f_w' +{;@/JT)TT1 (2. 84)
=%
2 1
and a = - 3—/ (?,HT) T (2. 85)
So B”/A of (2.66) is
(TT'l . "*”‘) 2,86
(1) 41T =8, ), o (2.86)
=%
i.e. real.
Now 'J;k enters in (2.44) o» U[SA/A 2);] , So only those
parté proportional to & are relevant. Since & is real

7 )

“oq Bﬁ/,‘ = (g“ralvvﬁ v +VBAV — Bu 4, Ay _,AXQMA%>

is also real in (2.68) and hence contributes nothing to the effective polarisa~-
tion currents. Similarly all other terms in the component parts of (2.68)
without this factor of o™ may be discarded.

Thus gathering together the relevant terms (i.e. those proportional

to »/) ) we have




(S (AR « A A A, ~ AA) + 5T

T20 ALAL + AL A;l?

S¢ ; 2 -
;:% ? - Z;V})\vrav W(@PTT) TT ?

+3 [““]w(@/ﬂf%l’t T = TTRLTT Tr“‘) (2. 87)
+?LF C"lo(p?mTT’Q;TTW—L *?ﬁ‘?xﬂ@ﬁuﬁ%vwﬂs '

= ?imﬁﬂ@ﬁrrfﬂ'} (%)
CH e BT T (%) (2. 88)
+ g R TTRTTIT 7 (g }

Also (from (2.77), keeping only the relevant terms)

Bfalva j;—/_ ; L V}A'\’KBV TT~@/LATT)L T/(.—l (_ '_;g
CO T T 17 (%) _\
' (2. 89)

T B TT R TTTT ™ (&)

2 )
(3 ) |

X
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| Fg BT TTTT ™[ )
e % TTRTTTT ()
cipn(sE) e
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. éik(h,’avrr ?%TT'Z {

¢ |
= aer ? Z Podu Tt TT7°

T e TT 9Tl T

,.27ng (;%) (2. 91)

=3 e B TR T

ol 3 'I)\V/DVIT '; % T—r.—z 3

- Defining (with 13 )




: 2,24

B A ’ -2 Kepp-
- @[zq)\vgﬂ\)ﬂ-gﬂﬁﬂ +3V]X\,/9\,TTY— W

£
(2. 93)

(2 g;a) T = a. T

and we can write |

1

T e Do B (2. 94)

Consider D)\ T Do

Now
'D%D”V\?w: é{:DMD”]‘T)w'
r Fyo 1o

= O

1

since F,, is self-dual (by construction) and qp anti-self-dual.

Equally, D, & contributes nothing in (2.44), for i

jo\‘g:trgg/]# D«G")/\NS ‘1

I

fo\%c tr{c'v]/w Dy 8473

= fat‘bz:’crfavlr,, SF,»;%

which again vanishes because of the opposite dualities of r) and F,
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Thus we obtain Brown and Creamer's results for the effective

vacuum polarisation current

i

9

—{ 2

= 2L (e T = g amantr T

~ ' |
5 |
1

T (BT T 7T *) (2. 95)

~
" and 'J)\ is conserved, as is easily checked.

This is true for the general current found in (2.68) though the lack
of any essential simplicity in the result has unfortunately prevented direct
verification. Similarly _J;A is anti-hermitian (as A/,\ is), but in the
derivation of above there is a manifest lack of symmetry(under D;,\ =% UI;T,

it has already been noted that the initial calculations of Brown and
Creamer13 were plagued by problems of limiting behavioﬁr, solved by the
‘approach of Corrigan g_t_;:g_l7 . Similarly the further problems of the
generalisation of the earlier work were also avoided by these authors.

In the expansion of @(2:,3) (cf. (2.49) they arrived at the following

ansatz on the basis of gauge covariance and Euclidean transformation

properties:

@(z/_y) = o) (1 + 1=yt b Hioy) Lf)\/(hj) ! (2. 96)

where the use of the ADHM construction allows structural mimicking of the

Green function

Glyg) = V=LV
C("TTL (QC“b\Z



from which it is subtracted in (2. 34).

Then using the defining equations for @(ﬁ,b) s

- By =0 = Beu D=y

a power series in (x-y) of H about X = 2c+Y can be obtained
Z
(see 7 for details).

With = T these authors obtained

—E_’:'
Hxy) = 2£(8) + T‘{{b’:)[(vc—a)A(ifb ~ QA(i)@%sﬂﬂﬂ
t o(lz-yp) (2.97)
Then using this via (2.96) in (2.45) gives
T w bl th- Fa 0
which is manifestly anti-hermitian ( €, = =, ® in the quaternionic

‘representation); it is then straightforward to show that its covariant derivative
is ze‘ro (notation introduced in 19 1is helpful in this context). Using the
various forms for v, b, f etc. in the case of SU@) , (2.98) may be
shown, after some algebra, to reproduce (2.95), further confirming this
result.

Clearly the elegance and simplicity of (2.98) coupled with its full
generglity, make this form the obvious choice for further investigations,
and in particular for seeking to remove the variation from SA/A in (2.45).

This will be carried out in the next chapter.
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CHAPTER 3: Integral Expressions for Instanton Determinants

In this chapter the efforts of various authors to undo the variation
present in (2.44) is reported, following principally Osborn and the more
complete work of Berg.and Luscher. In this, using the current of (2.98),
U ( 874,4,\ 3;,\_) is re-written in terms of various variables, A, 3}:
having been transformed to equivalent quantities in another, larger space.
Then after some manipulations and re-grouping of terms, it is possible to
extract the variation from (2.44). In the process of doing so, a five-
dimensional integral is introduced.

In section 2, Jack's extension of this to tensor products is discussed,
together with the implications of this work of computation of instanton
determinants in the particular case of SU(2) . These are further con-
sidered in section 3 with the particulatisation of the above to the 't Hooft form

in preparation for the following chapter.

1.  Basic Techniques

In the previous chapter it was shown how the determinant of an
elliptic operator (such as the covariant Laplacian in the background field
of instantons) could be obtained from the zeta-function of that operator. It

was further shown that under a variation of the parameters in the general

s g 3 !
solutien: A/, , the corresponding change in ~3’(0) , where
N :
det ( ~Pﬁ* | = %f[— Ln/f"E(o) ~ Z\"(OJ] (3.1)

( M a regularisation mass-scale) ,

was given by




3.2

E 0 .

gl”(o) N %ﬁlgwf,&q[g/},‘ TJ;J . (3.2)

Here 3}1 , the vacuum polarisation current due to the presence

of the instanton gauge field, is (in the notation of Chapter 1 and 1 )
— ot + A = A
U; fv\of(@#Ab—fb[le}A)ij (3.3)

and = 't
A. = vi.v .
. 2 3 . . .
Liischer” and Osborn”; in the main, the latter's treatment is presented

The removal of the variation in (3.2) was first effected by Berg and '

here.
|
1

In this, the formalism of Drinfeld and Manin4 is used, writing

. ,
A(x) = a+bx = (A - (3.4)

8+Cox
+
where B and C are square 2k x 2k -dimensional matrices and >\ acts
from a space W to N-dimensional representation of the gauge group.

‘Then a solution to vtA=o and vy*v =1, is given by
-{—
vi=U (L,,—u*) , (3. 5)
1
uu{;.x:j“L = X ( R+ C‘x) . (3.6)

where (U U+)’{ = IN +utu

Tse A = -UTN G CWU UV (3.7)

~

with G = B+ C:Z;)+ (B +Cx); and defining A/A a gauge
transform of Aﬂ by
- A —
A = UTAU +UT%U (3.8)




3.3
then A/* = —UU*'qu*( 'é/,‘C+UL ) (3.9)
Now (U Uv-f =1, t du
=1, + XG7\
o _ (3.10)
IS
h 4 N =\
where {__AA_)\A.(_Q)
| o~ o 8. 11
‘SO A/M = ——X{‘e/ucfu\, ( )
Since SA/A =, U"S/T/AU o+ Dﬁ(A)UﬂSU
and 3;4 is covariantly conserved ,
jcww { $4. 3] fa A NN,
where —J;A - U\)/U.U
. L (3.12)
NP (P -pg)fCTu
(here  Plx) = b Alx):=CYB+cx))
Defining Qu and _)/* by
x Tt
A = )\a/,\)\ , (3.13)
AN
o= Ypa o, @4
then the gauge field and current for the space W may be defined thus:
| /’}‘p = @, N | (3.15)
A ) £ ' '
-J;‘ = )/A >\)\ . (3. 16)




s

3.4
Using standard techniques in the context o'fvthe general ADHM
solution (see 5 for details) it may be showﬁ that
"o if(e/‘* P+—?€,A)7[§ - @ (3.17)
and so /5/4 T >\>\+)‘/M + )‘M)\}j—q 1 (3.18)
which ensures D,q (/TJ i‘ 28, Dﬂ (/Z}l_}j/\}( = o and also
(f - ~ Lf A ey
Jrctc (88, 3,) - o, [ 54,8
= ‘(’ ~\ : _ +
j'akac & ( A &N Cq}" >\\ );-" Jm AN q/‘) (3.19)
= O
as and 5
Ap = D (x?) )f* = O("C—)
Thus finally one obtains
o) = -~ | d% A -F
§ X0 ‘(W“‘JO{ VW{SAﬂ@? | (3. 20)
where A/A = ”j[é'ﬂ\/ i
S feflenropa)fy @.21)
v = CTu Y
After fairly lengthjmanipulations (details in 3 ) it can be shown that
[ §4,3.]
-t -t
= = Pte L P TSUP)E (e B - 1) 4]
v bk [ S £0°4F] - S [SUER (o, P 05, +z~ofr“ﬂ |
(3. 22)
" 3




