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We report the observation of strongly temperature-dependent, asymmetric spectral lines in elec-
tronic Raman scattering of graphite in a high magnetic field up to 45 T applied along the c-axis. The
magnetic field quantizes the in-plane motion, while the out-of-plane motion remains free, effectively
reducing the system dimension from three to one. Optically created electron-hole pairs interact
with, or shake up, the one-dimensional Fermi sea in the lowest Landau subbands. Based on the
Tomonaga-Luttinger liquid theory, we show that interaction effects modify the van Hove singularity
to the form (ω − ∆)2α−1/2 at zero temperature. We predict a thermal broadening factor that in-
creases linearly with the temperature. Our model reproduces the observed temperature-dependent
line-shape, determining α to be ∼0.05 at 40 T.

PACS numbers: 78.30.-j, 71.70.Di, 73.61.Cw, 76.40.+b, 78.20.Bh

Electron-electron interactions are progressively more
important as the system dimension is lowered. One-
dimensional (1d) systems, in particular, provide model
environments in which to explore interaction effects [1].
Interacting 1d electrons are expected to form an exotic
electronic state of matter, the Tomonaga-Luttinger liq-
uid (TLL) [2–5]. A strong magnetic field, B, can sup-
press the electrons’ kinetic energy, thus enhancing the
effect of interactions, as exemplified by the fractional
quantum Hall effect [6–8]. In a 3d material, an applied
magnetic field creates an effective 1d system along the
field, ideal for a systematic study of interaction effects in
a highly controllable fashion [9]. Particularly promising
are 3d metals with small electron and/or hole pockets
near the Fermi energy (EF), such as bismuth [10–14] and
graphite [12, 15–18], where the magnetic quantum limit
can be readily reached with B ∼10 T.

Here we use Raman spectroscopy to study electronic
states and correlations in natural graphite in a strong
B up to 45 T, applied along the c-axis. This quantizes
the electronic motion in the ab-plane, while the motion
along the c-axis remains free, thus reducing the effec-
tive dimension from three to one. Instead of the main
Raman features related to phonons [19, 20], here we fo-
cus on a series of electronic Raman features assigned to
electronic inter-Landau-level (LL) transitions [21], whose
B-dependence can be explained through the Slonczewski-
Weiss-McClure (SWM) model [22–24]. Each feature ex-
hibits strongly temperature (T )-dependent shape. Our
calculations show that scattering by thermally excited
acoustic phonons [25–28] is too weak to explain the ob-
servations. Electron-electron interactions, on the other
hand, are shown to be the cause for the observed T depen-

dence, through the ‘shake-up’ process known in the prob-
lem of X-ray (or Fermi-edge) singularities [5]. Namely,
optically created electron-hole pairs interact with, or
shake up, the 1d Fermi sea in the lowest Landau sub-
bands, resulting in line-shape deviations from single-
particle densities of states (i.e., 1d van Hove singular-
ities). Based on the TLL theory [1–5], we show that
electron-electron interactions modify the van Hove sin-
gularity to the form (ω − ∆)2α−1/2 at 0 K, where ω is
the photon frequency, ∆ the band-edge frequency, and
α a dimensionless measure of the influence of electron-
electron interactions. At finite T , we predict a thermal
broadening factor, Γ(T ) ∝ T . Our model reproduces the
observed T -dependent line-shape, determining α to be
0.016, 0.026, and 0.048, at 20, 30 and 40 T, respectively.

Raman measurements are performed on natural
graphite (NGS Naturgraphit GmbH) in a back-scattering
Faraday geometry in B up to 45 T, as described in
Ref. 21. The excitation beam from a 532-nm laser is fo-
cused to a spot size of <20 µm with a power of ∼13 mW.
Most of the data are collected with a spectral resolution
of ∼3.4 cm−1. For the high-B, low-T (≤10 K) mea-
surements of the sharpest peaks, a spectral resolution
of ∼1.9 cm−1 is used. The temperature drift over an
integration time of up to 7 minutes, monitored by a tem-
perature sensor installed below the sample, is <1 K at T
= 7 K and <2 K at T ≥ 180 K.

