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Abstract 

Purpose: Non-European populations are under-represented in genetics studies, hindering 

clinical implementation of breast cancer polygenic risk scores (PRS). We aimed to develop 

PRSs using the largest available studies of Asian ancestry and to assess the transferability of 

PRS across ethnic subgroups. Methods: The development dataset comprised 138,309 women 

from 17 case-control studies. PRSs were generated using a clumping+thresholding method, 

lasso penalized regression, Empirical Bayes approach, a Bayesian polygenic prediction 

approach or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 

women from three prospective studies (1,592 incident cases). Results: The best performing 

PRS (genome-wide set of single-nucleotide polymorphism (SNPs)) had a hazard ratio (HR) per 

unit standard deviation (SD) of 1.62 (95% CI = 1.46-1.80), and an area under the receiver 

operating curve (AUC) of 0.635 (95%CI = 0.622–0.649). Combined Asian and European PRSs 

(333 SNPs) had a HR per SD of 1.53 (95%CI: 1.37-1.71) and AUC of 0.621 (95%CI: 0.608-0.635). 

The distribution of the latter PRS was different across ethnic subgroups, confirming the 

importance of population-specific calibration for valid estimation of breast cancer risk. 

Conclusion: PRSs developed in this study, from association data from multiple ancestries, can 

enhance risk stratification for women of Asian ancestry. 

Introduction 

Genetic inheritance is an important risk factor for breast cancer1. Rare pathogenic variants in 

several susceptibility genes, including BRCA1, BRCA2 and PALB2, confer increased risks of 

breast cancer2; however, much of the genetic variation in risk is polygenic, due to a 

combination of large numbers of genetic variants each conferring a small increase in risk. The 



 9 

effects of these variants can be summarized as polygenic risk scores (PRS)3,4. Mavaddat et al3 

developed and validated a 313 variant breast cancer PRS (PRS-313), using data from 

European-ancestry women in the Breast Cancer Association Consortium (BCAC)4,5. The 

lifetime risk of breast cancer was estimated to be 2.6% for women in the lowest 1% of the 

PRS-313 distribution and ~32% for women in the highest 1%; the latter group would be 

classified as at high-risk of developing breast cancer according to the National Institute for 

Health and Care Excellence (NICE) and other clinical management guidelines.3 This 

demonstrates the potential of PRS to improve quantification of risk and consequently 

optimize breast cancer screening and prevention strategies6.  

Non-European populations are under-represented in genetic studies and this could limit PRS 

adoption and applicability7-9, and exacerbate health disparities10. This is important for ethnic 

minorities in high income countries, where clinical evaluation of the European 313 variants 

PRS is already underway, but perhaps more so in low- and middle-income countries, where 

there is an urgent need to develop breast cancer screening strategies to address rapidly rising 

breast cancer incidence and high breast cancer mortality11. 

Asians constitute more than half of the world’s population and are facing a dramatic increase 

in breast cancer incidence12,13, but make up only 15% of participants in the breast cancer 

genome-wide association studies (GWAS). Efforts to develop breast cancer PRS specifically 

for Asian populations have so far been limited. In our previous work, we showed that PRS-

313, developed in Europeans, was predictive of breast cancer risk in Asian populations, 

although the effect size was somewhat smaller than that reported in European populations14. 

However, an important outstanding question is whether a more predictive PRS utilizing Asian 

data can be developed. Thus far, the largest study to attempt this involved 23,372 women of 
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Asian ancestry. This study evaluated previously published breast cancer risk single-nucleotide 

polymorphisms (SNPs) and took forward SNPs that were significantly associated with breast 

cancer risk in Asians (p-value < 0.05) for PRS derivation, resulting in a 44-SNP PRS (PRS-44)15. 

Although predictive, we have shown in our previous work that the discriminatory power of 

PRS-44 (area under the receiver operating curve (AUC) = 0.586) was much lower than PRS-

313 (AUC = 0.617), derived from European ancestry women, for predicting breast cancer risk 

in Asian women14.  

In this study, our objectives were twofold: (1) to develop improved breast cancer PRSs utilizing 

data from Asian populations and to validate their performance in prospective cohorts using 

the largest available breast cancer genetic study of Asian ancestry; (2) to assess the 

transferability of PRSs across Asian ethnic subgroups.  

Materials and Methods 

Study populations 

The study population was divided into training, validation and testing datasets. The training 

datasets included (a) set 1 which comprised of 22,013 invasive cases and 22,114 controls of 

East Asian ancestry from studies participating in Breast Cancer Association Consortium (BCAC) 

and Asia Breast Cancer Consortium (ABCC) (where GWAS summary statistics of SNPs 

significant up to p-value < 0.0001 were available), (b) set 2 which comprised of 16,680 invasive 

cases and 83,414 controls of East Asian ancestry from studies participating in BCAC together 

with Biobank Japan (BBJ) (where GWAS summary statistics were available), and (c) set 3 which 

comprised of 122,977 invasive cases and 105,974 controls of European ancestry participating 

in BCAC4 (where GWAS summary statistics were available). The validation dataset comprised 
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of (a) 6,392 cases invasive cases and 6,638 controls of Chinese or Malay ancestry, and (b) 585 

invasive cases and 1,018 controls of Indian ancestry participating in two multi-ethnic case-

control studies: the Malaysian Breast Cancer Genetics study and the Singapore Breast Cancer 

Cohort study. The testing dataset comprising 89,898 women (1,595 incident cases) from three 

prospective cohorts of East Asian ancestry: the Singapore Chinese Health Study16 , the China 

Kadoorie Biobank17 and the Korean Cancer Prevention Study Biobank18. Table S1 summarises 

the study design, genotyping arrays and the sample size in each study. Genotype calling, 

quality control procedures and imputation methods have been described previously4,19-23. 

Ancestry informative principal components (PC) were available for Asian ancestry samples in 

the BCAC and validation datasets, generated using methods as previously described24. See 

Supplementary Methods for more details. 

All studies were approved by the relevant institutional ethics committees and review boards, 

and all participants provided written informed consent.  

Statistical methods 

Polygenic risk scores (PRS) were given by:  

 

𝑃𝑃𝑃𝑃𝑃𝑃 =  β1x1 + β2x2+. . . +βkxk + ⋯+ βmxm 

 

where xk is the allele dosage for SNP k, βk is the corresponding weight, and m is the total 

number of SNPs. PRSs were standardised to have unit standard deviation (SD) in the control 

subjects. Logistic regression models, adjusted for the first 10 PCs and study, were used to 

estimate odds ratios (ORs) for association between the standardised PRSs and breast cancer 
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risk in the validation set. The studies in the validation set were genotyped in two batches and 

hence treated as different strata for the purposes of adjustment. Cox proportional hazard 

model, adjusted for the first 2 PCs for SCHS and KCPS-II and the first 12 PCs for CKB, was used 

to estimate hazard ratios per SD (HRperSD) for the association between the PRS and breast 

cancer risk in the test set. The discrimination of PRS were assessed using AUC. The HRperSD 

and AUC were obtained individually for each study and combined using a fixed-effect meta-

analysis. Test of heterogeneity between studies were obtained using rma() command in the 

metafor package in R26.   

The approaches for SNPs selection to be included in PRS and the corresponding weights are 

described in subsequent sections. Figure 1 and Figure S1 summarises the methods and 

dataset. The lists of SNPs and the weights for the PRS computation are given in Table S2-4 

Clumping and thresholding approach (C+T)  

Training dataset 1 was used in these analyses. SNPs clumping (within 1Mb windows) was 

conducted to remove highly correlated SNPs (pairwise correlation r2 > 0.9); the SNP with the 

lowest p-value for association in the correlated pairs was retained, resulting in 3,050 SNPs. 

SNPs were further clumped within pre-specified clumping window sizes and threshold of a 

correlation r2. PRSs were then computed using the subset of SNPs that were significant at a 

pre-specified p-value threshold (set at 5x10-8 and then increased in steps of 10-10 up to 10-3). 

The PRS with the highest AUC in the validation dataset was selected as the best PRS. The 

clumping and derivation of PRSs were done using PRSice v2.1126, while the AUCs for PRSs 

were generated using the pROC package in R.  

To account for the joint effect of SNPs used to derive the best PRS, we computed the optimal 

weight, from the summary statistics, for SNP j using the following formula:  



 13 

𝛾𝛾𝑗𝑗 = 𝛾𝛾′𝑗𝑗
�2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)�    (1) 

where 𝛾𝛾′ = 𝑅𝑅−1𝛽𝛽′, 𝑅𝑅 is the correlation matrix between the SNP genotypes, 𝛽𝛽′ is the predicted 

normalised marginal effect sizes of the SNPs, and 𝑝𝑝𝑗𝑗 is the effect allele frequency of SNP 𝑗𝑗 (see 

Supplementary Methods).  

