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Abstract

There has been an increasing interest in applying machine learning methods in urban energy assessment. This research 
implemented six statistical learning methods in estimating domestic gas and electricity using both physical and socio-economic 
explanatory variables in London. The input variables include dwelling types, household tenure, household composition, council 
tax band, population age groups, etc. Six machine learning methods are two linear approaches (full linear and Lasso) and four 
non-parametric methods (MARS multivariate adaptive regression spline, SVM support vector machine, bagging MARS, and 
boosting). The results indicate that all the four non-parametric models outperform two linear models. The SVM models perform 
the best among these models for both gas and electricity. The bagging MARS performs only a little worse than the SVM for gas 
use prediction. The Lasso model has similar predictive capability to the full linear model in this case.
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1. Introduction

The construction of reliable energy models is one of the most important tasks in building energy analysis [1]. This 
is because building energy models can be used to assess various energy saving strategies for both existing and new 
buildings in order to optimize building energy performance and reduce associated carbon emissions. As a result, 
there are various types of building energy models, including both engineering-based and statistical energy models 
[2]. Engineering models are based on the fundamentals of heat transfer required a number of detailed input 
parameters, whereas statistical energy models based on various machine learning methods need less parameters well 
suitable for building stock research, for instance, urban-scale energy assessment. 

In recent years, there has been an increasing interest in applying machine learning methods to construct statistical 
energy models in urban environment [1, 3]. Tian and Choudhary [4] applied a MARS (multivariate adaptive 
regression spline) method to create non-parametric energy models for estimating energy use of secondary school 
buildings in London. Jain et al. [5] used support vector machine method to predict energy use of multi-family 
residential buildings in an urban area. Howard et al. [6] implemented a robust multivariate linear regression to 
analyze building energy use by end use in New York. Tian et al. [7] explored the spatial patterns of domestic energy 
in London using spatial error models. However, there are few studies that compare the predictive performance of 
machine learning methods in assessing energy performance of urban buildings. 

Therefore, this research is focused on comparing predictive performance of six statistical machine-learning 
methods: full linear, Lasso (least absolute shrinkage and selection operator), MARS, SVM (support vector machine), 
bagging MARS, and boosting [8]. This study uses London as a case study for comparative analysis. The two output 
performance indicators are annual total electricity and gas consumption for domestic properties. The explanatory 
variables include dwelling types, household tenure, household composition, council tax band, population age groups, 
etc.

2. Data

Table 1. Explanatory variables used for estimating gas and electricity in London

Inputs Number Descriptions

Meters 3 Number of ordinary domestic electricity meter, number of Economy 7 electricity 
meter, number of domestic gas meter

Population 7 Number of total population, age 0-15, age 16-29, age 30-44, age 45-64, age of over 
65, working age (16-64)

Household 1 All the households

Household composition 5 Couple household with/without dependent children, single parent household, one 
person household, other household types

Household tenure 4 Household with outright ownership, household with mortgage or loan, social rented 
household, private rented household

Dwelling type 6 Detached, semi-detached, terrace, flat, household with or without usual residents

Land area 1 Land area for domestic buildings (1000 m2)

Financial vulnerability 12 Households by financial capability segment. Bands range from 0 to 11, FV0 denotes 
the least vulnerable, FV11 denotes the most vulnerable

Council tax band 8 Dwellings in 8 council tax (CT) bands from A to H. The council tax A (CTA) is the 
lowest and the council tax G (CTG) is the highest. 

The data used in this study are from London data store [9]. The spatial scale for both energy and explanatory data 
is based on LSOA since it is the smallest spatial scale available in London data store. LSOA stands for the lower 
super output area, designed by UK ONS (Office for National Statistics) for small area data analysis [10]. London 
has 4765 LSOAs, but the data from 4746 LSOAs are used in this analysis due to the availability of energy data. All 
the input data used here are summarized in Table 1. The input factors include type of gas and electricity meters 
(corresponding to fuel and tariff), population number at different age groups, household composition, household 
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tenure status, dwelling types, land area for domestic buildings, financial vulnerability, and council tax bands. These 
input variables can represent both household physical conditions and socio-economic influences. Figure 1 shows the 
spatial distributions for electricity and gas use at LSOA scale in London for the year of 2011.

Fig.1. Electricity and gas use at LSOA (lower super output area) in London

3. Methods

The six machine learning methods will be used in this analysis to estimate both gas and electricity use in London. 
These methods are full linear, Lasso, MARS, SVM, Bagging MARS, and boosting. Except for the full linear model, 
the parameters in other five approaches need to be tuned to derive a model that best matches the data. In this study, 
the cross-validation resampling method is used to adjust/tune the parameters [11]. This means that a given dataset is 
randomly divided into k sets (also called k-fold) with almost the same size. A statistical model is obtained using all 
k-1 sets, except for one set (acted as a held-out sample). This held-out set is used to judge the predictive 
performance for a statistical model. In the next iteration, all the data except for the second set is used to fit a new 
model and the second set acts as a held-out sample to assess the performance of this new model. This procedure is 
carried out for all the k sets. It should be emphasized that the computational cost is very high for some machine 
learning methods. For example, if a method requires 2 parameters to be tuned, and one chooses to carry out 10-fold 
cross validation, then 120 statistical models need to be generated (each parameter can have 6 possible values). R
caret package, developed by Max Kuhn, is used for all the statistical computation in this research [12]. 