Figure 1(a) shows Raman spectra taken at 10, 20,
and 30 T at 7 K. The main feature is the G peak at
∼1580 cm−1, due to E2g phonons [20]. In the presence of
B, electronic Raman features appear, coming from inter-
LL transitions, labeled (1,1), (2,2), ... etc., which we
focus on in this work. Figure 1(b) shows a series of spec-
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FIG. 1: (Color online) (a) Raman spectra at 10, 20, and
30 T. The feature at ∼1580 cm−1 is the G-peak due to the
E2g phonons. Inset: schematic energy level diagram showing
the transitions responsible for the electronic peaks. (b) Data
taken at various B at T = 7 K, showing peaks due to (1,1)
through (4,4) interband transitions. (c) Peak positions of the
observed (1,1), (2,2), and (3,3) transitions as a function of B,
together with calculations based on the SWM model.

tra taken at various B at 7 K, exhibiting electronic peaks
that move with B. These peaks can be attributed to the
“symmetric” inter-LL excitations in the vicinity of the K
point [21, 29]. The strongest, lowest-frequency transition,
is (1,1), which is from the n = −1 level in the valence
band to the n= 1 level in the conduction band. Similarly,
we observe the (2,2), (3,3), and (4,4) transitions [see also
the zero-field in-plane dispersions and energy levels near
the K-point in the inset to Fig. 1(a)]. The symmetric
inter-LL excitations are non-resonant Raman processes
and have been theoretically investigated for single-layer
graphene (SLG) [31] and bilayer graphene (BLG) [32].
The peak positions of the three lowest-energy transitions
are plotted against B in Fig. 1(c); they agree well with
our calculations (solid and dashed lines) based on the
SWM model [21].

These inter-LL transitions show strong T dependence,
as indicated in Fig. 2, where Raman spectra at various
T are plotted for (a) 20, (b) 30, and (c) 40 T. At the
lowest T , the peaks exhibit sharp and asymmetric line-
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FIG. 2: (Color online) T-dependent electronic Raman scatter-
ing of graphite at (a)20 (b) 30, and (c)40T. (d) T dependence
of the broadening factor, Γ, of the (1,1) line at 20 T (solid
circles) and 30 T (open circles). The lines are fits to the data

shapes, reminiscent of a 1d van Hove singularity, as ex-
pected from the effective dimension reduction from three
to one in a B. As T increases, there is significant peak
broadening and blue shift. The blue shift is expected
from the thermal expansion of the carbon-carbon bonds,
which changes the tight-binding parameters [28]. On the
other hand, the thermal broadening cannot be explained
within the tight-binding model. To quantify the ther-
mal broadening, we first fit the spectra within a single-
particle model using the joint density of states for inter-
band transitions, obtained from the SWM model, with
T -dependent Lorentzian broadening. Figure 2(d) shows
the extracted Lorentzian full width at half maximum
(FWHM) Γ as a function of T for 20 and 30 T. Apart
from a small finite line-width at T = 0, Γ0 ≈ 5 cm−1,
possibly due to disorder, Γ linearly depends on T .

Within the single-particle picture, T only appears in
the Fermi-Dirac distribution function, but this is a neg-
ligible effect since both the initial and final states of the
Raman process are far away from EF, which resides in
the n = 0 bands. For example, for the (1,1) transition
at 30 T, the electron and hole bands are ∼65 meV (or
∼750 K) away from EF. Thus, we need to take into
account the interactions of the photo-excited electron-
hole (e-h) pairs with some low-energy modes that would
significantly change when T changes from 4 to 300 K.
Specifically, since the linear-T broadening in Fig. 2(d) im-
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plies a Bose-Einstein distribution at an energy scale much
smaller than kBT , we only consider bosonic excitations
whose characteristic energies are ≪ 100 K. Hence, we
consider two types of low-energy modes: i) particle-hole
(p-h) excitations across EF in the n = 0 bands [Fig. 3(a)]
and ii) acoustic phonons (the lowest optical phonons be-
ing the shear modes, seen at ∼5-6 meV in graphite [30]).
We find that interactions with i) explain the observed T -
linear broadening while interaction with ii) is too weak.

The magneto-electronic Raman scattering matrix was
previously calculated for SLG [31] and BLG [32] and can
be readily generalized to graphite in the presence of B:

R̂ = Λ
∑

~k

Ψ†
n(ky, kz)Ψ−n(ky, kz) (1)

where Λ is the scattering amplitude, ky (kz) are electron
momenta in the ab-plane (along the c-axis), Ψ†

n creates an
electron in the n = 1, 2, 3, 4, ... bands, and Ψ−n creates a
hole in the n =−1,−2, −3, −4, ... bands. Both electrons
and holes are massive at the bottom of the bands at the
K point, i.e., mn 6= 0 for all n’s, similar to BLG, but
there is electron-hole asymmetry, i.e., m1 6= m−1.

Figure 3(a) depicts the basic ingredients involved in the
electron-electron interaction process we consider here, to-
gether with dispersions calculated via the SWM model
for the n = 0± and ±1 bands at 20 T. The two lowest-
energy bands (n = 0±) cross EF, and the carriers near EF

have approximately linear dispersions. In the (1,1) pro-
cess, an e-h pair is created in the n = ±1 bands, which
interact with, and are thereby dressed with, multiple p-h
excitations in the n = 0± bands near EF. As T is raised,
the thermal smearing of the Fermi edge leads to stronger
interaction between the massive e-h pair and the massless
p-h pairs, and the peak broadens. This type of shake-up
process was theoretically studied in carbon nanotubes at
0 K [33, 34]: a 1d van Hove singularity, (ω −∆)−1/2, is
predicted to become (ω −∆)−1/2+2α with α ∼ 0.1 once
the shake-up process is taken into account.