3.5

The derivative vanishes as a surface term in (3.20) as S(fﬁ*) =z Q=)

and ,J[v < O(x,"’) . Then defining3

= f\o , : (3.23)
>? ® f_l5 ’ (3.24)
Y o= ][v L, (8.25)

(3.22) is written more succinctly in (3.20) as

5710 = & Jaef bt [gYxF] -t [sx% (e, ;xéﬂmzﬂ}p.%)

Further simplifications may be achieved via integration by parts and

suitable combinations and terms to obtain

§310) = fhn § 4% [~ 26 [ Y] + &[5, %%, %]
”'z:tr[ixfx:lg + 56 (3.21)
where SO = i ,fothf’[ SXX ~ XSX)XX] 5 (3.28)

showing gj"(0} as a variation of an integral plus a further less explicit

term. The former may be further re-written as

e o b+ e

n‘v f{tn[_'YY] - z’tréxxﬂ,xxlﬂ (3. 29)

and the latter as

[
‘;:[r’,, yd(@c qb,




where ('.P = euf;zstrcgkakg kxkgj (3.30)

and by = ]Fgmﬂ , (3.31)

89 was successfully re-expressed as the variation of an

integral by Berg and Luscher 2

They considered the properties of a function g (‘%) defined by
7(4) = Caprnite [ M7 QM 70 M ™ D s 0 7MY (3.52)
S

where M('%) € Ctl-— “‘\, C/) an arbitrary function of 5 real

variables -gb 1‘2:/“212,;63/.%‘(’ ’

Then
SQ = ‘O €,<gv5’xta’§ M7 e M"@{; M. M7 Mé. (8.33)
Introducing a parameter t, an integral form of this equation is

|
q = faxjodt Cxprnbr {70 KKK KOk (3.34)

where < (6, “;) , 0 ¢l is any curve of invertible
matrices (in GL(k,C) ), such that K[O,i) is diagonal
and K(il*;) = M(%)

Then taking fﬂ = 2, (/“‘ =0, 1 ?,3) and ’;9/

an -instanton parameter with respect to which the variation is made, and

putting M:j[‘—‘l ,
O = Cpne b VF SF O F S O 20 7]

(/“"’f{)"" fon O &3)




—

= e G O 9T £ 7Y 85,
(/“,V,(’,tr e Oﬁrw)
e N A S - f o ’[—’3 ﬁ(ﬁ 35) ‘

So by (3.34) with K = é][_’ + @_@(Hf)

. | |
= faﬁ(\f&éoc@b){}vzk"gekK—‘QFK--- K_‘g}\r(—gggﬁb |
= Sglp?- y&/s%ﬁf‘”\{—ri f“\_-lgek . w o ((—,Q‘A K?

3%, o

+ g’ [82 J"% /lppé‘)"ﬁ" K™9e K e k~'r3AKZ]

(IU‘ = o, 2,3
/g,"o’,&,} =0, r,z,‘s,nf)

.
= %Louc ewm’c,.ah*%k...k“% !

(
. (3. 36)
T Z e Z,
Tl L= CL T L e [ e N <)
where the surface term from fbﬂ Z;A in (3.36) vaniéhes.

/

Writing €2 75, | u = 3. (/“ =0,1,2,3)
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3.8

I ]
89 = l"LL;" L S A* fdgvéd@’b’skﬁ‘gk—g‘xk “ e K"’D}Kg_(‘?.?ﬂ)

! Thus 'fdlfz & % SA/A 3;‘3 may now be written as the

, total variation of four- and five-dimensional integrals:

fa\*‘m “{8h T} ‘
J
= gg ) yd*‘ (206 LA - & Tk i) ’

]
Lo
T | 2u2 Sfoltpx‘(od-gg exF,’FS\ {’J‘CIL“ l’-F l’-“fl"c? k)‘](:;.:gs) ‘
with lgo( - K—lg‘x K

So finally, removing the variation, one has

Dy = -t b dat [~ Dl/,w)/ Jok (- Di//p)?

= (I~ © ~ k) + Flk)

— ' (3. 39)

Here Doﬂ is the trivial covariant derivative (k=0) and is inserted
in (3.39) to divide out the common divergent factor on flat space. Removing

the variation from (3.38) introduces problems of divergence; thus I has to

be regularised:

T = G [ | 0% [ S (frg) - £ty - ke 2

‘C‘%co ‘-AL7 "’ 40)
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3.

F(k) is independent of the parameters of the general instanton
. y 2 T
solution, and was found by Berg and Lischer”™ to be -~ (0((-2,) “+ ';g) k

(i.e. linear in k, as conjectured by Osborn3 ), Where

- M_y - L _ S
oL(4) = 2 T (- g w2 = - (3.41)

2 Extension to Tensor Products

The above results all pertain to the case of A(“ in the fundamental

representation of the gauge group; using similar techniques Jack6 was able
to extend this work to A/A a tensor product of two independent self-dual
gauge fields.

Thus defining

Da=0.1 + P | (3. 42)
A,u = 1; ®A1/u. Tt A,/u ®12 , (3.43)

& I ) (3.44)

the analysis of Chapter 2 goes through in an exactly analogous fashion and

I
=
Q
—~

P

~SL«M(~D>) :fa&b%&,z}/i);g (3.45)
where j:,,\ = 1,033:# '1‘”?)7/‘@1, + ZtL’:_r/‘E/“ g (3.46)
j,ﬂ,/u obtained as in individual variations of {w (— Dz;,z) and

(3.47)

K/M :[/D’x K(i‘,t:]) + K(’xrvj %;] o=y




with K(m,vj defined by the tensor product Green function

U ¥
ZI(T/U) g ‘fJ’I/T:" é Y )i ) B Vv, () 4 (y)

(3. 48)
L

(see Chapter 1 eqn. (1.33)).
J1 and JZ in (3.46) contribute their respéctive determinants in

~ s

(3.45), and K a further term T @

bdok (=B ) = Nt (=02 ) + N, Ladol (-2)
P P> M

~ 3.49

where N1’N2 are the dimensions of AI,;/‘& and

T-= bndet [ M(v @) - Fa fa&wbeﬁv,@‘% b, (3. 50)

Here M is the matrix in the extension of the ADHM construction to

tensor products (see 6 for references).

In Chapter 1, it was seen (eqn. (1.19)) how the adjoint representation
enters into the calculation of the semi-classical approximation, and the
6
determinants for the former have been examined in some detail by Jack

applying the above results, (

\

For the results for the adjoint representation can be obtained by

Jgdiciquts selection of A1 and A2. Thus for S‘U Cm) , taking A/“‘ and

its conjugate /);\: the adjoint is obtained directly.

Then with ~ A = A. @1 + 1® A% ,
b (= 07%) = 20 bdot (=8) = Gdet [M° (vav™)]

¥ i |42 Gt 553 L dob oy + cnetr,  (3.51)

3.10

.
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6
: Similarly for fr(r«) , though with more work ,

hftoLo/(,(— qu) = (244 é.) bdat [ = D7) - MM[NA(\?@V)] |

t o [t TS o fo 4 ot

(3.52)

MA was defined on L\l\/rds WJA the anti-symmetric part of W W . |

For the particular case of Su(r) = j’t (1) , (3.51) and (3.52) |

may be combined, and, using M~ = M , g M = dot M, dal M 4 ,

give (cf. (3.39), 3.41)

{1

Dy = -t {@A(*v})/m(— % 1)

0

£ (W ot §M, o)) + ktnz ) — (ad) «£)k
(3.53)

‘ 7

where the undetermined constants above were obtained by Osborn by taking

the case of er (L) and considering k commuting f[\ (1) factors when
2

the eigenvalues of -D can be determined, as in 2 , but in the context of

zeta-function regularisation.

3s 't Hooft Solutions

" In what follows, we shall be mainly concerned with evaluating ;Dh_
| 8
for the case of the background instanton field given by the 't Hooft solutions

In terms of the ADHM parameters, these are described by 9.




