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111l 'h e Calculation of Inst a n ton Determin .. :m t:::; 11 

by 
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This dissertation deals with successiv e e lucidations of the form and 

structure of functional determinants of operators ac ting in the backsroun d 

fi eld of Yonc-Hills instant ons. 

In th e first chapter a general revi ew is given o f the way in wh ich 

ins t a nton effects arise in field theory ca l cula tions, a nd how t he princi pa l 

technique o f semi-class ical appro~imat ion of r e l evant functiona l int egr a l s 

leads natura lly to a cons ideration of instanton deter~inants. h brief 
I 

outline o f the construction of Atiyah , Drinfeld, ~I i tchin 2. nd Ean in - of 

central i mport a nce in such calculations - is app ended, together with the 

forms taken by the Green functions (inc lu dins tho se for tenso r products ) 

in this f orwi. l·irc:;rn. 

The second chipter employs zeta-function r enormali~at ion ( as used by 

a number of a uthors ) to obt a in an expression for the va riation of the det­

erLlinont with respect to it s parameters; this l eads to a di scuss{on of 

tne va cuum po l ar i sa tion current due to i nGL:mtons, an exterw :i.on of the Ho rl: 

of 3 rown an d Creamer being present ed , a nd then compared with the work of 

Corriga n, Godda rd, Osborn and Templeton . 

Th e t h i:cd cha.pt er dea l s v1ith the efforts of vDr iorn, a u tho r c (Os::iorn , 

2. erG u:n d Liischer) to r er:10ve the variat ion from the deterJJinant o 'iYt8ined by 

the ffiethodc ab ove; Jack's ceneralisation o f t h i s work to tensor products 

i ~ i r,•v~ro ~_11 c er_!
1 

~·,,.d .i·+ ,~ i· ~~11·c~+1·one l~Or <)' U ( 2. ) 
- - • - - - • - V - .. 1 l' • ~ <, • •U ~ • di ::; cus ~~cd alon:::; 1.:i tr1 cxpl ic it 

for r.is for t:1e 't ~'. oo ft . inst anto!1 solutions. 

Next an ansatz du e to Osborn for the form of the dcterLlinant i n the 

case of 3U ( 2 ) is presented, with an investig2t ion of its linitin~ and con-

for~a l pro;ertics ; detail3 of num ericGl ' . C ll e Cl(C on it 3 a ccur~cy are s iven 

Usins result s fro ~ this calculation, a nd eJJ r l oy in: conforoal p ro~er t-­

ies of v:,.ri o ;;_:_., i nter..;r0- l G involved, on e~:o c ~ f or1'1 for the det e r r;1in=: n t in t ~1e 

c ::is·e of 0 erie ra·1 two-in·stanton 1 t Iiooft ( SU ( 2) ) :::;olution.s i :::; obL,ined. 

1 fi n~ l chapter briefly revi eHs the vrocress m~d e in thec e i nvest i ~a t ­

ions and ~033ible f u t ur e devel 0~~ ents . 
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CHAPTER 1: Basic Results and Formalism 

1 . Introduction 

It is generally believed that the most likely candidate at pre sent 

for a theory of Nature will be one in which the strong interactions are 

modelled by Quantum Chromodynamics, a non-Abelian gauge theory of a 

type first introduced by Yaag and Mills. 
1 

In an attempt to elucidate the 

detailed structure of this theory , standard perturbative techniques have 

been used; but the situation is complicated by the occurrence of non-

perturbative effects. 

The first of these arises from the presence of non-trivial local 

1. 1 

minima found by Belavin, Polyakov, Schwarz and Tyupki~
2 

in the Euclidean 

domain of the action functional of such non-Abelian gauge theories. A 

direct consequence of this is the dependence of the corresponding quantum 

field theories on an additional parameter 8 3 
(at least in the absence of 

any coupled massless fermion fields or scalar fields which realise U (1) 

chiral symmetry) . Even though 9 is presumably zero in Quantum Chromo­

dynamics ; and coupled quark fields are involved as well as gluons, 'E. (e), 

the vacuum energy density, contains information of interest: 
II E (0) can 

be related to the mass of the U (1) singlet pseudo--scalar Goldstone boson 

4 (insofar as the 1/N expansion provides a good approximation). 

Further, the fact that these local minima are characterised by an 

integer k (the Pontryagin index), which labels the topologically inequivalent 

classes of such field configurations , leads to a resolution of the U (1) problem 

associated with this supposed Goldstone boson, and prov ides perhaps the 

main phenomenological consequence of ·these non-perturbative ideas so far. 5 

I . I 



2. 'The Semi-Classical Approximation 

Otherwise, when investigating these effects, one has recourse to 

semi-classical methods. 
6

• 
7 

Typically one is dealing w ith a Euclidean 

functional integral of the form 

(1. 1) 

1. 2 

where S4i will be the gauge-invariant Euclidea n action. By a suitable 

choice of ~ , ;2:- generates all the (Euclidean) Green functions of the 

theory (which themselves effectively define that theory). For small values 

of g the integral may be approximated to leading order in this parameter 

by a sum of Gaussian integrals centred at the minima of the action S4> 

Belavin et al 
2 

first invest igated these minima and exhibited an 

explicit form for one of them. As noted above, it was shown how they 

could be characterised by their Pontryagin index k (an integer), which 

labels topologically inequivalent classes of field configLtrations. Within 

each of these classes the action is bounded by a constant multiple of / k j 

and, furthermore, this bound is saturated by values of the gauge potential 

for which - the field strength 

is the dual of F;..., . 
2 The self-dual solution found by Belavin et al with k = 1, generally 

called an instanton ('t Hooft's terminology) depends on five parameters: 

four co-ordinate s of position and a scale which corresponds to the instanton's 

"size". The calculation of the semi - classical contribution to the functional 

integra tion measure in terms of integrals over these solution parameters 

was first obtained by 't Hooft for the gauge group SU (2), 
8 

calculations 



1. 3 

9 10 further analysed and subsequently extended to SU (n..) • Use has been 

11 made of these results for a variety of purposes, generally in the "dilute 

gas" approximation. 

In this one assumes that the set of minima can be represented 

tolerably faithfully by an arbitrary superposition of arbitrary numbers of 

single instanton and anti-instanton fields; the corresponding contribution 

to the functional measure is then taken to be the appropriate product of 

single instanton measures together with a statistical weight factor 1/(n, ! n !), 
T 

where n 
+ 

n are respectively the numbers of instantons and anti-instantons. 

In this form the functional measure corresponds precisely (in statistical 

mechanics terms) to a free gas of two types of bosons, although interactions 

of some kind need to be introduced subsequently between instantons and 

anti-instantons since arbitrary configurations of these will not, in general, 

be stationary points of the action. 
12

• 
13 

But even neglecting these problems, 

and calculating 'E C e) ::: k:. c 1 - c.c:) eJ , 5 • 
12 

one finds l(.. infinite 

from a divergent integral over the instanton scale size. This highlights 

the crucial difficulty with the dilute gas approximation: the formalism 

itself is weighted towards large scale sizes, but if the instanton scales 

become. comparable with their separations the initial superposed configurations 

are no longer even an approximate stationary point of the action. 

· There is a further problem with this approa ch, for it is unclear to 

what extent one may be over-counting in the functi onal meaSLffe by virtue 

f th 1 . . t· I d d w· t 14 . f 1 1 t· o e over apprng superposi ions. n ee , 1t en argurng rom ea cu a ions 

based on the 1/N expression, has questioned the whole basis of the approxi-

. 15 16 . mation, though exact calculations ' rn the closely-related two -dimensional 



C p,., -model suggest no fundamental conflict between the 1/N expansion 

and instanton methods as such. As a further indication of the doubtful 

1. 4 

17 nature of the dilute gas approximation, calculations by Frolov and Schwarz 

.. 18 Co"' on the 0(3) o- -model and Berg and Luscher for the r generalisation; 

suggest that the instantons behave as a Coulomb gas in its dense phase 

(see also Belavin, Fateev, Schwarz and Tyupkin
19

). 

Thus it would clearly be desirable to apply the semi-classical pro-

cedure systemat ically to gauge theories, making use of a well-defined, 

complete set of classical solutions about which one can expand the functional 

W. 20 f 21 d l. hl d bb' 22 integral measure. 1tten , 't Hoot an Jacnw, No an Re 1 suc-

ceeded in progressively generalising the instanton solutions of Bela vin et ai2 

to one depending on 5k + 4 parameters, and having Pontryagin index k . 

These results were later subsumed and extended by the construction of 

A tiyah, Hitchin, Drinfeld and Manin (referred to as ADHM hereinafter). 
23 

In this, the general self-dual solution for arbitrary compact classical group 

is exhibited. The work of these authors is of such importance in what 

follows that it is given in some detail below. Although all self-dual 

solutions are produced by this technique and Atiyah and Jones
24 

have shown 

that the space of self-'dual instanton solutions largely exhausts the topological 

structure of the full space of field configurations, it remains only a con-

--- - · · 25 
jecture that the functional integrals occurring can be well- approximated by 

the semi - classical appr oach of above just using these configurations for 

ar bitrary k . 



3. Asymptotic Expansions of Functioi:ial Integrals 

26 
In using this approach to calculate (1. l), it is instructive . . to con-

sider the finite'-dimension analogue: 

(1. 2) 

If the minimum of S(x) occurs on a k-dimensional set of points M , 

parametrised by x(t
1

, ... ; tk) with S (M J = SO , 

(1. 3) 

then as ~ --:, 0 the leading contribution to I is an integral over M : 

where n.. (1. 5) 

and f is the restriction of f(x) to M . 
0 

The prime on detC indicate s 

that only non-zero eigenvalues are to be taken. 

1. 5 

Returning to the field theory version of (1. 4) a similar result is ob­

tained, but care must be taken that the measure has been suitably normalised 

to ensure no factors of (J2. rr ::J 1f occur, and that only 

determinants of dimensionless quantitie s are computed. The latter is 

-1 
- -·· ___ achieved by the intr oduction of a parameter r ' of dimension length 

Thus a more appropriate finite dimension analogy is . 

(1. 6) 



1. 6 

which can then be taken over directly to the field theories under discussion 

since the set of parameters describing the minima of the act ion in this 

case come to bG finite-dimensional. 

In the general situation under consideration, a Yang-Mills gauge theory, 

with gauge group G , is described by a vector potential A/' and a field 

strength F rv where 

(1. 7) 

both taking values in the lie algebra at G and transforming under elements 

of G as 

( 1. 8) 

(1. 9) 

Then an appropriate gauge-invariant Euclidean action S is 

(1. 10) 

The investigations of Belavin et al
2 

concerned vector potentials 

which are pure gauges at Euclidean o0 Then (as stated above) 

(1. 11) 

'rz :::- o, ±1, ±2, ... 

And since 



1. 6 

which can then be taken over directly to the field theories under discussion 

since the set of parameters describing the minima of the action in this 

case come to be finite-dimensional. 

In the general situation under consideration, a Yang-Mills gauge theory, 

with gauge group G , is described by a vector potential A;- and a field 

s trength F JA--.> where 

(1. 7) 

both taking · values in the lie algebra at G and transforming under elements 

of G as 

( 1. 8) 

(1. 9) 

Then an appropriate gauge-invariant Euclidean action S is 

(1. 10) 

The. investigations of Bela vin et al
2 

concerned vector potentials 

which are pure gauges at Euclidean o0 Then (as stated above) 

(1. 11) 

R :::- 0,±1,±2, .. . 

And since 



self-dual on anti-self-dual field strengths clearly saturate the lower bound 

of the action, and are minima. 

The gauge theory analogue of the argumed leading to (1. 4) in the 

26 
finite dimension case can then be carried through . 

1. 7 

It i s convenient to split an arbitrary potential Ar, into three pieces 

(1. 12) 

. () 

Here Ar is an instanton potential depending on a mimber N(k) 

of parameters 

defined by 

and 

t. ' l 

be mutually orthogonal, i. e. 

is the covariant derivative formed from this 

(1. 13) 

(i.==l) ... )N(k)) are chosen to 

In this, ~ represent quantum fluctuations about the classical 

background field ~ , while D; </> are essentially gauge transformations, 

contributing only a volume term in the calculation (albeit infinite, as the 

group of gauge transformations is infinite-dimen siona l) which is divided 

OLlt by Z:0 in (1. 1) 

The expansion of the action up to terms quadratic in 7 is 

s (1. 14) 



1. 8 

where 

(1.15) 

The Jacobian ./r[1 corresponding to Jn1 in (1. 4) has two parts: 

one from the finite-dimensional set of parameters t. ' l 

.L 

Jr!' ~ c~ \ f ollf::c. 1~ GA; . ~ 11' 
'dE:.i. 'd6j 

and another from the functional integral over <p , 

.L 

(1. 16) 

[ Ja.6 ( - (D0
); /.1- )] ,. . (1. 17) 

j_ 

The analogue of [ dd.,
1 

( C /;u 1.) ]-
2 

is 

It may then be shown 
26

, by relating 

J. 

[ c4t,' ( - 6)'-v fr1. )] ~ ~ 

where (h,)/"9 o.'17 = - D: Q.~ - 2 [ r-;v J O.v] ( 1. 18) 

using the self-duality of F;"' , that the leading contribution to the 

asymptotic expansion as ~ ..,,.o for each k is given by 

(1.19) 

This provides an expansion in terms of the functlonal determinants 

of operators in background fields of classical instanto ns > which are seen 

to enter crucially in this approach. 



4. The ADHM Construction 

The construction of A tiyah1 Hitchin, Drinfeld and Manin
23 

mentioned 

above has played a central role in the subsequent investigations of instantons 

and their properties (see 26, 27 for full discussion in this context). 

28 The techniques employed have their origins in twistor methods . 

29 
A tiyah and Ward used these to reduce the problem of constructing all 

self-dual solutions of the Yang-Mills equations to one of complex algebraic 

geometry; then building on the work of Barth
30 

and Horrocks
31

, ADHM 

obtained the general method of construction outlined below (following the 

treatment and notation of 27 ). 

For a general compact lie group the self-dual solutions are obtained 

by adding together the relevant constructions for each component simple lie 

algebra occurring in the decomposition of the lie algebra of the original 

group. Quite simple descriptions of the solut ions exist for each of the 

four sequences of compact groups ( Su C.~-t- r), 0(2rL+1) , 0(2vt.), ~r-(r'"2-)) 
but only 5r-lrt.) will be treated here, since the formalism is simplest 

and the others may be obtained by suitable embeddings. 

The · instanton gauge potential can be written in this formalism as 

(1. 20) 

where. (for the case of the symplectic group Sr(n.) 
27) v(x..J is an [n+ ~)x n.. 

matrix of quaternions subject to 

v-t V -- 1 n... (1. 21) 

and (1. 22) 



1. 10 

Here 

so 6 , C\. and b are (0.+ k.) x \( matrices of quaternions 

: the quaternionic representation); 

k is the instanton number. For (1. 20) to yield a self-dual field strength, 

+ + + 
a a, b b and a b are constrained to be symmetric as k x k quaternionic 

matrices. This, in its turn, forces fj+ 6 to be the real and symmetric 

for all :c it must also be non-singular. Thus the following quantities 

may be defined: 

f 

V 

It is then straightforward to show that the resultant Frv 
dual, and that k is indeed the instanton number 27• 

(1. 23) 

(1. 24) 

(1. 25) 

is self-

In terms of this construction the Green function of the covariant 

Laplacian transforming under the fundamental representation takes a particu­

larly ·elegant form: 

<; c~,<j) :=o \J-t(-x:) v(~) 
(1. 25) 

4--rr,_ I x - ~ 1:2.. 

this being, in fact, the simplest possible generalisation of the ordinary 

Green function 



-
1. 11 

(1. 27) 

that transform::. correctly under the gauge group, i. e. 