We describe the n = 0− electrons as a Tomonaga-
Luttinger liquid with the Hamiltonian [1–4]:

Hc
0 = vF

ˆ

dz
[

ψ†
Ri∂zψR − ψ†

Li∂zψL

]

, (2)

where vF is the Fermi velocity and ψ†

R(L) creates a particle

near the right (left) Fermi point. The n= 0+ band can be
described by a similar Hamiltonian, but with a different
vF. By approximating the energy dispersion near EF as
E ∝ kz, we rewrite Eq. (2) via bosonization:

Hc
0 =

vF
2π

ˆ

dz
[

(∇φ)2 + (∇θ)2
]

, (3)

where ∇φ = −2π[ρR + ρL], ∇θ = 2π[ρR − ρL], and
ρR (ρL) is the density operator for right-moving (left-
moving) electrons.
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FIG. 3: (Color online) (a) Electron-electron interaction pro-
cess influencing the electronic Raman line-shape of graphite
in high B. The (1,1) electron-hole pairs interact with, or shake
up, the 1d Fermi sea in the lowest-energy Landau subbands,
creating particle-hole pairs across the Fermi energy. (b) T
dependence of the line-shape for the (1,1) transition at 20 T,
together with fits (dashed lines) based on the model in (a).

We assume that the photogenerated electrons (n = 1)
and holes (n = −1) interact with the n = 0− conduction
electrons separately. For the n = 1 band, where electrons
are massive, we can treat the electrons through:

H1 =

ˆ

dzΨ†
1

[

− 1

2m
∂2z +∆1

]

Ψ1, (4)

where ∆1 is the band edge frequency and Ψ†
1 (Ψ1) is

the creation (annihilation) operator for the n = 1 band.
We also assume that the interaction Hamiltonian only
involves the total charge density, thus neglecting any
backscattering and Umklapp scattering:

Hint =
V

2

ˆ

dz

[

Ψ†
1Ψ1 −

1

2π
∇φ

]2

. (5)
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We write the effective Hamiltonian for the system as the
sum of Eqs. (3)-(5): H = Hc

0 +H1 +Hint. Its diagonal-
ization is a unitary transformation U †HU and has been
previously solved by many authors [33–36]:

U † = exp

[

−iγ
+

π

ˆ

dyθ(y)Ψ†
1(y)Ψ1(y)

]

. (6)

Under this transformation, the original interacting sys-
tem can be mapped to a non-interacting one, and the
massive-electron operator acquires an additional string
operator, Ψ1(z) = exp[−iγ+θ(z)/π]Ψ̃1(z), where Ψ̃†

1 cre-
ates a free electron in the n = 1 band. The massive n
= 1 electron then gets dressed by the additional string
operator, i.e., the n = 0− conduction electrons adiabat-
ically adjust to the massive electrons. Similarly, we can
obtain a dressed expression for the massive hole.

The spectral function can be obtained by calculating
the imaginary part of the retarded Green’s function [5]:

GR(z, t) ≡ −iθ(t)〈[Ψ†
−1(z, t)Ψ1(z, t),Ψ

†
1(0, 0)Ψ−1(0, 0)]〉.

(7)
At zero T , Eq. (7) can be evaluated directly in real space.
However, at finite T , one has to follow a different route.
As the Green’s function for the massive electron/hole and
that for the conduction electrons are both straightfor-
ward to obtain, the total Green’s function can be written
as a convolution of three Green’s functions:

GR(z, t) ≈ −iθ(t)[−iG<
−1(−z,−t)]

×[iG>
1 (z, t)]F (z, t),

GR(0, ω) = −i
ˆ

∏ dpi
2π

dωi

2π
G0(p2, ω2)F (p1, ω1)

×δ(0− p1 − p2)δ(ω − ω1 − ω2),

G0(p, ω) =

ˆ

dp1
2π

ˆ

dω1

2π
G>

1 (p1,ω1)

×G<
−1(p1 − p, ω1 − ω), (8)

where

F (z, t) = 〈exp[−iγθ(x, t)] exp[iγθ(0, 0)]〉. (9)

We can express the spectral function in a universal form:

A(ω) = ΛT 2α−0.5F̃

(

ω/T

4π
, α

)

, (10)

where

F̃ (z, t) =

∞
∑

n=0

∞
∑

m=0

B[n+ α, 1− α]B[m+ α, 1 − α]