In terms of the matrices

3.12

|

|
!
|

' Qo =Yy Ny by :—.>\; , 1¢¢ sk
(3. 54)
A =3L‘>\oge},bc) :'&gcj, [ & &l "
W :

Then with b= 2 =7 , a = oo i o (3. 55) |

(the superpotential) I

|

= L ’

Ay, = L %ef}(s(m ¢ . | (3. 56) }

X = . O s (3. 57)

i
N, ,
N\ = .: , (3. 58)
M
-1 2 > )
s = KA XN e Y _ (3.59)
and v o= = \t 1k + W)\ | (3.60)

Then, using CP (3.61)

NN + K

x;




et (3.62)

£=07K - {5 W
|

f

| . |

fv = (XJ - X) N (D() :ld (3.63) |

u and

‘M:Lfng[ X) Xa(-~_(><) X)\(Q() Xa = %11-)

Finally, using ‘

(3. 64)
¢ = )T(;c)'")\ + _k; | , (3. 65) |
x |
;\H
it can be shown 3 “
L 2 ‘
& Cj[vf“’] N Eo 3(—5:* B 2?? + & 3 (3.68) i
&
b ] 2 3 ;‘
L6leR] = T - 4E 44 B0 b |
é ) q> CP':. @z |
o . +Jg@q"%) - & Of-9% 0
¢((‘ y _
ALY LY TN L
{72
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where Ty = b2

i

F 0% $ + S ¢ (3. 68)

' 3
So noting (I)(U 5 —é— 5%y (i)w one obtains

5 & [fv —Fv] - }’E tw[k’k"]

b 2 " 2 L .
= i—é‘* " i ®¢¢*¢} TV e,

(3. 69)

[~

where
v
(3.70)

The derivative term contributes nothing in the integral (3.38), and

that of $© vanishes in this case (¢f. below, Chapter 5). So for SUR)

the final result is

f % (Z~ '—t ¢ a‘w) (3.71)
cp'\'“
| 3¢)
S R R el ke
. 2 Ui & F 3 * (3.72)
ORI S

T, - g%’é@“ ({3@;_5_%&5 ~ 3 c(>”®'< ”acb%gb)ﬂ»_L’a.ccp'B@;q’},




Here the regularisation is necessary since the first term of (3.71)

removes the singularities as =¢; > o but introduces a divergence

~ kil 2 o0 R >0 5 which is, however, independent of the
parameters a and b. (3.72)presents the determinant as esseutially a

four-dimensional integral, whose properties will be further considered in

the foliowing chapter.
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CHAPTER 4: The Osborn Ansatz

In this chapter attention is focussed on determinants for the case
of instantons described by the 't Hooft solutions (cf. supra) and in particular
on elucidating the structure of the integral occurring in (3.72) of the
previous chapter. Having considered its limiting properties, an ansatz
modelling these suggested by Osborn is described and examined; in section 2
the conformal behaviour of both is investigated. This is followed by a
detailed numerical comparison of its behaviour against the exact function for
two and three instantons. Various appendices and tables provide further

computational information, programs and results.

1. Limiting Properties of Determinants

As a first step to evaluating (3.39) for the general case, attempts
have been made to elucidate its structure for the simpler and more ex-
plicit 't Hooft solutions (cf. supra, Chapter 3). By considering the various
limiting and conformal properties of (3.71), Osborn1 sought to formulate
an ansatz that would reproduce these and the known form for k=1 (see
below).

Following 1 consider the behaviour of I[CPJ , Where

| ¢ : A R ™ -
Ilen) =% &c[zlx‘(v—%@. G2l bk a1

'\n:’

is the form taken by T +9 ( © = © ip this case) in (3.39) with

E
qbk = Z.—“ s By ™

(cf. (3.72)).
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In particular, we investigate the case where the instanton configura-

tion degenerates to one corresponding to a lower topological index; that

2=
s yo >y, or >‘L S0 (and equivalently Yo »0). In the

first limit let

6 -

% |2

M

4+
u%.{ﬂ ( \_?/T'

) (4.2)

then (4.1) can be written as

L 1 e G) -
T060 = 4] o (Z thr * 306950 g0

V\fl_/)

— T, T b (4.3)
+ IO + Lle-y)

31 :
I L‘b(f] is just the case of k=1 (in the conformally extended

form 2) and can be evaluated

IO = —G HN gyl

o+ 3’5 ) (4. 4)
(Ko + %)
In the integrand of (4.3), there are now no divergences at x; as
Y '->:j)- y and so the limit can be taken inside the integral, together with
Tl oA - L (4. 5)
o2 .
* Yogoy Pyl |

which leads to

3

L)y M%)_L +1 +I[§,] @o
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—

where ci),,__, is the obvious limit of (I),L & Yo DY, viz. ‘
\‘ 1
— ll. —1 1
>\ i & -2 2 2 . il

(P Z 5 2 On )‘“7“?))}' = >\L+>\j (4.7)

npc o i )

© Il
i
Consider now the case of >\£ O . Then writing |
it
; I
( X |
¢ = G, K (4. 8)
¢ \
I
)\191 I "W
| where C'T’)k-l - ? —;t ) (4. 9) [ 1‘ |

then il
Foh = -0 . N
¢, '

— @Cphq) R _l_: Ll:if — L{—/%“ @1_' 23&;/,\):, ) Fa‘_l
CPL qbk c‘é EX | h‘

(o<

So in (4.1) there arises a divergent term Il

16 N i

for the remainder, /\é -> o without problem. So

5

Lla]\, ?'Ffj et @1 i Jo*m 1 +I00L] (a1 il

where the regularisation refers to the divergence at oo .
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Setting w = 3%:‘ 5 (:(_—_- Y. +L,L“.J ,
L h—j XA
qbk W T ! l)
= J‘; TR + o(X) (4.12)
>
- L .X
and v(‘ { et == ; N
o 0 P
! l
= | dfu W 2 — - 4,13
f"“ﬂ “ X N e ¢ o

(4.14)

- Thus KA T T b L'L +T + T[] . (4.15)
k-l((’)‘l)

Similarly for 3# - e with 2= Yo o4+ WA,

St L
- e B
CPL ~ ur ¢ Z(b‘._,j)_[“ * OC :) )
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the same term as before contributes (as w, > =0 ) and the same
result (4.15) obtains.
Osborn1 suggested the following ansatz for 1 that satisfies the

limiting relations (4.6) and (4.15) |
o k A h A '
I =2(w ?‘kk-b’"q)\n)-f*(mob/tn‘ + Ik, (4. 16)

The verification of this depends on the detailed properties of o(.e,bm

where

(FL)W =4 ol Sne = (4.17)
tﬂ.m = !..z_),\t—/-z ba A ) th” =00 s (4.18)
- Y

The rule for evaluating Juz,l—,‘oh was first given by Sylvester4 -
whose name it bears (as Sylvester's unisignant); the symmetric case relevant
here was treated by Borchardt5 (see also 3 for further discussion).

By the complete symmetry of MFL under permutations of the

{—,.M , the special case of S may be considered 1.
Z” ~t - 6!3
~E, P gy e
a(gbf;k = Jok (4.19)

7
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k
where E\-; = 2 & .
t=o
& o occurs only in X, , So abstracting this term
L 4= - € - &
Eo € Eo
dol
P = Ewo det —¢, > o , (4.20)
then expanding by the first row
Aok, £ Eodabp, =+ o(1) | (4.21)
where ?k—r is the (k-1)x(k-1) matrix obtained from Px by elimin-

ating the first row and column, and combining terms such that E“-zl:,; +Eoiy 14l

Considering now the behaviour of (4.16) under Yo >y, (that is & -e0)

ln 2“7\7; is unchanged (but _)\, = )?,, 4 )\7;) ,

wd WITR & W - bRk

_and from (4.21)

W dokp, ~ e, + Wdsbp where




. R ——

4.7

»

e, = WXn

(91-9e

I?_

So under &, 5o ,

o —e )\7'_‘_)1 -
L, ~ T, #2208 o GRS .z
ST [~ 242 2
}\'>° {‘31"3\[1
2
—a [‘3_ 0’7. )1)\0 |
. _. = ¢ ‘
~ L rd ol e (4.2) I
o) ‘\
viz. precisely the behaviour of (4.6).
To consider the limit ). -3o (or gi > o) it is convenient
to take €oc vo (Vi) (again by the symmetry of the situation
this is permissible).
Then 1
Zu - b[a_ él&
“
|
Mﬁ{. = d.b('j ’tll iu . il

" " "Adding columns 2 to k on to the first, using

Z”:-:e(a ‘{'&(7_"'...1“6

(P‘L—;




and adding the 2nd to kth rows to the first

k
.Z EOL EOZ E:o)
Ry 3
olgé,fk = OLQ[J éoz 'Zu
and then expanding by the first row we have
MPIL Vad Z‘:oi .Olﬂ/é/‘()kl__, —+ O(é:c) (4.23)

Col' Do ¢
since each column other than the first has an element of order &, , and

multiplies a matrix with a column of similar order. lO'lL~( is defined

simply by deleting the first row and column.

Examining (4.16) again o0 )\, 2o (ov 4 5o)

k L
and e TTR &~ G TTR + LR




By (4.23)

L |
_- 2 o= R Ly G

Lo

4 2 ! 3
T T3 M gy 2N

kS
~ L+ F -l A | (4.24)

‘éL,Ly») /

reproducing (4.13), and confirming the parallel limiting behaviour of

(4.16 and (4.1).

2. Conformal Properties

Having shown that (4.16) satisfies the various limiting relations
of IEC@L] , it is necessary to ensure that its conformal properties
afe cofnpatible. From the earliest days of instantons 2 , conformal techniques
have been a recurrent idea in the development of the subject 3 ; they will
also be of cardinal importance in the following chapter.
The properties of I are most easily investigated via the relation !