Lasso penalized regression 

All 3,050 SNPs described in C+T section were included in these analyses, together with 

genotype data from Asian controls in BCAC OncoArray studies for calculating linkage 

disequilibrium among SNPs. The analyses were run using the package lassosum in R27  across 

different values of the penalty and shrinkage parameters, and the PRS giving the highest 

correlation between PRS and disease status (default metric in the method) in the validation 

dataset was selected. 

Linear combination of European PRS with Asian PRS 

Of the 313 SNPs included in PRS developed for European women3, only 287 SNPs with 

imputation info score > 0.9 in validation dataset were retained for subsequent analyses. 

Reported weights3 were used to derive the European PRS (hereafter denoted as PRS287_EUR). 

Asian PRSs generated from C+T or lasso penalized regression were linearly combined with 

PRS287_EUR. The relative contribution of each PRS were estimated by logistic regression using 

the validation dataset.  

Re-weighting of European-based PRS 

We considered two sets of weights for PRS derivation using the 287 SNPs: (i) Asian weights 

estimated from the training dataset 1, taking into account the correlation between SNPs using 
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Equation (1) (hereafter denoted as PRS287_ASN); and (ii) weights based on a combination of the 

Asian and European weights using an Empirical Bayes approach (hereafter denoted as 

PRS287_EB), where the optimal weight is given by  

𝛽𝛽𝑗𝑗,𝐸𝐸𝐸𝐸 = 𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸

�2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)� . 

Here, 𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸 is the estimated posterior effect sizes in Asians given the data and 𝑝𝑝𝑗𝑗 is the allele 

frequency for SNP 𝑗𝑗 (see Supplementary Methods). Other approaches to combine European 

and Asian-specific weights were also explored, including fixed effect meta-analysis, but only 

the method that gave the best AUC is presented here. 

We also considered linear combinations of the re-weighted European PRSs with Asian PRSs 

generated from C+T method or lasso penalized regression (as described above). 

Bayesian polygenic prediction approach (PRS-CSx) 

Training sets 2 and 3 were used as training datasets for PRS-CSx28 together with Asians and 

Europeans in the 1000 Genomes Phase 3 project as LD reference panels29. PRSs generated 

using European- (hereafter denoted as PRSGW_EUR) and Asian-specific posterior weights 

(hereafter denoted as PRSGW_ASN) were linearly combined (hereafter denoted as PRSGW_EUR+ 

PRSGW_ASN) in the validation dataset. The analyses were repeated across a range of global 

shrinkage parameter (𝜙𝜙) and the 𝜙𝜙  that gave the linear combination of PRSs with the highest 

AUC in the validation dataset was selected as the optimal 𝜙𝜙. Analyses were run using the 

published Python code-based tool in Github27. 

PRSs for the South Asian population 
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The predictive performance of PRSs developed for East Asian-ancestry women in Indian-

ancestry women were assessed using AUC and OR per SD. Given the much smaller sample 

size for Indian-ancestry women, we did not attempt to generate a South Asian-specific PRS, 

but we considered estimating the weights in the linear combinations of multiple PRSs using 

the South Asian validation dataset.  

Absolute risk of breast cancer by PRS percentiles 

The age-specific absolute risks of developing breast cancer in each PRS percentile were 

obtained by constraining to the incidence of overall population breast cancer incidence (see 

Supplementary Methods). The details of these methods have been described previously3. We 

calculated lifetime and 10-year absolute risks using Singaporean mortality and breast cancer 

incidence in 201730,31. For birth-cohort specific incidences, age-specific breast cancer 

incidences for the 1960-1969 and 1970-1979 birth cohorts were calculated using data on 

breast cancer incidence in Singapore from 1968 to 201730. For women born between 1980-

1989, incidences could only be calculated up to age 35, hence breast cancer incidences were 

projected by assuming an annual increase in breast cancer incidence of 3.9%32.   

Results 

Genetic diversity within Asian populations 

Figure 1 summarises the dataset and methods used in this study. The populations are 

clustered, consistent with geography and population history, with the Chinese-ancestry 

women (Malaysia/Singapore/mainland China/Hong Kong/Taiwan) form a distinct cluster that 

is genetically closer to Japanese/Koreans women than to Indian-ancestry women (Figure 

2(a)). The Malay-ancestry women from Malaysia/Singapore are genetically closer to Chinese-
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ancestry women than to Indian-ancestry women. Given the large genetic distance between 

Indian-ancestry women from the other populations, the primary validation dataset was based 

on Chinese-ancestry and Malay-ancestry women, and Indian-ancestry women were evaluated 

separately.  

PRSs developed using Asian-specific SNPs  

For C+T, SNPs were removed if they were within 250kb of a SNP already selected and 

correlated at r2 > 0.1, leaving 1,326 SNPs for analysis. For East Asian-ancestry women, the 

best PRS was obtained at a p-value threshold of 5.74 x 10-7, resulting in a 46-SNP PRS (PRS46) 

(Figure S2), with OR per SD (ORperSD) (95%CI) of 1.35 (1.30–1.39; AUC = 0.586) (Table 1). Other 

combinations of clumping size and correlation threshold r2 did not result in PRSs that showed 

appreciable improvement (Figure S3).  

For lasso penalised regression, the best PRS was obtained at penalty parameter (λ) = 0.014 

and shrinkage parameter (s) = 0.9, resulting in a PRS that included 2,985 SNPs (PRS2985) (Figure 

S4), with ORperSD (95%CI) of 1.41 (1.36–1.46; AUC = 0.596), slightly more predictive than the 

PRS46 (Table 1).  

Linear combinations of European PRS and Asian PRSs 

Combining PRS287_EUR and PRS46 (ORperSD (95%CI) = 1.54 (1.49-1.60); AUC = 0.623) markedly 

improved the predictive accuracy in East Asian-ancestry women, as compared to using the 

Asian-specific PRSs alone (Table 1). The improvement was marginal compared to using 

PRS287_EUR alone (ORperSD (95%CI) = 1.50 (1.45-1.56); AUC = 0.615), but relative contribution 

of PRS46 to the linear combination model was approximately 30% (Table S5). Combining 

PRS287_EUR with PRS2985 further increased the OR per SD and AUC compared to 

PRS46+PRS287_EUR.  
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PRSs developed by integrating Asian weights into the European PRS 

For East Asian-ancestry women, PRS287_EB (ORperSD (95%CI) = 1.53 (1.47–1.58); AUC = 0.620) 

was slightly more predictive than PRS287_ASIAN (ORperSD (95%CI) = 1.50 (1.45–1.56); AUC = 

0.615) and PRS287EUR (ORperSD (95%CI) = 1.50 (1.45–1.56); AUC = 0.614), and markedly more 

predictive than PRS46 and PRS2985 (Table 1). A linear combination of PRS287_EB with PRS46 

further improved the PRS performance compared to PRS46+ PRS287_EUR.  

Continuous shrinkage PRSs (PRS-CSx) 

The best combined PRS for East Asian ancestry women was obtained at 𝜙𝜙 = 10−4 (Table S6), 

with ORper D (95%CI) of 1.62 (1.52-1.68) and AUC of 0.636 for PRSGW_EUR + PRSGW_ASN, markedly 

better than all the PRSs described thus far (Table 1).  This improvement was mainly driven by 

the contribution of PRSGW_EUR (ORperSD (95%CI) = 1.59 (1.53-1.65); AUC = 0.629). The OR per 

SD (95%CI) and AUC for PRSGW_ASN alone was 1.44 (1.39-1.49) and 0.601, respectively, only 

slightly better than PRS46 (Table S6).  

PRSs for Indian-ancestry population 

The East Asian-ancestry women derived PRSs (as shown in Table 1) were all predictive of risk 

in South Asian-ancestry women but the ORperSD were reduced compared to East Asian-

ancestry women. While linear combination of Asian-based and European-based PRSs 

improved the PRS performance compared to individual PRSs in East Asians, the improvement 

in women of South Asian ancestry was observed only when PRS2985 was considered in the 

linear combination (Table 2). There was no improvement in the effect sizes when European-

based PRS was combined with PRS46. Whereas incorporating Asian weights via the EB 

approach improved the performance of PRSs in East Asians, there was no improvement in 
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performance in women of South Asian ancestry. Re-estimating the weights of the combined 

models using South Asian-ancestry women in the validation dataset did not lead to an 

appreciable difference in predictive performance (Table S7). 

Evaluation of PRSs in prospective cohorts 

The predictive performance of PRSs in the East Asian-ancestry women was replicated in the 

prospective cohorts (Table 1). Thus, the effect sizes were smallest for PRS based on Asian data 

alone (HRperSD (95%CI) = 1.40 (1.25-1.56) for PRS46 and 1.45 (1.31-1.61) for PRS2985), larger for 

PRS based on the European PRS (HRperSD (95%CI) = 1.50 (1.35-1.65) for PRS287_EB) and larger 

still for PRS based on combining the Asian and European PRS (HRperSD (95%CI) = 1.53 (1.37-

1.71) for PRS46+PRS287_EB). As in the validation dataset, PRS generated using PRS-CSx showed 

the strongest association with breast cancer risk (HRperSD (95%CI) = 1.62 (1.46-1.80)) and 

highest AUC (0.635). There was no evidence of heterogeneity in the HRs among studies for 

any PRS (Figure S5). 