. 27 
It is fairly straightforward , using standard te chniques of this 

construction, to verify that (1. 26) does indeed satisfy the remaining con-

dition 

:::: 0 

' 
(1. 29) 

(since clearly o.o is also required). 

On the other hand , to derive an equivalent form for the adjoint representation 

which will be of importance in evaluating the determinants arising in (1. 19) -

32 
is very much more involved . 

Using 't to denote the fundamental representation of a gauge group C, 

the adjoint representation can be obtained by decomposing t® 1.... ; this 

is then regarded as a 2-index object, one index transforming according to 

the fundamental representation and the other as its complex conjuga te. The 

appropriate covariant derivative is 

(1 . 30) 

Naively one might hope that the obvious extension of (1. 26) 

<::; (x, 1::,) - v(~)tv(:)) © v(:x:/·v(::,) (1. 31) 

4-,r '2.. [ X - ~ ] 2 



provides the correct form for the Green function; but as Brown, Carlitz, 

Creamer and Lee 
33 

at first pointed out, a further non-singular term has to 

be added. 

Considering the general case of a direct product of two simple groups 

G and G with covariant derivative 
1 2 

the Green function is found after some analysis
32 

to be 

Ci lx,'j ) - Cv,c-;cJ ®v-i. (:cD+ u - m ) (v,( :,) ® v.i_'=',J 
4--n-"l.. I et:: - ~ r2--

(1. 32) 

(1. 33) 

where 1TI is a square matrix of dimension 4(nl +kl )(n2+k2). It is defined 

with reference to another matrix, M , which is (k
1 

k
2 

x k/:
2

)-dimensional, 

and constant (as is m ) (see 32 for details); both are conformally in-

variant . The latter matrix, which acts on the tensor product v,./1 © W2.. 

of a k
1 

-dimensional space 'vv, and k
2 

-dimensional space 'v,/.2. > enters 

crucially into a number of calculations that follow, part icularly in the 

related forms M5 and MA derived from it, respectively the restrictions 

to the !k(k+l )-dimensional symmetric and !k(k-1 )-dimensional anti - symmetric 

s ubspaces of W © W . 

Utilising the fundamental results and working in the formalism 

outlined above, expressions may now be sought for the instanton determinants 

occurring in (1. 19). This is attempted in the work below according to 

the following scheme: 

Chapter two employs zeta-function renormalisation (as used by a 

number of authors) to obtain an expression for the variation of the determina nts 



with respect to its . parameters; this leads to a discussion of the vacuum 

polarisation c:.irrent due to instantons, an extension of the work of Brown 

34 · 
and Creamer being presented, and then compared with the work of 

') 5 Corrigan, Goddard, Osborn and Templetonu , 

36 The third chapter deals with the effects of various authors (Osborn , 

d .. h 37) h f d b d Berg an Luse er to remove t e variation rom the eterminant o taine 

by the methods above; Jack' s
38 

generalisation of this work to tensor 

products is introduced, and its implications for S uC2) discussed with explicit 

forms for the 't Hooft instanton solutions. 

39 Next an ansatz due to Osborn for the form of the determinant in 

the case of S VCt) is presented, with an investigation of itR limiting and 

conformal properties; details of numerical checks on its accuracy are given 

for k=2 and k=3. 

Using results from this calculation, and employing conformal properties 

of various integrals involved, an exact form for the determinants in the 

case of the general two-instanton 't Hooft ( Su ( -i.) ) solution is obtained. 

A final chapter briefly reviews the progTess made in these investigations 

and possible future developments . 
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CHAP TER 2: Zeta - Function Regularisation of Dete rminants 

In this chapter a .µiethod of defining and regulari s ing functional 

determinants i s discussed, and then applied to the case in hand, namely 

that of the covar iant Laplacian in the background field of instantons, the 

var iation of this determinant with respect to the instanton parameters 

being obtained. 

Ar i s ing na turally in this context is the vacuum polarisation current 

2.1 

induced by these field configurations. In section 2 an extension of the first 

work by Brown and Creamer is presented and then compared with the later 

calculations of Corrigan, Goddard, Osborn and Templeton; the latter form 

the ba sis of subsequent investigations in the following chapter. 

1. Zeta-Function Methods 

There have been two principal means of defining functional determinants 

devel oped by field theorists in instanton calculations, namely a Pauli - Villars 

. 1 2-5 technique and a zeta - function method . The latter seems to possess a num-

ber of advantages in this context, particularly for discus s ing conformal 

proper ties of the determinants 
6

• 
7 

, although its part in a consistent scheme 

for defining and evaluating Green functions of the the ory has not yet been 

shown to all orders in the coupling constant., 

As in the introduction to the semi - classical approximation, it is 

instructive to consider a finite - dimensional analogue (following
7

' 
8 

in this 

and what follows). For a finite 11 x I"\. hermitian ma tr ix A, positi ve defi nite 

with e ige nvalues ~ i.. , / ~ i. ~ n, (not ne cessarily di s tinct), one may 

se t 

. J: (s) (2. 1) 



2.2 

which defines a function analytic in s with the following properties: 

(2.2) 

(2.3) 

2 
Similarly for a differential operator (such as -D , which is positive 

4 
definite if one works on the sphere S , conformally related to the flat 

4 
Euclidean space R ) with an infinite set of eigenvalues, define 

(2. 4) 

In fact the series But this leads to difficulties with J_ 0,. Co) 

in (2. 4) is typically only defined for ·Re[rj > 2 : to continue analytically 

beyond this to s=O a technique from the analysis of the Riemannian zeta 

function 
9 

can be employed, where 

(2 . 5) 

The integral in (2. 5) is then suitable for evaluating the analytic con­

tinua tion of ~ to all complex s , revealing a pole at s ::1 (and 2). 

Analogously we can define 

and further generalise this to - D2.. by noting that the · equivalent of 

in this case is II e crt. 11 or, more properly, ~ (-.r:.: 
1 

::, ; I::.) 

(2 . 6) 

-At:­
e 

satisfying 

(2. 7) 



2.2 

which defines a function analytic in s with the following properties: 

(2.2) 
I . 

(2. 3) 
I -S ( o) =- - ~ k-t A 
A 

2 Similarly for a differential operator (such as -D , which is positive 

4 definite if one works on the sphere S , conformally related to the flat 
. 4 

Euclidean space R ) with an infinite set of eigenvalues, define 

(2. 4) 

In fact the series But this leads to difficulties with J_
0

2. Co) 

in (2. 4) is typically only defined for Re(rj > 2 : to continue analytically 

beyond this to s=O a technique from the analysis of the Riemannian zeta 

function 
9 

can be employed, where 

(2. 5) 

The integral in (2. 5) is then suitable for evaluating the analytic con­

tinuation of ~ to all complex s , revealing a pole at s=1 (and 2). 

Analogously we can define 

and further generalise this to - D~ by noting that the .equivalent of 

in this case is II ec,'-t:. 11 or, more properly, ~ Ca::., j;t:.) 

(2. 6) 

-At­
e 

satisfying 

(2. 7) 
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and (2. 8) 

10 2 
These define the heat kernel in the case where -D is a second-

order elliptic operator on a compact manifold (see also 11 ). 

Then T ,- ( e o'~) " T ,- f L•J ~ f !:,, -f- i_:c, :c ; ~) J.":c (2. 9) 

( t, referring to internal indices). The asymptotic properties of 

show that ' CrJ is regular for '7 _ p"'I. 

Re U) > t n and there are poles (as above) at s=2 and 1; -S_ 0~ (S") 

is regular at s=O. 

I 
To calculate 5. Lo), this asymptotic expansion of the heat kernel 

- [)'1. 

must be investigated in greater depth. Setting1 O 

the co-efficients a."- may be evaluated iteratively from (2. 7), (2. 8) by 

f t 3, 12 
equating powers o 

(2.11) 

Apart from infra -red problems (cf. below), the residues of '5 (s) at 

s=l ~ 2 ~nd its value at s==O are controlled by the small-t behaviour of ~ [x., x. i e) 
1 

R(%) -ScsJ 
. J':: 1 

(2. 13) 

(2 . 14) 

(2. 15) 



2.4 

(2.11) is solved by the standard path-ordered exponential (taken g.Jong 

the straight-line path from x to y) 

(2.16) 

which can then be used with (2.12) to give 

(2.17) 

and (2.18) 

So the residue of )(S) at s.=2 is infra-red divergent, at s=l it 

vanishes and 

:S Lo) (2. 19) 

for a self-dual solution. 

To calculate j
1
( o), us ing the fact that 

one obtains from differentiation 

(2.21) 

a nd (Euler's constant ). (2 . 22) 



,.. 
2. 5 

A side from the difficulty of analytically continuing the right-hand 

side of (2. 21), it is not apparent how it could be evaluated without detailed 

knowledge of the eigenvalues of -D
2 

These difficulties, and the problems of infra-red divergences (which 

arise only in the determinant as a multiplicative factor independent of the 

instanton parameters) can be obviated if one considers b ~ (.r) - the 

variation in 'S (s) induced by a change SA?- of the potential. As 0..
0 

(~-x.) ;;:.1., 

is regular at both s=l and 2 (2. 13), and further ~ 5 lo J = o 

if Al"- satisfies the equations of motion, (2.19) then being proportional 

to the action, a constant. 

In these circumstances 

(2.23) 

and so (2. 24) 

the integrals defined by analytic continuation. 

2 Integrating by parts, and denoting the inverse of D by its Green 

function , 

(2. 25) 

then ··· f ~'roJ. [sf Jle'-'T,[/6'C,SD~J}.
0 

C) 

(2. 26) 

(2. 27) 

so (2. 26 ) become s 



(2 . 28) 

with the notation 

(2, 29) 

and (2 . 30) 

Thus the residue at 8 : O in 

(2. 31) 

which is controlled by small-t behaviour. wi 11 provide ~ '!::'(_o) In 

fact it is the consta nt term in the asymptotic expansion of 

that is required; this is obtained from considera ti on of the expansion of 

--f'. . C 1 -l An obvious choice like 7- :x.. <J i <=; 

(2 . 33) 

where the path-ordered exponential 

13 of (2. 16), will reproduce the e:,.,."J)ression obtained by Brown and Creamer 

2.6 

in their investigation of the vacuum polarisation current created by instantons 

(see below). In their work, a point-splitting approach was adopted that led 

to lll -defined expressions whose ambiguities were resolved by rather ad hoe 

means. 

Noting with these authors that 



' 
(2. 34) 

where R(x,y) is non-singular at x=y , one may furLlier apply the 

7 
zeta-function method to obtain rigorously their end result . 

For Brown and Creamer found that only this reg.1lar part of ~ (x1':J) 

contributes to the constant term sought in (2 . 32). This will occur if 

(2. 35 ) 

has no such term as c -L o . 

Now 

(2 . 36) 

~/2- - M 

is finite and (changing variables) of order t , vanishing by anti -

symmetry if N is odd, provided ±- T\J - M )' 2. 

Thus the only terms of relevance are 

Expanding 

multiplied by 

3 14 
about x==y, one qses ' 

-y 

D,µ gj {x.1'-J) :::. t FI" .. CxJ (:1-x/ 

(2. 37) 

in a Taylor series 

(2. 38) 

2.7 



2. 8 

and 
) 

(2. 39) 

(2 . 40) 

Then with 

(2.41) 

the contribution of the singJJlar part of G(x,y) to (2. 33) is 

(2 . 42) 

which vanishes in the case under consider ation, since Aft satisfies the 

equation of motion Dv 9-(." ::: o . So finally only R(x , y) remains, and 

using 

=: .l (2. 43) 

13 
Brown and Creamer 's expression is achieved: 

(2 . 44) 

where (2.45) 

is the vacuum polarisation current induced by the presence of the instantons 

(see 13 for a full discussion of t:his aspect) . 

2. Calculation of Vacuum Polarisation Current 

This current thus enters critically L1 the calculation of instanton 

determinants . The basic technique employed in its evaluation is the ex-



2. 9 

traction of the regular component of the Green function G(x, y) 

(2.46) 

is the standard path-ordered exponential; Sr is then 

calculated via (2. 45). 
13 

This method was developed by Brown and Creamer 

. 15 16 
and first applied by them in the case of the extended 't Hooft solution ' 

in what follows we treat the general situation in the formalism of Atiyah , 

Drinfeld, Hitchin and Manin (cf. infra). Simple T aylor expansions are 

used to this end. 

Expanding about y, only first-order in x-y need be considered, since 

higher-order terms in (2. 45) will vanish as :x:.. ~ j . With 

(2.47) 

by (1. 26) the expansion is straight-

forward: 

+ 1r df' v t-l:1 J vl'.:J) -t- 1r ~"' ?,.,_-..i v1j) v (~) 

-Z.. I 

3! (2 . 48) 

where 'r - 1 J Z,j'- - L'X--~ J-"-' 

Similarly we may expand 



~ . 

~ 1 - l:ic Ar eh~ 
~ 

-t lx Ark:' Jx' A~ h~ (2. 49) 

j '.:J -r Arhf \\_,h; (~, h~ + ... 
:J . J~ J~ 

" 1 - i~A_,..J.xr + X + Y + . .. (2.50) 

:J 
To third order in '? (since we have a factor jx-y/

2 
in the 

de nominator) 

0 + Al" ('-J) ~ + ~.,,. 'L 'd,, A~ 
2-/ 

i-' ~/" 1.v 1 :>, 'd)'-.,., A>,. + O(i'f-) • (2. 51) 

3_1 

Also X "' I" J.,<f Ar { ",) f (x,) J~ . 
where 

~l :: 
> :r., - ~ • 

+ t 1~ ~,>- ~/A" A}-(~) + O( 1) , 
3! 

So X ;::: 0 + 3 ,µ ~v [ Ar A» J 
?.' 

t- 1,.. i .. /~) [ c>--.i A1• At- -t- 'd~ Ar Av 

3! 

2.10 



I 

Then 

(2 .53) 

where 3(~ ,) ~ t~([Ar(j)+L,[~)j 
2 

giving y ::: 1r ?.--1 1)- . AL ( A1,A.v + A°" A~) -t O (i'f) . (2 . 54) 

5-I 2 

+- 11' _lv [ -0--., ~ + Ar A-vj 
'2-' 

t 1;, 1v 1>- L - A1-4 A>-- A., 
~! 

(2 . 55) 

-t- Al'[~.,, A,- -r~>.Av)] -+- O(-f'") · 
'l.. 

1 

2. 11 



Since (cf. 1. 21) 

we have 

and so 

(2. 56) 

causing the first-order terms in (2. 48) and (2. 55) to cancel 

leaving 

in (2. 46 ), 

where 

and 

(2. 57) 

(2. 58) 

(2. 59) 

- [- A,.. A-v A,_ -t- ~v Ar- A>- 1- 'd ;._ Al" Av 

In order to compute -Yr- of (2. 45) it is necessary to adopt some 

convention for the limiting value of '1r ~v /i2 
as 1-, o . Naively 

one might take this as the symmetric limit; but in fact there 

are two limiting processes involved here, and it is important that the 

orders be strictly preserved. 

2. 12 

Dr- acts on R in two ways: differentiation by cJr, , and via 

multiplication by 7 . Clearly, in any sensible limiting scheme, the latter 

wil 1 only contribute a term from but the pieces obtained 



2.13 

by of- acting on R must be considered more carefully. 

Now 

~"'t' ?v ~>-- i' ~r ~>- ~~ -t" ··1, .. 1 v ~~).. (2. 60) 

~-r-

Having performed this limiting process of differentiation we may now 

take 

(2. 61) 

and . (2. 62) 

' 

so (2. 60) becomes 

1 
not, as might be e:x-pected, 

3 
of the symmetrised sum of (2. 61). 