T+o= 3 +2LKowa§M,(v@v)} +{22 + %k) (4. 25)

[ 6™

where for the case under consideration (fu(z)) , 8= O

here J = -—fo\?z V%/SJS—Q&W{V , (4. 26)
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and M: was defined in Chapter 1 through equation (1. 33).
Expressed in quaternionic form a conformal transformation may be

written

roal = e (¥ +x) (4. 27)

Since A (x] = A=) = A’(x) (2§m+7¢)—l (4.28)

for a self-dual gauge field A/A given by the Atiyah, Drinfeld, Hitchin

and Manin construction, this change corresponds to one in parameters of

a—>a = ax + b‘g (4.29)
b =»b = oy +bx . C (4.30)
7 !
Als >L 8 4.31
0 f =>f = (4.31)
where J2 = K7z +x| o | (4. 32)
SRR i I '
£ = s« 1y —psl . (4.38)
since © IS b datf = -6 [FLET, (4.34)

"7 then under a conformal change

Sl dot £ —9,&2:*’37’)’1.40(%{’ ,, (4. 35)

So denoting the change induced by this conformal transformation




by Ac b, and letting it act on J of (4.26), then

B
|4
1"

A |
K Acludobo %ﬁj}m%w Y.
= =k Dl doty ~ koot o' (4. 36)

+ Bl +1L_fm§§u%mm¢f’

(6>

integrating by parts.

Using (4.32)

2 < _ ,_‘('_x &
Q.LBU\\—Q’[ = — (b 8 ( ’f‘?f’?C)

and -F,(— '0'"7() = V{/\[—L
where l/\l = _H_ ; A\ = df—,?(-ﬁ.
[¥1
By Lo ~BRA Ldeby + BPlE® (2.37)
(67>

The ansatz (4.16) can be naturally extended to the complete

solution via -

I°+@° = ln dot § M (w?@v)}—(»&b%NA(xJ@v)} + (W2« 2k

(4. 38)

which leads to the corresponding form for J ° :




T° - _gmgm(v@»)}+(%~mz)k . (4.29)
67> |
So A T° = =2k Acludoby — Al(adet M .
6

But it is shown in 3 that Doln ot M=~ 2n K2 5

so i :I: = 2 Ncladoty + G, El, reproducing (4.37)
1672

Thus (4.38) (or equivalently (4.39)) is found to model correctly both

the leading singular behaviour and conformal properties of I (and J).

3. Numerical Computation for k=2

To investigate this ansatz more fully, it was checked numerically
on a computer for k=2 and k=3 with collinear instantons in the case of the
restricted 't Hooft solutions.

For k=2 the starting-point is (4. 3):

L]

1

L LI :
W,fﬁvm{zlw TGRS

n

#’jw;%”? g Bk Tl o - ARRRECE d"?

o g e

y (4. 40)

t+ I, ] +%

as in (4. 3),

.12




-~

" as before. Now let 3"_} “n , “}; > o, ”X,/j'; 21,

4.13

where Ct)!z = x-; + }\:_ 9 Cé,_ = L+ ¢cz

and Tlon] = ~uNNly-v" 4+ Z
2 =y
(>\I + )\2
by direct calculation.

To regularise the integral of (4,40) (which diverges as (p € o, W ->w)

we subtract off I [_Q’_:] where

R N

3,:31—_0 ‘
the latter having the same behaviour at infinity.

That is, we subtract off the unregularised
{ {{" L = ._’_., i I ~2 { |
Fj‘olz,ixq_ lé)’a(.\cp;a(mb;g. (4. 41)

To obtain the finite parts of this consider

- Vv - { T n 2
N LT A A I

S0

TLFI>II8) =k ae (s - LAl o) +4
i/




.

4.

. | | _
if we set N = W+No | and g o then

#L};\‘fx %:; —L/al(ﬂ‘@‘)’zglt»\@{,_]:—Q()}—ﬁ}\’;)—f»%“’]{.

(4.42)
So
T U v 2 O o
L] = Wlfﬁxgggampn@ g, - L3 wwwzg
Wff-:v %@@ 3 + L
Tl Wb lel 2oy G ren)
\3,'-4-}»)1

and

S@,"‘*" (TG, ~Fud U,

(4.43)
A R MRS AN
(% +x)" >
Now the ansatz for the general k=2 situation is (cf. supra)
I, = 22@:— Lﬂ[n:g + ladokp, + L2
= 2l )‘%f‘vkz; + ¥ G C;\Q/EPK 5 (4.44)
3

Qe )

14 I




i ‘ii‘
4.15
|
where f)k - t,, + e | ~ € ‘
(4.45)
|
- é;fz 601. +6‘.,_/’ |
|
5" \
({:C) = 0y l)' ) : |
e ‘
and (’WMPL: ™ }2:)\:( |+ NN ) i (4. 46)
(%9 —3‘—’)’
Letting now y, s , N, > oo , l\o/jo -1, we have

]

I, = 2LYE « o R W+ G+ NN

9"
S H LN - b+ ¥R 5
Iy 0~ys
and the ansatz's value for (4.43) is

[é'rrz § I‘; -+ (11, }\f >‘=— l‘jl“ns—l . l%% H
(Xl,- -('Xl-._)l | i
| ”‘

= l(:rr"(u( ’l’;ﬁ:ﬂ + 1) ) (4.48)

X+ N,

 In fact one can go slightly further than this. For we know that Iw

accurately reproduces the conformal properties of [ [cp__] ; thus

L[e] = T, + f(c} | (4. 49)
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for some function of the conformal invariants of the instanton parameters.

But for k=2 this is unique:

}‘1'-}‘2: [Ld{ “U'«‘ll
(\”77““ 0+ ‘j,—vmll)s

(4. 50)

By carefully expanding IC({){} to O(}C") it has been shown
that jCl(o) = 1 . Thus to (4.48) is added (bxc - being the first
term in the Taylor expansion of f(c); it is then this modified form of
i(4.48) that is compared numerically with (4.43) in Tables I to IV.

Table I provides sample values of configurations in which the instantons
have equal strengths ( }3,‘ = ?\1; ). ¢ is the conformal invariant, I the
numerical value of (4.43) and A the calculated value of the modified ansatz.
It can be seen how to the two decimal places given (dictated by absolute
accuracies within the computation) the results are remarkably good. As
might be expected, the agreement improves with decreasing c¢. Tables II
and III provide respectively small and large uneq;ual instanton strengths,

With varying separation; the agreement is again excellent (usually better
than 0.19%).

To establish whether the inconsistency can be attributed solely to
computa'tionaf error, it is possible to investigate further the accuracy by
_aws_e”riirx_es‘ of consistency checks. By virtue of f being strictly a function of c,
hol\d-ir;é fhe latter constant should ensure a constancy of deviation between

the integral and the ansatz.

) LN
This can be done for example simply by interchanging A  and ¢*

(there is no obvious symmetry between them in the integral) as in Table I,




where the elrror remains approximately the same even though I varies
considerably.‘ Alternatively, the formula for ¢ (eqn. (4.50)) can be solved
as a cubic in 13, - bl(’“ given <, }\T, )\; , This was done for
c =1/37.5, 1/75 and 1/150 for various A’s and results displayed in

Table IV. As can be seen, even for widely-varying }:I‘/ }\;‘” $ and I,

the errors within each conformal group are remarkably constant, This

seems to confirm that the computation reflects the behaviour of the integral

- sufficiently faithfully and that the modified ansatz for k=2 provides an ex-

“cellent approximation.

4, Numerical Computation for k=3
For the case of k=3, it proves more convenient (and nﬁore accurate)
to investigate the equivalent ansatz for J (cf. (4.26), (4.39)). [

Jd is given by
J = ~jol‘“x CICA T P

where, for 3 collinear instantons in 4-dimensional radial co-ordinates,

’)(/ = ri(r}*ff‘ —2pr c@&)(r‘—# It + 2 res @)

t )3_, (> + 7/7'+‘2—?r¢e‘: Q)r}
A ‘ (4. 51)

A (= P ~2preeB)( P4 T +29r <56

+ ?\—3, (r”—(—‘?»—lfr-cm@) =

?
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M the instanton Strengths, f.7 the separations. For reasons
of numerical convergence the logarithmic factor in J must be removed.

This is effected integrating by parts:

”T:J‘Uk‘f T k. Luex :ffé Sl
T a *laxdd,

—fglin?c%ﬁkn',to\{;
[ &

| (4.52)

o Furfure
&

= — 4P (3l <3) + L@‘u@lo\*x. | (4. 53)

The logarithmic factor is now absent from the integral but at the
expense of an ‘overall divergence being introduced (signalléd by the presence
of the cancelling - 144 = p2 in (4.53): J itself is finitd; this must
‘be reinoved by hand.

2.
To do this we seek the highest-order term in /5 (m?C as a

function of ¢

Now X is a sextic, so we can write

Tl R = 9 e (4.54)

and g?ﬁ e (6r-5+ b/c)

in(® ) <« -ordinates, where a,b,c are polynomials whose exact
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forms are of no immediate importance except insofar as they are of lower

order than the leading terms.