Absolute breast cancer risk predictions 

We used PRS46+PRS287_EB to demonstrate the potential of translating PRS into clinical tool for 

Asian population. Based on East Asian-ancestry women in the validation dataset, the 

estimated breast cancer ORs (95%CI) for women in the lowest and highest 1% of the PRS 

distribution were 0.53 (0.33-0.82) and 3.01 (2.25-4.06), respectively, compared to middle 

quintile. The estimated ORs did not differ from those predicted under a theoretical polygenic 

model in which the log OR increases linearly with the PRS (Table S8). The corresponding 

lifetime risks of developing breast cancer by age 80 years, on current incidence rates, were 

~2% and ~19% respectively (Figure 3(a)). Assuming that a 10-year absolute risk threshold of 

2.3%35 is used to define women at sufficient risk to justify screening, approximately 12% of 
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Chinese women would reach the risk threshold before or at age 40 (Figure 3(b)). Figure S6 

shows the distribution of the 10-year absolute risk at age 40 for women who were born 

between 1980-1989 using projected incidence rates (see Methods). It is projected that the 

proportion of women who would reach the risk threshold would rise to 29%.  

Generalisability of PRS across Asian ethnic subgroups 

We demonstrate the generalisability of PRS across Asian ancestry population using the three 

ethnic groups in the validation set and PRS46+PRS287_EB as an example. This combined PRS was 

predictive of risk in all ethnic groups, with the effect size higher in Chinese-ancestry women 

compared to Malay and Indian-ancestry women (ORperSD (95%CI) = 1.56 (1.50-1.63) for 

Chinese versus 1.51 (1.39-1.64) for Malays and 1.49 (1.33-1.66) for Indians, heterogeneity p-

value = 0.983) (Figure S7 and Table S9). The PRS distribution was, however, different among 

the three ethnic groups. While there was only a marginal difference in the SD, the means 

differed markedly, being highest in Chinese and lowest in Indians (mean (SD) in Chinese, 

Malay, and Indian controls were -0.118 (0.439), -0.197 (0.556), and -0.328 (0.455), 

respectively, p-values for pair-wise comparison of means < 0.0001) (Table S9). Figure 3(c) 

showed that if the Chinese PRS distribution was applied to Indians without adjustment, the 

95th percentile in Indians corresponds, approximately, to the 90th percentile in the Chinese 

population, resulting in underestimation of risk in Indian women. The difference in the PRS 

distributions is even more apparent when women of European ancestry is used as reference 

(Figure 3(d)).  

The patterns of PRS distribution by population (Figure 2b) are mirrored in the genetic clusters 

shown in Figure 2(a). The largest differences in the means of the standardised PRS46+PRS287_EB 
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were observed between the Indian-ancestry women and Japanese/Korean women (with 

Indians being the biggest outlier).   

Discussion 

Personalised risk stratification for prevention and early detection of breast cancer has gained 

increasing interest; however, it is important to recognize the need to study women 

representing diverse ancestries, to lessen health disparities. Our study provides essential 

information about the utility of PRSs for breast cancer risk prediction in women of Asian 

ancestry. We developed and validated different PRSs for East Asian ancestry women: the key 

observations were (a) PRSs generated by integrating information from European ancestry and 

Asian ancestry GWAS datasets performed better than PRSs based purely on weights derived 

from single-ancestry GWAS data, and (b) there were substantial differences in PRS 

distributions across ethnic groups. 

Based on the largest available breast cancer GWAS datasets, the best PRS for East Asian-

ancestry women was based on PRS-CSx approach28 (PRSGW_ASN+PRSGW_EUR). This PRS had a 

notably larger effect size than the European PRS (PRS287_EUR) that we had previously shown to 

be the best breast cancer PRS for women of Asian ancestry14 (HRperSD in prospective cohorts: 

1.62 versus 1.46; Table 1). It is noteworthy that the predictive performance of this PRS was 

similar to that achieved in European populations (HRperSD (95%CI) of 313-SNP PRS: 1.59 (1.54-

1.64) as reported in Mavaddat et al3). However, despite the rapid drop in cost associated with 

next-generation sequencing, implementation of PRS comprising ~1 million SNPs can be 

practically more challenging compared to the implementation of the European PRS that 

included only 313 variants.  
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We showed that adaptions based on the European 313-SNP PRS can improve risk prediction 

in women of East Asian ancestry. First, incorporating SNPs in identified in the Asian 

populations (PRS46) improved predictive power. This approach of linearly combining PRSs 

may reduce the gap in prediction accuracy between European and non-European populations 

as described previously33. Second, incorporating Asian weights further improved predictive 

power (PRS46+PRS287_EB), but to a lesser extent. The 313-SNP PRS is being used in several 

clinical studies in European populations, including the MyPeBs8 and WISDOM7 trials, and the 

PRS46+PRS287_EB PRS would be relatively easy to implement in clinical settings.  

The PRS generated for women of East Asian ancestry were also predictive for women South 

Asian ancestry, but the effect sizes were smaller. When combining East Asian-derived 

genome-wide PRS with European-derived genome-wide PRS in women of South Asian 

ancestry using the PRS-CSx approach, it was noticeable that the East Asian component made 

a smaller contribution to the linear combination (relative contribution ~ 14%, Table S5). These 

results demonstrate the need for larger studies of women of South Asian ancestry both to 

optimize the PRS and validate in prospective cohorts.  

One of the challenges of moving PRS into clinical implementation is transferability across 

different ethnic groups. Several studies have evaluated the population-level applicability of 

European PRSs to non-European populations for various diseases34-37. Similar to these studies, 

we showed that the mean of the PRS distribution differ substantially between European and 

Asian ethnic subgroups. We showed that if the European PRS (PRS-287EUR) was applied to an 

Asian population without adjustment, the 60th percentile in Chinese ancestry and Malay-

ancestry women and 80th percentile in Indian-ancestry women corresponds, approximately, 

to the 90th percentile in the European population, resulting in overestimation of risk in these 
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women (Figure 3(d)).   To our knowledge, no studies thus far have looked at the transferability 

of breast cancer PRS within diverse Asian ethnic subgroups. Our results showed that while 

the effect sizes appeared to be similar across ethnic groups (Table S8), the mean PRS 

distribution differed substantially across Asian populations (Table S7 and Figure 2(b)). For 

example, even though Japanese, Koreans and Han Chinese are conventionally classified as 

East Asians in genetic analyses, the means PRS were markedly different between these ethnic 

groups (Figure 2(b)). The differences are sufficiently large to affect risk classification, so 

comparing the PRS for an individual woman with the correctly calibrated ethnic-specific 

distribution is crucial for valid risk prediction.   This however can be problematic for admixed 

individuals, where the genomes composed from multiple ancestries that may be closely or 

distantly related to the reference population. As more samples of Asian ancestry become 

available, it may be possible to combine ethnic-specific PRSs with ancestry components to 

derive better multi-ethnic PRSs32.  

Our work is subject to several limitations. Firstly, although we have demonstrated that the 

predictive performance of European PRS can be improved by integrating weights from Asians 

using an empirical Bayes approach, the absolute increase in predictive accuracies is marginal. 

Secondly, our studies focus on developing PRS without using individual-level training data. 

When such data is available, it may be possible to develop PRS with higher accuracy using 

methods that fit all variants simultaneously, such as the step-wise hard-thresholding method 

as described in Mavaddat et al3, or considering subtype-specific disease analyses to retain 

more informative variants. Thirdly, our results showed that PRSs developed using Asian-

derived GWAS dataset had significantly poorer performance compared to the European PRS 

indicating that further improvement is likely to require much larger Asian discovery dataset. 

Finally, PRSs were linearly combined using the validation dataset and hence the reported 
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performance is likely subject to overfitting. Although we have shown that performance of the 

combined PRSs in East Asians were replicated in the prospective cohorts, we did not have a 

similar independent dataset for South Asian women for such replication.  

In summary, we have shown that genome-wide PRS derived from trans-ancestry method had 

significantly higher predictive accuracy for women of Asian ancestry than existing breast 

cancer PRSs. We also showed that European-based PRS can be improved for use in Asian 

populations by integrating population-specific weights and combined with Asian-specific PRS. 

Importantly, the differences in distribution of the same PRS across different ethnic groups 

(among Asians, and between Asian and Europeans) emphasise the need for ethnic-specific 

calibration before translating PRS into practice for diverse Asian populations.  