Similarly 

(2. 64) 



2.14 

The latter term -~o o-? 1 -"? o ; but the first is ill-defined. 

For present purposes it will be taken to be zero (as J(x) is regular). This 

point will be rAturned to later. 

a cti.ng on C t-"i ~ 

'ooc. Brv will contribute. 

produces nothing in the limit ::ic. --"> .:J , but 

The term produced is proportional to de<.. 6rv . ii'.'. iv/ > 

. -p 1-10 

which becomes rax BrJ . .Srv Here there is no ambiguity about 

4-
limiting processe s and the Srv may be taken within the differentiation, 

prodL1cing 'doc Bf-; ltt- , 

Now from (2. 58) 

. 15 
As is usual in instanton contexts (e. g. 't Hooft's solutions ) we work 

in the gauge ~·A =- o , so 

= r:.'2. t A2 o V -V - ( 2. 66) 

and 1J«~ =- ~(8t(_'d
2
v:v +,.iv~~v -~aA?-.A>--A/?4'/AJ.(2.67) 

4-

So using (2 . 65) and putting together the component parts obtained 

above, we have 



(2.68) 

3. Vacuum Polarisation Current for 't Hooft Solutions 

The vacuum polarisation current was first obtained by Brown and 

13 15 
Creamer for the case of the 't Hooft SU (2) solutions ; (2. 68) can be 

checked against their result. 

In this case 

17 
where 

a '"' - Pauli matrices), 

and 

the instanton superpotential18; 

and positions. 

(2. 69) 

(2 . 70) 

(2 . 71) 

/\. , y. respectively the instanton strengths 
l l 

2.15 



2 . 16 

Then regarding v as a column of k+l quaternions 

(2. 72) 

where xs == x-y s, in the quaternionic representation. Using (2. 72) 

may be calculated . 

First 

(2. 73) 

with 

So 

~ ) +-
?Cl z r 

(2. 74) 



and . 

,,"t t 
rJ VJ 

Giving 

-rr 
_.2-.... 

2 

+ '2 :c.\ IT-,. ~~TT 
')C lj, 

2. 17 

TT--~<~!" TT ( .:1r-..,;, -x"J' - :::et J ::c~ 

?C..."f'"J' 

(2. 75) 

(2. 76) 



and 

2.18 

TT-~ ~1 >-TT ~ ( i.v-J ~vr -- xt; J _&_ 
:x.'<., 

(2 . 77) 

TT_, 'd/-1 TT ~ ( l 1;,-"' ~~ - x;;) ( £ 11'"" ~~ - 3~~ J A_,. 
:X-f 

Then constdering the other terms in (2 . 68) 

(2. 78) 



and 

by direct calculation. · 

Also 

Then using standard combination formulae for the / 'J' (for which see 

Appendix of first reference in · 1 ) , 

and 

2.19 



we have 

Similarly 

using 

Also 

~ ~ ( 3d~K 11')~ TT rr-"2- - 3~ix1T)~r n rr-> 

,_ 2· "11)'. rrJ.olr TT 1?f n n _,. ) (2 . 81) 

(2. 82) 

which, us ing (2. 82) and 

2.20 
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become-s 

~ o "'"- TT 'Joc IT TT-1. + ~ ~i;,:f ~r((_ ITr;)t rr rr·~ +- ~ 1 ,~',\,,JT1,,, TT n -~ 
(2 . 83) 

From (2 . 75) 

(2 . 84) 

and 
(2. 85 ) 

So Bf r of ( 2. 6 6) i s 

(2. 86) 

i. e. real. 

Now ""J;. enters in (2, 44) w., Q- [ SAr ~] , so only those 

parts proportional to cr'''· are relevant. Since B,µ/" is real , 

is also real in (2 . 68) and hence contributes nothing to the effe ctive polarisa­

tion currents. Similarly all other terms in the component parts of (2. 68) 

-without this factor of o°" may be discarded. 

Thus gathering together the relevant terms (i. e. · those proportional 

to 1 ) we have 



2.22 

+ .L r;lA 
3 A 

-f-;, 1r G-v n 'df'\ n n-l (_-1+.) (2. 88) 

-t- '- , <{r 0~>- rr{),n rr- >-( ~) ? 

Also (-from (2. 77), keeping only the relevant terms) 

(2. 89) 

-t- i. r~r ~?{X TT~ IT TT _ .. ( t) 

+ Tr'; />-• 'a~ ( ~ ~) l 
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I 
So 

lt-rr .... Q ... 

+ C: n .,,- n _'). ( L + I ) 1r" 0~ ; t ,:;ii".>- n 4- -z;. 

-r <- "1>-<( di( ( ~ }.~ ) (2. 90) 
I r -x'f 

t 

- 21 M d.x (~ ~') (2 . 91) 
> x"; 

·Defi ning (with 13 ) 

then 1)-v D., 0-



and we can write 

(2. 94) 

Consider 

Now 

= 0 

since ~,, is self-dual (by construction) and ~f..,, anti-self-dual. 

Equally, ~ o- contributes nothing in (2. 44), for 

JJ~:c-~~~A~ ~o-- 1r~) 

J Jlf:x: t<- { o-1r.,, Dr £ A.,, t 

= f J..Y'~lr- f ~ 1rv ~ ~f"--1 ~ 
which again vanishes because of the opposite dualities of I and F. 

2.24 



13 . 
Thus we obtain Brown and Creamer's results for the effective 

vacuum polarisation current 

(2. 95) 

r.l 

! and ~">- is conserved, 11s is easily checked. 

This is true for the general current found in (2. 68) though the lack 

of any essential simplicity in the result has unfortunately prevented direct 

verification. Similarly ~ is anti-hermitian (as At" is), but in the 

2. 25 

derivation of above there is a manifest lack of symmetry under "J'r- 0 o-;_t. 

It has already been noted that the initial calculations of Brown and 

13 
Creamer were plagued by problems of limiting beha viour , solved by the 

approach of Corrigan et al 
7 

. Similarly the further problems of the 

generali sa tion of the earlier work were also avoided by these authors. 

In the expansion of ~(z:.,'j) (cf. (2.49)) they arrived at the followi ng 

ansatz on th_e basis of gauge covariance and Euclidean transformation 

properties: 

(2. 96) 

where the use of the ADHM constr uction allows structural mimicking of the 

Green function 

V-+(:r.) V(<j) 

4-ir1. l ?('- - '..:? \2. 



from which it is subtracted in (2, 34). 

Then using the defining equations for p lx.-1 j) , 

a power series i.n (x-y) of H about x == X-+,j can be obtained 
2.. 

(see 7 for details). 

With ::C.-:: x.+~ 
2 

these authors obtained 

2.26 

l--l(x,~J = frCx) + 72fC-x)[(;y:-':J)bc~/b -btb(:;c)(2c-~/]fe:cJ 

(2. 97) 

Then using this via (2. 96) in (2.45) gives 

(2. 98) 

which is manifestly anti-hermitian ef" = dr x., ::c in the quaternionic 

representation); it is then straightforward to show that its covariant derivative 

is zero (notation introduced in 19 is helpful in this context). Using the 

various forms for v, b, f etc. in the case of 5U(2) , (2. 98) may be 

shown, after some algebra, to reproduce (2 . 95), further confirming this 

result. 

Clearly the elegance and simplicity of (2. 98) coupled with its full 

- . . - ·----generality, make this form the obvious choice for further investigations, 

and in particular . for seeking to remove the variation from 6 Ar 
This will be carried out in the next chapter . 

in (2. 45). 
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CHAPTER 3: Integral Expressions for Instanton Determinants 

In this chapter the efforts of various authors to undo the variation 

present in (2. 44) is reported, following principally Osborn and the more 

complete work of Berg -and Lu.scher. In this, using the current of (2. 98), 

is re-written in terms of various variables, At' , ~ 

having been transformed to equivalent quantities in another, larger space. 

Then after some manipulations and re-grouping of terms, it is possible to 

extract the variation from (2 . 44). In the process of doing so, a five-

dimensional integral i s introduced. 

In section 2, Jack's extension of this to tensor products is discussed, 

together with the implications of this work of computation of instanton 

determinants in the particular case of SU(_').) • These are further con­

sidered in section 3 with the partrculatisation of the above to the 't Hooft form 

in preparation for the following chapter. 

1. Basic Techniques 

In the previous chapter it was shown how the determinant of an 

elliptic operator (such as the covariant Laplacian in the background field 

of instantons) could be obtained from the zeta-function of that operator. It 

was further shown that under a variation of ~he parameters in the general 

--·- ·- . A 
solution · r , the corresponding change in , where 

if [ I J old ( - -;;7, ) = ~ - e,,.r ,._ -s c o J - 1 c o J 

( f' a regularisation mass-scale) , 

was given by 

(3. 1) 



(3. 2) 

Here "f. , the vacuum polarisation current due to the presence 

of the instanton gauge field, is (in the notation of Chapter 1 and 1 ) 

(3. 3) 

and 

The removal of the variation in (3. 2) was first effected by Berg .and 

Liischer
2 

and Osborn\ in the main, the latter's treatment is presented 

here. 

In this, the formalism of Drinfeld and Manin 
4 

is used, writing 

L::i(x> - a_+ b-x: :::: (>-+ 1 
'b+Cxj 

(3. 4) 

where B and C are square 2k x 2k -dimensional matrices and t acts 

from a space W to N-dimensional representation of the gauge group. 

Then a solution to v+f:,,::o and y+v-= 1,., is given by 

v+ = u-t (1,..,, -u..+-) (3.5) 

( 3. 6) 

where (uu+r':::. 1N -t'u_+l,L • 

-~ ....... _ . .. . ---
. . ··-so A/A :::: - u+- ~t Ct-, e"" c\-1. u ;- u-''?" u (3. 7) 

with S :;::. (B+ c~/ ( B +co:.); 
I'-' 

and defining Ar a gauge 

transform of Ar by 

( 3. 8) 

3.2 



.. 
3.3 

then (3. 9) 

Now 
I f)-I lu u =: 1N 

(3. 10) 

where 

so (3.11) 

Since 

and ~ is covariantly conserved 1 

where 

- t f PTf (-er- Pr - f'0r-)f c-t- u. 
(3 . 12) 

(here P(.x..-) - b-1- 6[:r:.);: c+L B + C::c)) 

Defining a.I'" and Jr by 

' 
(3 . 13) 

(3 . 14) 
....., __ _ 

then the gauge field and current for the space W may be defined thus: 

(3.15) 

(3 . 16) 



Using standard techniques in the context of the general ADHM 

solution (see 5 for details) it may be shown that 

(3. 17) 

and so (3. 18) 

which ensures Dr (A)~<,\:;()/ DI'- cAJ~ :;.. O and also 

f.1Y.:f:r \ ~,1, ;f,,J - S J.'f" 4-w f &Art 5 

~ J J.\, I:;- I }- S)..+ LG\/' A f Jf - j,. )S °'r) 
(3.19) 

::: 0 

as and 

Thus finally one obtains 

(3. 20) 

where 

(3. 21) 

' 

V 

After fairly lengthymanipulations (details, in 3 ) it can be shown that 

...... · ---- ... - - - ·--·- . 

v[ ~,t,t] 

~ - ~ ~ [ p~ -er -( r ( f P1Jf ( el'- p-r - f:et ) f v] 

3.4 

+ b~ [ ~(tv)fP"'"f P] - tv-[f(f ~fft-/ ({21" Pff Per- -t-21°f P.,.n. 
(3. 22) 

,, 



.... ·~-

3. 5 

The derivative vanishes as a surface term in (3. 20) as S (f r-t-) := O{x-") 

and fv ::: 0 (,c ... ) . Then defining 3 

X ::: f 'f (3. 23) 

(3. 24) 

(3. 25) 

(3 . 22) is written more succinctly in (3. 20) as 

Further simplifications may be achieved via integTation by parts and 

suitable combinations and terms to obtain 

S J'1 oJ = 1~.,,, ~ f J~,, f - 2tr [Yxx] _,_ t:,{ e,. x. i<-e,.Xx] 

- It. [Yxi< X] l 
) (3. 27) 

where 
) (3.28) 

showing ~ J' (o} as a variation of an integral plus a further less explicit 

term. The former may be further re-written as 

and the latter as 

r 

l2.-v2' 

(3 . 29) 



where · (3. 30) 

and (3. 31) 

~ e was successfully re-expressed as the variation of an 

.. 2 
integral by Berg and Luscher . 

They considered the properties of a function 't (iJ defined by 

i l~) ::: c~,"n" IA t:, { M-; 9{>( M ~ -lidp M uY-'01 M ,.,,-,~Ii M ,r0~t1} (3. 32) 

5 

3.6 

where M(~) E. CiL (k, C ) an arbitrary function of 5 real 

variables 

Then 

Introducing a parameter t, an integral form of this . equation is 

where is any curve of invertible 

matrices (in ), such that K: ( 0 1 1) is diagonal 

and K ( 1 1 
i) 

Then taking and -C: 
'7 'r 

------·--. 
an -ins tar:ton parameter with respect to which the variation is made , and 

putting M :: f-' , 

(r,..J,r,a-- -h o Gr'3) 



So by (3.34) with ~-== lf-, + (t-cJ(l+::2) 

I 

::. ~ ~~ . '2_ f JL E,~f'6 S>-. ~ ~ f.c -r~c K · _- · K" -, 'J,>- K"? 
!?>1 1'- 0 

ltt = o, ,, '2-13 

f,"o,8,\ ;;. 0 1 t,'2-,'>,Y-) 

where the surface term from 1r ~ in (3. 36) vanishes. 

Writing 
I c ; --; .... , .._ -"< = -.,r' ( 

) a .,_I . - ~ r ;:; 0, I I 2-, >) 

(3. 36) 

3.7 



Thus may now be written as the 

total variation of four- and five-dimensional integrals: 

So finally, removing the variation, one has 

::J)' - - l.,, I <kl L- T>' if-') I J.h/ - '0~ fr'){ 

!~ l I + e )- k LVlr.,_) T F lk) 
..._/ (3. 39) 

Here t) 0t' is the trivial covariant derivative (k:::0) and is inserted 

3.8 

in (3. 39) to divide out the common divergent factor on flat space. Removing 

the- variation from (3. 38) introduces problems of divergence; thus I has to 

be regular ised: 



-----

F(k) is independent of the parameters of the general instanton 

d 
.. 2 

solution, and was foun by Berg and Luscher to be 

(i. e. linear in k,. as conjectured by Osborn 3
 ), where 

ol (-:t) -::: - 2 1' ( - t) - t lt 2 

2. Extension to Tensor Products 

S" 
72 

3. 9 

(3. 41) 

The above results all pertain to the case of Af'c in the fundamental 

representation of the gauge group; using similar techniques Jack6 was able 

to extend this work to Ar a tensor product of two independent self-dual 

gauge fields . 

Thus defining 

rv A,, 

Dr .:,: fJr 1 -t- Ar (3. 42) 

-
Al" ::: 1, ® A .. /-'" T A,~ ®12. (3.43) 

rv 

1 - 1, C?l 12.. (3 . 44) 
\_ 

the analysis . of Cha.pter 2 goes through in an exactly analogous fashion and 

(3 . 45) 

where :: (3.46) 

obtained as in individual variations of 4 (- D-:z. ) , , ,. and 

(3 . 47) 



-·-

with defined by the tensor product Green function 

(3. 48) 

(see Chapter 1 eqn. (1. 33)). 