S0 @?C)l = 2619 + ‘(Zr/fa + P+ b

and 2 .
fB(M’}L = l -@ﬁ == (_{,?rq»_\‘_q _ (36r'°+l2r'°b+—b"+cz)
S 7(7— X X’L
- er« . [__. _ 'L+c7’+llr‘rb ~2br \P]
7(
(4.55)

writing ~° = Bt (7( - \}/) , Wwhere \YU =X —r©
i
1 or more compactly , gZ(M% = 2t LD . ' (4.56)

x I

! Then (‘éltnx)l = W4 L 24D L , (4.57) ‘1
1 ‘ K X |
o giving rise to a term |
' 2
4
i (44 o7
8 5 = Me ~ (gl 5 cancelling
J S
?

the divergence in (4.53).
! :
e . _ .. . To extract this divergence explicitly, we use

. .
r:_i} = r'y(w ("‘31(“*\“ A 2%'};‘:‘19019%)(4'58)

X -x}'
and , S -
F = L.[2E.. f8E -4 fj
x 6x ar or r)

= é‘%[%% _ qil (4. 59)
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where c{) = 9_7(; -~ 6\"; .
O
Then with these
Uﬂf’rgﬁ _ N . T
o= e ) S ameiredfdy - ey | YA
L X o X : k'&’f
= W 9% 1 g 2020 40 A
6 & X
(4.60)
- ‘ﬁfﬂ.wfcﬂz@a@ou - twkjr"%)ow;e
x —

= L4-9p (3“‘ > - L"'«X;Fz?z)
(4. 61)

=t “fifﬂi.amm@wow ~ twfr_“ﬁ At
6J X : x*
éxhibi'ting the divergence.
So T = g >\tf>‘?} + Wrlg?
?.. =
t 24 X G0l © dO dp

=

% , (4.62)
™ s m———— +,wf\" o 15 e 120 LD '

Eas j DI: b 3w rl*0dE - DLLFTrrjoerB ret@
~
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Or re-writing this
J = wfw (3+ LW, i)
o (4. 63)
+ j\FA AOdr - \YFoLQoL*
where FA = 967 sut6 | ¢ ér’"ﬂi) (4. 64)
x %/
Foo= Ymr?slro (24Dt + D),  (4.65)

x

one obtains the form occurring in the numerical computation,

Now considering the form of the ansatz for k=3 we have from (4.39)

and using results on M3

i
!
£
X
£
®
4
s
4+
&
)
£
R
W

= b >7 . Ns + (ho(a/b‘sk ~ 60, X’}:}t +2b4(:’2’(f+7)1~—i~
T T = Zhpp (prof £ bty -2 (4. 66)

in the limit  \ - » G e, Ny, L

Also in this case from (4.17)
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|
x; +Ey * St - €t - &y |
|
. |
MPK = dot -tn, N+ &, +Eag ~&5 % |
} ‘
'é(” "é.)_} }\} +é3l+632 |
(4.67) |
'\1: Vél(; ié’('}
2 £ "
= 0(0/6 X\, k; 1’&-‘, +é7_’) -61? “
>\17 - € )rg +E3 +4 32 ‘ |
adding the second and third columns to the first ,
2
! - g -
2
= NNl dot | | L+ N 4 s - N
Y z
( - )_\E_ | + E—'___ + X
z tref ¢
° 2 -2 bR - Q2
= RNN e N NN N
r . . e (f+2)
) N L (4.68)
B e - B B
( 2 2 $o2
e Pl (pr
= %{kj‘z*} K




So
J3° = {642 ((44 }\Ty;)\i -+ 'E ""Z(h(ﬁ?}(('ﬁl}l + K)
(4. 69)

which is the value of the function ‘H compared against J in the computation
below.

Tables V and VI provide sample values in the cases of equidistant
instantons and symmetrical cases O\, = )\3) ; Table VII presents
“ a few general (collinear) configurations. As can be seen the results are
usually bbetter than 0.1%; although six figures are given for completeness
the absolute accuracy is about 0,01, It is perhaps pertinent to note that
the two integrals from FA and F in (4.63) are generally quite close: the
leading contribution is from 48+« ln )\-;_P"?j .

Since the form for thebgeneral conformal invariants is not known for
k=3, no check is possible as it was for k=2 (cf. infra). A consistency
check was however obtained, by letting '}\I -6 oOr r:‘o , reproducing
a two-instanton configuration; these were found to be in good agreement
with !.;he previous computation for k=2,

Clearly the ansatz models the behaviour of these integrals remarkably
well. ]:?‘or the case of k=2, further investigation was attempted by a variety
of polynomial and logarithmic fits to the error as a function of ¢, but

- Wwithout success. The fact that such good results were obtained with
relatively simple programs and low absolute accuracies suggests the possi-
bility of more refined calculations enabling the first fe\;v terms of the series

expansion of f(c) of (4.49) to be obtained; this approach has in its favour

the small value of c ( £ 1L_7, ) in this context,
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Further evidence in support of the high degfee of accuracy to which
this ansatz models the behaviour of the 't Hooft solution is provided by
the work of Chakrabarii and Comtet7. In this they considered a particular
class of multi-instanton configuraéions in which the parameters of collinear
instantons are completely constrained by the index of the solution.

8
Using standard superpotential formalism  with

An = avl";wf;\,g,,() (4.70)

their (~t) ~ index solution is

o~ S_QC:L ‘LT&TL
(D(:x,) = o

koo %((: B %‘)L-f'r"? . (4. 71)

For this special class, it is possible to obtain an explicit form for

the instanton determinant of the covariant Laplacian in that field, as a
function of o ’; the result may then be compared with that for Osborn's
construction in this particular case,

- This Chakrabarti and Comtet do, and some of their results are re-
produced in Table VIII; here « -1 is the index and J —J, the error.
As before the high degree of accuracy for k=2 and 3 is confirmed, and the
ansatz is also seen to work excellently for higher indices. | The authors
of 7 estimate that J =T ~ O0.05« for large « , to be compared

with the asymptotically leading term of 2.« (n & in J. That this

approximation should be so good and yet clearly only approximate is

intriguing; in the next chapter an exact calculation is presented.
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APPENDIX A: Details of Computation

To evaluate J numerically, a routine from the National Algorithm
Group's Fortran Library was chosen: DOIDAF; double precision was used
throughout.

In this, a double integral is calculated to specified absolute accuracy
by repeated applications of the method described by Patterson9

The integral

b pdly
;J‘ _jﬁ(ac/ ) -y (4.72)

T Y4y

is expressed as
b
L = f Fly) dy
a

¢1(‘)) '
where F(‘j) = fd)’w 'f(x/‘j)o{j 3

both integrals are then evaluated by the method of the optimum addition

of points to Gauss qruadrature formulae, as described by Patterson. An

interlacing common-point technique is used: starting from the 3-point Gauss

rule, further evaluations are added (but retaining the points of the earlier
T '“\faf—n_iuvlée‘) to obtain respectively 7, 15, 31, 63'; 127 and 255 point rules.

Each integral is calculated by successive applications of these formulae

until two results are obtained which differ by less than the specified absolute

accuracy.




The integration range of the r variable (-Y' in the program) was
split up into ten regions, whose boundaries were determined by fixed
multiples of the scale set by the instanton separations.

An attempt was made to distribute the integration evenly: thus the
ranges were compresszd near the instantons and exﬁanded far from them
(where little contribution was made to the total). Suitable accuracies
(typically 0.0001) were then set for each region, and adjusted after trial

‘\
| - runs.




APPENDIX B: Program for k=2 i

TNTEGRATTON TEST K=2

iplole]

INTEGER NOUT, IFATL,NPTS,T
REAL¥G YB,YB,5,ACC10) ,ANS,PHTL,RPHI?,F,F,K,D,Y(
2[‘1’L?’r"3'AI’IPIOITI(;:HIpzruf)rp(,)r};‘p;yl}( r” 1
EXTERNAL F,PHIT,PHT2