Data availability 

Summary statistics (odds ratios and confidence limits) for all SNPs used in derivation of 

various PRSs are provided in Supplementary Table S2-S4 of the manuscript. Summary 

statistics of European breast cancer GWAS analysis used in this study can be accessed via 

BCAC website (http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-

combined-summary-result/). Summary statistics of GWAS analyses from The Biobank Japan 

Project can be accessed via  The BioBank Japan Project website 

(https://pheweb.jp/pheno/BrC). Request for access to individual level data from BCAC studies 

can be made via the Data Access Coordinating Committee of BCAC (BCAC 

Coordinator: BCAC@medschl.cam.ac.uk). Request for access to the ABCC data could be 

requested by submission of an inquiry to Dr. Wei Zheng (wei.zheng@vanderbilt.edu).  

http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/
http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/
https://biobankjp.org/english/
https://pheweb.jp/pheno/BrC
mailto:BCAC@medschl.cam.ac.uk
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Figure legends 

Figure 1. Overview of methods for polygenic risk scores (PRS) development. Inputs are 

summary statistics from meta-analysis of multiple GWAS datasets – BCAC ASN+ABCC denoted 

training dataset 1, BCAC ASN+BBJ denoted training dataset 2 and BCAC-EUR denoted training 

dataset 3 as described in the method section. LD ref: reference panel for linkage 

disequilibrium. LD ref: BCAC ASN denoted Oncoarray studies in BCAC Asian studies were used 

as reference panel; LD ref: BCAC EUR denoted BCAC studies of European ancestries were used 

as reference panel; 1000G ASN and 1000G EUR denoted the Asian and European samples, 

respectively, in 1000Genome Project. Figure 1 illustrate methods using East Asian ancestry 

women (Chinese and Malays) as an example, same methods were applied to South Asian 

ancestry women in the validation dataset.  

Figure 2: Principal components analysis and mean of PRS46+PRS287_EB by country and 

ethnicity. (a) Principal component plot by country. Principal components analysis of samples 

genotyped with OncoArray as listed in Table S1. The samples were grouped according to 

country (Thailand, Taiwan, Hong Kong, China, Korea and Japan). For Malaysia and Singapore 

(M+S), the samples were further categorized by their self-reported ethnic origin (Chinese, 

Malay and Indian). (b) Mean of standardised PRS46+PRS287_EB in controls by country. PRS was 

standardised by the control SDs of each study. Error bars represent 95% CI. The mean of 

standardised PRS46+PRS287_EB in European controls were included for reference.  

Figure 3: Absolute breast cancer risk by percentiles of PRS and PRS distribution by ancestry. 

(a) Lifetime and (b) 10-year absolute risk of developing breast cancer for Chinese women 

calculated using Singaporean incidence and mortality data and OR per SD of PRS46+PRS287_EB 
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in Chinese (1.56 as reported in Table S9). The grey dashed lines in the (a) and (b) represent 

the average lifetime risk and absolute 10-year risk, respectively, of Singaporean Chinese 

women. The red horizontal dashed line (2.3%) in the (b) represents the 10-year absolute risk 

of a 50-year old European women where screening is recommended; (c) the distribution of 

PRS46+PRS287_EB in Chinese, Indian and Malay-ancestry women, generated using ethnic-

specific mean and standard deviation of controls as reported in Table S9 and the 

corresponding cumulative breast cancer risk by age 80, generated using calendar-specific 

breast cancer incidence and mortality rates for Chinese, Malay and Indian women in 

Singapore36. Area under the curves represent the percentiles of PRS 287_EB. The right vertical 

dashed line represents the 90th percentile cutoff for PRS distribution in Chinese-ancestry 

women; For example, the 95th percentile in Indians (lifetime risk = 11%) corresponds, 

approximately, to the 90th percentile in the Chinese population. If Chinese PRS distribution 

was used as a reference, these Indian women would be categorised as 90th percentile and 

hence would be told that their corresponding lifetime risk was 9% instead of 11%; (d) the 

distribution of European PRS (PRS287_EUR) for women of European, Chinese, Malay, or Indian 

ancestry. The right vertical dashed line represents the 90th percentile cutoff for PRS 

distribution in European-ancestry women. 

.  
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Table 1. Mean, standard deviation, and the association of polygenic risk scores (PRS) with breast cancer risk in women of East Asian ancestry 

           

Method PRS 

Validation seta   Test setb 
 

Cases  Control  OR per SD† 
AUC 

 Cases Control HR per SD* 
AUC* 

 

Mean 
(SD) 

Mean 
(SD) (95% CI)   Mean 

(SD) 
Mean 
(SD) (95% CI)  

[1] Clumping and 
Thresholding 

cPRS46 
-0.387 
(0.446) 

-0.538 
(0.443) 

1.37  
(1.32-1.42) 0.589   -0.299 

(0.433) 
-0.444 
(0.438) 

1.40  
(1.25-1.56) 0.600  

[2] Penalised regression cPRS2985 0.075 
(0.455) 

-0.082 
(0.452) 

1.41  
(1.37-1.47) 0.598   0.107 

(0.460) 
-0.059 
(0.458) 

1.45  
(1.311.61) 0.608  

[3] EUR SNPs+ EUR 
weights 

cPRS287_EUR
 0.865 

(0.548) 
0.640 

(0.549) 
1.50  

(1.45-1.56) 0.615   0.876 
(0.549) 

0.679 
(0.541) 

1.46  
(1.34-1.60) 0.609  

[4] EUR SNPs +ASN 
weights 

cPRS287_ASN -0.533 
(0.445) 

-0.714 
(0.447) 

1.50  
(1.45-1.56) 0.614   -0.552 

(0.448) 
-0.731 
(0.441) 

1.49  
(1.33-1.66) 0.608  

[5] EUR SNPs+ EB weights cPRS287_EB 0.343 
(0.491) 

0.135 
(0.492) 

1.53  
(1.47-1.58) 0.620   0.341 

(0.493) 
0.153 

(0.485) 
1.50  

(1.35-1.65)  0.609  

Combine [1] + [3] dPRS46 + PRS287_EUR 0.058 
(0.440) 

-0.134 
(0.437) 

1.54  
(1.49-1.60) 0.623   0.103 

(0.442) 
-0.075 
(0.436) 

1.52  
(1.36-1.70) 0.620  

Combine [2] + [3] dPRS2985 + PRS287_EUR 0.062 
(0.447) 

-0.139 
(0.444) 

1.56  
(1.50-1.61) 0.626   0.080 

(0.454) 
-0.106 
(0.447) 

1.54 
(1.38-1.72) 0.622  

Combine [1] + [4] dPRS46 + PRS287_ASN 0.052 
(0.425) 

-0.127 
(0.423) 

1.52  
(1.47-1.58) 0.619   0.070 

(0.425) 
-0.113 
(0.421) 

1.52  
(1.35-1.70) 0.621  

Combine [2] + [4] dPRS2985 + PRS287_ASN 0.055 
(0.430) 

-0.130 
(0.430) 

1.54 
(1.48-1.60) 0.621   

0.057 
(0.435) 

 
-0.135 
(0.427) 

1.53  
(1.37-1.72) 0.623  

Combine [1] + [5] dPRS46 + PRS287_EB 0.061 
(0.446) 

-0.137 
(0.443) 

1.55 
(1.50-1.61) 0.625   0.089 

(0.447) 
-0.089 
(0.441) 

1.53 
(1.37-1.71) 0.621  
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Combine [2] + [5] dPRS2985 + PRS287_EB
 0.063 

(0.451) 
-0.139 
(0.449) 

1.56  
(1.51-1.62) 0.627   0.077 

(0.455) 
-0.120 
(0.447) 

1.55 
(1.39-1.72) 0.623  

[6] PRS-CSx dPRSGW_EUR+PRSGW_ASN 
0.082 

(0.493) 
-0.159 
(0.489) 

1.62  
(1.52-1.68) 0.636   -0.145 

(0.511) 
-0.388 
(0.511) 

1.62  
(1.46-1.80) 0.635  

 
aValidation cohort which consist of 6,392 breast cancer cases and 6,638 control of Chinese- and Malay- ancestry from MyBrCa and SGBCC (Table S1). 

bProspective cohorts which consist of 89,898 control and 1,592 breast cancer cases from 3 prospective cohorts, Singapore Chinese Health Study (SCHS), China Kadoorie 
Biobank (CKB) and Korean Cancer Prevention Study-II Biobank (KCPS-II) (Table S1). 

cPRSs were derived using 46, 2,985 and 287 selected SNPs respectively as described in the Method section.   

d Combined PRSs were generated using the formula 𝛼𝛼0 + 𝛼𝛼1𝑃𝑃𝑃𝑃𝑆𝑆1 + 𝛼𝛼2𝑃𝑃𝑃𝑃𝑆𝑆2 where 𝛼𝛼0,𝛼𝛼1 and 𝛼𝛼2 are the weights obtained by fitting a logistic regression model with breast 
cancer as outcome, 𝑃𝑃𝑃𝑃𝑆𝑆1 and 𝑃𝑃𝑃𝑃𝑆𝑆2 as explanatory variables using the validation dataset. The weights for the considered combination of PRSs can be found in Table S5. 