These six machine learning methods are described briefly below and for more detailed information, please refer 
to two documents [8] and [13]. 

(1) The full linear model is the simplest in these methods using least square approach without reducing the 
number of predictors. 

(2)The lasso method uses a shrinkage approach by retaining a subset of the most relevant predictors and deleting
the remaining explanatory variables. In this method, the fraction of full solution is regarded as a tuning parameter. 
The smaller values of the fraction of full solution mean a greater shrinkage [14]. When the fraction of full solution is 
one, then the Lasso model becomes ordinary least square with no penalty (i.e. a full linear model). Although the 
training error from constructing models may be lower in comparison with a full linear model, the prediction error 
from this shrinkage model is not necessarily low due to a decrease in variance of predictions. 

(3) The MARS stands for multivariate adaptive regression splines, a generalization of stepwise linear regression. 
This method is well suited for high dimensional inputs and it is also fast to compute. The degree and the term
numbers are two tuning parameters in MARS method. If the degree is 1, the regression model only considers linear 
effects. If the degree is 2, the interactions between two variables will be taken into account in the analysis. The 
higher the number of terms entered in the regression equation, the lower the training error is. 

(4) The SVM method is a class of powerful flexible regression learning techniques, originally developed for 
classification models. SVM is closely related to robust regression by reducing the effects of outliers in regression 
process. The polynomial function is chosen as a kernel function in this research after preliminary analysis. Three 
main tuning parameters in this SVM regression are cost, degree, and scale. The cost parameter is to penalize the 
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large residuals of a model. The degree is associated with the polynomial kernel function used to describe linear or 
non-linear relationships in which a larger degree value tends to result in over-fitting. The scale factor can change 
predictor values to improve predictive performance for a SVM model. 

(5) The bagging method means the bootstrap aggregation, a general approach to combine a number of models 
and obtain the averaged predictions for these models. In this analysis, the bagging method is used together with a
MARS regression. The advantage of this bagging method is to reduce the variance of predictions through 
aggregation process. The MARS can sometimes yield unstable predictions and as a result, the combination of 
MARS and bagging methods may improve the prediction performance for a MARS model. The main tuning 
parameters for bagging MARS are the same as MARS method as described above.

(6) The boosting method combines the outputs from many “weak” regression models to obtain a better model, 
similar to the bagging method. The main difference is that the boosting method would use a weighted majority vote 
for different models for a final prediction, whereas the bagging method treats all the models equally. Stochastic
gradient boosting is used in this analysis to obtain a boosting model by fitting a base model for a subsample of the 
training data randomly sampled without replacement. The shrinkage, iteration numbers, and max tree depth are the 
three main tuning parameters for this method. The shrinkage parameter is also called “learning rate” that can 
improve predictive capability using smaller values of shrinkage, but lead to an increase in computational cost. The 
optimal iteration number depends on the shrinkage values. Hence, analysts may firstly choose appropriate shrinkage 
and then select a proper iteration number based on cross-validation error. The tree depth can account for interaction 
terms between predictors in SVM regression. 

Note that the data needs to be pre-processed in order to efficiently implement the machine learning methods 
described above. The three steps have been used in this analysis: (1) remove linear dependencies; (2) delete highly 
correlated predictors; (3) center and scale original data. Firstly, the QR decomposition is used to find the linear 
dependencies among input variables and remove them from the analysis. The benefit of this operation is to increase 
the stability of numerical computation. Indeed, some statistical methods cannot be properly used without removing 
these linear dependencies. The second step is to identify correlated predictors and delete these variables if the 
correlation coefficient is greater than 0.75 [8]. Reducing the number of predictors has some advantages. Fewer 
variables indicate a simpler model and also reduce computational cost, which often results in a parsimonious and 
more interpretable model. The third step is to center (zero mean) and scale (standard deviation of one) the predictors 
before training the statistical models [8]. These manipulations can increase the numerical stability for machine 
learning methods. 

4. Results and discussion

4.1. Gas use

Firstly, a full linear model is obtained using least square method for estimating gas use in London. Then a Lasso 
model is created for the same purpose. It is found that the cross validation error is gradually decreased when the 
fraction of full solution increases. This means the models from the full linear and Lasso methods have the similar 
capability when estimating the gas consumption at LSOA in London. Figure 2 shows the resampling profile for 
tuning the parameters in MARS and bagging MARS models. The change of term number entered in the model has 
obvious effects on the cross validation error, especially at the starting stage. Then this influence becomes smaller for 
a large number of terms entered in the model. This means more terms added in the regression model would not 
increase the predictive capability of estimating gas consumption. Note that the bagging MARS becomes more 
unstable with an increase in term numbers although it can slightly increase the predictive performance in this case. 
Thus, analysts should be careful of choosing bagging MARS models in the analysis to avoid creating a more 
destructive model. 
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(a) MARS                                                                                                               (b) bagging MARS