DATA WOUT /b6/

|
VARIABLE ASSTGNMENTS
CﬂMMﬂN/PARS/Ll,Lg

STJBIPIUI}:}?In‘BIP() ‘
|

WRITFE (NOUT,094999
UN T R
S

OUTER TNTEORAT

T
PARAMETRER VATL.UR
TINSTANTON SYTRENGTHS

Li=20, |
12 >

NTON SEPARATION

anNann

nuuHoni

CXNTURWNRT »UORrNW=UNRCOCOR =00~ wN=0D TOTe =SC
# 3 %D e

N5

HRACTES i

=

CTCOTH e

) Dt o o o "t N S St T
HD22D2D0D2DD23D022DT-3

— 8 8 8 8 @ 0 T » 9 [T
¢ DOIDDDIISOO0O

z D22DDDODTSIDDODO

OO o e OCOCUNOX ~lHHHHNHBHEHRNBS COTUZEU

DN
o

QTIEUOrrTrZ COOCOOOCO0NE CNNH
T
>
=
[}
=]
wn

* R RCOCC

QOO

LR G R GG L L] DD DITIIIIDID VOV~
x

=3

St 2 DODHHR_H D

I®T®]
cCeT O

cecce
ST St T D DNADDNe 8 e e e

Hupgponununy

G G G
G G G
HIOTWETOTD> -

o
—




- 4 A
\
|
4,28
I
YUC10)=yJ
C |
i LOWER LIMITS |
YL(1)=YH > |
YL(2)=YC
YL(3)=YD
YL(4)=YE |
YL(S)=YF
YL(B)ZYG i
YL(OT7)=YH
YL(B)=Y] |
YL(Q):YJ
i YLC10)=YK
r MAIN CALCUTATINY . it
WRITE (NOUT,99970) L,1,1.2,L3,P,0 e
TEAIL=1 il
5=0,0 |
WRTTE (NOUT,99050) I
DU 5 I=1,10 ‘ i
 TPALL=1", e
C NAGLTBRAPRY ROUTINE : i
CALL DOADAF(YUCL) ,YLOL)Y,PHTL,vHL?,F, ACCTIY , ALS, MpTs, IFATL) : e
TF (TFALL) 10,106,155 ‘
15 WRITF (NOUT,99997) IFATIL i
10 WRITE (NOUT,99998) I,ANS,AC(T),NPTS,YU(L),YL(1) it
& WRTTE TNTEGRAL, VALUE (e
5 Sz+ANS+S
WRTTR (4OHT 94995) S il
c WRTTF ANSATYZ VALUE Wi
N=H(0,0 I .
WRTITFE (nOUT,99996) D “WV
C WRTTE CUNFORMAT, THNVARLANT b
C=LIFL2%A4%02/((L1+1L,244%07 )**?) R
WRTTF (NNUT,969558) G L
40 ETOP ot
c it
C FORMAT STATEMENTS |
99999 FORMAT (A(1X/),31H INVFSTIGATION FOK LOGDET ¥ = 2/1X) il
QgQQ?éF‘(Q?;ﬁAI)(/]?,‘Ih ’F‘l_; 6,?“ 'hj:j-blv/'u ITt)I";’", ,E‘,15.U,ZH ’ “\}“‘ l
6 I
99997 FORMAT (/36H CONVERGFLCE NOT GRIALNED rEdil=  ,14) i !
95996 FORMAT (8H TFST = ,F13, 6/) A1
9995 FURMAT (/18H TOTAL INTEGPAL = ,E13.6/) S
999463 FURMAT (/1°9H LRADING J“IFbFAI/) (IR
99970 FORMAT (/1fH _PARRMFIFKS L1 = ,E13.06, |
2 6H L2 = ,F13.6,6H LI = ,F13,0/5H P = ,£13.6,5H 0 = ,E13.6/) il
99960 FOURMAT (/) il
99955 FORMAT (/15H C=ANVARTANT = ,F13,6)
99950 FURMAT (/331 _MATN IMTFGRAL ARSACE il
2 41H W0, OF FVPL., LOWFK LLTuTY HPPRP T IMIT/) i
FiD i ‘
r i
c SET LOWEP TLIMIT N INGFR TRETA INTRGRAT, |

PUMCTlﬂh PH11(Y) .
REALX*E Y e
PHT1=0 e
RETURN ‘
Fun
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SET 1 OF INNEK
FUNCTION PHI?
REAL*S8 Y
REAL¥8 XO1AA
PHT2=(1,0)%X
RIETURN

ERD

CALCULATT
FUNCTION
REAL*Y X
X
P

UPPER T, THE

T’
(v)

1IAAF(0.0)

REALX*S
COMMON/
Y2=Y*Y
C8S=DCOS(
SN=DSIN(X
N82=CS*_CS8
SN2=ShH¥SN
R1=Y*Y+0¥()=2%0%Y ¥
QXQ+2%OFY*
L2/R2
¥(Y=0%CS8
| ¥0%SN/ (R
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AT
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HOHNAIIDTTLRTYT AT IOMND

)
=
3

CALCULATTON OF
FUNCTION H(D)
REALXS XO1AAW

ANSATZ

J12,L3,P,0,P2,0
L3,F,0,P7,
(L1+12))+h

O)XXOLAAF(O,.0)

COMMON/PARS/L1, L2,
H=16¥ (DLNG(1+4*02/
2XX0LAAF(O,
RETURN

FEND

TA INTFGRAT,

N,P,
(,xq, “y),(~ 2,‘1'\.)
’pﬁ

?.,P0

02, PO
*1,2% 4%¥02/C(L1+L2+4%02)%%3) )
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APPENDIX C: Program for k=3

TNTEGRATTON TEST K=3

VAPIABLE ASSTGNMENTS I
THTEGER NOUT,IFATL,NPYS,T I

REAL*8 YA, \h,n,U h”(iuW AeS,PHTL,PHI?,F,Fi, bR, F,K,D,Y01AMF,

201, L2,1L3,0,0,00P2,02,F0,FC,YI(10),YL(10) |

EXTERMAL W,”A,PH]],PHTZ I
prIERA MOGUT /R/
CORMON/PARS/LY,0L2,L3,P,0,02,07,Py I
WRITE (“Ul],vQHQU) ‘

GUTFR INIFGRATION 1M R i |
|

PARAMETER VALUES .

INSTANTNN STRENGIRS . Il

b1=1,0 ‘

L2=4.0 \

L3=R,0

C INSTANTON SERPARATTOMS
0=1.U _ \

P2=P%P H

U2=0%0 H

pO=Px0 ‘W

elelpligle]

an

ARSOLUTFE MACCURACLES
AC(1)“O.UOU1 P

=G, 00001 \
G)=0,00001 |

GV‘“lU RANGES W
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O
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000=<
DO~
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Noj
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r

SN
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NOUT,99995) S,7T

U FALF TERMS
¥(XOLAAR(O, 0)*#7))4(
?*3+UTUC(L2*P?*027)
WRITE (NOUT,Q99094) U
WRTITE TNTEGRHL VAL
U==S+T+U
WRITFE (NNUT,99992) U
WRTTE ANSATZ VALUE
D=H(0,0)
WRTTE (NOUT,99996) b
STNP

FOR
9 FOR
8 FOR

2 E1
7 FORM
FOR}
FOR
B 1
FOR
FOR
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T
i

01
A
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(
F
T
(
q

¥ n
WRYITE SUR
N

=N
2

'S
9H ANTFGRATION FOK LOGDET K
F13.6,2H yE13.6,24H

UBTAIMED
RESUTT)
(13,

2
v

6H CANVERGENCE NOT
TEST (CUNJFCTURAT,
OH MATN IMIFGRAT,

SURFACEKE TERMS

H LEADTNG THTEC

=MAINYTLEADTNG+S

PARAMFETFEKS i1
H6H L3 P13,

MATHN INTFGRAT

TEA
s
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NS NPTS, IFATE)

LOD)

AMS, WPTS, TEFATL)

LOL)
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INTFGRAT, |

b, 20,

IhLi=
3eb/)
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14
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[@ie!

?2 41H NGO, DF EVAIL. LOWER L1417 UPPFR LTMTLE/)
END

SFT LOWFR LTWMTY UF FHNER THEYA THTEGRREL

FUNCLTTON PHIL1(Y)

RFEAL%®S Y

PHI1=0

RETURN

END ‘ ‘

SET UPPFER LTWTT OF THETA TWTECRML ‘
FUNCTTON PHTZ2(Y)
rREAL*2 Y

RIFALEZS XOVTARE 5“‘

PHE?=(1 . 0YHAYOIAPE(0L0) .

RFETURN i
EMD

cnbrunﬂwlnn UF FIRST TNTECKALD ‘
FPHHCTTON (Y,Y) ‘
RFALXS X ,Y,K,C,0L1,L7, fs,w,w,£,u

REATL A8 XOTAN,Y?,P2, u7 O, e, 05,50,052,567 i
COMMUN/PARS /LA, 12,03, LPu 0000 il

Y2=Y*Y |
CS=NCOS(X) i
SN=DSTH(X) il

CR2=C8*%0C5H
SNz ”*qn i
FOZORLZ4 UK =PRL =P )2 =P4Y.340%P 7 i
Az=hd¥YDFPURCS =¥ p0Xx (L24+Y2) ‘W“
D4 (ZARYE(pC) , I

J+64KY 2%V EF(P=p) )FCS
A4RFECYPHCL24T ) +P X (L24L3)+P2502) ‘
S+ 24%Y2% (L2400 40L3402+P2) HiH
K==A%Y 2¥p0F (1,24V ) %0857 I
7-(}#1#9*)?4L/-2*y*p0*ﬂ4h/+/#y AYH(=FC=uX{?+P%XYZ2))*CS i
+P)*u°*![+17%(y?#hzfo7¢lX+V7vl/1P74ﬁ/ : JMM
S4P2¥ L34V 2¥L24Y ¥ LI+ Y2¥ L34V 2*024V 22 ) it
C=8XY¥POX([2+Y2)¥Su¥CS il
DA (2XPOKT 2R (O=P )4 2¥Y 2% (=W =%y P4 DAY 2) JELN !MW
Bm= @R YRPOR (T, 242%Y2)¥(SY W
?-(’*P*U/#Y?'2*p7*ﬂéhz+h*Y7#(-F()T1U*{?*YZ*(“-0))4F6 fk
4+?*Y*(u?+tz+n7$r1+w?*b/+P7tﬂ/+b”“ 3 i
S5+2KY2KL 242KV 2¥ L1428V 2¥024 24V 2 V1?+°»vz*p7) l
N (Y2+L2)K(Y2+p2=24P3Y%0C5) il
DRCADIO2H2¥OFYHFCS)HLI1HY 2 il
3RK(YP4+02+2%0%YFCE )+, 34V ‘
4*(Y7+P) LXEXYK(CES) it
DA/~ (RARI12FEX RS ECRC=ToRRFY¥HA) / (NEN) i