J
1 and J

2 in (3.46) contribute their respective determinants in 

(3. 45), and ~ a further term I : 

NI G.,, cJ..ak:, I - i): J + N l. ~ ~ (_ - Ii ) 
l /A,. /A). 

"V 

- I + c.e-.-....6. ' 
(3. 49) 

where N1 , N2 are the dimensions of A 1,-.r, and 

Here M is the matrix in the extension of the ADHM construction to 

tensor products (see 6 for references). 

In Chapter 1, it was seen (eqn. (1.19)) how the adjoint representation 

enters into the calculation of the semi-classical approximation, and the 

6 determinants for the former have been examined in some detail by Jack 

applying the -above results. 

l 
For the results for the adjoint representation can be obtained by 

··· - ----- -- judicious selection of A1 and A2• Thus for Su (vt) , taking and 

its conjugate the adjoint · is obtained directly. 

Then with 

(3. 51) 

3.10 
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Similarly for 
. 6 

though with more work , 

+ -±r'L s J,<f~ ~d.J:, f-/a"'-'$ ~ dot, fv -r ~. 
(3. 52) 

f1 4 was defined on Cw c1:} 'vv) A the anti-symmetric part of W ® IN • 

For the particular case of SU() .. ) :::: Sf CL) 7 (3. 51) and (3. 52) 

may be combined, and, using Met :: M , d.sil r1 = UM r c4l MA , 

give (cf. (3. 39), 3. 41) 

= t ( ~ du- \ Mr [,, @'9 ) l + kGt.2) - ( c<_C-lq -+ ~) k 
(3.53) 

. T l ~t.,r' r cl 'f "- l.. J.,.,l_ {v CJ' 'J Cv, Jclo{'-, k I,., I'' 
j (2-

. 7 
where the undetermined constants above were obtarned by Osborn by taking 

the case of S' r(r-) and considering k commuting lr (1) factors when 

2 
the eigenvalues of -D can be determined, as in 2 , but in the context of 

zeta - function regularisation. 

3. 't Hooft Solutions 
( 

- ·· :fri ·wha t follows, we shall be mainly concerned with evaluating J)k.. 

for the case of the background instanton field given by the 't Hooft solutions 
8

. 

In terms of the ADHM parameters, these are described by 9 



' -· - . 

°'- .. 
'} 

Then with 

(the superpotential) 

In terms of the matrices 
3 

x., 

X :: 0 

0 

>--, 

A --

"k 

--- --- ··-' 
+-, := 1:/ D, :: 7. ~ X o -+-

- .. . - - -

and -...,;> ·- \i· h -::- ~~ 1k + 

Then, using q> - '{ lx2.r' >-. -

3.12 

(3 . 54) 

(3. 55) 

(3. 56) 

(3. 57) 

(3. 58) 

' 

X!° ~ )._T (3 . 59) 

l\ )_ T (3. 60) 
'-..._.,/ 

-+- t (3.61) 

-:,c:,. 
0 
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(3. 62) 

( 3. 63) 

and 

ktl ~ if fJ~f-':: tx4J' xt{ - ~ o<r'A/ ( O(J' x<>: - :" 1L) . 
(3.64) 

Finally, using 

(3. 65) 

. 3 
1t can be shown 

(3.66) 

-cp2. 

--- . - . - . .... --·---· ·· - . 

(3 . 67) 

' 



where 

(3. 68) 

So noting b 
. 3 one o tarns 

c; l;- C f 'v tY J - -!; t.,. [ h? k1" J 
:1. - t __LlL - J_ ~. 'oq>) -t-

0 -:r..z r b cp'f 
(3. 69) 

where 

(3. 70) 

The derivative term contributes nothing in the integral (3. 38), and 

that of <ie vanishes in this case (cf. below, Chapter 5). So for SU(2J 

the final result is 

- ~ ~ ~ .... --· - --~ - I 

and 

(3. 72) 

3.14 



Here the regularisation is necessary since the first term of (3. 7J) 

removes the singularities as but introduces a divergence 

which is, however, independent of the 

parameters a and b. (3 . 72) presents the determinant as esset:itially a 

four-dimensional integral, whose properties will be fu::.·ther considered in 

the following chapter. 

·rrrr 
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4.1 

CHAPTER 4: The Osborn Ansatz 

In this chapter attention is focussed on determinants for the case 

of instantons described by the 't Hooft solutions (cf. supra) and in particular 

on elucidating the structure of the integral occurring in (3. 72) of the 

previous chapter. Having considered its limiting properties, an ansatz 

modelling these suggested by Osborn is described and examined; in section 2 

the conformal behaviour of both is investigated. This is followed by a 

detailed numerical comparison of its behaviour against the exact function for 

two and three instantons . Various appendices and tables provide further 

computational information, programs and results. 

1. Limiting Properties of Determinants 

As a first step to evaluating (3. 39) for the general case, attempts 

have been made to elucidate its structure for the simpler and more ex­

plicit 't Hooft solutions (cf. supra, Chapter 3). By considering the various 

1 limiting and conformal properties of (3. 71), Osborn sought to formulate 

an ansatz that would reproduce these and the known form for k=l (see 

below). 

Followin_g 1 consider the behaviour of I [ q>,.] , where 

is the form taken by I -t- () ( e :: O in this case) in (3. 39) with 

> 

(cf. (3. 72)). 



In particular, we investigate the case where the instanton configura-

tion degenera tes to one corresponding to a lower topological index; that 

~ 

or 'i,. ~ o 
l (and equivalentlj ':J? ""700). In the 

first limit let 

~-l 
:x:': 

l 

then (4. 1) can be written as 

IC <P1.] 

... x.· 
J 

(4. 2) 

(4. 3) 

I r A4•
1

)1J 
~'+' is just the case of k=l (in the conformally extended 

2 
form ) and can be evaluated 

1 C cµ:·j1J :: - ln- ~ ~i 1 J~-~j L 
(>\ -t- ~ )'" 

+ 1.. 
3 

(4. 4) 

In the integrand of (4. 3), there are now no divergences at x; as 

4.2 

and so the limit can be taken inside the integral, together with 

which leads to 

( 

[X:i !l. 

-t- I[~,] 

(4. 5) 

(4. 6) 



4:. 3 

where 'P1c._, is the obvious limit of cp H. a,:, ::l~ -:;) ':'.)J' ' viz. 

k -i 

cpk-1 I. }-" -"2. i. -~ :: A., )._H. ' i.'\ t- j 
.... a. -:=- >- . >--i: + }._. ( 4. 7) - ' J -::. 

l'\t,i :ii:';. ) ) 
0 

Consider now the case of Then writing 

( 4. 8) 

where 

' (4. 9) 

then 

11 
I 

4-:t;;r <0'k-, z:::c-,r ~-, 
(:c,( 'f' 

( 4. 10) 

So in (4.1) there arises a divergent term 

f _L 
1 b ~: J<t~ tt ~ ::c · ~ 0 j -- c. 

ix~ /rz,. 

for the remainder, )..~ ~ 0 without problem. So 

(4.11) 

where the regularisation refers to the divergence at oV 
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Setting 

(4 . 12) 

and 

:: s Jtr \: ( _, -
u. l ~ }t u..'f 

~ l 

(4. 13) 

(4. 14) 

Thus - ~ )._~-

fk_, GJJ 
+ t + I[cbk-1] · (4.15) 

Similarly for ~.: -) o0 with .,e-::: ~ ~ + u. ">-:;. , 



the same term as before contributes (as and the same 

result (4.15) obtains. 

1 Osborn suggested the following ansatz for I ti:.at satisfies the 

limiting relations (4. 6) and (4. 15) 

4.5 

The verification of this depends on the detailed properties of J..d, fi. , 

where 

(4. 17) 

6,..,,,. :: >:.t 
tl'\.Yl ;:: 0 --- l,.A.r"' ( 4. 18) 1':),.,-'.'.J ... (l. 

The rule for evaluating W--f\,. was first given by Sylvester 
4 

whose name it bears (as Sylve ster's unisignant); the symmetric case relevant 

5 here was treated by Borchardt (see also 3 for further discussion). 

By the complete symmetry of J..u:., f k 

, the special ease of l 0 , -'T ..o 

-1:.,'L 

under permutations of the 

may be considered 1• 

- I:, ... 
I') 

(4 ; 19) 
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where 2-· 
" 

occurs only in 2 ,1 , so abstracting this term 

-1::..,2 , (4. 20) 

then expanding by the first row 

(4. 21) 

where o 
1 ~-, is the (k-l)x(k-1) matrix obtained from fk. by elimin-

ating the first row and column, and combining terms such that ELL-::: l:::,~ -t-t:0 ;, lb r.: ~ k. 

Considering now the behaviour of (4.16) under ~0 7 j, (that i s c, 
0 

_., t>O) 

l.i :E >-: 
_.,. 

;D + "~) is unchanged (but ),.. ~ 
" I 

~.fr~"' rV 41. n t .. - ~ ,. ">.. 
and 

t,o - 'f-, +-~ ) • I 

I '. 

~(~ 

and from (4. 21) 

where 
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lvi_ t;,tD -=- ~ ~ ~: 

(~,-::,o/'2.. 

So under .c,o '7 eD J 

Io - .. ~>-~ ~ )._~ >-: rv I {t.-, -t- L-4,._ -+- -{- 1.. ~ b,t,..;,i,, 
't,>-~ 1~,-'d•l"l-

:?, 

,._ )-"1.~ -o 
/ ':),-'jo/ r rv I ...,.. L - c... 

l,,.-1 3 
~~+ >:.f ' (4.22) 

viz. precisely the behaviour of (4. 6). 

To consider the limit A{ -40 c~ f .. ~ ..e.) it is convenient 

to take (again by the symmetry of the situation 

this is permissible). 

Then 

- ·-
- · Adding columns 2 to k on to the first, using 

~ 11 ::: l::. ro -t- l:: 1-z. -+ 



4; 8 

-er2.. 

and adding the 2nd to kth rows to the first 

and then expanding by the first row we have 

/v f boi • cNJh eL, 
<::::,,;-;,o 

( 4. 2 3) 

since each column other than the first has an element of order (:;.,o~ , and 

multiplies a matrix with a column of similar order. is defined 

simply by deleting the first row and column. 
~. - . ~ - .... --- -- - ' 

Examining (4.16) again o-o ~
0 

7 o ( crv-- 'j.._
0 

4 c,,J 

. l 'l k 

lvi ~'>-.. ,....., ~ L,~ 
0 '>-.."">o I 

k It 
and Lvt TT~~ A., ~ nx-_ -t- ~ 'to 

0 " ~-'lo 



----

By (4. 23) 

I,. 

but '".2:. t, . -o ... - ~o 
~:o 

I .. 0 
,v .I1,._, I.. h.Z 4o 

So 

r 
q)L, l;jo} 

+ 2. 
3 

+2 
3 

(c.f. (4-. qJ) 

I 

~ ~ et>; 
k~?·) 

- 2 L-i '>-~ 

(4. 24) 
J 

reproducing (4.13) , and confirming the parallel limiting behaviour of 

( 4. 16 and ( 4. 1 ) . 

2. Conformal Properties 

Having shown that (4.16) satisfies the various limiting relations 

of I [ ~] , it is necessary to ensure that its conformal properties 

4.9 

are compatible. . 2 From the earliest days of mstantons , conformal techniques 

have been a recurrent idea in the development of the subject 
3 

; they will 

also be of cardinal importance in the following chapter. 

. 1 The properties of I are most easily investigated via the relation 

where for the case · under consideration (SU (2)) , 8 :.: o;. 

here (4 . 26 ) 



-~- • 4 - - ,. 

was defined in Chapter 1 through equation (1. 33). 

Expressed in quaternionic form a conformal transformation may be 

written 

(4. 27) 

(4.28) 

for a self-dual gauge field Ar given by the Atiyah, Drinfeld, Hitchin 

and Manin construction, this change corresponds to one in parameters of 

(4. 29) 

b ~ b' == 0-0 + b"' (4. 30) 

Also (4.31) 

where (4.32) 

(4.33) 

6' 'l 2, [ J Since · ~ d ~ Jet, f -= - G-- ~.,, ~-v , (4. 34) 

··--·tneh .Linder a conformal change 

(4. 35) 

So denoting the change induced by this conformal transformation 

4.10 



by 6.c: , and letting it act on J of (4. 26), then 

integrating by parts. 

Using (4. 32) 

and 

where 

The ansatz (4. 16) can be naturally extended to the complete 

solution via 1 

' . - --- -~-- . - . 

4.11 

(4. 36) 

(4. 37) 

I
0 

+r;/::; ~cla:t 1 MJ' (-v~-,>))-l.v.olw~MAL"®")}-t- (li,,2-f-1)k 

(4. 38) 

which leads to the corresponding form for r Q : 



-----

So 

so 

~ = - 4-vcl.c;l ~ M (-v©~ J} + ( ! -4'2) k 
t b-rr-2-

(4. 39) 

But it is shown in 3 that ~c. (,1,11 c,l,vt M -==- - l,c l.,L,\ t-;:?- 7 

D.c J~ :: -"2-/,t 21cLd9,tv -r KG. I,:\ 
ltirr' 

reproducing (4.37) 

Thus (4. 38) (or equivalently (4 . 39)) is found to model correctly both 

4. 12 

the leading singular behaviour and conformal properties of I (and J ). 

3. Numerical Computation for k=2 

To investigate this ansatz more fully, it was checked numerically 

on a computer for k=2 and k=3 with collinear instantons in the case of the 

restr icted 't Hooft solutions. 

For k=2 the starting-point is (4. 3): 

(4. 40) 

as in (4. 3), 

JI 

11 I 



--~-
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~! ... ::: i + ~~ ' ({) i. :: I+ cp,2 
;:x:_,"I. - .. 

I ~ 

where 

and I [ 'P,1-J -:::, - ~ ~ }_~ b I - <j ~12- + l 
3 °'~ +- }-;t 

by direct calculation. 

To regularise the integral of (4. 40) (which diverges as ln. 'f.._ 0-::, t 7C()) 

we subtract off I[~~] where 

the latter having the same behaviour at infinity. 

That is, we subtract off the unregularised 

To obtain the finite parts of this consider 

Now let 

so 

L 
3 

(4.41) 
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if we set then 

so 

I 
I . 

and 

(4. 43) 

Now the ansatz for the general k=2 situation is (cf. supra) 

-~ .. .. - ... ---- - · ·· - . 

(4. 44) 



---- .. - .... 

where f~ = to, + (:;, ,_ - t., 2-

) (4 . 45) 
- h,2, t;.O"L + t:.,,_/ 

l (:_ .. l) =- ~ .. ~; } 
t:J,'-'.1j ,,. 

and 
4-i, Jd f 1t. = ln \~~:l l-t- ~ ~~: l-) ( 4. 46) . 

IY, -~,../ 

Letting now 'jo-'> ~) ~o -';> ~ , f-,,,/'jo ~ 1 ) we have 

ll:I ~ -2~ f, ~: + 1
~ + ~fr f ... -+~ LL + ~+}-~) 

. !~r-~,(l. 

~ - 4 }s~ )-.1;, + ~ ( ( + ~ + ~: ) 
3 -

. l'j,-j~( 

and the ansatz's value for (4. 43) is 

+ c.,_ ~~ t .... !'j,- ~ .. ri­
l'>--~ + ~~ r 

(4. 47) 

(4 . 48) 

- --_- : .)P.'. fact one can go slightly further than this. 0 

For· we know that It>.J 
accurately reproduces the conformal properties of I [ q:> ... J ; thus 

(4. 49 ) 

4.15 



--~ -

for some function of the conformal invariants of the instanton parameters. 