†Adjusted for first the 10 principal components and study, and standardised to SDs in controls of each PRS. 

*Fixed effect meta-analysis of three prospective cohorts, SCHS, CKB and KCPS-II. HR per SD and AUC of individual studies can be found in Figure S5.
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Table 2. Mean, standard deviation, and the association of polygenic risk scores (PRS) with breast 
cancer risk in women of South Asian ancestry 

Method 
PRS 

developed based on 
East Asiansa  

Validation setb  
 

Cases  Control  OR per SD† 
AUC 

 

Mean 
(SD) 

Mean  
(SD) (95% CI)  

[1] Clumping and 
Thresholding 

aPRS46 
-0.490 
(0.388) 

-0.548 
(0.387) 

1.18  
(1.06-1.31) 0.546  

[2] Penalised 
regression 

aPRS2985 0.059 
(0.381) 

-0.048 
(0.376) 

1.32  
(1.19-1.46) 0.581  

[3] EUR SNPs+ EUR 
weights 

aPRS287_EUR
 0.482 

(0.570) 
0.251 

(0.608) 
1.49  

(1.34-1.67) 0.614  

[4] EUR SNPs +ASN 
weights 

aPRS287_ASN -0.552 
(0.493) 

-0.720 
(0.479) 

1.43  
(1.28-1.58) 0.592  

[5] EUR SNPs+ EB 
weights 

aPRS287_EB 0.084 
(0.521) 

-0.127 
(0.545) 

1.50  
(1.35-1.67) 0.613  

Combine [1] + [3] cPRS46 + PRS287_EUR
 -0.212 

(0.420) 
-0.376 
(0.444) 

1.48  
(1.33-1.65) 0.611  

Combine [2] + [3] cPRS2985 + PRS287_EUR
 -0.166 

(0.419) 
-0.347 
(0.441) 

1.53  
(1.37-1.71) 0.620  

Combine [1] + [4] cPRS46 + PRS287_ASN 0.008 
(0.431) 

-0.135 
(0.420) 

1.42  
(1.28-1.57) 0.591  

Combine [2] + [4] cPRS2985 + PRS287_ASN 0.036 
(0.425) 

-0.121 
(0.413) 

1.46 
(1.32-1.62) 0.602  

Combine [1] + [5] cPRS46 + PRS287_EB -0.157 
(0.438) 

-0.328 
(0.455) 

1.49 
(1.33-1.66) 0.610  

Combine [2] + [5] cPRS2985 + PRS287_EB -0.119 
(0.434) 

-0.304 
(0.449) 

1.52  
(1.37-1.70) 0.618  

[6] PRS-CSx 
cPRSGW_EUR+ 
PRSGW_ASN

 
-0.308 
(0.501) 

-0.546 
(0.502) 

1.62  
(1.46-1.81) 0.633  

 

a PRSs developed based on Chinese and Malay-ancestry women in the validation dataset as described in Table 
1. cohort from Chinese- and Malay- ancestry of MyBrCa and SGBCC as in Table 1. 

bEvaluation of PRSs performance in 585 breast cancer cases and 1,018 controls of Indian-ancestry women in 
the validation dataset (Table S1). 

c Combined PRSs were generated using the formula 𝛼𝛼0 + 𝛼𝛼1𝑃𝑃𝑃𝑃𝑆𝑆1 + 𝛼𝛼2𝑃𝑃𝑃𝑃𝑆𝑆2 where 𝛼𝛼0,𝛼𝛼1 and 𝛼𝛼2 are the 
weights estimated from East Asian ancestry women as described in Table 1. The weights for the considered 
combination of PRSs can be found in Table S5. 

†Adjusted for first the 10 principal components and study, and standardised to SDs in controls of each PRS.
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Figure S1. Schema for development and validation of PRS 

The development of PRSs were conducted using clumping + thresholding method, lasso penalised regression, integration of Asian weights into European PRS, linear 
combinations of multiple PRSs and Bayesian polygenic prediction method. All the PRSs were subsequently evaluated in the prospective cohorts. 

 



 3 

Figure S2. AUCs of PRSs generated using clumping and thresholding method for East Asian 
ancestry women 

PRS performance (AUC) in validation dataset generated using clumping and thresholding method 
at different p-value threshold. Each point represents a p-value threshold. The best-fit PRS 
consisted of 46 SNPs at p-value threshold of 5.74 x 10-7.  
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Figure S3. AUCs of best PRSs generated using clumping and thresholding method with 
different clumping option for East Asian ancestry women 

Each point represents the AUC of the best PRS generate at the combination of the given clumping 
r2 and clumping size. 
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Figure S4. PRSs generating using different values of parameters in penalized regression 
for East Asian ancestry women 

Each point represents correlation between breast cancer status in validation dataset and PRS 
generated at the given combination of penalty parameter (lambda) and shrinkage parameter (s). The 
best PRS occurred at penalty parameter (λ) equal to 0.014 and shrinkage parameter (s) equals to 0.9, 
where 2,985 SNPs were selected.  
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Figure S5. Performance of the PRSs in test dataset. 

Forest plot showed the association between standardised PRSs and breast cancer risk in three 
prospective cohorts, China Kadoorie Biobank (CKB), Singapore Chinese Health Study (SCHS) and 
Korean Cancer Prevention Study II. The squares represent the hazard ratios (HRs), the horizontal 
lines represent the corresponding 95% confidence intervals and the diamond shapes represent 
the overall estimates. I-squared and p-value (two-sided) for heterogeneity were obtained by 
fitting a random-effects model and using generalized Q-statistic estimator (the rma() command 
in R).  

 (a) Performance of Asian-based and European-based PRSs  
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(b) Performance of PRSs generated by linear combinations of multiple PRSs. 
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Figure S6. Distribution of 10-years absolute breast cancer risk at age 40 by birth cohort. 

Dashed vertical line equals to 2.3% (average 10-year absolute risk of a 50-years old European 
women). Area under the curve represents the proportion of women who would have absolute risk at 
age 40 greater than a specific risk threshold. For example, area to the right of the vertical line for the 
blue curve represent proportion of women who were born after 1979 who would have absolute risk 
at age 40 greater than 2.3%. The breast cancer incidence for birth cohort 1960-1969 and 1970-1979 
were observed and determined using breast cancer incidence in Singapore from 1968 to 2017. For 
birth cohort 1980-1989, breast cancer incidences were projected by assuming an annual increase in 
breast cancer incidence of 3.9%1. 
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Figure S7. Performance of the PRS46 + PRS287_EBin Chinese, Malay and Indian women from 
Malaysia and Singapore 

Forest plot showed the association between standardised PRSs and breast cancer risk in Chinese, 
Malay and Indian women from Malaysia and Singapore (validation cohort). Odds ratios (ORs) and 
AUCs were generated using data from Malaysia Breast Cancer Genetics (MyBrCa) and Singapore 
Breast Cancer Cohort (SGBCC) studies, stratified by ethnicity. The squares represent the odds 
ratios (ORs), the horizontal lines represent the corresponding 95% confidence intervals and the 
diamond shapes represent the overall estimates. I-squared and p-value (two-sided) for 
heterogeneity were obtained by fitting a random-effects model and using generalized Q-statistic 
estimator (the rma() command in R). The number of cases and controls for each ethnicity, ORs 
and corresponding 95% confidence intervals are tabulated in Table S8.   
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Please refer to attached excel for Table S1, S2, S3, and S4. 

Table S1. Participating studies and the number of individuals used in polygenic risk 
scores evaluation analyses. 

Table S2. SNPs and beta coefficient SNPs used in the construction of. PRS287, PRS46, PRS235 
and PRS2985. 

Table S3. SNPs and beta coefficient SNPs used in the construction of. PRSGW_ASN. 

Table S4. SNPs and beta coefficient SNPs used in the construction of. PRSGW_EUR. 