= Jq*n4(4«4)/n+th :
Fod®(YR¥FIIF(SNZIRGHRIXOLAAR(O,.0)) ‘
RETHRN i

MDD

CALCULATILOWN GV SeCOND LNTFGRAND ‘
FUHCTTUN PA(A,') ' |
KFEAT AR X, Y, 1.1, L2, L3, M0, K,P,0

KFEalL.®%8 YO1ARF,Y?, DZ,U7 PQ,EC,C5,5M,08?2,S17

COMMUN/PARS /Y, Tz,h3 P,0,P2,U2,F0

Y2=YXxY
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}\1[ >\1‘:_ s c I A
1 1 1 . 370370 ‘10"1 68. 06 69. 88
1 1 4 .185185 x 10 175. 75 176. 41
1 4 1 .185185 x 107 31. 06 31. 71
1 1 16 274348 x 1072 347. 37 347, 41
1 16 1 .274349 x 102 9.426 9. 460
1 1 64 . 222612 x 107° 552,18 552,18
1 1 256 .149067 x 10°% 767. 43 767,43
1 1 1024 . 948108 io"6 985, 41 985, 43
TABLE I: k=2 Symmetric Cases
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2

)\l )\21, -rl C I A

0.25 0.5 1 0.2332386 x 10_1 136.56 137.48

0.1 0.5 1 0.127070 x 10~1 156,47 156, 81

0.05 0.25 1 0.5689E8 x 10"2 232. 35 232.45

0.01 0.25 1 0.124977 x 10_2 249.40 249. 41

1 0.25 0. 01 0.124977 x 10_2 1.446 1.456
0. 001 0.1 1 0. 749270 x 10"4 377.24 377.24
0.0001 0.1 | 0.751110 x 10—5 378. 51 378.52

TABLE II: k=2 Small Instanton Strengths
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i
}\v x:n. S:l c I A
1 4 256 0.575942 x 10—4 624, 57 624. 57
1 4 1024 0.375936 x 10_5 841.18 841.19
1 4 4096 0.237548 x 10_6 1059, 52 1069, 53
8 4 4096 0.189068 x 10—5 921. 54 921.56
16 4 4096 0.375936 x 10—5 841.18 841,19
16 25 4096 0.231400 x 10—4 728,62 728. 64
50 25 1024 0.964310 x 10--3 424, 08 424.10
TABLE III: k=2 Large Instanton Separations
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c =1/37.5
X, X, 52 I A
1 1 0. 342980 28. 0771 29. 2056
3 1 0. 646496 33. 8995 35. 0286
3 1 3. 24070 118. 750 119. 880
c =1/75
N A ” I A
4 1 0.57847 19. 6030 19. 4012
@ 1 1. 24600 27. 5762 27. 9746
2 1 7.31347 196. 704 197.103
c = 1/150
by
X 1 .o I A
3 3 0.174358 5. 44221 5.57627
0.5 | 3 9.29250 205. 464 205. 601
12 3 47,3531 230, 890 231. 028

TABLE IV: Constant Conformal Invariant Groups
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|
NN N ] A I A
1 4 8 1 1 | 211388 2109, 47
2 s | 16| .1 1 2523. 69 2421. 36
32 4 | 64 1 1 3519, 97 3516. 09
32 4 | 64| 10| 10 6769. 73 6767. 31
1 4 s | 10 | 10 5772, 49 5772. 09
100 | 50 | 150 | 10 | 10 7679. 20 7670.10
100 | 50 | 10 | 0.1 | 0.1 1121, 70 1120, 77
1 5 | 10 | 0.1 | 0.1 ~696. 04 ~697. 01
1 5 | 0.1 | 0.1 | 0.1 | -1636.93 | -1637.00

TABLE V: k=3 Equidistant Instantons ’ \




X X;, )\13 7 I A

1 4 1 8 3614. 37 3611, 94

4 50 4 8 4886. 64 4885.41
100 50 200 10 6417, 94 6413. 54

1 4 1 25 4991, 82 4989, 37

4 50 4 25 6188. 63 6188. 35
150 50 150 25 7593. 41 7590. 88
0.1 10 0.1 25 4507, 53 4505, 03
0.1 5 0.1 10 3184, 70 3184. 35
0.1 5 0.1 0. 01 -980. 76 -981. 08

TABLE VI: k=3 Symmetric Instanton Strengths

.39




N N, ?\; q i I A
1 4 8 2 6 4011, 97 4007. 90
1 50 10 3 20 6265. 89 6265. 26
100 10 500 3 20 7682, 84 7578, 95
100 1 2 3 10 5471, 49 5471.12
1 0.5 2 0.1] 0.3 -1370, 95 -1375.29
2 5 10 0.01 20 3766. 35 3766. 28
100 50 1 0. 01 10 4131.43 4131.28
10 15 50 5 12 6191, 53 6186, 91
0. 01 0.1 0.5 5 12 3571, 97 3571, 95

TABLE VII: k=3 Unequal Instanton Parameters

4.40
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oL J-J
0
-8
2 -0.277 x 10
. 4
3 0.255 x 10
-1
4 0.639 x 10
5 0.108
6 0.155
9 0.305
12 0.460
15 0.617
18 0.775

TABLE VIII: Comparisons of Osborn Ansatz with Exact Results

of Chakrabarti and Comtet
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5.1

CHAPTER 5: Exact Calculation for k=2

In this chapter the instanton determihant for the general k=2
't Hooft solution is calculated. After a first section introducing key
conformal properties relating the general case to that of the symmetric
version (equal instanton strengths), the calculation for the latter is pre-

sented in detail. A brief conclusion follows.

1. Use of Conformal Properties

It was shown in Chapter 3 how for the particular case of §U(2)
Jack's work led to the following expression for the determinant of the
covariant Laplacian in the background field of instantons (cf. (3.53)).

De = ¢ bidat{Myves)] +

1 92r™

= (4 5 202+ byt )k

12

)

where J = - jﬁth (-Molo/bfvrégx(v\ob&{v . (5.1)

Calculatioq of J thus provides the determinant; this is carried out
below for k=2, relating first the general case to the symmetric configur-
ation, which proves more readily calculable,

To this end we use the fact that the ansatz Jo  of the previous

chapter (i.e. (4.39)), defined by

Ty = —u‘mﬁM(V®v)f+(%~u2)k, (5.2)
T

where 2\\’ is the set of instanton parameters, reproduces the leading

singular behaviour and conformal properties of T(ﬂ\») for U @-) « In




particular, J -~ T, is conformally invariant, and must therefore
only be a function of combinations of instanton parameters that are also

conformally invariant. For k=2 this is unique:

S 3 2
C(k) — >\/ >\1 [‘jy"Ljv{ . , (5' 3)
(% X “ly-w[)

(&

X: - the instanton strengths, b the positions;

T = 90 + Fl) . (5.4)

In what follows, )\, and }\z are set equal, to a, say, greatly
simplifying the evaluation of the integral (5.1) by virtue of resultant sym- It
metries and cancellations. This provides D‘(}\o) where e

at ¢ | i

(*Lol‘ + (‘"'):l | | i

cld) =

( § being the instanton separation). To obtain ?(b) for general |

A , a restricted set X\, with >\, = X\, is found such that

~
~

cC)’\o) = C(}L) . Then, using this set ,

W

T(A) = Ty + £ le)

= T (d) +F i)

H

T ) + L 30 -~ T( ko)] (5. 5)

by (5.4), giving U—(A) in terms of calculable quantities.

To see that it is always possible to find such a set &3 , it is

helpful to consider the properties of (5.3). Writing this as a cubic in




2
y we have:

Y=y

fOR N =)= ex? « 3e(tan)er + = (3clhen= K X)

+ CCX.+X’,)3 = . (5. 6)

For a given value of (X" »{—};) , this always has one (unphysical)
negative root, and two others that are either both imaginary or real;

the possible situations are indicated in the diagram below:

FOT N )

(@)

777 T ,

A4

If there exists one real (positive) root, there must exist another i l
(i.e. curve (1) above). Consider seeking a solution = for ¢ a value | ‘
obtained from a known set of possible parameters (}: " )\: , 1') 5 It
-2

and taking )\1, b S

Then from (5. 6)

fIX, %, %)

!

cx® + 3e(aN) e + < (3 (f\ff- 3)+ey)?

1

F0N % ) + 2 (VX Ns ‘—_V) (5.7)
as 23\; = >37 -+ >3;_

So the solutions of —F (‘X"I”‘)_\zl—;.;) =® are given by those of

{N(Lﬂ:m@ﬁ&&). (5.8)




5.4

Now the arithmetic mean is greater than or equal to the geometric
mean

X;"'}\I;, = —>\17/ ,)Y;X:

=
~ 4 2 AR '
s0 X =X\ %o . (5. 9)

2
Since we are considering values of ¢ and >\“ }\7; for which !
one positive root exists, j[(}\’; ,}\7; /z) has the form of curve (1) , |
in Fig.1; the roots of (5.5) are therefore given by the points of inter-

>

section of this curve and the straight line ]C = =x (W’—X; >\::)

(see Fig. 2).
£ oL 00 )
i ‘ |
i fom (V=X N) [t
|
ve el T2
(g
| |
i
So ‘two positive values of o , that is ]‘:j'—-\j_:‘ll, exist which
furnish, with M\ , the required parameters for (5. 5),
2, Computational Details
The integral "T(L\v) can be re-written more symmetrically