But for k=2 this is unique: 

"~ }:: llj/ -:,-.\;,_ 

(}.~ + ~ + I <Ji-~ ... ( J3 

By carefully expanding 

(4. 50) 

to 0 C't-~) it has been shown 1 

that f 1(t>)::.. I. Thus to (4.48) is added (b,r..._e, - being the first 

1 term in the Taylor expansion of f(c); it is then this modified form of 

\ (4. 48) that is compared numerically with (4. 43) in Tables I to IV. I 

Table I provides sample values of configurations in which the instantons 

have equal strengths ( }s~ ::. }_~ ). c is the conformal invariant, I the 

numerical value of (4. 43) and A the calculated value of the modified ansatz. 

It can be seen how to the two decimal places given (dictated by absolute 

accuractes within the computation) the results are remarkably good. As 

might be expected, the agreement improves with decreasing c . Tables II 

and III provide respectively small and large unequal instanton strengths, 

with varying separation; the agreement is again excellent (usually better 

than 0.1 %). 

To establish whether the inconsistency can be attributed solely to 

computational error, it is possible to investigate further the accuracy by 

a series of consistency checks. By virtue of ,f being strictly a function of c , 

holding the latter constant should ensure a constancy of deviation between 

the integral and the ansatz. 

,1.. This can be done for example simply by interchanging /\ and s<. 

(there is no obvious symmetry between them in the integral) as in Table I, 
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where the error remains approximately the same even though I varies 

considerably. Alternatively, the formula for c (eqn. (4. 50)) can be solved 

as a cubic in given c. \.,_ \ -:i.. 
( (\I I /\2., This was done for 

c = 1/37. 5, 1/75 and 1/150 for various t/r and results displayed in 

Table IV. As can be .;een, even for widely-varying 't, 
1 

)-.: , s and I, 

the errors within each conformal group are remarkably constant. This 

seems to confirm that the computation reflects the behaviour of the integral 

sufficiently faithfully and that the modified ansatz for k==2 provides an ex-

cellent approximation. 

4. Numerical Computation for k=3 

For the case of k=3, it proves more convenient (and more accurate) 

to investigate the equivalent ansatz for J (cf. (4. 26), (4. 39)). 

J is given by 

where, for 3 collinear instantons in 4-dimensional radial co-ordinates, 

---- ~·-·~ ... --- - ·· ....... (4.51) 
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1'-.. the instanton strengths, f 1 "Z the separations. For reasons 

of numerical convergence the logarithmic factor in J must be removed. 

This is effected integrating by parts: 

(4.52) 

( 4. 53) 

The . logarithmic factor is now absent from the integral but at the 

expense of an overall divergence being introduced (signalled by the presence 

of the cancelling - 144 n-... Gi. t2. 

be removed by hand. 

in (4. 53): J itself is fini t~; this must 

r\"Lr ry To do this we seek the highest-order term in d \{II 1 .... as a 

function of ~ . 

Now ?(. is a sextic, so we can write 

----- .. -- - , , --- - -·- t 

(4. 54) 

in ( r-, e ) '<> -ordinates, where a , b, c are polynomials whose exact 
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.. 
forms are of no immediate importance except insofar as they are of lower 

order than the leading terms. 

and 
'?J -i. L,. 'X- ;;: r;} -i. 7-- - @aj-z. - 4--? r Cf- +°'-

7'.- 'X'l- ~ 
( '3Gr-' 0 + l2r-s b +- lf·+cz) 

x')... 

(4. 55) 

writing 
r-' 0 = ,'f' ( ;x - ~) , where 'f = X -r-'° j 

or more compactly , t '2...r 't' D + . 
X 

Then "2.... 

+ D ' 

giving rise to a term 

) 

the divergen~e in (4. 53). 

To extract this diver gence explicitly, WEl use 

and 
I • 

7(. 

(4.56) 

( 4. 57) 

cancelling 

(4. 59) 



where 

Then with these 

:: 

exhibiting the divergence. 

So 

.... __ - • 4 - .. --- - - +. - . 
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(4. 60) 

( 4-4-J r3"'f J'f-:>e 

-y]-

(4. 61) 

_, 11.f-lf, I t . 4-ir JI.A, ... © d.i)J-t. - l4-ff-st-"~ ~ 'f-::c.. 
b 'X ' -;x.). 

(4. 62) 

- l.-lf- f D _i' '-,-.,,- J.,. rC., 'f) J.9 - J D • 4--,r ,-> J.,. J.e r .:, ' <9 • 
7(. 



---- . ~~ .. 

Or re-writing this 

J ~ 4- ~ ir2 ( 3 + ~ t;. (ec,._) 

-+- s FA J--9~ . -s F cW-~ 

(4.63) 

where FA - q 6 rr J' c_,.,-i.9 { 1 + br-f ::t) - ' 7C ::x. 
(4. 64) 

F ~ 4--rr-- r--> s~,.. & ( 24~'f- + 0:2.), (4.65) 

)( 

one obtains the form occurring in the numerical computation. 

Now considering the form of the ansatz for k=3 we have from (4. 39) 

and using results on M 3 

in the limi t 

= - L-. Jvl ~ M (-v©--o); +~ -~2) 3 

~ - 2, 3. ( ~ t ~~ -~ t t ., ) -t- ~ ~ fk 

-1-
2. 

Also in this case from (4. 17) 

(4.66) 
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- t 11. 

(4. 67) 

::: 

adding the second and third columns to the first , 

·- --- -.. - -~ , --·- - . - ' 
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So 

(4. 69) 

which is the value of the function H compared against J in the computation 

below. 

Tables V and VI provide sample values in the cases of equidistant 

instantons and symmetrical cases Table VII presents 

a few general (collinear) configurations. As can be seen the results are 

usually better than O. 1 %; although six figures are given for completeness 

the absolute accuracy is about O. 01. It is perhaps pertinent to note that 

the two integrals from FA and F in (4. 63) are generally quite close: the 

leading contribution is from 48 -rr"'- ln.. ~: f" t . 
Since the form for the general conformal invariants is not known for 

k=3, rro check is possible as it was for k=2 (cf. infra). A consistency 

check was however obtained, by letting 1',-;;: 0 or ( = 0 , reproducing 

a two - instanton configuration; these were found to be in good agreement 

with the previous computation for k=2. 

Clearly the ansatz models the behaviour of these integrals remarkably 

well . For ·t_he case of k=2 , fur ther investiga ti on wa s attempted by a variety 

of polynomial and logarithmic fits to the error as a function of c, but 

--- without success . The fact that such good r es1-ilts were obtained with 

relatively simple programs and low absolute accuracies suggests the possi­

bility of mor e refi ned calculations enabling the first few terms of the seri e s 

expansion of f(c) of (4. 49) to be obtained; this approach has in its favour 

the small value of c ( 
-
i.... ~\-

-;._7 in thi s context. 
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Further evidence in support of the high degree of accuracy to which 

this ansatz models the behaviour of the 't Hooft solution is provided by 

the work of Chakrabarti. and Comtet 
7

. In this they considered a particular 

class of multi-instanton configurations in which the parameters of collinear 

instantons are completely constrained by the index of the solution. 

8 Using standard superpotential formalism with 

(4. 70) . 

\
1 
their ( c:A-..- t) - index solution is 

(4. 71) 

For this special class, it is possible to obtain an explicit form for 

the instanton determinant of the covariant Laplacian in that field, as a 

function of ex. 7 ; the result may then be compared with . that for Osborn's 

construction in this particular case. 

This Chakrabarti and Comtet do, and some of their results are re-

produced in Table VIII; here o.:'.-1 is the index and -Y - :r;, the error. 

As before the high degree of accuracy for k=2 and 3 is confirmed, and the 

ansatz is also seen to work excellently for higher indices . The authors 

of 7 estimate that for large « , to be compared 
. -- .. ---- "" ·---- -

with' ihe· asymptotically leading term of . 2£t l1'- d.. in J. That this 

approx imation should be so good and yet clearly only approximate is 

intriguing; in the next chapter an exact calculation is presented. 
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APPENDIX A: Details of Computation 

To evaluate J numerically, a routine from the National Algorithm 

Group's Fortran Library was chosen: DOlDAF; double precision was used 

thrOL1ghout. 

In this, a double integral is calculated to specified absolute accuracy 

9 by repeated applications of the method described by Patterson . 

The integral 

(4.72) 

is expressed as 

b 

I :::: J.. H~J c<j 

J ~(,) . 
where Fl~) ::: · f (x1lj) ~ 

q>,( '1) 

both integrals are then evaluated by the method of the optimum addition 

of points to Gauss quadrature formulae, as described by Patterson. An 

interlacing common-point technique is used: starting from the 3-point Gauss 

rule, further evaluations are added (but reta ining the points of the earlier 
-·--- -- ~ . .. ----- - . - . 

formulae) to obtain respectively 7, 15, 31, 63, 127 and 255 point rules. 

Each integral is calculated by successive applications of these formulae 

until two results are obtained which differ by less than the specified absolute 

accuracy. 



The integration range of the r variable ( Y in the program) was 

split up into ten regions, whose boundaries were determined by fixed 

multiples of the scale set by the instanton separations. 

An attempt was made to distribute the integTation evenly: thus the 

ranges were compressJd near the instantons and expanded far from them 

(where little contribution was made to the total). Suitable accuracies 

(typically O. 0001) were then set for each region, and adjusted after trial 

i , runs. 

I 
i 

- --- '" - - .., ____ .._ -- • - I 
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C 
C 
C 

C 
C 
C 
C 
C 

C 

C 
C 

C 
C 

0 

APPENDIX B: Program for k=2 

TNTEGRATTUN T~ST K=2 • 
VARIAl:3U.: ASSIGNMFIIJTS 
lN'rr.:GE:R NU!IT,IFAJL, HPTS,J 
R E A l, * 8 Y A , Y 8 , S , AC ( 1 0 ) , A l\l S , P f ! 1 1 , [) H J ? , r;· , F' , K , D , Y I J 1 A fl F , 

2L1 ,L?.,T,3,AJ,,P,O,T,r;,H,P2,V7,P!),Fr,vu( iO) ,YT,(1 (J ) 
F.X'T'F:RNAl, F,PHI1,PHT2 
DA'T'A IWU'r lb! 
co MM n N I P AH s / r, 1 , !J?. , r, 3 , P , v , P?. , 0 2 , P n 
WRTTF (NOUT,ggqgg) 

nUTEP JNTE~kftTTON J N K 

PAHAMEH,:R VAT,UFS 
TNSTANTO~ S1RENGTHS 
L l =2 0. 0 
L2 =0.5 
TNSTANTON S[PARATinN 
0=0.?.5 
P2=P*P 
02=0*0 
PO=P*O 

ABSOLUTE AC'C!IRACTt:S 
AC(l):0.0001 
AC(2)=0.000l 
AC(3):n.0001 
AC(4)=0.00IH 
AC c 5) =0.0001 
AC(6)=0.00001 
ACC7)=n.oonot 
l\C{8)=n.oono1 
AC(9)=0.00001 
AC(l0)=0.00001 

TNTEGRATTO~ RANGPS 
YA=O.O 
Yb=0.5*0 
YC=l.O*O 
YD=2.0*0 
Y~=5.0*0 
YF'=15.0*0 
YG=30.0*0 
YH=SO.O*O 
YI=l!'SU.O*O 
YJ=500.0*0 
YK=lOOO.f)*O 

ITPPEP Ll~ITS 
YU(l):::YA 
YU(2)=YB 
YlJ(3)=YC 
YU(4)=YD 
YU(S)=YE 
YU(b)=Yr' 
YU(7)=YG 
YU(8)::::YH 
YU(Y):VJ 
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C 
C 

r 

YU(lO)=YJ 

!,01!/EP I,I'Jll'l'S 
Y[J(l)=YH 
YL(2 )= YC 
YL( 3 )=Y T> 
YL( 4) =Y E 
YL( 5 )=Y r' 
YL(6)=Y G 
YL(7)::Y H 
YL(B)::YJ 
YL(9)=Y ... J 
YL(lO)=YJ< 

/ 

.•. 

C MAT CI\ L('IJl,1-, TJn11 
'W R J 'IT ( lW lJ T , q 9 q '7 () ) I, 1 , T , 2 , [, 1 , P , () 
TF'Alf.=1 
c;::o.o 
WRIT~ (~OUT,ggo~n) 
nu s r = 1 , 1 0 
H'AIL=1 

C NAGLTBPAPY RnUTl N~ 
CALL D () 1 f) r, F' ( y LJ ( l ) I y I, ( l ) ' pH T 1 , t1 H i. ? ' V I I\ C ( I ) , I', ii,,<; ' ~i p T s , le' 1, T L ) 
IF (TFAIT,) 10,10,l"i 

15 WR TTF' Cr,flU'T' ,Q<:)G 9 7) JF'ATL 
10 11,'RT'l'F: ( N (llJ1',99QYA) l,ANS,Ar(l),11JPTS,YtJ ( L),Yl,( J) r W R l TE T l'I T fr, tdl L V J\l, lJ E; 

5 S=+ANS +S 
WRTTF ( N(lUT , Q9Q9S ) S 

(' \IRJ'l'F' ANSATl Vll1..,llt: 
f"l:H(O.O) 
WR TTF ( NOUT,9909~) D 

C W R T 'I' F C CJ N F' n k M A T , T N \I A P l A f~ 1' 
C =L 1 *I,? :t 4 * 0 2 / ( ( L 1 + l, 2 + 4 * <) ?) * ~-'3) 
WRIT~ ( NOLJT ,Q9Q 55) G 

40 ,C::Tr)P 
C 
C FORMA1 , STAT~ ~ENT S 
99999 F'O~M .rlJ' ( 4 (1Xl),31 H JJ'.1VFS1'J(;J-\'J'lfl11J f,'flk L,nc;nr-;T V = ?/1X ) 
9 9 q 9 ~ F' 0 R M A T ( / 1 1 , 1 h , F 1 1 • n , 2 H , t. 1 3 • b , /. H , T b , 7 1-l , E 1 J • o , 2 H 

2 E13.b) 
99g97 FORMl\'l' c /3fih cn NVER GF1~ri.-~ ·OT UR't I\ 1 :,1r:n TF/\ J.T = , 14 J 
99Q9fi PORM I (BH TF~T = , ~ 13.6/) 
Q 9 Q 9 S FUR MAT ( / 1 PI t T n T fl L l ~1 'J' F GP AT , = , f:: 1 3 • b / ) 
q 9 q 9 3 F' U P M I\ 1' ( / 1 ° H L FA n 1 N G 1 J\! T F G r A L / ) 
q9970 FOR/i,111.1' (/1Pri f>AH/l. 1,1FTi;,H.S L, 1 = ,J.: 13.b, 

2 bH LL = ,F'l1.n,nH L1:: .~LL b /:, H P = , 1:.13.o , :,H n:: ,t:;1J.6/) 
99960 FOR MA l (/) 
q9a55 fOR~AT (/ 15H C-1NVAKT AM 1 = ,Fl1. G) 
q 9 Q ~ 0 F' (J RM A 'f ( I 3 3 h _ MA T r J 1 WI PG PAL Jd, ,', I· C r , 

2 4 1 fl N O • U F' F V r, (, • L n w F' h J. H, J l I l f-' P i.·. P T p • J T / ) 
F'.f>JD 

r 
r s~:T ,OWEP T,J MJT nf l"' ,/l ·~ F< Tl-li:,1' A JrJ'J F.:G f~Af , 

FUNC'l'lC11'< fJHJ1 ( Y J 
PE AL*8 Y 
PHTl=O 
Pr:,· UR I~ 
P.ND 

(' 
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C 

r 
C 

C 
C 

0 

... 
SET llPPER r,pqr nf IN NF.R THf~TA J N'['F'(;PA T. 
FUNCTION Pfll2(Y) 
REAL*B Y 
Pi::J\L* 8 XO 1 I\ AF' 
PHT2=(1.0)*X 0 1AAF'(O. O) 
Rl'.:'T'URH 
END 