Fig. 2. Parameter tuning profile of MARS and bagging MARS for gas use in London

Figure 3 reveals that the effects of cost and scale are dependent on the degree number for SVM regression. When 
the degree number is taken as 1, the cross validation error becomes stable after a scale of 0.01. When the degree 
number is 2, the predictive errors show more irregularities. The final optimal model is quadratic (i.e. a degree of 2) 
with a scale factor of 0.01 and a cost value of 1. Figure 4 indicates that the RMSE decreases with an increase of both 
tree depth and boosting interactions for the boosting method. The small shrinkage values can lead to an increase in 
RMSE for this case. The final boosting model has a depth of 8 with a shrinkage of 0.04 and a tree number of 1500. 
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Fig. 3. Parameter tuning profile of support vector machine methods for gas use in London

Figure 5 compares the model accuracy based on the resampling results with box plots for these six models. The
performance indicators are RMSE (root mean square error) and R2 (coefficient and determination). The RMSE can 
be regarded as the average model error and the R2 can be interpreted as a proportion of the information explained by 
a regression model. The lower the RMSE, the better a model is. In contrast, a higher R2 indicates a better model. 
The SVM model emerges as the winner in this case in terms of both RMSE and R2. The model created using 
bagging MARS has very similar performance to the SVM model. Two linear models (full linear and Lasso) perform 
worse than all the non-parametric models in this case.
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Fig. 4. Parameter tuning profile of generalized boosted regression for gas use in London
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Fig. 5. Comparison of model performance for gas use in London based on six machine learning methods in terms of RMSE (root mean square 
error) and Rsquared (coefficient of determination, R2) (boxplot with confidence level 0.95). 

4.2. Electricity use

The general patterns from these machine learning methods for electricity use are similar to the gas use. Thus, 
only brief discuss on performance differences is presented here and the tuning profiles for SVM and Boosting are 
not shown in this paper. For the bagging MARS model, the tuning process for electricity (Figure 6) is more unstable 
in comparison with gas consumption (Figure 2). This suggests that a higher number of terms in bagging MARS may 
have worse performance although an appropriate number of terms may have better prediction power. For the MARS 
method, the trend between gas and electricity use is different after the number of terms reaches 16. The cross 
validation error for electricity use is higher for the degree of 2 than that for the degree of 1, whereas the opposite is 
the case for gas use. This suggests that the interactions between input variables may be more significant for gas use 
compared to electricity use. For the final models from MARS and bagging MARS, the number of terms entered for 
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electricity estimation is less than gas use. This means the statistical energy models for electricity are more 
parsimonious than those for gas prediction. Note that the quality of energy data itself may have important 
implication for this analysis. 
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Fig. 6. Parameter tuning profile of MARS and bagging MARS for electricity use in London

For SVM models, the final tuning parameters for electricity are the same as the gas, except for the cost of 0.5 for 
the electricity model (1 for the gas model). The cost value in SVM is a main parameter to adjust the complexity of 
the models. The smaller the cost in SVM, the simpler the final model is. This conclusion from the SVM method 
confirms the statement from comparing the MARS model from gas and electricity as discussed in the last paragraph. 
The statistical energy models for electricity estimation are more parsimonious than those for predicting gas use. This 
indicates that less explanatory variables listed in Table 1 are required to predict the electricity use, whereas more 
predictors are needed for gas calculation. The optimal parameters of boosting models are the same for both 
electricity and gas prediction in this case.
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Fig. 7. Comparison of model performance for electricity use in London based on six machine learning methods in terms of RMSE (root mean 
square error) and Rsquared (coefficient of determination, R2) (boxplot with confidence level 0.95). 

Figure 7 compares the resampling results from six models for electricity use in London. The SVM comes out the 
winner. The two linear models (Lasso and full linear) have similar predictive capability, which are both worse than 
all the four non-parametric models. By comparing Figure 5 and Figure 7, the predictive performance for final 
models is better for gas estimation in comparison with electricity calculation since the coefficients of determination 
(R2) are higher for gas than those for electricity.
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5. Conclusions

This paper investigates the predictive performance of six machine learning methods in order to create reliable 
energy model for estimating both gas and electricity use in London. The explanatory variables include the 
population age, household number, household tenure status, dwelling type, council tax band, financial segment, etc. 
Six machine learning methods contain two linear methods (full linear and Lasso) and four non-parametric methods 
(MARS, SVM, bagging MARS, boosting). The results indicate that the SVM models perform the best among the six 
methods for both electricity and gas prediction in this research. The bagging MARS model nearly matches the SVM 
model. Further analysis will compare these machine learning methods for electricity and gas use per household in 
order to understand the patterns of domestic energy intensity, not only total gas and electricity in London. The 
methods used in this analysis can be also applied by implementing various types of machine learning approaches to 
other cities, such as Tianjin and Beijing in China, depending on data availability. Based on the results from this 
study, the SVM and bagging MARS models are recommended to be used together to provide reliable energy 
estimation in a city-scale research. The full linear model can be used as a reference case to compare predictive 
capabilities with non-parametric methods. 
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