 

Table S5. Weights used in the linear combinations of multiple PRSs 

PRS combination Weight, α1
† Weights, α2

† α0 † w* 

East Asian ancestry      

 α1PRS46 + α2PRS287_EUR + α0  0.17389 0.33479 -0.31324 0.66 

 α1PRS2985 + α2PRS287_EUR + α0 0.19846 0.31648 -0.47000 0.61 

 α1PRS46 + α2PRS287_ASN + α0 0.14457 0.32984 0.57515 0.70 

 α1PRS2985 + α2PRS287_ASN + α0 0.17360 0.30808 0.39362 0.64 

 α1PRS46 + α2PRS287_EB + α0 0.14893 0.35354 -0.05224 0.70 

 α1PRS2985 + α2PRS287_EB + α0 0.17373 0.33482 -0.19889 0.66 

 
α1PRSGW_ASN + α2PRSGW_EUR + 
α0 0.16856 0.38484 0.54881 0.70 

      
South Asian ancestry      

 α1PRS46 + α2PRS287_EUR + α0 0.03168 0.38924 -0.74574 0.92 

 α1PRS2985 + α2PRS287_EUR + α0 0.16089 0.33732 -0.75920 0.68 

 α1PRS46 + α2PRS287_ASN + α0 0.01452 0.33817 -0.08530 0.96 

 α1PRS2985 + α2PRS287_ASN + α0 0.16498 0.27290 -0.19377 0.62 

 α1PRS46 + α2PRS287_EB + α0 0.01339 0.39594 -0.52023 0.97 

 α1PRS2985 + α2PRS287_EB + α0 0.14950 0.33877 -0.54253 0.69 

  α1PRSGW_ASN + α2PRSGW_EUR + 
α0 0.07095 0.44277 0.39168 0.86 

†Combined PRSs were generated using the formula 𝛼𝛼0 + 𝛼𝛼1𝑃𝑃𝑃𝑃𝑆𝑆1 + 𝛼𝛼2𝑃𝑃𝑃𝑃𝑆𝑆2 where 𝛼𝛼0,𝛼𝛼1 and 𝛼𝛼2 are the 
weights obtained by fitting a logistic regression model with breast cancer as outcome, and 𝑃𝑃𝑃𝑃𝑆𝑆1 and 
𝑃𝑃𝑃𝑃𝑆𝑆2are explanatory variables using East Asian ancestry women (top panel) or South Asian ancestry 
women (bottom panel) in the validation dataset. Here 𝑃𝑃𝑃𝑃𝑆𝑆1 represents the Asian-based PRS and 𝑃𝑃𝑃𝑃𝑆𝑆2 
represent the European-based PRS. The PRSs were standardized to respective standard deviation (SD) of 
the controls in the validation dataset.  

*Contribution of the European based PRS to the linear combination, where w = α2/ ( α1+ α2) and (1-w) 
represents the contribution of Asian based PRS to the linear combination. 
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Table S6. PRSs generated using different values of global shrinkage parameter in PRS-CSx 
for East Asian ancestry women 

Global 
shrinkage 
parameter 

PRS 

East Asian Ancestries 

Cases  Control  OR per SD† 
AUC 

Mean (SD) Mean (SD) (95% CI) 

𝜙𝜙=10-6 

PRSGW_ASN 0.296 (0.109) 0.249 (0.108) 1.53  
(1.48-1.59) 0.620 

PRSGW_EUR 0.139 (0.169) 0.065 (0.169) 1.55  
(1.50-1.61) 0.623 

*PRSGW_ASN + PRSGW_EUR 0.068 (0.460) -0.143 (0.459) 1.58  
(1.52-1.64) 0.628 

𝜙𝜙=10-4 

PRSGW_ASN -0.142 (0.184) -0.208 (0.183) 1.44  
(1.39-1.49) 0.601 

PRSGW_EUR -0.183 (0.209) -0.281 (0.211) 1.59  
(1.53-1.65) 0.629 

*PRSGW_ASN + PRSGW_EUR 0.082 (0.492) -0.158 (0.488) 1.62  
(1.56-1.68) 0.636 

𝜙𝜙=10-2 

PRSGW_ASN 1.446 (0.513) 1.339 (0.516) 1.23  
(1.19-1.28) 0.558 

PRSGW_EUR 0.017 (0.432) -0.135 (0.436) 1.41  
(1.36-1.46) 0.597 

*PRSGW_ASN + PRSGW_EUR 0.346 (0.382) -0.111 (0.382) 1.46  
(1.41-1.51) 0.605 

𝜙𝜙=1 

PRSGW_ASN 5.873 (0.995) 5.713 (1.005) 1.17  
(1.13-1.21) 0.545 

PRSGW_EUR 4.878 (0.848) 4.668 (0.846) 1.27  
(1.22-1.31) 0.567 

*PRSGW_ASN + PRSGW_EUR 0.002 (0.283) -0.078 (0.284) 1.31  
(1.27-1.36) 0.579 

†Adjusted for first the 10 principal components and study, and standardised to SDs in controls of each PRS. 

*Combined PRSs were generated using the formula 𝛼𝛼0 + 𝛼𝛼1𝑃𝑃𝑃𝑃𝑆𝑆1 + 𝛼𝛼2𝑃𝑃𝑃𝑃𝑆𝑆2 where 𝛼𝛼0,𝛼𝛼1 and 𝛼𝛼2 are the 
weights obtained by fitting a logistic regression model with breast cancer as outcome, and 𝑃𝑃𝑃𝑃𝑆𝑆1 and 𝑃𝑃𝑃𝑃𝑆𝑆2 
are explanatory variables using either East Asian ancestry women in the validation dataset. The PRSs were 
standardized to standard deviation (SD) of the controls in the validation dataset. 
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Table S7. Mean, standard deviation, and the association of polygenic risk scores (PRS) 
with breast cancer risk in women of South Asian ancestry 

PRS developed based on 
South Asians 

Validation cohorta  

Cases Control OR per SD† 
AUC 

Mean (SD) Mean (SD) (95% CI) 

bPRS46 + PRS287_EUR -0.478 (0.376) -0.631 (0.400) 1.50  
(1.34-1.67) 0.614 

bPRS2985 + PRS287_EUR -0.467 (0.404) -0.641 (0.425) 1.53 
(1.37-1.71) 0.620 

bPRS46 + PRS287_ASN
 -0.493 (0.354) -0.614 (0.344) 1.43  

(1.28-1.59) 0.592 

bPRS2985 + PRS287_ASN -0.482 (0.385) -0.625 (0.374) 1.46  
(1.32-1.63) 0.603 

bPRS46 + PRS287_EB -0.477 (0.384) -0.632 (0.401) 1.50 
(1.35-1.67) 0.613 

bPRS2985 + PRS287_EB
 -0.467 (0.409) -0.641 (0.422) 1.53 

(1.37-1.70) 0.618 

bPRSGW_EUR + PRSGW_ASN
 -0.438 (0.482) -0.699 (0.480) 1.63  

(1.47-1.83) 0.636 

aEvaluation of PRSs performance in 585 breast cancer cases and 1,018 controls of Indian ancestry women 
in the validation dataset (Table S1). 

bCombined PRSs were generated using the formula 𝛼𝛼0 + 𝛼𝛼1𝑃𝑃𝑃𝑃𝑆𝑆1 + 𝛼𝛼2𝑃𝑃𝑃𝑃𝑆𝑆2 where 𝛼𝛼0,𝛼𝛼1 and 𝛼𝛼2 are the 
weights obtained by fitting a logistic regression model with breast cancer as outcome, and 𝑃𝑃𝑃𝑃𝑆𝑆1 and 𝑃𝑃𝑃𝑃𝑆𝑆2 
are explanatory variables using Indian-ancestry women in the validation dataset. The weights for the 
considered combinations of PRSs can be found in bottom panel of Table S5. 

†Adjusted for first the 10 principal components and study, and standardised to SDs in controls of each PRS. 
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Table S8. Breast cancer odds ratio by percentiles of PRS46+PRS287_EB in East Asian 
ancestry women 

Percentiles Control Cases Estimated OR (95% CI) Predicted OR 

<1 67 29 0.53(0.33-0.82) 0.31 

1-5 265 97 0.43(0.33-0.55) 0.35 

5-10 232 137 0.49(0.39-0.60) 0.53 

10-20 664 381 0.67(0.58-0.78) 0.63 

20-40 1327 897 0.79(0.71-0.89) 0.79 

40-60 1328 1134 1 1 

60-80 1327 1505 1.33(1.19-1.48) 1.26 

80-90 664 915 1.61(1.41-1.83) 1.58 

90-95 232 544 1.91(1.63-2.24) 1.88 

95-99 265 579 2.55(2.16-3.02) 1.85 

>99 67 174 3.01(2.25-4.06) 3.24 

PRS46+PRS287_EB was categorised into quantiles based on the PRS distribution in controls of validation 
dataset of East Asian ancestry women. The middle quintile was used as the reference category. Observed 
odds ratios (ORs) were compared with those predicted under a theoretical polygenic model in which the 
log OR depends-linearly on the PRS (see Supplementary Methods).   
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Table S9. Association between PRS46 + PRS287_EB and breast cancer risk in validation cohort by ethnicity 

Ethnicity*  Cases Control Cases Mean (SD) Control Mean (SD) OR per SD (95% CI)† AUC (95% CI) 

PRS46+PRS287_EB         
Chinese 5230 5153 0.076     (0.439) -0.118 (0.439) 1.56 (1.50 - 1.63) 0.625 (0.615 - 0.636) 
Malay 1086 1335 -0.007 (0.466) -0.197 (0.556) 1.51 (1.39 - 1.64) 0.614 (0.592 - 0.636) 
Indian 585 1018 -0.157 (0.438) -0.328 (0.455) 1.49 (1.33 - 1.66) 0.610 (0.581 - 0.638) 

†Adjusted for first 10 principal components and study, and standardised to SDs in controls of each PRSs. 