<':AI,CIILATTON r)F INTF.GRMID 
F'UNCTin N F(X,Y) 
REAL*8 X,Y,J,K,G,H,L1,L2,L~, ~ .N,P,~ 
REAL*B X01/\AF',Y2,P?,02,PO,F'C,CS,SN,CS2,SN2 
r.oMMn N/PARS/Ll, L?, T, .3, P, 0, P2, ()2, pn 
Y2=Y*Y 
CS=DCOS(X) 
SN=DSIN(X) 
CS?=CS*CS 
SN?=S N*SN 
Rl =Y*Y+0*0-2*0*Y*CS 
R2 =Y*Y+0*0+2* U* Y*CS 
F1=L1/R1+L2 / R2 
D1=-2* <Lt*<Y-O*CS ) / CR1*R1)+L?*C Y+O*C~)/(R2* f< ?)) 
D2=-2*(L1*0*SN/(R1*R1)-L?*0*S N/(R 2* H7)) 
8X=D1*Dl+D?*D2 
8X=HX*BX 
F"2=1+f1 

. F'l=F1*F'1 
F1=f1*i;,1 
F'2=F2*F.2 
F2=f2*F'2 
K=Ll*R?+L2*R1 
,J::Rl*R?+K 
R1=R1*Rl 
R2=R?*R2 
H::(R1*Rl*R?*R2) / (K* K*K*K) 
G=(Rl*Rl*H2*R2)/(J*J*J*J) 
Z = 16 * ( 1 - ( (T, 1 + L 2) / Cl, 1 + L? + Y 2) ) * * 4 ) I C Y 2 * Y?) 
F'=4*X01AAf(O.O)*S N7*Y*Y2* C<H- G)* AX - Z) 
RE'l'URN 
ENO 

CALCll[Jl\'.['TOM or ANSAT7. 
F'UNCTJnN H([)) 
RE I\ rJ * s D , K , i, 1 , r, '.l , L 1 , P , o , P 2 , o? , Po 
REI\L*8 x n 1 /'I AF' . 
COMMON/PAR,<:: /l , 1-, L 2 , L 3 , I-', V, P? , 0 '2 , PO 
H = 1 6 * ( l"lLflG ( 1 + 4 * (J 2 / ( L 1 + L 2 ) ) + I, 1 H , 2 :t 4 * V?, / ( ( L 1 + L ? -t 4 * n?. ) H· 3) J 

2*X 01/'IAF(n.n)* X0 1A AF(O.O) 
RETURN 
END 
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APPENDIX C: Program for k=3 

~ I NT~f,RATTON TEST K=3 
C 
C VM-.'IABJ,£:: ASSTGN MF. N'T' . · . 

H i '1' E f, E: R NO II T , I F' A I L , [~ P 1' .S , T 
RE AL* 8 Y .a , Y B , S ,~u , Ar l 1. 0) , A,~~ , r. H T 1 , F' HJ. ? , F' , Fi\ , F FI , F , I< , n , Y O 1 A J\ f , 

2 L 1 , L,? , T, 3 , P , Q , ·.r , P 2 , 0 ~ , P n , F C , Y I l C 1 0 ) , Y L C l n ) 
tX1FkNAI · F',F' A, PHl l , - h fJ 
Jf\ J r. r1ou1 ; F. / 
c n ,,1 M CJ ~-1 ; PA P s / t., 1 , J, 2 , L '.-l , r> , 0 , r 2 , <..' ? , P v 
V-J P J 1' f, l MU 11 'j' , 9 q ':; 'I 9 ) 

C 
C l.Jll'JF'R 1 Wl' F'GPA T!f1 N 1~1 R 
C 
C P ti k /I M f<~ 1 FR V l.l LI J t . .S 
C 1 ~1 .S T A N 'J n 1\J S 'T' H S N G J' H 0 . 

L 1=1.0 
L? = 4 .0 
L3 = ~.o 

C I N :::> 1' /1. ~· T n f·i S I~ t> /\ lH\ T l IV' S 
P= 1. 0 

. o= 1 • 1, 
i:>?. = P*P 
v ?=0*0 
PO =P* () 

C 
C J\ A S n L IJ'J F' /\ C C U R A(~ lY ~ Arc 1 )-= u. onv , 

J.1 (' l? )=O. 00 1 
A1(1)=0.un1 
AC'(4)=r, . u r'1 
A((S)= (J.0 1 
AC' ( h )=O. 00001 
AC' ( 7)= 0 . 001 
AC t P )= o.un u1 
AC' c g) =v. ono n 1 
AC'C 1 O)= n.nuoo1 

C C l ~tFGµ AT1n ~ K~ Nr.~s 

C 

Y~ =n.o 
YR ::r>/4.n 
YC' = "H· ( fJ ) / .1. . n 
yT)= f t'+ O)/ ? 
yF' :: 3 H ~; t <J )/Ll 
y i;-::S.0 *0 
1r. ::1u. o* ·, 
Y f-1 =c;o . <i* v 
Yl =l 0 0.fl*·0 
y,1 =1 000.u*v 
Yl< =c:; onun.cHO 

C UPl-'FH !,T MT 'lS 
':{lf(1)= Y.fl 
YU (2): yn 
:tl! ( 1)::: y r 
)'l ll 4 )= Yn 
ylJ(t; )= jF' 
Yll(/SJ= n· 
Y" C 7) =Yr. 
t.U ( P )= YH 
Yll(9)::°J'.l 
y 11(10 )= YJ 

C c 1., n v1 F H L T 1-.'\ r 'I's 
Yl , (1 )= tR 
fT.(?)= 'ir 
Y. l , ( 3)::: YD 



C 
C 

C 

C 

C 

C 

Y[,(4)=YE 
YL(5)=VF' 
YL(6)=VG 
YL(7)=YH 
YL(8)::Vl 
YL(9)=YJ 
YL(10)=Yl<' 

MAIN CALCULATinN 

0 

.• 

WRTTF: ( N() UT,<1 9q7() ) L1 ,T.'.t,L1,P,O 
TF'l\If.=t 
S=O.O 
WRTTF. (NnUT,99g5n) 
DO 5 I= 1, 1 O 
Jf.l\ll,=1 
CA r, L DO 1 OAF' (YU ( .C ) , Y j., < I ) , r H T 1 , PH 1? , F, AC ( I ) , AN .r:.., NP 'r ti , IF' AT L) 
IF (IFAIL) 10,10,1~ 

15 WRTTF. (NOUT,99997) 1F'ATL 
1 0 WR IT F: ( N n U 'T' , O 9 q 9 R ) l , AN 0 , A(' ( T ) , NP T S , '{ U ( f. ) , YI, ( .[ ) 

WRIH~ F 
5· S=-ANS+S 

'l'=O.n 
WRITF. (NOU'T',<19091) 
f)Q 30 T=1,1U 
H ' A I L = 1 
CALL DO i 11 /\ F ( YU ( I ) , Y L ( l ) , P ti 11 , PH 1 ? , FA , f1 r C J ) , A MS , N r:' T .<; , J f A 11 , ) 
TF (IFAIL) 20 ,?.0,2S 

25 WRITF: f NnUT,Q9Q97) IFATL 
20 WIHTE ( NGUT,09Q98) l,ANS,Af' (T), NPTS,VIJ(l),YL([) 

WRITF FA 
30 'T'=ANS+'l' 

S=-S 
WRITE ( NnUT,99995) S,T 
WHIT~ SURFACF TER MS 
ll = ( 4 R * ( XO 1 A Ar.· ( 0 • 0 ) * *? ) ) -v- ( 

2+3+0LOG(L2*P2*02)) 
WRITE (NOU'T',09994) U 
WHITE TNTE(:IHl.L VAL!lt~ 
U=-S+T+U 
WRITF. (NnUT,Q9Q9?) U 
WRIT F: ANS A 'T' Z V l'dJ t1 E 
D=H(O.n) 
WRTTE (NOUT,Q9q96) 0 

40 STflP 
C 
C FORMAT STATE~RNTS 
g9q99 FORMAT (4(1X/),29H 1NTFGR A'rin 1~ Fnr-< Lf)Gl"l E 'T' K = l/1X) 
Q9Q9A FORMAT (/I1,1H , F'.1 1.fi,?h , f-: 13.6,'.I.H ,J6,7H , f 13.b,:2H 

2 t:13.6) 
9 9 9 9 7 F' 0 R M I\ T C / 3 fi H C n N V E: R G r r, C E N n T O R T A I n r: n T f' A l J. = , I 4 ) 
Q9996 FOR MAT (?9H TEST (('(J NJFC'rURA J. Rr:SUT.T) = , r'.13.b /) 

4. 31 

q 9 9 9 5 F O R M A T ( I I 2 0 H M A I N J. Wl' F G P A T , = , F 1 -~ • f. / / L O H L F A n JN G 1 Wf F G R Id , :: 
2 E:13.6/) 

99994 FOR MA T (20 H SURFACF T~R MS = , F ll.A/) 
g9q93 FORMAT (//19H LEALJTN~ I ~ T~~ RA L/) 
Q9992 F'OPMAT (//29H -11o\ AlN-tLEADINC+SURVACF ::: ,U."3.6/) 
Q9970 FORMAT (/lRH P~RA MfTF'RS ~1 = ,E13. 6 , 

2 6H L2 = ,El1.n,6H L3 = ,t~tJ.6/51-1 P = , E J3.6,5f! 0 = ,r:13.6/) 
Q9960 F'ORMAT ( /) 
99950 F'UR MAT (/31H ,-..ATN HlTF'GRAL AR.Sl\CC' 



:.l 

? 4, 1 H NO • r, f, E:. V /\ r. • T, (Jt,1 tY T J '4 J T UPPr.'H LT ••·IT'f /) 
f.:11.1 0 

C 
C SF' T L n W F' K LT 1"1 T 'J LI F P l N t< R T tW '1' l\ l l·I 'I', ,: r, iO' L, 

F ll tJC1IU~I PHJ 1 ( 'f. ) 
RF. /\[,.f- 8 Y 
) .> Hl] =I) 
kF'f !l k 1\1 
E: N L> 

C 
C SFT Jppi;-1-,: LTr~ T'l' LJF' THET/\ T ,~T~G!U'L 

F T I fll r. T T lJ r,1 P H T 2 ( Y ) 

C 

HF.A T,*R V 
RF'/1 ! , *8 XU1 A/If" 
PH I?= ( 1 • u ) * Y U 1 /\ /I t' . C O • 0 ) 
RFT !J R 
EM!J 

C C /I L, f. U [, A T 1 D ~ ( JF' r, J R 5 T T 1~ T t~ C: k I\ ( 1 I' 
f,' IJ /JrTTD~' i;""(X ,Y) 

C 

H F' Ar, _1{- R x , v , r , r: , r , 1 , i , 2 , r, 3 , M , 1~ , t • , u 
H r A r, * ~ x o 1 A /I F , 'i ? , P 'I. , v 2 , P v , r' r , r s , r r.1 , e .s ? , c; N -:, 
c n MM u NI r 11 P s / l, 1 , r. 2 , L 3 , P , o , P,, , v? , r, t.J 
Y?=Y*Y 
Cf.=ncns ( i. ) 
S "! ::: n S T N ( X ) 
C<;?.=CS *r,'-; . 
s l\l :L = s ~l * s l'I 
f r· = 0 n , :u v * t. 1 - P * r . L - P t u 7 - " * r 3 + v * P ·1 
A=-64*Y?*PV*CSj - b*PO* ( L?+Y~ ) 

7+('.Ltl'*-Y'i'( t: ' r) 
3+64*t7*Y* CO- P ))* CS 
4 + P * r t)? * r L, 2 + r. 1 ) + P L * ( r, 2 + L 3 ) + ~)? ;;:():?. ) 
5 + 2 4 * Y? * ( L, ? + f. + i, l + n 2 + P?) 

K= -4*Y 2*P(H f i,?+ Y~; ) -'l: r ,<;') 
? - ( J. * Y * 1.> * v ? -t r , 'I. - L * )' * f; 2 -t n * L ) + }. ~ Y ? * v * f - r:' C - i.) * 'i ? t P * Y :L ) J * C S 
4 + P 2 * Q 2 * r. 2. + t ? * r v? * r,-; + () ? ~ r, 1. + f:'-:,,;: r,:; ·t ~? J/'. n J · 
5 +Pi*L3+Y2*L?+Y'L*~1+Y2*G3+Y2*02+VL*~7 J 

C=B*Y*Pn• r L? +Y L. l *S~*CS 
?. + ( 2 * P () * T , 2 * ( 0 - r ) + 'L * l ? * ( - 1: C - 1 

• .) * Y. ? ·t- P * Y L. ) ) * S ~1 

E:, ::-R*Y*P O* ( l ,2 +2* Y? ) *Cc:;'.l 
?. - r 2 * P * v? ..,. r. ? - 2 * r· ? • 0 -n, '.L + 6 * Y ? + c - F c 1 + 1 u * o * v 2 * c I' - o ) ) u · s 
4 + ?. * Y "' f i;; ? * r, L + <) ? 1'- r. 1 + l , ? * r, L + 1, 7 * n :i. + 1, ') • T , J 
'1 +? :t' Y L * l,? +? -* V 'L :q, 1 t ? 4' Y). * ~>?. +? -T> YI.* 1, ':l +? * Y 'it P?) 

N=(Y 2+L? J * l Y2+~?-?*D-*Y*C ~ ) 
? * ( Y ? t O 2 + 2 * ( l * 't * l S ) + L, J -* Y 2 
1*fY?+n/+2*0 *Y*C~ ) +L1*Y2 
4* ( Y?+ P? - 'L*~*x*C~ ) 

D=A/J-(P*R+ 1 2*b*Y*•S t C*C-16*~*Y**A )/( N*N) 
G:: ( ? 4 *I)* Y. * .:t 4 ) / 1, + IJ *I) 
f=4* lY **3)•CSN:! ) •G,[X01AA~cn.OJ) 
JWTllH~1 

r~ M lJ 

C C I\ L r. U T, JI T 1 ri ,~ lJ F' S 1:, C lP' D Ul 'J' F' G J< i~ n D 
F' IT rJr TT U ~' i;· A ( X , 'i ) 
RF: AT,'*- A X , Y , J, J , L? , T, 3 , l"I , I~ , h , P , ll 
k F. AT,* A 'I u 1 A I\ r · , Y ? , P 2 , ()? , P () , [• ' r , (' :-; , SN , 1 S? , ,C:.. rJ ? 
c n 1>P1 u !\I / r A P s I r, 1 , r, ;.;: , Li 3 , P , n , P 2 ., v? , r· v 
Y'2::Y'lf.Y 
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C 
I c; 

rs=DCU/'i (X) 
SN=DSIN(:X) 
CS?.=CS*CS 
SN?=SN*S \! 
FC=O* L? +0 * L 1-P* L2-P Hl2-P * L, 1 +01f P2 
N=(Y?+T,2)*(Y?+P2-2*P*Y*C S ) 

2*CY2+0?+2*0*Y*r, H·T , l*Y7 
· 3*(Y2+0?+?*0*-Yll<rS)+T,J*Y'? 
4*(Y2+P?-2*P*Y*rS) 

M=-4*Y?*P0* .0,2+Y?.) *CS2 
2 - ( 2 * Y * P * 0 2 * L ?- ? * Y * P :2. * (J *I.,?+? * Y 7. * Y * ( - H' - 0 4 Y J. H ' * Y?) ) H' S 
4 + ( P 2 * 0? * T, 2 + Y? * ( 0? * I, '.L +(J? * T, 1 + P? *f.'.?.+ P? * 0 2 
5 + p 2 * T, 3 + y? *f I 2 + y?. *JI 1 + y 2 * () 2 + y? * f I 3 + y? >1: p 2) ) 

K=-8*Y*P0*(L?+?*Y2)*t.S? . 
2-C~*P*02*L2-2*P2*0*L?+~*Y2*(-~'r)+ln*Y2*Y?.*( P-0))*CR 
4 + c ? * Y * c o 2 * r, 2 + c,., ?. * T, 1 + P ? * r , 2 + I' ? * o 1 + f) ? * r , 3 
5 + 2 * Y ? * T. 2 + ?. * Y 2 * T, 1 + 2 * Y 2 * 0 2 + 2 * Y ? * T , 3· + '.). * Y ? * P 2 ) ) 

FA=96*X01AAf(O.O)*fSN2)*fK/ N+6*Y? * Y2*Y* MI ~ **?) 
RE:1'\JRN 
END 

CALCIJLl\'l'TO~l n F ANSJ.\'1'7 
FUNCTION HfD) 
REAL*8 U,K,L1,J,2,L3,P,0,F'2,V?,P(1 
REAL*8 XOlAAF 
CUM MON I P A R S / L 1 , I, ? , I, 3 , P , V , P ? , () 2 , P 0 
K = 1 + ( L 3 + T, 1 ) / ( P + Q ) *- * :t. + ( L 2 + L ~) / 0 ? + ( L 1 +I, L) / D 2 

2+(Ll+L7+1,3)*(L2/(P01'PO)+Ll/(P*(P+O))**? 
3+L1/(0*(P+0))**2) 

H = < Dr, or; c T, 1 * L ? * r, 3 ) 11 '1. • o - 3 • o / 8 • o + 7 • CJ 1 1 ? • n + n L, n c..; ( p C>* r p + o ) ) 1 J 
2 + D T, 0 (; ( K ) / 1 2 ) * ( 1. 9?. * X l/ 1 A Al:' ( (J • 0 ) * * 2 ) 

RETURN 
F.N f) 
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~'l. 
l >\ .s?. 