×Re





(2i)2α
√

z − i
2 (m+ n+ α)



 . (11)

In Eq. (11) there are two dimensionless parameters:
ω/T and α. The first implies that the spectral width

linearly depends on T for a fixed α. The second can be
understood by studying the T = 0 asymptotic behavior
of Eq. (11), and comparing it with the previous zero-T
results [33, 34]. It then becomes clear that:

A(ω) ∝ Θ(ω −∆)

(ω −∆)1/2−2α
, (12)

where Θ is the Heaviside function. For metallic nan-
otubes, α was estimated to be∼ 0.1 [33, 34]. To fit our
experimental data with our model, we use the true band
structure instead of a parabolic approximation, by fit-
ting the tail up to ∼ 0.2(π/c) from the K point. Fig.3(b)
shows how well our model fits the data, giving α(20 T)
≈ 0.016, α(30 T) ≈ 0.026, and α(40 T) ≈ 0.048.

We now consider the longitudinal acoustic (LA)
phonons in graphite, which can also couple to the massive
electrons and holes. The properties of acoustic phonons
can be described by five elastic constants [37]: C11 =
1109 GPa, C66 = 485 GPa, C33 = 38.7 GPa, C13 =
0 GPa, and C44 = 5 GPa. Unlike the case of optical
phonons [19, 26, 38, 39], coupling with acoustic phonons
vanishes at the Γ point since Hep ∼ √

q [25, 40, 41],
where q is the phonon wavenumber. We then evaluate
the thermal broadening of Raman peaks by calculating
the imaginary part of the self-energy:

Hep =
∑

~k′,~k,~q

g~qh(~q)Ψ
†
1(ky + qy, kz + qz)Ψ1(ky, kz)(b

†
−~q + b~q)

g~q =
ηκq sin θ

2

√

~

2NMω~q

√
2

2

∆2
B

Γγ1
(13)

h(~q) =

(

4− 2l2Bq
2 sin2 θ +

l4Bq
4 sin4 θ

8

)

e−(l2Bq2 sin2 θ)/4

where lB = (~/eB)1/2 is the magnetic length, η ∼ 2, and
κ ∼ 1/3 [26]. To first order, we estimate the scattering
rate through Fermi’s golden rule:

Wi =
2π

~

∑

f

|〈f |Hep|i〉|2δ(Ei − Ef ). (14)

When the momentum transfer during the scattering pro-
cess is small (i.e., vq ≪ kT ), the phase space for phonon
modes are q2( 1

evq/kT + 1
2 ± 1

2 ) ∼ qT → 0, and when the
momentum transfer is large, the overlap between initial
and final states has a factor exp(−q2⊥l2B). For B = 30 T,
lB ∼ 5 nm, which is at least one order larger than the
carbon-carbon bond length. Thus, the contribution to
scattering drops exponentially as the phonon modes move
away from the Γ point (or, equivalently, with increasing
energy). The calculated momentum-dependent scatter-
ing rate is then given by

W (kz) = Λ′

ˆ π

0

dθ
q̃2 sin3 θ

√

sin2 θ +
V 2

4

V 2

1

cos2 θ

h2(q, θ)

cos2 θ

×
(

nω~q
+

1

2
± 1

2

)

, (15)
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where

q̃ =
2mlBV1

~

~kz

mV1

cos θ ∓
√

sin2 θ + V 2
4 /V

2
1 cos2 θ

cos2 θ
,

~Λ′ =
η2κ2

16π

m

M

Vunit
l3B

∆2
B

γ21

√
2v

V1
∆B ≈ 4.1× 10−6 cm−1.

This value leads to W (kz) ∼ 10−4 cm−1 at 30 T and
200 K, too small to explain the observed broadening,
which requires the scattering rate to be ∼10 cm−1.
There are two reasons for the small ~Λ′ value: one is
m/M ∼ 10−3, and the other Vunit/l

2
B. The latter, i.e.,

the magnetic length suppression, is a unique aspect of
this work, made possible by a high B.

In summary, we studied electronic Raman scattering
in graphite in a strong magnetic field up to 45 T, ap-
plied along the c-axis. We observe a series of spectral
lines, ascribed to inter-Landau-subband transitions, and
each line exhibits strongly T -dependent line-shape. We
developed a microscopic model based on the Tomonaga-
Luttinger theory, with which we show that electron-
electron interactions can explain the observed results,
through the ‘shake-up’ process known in the problem of
X-ray (or Fermi-edge) singularities. Specifically, we show
that electron-electron interactions modify the van Hove
singularity to the form (ω − ∆)2α−1/2 at T = 0. Our
model accurately reproduces the observed T -dependent
line-shape, determining α to be 0.016, 0.026, and 0.048,
at 20, 30, and 40 T, respectively.
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