*Self-declared ethnicity was used. 
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Supplementary Methods 

Study populations and genotyping 

The study population was divided into three datasets. PRSs were developed using training 

and validation datasets and evaluated in the testing dataset. The training dataset included 

women of East Asian ancestry from three sources: (a) 20,198 women (10,020 invasive cases 

and 10,179 controls) participating in 11 studies in Breast Cancer Association Consortium 

(BCAC); (b) 23,928 women (11,993 invasive cases and 11,935 controls) participating in 5 

studies in the Asia Breast Cancer Consortium (ABCC); and (c) 79,550 (6,325 invasive cases and 

73,225 controls) participating in Biobank Japan (BBJ). Except for studies in BCAC where raw 

genotype data was available, only summary statistics were available for the remaining 

studies. Training set 1 included summary statistics of variants with p-value < 10-3 from a meta-

analysis of BCAC and ABCC studies as described in Shu et al, (2020)30, training set 2 included 

summary statistics of variants from a meta-analyses of BCAC studies and BBJ. Given that 

summary statistics from ABCC studies were not available (only summary statistics of meta-

analysed BCAC and ABCC studies were available) and a portion of samples in BBJ had been 

included in ABCC studies, we could not include ABCC studies in the meta-analysis of BCAC 

studies and BBJ. Finally, publicly available summary statistics from European GWAS were 

included as training set 323. 

 The validation set included 14,633 women of Easy Asian (Chinese-ancestry and Malay 

ancestry) or South Asian ancestry participating in two multi-ethnic case-control studies: (a) 

6,993 women (3,384 invasive cases and 3,609 controls) participating in Malaysian Breast 

Cancer Genetics (MyBrCa) study; and (b) 7,640 women (3,593 invasive cases and 4,047 
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controls) participating in the Singapore Breast Cancer Cohort (SGBCC) study.  Given that East 

Asians and South Asians are genetically distinguishable, we further divided the validation 

dataset into – set 1 included 13,030 (6,392 cases invasive cases and 6,638 controls) women 

of Chinese or Malay ancestry, and set 2 included 1,603 (585 invasive cases and 1,018 controls) 

women of Indian ancestry. Samples in the development dataset were genotyped using one of 

the five arrays: iCOGS31, OncoArray32, Affymetrix Genome-Wide Human SNP Array 6.0, 

Illumina Multi-Ethnic Genotyping Array, Illumina HumanOmiExpress33 and Illumina 

HumanExome-12v1_A Beadchip34-36 (Table S1).  

The best PRSs were evaluated in the testing set comprising 89,898 women from three 

prospective cohorts of East Asian ancestry: (a) 10,021 women who had not had any cancer 

diagnosis prior to recruitment into Singapore Chinese Health Study (SCHS)25,26 , of which 413 

registry-confirmed breast cancer developed over 195,317 person years of prospective follow-

up;  (b) 38,864 women without any cancer diagnosis prior to recruitment into China Kadoorie 

Biobank (CKB)28, of which 476 developed breast cancers over 423,396  person years of 

prospective follow-up; and (c) 41,031 without any cancer diagnosis prior to recruitment into 

Korean Cancer Prevention Study Biobank(KCPS-II)29 of which 705 developed breast cancers 

over 406,556  person years of prospective follow-up. For all studies, follow-up started six 

months after recruitment and was censored at age of breast cancer diagnosis, age at risk-

reducing mastectomy, age of diagnosis of any cancer, age of death, or age on 31 December 

2015 (for SCHS), age on 31 December 2017 (for CKB) and age on 31 December 2017 (for KCPS-

II) whichever came first. Samples in SCHS and KCPS-II were genotyped using the Illumina 

Global Screening Array25,29, while samples in CKB were genotyped using custom-designed 

Affymetrix Axiom arrays28. Analyses using CKB data were conducted under research approval 
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2020-0047. Supplementary Table 1 summarises the study design and the number of breast 

cancer cases and controls in each study.   

Genotype calling, quality control procedure and imputation have been described 

previously23,30,31,33,37,38. All data were imputed using the 1000 Genomes Project (Phase 3) data 

as the reference panel39, except BioBank Japan, for which the HapMap Phase II (release 22) 40 

was used. SNPs with overall minor allele frequency in controls > 0.01 and imputation r2 > 0.9 

for OncoArray studies, imputation r2 > 0.7 for Biobank Japan and imputation r2 > 0.3 for other 

studies in the training and validation dataset were included in this analysis. Since all samples 

in the validation sets were genotyped using OncoArray, a higher threshold was imposed for 

OncoArray to ensure accurate determination of PRS in the validation datasets. 

Ancestry informative principal components were available for Asian ancestry samples in the 

training dataset and the validation dataset, generated using methods as previously 

described30. Briefly, for the BCAC data, continental ancestry was derived by combining the 

data with the 1000 Genomes Project reference data. Individuals with >40% estimated East 

Asian ancestry were retained. In the second stage, principal components were generated on 

the Asian ancestry individuals using a subset of uncorrelated SNPs. Similar ancestry 

informative principal components were generated for the other dataset. 

All studies were approved by the relevant institutional ethics committees and review boards, 

and all participants provided written informed consent.  

Single-SNP association analysis in the training set 

Single-SNP association tests were conducted in the BCAC studies separately for the iCOGS and 

OncoArray datasets, adjusted for age, the first two principal components and country/study 
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to obtain the per-allele OR for each SNP using Plink 2.041. Single-SNP association analyses in 

ABCC studies were previously conducted by Shu and colleagues (2020)30 – only summary 

statistics from meta-analyses of BCAC and ABCC studies were available for this project. Briefly, 

the analyses were conducted separately for each study in ABCC, adjusted for age and first two 

principal components30. Combined weights and p-values were derived using fixed-effect 

meta-analysis with the software METAL42. A total of 20,768 SNPs significantly associated with 

breast cancer risk at p-values < 0.001 were selected. SNPs clumping (within 1Mb windows) 

was subsequently conducted using the software PRSice v2.1143 to remove highly correlated 

SNPs (pairwise correlation r2 > 0.9); the SNP with the lowest p-value for association in the 

correlated pairs was retained, resulting in 3,050 SNPs for subsequent analyses. Since the raw 

genotype data were not available for ABCC studies, the correlation r2 was computed using 

4,921 control samples in BCAC OncoArray studies only.  Single-SNP association analyses in 

BBJ1 were previously conducted by Ishigaki et al (2020)33. Briefly, GWAS was conducted using 

generalised linear mixed model, adjusted for age and first five principal components. The 

GWAS summary statistics from BBJ were combined with GWAS from BCAC Asian studies using 

fixed-effect meta-analysis with the software METAL.  

Clumping and thresholding (C+T) method  

To account for the joint effect of SNPs used in derivation of the best PRS determined by the 

C+T method, the SNP weights should ideally be estimated jointly in a single logistic regression 

model. Raw genotype data of the training set were not available for the joint estimation. 

However, these weights can be computed from the marginal effect sizes – if 𝛾𝛾 are the 

(conditionally independent) effect sizes and 𝛾𝛾′𝑗𝑗 = 𝛾𝛾𝑗𝑗�2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗) are the corresponding 

normalized effect sizes, where 𝑝𝑝𝑗𝑗 is the effect allele frequency of SNP 𝑗𝑗, then the predicted 
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normalised marginal effect sizes of the SNPs 𝛽𝛽′ are given by    𝛽𝛽′ = 𝑅𝑅𝛾𝛾′, where 𝑅𝑅 is the matrix 

of correlations between the SNP genotypes. Thus 𝛾𝛾′ = 𝑅𝑅−1𝛽𝛽′, and the optimal weight.  The 

optimal weight for SNP j is then given by: 

𝛾𝛾𝑗𝑗 = 𝛾𝛾′𝑗𝑗
�2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)�    (1) 

 

The correlation matrix 𝑅𝑅 was estimated using 4,921 Asian control samples in BCAC OncoArray 

studies. The concept of this method has been previously described in Section 3.3 of Prive et 

al (2020)44. 

Re-weighting of European-based PRS 

For these analyses, we considered PRS based on the 313 SNPs developed in European 

women45. Of the 313 SNPs, only 287 SNPs with imputation info score > 0.9 in OncoArray 

studies were retained for subsequent analyses. We considered two sets of weights for these 

SNPs: (i) Asian weights estimated from training set 1 alone; and (ii) weights based on a 

combination of the Asian (from training set 1) and European weights, allowing for these 

weights to differ but be correlated.  