C I A 

1 1 1 0.370370 X 10-l 68.06 69.88 

1 1 4 0.185185 X 10-l 1 75. 75 176. 41 

1 4 1 0. 185185 X 10-l 31. 06 31. 71 

1 1 16 0.274348 X 10 
-2 

347.37 347. 41 

1 16 1 0. 274349 X J. 0 
-2 

9.426 9.460 

1 1 64 0.222612 X 10-3 
552.18 552.18 

1 1 256 0.149067 X 10-4 
767.43 767.43 

1 1 1024 0.948108 X 10-6 
985.41 985.43 

·- --

TABLE I: k=2 Symmetric Cases 



\~ A~ ..I'').. 
C 

0.25 0.5 1 0.233236 X 10-l 

0.1 0.5 1 0.127070 X 10-l 

0. 05 0.25 1 0.568958 X 10 -2 

0.01 0.25 1 0.124977 X 10-2 

1 0.25 o. 01 0. 124977 X 10 
-2 

0.001 o. 1 1 0.749270 X 10- 4 

0.0001 0.1 1 0, 751110 X 10- 5 

TABLE II: k=2 Small Instanton Strengths 

I 

136.56 

156.47 

232.35 

249. 40 

1.4{6 

377.24 

378. 51 

A 

137.48 

156.81 

232.45 

249.41 

1. 456 

377,24 

378. 52 

4.35 

I 
I 

1!1 



4.36 

t-~ ~\ s"l. 
C I A 

1 4 256 0.575942 ~ 10-4 
624.57 624 , 57 

1 4 1024 0.375936 X 10-5 
841.18 841. 19 

1 4 4096 0.237548 X 10-6 
1059.52 1059. 53 

8 4 4096 0.189068 X 10-5 
921.54 921. 56 

16 4 4096 0.375936 X 10-5 
841. 18 841. 19 

16 25 4096 0.231400 X 10-4 
728.62 728.64 

50 25 1024 0.964310 X 10-3 
424. 08 424.10 

TABLE III: k=2 Large Instanton Separations 



4. 37 

C = 1/37. 5 

t, 'A '),. s~ I A 

1 1 0. 342980 28 . 0771 29. 2056 

3 1 0.646496 33.8995 35. 0286 

3 1 3.24070 118. 750 119. 880 

C == 1/75 

>--~ }_~ yl.. I A 

4 1 0.57847 19.6030 19.4012 

6 1 1. 24600 27.5762 27. 9746 

2 1 7.31347 196. 704 197.103 

C = 1/150 

~~ ~ s2.. I A 

3 3 0.174358 5.44221 5.5 7627 ---- -- - - ·- . 
- . .. -- . 

o. 5 3 9. 29250 205. 464 205. 601 

12 3 47. 3531 230 . 890 231. 028 

TABLE IV: Constant. Conformal Invariant Groups 
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}._,_ 
I ~7, 

~,_ 
'} f i I A 

1 4 8 1 1 2113. 88 2109.47 

2 8 16 1 1 2523.69 .2421.36 

32 4 64 1 1 3519.97 3516.09 

32 4 64 10 10 6769.73 6767.31 

1 4 8 10 10 5772. 49 5772.09 

100 50 150 10 10 7679.20 7670.10 

100 50 10 o. 1 0.1 1121. 70 1120. 77 

1 5 10 o. 1 o. 1 -696. 04 -697. 01 

1 5 0. 1 o. 1 o. 1 -1636.93 -1637. 00 

TABLE V: k=3 Equidistant Instantons 

--·· .. - . .... ----
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"'l.. I ~~ '! ) f 'L I A 

1 4 1 1 8 3614.37 3611. 94 

4 50 4 1 8 4886.64 4885.41 

100 50 200 1 10 6417.94 6413.54 

1 4 1 1 25 4991. 82 4989.37 

4 50 4 1 25 6188.63 6188.35 

150 50 150 1 25 7593.41 7590.88 

0.1 10 o. 1 1 25 4507.53 4505.03 

0.1 5 o. 1 1 10 3184. 70 3184.35 

0.1 5 o. 1 1 0.01 -980. 76 -981. 08 

TABLE VI: k=3 Symmetric Instanton Strengths 

...... ___ . . . ... ----- - - - . 
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}..\ }-~ }\~ f 1 I A 

1 4 8 2 6 4 01 1. 97 4007.90 

1 50 10 3 20 6265.89 6265.26 

100 10 500 3 20 7582. 84 75 78.95 

100 1 2 3 10 5471. 49 5471. 12 

1 0.5 2 o. 1 0.3 - 1370. 95 -1375.29 

2 5 10 o. 01 20 3766.35 3766.28 

100 50 1 0. 01 10 4131. 43 4131. 28 
' 

10 15 50 5 12 6191.53 6186. 91 

o. 01 o. 1 o. 5 5 12 3571. 97 3571. 95 

TABLE VII: k=3 Unequal Instanton Parameters 

--- ... ·.-~- .,.. --.--- -- . - ' 



o(_, J-J 
0 

2 -0.277 :x 10 
-8 

.. 

3 0,255 X 10 
-1 

4 0,639 X 10 
-1 

5 o. 108 

6 0.155 

9 0.305 
.. 

12 0.460 

15 0.617 

18 0.775 

TABLE VIII: Compari sons of Osborn Ansatz with Exact ReEiults 

of Chakrabarti and Comtet 

-...___ • • • - - ..,. ---- -·- • .-. I 
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CHAPTER 5: Exact Calculation for k=2 

In this chapter the instanton determinant for the general k=2 

't Hooft solution is calculated. After a first section introducing key 

conformal proper ties relating the general case to that of the symmetric 

version (equal instanton strengths), the calculation for the latter is pre­

sented in detail. A brief conclusion follows. 

1. Use of Conformal Properties 

It was shown in Chapter 3 how for the particular case of f V(_?.J 

Jack's work led to the following expression for the determinant of the 

covariant Laplacian in the backgroLmd field of instantons (cf. (3. 53 )). 

~l - i ~ Mt Ms(-v©-v)j -t- ~~J 

- ( d (-t) -t S' -2~2 -t- ~~) k 72. ) 

\'2... 

where J = -s J/-rz.. G., Jv:.,fvd'r)' ~ J.okf V ( 5. 1) 

Calculation of J thus provides the determinant; this is carried out 

below for k=2, relating first the general case to the symmetric configur ­

ation, which proves more readily calculable. 

To this end we use the fact that the ansatz Jo of the pr evious 

chapter (i. e . (4. 39)), defi ned by 

~ L 1) .:; - ~ ~ l M l-v © -v ) ? -f- ( t -~ 2) k ' ( 5. 2) 
16~ 

where ).. is the set of instanton parameters, reproduces the leading ,.__ 

singular behaviour and conformal properties of :f(~) for f U (2) . In 

5. 1 · 



particular, Y - cY: is conformally invariant, and must therefore 

only be a function of combinations of instanton parameters that are also 

conformally invariant. For k=2 this is unique: 

C ('1) - ( 5. 3) 

A~ the instanton strengths, ~L the positions; 

i so Y(1) (5.4) 

In what follows, '>-.
1 and A7. are set equal, to a, say, greatly 

simplifying the evaluation of the integral (5. 1) by virtue of resultant syrn-

me tries and cancellations. This provides J (_~o) where 

S being the instanton separation). To obtain ~(~) for general 

a restricted set \. with is found such that 

Then, using this set 1 

= To(}) -r f l c( ~)) 

(5. 5) 

by (5.4), giving J (~ ) in terms of calculable q uantities. 

T o s ee tha t it is a lways poss ible to find such a se t , it is 

helpful to consider the properties of (5. 3). Writing this as a cubic in 

5,2 



we have: 

(5. 6) 

;, 1.., + , ... ) h 1 h h 1 For a given value of (J' r-.. , t is a ways as .one (unp ysi.ca ) 

negative root, and two others that are either both imaginary or real; 

the possible situations are indicated in the diagram below: 

Fig.I 

If there exists one real (positive) root, there must exist another 

(i. e. curve (1) above) . Consider seeking a solution Y- for c a value 

obtained from a known set of possible parameters ('.,_ ,:i.. ....,.. ') 
(\f I /1-.. / "'-- ' 

and taking 

Then from (5. 6) 

(5. 7) 

as 2Z: = '>-,~ + ~';_ 

So the solutions of f (1-,-... 
1 
}1. 

1 
x) == o are given by those of 

5. 3 · 



Now the arithmetic mean is greater than or equal to the geometric 

mean 

so (5. 9) 

Since we are considering values of c and for which 

one positive root exists, has the form of curve (1) 

in Fig.1; the roots of (5. 5) are therefore given by the points of inter­

section of this curve and the straight line 

(see Fig. 2). 

So two positive values of ::>c. , that is '2.. b, -'j~\ ' 

furnish, with A. , the required parameters for (5. 5). 

2. Computati9nal Deta ils 

f = f Cr~~/ ~~ ,0 

f ~ ~ c,t - ~, >-':) 

Fig.2 

exist which 

The integral - Y( ~) 

-- -(integrating by parts) as 

can be re-written more symmetrically 

5.4 



-:- I 'd "l. Lv. ",X-G fl (.,, ?:- d S'f-
'1(. ... , ~ 

(5.10) 

putting 

In the case of 't Hooft's solution 1 and k=2, with instantons of 

strength a and positions :h , 

(5. 11) 

where .,_ 
:;c_ . 

I. 

and so 

Taking the origin of four-dimensional polar co-ordinates midway 

be tween the instantons, and e measured from the line joining them, 

the <j} and '{J angular dependence may be integrated out (so 

and the integral becomes even 

in r . 

5. 5 



Then with ::v ::: rt.. 

u..1-In the integral of (5. 12), 1 

where I . = 
1 

(5. 14) 

contributes 

-t- l~- -t- I -t- K, + k-
l 1- l'\,'2... 

ls'L/4:+~J s~'I.-&~~ 

X-

(5.15a) 

(5.15b) 

(5.15c) 

(5.15d) 

5. 6 . 

I' 



5.7 

Then 

( 5. 16) 

where 

which exactly cancels the divergent surface term in (5.12); thus all upper 

limits may be set to infinity. 

1
1 

and 1
2 

are dealt with in Appendix B. 

The evaluation of K
1 

and K
2 

in (5.11) will be given in some detail, 

as they illustrate the principal techniques used in all subsequent calculations. 

Consider K
2 

Now 

where :x -;: A - ~ ~i.e (see Appendix A) 

so 

converges, though each part of the integrand separately di verges. 

As 

----·-· ·- -

~\ eel£ -t- xf{/ 
A- B 

- ff: -f- ff 

--r ((u -t- rX l ~ -r 2 k1
) xs"2-

2 JA ( A - et' 

(5 . 17) 

((2o'! - f/-z.] x. ,-- 2.~) ~1'2. 

2 JA:1 fA-f>J' 



So 

. (L"l.d--t- ~xJr +2-k:t) k 

JA l 4- ti>P' 
(5 . 18) 

5. 8 

and the first two terms of the right-hand side cancel in the limit (2..."I. ~ o(l , 

leaving convergent integrals . 

k h b · •v -- l::-f . k Ma ing t e su stttution ..,~ 
e;.+/ 

in r"° l'(c,-. Q2~-r >~)x.i. -t-2..k.l-x.)Jx 
Jo JA (_ A- ei)3 I 

and using 

the fact that 



we obtain 

(5.19) 

= t~J"' 't- ( ( :z ._, -t- r'(, -,-2 \_J t + C ?< -,.. r;, ->-k LJ I< JI:: 

I ex eJ(!:!: + r-·) (f::_"'-+ <tF 1 
(5. 20) 

where c:J... ..... ::- 2 k.1- -t- k ( 2.o2" f- fl/,-) (5 .21a) 

f">- -:::: '2.. }ti. + k ( 2A." - l'/0 (5.21b) 

(+t - 4-k-jol" (5.21c) 

77.·t-l - '+-ft ( t· (5 .21d) 

Put c. ::: V 

Je--rt, 

then ( 5. 20) transforms to 

where 

(2ct,.-+- f1-.. +'2.k}-{"v,. + ("2.c.."2--t-Y"/z. -2.kllt-vj 
J ( I - V 2) ( fC .,_ -t- /'C2-V ·-)' 

(5. 22) 

' 

5. 9 



Now is a standard 

elliptic integral 2 (m even) 

and 

\ with 

here 

(See 2 · for furiher details). 

So (5. 22) gives 

- c~ 

the elliptic function of 
the first kind; (5. 23a) 

where 

the elliptic function of the 
second kind; (5.23b) 

(5. 23c) 

5. 10 

- s":LV ~ (-i_q_'l. + >("2- +1-k.) f-C~ -t- ('2.c<-t- l7~--t-2-k) (co -Ci-)/ 
""-f'JtJ (5. 24) 

evaluated at the limits v = 1 and 



.. . ' .._ 

Similarly 

(5 . 25) 

via the transformation becomes 

Then setting 

[ (2.d- - f'/2 -i-'2k)_f-° + r,o.:- - Sf?- -2k-)] ~ cJ.± 

J~'L+-rf (e-+<t:), 

= V' (5. 26) transforms to 

('2-i:i- - J'1~ +- 2 ~) ftv .. + l'2-a:- - J~ -'2.k )ll- v'l.) cW 

. (5. 26) 

Jl1-v-i-J (1- ~-i.v•-J' (5.27) 

Integrals of the form 

(r even) 

(v - SIM ~ =- Sn-t.t) 

5.11 



5.12 

are also elliptic in structure; the first few are 

(5.28a) 

(5. 28b) 

So (5. 27) gives rise to a term 

evaluated at both limits. (5. 24) and (5. 29) provide K
2 

, 

... .. -. . .. ~ --· 

(5. 30) 



5.13 

The same procedures may be applied to K
1

• 

( 5. 31) 

(5.32) 

(using Appendix A). 