(integrating by parts) as




e
5.5
e\l t(, _ \f 2
L('z@ U 2 G Xdloe = ”t;at@,.mx (M%O\S'/,,
*f’y(m')c@,n(mxo\& (5.10)
e K"
+ f @1 L«’X)x ENES 5
putting L = - OLo/t—F\?
In the case of 't Hooft's solution1 and k=2, with instantons of
strength a and positions Yi
—'Q«obk{v:\né:ﬁ»:((*%—r%) (5.11)
] 2z
kA
where % = (x“'jf) ,

and so

Lo (3191 LM’?C (n’?CA(F’L

(=

|
ha
.5

0

ey

é:: é 32 T(’"(-*\ KY—"‘ étf’TTL + j@j(u')ﬁ)tolﬁ:u; . (5.12)

vl

¢ [

Taking the origin of four-dimensional polar co-ordinates midway
between the instantons, and © measured from the line joining them,
the CP and \{/ angular dependence may be integrated out (so

S A = 4w 2040 3 o) and the integral becomes even

in r,




‘ ' 5.6

Then with X, = rz‘

'B’l'(u,?(, = 57('.7:-\'- F’L/cf-(-za?’) — | bo¥=? + 6dsF ce® (5.13)

x | P «
= £ = ¢ gD 5. 14
=% x x> 614 |

In the integral of (5.12), /f_ contributes
-

Tk |
m’vf f /*W rodBde o é‘w”vf SoO A gy dpy |
o % g')(‘/

o

+ 1 +1,t K+ K,

» |

7 pK
eN 2004 ‘
where 11‘ = \'L?ﬁ‘fof i‘weJ‘; ’ | (5.15a) MR
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which exactly cancels the divergent surface term in (5.12); thus all upper
limits may be set to infinity.
I1 and 12 are dealt with in Appendix B. I
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and the first two terms of the right-hand side cancel in the limit € - o0 5 |

leaving convergent integrals.
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3, Results

Using the methods described above and putting together the various \

component parts we have
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I1 and 12 are given in Appendix B and

| 7L\" £ 5(2rr‘€fk1§(k+f/q’+l&)ﬁ/}} + (k“Ul/%*M))(Ao”/L,)},
| 0(3(;]91.1 ’ .
(5. 69)
K, = g3 } (202 ~ 74 Up A, ~ (2k - SR (A - AJ?




| e 5. 21 “ }
' |
R G N g l‘} g(?a} +S77_ +'ZE_) Ly - (lh —(14L+‘72))(C0*C1)3 3 1

A Bl a3
P2 (5. 70)

L( = (oll—nlct]r}f Lg [A%ha‘h-() + ZA. /4]
ol Ff A
+ Gl [ oA —2paia, 4]

(5.71)

Lo = Z6mperit (e eatlpA v (- (a4
fld;?fz

t 768 vatk { (kv 122) @ C, + (k- (Sfv22)) (o -G ! “‘
%7 92 . ’ |
(5.72) |

M, = (28 n}a“’(cf’—r"“)L.

§ e - P Cyp + 214 q) o ~Cy | |
P | |
t ((+92)C, — CCI (5. 73) H
A5 |

e LEpa - A ]
okﬁloz.f"’

)

M = 25@11,7—0\6(‘17—,__3")‘ !

|

¢ [(‘*F‘)‘M - 2(f+p”)A;+ AJ

L K l+<z -~ C. ]
KF’Z"{;‘!‘

@:[(HM-AJS ,
Tt .. :

(5.74)




M, = &4oraTlkt é(pLJAé =3t A + 3N Al —Aog.
&7@ Féz | (5.75)

with the An's and Cn’s as defined above. ‘
These results provide the component parts for the evaluation of J u
and thus Dk; unfortunately it has not proved possible to bring all these

terms together in a way that explicitly exhibits an underlying simplicity

of structure. 1In particular we have not been able to write the result i
showing explicitly the known conformal invariance properties by constructing 1

the function f(c) of (5.4). And this for an instanton configuration that o

Berg and L'Lis.cher3 rightly emphasise as atypical: for the @ -term of “ i}i?
(3.37) is identically.zero for k=2 and for 't Hooft's solutions generally, ‘:i‘
both of which obtain here. The implied complexity of other high-index I
determinants suggests the need for more natural‘variablés (perhaps in-

volving complex parametrisation, cf, infra), in terms of which the results

take on  more compact forms,




APPENDIX A: Evaluation of & -integrals

For the © -integrations, the basic resullc4 is
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Whence, by judicious differentiation (treating A and B as independent

variables) one obtains the following results:
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APPENDIX B: Evaluation of I1 and Iz

It has so far proved impossible to find expressions in closed form

for the integral

2 f (S core — (<) 36-Qd0d (5. 86)
X

but representations in terms of infinite series can be obtained .
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CHAPTER 6: Conclusion

The calculation of the previous chapter obtains an expression for
the functidnal determinant of the covariant Lapiacian in the background
field of the k=2 SU(2) 't Hooft instanton:; to achieve this, it drew. on the
various techniques and ideas reported in the preceding chapters. It was
shown how each of the component parts of the integral J {%1.26) may be
evaluated; unfortunately, however, it has not proved possible to bring all
these terms together in a way that exhibits an underlying simplicity of
structure, and the result serves to emphasise the complexity of the situ-
ation. This is borne out in a number of other ways.

Apart from the generally involved nature of such determinant calcu-
lations - from 't Hooft's pioneering calculation1 through to later work -
no clear sense of computational direction has emerged. Although the ADHM
construction has provided an obvious and convenient framework in which to
discuss such matters (though even this has some difficulties: see below),
no ‘clear'—cut set of technical procedures has been established,

Thus conformal properties proved of great importance in the previous
chapters; a number of authors2 have investigated the rdle of conformal
invariants in t}lis context. But it is soon found that the relevant equations
“ Abercomg intractable.

Similarly, in investigating the properties of Osborn's ansatz (cf. supra)
use was made of the simplifying properties of instantons on a line. And
the first extension (ny Witten) of the one-instanton solution of Belavin,

.5 .
Polyakov, Schwarz and Tyupkin~ was that of n-instantons arranged along
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a 1ine4.This suggests a possibly fruitful avenue for further investigation,
using perhaps complex variable techniques (setting z= r+it for example).
Ihdeed recently, Boutaleb-Joutei, Chakrabarti and Comtet5 have con-
sidered a particular class of SU(2) zﬁulti—instanton configurations along a ‘
line, in which the sizes and separations are constrained in a special way,
with resultant simplifications. In particular, using complex variable tech-
niques, this has enabled them to obtain completely explicit forms (with
- arbitrary k) for the instanton determinants (see above and 6 ). They have
| expressed the hope that a hierarchy of such solutions might be generated,
thus providing further explicit forms. But the success of their scheme
serves in part to emphasize how restricted (with no free parameters in
each k-instanton solution) a class of solutions it is neceséary fo consider ‘
in order to obtain compact forms for instanton determinants.

An attempt at a deeper understanding of instantons in the context of
functional integrals was made by Belavin, Fateev, Schwarz and Tyupkin7.
From analogies with two-dimensional CP"' models (see 8 and a pertinent ““

short review in 9 ), in which the leading contribution of the k-instanton i

to the functional integral is the partition function (at unit temperature) for
a classical neutral Coulomb gas of 2k particles, each of mass m (the re-
normalisation group invariant mass), k of which are positively charged,

~ the remainder negatively, they conjectured that iﬁstan‘cons be considered
as composed of instanton quarks. Thus for SU(n) the 4nk instantons
parameters correspond to n species of instanton quarks with multiplicity k,
each having a freely-varying Euclidean position in four-dimensional space.

An important aspect of the two-dimensional Coulomb gas is its critical




point at T=1 at which the pressure divergeslo; this indicates that the
dilute (i.e. non-interacting or weakly-interacting) gas approximation is
inappropriate: the corresponding statement for four dimensions would be
that the system of insta‘ntons quarks is in the plasma phase. Thus this
conjecture has important consequences for the vexed question of dilute
gas approximations; unfortunately little progress has been made beyond
the initial conjectures.

Instanton determinants arose in the use of the semi-classical approach
to approximating functional integrals; to employ them in this context re-
quires a form in which the explicit dependence on the instanton parameters
is manifest. As the above calculations and comments have shown, even
in the most complete general case to date, that for the k=2 Sﬁ(Z) solution,
the lack of succinctness and computational manageability renders it less
suitable for insertion into functional integrals.

Nevertheless, calculations have already begun on the next stage of
evaluation, investigating the other essential ingredient of this semi-classical
approach, namely the functional measure to be used in the integration.
Goddard, Mansfield and Osb(‘)rn11 have obtained the relevant form for k=2,
as well as discussing zero modes and associated topics, equally vital for
a full understanding (see 12 for a detailed review of these and related
matters).

But here arises another problem. The cornerstone of much of
the work outlined in the preceding chapters, the ADHM construction, while
elegant and compact, does not provide an unconstrained parametrisation

for the multi-instanton solutions with the full quota of variables, except

for k=1 and 2 and (though with complications) k=3,
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Further, the very basis of the semi-classical expansion - expanding
about a restricted set of pure instanton and anti-instanton configurations -
though sampling all topological sectors‘ of gauge equivalence classes of
index k, is not self—o‘bviously sufficient for a sensible theory (but see 13 ). {
What additional field coﬁfigurations should be added, if any, remains unclear. ‘

These préblems notwithstanding, much progress has been made in ‘
the calculation of instanton determinants as part of the broader programme ‘
of semi-classical approximation to functional integrals; and the tantalising
elegances and simplicities that arise in.di,verse but related fields hold out

to the optimist the prospect of a deeper underlying structure one day being

found. \
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