For (i), the optimal weights taking into account the correlation between SNPs were derived 

using Equation (1). For (ii), we combined Asian and European weights using an Empirical Bayes 

approach. In brief, we assume that the true population-specific effect sizes vary from a 

“global” effect size, 𝛽𝛽𝑗𝑗, by a normally distributed amount, with variance 𝜉𝜉2, i.e. 

𝛽𝛽𝑗𝑗𝑗𝑗′ ,𝛽𝛽𝑗𝑗𝑗𝑗′ ~𝑁𝑁(𝛽𝛽𝑗𝑗, 𝜉𝜉2) 

where 𝛽𝛽𝑗𝑗𝑗𝑗′  and  𝛽𝛽𝑗𝑗𝑗𝑗′  are the unobserved true effect sizes for SNP j for Asian and European 

populations, respectively. Let 𝛾𝛾𝑗𝑗𝑗𝑗′ = 𝛾𝛾𝑗𝑗𝑗𝑗�2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗) be the normalized weight of SNP j 
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estimated from the training set (using the method described above but 𝑝𝑝𝑗𝑗 is the average 

effect allele frequency of SNP j in Asians and Europeans), and 𝛾𝛾𝑗𝑗𝑗𝑗′ = 𝛾𝛾𝑗𝑗𝑗𝑗�2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)  be the 

normalized weight for SNP j reported for European populations (𝛾𝛾𝑗𝑗𝐸𝐸 are effect sizes reported 

in Mavaddat et al45).  Using Bayes theorem and given that 𝛾𝛾𝑗𝑗𝑗𝑗′  and 𝛾𝛾𝑗𝑗𝑗𝑗′  are conditional 

independent given 𝛽𝛽𝑗𝑗𝑗𝑗′  the posterior distribution of 𝛽𝛽𝑗𝑗𝑗𝑗′ |𝛾𝛾𝑗𝑗𝑗𝑗′ , 𝛾𝛾𝑗𝑗𝑗𝑗′  is given by  

𝑓𝑓(𝛽𝛽𝑗𝑗𝑗𝑗′ |𝛾𝛾𝑗𝑗𝑗𝑗′ , 𝛾𝛾𝑗𝑗𝑗𝑗′ ) ∝ 𝑓𝑓�𝛾𝛾𝑗𝑗𝑗𝑗′ �𝛽𝛽𝑗𝑗𝑗𝑗′ �𝑓𝑓(𝛽𝛽𝑗𝑗𝑗𝑗′ �, 

where 𝑓𝑓(𝛾𝛾𝑗𝑗𝑗𝑗′ �𝛽𝛽𝑗𝑗𝑗𝑗′ � ∼ 𝑁𝑁(𝛽𝛽𝑗𝑗𝑗𝑗′ ,𝑉𝑉𝛾𝛾𝑗𝑗𝑗𝑗′ ) and 𝑉𝑉𝛾𝛾𝑗𝑗𝑗𝑗′  is the variance of 𝛾𝛾𝑗𝑗𝑗𝑗′  estimated from the training 

dataset. Here, The estimated posterior effect sizes in Asians, given the data, are therefore:  

𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸 =
𝜏𝜏𝐴𝐴 𝛾𝛾𝑗𝑗𝑗𝑗

′ +𝜏𝜏𝜉𝜉𝛽𝛽𝑗𝑗
𝜏𝜏𝐴𝐴+𝜏𝜏𝜉𝜉

 (2) 

,  𝜏𝜏𝐴𝐴 = 1/𝑉𝑉𝛾𝛾𝑗𝑗𝑗𝑗′  and 𝜏𝜏𝜉𝜉 = 1/𝜉𝜉2. The estimated posterior effect sizes for European populations, 

𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸, can be obtained using Equation (2) by replacing 𝛾𝛾𝑗𝑗𝑗𝑗′  by 𝛾𝛾𝑗𝑗𝑗𝑗′  and 𝜏𝜏𝐴𝐴 by 𝜏𝜏𝐸𝐸, where 𝛾𝛾𝑗𝑗𝑗𝑗′ =

𝛾𝛾𝑗𝑗𝑗𝑗�2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)  𝜏𝜏𝐸𝐸 is the corresponding observed inverse variance of 𝛾𝛾𝑗𝑗𝑗𝑗′ .  

The parameters 𝛽𝛽𝑗𝑗, 𝜉𝜉2 were estimated using Expectation-Maximisation (EM) iteration 

method where in the M-step, 𝛽𝛽𝑗𝑗 was estimated using the formula  

𝛽𝛽𝑗𝑗 = 1
2

(𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸 + 𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸), 

since  1
2
�𝛽𝛽𝑗𝑗𝑗𝑗′ + 𝛽𝛽𝑗𝑗𝑗𝑗′ � is an unbiased estimator of 𝛽𝛽𝑗𝑗, and the variance 𝜉𝜉2 was derived using 

the following formula  

𝜉𝜉2 = 1
2

 𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸 − 𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸), 
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since 𝛽𝛽𝑗𝑗𝑗𝑗′ − 𝛽𝛽𝑗𝑗𝑗𝑗′ ∼ 𝑁𝑁(0, 2𝜉𝜉2). In the E-step, 𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸  and 𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸 were updated and the algorithm 

was repeated until 𝛽𝛽𝑗𝑗 and 𝜉𝜉2 converge. Finally, the optimal weights for each SNP included in 

PRS derivation were estimated using the following formula  

𝛽𝛽𝑗𝑗,𝐸𝐸𝐸𝐸 = 𝛽𝛽𝑗𝑗𝑗𝑗,𝐸𝐸𝐸𝐸

�2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)� . 

This approach “shrinks” the Asian estimates towards the European estimates, making use of 

the greater precision in the European estimates but allowing for different Asian weights when 

the European and Asian estimates differ markedly.  

Of the 287 SNPs, the combined Asian weights, 𝛽̂𝛽𝑗𝑗𝑗𝑗, in the training dataset was not available 

for 48 SNPs with MAF < 0.01, hence for these 48 SNPs, European weights, 𝛽̂𝛽𝑗𝑗𝑗𝑗, were used for 

PRS construction.  

Absolute risk of breast cancer by PRS percentiles 

The age-specific absolute risks of developing breast cancer in each PRS percentile, g, were 

calculated using the following formula: 

 

ARg(t) = �λg(u) ∙ Sg(u) ∙ Sm(u)
t

u=0

 

 

where λg(𝑢𝑢) = 𝜆𝜆0(𝑢𝑢)exp (𝛽𝛽𝑔𝑔) is the breast cancer incidence associated with PRS at age u, 

𝜆𝜆0(𝑢𝑢) is the baseline incidence and the corresponding effect size 𝛽𝛽𝑔𝑔, Sg(u) is the probability 

of being breast cancer free at age u, and Sm(u) is the probability of not dying from a cause 

other than breast cancer at age u. The theoretical effect sizes, ORg = exp�𝛽𝛽𝑔𝑔�, for PRS 
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interval between two percentiles (u,v), using middle quintile as reference (40-60th), were 

given by 

ORg =
(0.6 − 0.4)((Φ(Φ−1(1 − 𝑢𝑢) + 𝜎𝜎) −Φ(Φ−1(1− 𝑣𝑣) + 𝜎𝜎))

(v − u)((Φ(Φ−1(0.6) + 𝜎𝜎) −Φ(Φ−1(0.4) + 𝜎𝜎))
 

where 𝜎𝜎 is the log OR per unit SD of the continuous PRS46. The PRS-specific breast cancer 

incidences, λg(u), were calculated iteratively by assuming that the average age-specific breast 

cancer incidence over all PRS percentiles agreed with the population breast cancer incidence. 

The details of these methods have been described previously47. We calculated lifetime and 

10-year absolute risks using Singaporean mortality and breast cancer incidence for Chinese, 

Malays and Indians in 201749,50. Under polygenic model, the logarithm of risk in the 

population has been shown to follow a normal distribution51. The proportion of population 

above a specific risk threshold was given by the area under the curve of the distribution of 

logarithm of 10-year absolute risk at pre-specified age.   

To generate the distribution of birth-cohort specific 10-year absolute risk at age 40, we used 

birth cohort--specific breast cancer incidences derived using population breast cancer 

incidence in Singapore from 1968 to 201752. The population incidences were reported in five-

year age intervals for calendar year 1968-1972, 1973-1977,…, 2013-2017. By taking the lower-

bound of these five-year age interval and the midpoint of calendar-specific interval, the year 

of birth of the cohort that the reported population incidences were based on were calculated. 

We took the average of the reported incidences according to three birth cohorts - 1960-1969, 

1970-1979 and 1980-1989. Birth cohort-specific incidence were observed for women who 

were born between 1960-1969 and 1970-1979. For women who were born between 1980-

1989, breast cancer incidence was observed up to age 35. The breast cancer incidence for this 
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birth cohort at age 40 was projected by assuming an annual increase in breast cancer 

incidence of 3.9%1.  
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