As be fore set l:::::--1 1,. 
- • I<:.. } 

then 
b-t-{ 

(5.33) 

and with t. -::o v this becomes 

..... . .-,.. ' - ... -· 

Je-+r, 

(k. + r/(f-+2.~)p"v2- + (k- (//Lt--t-2~'))Ct-v:l 

J~-v·)(l- t:c-iv'-J' 

- S 12."Ti,. c2- k"" ( ( k. -t- .r ... N- -tu) (A'2- + ( k. - C s''/c+ + 1-o.,)) CAo -A"'")) 
°' :t IS p"2" 't. 

(5. 34) 



5.14 . 

The cross-terms in &~?(.r are (cf. (5.14)) 

(5.35) 

which via Appendix A lead to the following x -integral: 

(5. 36) 

The first term 

(5. 37) 

can be evaluated directly . Putting 

and then · 
) 

we find 

L., 
~ 

- 7 ~ bird- {s-.._-o._'") J J.6 k_> J k_ Lt't- -V + ~(y- -t 2o..'") t-,f l 
o( p I j(f!: T rl ({'--t- c;/ 

(5. 38) 

k ( p<t-v4: -(1-vi.)) +V/v- -rU{v'-f'l.-+1) 
2.. 

J(1- v2-) ( I~ t=c'vj 
1 

(5.39) 



5. 15 

_ 2 5 b -rr"I-~ (Y--~) k..3, ~ k [A 4 .. (p1f--1) --t- 2 A .. - Ao] 
ex)'~ Fife.. ~ . 

+ ( r'7<r+'-<>-') [(f '+f A.,. - >-(t+,) 4, +A.]/ . I 

(5. 40) 

Then noting 

CIO 

l:;.. - - I q 1.,.,-1.q_ 4- s -;r,1. ( ?;:_; S(Cf- -r 2-~"I.) k 
o A:.1"1, (A- B.)31),. 

may be re-written as 

- l9'2..TT1°'-'f-( \dO x...{:c.<-+ /14-+"2..o.1..) J.x_ -J"° ~(_x-t-S1\-+~1.)clx. ( 
~ f J, At (A - B))'~ 

0 

A~n- (&-ej+ ( 
(5. 41) 

The first term of (5. 41) 

(5.42) 

~ - 4--.t er z.."lf:i.a.Y-k.,._ r"° J.-l [C k~ f!'f +"2..-..1-Jf! + Ck - U'll.f +4iJJ] 
c<.~ 1

f.,_ J, J@:-,-p2-J(C~'l2-/' (5.43) 

7 t.~ir"2.o...~k,_f 'J.,.,; (k + f'/4--r'l-ac) fv' + ( k-/f/'f+o.tJ)( 1-v') 
s~~Jcr? ~ _ J(r-v"l.)(K' + l'f.._v'/ 

Ji+? 
(5. 44) 



5.16 

76 Firo.<f-ll { Ck.+ j'-/'f- + 2o._1.J cz;C,.. -r ( k -(s;'(-' +2A..'\.))( Cci -cJJ 
s-i.o(.p i') < 5. 45) 

proceeding as above. 

Similarly 

(5. 46) 

(5 . 47) 

(k. -i- f'Yt +1-&-)e'\v"). + ([t..- (f1<r-t-1.o::J){1-v1-) 
J{t-v'-j (1- ~").v•) 

(5.48) 

(5.49) 

So putting these results together 

1 l r~a.'rl1 f ck. ..... fltr -t-'Z oc) r~ · .... -!-- (k- cr14- + 'la:» C 40 - ti~ J 
.r1..o(.3~ F'l.. z., 

f- 7 6<?'Tf"o..'r ~ f ( k. + .r'/Cf- + 2ce-) <t,''C-i .. -t ( k. - (.r'.>-~ +t.o:)] ( C, - C:..) l , 
i2- "'{~ <t. .3 . 

(5 . 50) 

I 
I 
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The remaining terms in (?-,_~ X t , 

(5. 51) 

give rise to the integrals M
1 

+ M
2 

+ M
3 

where (5.52) 

(5.53) 

( 5. 54) 

using Appendix A once more. 

So M = 
. 3 I /,o ~ ,r' r ;:;;; r,j' (5. 55) 

,·11 

(5. 56) 11 

I 

( 5. 57) 

(5. 58) 



so 

M
1 

and M
2 

may be re-written using x.. -= ~7... ( A - (/4- ~ )) , 

- -4--\t.) ru-=~·~,t elk _ 
r\.cl~ J ,J(2"-t-(f(t:?-+t1:) I 

~ !:__ [ (1+ p.,_) "1, <r- - '-- ( I+ p") A).. TAD] I J~ 1P1r11. . 

+ L [ (t-r "27:J c~ - c OJ 
e,Lf~'s'f-

+ J<'___ ( (1-t- (JA~ - AJ ~ . 
. ol'f (~ 

(5 . 60) 

( 5. 61) 

( 5. 62) 
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Similarly 

So . M, 

- Lf--k3 ( I ((1-f-j_.")v-i. -t'Jw 
f'"t:1..(1} J__i_J~-v ... ) (rcc,.-t-t-:v>-J' 

w 

-t- g_ [Q-r (-J 4'). - A .. ] ) , 
ol'~p~~ 

5. 19 · 

( 5. 65) 

(5 . 66) 

'I 
I 
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3. Results 

Using the methods described above and putting together the various 

component parts we have 

- ~ ~u[Ms {v®v)]- Ld(i) +-~(.. -2~2 +-~~) 
('2.. 

Ao is the symmetric set described in section 1 and 
"' 

I1 and 1
2 

are given in Appendix B and 

(5 . 69) 

K,_ = 11.-~-rr,.lc! ( (1-c1::- r,./2.+2-k)p1-A .. - C2.k - c20:--.siJ)lAo -AJ { 
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l"L7rr'-k' ~ ['"2.d- +s2/L +"2l) f ·C 1- - (1-k -('2.d-1-i%J)(co-C-..)J j 
o(_ ~) 'z:3 

L { - (o 4--rfr d. !! (r~o:-) / k [4,,. L ,.,_ -, J _,. 2 A~ - A. J 
oL f f<t'l. 

(5. 70) 

+ (r)'f -r~) [ (t+~~ -'2..(f-t-t)A ... + Ao] J , 

( 5. 71) 

L2 _ 1~~~0.<r k'" [ (k -r sy<f -r 2~)(A1- -r lk.- (,ilf--t-2,d)(~b-A-.)j 
S" .. o(:1 f2--Z 

+ 7 6S' irl-°''f kl- ( Ck + ~/<r +u) i~c. ... +Ck. - (tit+ uJ) l Co -c,.J [; 
_s1-c<_ f 7 2-3 

( 5. 72) 

I L[ - L i-1- 't, t c'f- _,.. 2-r 1-t 'i:') c. - c,, 1 111 j 
ol~Jtf-

-t-~ L(l-r ~1.) C.. - C., 0 1 (5. 73) 

d..(it'{-

+~CU+() A2. - Ao] l 
d.? f F" z;<r 

f _g_[(i+()A'r - 2--c1+()A~-t- A~] 
a1..1Ht/" . 

+ L [ (t+~1-J c~ - c .. ] 
Kft}/t 

.. JL[ Q+p>-J4. - A. J 1 
<L}ff_st 

( 5. 74) 



Here A"' ::: A,, ls) L, A" l"it ( ' :;. --
Jl-rp'' 

CV\ -
C., L1,.)t.:c, - C~l'"') L~ -

' 
Jl-t-il-' 

with the A 's and C 's as defined above. n n 

These results provide the component parts for the evaluation of J 

and thus Dk; unfortunately it has not proved possible to bring all these 

terms together in a way that explicitly exhibits an under lying simplicity 

5.22 

of structure. In particular we have not been able to write the result 

showing explicitly the known conformal invariance proper ties by constructing 

the function f(c) of (5. 4). And this for an instanton configuration that 

d .. h 3 hl h 1 Berg an Luse er rig t y emp asise as atypica : for the e -term of 

(3. 37) is identically zero for k=2 and for 't Hooft's solutions generally, 

both of which obtain here. The implied complexity of other high-index 

determinants suggests the need for more natural variables (perhaps in­

volving complex parametrisation, cf. infra), in terms of which the results 

take on more compact forms. 



APPENDIX A: Evaluation of 8 -integrals 

For the ~ -integrations, the basic result 4 is 

S
rr ·di) 

(A- C>cd&>J 
0 . 

(5. 76) 

TT 

(5. 77) 

where t8 ( :x: ,'.J) is the beta function. 

Whence, by judicious differentiation (treating A and B as independent 

variables) one obtains the following results: 

defining 

then T'l.'L 
'L 

TT 
T)..,O 

't.. zJA3 (A- BJ 

T'l-,4- -
~ 

rr(lf-4-z,B) 

g )A~ (It-~/' 

Tr 

(5. 78) 

(5. 79) 

(5.80) 

' ( 5. 81) 

(5. 82) 

' (5. 83) 
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T .. (1...:::::: 

'f-

!1('2.A--~) 

I lo )A J 0+- gJJ' 

iT ( ~A"" -1? .. AB -t- SG,"2-) 

I fo)A' ( A- ~)5' 

' 
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(5. 84) 

( 5. 85) 
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APPENDIX B: Evaluation of I
1 

and I
2 

It has so far proved impossible to find expressions in closed form 

for the integral 

[s'l,_ C(51'-t> - (~ ... 14- +cc)) .s~1-9J.B&.x 

X 

but representations in terms of infinite series can be obtained , 

(A> B V:~J 

-r 0 

\o"° So we have integrals of type J, 

g ::: ?C-f"2.. I A :::: -x.?- -r -:x:. ( ;if + '2d:) -f- R?-

r d-or, I ~I~ Now 
o (X--" + )-\.,x.. -t-c} 

-
Jc.-~ ,:1 

' ~ ' 

so 

w ith 

(5. 86) 

(5. 87) 

(5. 88) 

. 

(5. 89) 
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Thus 

I I " b4-"'" ,~ l ~ G ,..,,.,,9 k Je 
X 

Similarly 

Ii = - llf--. 2v L J''l.llf- --ra...,_) f s~· G cl&~ 
X 
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(5.92) 

. 'd"' I I _, b \ - ~-. 
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CHAPTER 6: Conclusion 

The calculation of the previous chapter obtains an expression for 

the functional determinant of the covariant Laplacian in the background 

field of the k=2 SU(2) 't Hooft instanton; to achieve this, it drew on the 

various techniques and ideas reported in the preceding chapters. It was 

shown how each of the component parts of the integral J (i. 26) may be 

evaluated; unfortunately, however, it has not proved possible to bring all 

the se terms together in a way that exhibit s an underlying simplicity of 

structure, and the result serves to emphasise the complexity of the situ-

ation. This is borne out in a number of other ways. 

Apart from the generally involved nature of such determinant calcu­

lations - from 't Hooft's pioneering calculation 
1 

through to later work -

6. 1 

no clear sense of computational direction has emerged. Although the ADHM 

construction has provided an obvious and convenient framework in which to 

discuss such matters (though even this has some difficulties: see below), 

no clear.:..cut set of technical procedures has been established. 

Thus conformal properties proved of great importance in the previous 

chapters; a number_ of authors 
2 

have investigated the role of conformal 

invariants in this context. But it is soon found that the relevant equations 

become intractable. 

Similarly, in investigating the properties of Osborn's ansatz (cf. supra) 

use was made of the simplifying properties of instantons on a line. And 

the first extension (by Witten) of the one-instanton solution of Belavin, 

Polyakov , Schwarz and Tyupkin 
5 

was that of n-instantons arranged along 

I 

I 

Ill 

II 

I 



6.2 

a line 4. This suggests a possibly fruitful avenue for further investigation, 

using perhaps complex variable teclmiques (setting z= r+it for example). 

Indeed recently, Boutaleb-Joutei, Chakrabarti and Comtet 
5 

have con­

sidered a particular class of SU(2) multi-instanton configurations along a 

line, in which the sizes and separations are constrained in a special way, 

with resultant simplifications. In par ticular, using complex variable tech­

niques, this has enabled them to obtain completely explicit forms (with 

arbitrary k) for the instanton determinants (see above and 6 ). They have 

expressed the hope that a hierarchy of such solutions might be generated, 

thus providing further explicit forms. But the success of their scheme 

serves in part to emphasize how restricted (with no free parameters in 

each k-instanton solution) a class of solutions it is necessary to consider 

in order to obtain compact forms for instanton determinants. 

An attempt at a deeper understanding of instantons in the context of 

functional integrals was made by Belavin, Fateev, Schwarz and Tyupkin 
7

. 

C P
l\-1 From analogies with two-dimensional models (see 8 and a pertinent 

short review in 9 ) , in which the leading contribution of the k-instanton 

to the functional integral is the par tition function (at unit temperature) for 

a classical ne utral Colllomb gas of 2k particles, each of :r.nass m (the re ­

normalisation group invariant m a s s ), k of which are positively charged, 

the rema inder negatively, they conjectured tha t instantons be considered 

as composed of instanton quark s . Thus for SU(n) the 4nk instantons 

parameters correspond to n species of instanton quarks with multiplicity k, 

each having a freely-vary ing Euclidean pos ition in four-dime nsional space . 

An important aspect of the two-dimensional Coulomb gas is its critical 



· 10 point at T=l at which the pressure diverges this indicates that the 

dilute (i. e . non-interacting or weakly-interacting) gas approximation is 

inappropriate: the c~rresponding statement for four dimensions would be 

that the system of instantons quarks is in the plasma phase. Thus this 

conjecture has important consequences for the vexed question of dilute 

gas approximations; unfortunately little progress has been made beyond 

the initial conjecture 
8

. 

6.3 

Instanton determinants arose in the use of the semi-cla ssical approach 

to approximating functional integrals; to employ them in this context re­

quires a form in which the explicit dependence on the instanton parameters 

is manifest. As the above calculations and comments have shown, even 

in the most complete general case to date, that for the k=2 SU(2) solution, 

the lack of succinctness and computational manageability renders it less 

suitable for insertion into functional integrals. 

Nevertheless, calculations have already begun on the next stage of 

evaluaUon, investigating the other essential ingredient of this semi-classical 

approach, namely the functional measure to be used in the integration. 

. 11 
Goddard, Mansfield and Osborn have obtained the relevant form for k=2, 

as well as discussing zero modes and associated topics, equally vital for 

a full understanding (see 12 for a detailed review of these and related 

matters). 

But here arises another problem. The cornerstone of much of 

the work outlined iri the preceding chapters, the ADHM construction, while 

elegant and compact, does not provide an unconstrained parametrisation 

for the multi - instanton solutions with the ful l quota of variables , except 

for k=l and 2 and (though with complications) k=3. 



Further, the very basis of the semi-classical expansion - expanding 

about a restricted set of pure instanton and anti-instanton configurations -

though sampling all topological sectors of gauge equivalence classes of 

6.4 

index k, is not self-obviously sufficient for a sensible theory (but see 13 ). 

What additional field configurations should be added, if any, remains uncle ar. 

These problems notwithstanding, much progress has been made in 

the calculation of instanton determinants as part of the broader programme 

of semi-classical approximation to functional integrals; and the tantalising 

elegances and simplicities that arise in diverse but related fields hold out 

to the optimist the prospect of a deeper underlying structure one day being 

found. 

1 I 
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